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Abstract 

Titanium alloys are widely used in aerospace and medical industries owing to high strength to 

weight ratio and outstanding corrosion resistance. A problem for titanium or titanium alloys 

is the existence of a hard, brittle and oxygen-enriched layer on the surface (so called alpha 

case) which is usually formed during hot forming processes or after long-term service at 

elevated temperatures in an open-air environment. With the development of waterjet system, 

high pressure waterjet has shown its capability for the removal of such hard and difficult-to-

machine coatings. Waterjet machining is usually associated with a surface roughening effect 

due to the repetitive impacts of droplets. Surface roughening is unwanted for most of 

aerospace applications as rough surface is detrimental to the fatigue behavior of components, 

but is beneficial for medical application where fixation is required (e.g. metal orthopedic 

implants). An additional benefit of waterjet material removal is that the repetitive droplet 

impacts may introduce compressive residual stress to the machined surface and subsurface 

layers. In this study, Ti-6Al-4V with alpha case layer was subjected to plain waterjet over a 

range of parametric conditions. The completeness of alpha case removal was characterized by 

the depth of removal. The textured surfaces were quantified in terms of average surface 

roughness (Ra) and apparent volume for interdigitation (Vi). The magnitude of residual stress 

of PWJ-machined surfaces was measured using X-ray diffraction (XRD). ANOVA analysis 

was also conducted to identify the relative significance of machining parameters to the 

process outputs. It was found that an increase in removal depth results in an increase in the 

surface roughness as well as the interdigitation volume regardless of machining conditions. A 

compressive residual stress (-563 MPa~ -13 MPa) was found within all PWJ-machined 

surfaces. It was concluded that a maximum compressive residual stress simultaneous to a 
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minimum material loss of the Ti-6Al-4V substrate can be obtained by controlling the 

exposure time (or traverse rate) when the other machining parameters are fixed.  

Keywords: Plain waterjet, alpha case removal, Ti-6Al-4V, residual stress 

 



 

3 

1 Introduction 

Ultra-high pressure plain waterjet (PWJ) technology has been considered as a promising 

substitute metal removing method over other techniques such as chemical etching or 

abrasive-evolved processes due to its distinct features which are beneficial to the ultimate 

performance of the processed components such as no heat-effected zone, no abrasive 

contamination, environmental friendly and industrial affordable cost, etc.. With significant 

improvement on pump technology in recent years, the removal of extremely hard protective 

coatings or heat-formed coatings (e.g. heat-formed titanium alpha case) using PWJ has 

become possible. A potential extra benefit of removing alpha case using PWJ process is that 

PWJ may be capable of introducing compressive residual stress to the treated surface 

simultaneous to material removal.  

As Chillman et al. (2010) described, alpha case is a brittle, oxygen-enriched and all alpha 

surface layer on the titanium alloys, which is usually formed during hot forming processes 

such as superplastic forming (SPF) or after long-term service at elevated temperatures in an 

open-air environment. Frangini et al. (1994) and Patankar and Tan (2001) both stated that the 

alpha case layer is detrimental because of the brittle nature of oxygen enriched alpha phased 

structure which renders itself crack initiation and propagation. A preliminary study in 

removing alpha case by a high pressure water-air jet has been conducted by Chillman et al. 

(2010). The resulting surface roughness and completeness of alpha case removal were 

characterized. It was concluded that the depth of removal can be controlled by the energy per 

unit area transferred to the workpiece with minimal effect on the resulting surface topography. 

It was also speculated that the repetitive impacts of droplets serve to introduce compressive 

residual stress in shallow subsurface layers of the work piece. However, neither a parametric 

study investigating the effects of machining parameters on alpha case removal nor the 

residual stress study was involved in their work.  

Residual stress is a stress state present in material in the absence of any external forces, 

which is a self-equilibrating stress that has a zero resultant force. It has been widely 

recognized that compressive residual stress on various components to be cyclically loaded is 

beneficial as it prevents stress corrosion cracking and fatigue fracturing. This is due to that, 

for a fatigue crack to propagate during the loading cycle, the region at the crack tip must be in 

a state of tension. Vosough et al. (2005) claimed that when a compressive residual stress state 

has been superimposed over the stress state resulting from the service loading, it is possible 
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that most of or the entire load spectrum will remain in the compression region. The methods 

enrolled for the formation of compressive residual stresses include shot peening, abrasive 

finishing, cold rolling and recently-emerged laser peening and waterjet peening.  

Surface residual stresses resulting from waterjetting processes have been reported by a few 

researchers. Arola and Ramulu (1997) studied the residual stresses on AWJ-cut kerfs of six 

different metals including Ti-6Al-4V. A significant bi-axial compressive residual stress was 

observed in the plane of the machined surface for all materials and cutting conditions; and a 

positive stress gradient was found to exist below the machined surface of Ti-6Al-4V. 

