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Abstract This paper investigates self-organised collective formation control
using swarm robots. In particular, we focus on collective tracking and herding
using a large number of very simple robots. To this end, we choose kilobots as
our swarm robot testbed due to its low price and attractive operational scala-
bility. Note, however, that kilobots have extremely limited locomotion, sensing
and communication capabilities. To handle these limitations, a number of new
control algorithms based on morphogen diffusion and network connectivity
preservation have been suggested for collective object tracking and herding.
Numerical simulations of large scale swarm systems as well as preliminary
physical experiments with a relatively small number of kilobots have been
performed to verify the effectiveness of the proposed algorithms.

Keywords Swarm robotics · object tracking · morphogen diffusion · network
connectivity preservation · kilobots

1 Introduction

In recent years, due to the rapid advancements of robotics technology which
can build a large number of simple and inexpensive robots, considerable in-
terests have been raised in developing swarm pattern formation algorithms.
Specific application for these swarming algorithms include, but not limited to,
collaborative search and rescue, deployment of sensor networks, and collective
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transportation and construction. Pattern formation in swarm robotic systems
represents the coordination of a group of robots to maintain a formation with
a certain shape of either a pre-defined pattern or adaptively formed pattern
in a self-organised way with local interactions between robots and with the
environment. In the former case, a group of robots are required to maintain a
desired spatial pattern by individual robots aiming to keep a specific orienta-
tion and a relative distance to the others. In the latter case, global patterns
emerge from local interactions between individual robots, and these emergent
patterns can often be seen in natural systems, in particular in biological or-
ganisms and ecosystems such as patterning in seashells and fishes [1], and bird
flocking, ant colony and fish schooling [2, 3].

Pattern formation algorithms for swarm robotic systems presented in the
literature are developed primarily to be operated on a large collection of robots
[4–7]. However, in reality, due to real-world constraints such as cost, time, and
complexity of building and testing hardware systems, most research work has
been performed in simulations only with an approximated model of sensors
and robots, or experiments with a small number of robots at most. This ap-
proach may have several limitations. Firstly, it might be difficult to accurately
model robots’ interaction with each other and with the environments, which
can lead to a significant discrepancy between simulations and real experiments.
In addition, unknown sensing noise and disturbance from environments as well
as computation capability of a simple robot may seriously degrade the perfor-
mance in experiments. Furthermore, experimental verification of algorithms
designed for swarm behaviours with just a few robots may not be sufficient,
as many issues such as scalability of the algorithm can be tested only in large-
scale systems [8]. Thus, to rigorously validate swarm pattern formation algo-
rithms, it is essential to test them on large-scale real robotic systems. Note
that as there exist obvious trade-offs between the cost and the capability of the
robot platforms such as movement and sensing capability [8–10], an adequate
robotic test-bed needs to be carefully chosen depending on the requirements
of a specific pattern formation algorithm.

In this study, keeping in mind that the developed algorithms will have
to be tested in a large-scale (over a hundred) real robots ultimately, we se-
lect kilobots [8] as our swarm robot testbed with its low price and excellent
operational scalability despite its limitations such as no self-localisation, no
directional sensing and very limited communication capability. Considering
these constraints of the kilobots, many existing pattern formation algorithms
relying on the robot’s position and orientation information in a certain coor-
dinate system [2, 4, 11–14] are difficult to be utilised. Since kilobots can sense
only a distance or a light intensity level without any directionality, the direc-
tion of travel towards the other kilobots or a light source can only be obtained
by performing random movements several times and observing the time vari-
ation of corresponding measurements; this makes it hard for the robots to
track unknown moving objects or maintain a desired pattern. Lastly, due to
constraints on data transmission rates between the robots, a high-level track-
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ing and patterning algorithm needs to be based on simple local interactions in
a decentralised way.

Among other collective behaviours to achieve swarm pattern formation,
tracking randomly moving objects, surrounding and finally herding them into
a pre-defined shape using biologically-inspired approaches is set to the final
goal of this study. This objective might be described by the idea that a specific
type of agent needs to find and contact the objects, but many others may be
required to push the objects into a certain desired shape while maintaining the
swarm group. Similarly, the entire swarm may need to be protected from the
environment in much the same way that skin protects a biological organism.
To cope with all constraints listed above for object tracking and herding,
this paper proposes the use of a morphogen gradient diffusion process (found
in biological pattern formation where the diffusion of protein concentration
among cells determines polarity of cell and cell fate) and information on the
number of neighbours (i.e. the neighbouring density) related to the network
connectivity of the swarm group.

