

Parametric 3D Modelling of Nonwovens for Mechanical and Filtration Properties

Emrah Sozumert¹, Emrah Demirci¹, <u>Martin J. Lehmann²</u>, Memis Acar¹, V. Vadim Silberschmidt¹

¹Wolfson School of Mechanical, Electrical and Manufacturing Engineering, Loughborough University, Leicestershire, UK ²Simulation Filter Elements, MANN+HUMMEL GmbH, Ludwigsburg, Germany

American Filtration and Separations Society • May 9-11, 2016 • Houston Marriott Westchase, Houston, TX

Motivation

*a2zbabybabydiapers.wordpress.com

**http://www.nonwovens-industry.com/

What does happen to nonwovens under tension and compression?

Does microstructure change?

Does this affect mechanical, filtration and absorption properties?

Outline

- Motivation
- Objectives
- Material and microstructure
- Experiments
- Tensile Performance
- Out-of-plane Loading
- A New Parametric 3D Computational Model
- Flow Simulations
- Summary and conclusions

Objectives

- i. To predict tensile, compression and filtration performance of nonwovens with computational models.
- To develop a new 3D parametric model to simulate compression of nonwovens and its effects on flow properties.
- iii. To optimize available nonwovens by means of this new parametric model to enhance filtration and absorption performances.

Figure 1: Thermally bonded nonwovens

Material and Microstructure

 Highly complicated materials due to material and microstructural properties

Experiments

Test	Instrument	Outcome			
Scanning electron microscopy (SEM)	Carl Zeiss, Leo, 1530VP FEGSEM	Fabric characteristics (bond pattern, shapeetc.)			
X-ray micro computed tomography (CT)	XTEK XT-H 160Xi	3D image, ODF, bond pattern, shape and dimensionsetc.			
Fiber tensile tests	Instron Micro Tester 5848	Elastic properties and rate-dependent flow curve			
Creep tests	Instron Micro Tester 5848	Viscous properties			
Relaxation tests	Instron Micro Tester 5848	Viscous properties			
Fabric tensile tests	Hounsfield Benchtop Tester	Mechanical response			

Experiments- Fiber Orientation Distribution

Fiber Orientation Distribution:

 Grey-scale 2D images using a Hough-transformbased image processing algorithm

Fibre Orientation (Degrees)

(Demirci, 2011)

Experiments - Single Fiber Tests

 Tensile tests with various strain rates

Relaxation tests

- Individual fibers extracted from nonwovens and tested under a tensile tester with a ±5N load cell
- Fibers exhibit highly time-dependent material behaviour.

Tensile Performance - Deformation and Damage Mechanisms

Discontinuous models

Extension (%)

Continuous models

terrere

Out-of-plane Loading - a Falling Ball

New Parametric 3D Computational Model

50 gsm through air bonded nonwoven model

Top view

- Modelling of nonwoven
 network using
 fiber deposition
 and FE methods.
- Multiple fiber types can be generated in the same model (For instance, main and binder fibers)

New Parametric 3D Computational Model-Capabilities

Short Fibers

Various fiber cross-sections: rectangular hollow, round, trilobal, 4DG, *etc*

Continuous Fibers

Flow Simulations – a Case Study

A through-air bonded nonwoven (90gsm, PP/PE 60:40)

*SEM images

ODF

Nonwoven Model

- Star CCM+
- Laminar air flow
- No heat transfer, only continuity equations
- 8-10 millions cells (Polyhedral, tetrahedral elements)
- Inlet velocities:
 0.1, 0.25, 0.5, 1.0 m/s
- No-slip on fibers

Flow Simulations – a Case Study

 A section in the middle along the flow direction

Velocity (m/s)					
1.206 <u>5e-05</u>	0.063036	0.12606	0.18908	0.25211	0.31513

 Nonwoven network was compressed 50% in FE software and flow simulations were repeated. A line of probes marked for calculations

Flow Simulations – Pressure Drop

Zero Compression

50% Compression

Pressure Drop without/with Compression

	Pressure Drop (Pa)		
Velocity (m/s)	No Compression	%50 Compression	
0.1	1.64	2.12	
0.25	4.23	5.50	
0.5	9.09	11.78	
1	20.86	26.69	

Air Permeability (Darcy Law)

	Permeability		
Velocity (m/s)	No Compression	%50 Compression	
0.1	2.17728E-09	8.40586E-10	
0.25	2.11155E-09	8.11804E-10	
0.5	1.96376E-09	7.57353E-10	
1	1.71123E-09	6.68731E-10	

Summary and Conclusions

- A material characterization process in micro and macro scales is necessary to obtain material and geometric properties of nonwovens.
- Tensile performance of nonwovens strongly depends on material properties of fibers and their orientation distributions (ODF's).
- Two dimensional continuous and discontinuous FE models, in which ODF was incorporated into, were presented. Their uses in simulating deformation, damage and out-of-plane loading were shown with sample cases.
- A new parametric 3D finite-element model with fiber curvature and fiber-to fiber interactions was introduced.
- Based on the new parametric model, flow simulations on an uncompressed and 50% compressed nonwoven were conducted. Pressure drop and permeability calculated.
- By compressing nonwovens, a significant increase in pressure drop and a decrease in air permeability were observed.

Future Work – Compression of Nonwoven due to Fluid Flow

Coupling of Structural Analysis with Computational Fluid Dynamics

Acknowledgement

We greatly acknowledge support by:

- the Nonwoven Institute North Carolina State University, Raleigh, USA
- Wolfson School of Mechanical and Manufacturing Engineering
- MANN+HUMMEL GmbH, Ludwigsburg, Germany
- Reicofil GmbH & Co, Germany