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Quasi-Superradiant Soliton State of Matter in Quantum Metamaterials
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Strong interaction of a system of quantum emitters (e.g., two-level atoms) with electromagnetic
field induces specific correlations in the system accompanied by a drastic insrease of emitted radiation
(superradiation or superfluorescence). Despite the fact that since its prediction this phenomenon
was subject to a vigorous experimental and theoretical research, there remain open question, in
particular, concerning the possibility of a first order phase transition to the superradiant state
from the vacuum state. In systems of natural and charge-based artificial atome this transition is
prohibited by “no-go” theorems. Here we demonstrate numerically a similar transition in a one-
dimensional quantum metamaterial - a chain of artificial atoms (qubits) strongly interacting with
classical electromagnetic fields in a transmission line. The system switches from vacuum state with
zero classical electromagnetic fields and all qubits being in the ground state to the quasi-superradiant
(QS) phase with one or several magnetic solitons and finite average occupation of qubit excited
states along the transmission line. A quantum metamaterial in the QS phase circumvents the “no-
go” restrictions by considerably decreasing its total energy relative to the vacuum state by exciting
nonlinear electromagnetic solitons with many nonlinearly coupled electromagnetic modes in the
presence of external magnetic field.

PACS numbers:

The interaction of light and matter in artificial op-
tical media is the focus of a significant research ef-
fort (see, e.g., [1–6]). The strong light-matter inter-
action in such systems make possible such effects as
unusual photon collapse-and-revivals[7], Schrödinger-cat
states[8], non-classical radiation [9], unusual Casimir ef-
fect and pseudo-vacuum states[10]. For a subclass of
these media with extended spatial quantum coherence
(quantum metamaterials[11–15]) a number of novel phe-
nomena are predicted, which do not have place in nat-
ural materials and classical metamaterials. This adds a
new dimension to the long-standing discussion about the
possibility of a superradiant transition in the system of
atoms strongly interacting with electromagnetic waves in
a cavity[16–22]. In particular, Ref.[21] extends the ”no-
go” theorem to circuit QED with charge (but not flux)
qubits.

It was predicted[16, 17] that in a cavity containing
many two-level atoms there exists a possibility of a tran-
sition from the vacuum state (with no photons and all
atoms being in the ground state) to the superradiant
state (with nonzero photon occupation number accom-
panied by atom excitations) has been as the light-atom
interaction increases. This topic remained subject of vig-
orous investigation ever since [23, 24]. Soon after this
prediction it was pointed out that the predicted transi-
tion is “an interesting artefact” [18], caused by neglecting
the term quadratic in the electromagnetic vector poten-
tial in the light-matter interaction Hamiltonian. Taking
it into account eliminates the superradiant state. This
“no–go” theorem (see e.g., [18–20]) was claimed not to

apply to both bosonic and fermionic artificial-atom ar-
rays (in particular, in case of circuit QED), at least when
driven by a laser to a non-equilibrium state [22, 25–28].
Nevertheless in [21] the theorem was restated for charge-
qubit based circuit-QED systems. The precise require-
ments to a system capable of undergoing the superra-
diant phase transition[21, 22] and possible connections
between the superradiance and similar phenomena such
as the dynamical Casimir effect [29, 30] or the essentially
non-classical spontaneous radiation [9, 10] are still being
vigorously debated, and the investigation of these and re-
lated phenomena in artificial structures is highly relevant.
In particular, it was recently predicted that the electro-
magnetic pulse propagation in a one-dimensional super-
conducting quantum metamaterial could lead to lasing
[31] and superradiance and electromagnetic field-induced
transparence effects[32].

