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Abstract: We study an independent grid where the penetration of wind energy is high and ex-
ploit the joint planning of energy storage and a renewable energy source, as it can potentially
result in a more economical and efficient energy system. More specifically, we consider an en-
ergy system that consists of a gas-fired plant, and a small wind farm with a capacity for energy
storage. We assume that the gas-fired plant has a maximum generation capacity that is no more
than the electricity demand. We first propose an optimization model with known wind speed
and electricity demand. Then we gradually extend this deterministic model to take into account
the stochastic nature of the renewable energy source and electricity demand. Furthermore, we
consider the possibility of connecting our system to the National Grid, which we import from
or export to when our system has an energy shortage or surplus in meeting the demand. Our
results provide helpful insights in planning the joint deployment of generation capacity and
energy storage, and show that the system operates more efficiently and economically when it is
connected to the National Grid.

1. Introduction

A growing population results in an increase in demand for energy [1]. Currently, the main
source of energy is from finite resources such as coal, oil and natural gas. However, the world’s
resources of fossil fuel are declining, with the ability to produce high quality, cheap and eco-
nomically extractable oil running out. In response to the increase in energy demand and the
decline in fossil fuel resources, along with the environmental issues involved with burning
fossil fuels, the EU has made a commitment to reduce greenhouse gas emissions to 80–95%
below 1990 levels by 2050, and the UK would need to adopt between 23% and 42% renewable
electricity in order to achieve an 80% reduction of carbon emissions by 2050 [2].

One solution is to shift away from fossil fuels to renewable energy resources. Wind has be-
come the world’s fastest growing energy resource due to its cost-effectiveness and the advances
in technology. However, it is both variable and uncertain in nature. By combining energy stor-
age systems with wind power we could decrease the undesirable effects of the stochasticity of
wind power.

The main contributions of this study are as follows. We first propose a model for a basic
energy system that consists of a gas-fired plant and a small wind farm with a capacity for energy
storage, and implement an optimization procedure to find optimal values of the generator and
storage capacities which minimize the associated total cost. In this way, the system as a whole
becomes more efficient as the joint optimization combines the benefits from each individual
subsystem. The nature of our formulated problem is constrained nonlinear optimization and it
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is solved with MATLAB using the fmincon solver. Then we gradually extend this deterministic
model to take into account the stochastic nature of renewable energy source and electricity
demand. Actual data is not always available or accessible. Therefore, it is necessary to develop
models to forecast or simulate observations based on available historical data. Using synthetic
data can also be useful to assess potential costs for a location where a wind farm is planned
but does not exist yet. In this work, we use a Markov chain model to capture the stochasticity
of the wind speed, while for electricity demand, we use the method of [3] to construct a long
term forecasting model with hourly frequency. Furthermore, we consider the possibility of
connecting our system to the National Grid, which we import from or export to when our system
has an energy shortage or surplus in meeting the demand. To the best of our knowledge, there
is no model in the literature that captures the stochastic behaviour of both renewable generation
and energy demand, and includes the interconnection with National Grid within an optimization
framework. Our results provide helpful insights for making decisions on generation capacity
and energy storage in future decentralized power grids with high renewable penetration.

The structure of the paper is as follows. After briefly reviewing the existing literature on
renewable generation with energy storage in Section 2, we introduce in Section 3 our basic
optimization model, which computes optimal capacities for a gas-fired plant, wind turbine and
storage unit that make up a decentralized grid, with known wind speed and the electricity
demand. In Section 4 we study the stochastic behaviour of the wind speed and electricity
demand. We then assess in Section 5 the effects of connecting the decentralized system to the
National Grid, by allowing imports and exports of electricity. In the final section we provide
some concluding remarks and discuss possible future work.

2. Related work

There have been studies on the optimization of energy systems with energy storage and re-
newable generation, we briefly review some of them here. [4] investigates the combined opti-
mization of a wind farm and a pumped storage facility using a two-step stochastic optimization
approach, from the perspective of a generation company. The optimization produces optimal
operation strategies of the facilities, and optimal bids for the day-ahead spot market. However,
the optimal planning of generation and energy storage capacity was not considered. On wind
storage systems, [5] studies the optimal sizing of storage and transmission capacity. The study
evaluates the value of storage under the assumption that price and generation of wind energy
are deterministic processes. In [6], the authors consider optimizing the rating of energy storage
in a wind-diesel isolated grid, and demonstrate that high wind penetration potentially results in
significant cost savings in terms of fuel and operating costs. [7] studies the problem of jointly
optimizing multiple energy storage, renewable generator, and diesel generator capacities in the
context of a micro-grid with a small carbon print. The joint optimization exploits the different
characteristics of multiple energy storage types, as well as the availability of different sources
of renewable energy. Due to the use of large volumes of historical data, and to mitigate the
large dimensionality of the optimization problem due to the use , they re-formulate the original
optimization problem into a consensus problem, which is then solved in a parallel distributed
manner. However, the stochastic nature of demand and renewable generation is not taken into
account and interconnected network is not considered.