Even though similar approaches can be found in [5–7, 15], the key differ-
ence is that this study considers realistic constraints residing in the robot
explicitly. For instance, Mamei et al. [5] presented a simple but very effective
pattern formation algorithm without using directionality, but they assumed
that robots can pass through each other without a physical size, which is dif-
ficult to be implemented in a real robot. Numerical simulations are performed
in a kbsim (2D simulator designed for the kilobot with constraints in Python
code by Halme [16]), and several preliminary experiments are performed with
a smaller number of kilobots to check the feasibility of the proposed algorithm.

The remaining part of this paper is structured as follows. Hardware and
technical specifications of kilobots and a kilobot simulator are introduced in
Section 2. In Section 3, a detailed description on pattern formation algorithms
using the concept of network connectivity and gradient diffusion is provided.
Conclusions and future work are provided in Section 4.

2 Swarm Robotics Testbed

Kilobots, the swarm robot testbed we consider in this study, are developed by
Rubenstein et al. [8] to address the issue of the swarm system size, pointing
out that for technical reasons of hardware cost and complexity, most swarms
contain a few tens of robots at most. To deal with swarms having higher
numbers, they designed robot units made of cheap parts that are easy to
assemble.

For locomotion, kilobots use two sealed coin shaped vibration motors with
three sticks, adopting the slip-stick principle [17], as shown in Fig. 1. This
allows both clockwise and counter-clockwise rotation as well as straight move-
ment by differentially controlling the magnitude of vibration of two motors.
The slip-stick locomotion significantly reduces the hardware complexity, robot
size as well as cost compared to typical wheel drive robotic systems. The
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Fig. 1 Kilobot platform including overhead controller and battery charging bar.

controller for the kilobots is an Atmega328 microprocessor which has 32K of
memory and runs at 8 MHz. For communication, an infrared (IR) emitter
and transmitter are used while allowing digital message transmission between
robots at rates up to 30 kb/s within a range of 10 cm and a distance to a
neighbouring robot is estimated by measuring the intensity of the incoming
IR light. Current setting is sending a message at about every 0.1 second by
interrupt and receiving process is triggered at the end of each byte coming.
Figure 2 plots the received message counts (whenever receiving data from
neighbouring robots, the count increases by one) of a kilobot for a fixed pe-
riod of time, which shows the reliable communication property regardless of
the received data buffer size. This message count can be used to determine
the number of neighbouring robots without the use of an individual robot id.
The kilobot also has an ambient light intensity sensor. Furthermore, in order
to make the system scalable to a large number of robots, an overhead infrared
transmitter is developed, so that the power can be switched on and off and the
program can be uploaded remotely to all robots in the collective at the same
time, regardless of the number of robots. Battery charging is also scalable by
hanging the robots over a charging bar as shown in Fig. 1. More details of the
kilobots can be found in [8].

Note that although the kilobot testbed would make it possible to test
swarm algorithms on collectives of robots of an order larger than that of ex-
isting systems, we need to carefully consider the limitation of the robot: IR
communication with a few bytes up to 10 cm; distance and ambient light sens-
ing without any directionality; no self-localisation capability (i.e. kilobots know
neither their position nor orientation as there is no encoder/sensor to trace the
movement or dead-reckoning); and inaccurate locomotion by vibrating motors
sensitive to the surface and calibration settings. Besides, on starting a vibra-
tion motor, a spin up period is required by applying a high vibration power
to overcome the friction and inertia; this often causes unpredictable slipping,
bouncing off the surface, and control delays.

As feasibility study whether or not kilobots with such limited capabili-
ties are able to reliably accomplish the aforementioned complex tracking and
herding task, in this paper, the problem is simplified in that an object is static



Title Suppressed Due to Excessive Length 5

Fig. 2 Message counts for one second depending on the number of neighbour robots.

rather than dynamic in some cases, and an object tracking and herding process
is not entirely integrated as yet. Moreover, for prototyping patterning algo-
rithms on a swarm of kilobots before testing them on real robots, a kilobot
simulator called kbsim is used at the current stage of the research, which is
designed for simulating the kilobots in Python code with Pygame library for a
user interface by Halme [16] as shown in Fig. 3. The kbsim simulates the most
important functionality of the kilobots in terms of sensing, communication
and movement, however, noise and disturbance from sensing, motor control
and physical interactions between robots are not explicitly considered.

Fig. 3 A sample snapshot of the kilobot simulator showing ‘A’ pattern formation [16].
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3 Collective Behaviours for Object Tracking and Herding with
Preserved Swarm Connectivity

This section introduces several pattern formation algorithms for object track-
ing and herding taking into account the capability of the kilobots based on
light source tracking and morphogen diffusion.