Tonshoff et al. (1997) carried out study in PWJ peening of case hardened steel and measured 

the residual stresses of PWJ-peened surfaces processed with various peening durations. It was 

demonstrated that with increasing peening duration the magnitude of compressive stress 

increases up to a maximum level and then decreases distinctly with even longer peening 

durations. Similar results were observed by Soyama et al. (2004) who examined the 

compressive residual stress into Ti-6Al-4V by cavitation peening. XRD residual stress 

measurement in their study suggested that with the increase of exposure time per unit length 

the compressive residual stress induced firstly has a sharp increase until it reaches the 

maximum. It is interesting that with further increase of the exposure time the magnitude of 

compressive residual stress decreases slightly. Arola et al. (2001) investigated the effects of 

treatment parameters on residual stresses resulting from PWJ and AWJ peening of Ti-6Al-4V 

using XRD method. It showed that in AWJ peening of Ti-6Al-4V the magnitude of 

compressive residual stress in the material increased with a decrease in jet pressure and 

abrasive size which is in accordance with Arola and McCain (2000), while in PWJ peening of 

the same material the compressive residual stress increased with an increase in jet pressure. 

They explained this as that in the former case with the increase of jet pressure and abrasive 

size, the energy of jet increased and was available for hydrodynamic erosion so that removal 

of surface layers contributed to the near-surface stress relief and consequently a reduction in 

compressive residual stress; in the latter case the absence of material removal resulted in an 

increase in the near-surface deformation with increasing pressure.  

Most of the existing work in the study of residual stress in reference to waterjetting processes 

highlights on the application of waterjet peening. A special characteristic of peening process 

which was defined by Tonshoff et al. (1997) is that there are only negligible modifications on 

the peened surface in terms of surface roughness and topography. Waterjet removal process, 

however, is associated with significant modifications on the treated surface; and the initially 
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deformed zone may be partly or totally removed by the subsequent jet impact. Nevertheless, 

it is confident to believe that regardless of the magnitude of material removal the PWJ-treated 

surface will retain a certain value of compressive stress due to that the continuous droplet 

impacts will successively introduce material deformation although the initially deformed 

zone may be removed by subsequent impacts. Thus, it is worth studying the potential 

compressive residual stress introduced on PWJ-removed surfaces which has not been 

reported elsewhere.  

Waterjet surface treatment may result in a decrease in surface roughness of the treated surface 

due to the uneven droplets impacts over the impinged area. The contribution of surface 

roughness to crack initiation during cyclic loading has been a long-standing concern. Meguid 

(1989) demonstrated that small crack-like defects and rough surface formed during the shot 

peening process have shown to be detrimental to fatigue crack initiation for aluminum. 

However, the compressive residual stress induced during waterjet impingement may be 

sufficient to retard crack initiation from large surface irregularities. Arola et al. (2006) 

reported that an increase in residual stress is always associated with a corresponding increase 

in surface roughness (Ra) for AWJ-peened AISI 304. Fatigue test revealed that crack 

initiation in the AWJ-peened specimen even with large surface roughness (up to 14 µm in Ra) 

occurred approximately 150-200 µm below the surface. In contrast, in the untreated fatigue 

specimen, failure initiated from the surface. This proved that the residual stress suppressed 

crack initiation from the surface despite the large roughness resulting from peening.  

This paper reports on the development of a novel process using ultra-high pressure plain 

waterjet for the removal of titanium alpha case with an investigation of the effects of key 

machining parameters on the outcomes of alpha case removal process, and for the first time 

measures the surface residual stresses on PWJ-removed surfaces. Depth of removal-DOR, 

surface roughness parameter-Ra and interdigitation volume-Vi are used to evaluate the 

completeness of alpha case removal and surface topography; and X-ray diffraction (XRD) 

method is applied to measure the surface residual stress. The influence of waterjet parameters 

on removal depth, surface topography as well as surface residual stresses are investigated by 

an analysis of variance (ANOVA).   
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2 Materials and experimental procedure 

2.1 Materials 

The material subjected to PWJ impingement in this study was alpha case contaminated Ti-

6Al-4V (EN3354). The material was in sheet form with a dimension of 75 mm ×75 mm ×1 

mm. The alpha case layer was formed after heating at 890°C for 1 hour. The thickness of the 

alpha case layer on both sides of the sample was determined as 70~80 µm by examining the 

etched cross section of the sample in an optical microscope (Fig. 1a). The through-depth 

Knoop micro-hardness test revealed that the alpha case layer is harder than the Titanium 

substrate and the hardness decreases with the increase of depth from the surface (as shown in 

Fig. 1b). The chemical composition and mechanical properties of the applied material was 

given in Table 1.  

 

Fig. 1 (a) Cross-section view of the alpha case; (b) Depth profile of the micro hardness. 