A quantum metamaterial (QMM) is a globally quantum

coherent array of artificial atoms with a limited control
of their quantum state [12]. In this article we consider
superradiant-like transition in the presence of external
magnetic field in such a structure. Though the basic
properties of a QMM are qualitatively independent on
its specific realization, here we use a model of a super-
conducting one-dimensional QMM essentially identical
to the one of [11, 31, 32]: a one-dimensional chain of
charge qubits between two superconducting banks and
interacting with electromagnetic fields, but not directly
with each other (Fig. 1). In contrast to the earlier per-
turbative approach [11], only applicable in the weak cou-
pling limit, our numerical simulations allow to consider
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FIG. 1: (color online) One-dimensional quantum meta-

material: (a) A chain of superconducting charge qubits play-
ing the role of artificial atoms in a Josephson transmission
line formed between two superconducting banks connected
via superconducting islands (charge qubits). Their quantum
states are determined by the number of additional Cooper
pairs present on an island. The (green) wave represent dis-
tribution of the electromagnetic field in the structure. (b)
The schematic view of the structure. The magnetic field pen-
etrates through the openings between the superconducting
islands. The electric and magnetic fields and the vector po-
tential are assumed constant within each opening. The addi-
tional gate electrodes required to control and tune the quan-
tum state of the qubits are not shown.

the strong field-qubit coupling limit. As the result we
find a phase transition from the vacuum state to the new
quasi-superradiant phase, which appears when the field-
qubit coupling strength crosses a certain threshold in the
presence of an external magnetic field.

As the field-qubit coupling increases, the vacuum state
with zero electromagnetic field and zero occupation of ex-
cited qubit states becomes unstable, and the system un-
dergoes the first order phase transition to the state with
magnetic solitons and a spatially varying occupation of
the excited qubit states. The critical coupling strength
can be reduced by increasing the external magnetic field
Hext, which also generates structural transitions between
states with different number of solitons. When cycling
the external magnetic field around zero, the soliton num-
ber can be ether zero or nonzero at Hext = 0 resulting in
a reach variety of remagnetization loops associated with
quantum pinning of solitons on the spatial variations of
the qubit level occupation which, in turn, is generated by
the solitons themselves.

Model— The system in question is a quantum coun-
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FIG. 2: (color online) Quasi-superradiant phase: (a) Dis-
tribution of dimensionless vector potential az,n and magnetic
field in the quantum Josephson transmission line, the varia-
tion of az,n from −π to π indicates that the quasi-superradiant
soliton carry one flux quantum. (b) Distribution of occupa-
tion probabilities for ground (bottom (green) curve) and ex-
cited (upper (magenta) curve) qubit states, the strong varia-
tion of the qubit state occupation occurs at the soliton center
resulting in pinning of the soliton. (c) Evolution of the qubit
energy Equbit, the field energy Efield, and the qubit-field inter-
action energy Eint as a function of the weak external magnetic
field Hext. Even though the field and qubit energies, Equbit

and Efield, both increase at the transition, the total energy of
the quasi-superradiant phase, Etotal, decreases due to a sharp
drop of the interaction energy, Eint. Parameters used in sim-
ulations are: s = 1, β = 0.25, ǫ = π, l = L/λ = 0.05, γ = 0.25
and the total number of qubits is 400.

terpart of the standard Josephson transmission line [33]
where Josephson junctions linking two superconducting
banks are replaced by charge qubits (Fig. 1), i.e., small
superconducting islands connected to both long super-
conducting banks with high-resistance tunneling junc-
tions (R > RQ ≈ 12 kΩ), and with controlled potential
bias with respect to the banks [34]. The quantum states
of an island differ by the number of extra Cooper pairs
on them, and are coupled to the electromagnetic field
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FIG. 3: (color online)Remagnetization loop as a se-

quence of the structural transitions: (a) Evolution of
the total flux Φ trapped in the quantum transmission line
as a function of the external magnetic field Hext. The (red)
curve ABC starting at origin is the “virgin curve” which the
system passes only once after its initialization in the vacuum
state at zero external field, Hext = 0. Applying a very weak
external field results in the transition to the one-soliton phase
(panel A) which then goes through a sequence of transitions
to the phases with 3 (panel B), 5 (panel C) and 7 (panel D)
solitons. On the returning branch the system passes through
the states with 5 (panel E), 3 (panel F), 1 (panel G), -3 (i.e.,
three anti-soliton) (panel H), -5 (five anti-solitons) (panel I)
and -7 solitons. repeated cycling of Hext forms the steady
state (blue) loop CD...I...B. Note that the state with one soli-
ton or one anti-soliton is the ground state at Hext = 0 with
spontaneous symmetry breaking to either 1 or -1 soliton, while
the vacuum (Meissner) state with no solitons is a metastable
state. All parameters are the same as in Fig. 2, while the
sweeping rate dHext/dt = 2.5× 10−4ωJΦ0/πDλ.

through their electric charge.