3.1 Object Tracking by Maintaining Network Connectivity

Providing that an initial swarm group is formed and part of the robots in
the group is in the effective range of a light source as shown in Fig. 4(a), the
objective in this section is: i) to approach to the light source (which can be
considered tracking and surrounding a stationary target), ii) while maintain-
ing group aggregation and the network connectivity with the group, which is
termed as swarm coherence as in [7]. For this, spatiotemporal decision param-
eters are evaluated by each robot: the first one is α = Nk−Nk−1 as a temporal
network connectivity measure at time instance k where N represents the num-
ber of neighbours, and the second one is βk = Nk−N̄k as a spatial connectivity
measure where N̄ represents the average number of neighbours’ neighbours.
By analysing these parameters, it can be inferred if each robot behaves cor-
rectly to maintain swarm coherence at the right place during the tracking. For
instance, if α is less than zero, it means that the robot is losing some of their
network connections, or if β is less than zero, it means that the robot is either
at the edge or sparse area in the group. In those cases, the robot is about to
lose swarm coherence, and therefore a necessary action needs to be taken. To
regain swarm coherence from this situation during an object tracking process,
we take a similar approach presented in [7], which is turning backwards (180
degrees) immediately, and otherwise going towards a light source (target). This
behaviour leads to the robots in the group maintaining swarm coherence as
if they were attached with an elastic connection. The object tracking can be
achieved by three behaviours depending on the network connectivity as:Turn backwards, if N < Nth, α ≤ 0, β < βth

Straight, if N < Nth, α > 0, β < βth
Towards target, otherwise.

(1)

where the values Nth and βth are positive threshold values for the number of
neighbours and the spatial connectivity measure, respectively.

When a robot does not have enough neighbours (N < Nth) and is at
the edge of the group (β < βth) while losing network connections (α ≤ 0),
the robot should turn backwards to avoid losing swarm coherence. When the
robot is in an unfavourable situation (N < Nth and β < βth) but gaining net-
work connections (α > 0), the robot goes straight for a few time steps to gain
more network connections and secure swarm coherence. Otherwise, the robot
goes towards a target (the centre of a light source). The direction of travel
towards a target is obtained by performing a few random movements until the
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right direction is identified, and if the robot is out of light source range, it
moves randomly. The benefit of this algorithm is that it requires the minimal
exchange of information between robots, which is the number of neighbours
N to accomplish the mission. Considering the locomotion of kilobots, ‘turn-
ing backwards’ behaviour is achieved by performing one direction turning for
a certain number of time steps continuously. Note that ‘turning backwards’
behaviour does not necessarily need to be a precise 180-degree turn; instead,
it is sufficient to make a turn to the opposite direction to maintain swarm
coherence.

Figure 4 shows the sample process of target (light source) tracking. An ini-
tial robot group is given and the part of the group is within the effective range
of the light source represented as a solid circle line. The robots outside the
light source range initially move randomly, but as the remaining robots move
towards the light source, they were attracted to the swarm by ‘turning back-
wards’ and ‘go straight’ behaviour. Throughout the process of Figs. 4(a)∼(d),
the entire robot swarm successfully moves towards the light source (the robot
with a black dot) to surround it while maintaining swarm coherence. More-
over, a proof-of-concept experiment is performed using 11 kilobots as shown
in Fig. 5, which demonstrates swarm movement towards the light source in
spite of the ambient light sensing noise and inaccuracy.

(a) (b) (c)

(d) (e) (f)

Fig. 4 Light source tracking process while maintaining network connectivity using the
kilobot simulator with parameters (Nth, βth) = (3, 2) (large circle: effective range of a light
source, small circles: communication range, red: towards the target, blue: going straight, and
green: turning backwards).

Lastly, Figure 6 shows the time history of the distance and the final
distance (at iteration 18,000) between swarm group (40 kilobots) centroid
and the target, depending on the threshold parameters on Nth and βth in



8 Hyondong Oh et al.

(a) (b)

(c) (d)

Fig. 5 Light source tracking using kilobots with parameters (Nth, βth) = (3, 2).

Eq. (1). From this figure, appropriate parameters can be identified as around
(Nth, βth) = (3, 1) since if ‘turning backwards’ is performed with too many or
too few neighbours required (Nth = 1 or 5 and βth = -1 or 5), it slows down
the progress of the swarm movement towards the target with frequent turn-
ing backwards or leads to loss of network connectivity of some robots to the
group. More detailed performance analysis in terms of performance metrics,
e.g. those discussed in [18], will be followed as future work by changing the
number of kilobots.