Table 1 Chemical composition and mechanical properties of titanium alloy 

Substrate material Ti-6Al-4V 

Chemical composition of the 

substrate material (in wt. %) 

Al V Ti O N 

6.13 4 base Max 0.02 Max 0.03 

H Fe C Y Others 

Max 

0.008 
Max 0.3 Max 0.8 

Max 

0.005 
Max 0.4 

Thickness of the sample (mm) 1 

Thickness of alpha case (µm) 70~80  

Young’s modulus (GPa) 110 

Poisson’s ratio 0.31 

Yield stress (MPa) 925-1180 
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2.2 Experimental Procedure 

2.2.1 Experiment setup 

In order to investigate the influence of three key waterjet parameters (head pressure, traverse 

speed and standoff distance) on surface topography and surface residual stress, a full factorial 

experimental design was applied. Each investigated parameter was assigned three levels so 

that total of 27 trials was conducted. The range of parametric conditions was described in 

Table 2. The exposure time,   , which is defined as the exposure time per unit length and is 

derived from the jet traverse speed,  , was used in this study and can be calculated as follows 

(Soyama et al., 2001): 

                             
 

 
 E.q. 1 

where n is the number of passes over the unit length on the work piece. Assuming that the 

pressure within the jet-impinged area was uniformly distributed and neglecting the spread of 

the jet along its standoff distance, n can be determined as 4 (jet diameter/ step over). Thus, 

the corresponding exposure times to the applied jet traverse speeds (50, 120 and 200 mm/min) 

are 4.8 s, 2 s and 0.8 s, respectively. 

Table 2 Experimental conditions 

Fixed Parameters Values  

Step over 0.375 mm  

Jet impingement angle 90°  

Diameter of orifice 0.3 mm  

Diameter of focusing tube 1.5 mm  

Entrained air No  

Variable Parameters Units Levels 

Head pressure (P) MPa 138, 207, 345 

Standoff distance (SOD) mm 5, 20, 50 

Jet traverse speed (   mm/min 50, 120, 300 

The alpha case removal trials were carried out using an Ormond 5-axis AWJ machining 

system which is equipped with a KMT Streamline SL-V100D ultra-high pressure intensifier 

pump. The pump is capable of developing a jet pressure up to 414 MPa. A nozzle assembly 

with a sapphire orifice (0.3 mm in diameter) and a Rotec 100 tungsten carbide round-jet 

focusing tube (1.5 mm in bore diameter and 76 mm in length) was utilized. The experimental 

setup was illustrated in Fig. 2. The specimen was fixed to a steel plate by four screws located 

at the corners to keep the specimen flat during the PWJ treatment and the following 

measurements. For each experimental setting, a 8 mm x 6 mm area was selectively removed. 
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All 27 PWJ-removed surfaces corresponding to the 27 experimental settings were produced 

on the same specimen. A scanning path was applied for the jet movement to form the surface 

removal (Fig. 2). 

 

Fig. 2 Schematic illustration of experimental set-up for PWJ alpha case removal  

2.2.2 Surface characterisation 

The PWJ-treated surfaces were measured by non-contact laser profilometer (Talysurf 

CLI1000) to determine the depth of removal and surface roughness. Selected PWJ-treated 

surfaces were also examined by a scanning electron microscopy (Philip XL30 FEG-SEM, 

with an accelerating voltage of 20 kV). The average roughness, Ra, was used to evaluate the 

roughness of the removed surfaces. Ra along the traverse direction (RaL) and Ra along the 

feed direction (RaT) were both measured. To determine the surface roughness, a sampling 

length of 4 mm with a Gaussian filter and a cut-off length of 0.8 mm were used. 

In addition to Ra, the apparent volume of interdigitation (  ) was also used as another 

indicator of surface texture.    is a new parameter which is introduced by Arola and McCain 

(2000) to evaluate a surface that supports mechanical interlocking.    is capable of 

differentiating between positive and negative skewed surfaces with the same surface 

roughness.    is of critical importance for PWJ-treated surfaces in applications where 

improvement of osseointegration, fixation and stability is required, such as medical implants 

and rough surface where coating will be applied to. The    can be calculated based on core 

roughness parameters as follows (    and     are defined in hundredths):  

   
      

 
      

  

 
                    

   

 
          E.q. 2 
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where    ,    and     are the reduced peak height, core roughness and reduced valley 

height, respectively. And     and     are the peak and valley material ratios.  

2.2.3 Residual stress measurement 

The BRUKER D8 DISC X-ray diffractometer with ¼ circle Eulerian cradle carried out the 

residual stress measurement on the PWJ-treated surfaces. Copper    radiation was utilized 

with a wavelength (λ) of 1.5406 Ǻ and beam diameter of 1 mm at 40 kV and 30 mA. The 

irritation area of the beam was located at the center of each PWJ-removed surface. Peak 

positions of the diffraction intensity corresponding to plane (211) were recorded at ψ angles 

of 0°, 20.7°, 30°, 37.8°, 45°, 52.2° and 60° with ϕ angles of 0° and 90°. Polarisation, Lorentz, 

absorption, background and     corrections were applied for all diffracted peak intensities. 

Sliding gravity method was used for locating the positions of diffracted peaks which were 

further used to determine the lattice plane spacing according to Bragg’s law. The residual 

strain can be given by the theory of linear elasticity: 

    
   

 
                                  

   

 
        

 
 

 
              

   

 
                       

E.q. 3 

where E and   correspond to the elastic modulus and Poisson’s ratio respectively for the 

applied material. Due to the small penetration depth of the X-rays in Ti-6Al-4V, a plane-

stress state can be assumed, yielding      . Additionally, the shear components    ,     

are only present in surface layers that are plastically deformed by high tangential forces. Thus, 

E.q. 3 can be simplified to the following equation which evaluates the stress component    

and the sum of principal stresses by a linear fit of the lattice strain−       distribution. 