As in [11] we describe qubits quantum mechanically
while treating the electromagnetic fields in the transmis-
sion line classically (in line with the standard semiclas-
sical approach to atom-field interactions, valid in case of
strong enough fields [35]). We direct the vector potential
Az across the junctions (along z-axis) and assume it to
be constant in each ”cell” between two adjacent qubits.

We start from the classical expression for the system’s
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FIG. 4: (color online)“Butterfly” remagnetization

curve: Φ(Hext) dependence for the same parameters as in
Fig. 3, but for a shorter transmission line (100 qubits). Note
that there is no soliton phase at zero external magnetic field,
Φ(Hext = 0) = 0 (see inset A for the Meissner phase). Tran-
sition to the one-soliton phase (inset B) occurs at a relatively
high magnetic field. On the return branch, the soliton phase
switches back to the Meissner phase before the external field
Hext drops to zero.

total (electromagnetic, electrostatic and Josephson) en-
ergy as a function of the phases φn of the superconducting
order parameters on the islands: Etotal =

∑

n En with

En =
C

2

~
2

4e2

[

(dφn

dt
+

πD

Φ0

dAz,n

dt

)2

+
(dφn

dt
−

πD

Φ0

dAz,n

dt

)2
]

− EJ

[

cos
(

φn +
πDAz,n

Φ0

)

+ cos
(

φn −
πDAz,n

Φ0

)

]

+
8π

DL

[

Az,n+1 −Az,n

L

]2

. (1)

Here, the index n corresponds to the qubit number in the
chain, C is the junction capacitance, Φ0 = hc/2e is the
flux quantum, EJ = IcΦ0

2πc is the Josephson coupling en-
ergy, Ic is the critical current of the Josephson junctions
linking the qubits to the superconducting busbars, D and
L are distances between the neighbouring qubits and be-
tween the two superconducting banks, respectively. It is
convenient to use dimensionless variables: the inter-qubit
distance l = L/λ, vector potential az,n = πDAz,n/Φ0,
time τ = ωJ t and energy En = En/EJ , where the Joseph-
son plasma frequency ωJ = 2eIc/(~C) and the effective
spatial scale λ = c/ωJ . Then the energy per unit is

En =
(dφn

dτ

)2

+
(daz,n

dτ

)2

− 2 cosφn cos az,n

+β2
(az,n+1 − az,n

l

)2
, (2)

The quantization is performed by replacing the phases
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φn and their conjugate canonical momenta with opera-
tors [36] and yields the Schrödinger equation

i~
d

dt
|Ψs

n〉 = Hqubit
n |Ψs

n〉 = (Hqubit
n,int +Hqubit

n,0 )|Ψs
n〉 (3)

with the qubit Hamiltonian Hqubit
n,0 and field-qubit inter-

action Hqubit
n,int:

Hqubit
n,0 = −

4e4EJ

~2C2ω2
J

∂2

∂φ2
n

− 2EJ cosφn, (4)

Hqubit
n,int = 2EJ cosφn(1 − cos az,n) (5)

We restrict our analysis to the two first energy levels
of each island (which is justified for a realistic choice
of charge qubit parameters). We will also neglect en-
tanglement between qubits and seek the qubits’ wave

function in the factorized form: |Ψs
n〉 = Cn

0 (t)e
−

iE0t

~ |0〉+

Cn
1 (t)e

−
iE1t

~ |1〉. Then the Schrödinger equation for qubits
reduces to

i
d

dτ
Cn

0 (τ) = s(1− cos az,n)C
n
1 (τ)e

−isǫτ ,

i
d

dτ
Cn

1 (τ) = s(1− cos az,n)C
n
0 (τ)e

isǫτ . (6)

where s = EJ/~ωJ , ǫ is the dimensionless excitation en-
ergy (energy difference between the first and the ground
levels [36]).
Equations for the electromagnetic field in the transmis-

sion line can be derived by taking the expectation value
of the total energy (1) in the quantum state of the qubit
subsystem, resulting in the effective electromagnetic-field
Hamiltonian 〈E〉(em)

〈E〉(EM) = EJ

∑

n

(

〈Ψs
n|H

qubit
n,int |Ψ

s
n〉+

(daz,n
dτ

)2
+ β2

(az,n+1 − az,n
l

)2
)

(7)

where the coupling between qubits and fields is described
by the term:

∑

n

〈Ψs
n|H

qubit
n,int |Ψ

s
n〉 =

∑

n

(1− cos az,n)Vn(τ) (8)

Vn(τ) = Cn∗
0 (τ)Cn

1 (τ)e
−isǫτ + Cn

0 (τ)C
n∗
1 (τ)eisǫτ .