There are also studies that look at the problems of energy storage in the presence of dis-
tributed power generation systems in cases of a balanced and unbalanced electrical grid. [8]
has studied and developed supervisory algorithms for the optimal operation of a DC-coupled
wind/photovoltaic hybrid system equipped with battery storage, which delivers to the power
grid in the presence of a conventional generator. Under the developed supervisory algorithms,
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the service continuity is assured by meeting the energy demand while optimizing the conven-
tional sources use, except in case of major deficit by renewable ones. Meanwhile, [9] inves-
tigates the major concerns for the benefits of a grid-connected hybrid system with multiple
renewable sources associated with storage systems. In particular, they have studied an inte-
grated renewable energy conversion system associated with a storage system under unbalanced
voltage conditions. In these works special attention is paid to power quality issues and control
algorithms dynamic performances.

However, to the best of our knowledge, there has been no study that considers stochastic
behaviours of a renewable source and electricity demand with interconnected networks within
the optimization framework. This is what we are concerned with in this paper.

3. Basic model

In this section we describe the framework of our optimization model. For simplicity, we con-
sider only one type of fossil fuel generator—gas-fired plant, one type of renewable energy—
wind, and one type of storage—battery. More specifically, we assume our system has one
gas-fired plant, one small wind farm that consists of several wind turbines. The wind farm has
one or more batteries attached. The goal is to find the optimal capacity of the gas-fired plant, the
wind generator, and battery, such that demand is met at every hour and the total of investment
cost and operational/maintenance (O/M) cost is minimized. The basic model is deterministic,
in other words, the stochastic nature of wind energy and electricity demand is not taken into
account. Thus, both wind speed and electricity demand in this setting are required to be known
in advance. The stochasticity issue will be addressed in the subsequent section.

Let us start with some technical assumptions for our basic model: (a) There is no import
and export of energy. If the storage is full, then surplus energy will be discarded. (b) The gas-
fired plant is not able to generate more than the demand and it generates a proportion of its full
capacity and has a constant power output. (c) There is no ramping constraint for the gas-fired
plant. (d) The charge and discharge of the storage device occur with no time lag.

Our objective in the model is to find optimal generation capacities of the gas-fired plant and
wind turbine, and optimal size of the battery, such that the total of investment cost and O/M
cost over a period of n time units is minimized, where n = 8736 hours (364 days), subject to
the constraint that demand is met in every hour. The variables to be optimized are the capacities
Yg, Sw, Rs of the gas-fired plant, wind turbine and battery. For ease of reference, we list our
notation in Section 3.1 below. Let

Π (Yg, Sw, Rs) :=
n∑
t=1

(
Mg(Yt) + Pg

Yt
αη

+Mw(Wt) +Ms(Rt)

)
+ Ig(Yg) + Iw(Sw) + Is(Rs), (1)

which denotes the total cost (see Section 3.1). Then our objective is

min Π (Yg, Sw, Rs) ,

subject to

Ymin ≤ Yg ≤ Ymax, Smin ≤ Sw ≤ Smax, Rmin ≤ Rs ≤ Rmax; (2)
0 ≤ Yt ≤ Dt, Dt ≤ Wt + Yt +Rt, t = 1, . . . , n. (3)

Here in (2) we assume box constraints on the capacities, and the constraints in (3) impose
respectively that the gas-fired plant alone is not sufficient to satisfy the demand, and that the
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demand must be met at all times by a combination of the power from the wind turbine, the
gas-fired plant and the storage. Note that, although the demand Dt is measured in MWh and
the capacities are measured in MW, the constraints in (3) make sense as the time step is one
hour.