    
      

  
 

   

 
        

 

 
          E.q. 4 

   is then given by 

                     E.q. 5 

Thus, a bi-axial in-plane normal stress can be calculated for each PWJ-treated surface with 

the two applied   angles. Absorption coefficient for the applied material was determined to 

be 902.5 cm
-1

 which correspond to an X-ray penetration depth (for the 99% absorption) of 10 
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µm. Thus, the residual stresses measured using XRD are determined over the 10 µm depth of 

X-ray penetration. 

In order to explore the original residual stress distribution along the depth of untreated Ti-

6Al-4V with alpha case, the depth profile of residual stress was obtained by progressively 

electrolytic removal of thin layers and subsequent X-ray measurement. The applied 

electrolyte compose of 6 ml HClO4, 35 ml n-butyl alcohol and 60 ml methanol as 

recommended by Vosough et al. (2005). The sample was etched at 15 V and room 

temperature. The current density is 0.07-0.13 A/cm
2
 and the removal rate is 8 µm 

approximately. 

3 Results 

3.1 Microscopic features and surface topography 

The microscopic features of the surface from all PWJ-treated specimens were similar in 

nature regardless of the experimental conditions used. Characteristics of developed damages 

being associated with ductile fracture, appearing rough and irregular as observed and 

analysed by Huang et al. (2012) were clearly evident from the SEM images. Nevertheless, 

surfaces treated by higher jet energy (higher pressure and/or longer exposure time) exhibited 

greater degree of irregularity (e.g. presence of deep cavities, valley markings) than that 

treated by lower jet energy as shown in Fig. 3.  

 

Fig. 3 Microscopic features of Ti-6Al-4V surfaces resulting from PWJ treatment at SOD=50 mm, (a) 

P=207 MPa, te=0.8 s; (b) P=345 MPa, te=4.8 s. 
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Fig. 4 Morphological features of Ti-6Al-4V surfaces resulting from PWJ treatment at SOD=50 mm, (a) 

P=207 MPa, te=4.8 s; (b) P=207 MPa, te=0.8 s; (c) P=345 MPa, te=4.8 s; (d) P=345 MPa, te=0.8 s. 

The removal depth, surface roughness parameters and the interdigitation volume resulting 

from the alpha case removal treatment using PWJ were listed in Table 3. The range in 

parametric conditions used for the alpha case removal resulted in significant changes in the 

surface roughness and corresponding volume for interdigitation. At the lowest applied water 

head pressure of 207 MPa, the removal depths were all below 70 µm which indicates that at 

such pressure the jet is not powerful enough to completely remove the alpha case layer within 

the experimental conditions. At a water head pressure of 276 MPa or 345 MPa, alpha case 

layer is more likely to be completely removed with a longer exposure time. As both water 

pressure and exposure time are associated with the energy impinged on the workpiece per 

unit area, it is clear that the depth of removal increases with the increase of energy impinged 

per unit area (or energy density). 

Table 3 Depth of removal, surface roughness, volume available for interdigitation resulting from PWJ 

treatment of Ti-6Al-4V with 80 µm alpha case layer 

Trial 

No. 

P SOD    DOR Rpk Rk Rvk Mr1 Mr2 RaT RaL    

(MPa) (mm) (s) (µm) (µm) (µm) (µm)   (µm) (µm) 
(µm3/ 

µm2) 

1 207 5 4.8 43.1 3.98 14.40 9.31 0.08 0.86 4.5 3.9 22.93 

2 207 5 2 32.7 2.86 9.94 3.95 0.09 0.88 3.0 3.2 14.71 

3 207 5 0.8 29.5 2.89 9.62 5.13 0.08 0.87 3.0 3.3 15.01 

4 207 20 4.8 64.4 6.28 20.80 15.20 0.07 0.83 6.8 6.0 34.52 
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5 207 20 2 28.2 4.51 12.00 4.36 0.11 0.90 3.6 3.5 18.61 