By using Hamilton’s equations for the dimensionless vec-
tor potential ∂/∂τ(2∂az,n/∂τ) = −∂〈E〉(EM)/∂an,z, we
derive the effective sine-Gordon equation for the line:

d2az,n
dτ2

−β2 az,n+1 + az,n−1 − 2az,n
l2

+Vn sinaz,n+γ
daz,n
dt

= 0

(9)
where we have added the phenomenological damping
term γdaz,n/dt (which can be introduced in the quantum

Routh formalism[36]). This equation is quite similar to
the standard discrete sine-Gordon equation (see, e.g., in
Ref. [37]) for a classical Josephson transmission line, but
with the key difference that the “effective critical Joseph-
son current”, Vn, now depends on the quantum states of
the charge qubits.

In contrast to the perturbative analysis of Eqs.(6,8,9)
in [11], here we perform a numerical analysis in the case
of strong coupling where new light-matter states can be
found.

Results.— First we consider which state the system
settles in at zero magnetic field Hext = 0, imposing
boundary conditions Hext = (az,1 − az,0)/l = (az,N −
az,N−1)/l = 0. Here N is the total number of qubits in
the system. In order to enable the system to evolve to its
stationary state we add a very weak noise. To our sur-
prise the vacuum state with Cn

1 = 0, Cn
0 = 1, az,n = 0

is stable only for relatively weak qubit-field couplings.
Then the vacuum state becomes unstable, and the sys-
tem evolves to the quasi-superradiant state with one or
several solitons (depending on the system size and inter-
actions) spontaneously arising. Even though the energy
of the qubit system itself and the energy of the magnetic
field both increase (Fig. 2c), the total energy of this QS
state decreases due to interactions between the field and
the qubits. Figure 2a shows the magnetic field and vector
potential distribution in the QS state. Since the vector
potential changes from −π to π along the quantum trans-
mission line, we conclude that a magnetic field soliton
carries one flux quantum similarly to a usual Josephson
vortex in a standard long Josephson junction (see, e.g.,
[38]). However, the QS state has a more complex struc-
ture than a Josephson vortex, since the soliton-like fields’
distribution is here accompanied with a spatial modula-
tion of qubit state occupation probabilities Cn

0 and Cn
1

(Fig. 2b). Here the macroscopic, classical magnetic soli-
ton depends on the quantum state of the qubits. In
contrast to the standard superradiant state of two-level
atoms in a cavity interacting with one or few modes, the
soliton is an essentially nonlinear magnetic field distri-
bution arising via a complex interaction of a very large
number of field-modes.

In zero magnetic field the transition to the QS state
breaks the system’s symmetry by spontaneously choosing
the soliton polarity (positive or negative). The external
magnetic field eliminates the spontaneous degeneracy of
the QS phase, and the transition point from the Meiss-
ner state with no solitons to the soliton state is shifted:
the critical coupling for the transition becomes a function
of Hext). Figure 3 shows the evolution of the metama-
terial phases when varying the external magnetic field.
We consider the case when the vacuum state (az,n = 0)
is stable at Hext = 0, but it becomes unstable for quite
a weak Hext resulting in the formation of a one-soliton
state (Fig. 3, main panel - the remagnetization loop
and magnetic field distribution (A)). With a further in-
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crease of the external magnetic field Hext a sequence of
the structural transitions to the phases with larger num-
bers of solitons occur accompanied with jumps in the
trapped magnetic flux Φ. When the external field Hext

decreases from a certain maximal value, other sequence
of the structural transitions occurs first decreasing the
number of the “positive-polarity” solitons followed by for-
mation and increasing the number of the “anti-solitons”
or solitons with the opposite magnetic field direction.