We now define wind power W as a function of the wind speed v and the capacity Sw [10]:

W =


0, if v ≤ vin,

Sw

(
v2 − v2in
v2r − v2in

)
, if vin ≤ v ≤ vr,

Sw, if vr ≤ v ≤ vout,
0, if vout ≤ v,

where vin is the cut-in wind speed (3 m/s), vr is the rated wind speed (12 m/s), and vout is the
cut-out wind speed (25 m/s). On the other hand, the storage Rt+1 is computed following the
concept in [11], where Zt+1 := Wt+1 + Yt+1:

Rt+1 =


Rs, if Rt + ρR(Zt+1 −Dt+1) ≥ Rs,
Rt + ρR(Zt+1 −Dt+1), if Rt + ρR(Zt+1 −Dt+1) < Rs and Dt+1 < Zt+1,
Rt − 1

ρE
(Dt+1 − Zt+1), if Zt+1 ≤ Dt+1 < ρERt + Zt+1,

0, if Dt+1 ≥ ρERt + Zt+1.

3.1. Notation

For ease of reference, we provide the list of parameters here.

t: Time index (1 hour), t = 1, . . . , n;
Dt: Energy demand at time t, t = 1, . . . , n;
Iw, Ig, Is: Investment cost of wind turbine, gas-fired generator, storage, respectively;
Mw, Mg, Ms: O/M cost of wind turbine, gas-fired generator, storage, respectively;
Pg: Fuel price;
Rs: Maximum usable capacity of storage device;
Rt: Current storage level minus minimum state level of charge at time t, t = 1, . . . , n;
Rmin, Rmax: Lower and upper limit, respectively, of the maximum usable capacity;
Sw: Capacity of wind turbine;
Smin, Smax: Lower and upper limit of wind turbine capacity, respectively;
vt, Wt: Wind speed and energy generated at time t, respectively, t = 1, . . . , n;
Yg: Capacity of gas-fired generator;
Yt: Energy generated by the gas-fired generator at time t, t = 1, . . . , n;
Ymin, Ymax: Lower and upper limit, respectively, of the capacity of gas-fired generator;
α: Conversion factor (i.e., MWh to GJ);
η: Fuel efficiency parameter;
Yt/(αη): Fuel consumption;
ρR: Coefficient used to covert electricity to potential energy in the storage;
ρE: Coefficient used to convert the potential energy in the storage to electricity;
ρRρE: Round-trip efficiency (0 < ρRρE < 1);
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3.2. Numerical examples

Using real data, we provide numerical examples to show how the proposed framework can
be applied in practice to make decisions on joint renewable generation and energy storage
planning. We pick two cities, Aberdeen and Rugby, with different wind characteristics in order
to make comparisons. Due to the limitation of the size of our system, it is only able to supply a
proportion of the total demand. The fraction is chosen based on the examination of how much
wind power can contribute and the assumption that gas-fired plant cannot generate more than
the demand. Since Rugby has an electricity demand that is roughly half of the demand for
Aberdeen, in order to obtain similar levels of demand, we consider scaling the actual demand
for Aberdeen by 1/20, and the actual demand for Rugby by 1/10, so that the electricity demand
data taken for the simulations for both cities are roughly of the same order. Wind speed is
obtained from the British Atmospheric Data Centre and consumption data is obtained from the
National Grid and the Department of Energy and Climate Change. Data used for testing is over
one year period, i.e., January to December 2012.

Information on gas-fired plant (with open cycle gas turbine) and wind turbine is obtained
from [12, 13]. Characteristics and cost information on storage (lead-acid battery) are found in
[14, 15, 16]. We assume that the output of the gas-fired plant is constant and is proportional to
its capacity. For the numerical example, we assume that the gas-fired plant generates 20% of
its full capacity in each period. So, a gas-fired plant with capacity Yg will generate 0.2Yg MWh
energy for every hour. The price of natural gas is £3.5 per Gigajoule (GJ), the fuel efficiency is
η = 0.6, and the conversion factor from MWh to GJ is α = 0.278. Conversion factors ρE and
ρR are set as 0.95, which makes a round-trip efficiency of ρEρR = 0.9. The starting storage
level R1 = 0. The optimization constraint are shown in Table 1. We set Ymin = 10 MW, Ymax

= 12 MW, Smax and Rmax to be 100 MW for both cities. Set Smin as 10 and 70 MW, Rmin as
30 and 60 MW, respectively, for Aberdeen and Rugby. Due to the constraints we impose, the
values for lower limit are set on the boundary between the feasible and infeasible domains.