3.2 Object Tracking Using Morphogen Diffusion and Morphogen Gradient
Following

This section utilises the morphogen diffusion process for object tracking. To
maintain swarm coherence while tracking a moving object, each robot moves in
a way that maintains their desired gradient concentration values. A morphogen
gradient is initiated by a target object (or origin) by sending its neighbours
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(a) Nth = 1 (b) Nth = 3

(c) Nth = 5 (d) Final distance

Fig. 6 Distance between group centroid and target averaged over 20 simulation runs.

(a) A single target (b) Multiple targets

Fig. 7 Morphogen diffusion from the target (the robot with a black dot). Different colours
represent different classes of concentration values.

a message with an initial value of h = 0. This gradient value h is forwarded
outwards from the origin (target) incremented by one within a communication
range of r. Each robot maintains the minimum gradient value (termed as con-
centration from now on) among received ones and ignores messages containing
larger values, in order to prevent the gradient from backwardly diffusing. This
gradient diffusion forms concentric circular rings of a width of approximately
r and of different colours with corresponding concentration values around a
target as shown in Fig. 7. It is worthwhile mentioning that the concentration
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value can provide estimation of a straight line (or shortest) distance d of the
robot from the target by the relation d ≤ h · r, which can then be improved by
using an average neighbour density and smoothing algorithms, as explained in
[6].

Fig. 8 Illustration of distance-based attraction/repulsion controller.

To make the robot follow other robots with the corresponding concentra-
tion value, a distance-based attraction/repulsion controller is used. Assuming
that the robot at the centre is attracted to the homogeneous robot (blue)
and repelled to the heterogeneous robot (red), as illustrated in Fig. 8, the net
direction of travel is supposed to be where the green arrow points. However,
as the kilobot has no directional sensing and no self-localisation capabilities,
the movement direction is obtained indirectly by defining and analysing the
following objective function for each robot:

f = wasig(∆da, ka) + (1− wrsig(∆dr, kr)), (2)

where

∆da =

Na∑
j=1

dj − da,th
Na

, ∆dr =

Nr∑
j=1

dj − dr,th
Nr

, (3)

sig(x, k) =
1

1 + e−kx
, (4)

ka and kr represent the slope of a sigmoid function, wa and wr are positive
weighting factors, Na and Nr are the number of robots to be attracted and
repelled, respectively, dj is the distance between the robot in concern and its
neighbour robots. da,th and dr,th are the threshold distance which determines
an effective sensing range. From the above equation, it can be shown that
the less the value f is, the better the robot is located for the attraction and
repulsion mission. Thus, if the time derivative of the objective function is
less than zero (df/dt < 0), the robot keeps its previous movement direction,
otherwise the robot moves randomly. If the objective of the robot is to be
either attracted or repelled to the others, then only corresponding term in the
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function f is used. From the following, two gradient following algorithms for
object tracking are proposed depending on the use of concentration values.

(a) (b)

(c) (d)

Fig. 9 Process of surrounding a moving target by following robots having a lower con-
centration of morphogen with a distance-based attraction controller with parameters
(da,th, ka, wa) = (69, 0.05, 128).

3.2.1 Algorithm I: Following the morphogen gradient

In order to follow an object while maintaining swarm coherence, the robot is
programmed to follow their preceding neighbours whose morphogen concen-
tration is lower than its own using the attraction term in Eq. (2). By doing
this, robots are attracted to each other as well as going towards the target
with only local communication of morphogen gradient and distance between
them. This allows a robot swarm to aggregate in one group around a target as
long as the robot is connected to a target via multiple communication hops,
and consequently to follow a moving target as a group. Figure 9 shows the pro-
cess of tracking and surrounding a randomly moving target using morphogen
diffusion and distance-based attraction controller with a kilobot simulator. At
the beginning, the robots are randomly distributed, and a gradient value is
propagated from a target (coloured as black) in the centre to the other robots.
The robots coloured in white, which are not connected to the target through
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morphogen diffusion, randomly move until they obtain a gradient value from
their neighbours. The robots are progressively attracted towards the target by
following their neighbours whose concentration is lower than its own, leading
to surrounding the moving target successfully. Figure 10 shows a preliminary
experiment result of the same process using 23 kilobots.

(a) (b)

(c) (d)

Fig. 10 Experiment result of surrounding a moving target by following robots hav-
ing a lower concentration with a distance-based attraction controller with parameters
(da,th, ka, wa) = (80, 0.05, 128).