6 207 20 0.8 24 4.23 12.90 4.87 0.11 0.91 3.8 3.2 19.48 

7 207 50 4.8 68.4 9.03 20.80 7.18 0.14 0.90 6.4 7.2 33.27 

8 207 50 2 26.5 3.82 13.00 4.58 0.09 0.87 3.9 3.8 19.03 

9 207 50 0.8 19.8 3.98 10.90 4.05 0.10 0.90 3.2 3.7 16.83 

10 276 5 4.8 171 8.21 27.10 6.75 0.10 0.91 7.3 5.6 38.51 

11 276 5 2 37.2 4.51 13.10 5.79 0.11 0.90 4.1 3.7 20.41 

12 276 5 0.8 25.5 4.15 10.10 3.58 0.10 0.90 3.0 3.1 15.97 

13 276 20 4.8 424 15.20 51.80 19.80 0.09 0.87 14.7 9.3 76.56 

14 276 20 2 95.1 6.97 22.20 8.16 0.11 0.89 6.4 6.5 33.10 

15 276 20 0.8 32.4 10.10 5.82 8.76 0.09 0.88 3.6 3.3 20.23 

16 276 50 4.8 426 13.20 41.50 23.80 0.10 0.82 14.4 12.1 66.31 

17 276 50 2 111 14.40 24.40 11.10 0.16 0.91 7.9 7.1 44.16 

18 276 50 0.8 30.7 4.83 11.10 4.21 0.11 0.90 3.4 3.4 17.96 

19 345 5 4.8 614 11.80 57.00 41.70 0.05 0.80 18.5 14.7 89.24 

20 345 5 2 197 7.57 25.00 7.93 0.10 0.90 6.6 4.9 36.37 

21 345 5 0.8 31.9 4.78 11.60 6.26 0.09 0.86 3.6 4.4 19.43 

22 345 20 4.8 839 22.40 73.50 26.60 0.11 0.85 23.4 18.6 108.72 

23 345 20 2 407 10.40 30.40 21.20 0.12 0.88 10.0 7.3 51.15 

24 345 20 0.8 81.7 6.38 22.80 7.67 0.09 0.90 6.6 6.7 32.86 

25 345 50 4.8 915 35.00 80.40 32.70 0.05 0.80 24.9 17.4 131.27 

26 345 50 2 430 9.25 32.10 19.20 0.11 0.84 9.6 8.9 50.71 

27 345 50 0.8 110 8.57 27.50 9.14 0.09 0.88 7.7 6.7 40.46 

The average surface roughness (Ra) resulting from the PWJ removal treatment was measured 

along two directions as clarified before. It was found from Table 3 that, generally, the 

average surface roughness along the jet feed direction (RaT) was higher than that along the 

traverse direction (RaL) for surfaces with high Ra values. In contrast, the PWJ-treated 

surfaces with lower Ra values exhibited a RaT equal to, or even lower than the RaL. It was 

also found that there is high linear correlation between RaT and RaL (as shown in Fig. 5a). 

This indicates that the investigated process parameters resulted in similar parametric trends 

on the average surface roughness along both directions. The highest RaT and RaL observed 

were 24.9 µm and 18.6 µm, respectively, and both resulted from treatment with the highest 

pressure (345 MPa) and lowest traverse speed as evident from Table 3. Despite the large 

maximum Ra values, the Ra of most of PWJ-removed surfaces was below 10 µm. It can be 

clearly seen from Table 3 that higher pressure and/or longer exposure time were more likely 

to lead to higher average surface roughness which was supported by the microscope features 

of the surfaces as shown in Fig. 4. According to the similar parametric trends for the removal 

depth and average surface roughness, an increase in Ra is possible with a corresponding 

increase in the removal depth. A linear relationship between them was verified by Fig. 5b. 

Fig. 5b also revealed that the difference between RaT and RaL increases with the increase of 

removal depth.  
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Fig. 5 Correlation between (a) RaT and RaL; (b) Ra and DOR. 

The apparent volume for interdigitation (  ) as shown in Table 3 was calculated according to 

E.q. 2 using the core surface roughness parameters. As expected, the PWJ-removed surface 

with the largest    resulted from the highest water pressure and longest exposure time. This is 

consistent with the trend in the average surface roughness Ra. Fig. 6 shows the influence of 

water head pressure and exposure time on the interdigitation volume and the corresponding 

average surface roughness at a standoff distance of 50 mm. It was clear that there is an 

equivalent parametric trend for the Ra and   . Thus, the increase in exposure time and/or 

pressure resulted in an increase in the apparent volume for interdigitation.  

 
Fig. 6 Exposure time vs. Ra and Vi at SOD= 50 mm with varying pressures 

3.2 Residual stress 

The bi-axial in-plane normal stresses resulting from electro-chemically removed and PWJ-

removed samples were calculated using the       method according to E.q. 4 and E.q. 5 at 

transversal ( = 90°) and longitudinal ( = 0°) directions (as illustrated in Fig. 2), and were 



 

14 

marked as    and   , respectively. The depths of electro-chemically etched samples resulting 

from progressively removal were shown in Fig. 7a. Fig. 7b reveals the residual stress 

distribution along the depth of original material by measuring these electro-chemically etched 

samples at different depths of removal. As evident from Fig. 7b, the biaxial residual stresses 

on the top of original material (top of alpha case) were both found to be tensile with 

magnitudes of 146±48 MPa and 124±41 MPa, respectively. With increase in the depth the 

magnitudes of average residual stresses in both directions slightly decrease and tend to be 

stabilized at a level which is very close to 0 MPa when the depth is above 60-80 µm. In light 

of the thickness of alpha case layer, it can be concluded that the residual stress presented in 

the alpha case is tensile and declines with increasing depth from the surface despite there are 

some variations.  

 

Fig. 7 (a) Depths of electro-chemically etched samples resulting from progressively removal; (b) Residual 

stress distribution below the surface in original material. 

The biaxial stresses formed during PWJ treatment under all experimental conditions are listed 

in Table 4. It was found that the residual stress resulting from all experimental conditions of 

PWJ treatment were compressive; the magnitude of the average residual stress ranged from -

18 to -563 MPa and was dependent on the treatment conditions. It is interesting that the 

largest compressive residual stress observed resulted from PWJ trial No. 5, which uses the 

lowest applied water head pressure and an intermediate standoff distance and exposure time. 