It is worth noting that only states with an odd num-
bers of solitons appear. More importantly, at zero exter-
nal field Hext = 0, the system still keeps one soliton on
the steady remagnetization curve (external (blue) loop in
Fig. 3) indicating that the formally stable initial Meiss-
ner state with zero solitons in the system is actually a
metastable state. Thus, the vacuum state in this case
is metastable in contrast to the QS ground state (which
can be called the “dressed-vacuum” state) for this value
of the field-qubit coupling. Therefore, the transition from
the vacuum to the QS phase in one-dimensional quantum
metanaterials is the first rather than the second order
phase transition in contrast to the superradiant tran-
sition for the system of two level “natural” atoms and
one-mode electromagnetic field in a cavity [17].
Finally we consider the dependence of the QS tran-

sition on the sample size (the number of qubits in the
quantum Josephson transmission line). Using the same
set of parameters as in Fig. 3, we simulate the steady
remagnetization curve Φ(Hext) for a shorter chain (see
Fig. 4). As one can see, the state at zero external field
is always the vacuum (or the Meissner phase) with no
solitons in the sample. Only at a high enough external
magnetic field Hext, the soliton state (here with a sin-
gle soliton) can be formed, but it becomes unstable with
decreasing Hext (on the returning branch of the remag-
netization curve) before Hext drops to zero.

Remarkably, the unusual “butterfly-like” loops simi-
lar to those obtained here appear in several apparently
different systems, including crossing vortex lattices [39],
magnetic vortices in nano-discs [40] and thermal atomic
switches [41]. For all such systems the “butterfly-like”
loops originate either due to a nontrivial interplay of
fluctuations with driving or due to the complex nature of
vortex pinning in the bulk and on surface. In our particu-
lar case, the quantum metamaterials provide a “quantum
pinning” for Josephson-like vortices on the inhomogene-
ity formed by fluctuating qubit occupation numbers of
ground and excited states (which are mobile and can dif-
fuse through the transmission line).

Conclusions.— We predict a new state of matter for
quantum metamaterials — the quasi-superradiant soli-
ton phase— when the coupling between electromagnetic
fields and qubits crosses a threshold (the critical cou-
pling), which can be tuned by the external fields resulting
in a series of structural superrradiance transitions and a
variety of remagnetization loops. The seeming violation

of the ”no-go” theorem for charge-based circuit QED can
be attributed to the more complex structure of the field
modes in the system. Note that the behaviour of flux-
qubit based quantum metamaterials investigated so far
is qualitatively similar to that predicted for the charge-
based ones. Given that such metamaterial prototypes
have already been fabricated, though on a small scale
[13, 14], and the ”no-go” theorem [21] does not apply to
them, it will be worthwile to investigate the QS transi-
tion in such etructures as well. Further investigation of
this new state can hopefully give a new perspective on
a long standing puzzle regarding the superradiant phase
of two level atoms interacting with several modes of elec-
tromagnetic fields in a cavity.

SES acknowledge support from Leverhulme Trust.
AMZ was supported in part by the EPSRC grant
EP/M006581/1 and by the Ministry of Education and
Science of the Russian Federation in the framework of
Increase Competitiveness Program of NUSTMISiS(No.
K2-2014-015).

[1] A. Wallraff et al. Nature 431, 162 (2004).
[2] G. Günter et al., Nature 479, 376 (2011).
[3] T. Niemczyk et al., Nat. Phys. 6, 772 (2010).
[4] Y. Todorov et al., Phys. Rev. Lett. 105, 196402 (2010).
[5] T. Schwartz, J.A. Hutchison, C. Genet, T.W. Ebbesen,

Phys. Rev. Lett. 106, 196405 (2011).
[6] A. J. Hoffman, S. J. Srinivasan, S. Schmidt, L. Spietz, J.
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Andr, G. Schön, U. Hübner, H.-G. Meyer, E. Il’ichev, and
A.V. Ustinov, Nature Communications 5, 5146 (2014).

[15] D.S. Shapiro, P. Macha, A.N. Rubtsov, and A.V. Usti-
nov, Photonics 2, 449 (2015).

[16] R. H. Dicke, Phys. Rev. 93, 99 (1954).
[17] K. Hepp, E. H. Lieb, Ann. Phys. (New York) 76, 360

(1973).
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