3.2.2 Algorithm II: Maintaining initial morphogen gradients for loose
formation keeping

In the previous section, the objective of the robots is to follow the preceding
robots only, where there are no other specific roles imposed on the robots.
They can be anywhere around the target, and the initial form of the group is
not guaranteed to be maintained. For instance, if the concentration value of
the robot happens to change from three to two as a result of following other
neighbouring robots whose concentration is two, then it starts to follow the
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robots whose concentration is one. In this section, to make robots aggregate
around a target as well as maintain a desired formation initially given, the
difference between the initial concentration value and current value is included
in the objective equation along with the attraction term as follows:

f = wasig(∆da, ka) + wh |∆h| (5)

where |∆h| = hini − hcurrent is the difference between initial and current
concentration value, and wh is a positive weighting factor. The robots should
maintain their initial morphogen concentration, so that they can be positioned
at the same relative location from the target as the initial configuration. This is
similar to the previous algorithm if the morphogen concentration remains the
same during the tracking process; however, if the concentration of the robot
is changed, then it follows other robots whose concentration is higher or lower
than itself to restore their initial value. Note that this does not guarantee tight
formation control of the group, yet can lead to loose maintenance of an initial
spatial arrangement during tracking process as shown in Fig. 11. An initial
group spatial arrangement remains similar to the initial one in terms of the
number of the same coloured robots throughout Fig. 11. Figure 12 shows a
preliminary experiment result for an object tracking process with nine kilobots.

(a) (b)

(c) (d)

Fig. 11 Object tracking by maintaining the initial morphogen concentration for formation
keeping with parameters (da,th, ka, wa, wh) = (69, 0.05, 128, 20).
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(a) (b)

(c) (d)

Fig. 12 Object tracking by maintaining the initial morphogen concentration with param-
eters (da,th, ka, wa, wh) = (75, 0.05, 128, 35).

3.3 Object Tracking Process Leading to Herding

This section presents an object tracking and herding process. It is realised by
combining a light source tracking and a gradient following concept mentioned
in the previous sections. For this, along with the objective function in Eq. (5)
from gradient following, one more cost on the distance from a light source is
added as follow:

f = wasig(∆da, ka) + wh |∆h|+ wlsig(∆dl, kl) (6)

where wl is a positive weighting factor. ∆dl = dl−dl,th where dl is the distance
between the robot and the light source and dl,th is the threshold distance.
Thus, above objective function ensures the robots to maintain their initial
morphogen concentration as well as move towards the light source.

Let us assume the situation that one stationary target (at the centre of
the swarm group as shown in Fig. 13(a)) is already surrounded by the robots
and the part of the group is within the effective range (as solid black circle)
of the second target. By applying Eq. (6) to this situation, herding of the first
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target to the second target can be inherently performed as shown in Fig. 13.
Since robots should maintain their initial concentration values, the target in
the group is pushed toward the second target (a light source) by surrounding
robots as they also move towards the second target. Once some robots get close
enough to have a concentration value diffused from the second target, they
maintain the minimum concentration value received. Then, the robots at the
edge of the group having a high concentration value suddenly become the inner
robot with respect to the second target with the lowest concentration value as
shown in Fig. 13(b). Therefore, they keep moving outwards until they restore
their initial concentration values. After a sufficient period of time passes, both
targets are surrounded by the robots forming one swarm group with a similar
spatial arrangement to the initial formation as shown in Fig. 13(d); this can
be considered as herding of the first target to the other target.

(a) (b)

(c) (d)

Fig. 13 Herding of one target to the other by combining gradient following and
light source tracking algorithms with parameters (da,th, dl,th, ka, kl, wa, wh, wl) =
(65, 30, 0.02, 0.01, 128, 50, 100).

4 Conclusions and Future Work

This paper has presented the pattern formation approaches by considering the
constraints imposed by highly limited capabilities of swarm robots, including



16 Hyondong Oh et al.

lack of self-localisation and directional sensing. Several object tracking algo-
rithms were proposed using a light source and morphogen gradient following
concept, together with some idea for swarm herding. Numerical simulations
and physical experiments showed the effectiveness of the proposed algorithms
for tracking and herding of moving targets. Monte Carlo simulations and mul-
tiple experiments with different conditions will be performed to analyse the
performance statistically as future work. In order to generate more complex
and meaningful patterns while efficiently following randomly moving objects
or herding them into desired shapes, more sophisticated biological mechanisms
such as gene regulatory networks [11] will be exploited. In addition, experi-
ments with larger number of robots will be performed to validate the proposed
algorithms.
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