Furthermore, for a constant standoff distance, the shortest exposure time resulted in the 

lowest compressive residual stress at the pressure of 207 MPa; in contrast, at higher water 

pressures of 276 MPa and 345 MPa, the shortest exposure time always resulted in the highest 

residual stress. 
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Table 4 Biaxial residual stress resulting from PWJ treatment of Ti-6Al-4V with 80 µm alpha case layer 

Trial No. 
P SOD          Error       Error 

(MPa) (mm) (s) MPa MPa MPa MPa 

1 207 5 4.8 -469 ±51 -528 ±35 

2 207 5 2 -427 ±51 -443 ±33 

3 207 5 0.8 -351 ±53 -269 ±27 

4 207 20 4.8 -457 ±86 -398 ±72 

5 207 20 2 -563 ±76 -468 ±30 

6 207 20 0.8 -325 ±74 -405 ±44 

7 207 50 4.8 -406 ±24 -350 ±15 

8 207 50 2 -538 ±43 -472 ±30 

9 207 50 0.8 -256 ±113 -335 ±44 

10 276 5 4.8 -257 ±47 -209 ±16 

11 276 5 2 -477 ±30 -468 ±16 

12 276 5 0.8 -551 ±68 -423 ±55 

13 276 20 4.8 -175 ±43 -225 ±6 

14 276 20 2 -279 ±22 -310 ±14 

15 276 20 0.8 -562 ±53 -520 ±31 

16 276 50 4.8 -224 ±23 -226 ±22 

17 276 50 2 -362 ±20 -276 ±13 

18 276 50 0.8 -465 ±64 -512 ±31 

19 345 5 4.8 -29 ±26 -170 ±14 

20 345 5 2 -211 ±26 -247 ±5 

21 345 5 0.8 -415 ±59 -493 ±28 

22 345 20 4.8 -18 ±39 -158 ±17 

23 345 20 2 -162 ±20 -200 ±20 

24 345 20 0.8 -322 ±46 -298 ±28 

25 345 50 4.8 -138 ±42 -118 ±12 

26 345 50 2 -205 ±33 -186 ±34 

27 345 50 0.8 -224 ±32 -234 ±25 

Fig. 8 shows the influence of water pressure and exposure time on residual stress introduced 

by PWJ treatment at a constant standoff distance of 50 mm. Comparing Fig. 8a and Fig. 8b, it 

was found that residual stresses at transversal and longitudinal direction have similar 

parametric trends. Higher water pressure generally resulted in lower compressive residual 

stress, with an exception of that at an exposure time of 0.8 s, a water pressure of 276 MPa 

resulted in the largest compressive residual stress. With the increase of exposure time per unit 

length, the residual stress introduced decreased gradually for pressures of 276 MPa and 345 

MPa. However, at the lowest pressure of 207 MPa, with the increase of exposure time, the 

compressive residual stress firstly increased to a potential maximum value at 2 s of exposure 

time, and then decreased with further increase of exposure time. In light of this, if shorter 

exposure times were applied at higher water pressures, the maximum value of compressive 

residual stress may be also obtained. 
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Fig. 8 Influence of water pressure and exposure time on residual stresses within PWJ-treated surfaces at 

a standoff distance of 50 mm: (a) residual stress at transversal direction; (b) residual stress at 

longitudinal direction 

In order to comprehensively understand the influence of waterjet parameters on the 

compressive residual stress introduced during PWJ alpha case removal process, three separate 

trails were carried out in addition to the scope of experimental design. These three additional 

trials were conducted using the same water pressure and standoff distance as that used for 

trial No. 25-27, but with shorter exposure times (0.48 s, 0.24 s and 0.12 s, respectively). In 

this case, the change of PWJ-introduced residual stress over a larger range of exposure time 

per unit length (or energy impinged per unit length) can be obtained. The resulted residual 

stress and corresponding average surface roughness were shown in Fig. 9a. It can be seen that 

with the increase of exposure time the compressive residual stress has a sharp increase until it 

reaches a maximum; with further increase of exposure time the compressive stress decreases 

significantly. However, there is a specific value for the exposure time above which the 

decrease of compressive residual stress becomes slow. Fig. 9a also shows that the two 

directional residual stresses have very similar parametric trend under the influence of 

exposure time. Fig. 9b shows the corresponding removal depths resulting from the same 

experimental conditions. It can be seen from Fig. 9a and b that with shorter exposure times 

which resulted in removal depths less than the thickness of alpha case layer (as shown in Fig. 

9b), the compressive residual stress increased with the increase of removal depth. In contrast, 

with longer exposure times which render the jet powerful enough to completely remove the 

alpha case, the compressive residual stress decreased with the increase of removal depth. 
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Fig. 9 (a) Residual stresses; and (b) depth of removal resulting from PWJ treatment at water pressure of 

345 MPa and standoff distance of 50 mm. 

3.3 ANOVA Analysis 

In order to determine the significant PWJ parameters affecting the depth of removal, average 

surface roughness, volume for interdigitation and the residual stress and their relative 

contributions, analysis of variance (ANOVA) and F-test were used as suggested by Caydas 

and Hascalik (2008).  Table 5 shows the results of ANOVA. Larger F value indicates that the 

variation of PWJ parameter makes greater change on the process output. The F values at 

significance levels (α) of 0.01 and 0.05 were used as the references which can be determined 

by the F-distribution table according to the degree of freedom. As             is 3.4928 and 

            is 5.849, if         , the effect of PWJ parameter on process output is 

insignificant (marked with 
ns

); if              , the PWJ parameter has statistic influence 

on the process output (marked with *); if         , the PWJ parameter has significant 

influence on the process output (marked with **). Thus, as clearly shown in Table 5, the 

standoff distance has insignificant effects on all investigated process outputs, while the water 

pressure and jet traverse speed both have significant effects on the depth of removal, average 

surface roughness as well as interdigitation volume. Regarding to the residual stress, water 

pressure has an utmost importance and traverse speed has a statistic influence. The relative 

contributions of PWJ parameters used in this study on the process outputs were shown in Fig. 

10.  

Table 5 Analysis of Variance for depth of removal, surface roughness, volume for interdigitation and 

residual stresses 

Results of ANOVA for DOR 

Machining 

Parameters 

Degree of freedom 

(DF) 

Sum of squares 

(SSA) 

Mean Squares 

(MS) 
F Contributions 

  2 630206 315103 14.54
**

 36.8% 

    2 59091 29546 1.36
 ns

 3.5% 
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   2 589196 294598 13.59
**

 34.4% 

Error 20 433465 21673  25.3% 

Total 26 1711958    

Results of ANOVA for Ra (L) 

Machining 

Parameters 

Degree of freedom 

(DF) 

Sum of squares 

(SSA) 

Mean Squares 

(MS) 
F Contributions 

  2 155.04 77.52 16.24
**

 31.8% 

    2 32.86 16.43 3.44
ns

 6.7% 

   2 203.67 101.84 21.33
**

 41.8% 

Error 20 95.47 4.77  19.6% 

Total 26 487.04    

Results of ANOVA for Ra (T)  

Machining 

Parameters 

Degree of freedom 

(DF) 

Sum of squares 

(SSA) 

Mean Squares 

(MS) 
F Contributions 

  2 300.16 150.08 15.30
**

 30.8% 

    2 52.28 26.14 2.66
ns

 5.4% 

   2 427.19 213.60 21.78
**

 43.8% 

Error 20 196.17 9.81  20.1% 

Total 26 975.80    

Results of ANOVA for Vi 

Machining 

Parameters 

Degree of freedom 

(DF) 

Sum of squares 

(SSA) 

Mean Squares 

(MS) 
F  Contributions 

  2 2521.1 1260.5 12.59
**

  30% 

    2 542.0 271.0 2.71
ns 

 6.4% 

   2 3353.7 1676.8 16.75
**

  40% 

Error 20 2002.1 100.1  23.8% 

Total 26 8418.9    

Results of ANOVA for       

Machining 

Parameters 

Degree of freedom 

(DF) 

Sum of squares 

(SSA) 

Mean Squares 

(MS) 
F Contributions 

  2 141827 70913 7.23
**

 33.5% 

    2 16261    8130 0.83
 ns

 3.8% 

   2 69421 34710 3.54
*
 16.4% 

Error 20 196210 9810  46.3% 

Total 26 423717    

Results of ANOVA for        

Machining 

Parameters 

Degree of freedom 

(DF) 

Sum of squares 

(SSA) 

Mean Squares 

(MS) 
F Contributions 

  2 263726 131863 10.00
**

 41.7% 

    2 9006 4503 0.34
 ns

 1.4% 

   2 105571 52785 4.00
*
 16.7% 

Error 20 263820 13191  41.7% 

Total 26 632123    
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Fig. 10 The relative effect of PWJ parameters on the DOR, average surface roughness, interdigitation 

volume and residual stress. 

4 Discussion 

The result of residual stress measurement shows that PWJ is capable to remove hard alpha 

case layer and simultaneously introduce compressive residual stress to the treated surface. 

However, the influence of waterjet parameters on the residual stress shows some distinct 

features (as shown in Fig. 9a) compared with that reported by Soyama (2004) and Soyama et 

al. (2004) in their residual stress studies on waterjet peening of similar materials. The present 

study and the work conducted by Soyama (2004) may be correlated by the famous erosion-

time curve given by Brunton and Rochester (1979). Brunton and Rochester (1979) 

categorized the liquid impact on a ductile metal into three stages according to the exposure 

time. Stage I is the incubation period during which there is no detectable material loss, 

although there will be some plastic or brittle deformation of the surface. After this incubation 

period, the material will be removed at maximum rate and this period is called Stage II. In 

Stage III, the erosion rate begins to decrease and tend to a lower and approximate constant 

rate. Thus, Soyama (2004) actually investigated the influence of exposure time on residual 

stress resulting from waterjet peening of Ti-6Al-4V during the incubation period (Stage I). As 

the exposure time increased, the magnitude of deformation increased. This consequently 

resulted in work hardening over the impact area and an increase in compressive residual 

stress. After a time, the compressive residual stress reached the maximum and began to 

decrease slightly with further increase of exposure time. The slight decrease of residual stress 

may be a result of increasing surface roughness due to plastically-formed depressions. As the 

water pressure used was very low (30 MPa) compared with that used in this study, the jet was 
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not powerful enough to cause material removal. Thus, there was no sharp decrease of 

compressive residual stress observed by Soyama (2004). In contrast to the work of Soyama 

(2004), Fig. 9a shows the influence of exposure time on the compressive residual stress 

introduced during Stage II and Stage III.  

It is reasonable to deduce from the result of Soyama (2004) that in Stage II and Stage III of 

erosion the compressive residual stress should decrease continuously since the removal of 

surface layers will contribute to the near-surface stress relief. However, Fig. 9a shows an 

unexpected sharp increase of compressive residual stress at shorter exposure times before the 

curve turns to the expected trend. Considering that the removal depths resulting from PWJ 

treatment at these shorter exposure times are all below the thickness of alpha case (Fig. 9b), 

the decline trend of the compressive residual stress at short exposure times could be due to 

the existence of alpha case layer. Patankar and Tan (2001) have proved that the alpha case 

coating has little or no influence on the mechanical properties such as ultimate tensile 

strength and yield strength but the ductility of the material. In the alpha case layer, diffusion 

of oxygen leads to the lowering of the overall ductility of the Ti-6Al-4V alloy because 

smaller oxygen atoms tend to occupy the interstitial sites; and also, these oxygen rich sites 

serve as stress concentration sites which eventually cause the oxygen rich zone to crack 

leading to the failure of the alloy at lower strain as claimed by Patankar and Tan (2001). 

Although the alpha case layer in the examined material is very thin compared to the thickness 

of the metal sheet, the contents of oxygen along its depth vary. Near-surface layer tends to 

obtain higher content of oxygen during the generation of alpha case so that become more 

brittle than layers away from the surface. Consequently, the brittleness determines the 

maximum strain of materials before failure. Higher brittleness results in the failure of 

material at lower maximum strain. Thus, within the thickness of alpha case, the maximum 

strain before material failure is higher away from the surface than it is near the surface. In the 

case of removing alpha case using PWJ, if the depth of removal is below the depth of alpha 

case, the surface residual stress  

As mentioned, the alpha case is brittle and hard, and plastic deformation is unlikely to occur 

on brittle materials. However, the micro hardness measurement as shown in Fig. 1b indicates 

that the properties of the alpha case layer may be proportional to its depth. The near-surface 

layer of alpha case may be more brittle than that away from the surface. This consequently 

resulted in lower magnitude of inelastic deformation and compressive residual stress can be 
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produced during PWJ impacts. It can be seen from Fig. 9b that the maximum compressive 

residual stress seems to be reached when the PWJ is just capable to completely remove the 

alpha case layer without remove too much material from the Ti-6Al-4V substrate. After the 

exposure time resulting in the maximum compressive residual stress, the material properties 

have no further influence on the magnitude of residual stress introduced as no alpha case 

layer remained. With further increasing exposure time, the magnitude of stress relief 

increased so that the compressive residual stress decreased. Fig. 11 shows the correlation 

between removal depth and residual stress by plotting the measurement data for all 

experimental trials. The influence of removal depth on the residual stress is apparent which 

provides support to above discussion. 

 

Fig. 11 Correlation between removal depth and residual stress resulting from PWJ treatment. 

The maximum compressive stress shown in Fig. 9a (-571 MPa) is much smaller than that 

observed by Soyama (2004) on the peened Ti-6Al-4V surface (approx. -1000 MPa). This 

indicates that the compressive residual stress resulting from PWJ removal process may 

always lower than the maximum of that resulting from PWJ peening process since stress 

relief in the removal process is inevitable. However, Fig. 9a shows that it is quite possible to 

remove the alpha case layer simultaneous to introduce an optimum compressive surface 

residual stress. 

Doig and Flewitt (1981) found that the surface texture of the PWJ-removed surfaces resulting 

from the scanning jet movement path could cause a slight reduction of the residual stress with 

increasing surface roughness. Thus, it is necessary to evaluate the potential contribution of 

roughness to the residual stress. As mentioned, the XRD-measured residual stress is the sum 
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of the contributions from a small diffracting volume over the depth of X-ray penetration. If 

the surface is smooth the surface region will contribute more strongly than a deeper region of 

the same thickness, while Buhrke et al. (1998) showed that if the surface is rough asperities 

will contribute more strongly than depressions. Fig. 12 shows the possible correlation 

between the average surface roughness RaT and the residual stress. 

 
Fig. 12 Correlation between residual stress and surface roughness.
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Conclusions 

The applied study investigated the in-plane surface residual stress resulting from PWJ 

surface removal process, but did not provide information of the subsurface stress 

distribution. Thus, it is worthwhile to evaluate the subsurface residual stress 

distribution. 

Thus, PWJ can be used for coating removal and simultaneous development of a 

compressive residual stress, and/or simultaneous increase of surface roughness (such 

as surface treatment of medical implants where cementless fixation is required).  
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