Type Aberdeen Rugby
lower limit upper limit lower limit upper limit

Gas-fired plant 10 12 10 12
Wind farm 10 100 70 100
Battery 30 100 60 100

Table 1 Lower and upper capacity limit in MW for each plant

The typical lifetime for a wind turbine is about 20 years, for gas-fired plant 30 years and
for the battery 15 years. We assume investment cost can be spread over the lifetime of a
plant. Both investment cost and annual O/M cost are usually stated as the cost per MW in the
literature, which are shown in Table 2. We assume the cost functions are linear in our numerical
examples. There is a fixed operation cost for the battery and a variable cost for charging and
discharging. Of course, if more detailed cost information is available, it may help to work out
more appropriate forms for the cost functions, and this can be easily adopted in our model.

Type Investment cost (£/MW) O/M cost (£/MW)
Battery 51260 6015(fixed), 1.05(variable)
Wind turbine 37000 24000
Gas-fired plant 17484 20981

Table 2 Costs of system components: energy storage and generators
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We consider the following linear cost functions,

Ig(Yg) = aYg, Is(Sw) = bSw, Is(Rs) = cRs,

Mg(Yt) = xYt, Mw(Wt) = yWt, Ms(Rt) = z1 + z2Rt.

where a, b, c, x, y and z are the corresponding cost coefficients shows in Table 2. That is
a = 17484, b = 37000, c = 51260, x = 2.4, y = 2.7, z1 = 0.69 and z2 = 0.00012. a, b, c are
the annual values, whereas, x, y, z are the per-time-period costs.

Let (Y ∗g , S
∗
w, R

∗
s) denote the vector of optimal solutions, measured in MW.

Type Aberdeen Rugby
Yg∗ 10 10.9
Sw∗ 10 70
Rs∗ 30 60

Table 3 Optimal capacities for energy storage and generators

With the above choice of parameter values, we implement the optimization problem in
MATLAB, which returns optimal capacities (Y ∗g , S

∗
w, R

∗
s) = (10, 10, 30) with a total cost of

£2.63 million for Aberdeen for the year 2012. In other words, optimality requires a 10 MW
gas-fired plant and a wind farm capacity of 10 MW (e.g., five turbines with a capacity of 2
MW each). In order to store the surplus generated by the wind turbine(s) during the 8736 time
periods, we need a battery that has a usable capacity of 30 MW (or several batteries that add
up to a total usable capacity of 30 MW). If the maximum usable capacity of a battery is only
80% of its nominal capacity, then it requires a nominal capacity of 37.5 MW. On the other
hand, the optimal capacities are (Y ∗g , S

∗
w, R

∗
s) = (10.9, 70, 60) for Rugby. The total cost over

the year 2012 is estimated to be £6.36 million for Rugby, which is higher than for Aberdeen.
We note that the optimal capacities of gas-fired plant are similar for the two cities, while the
capacities of wind turbine and battery are much bigger for Rugby. This is expected as wind is
much stronger in Aberdeen. The highest wind speed is up to 35 m/s in Aberdeen, while it is
just over 11 m/s in Rugby. Furthermore, wind speed is often above 10 m/s in Aberdeen over
the one year period, whereas it is often below 3 m/s in Rugby. For Aberdeen, with the help
of a constant supply from the gas-fired plant and consistently high wind speeds, only a small
capacity of wind turbine(s) is needed. However, in Rugby wind speed is often below the cut-in
speed (3 m/s) and it occasionally goes above 10 m/s. Due to the low wind, a much larger wind
turbine is required in order to generate enough power to meet the demand. When the occasional
high wind speed coincidentally meets with the low demand, a large turbine can generate a big
surplus and this leads to the need of a large battery to store the surplus in preparation for periods
with low wind speeds. In practice, the Rugby example may not be realistic as wind farms are
often built in windy areas. We include it for comparison purpose only.

4. Modelling of stochasticity

In this section we take into account the uncertainty in wind power generation and electricity
consumption. The uncertainty in the availability of wind resource is captured using a Markov
chain model. To model the intermittent behaviour of energy demand, we will use the method
proposed in [3], which attempts to make long-term forecasting with an hourly accuracy.

4.1. Wind speed

The use of energy storage makes it necessary to capture the time correlation of the wind speeds,
since the storage is intimately linked to the generation from wind. The Markov chain model
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takes into account the time correlation and has been frequently used for the generation of syn-
thetic wind speed series [17]. We adopt this approach in our study.

A Markov chain (MC) is a sequence of random variables {Xt}t≥0 such that, for any t =
0, 1, 2, . . . , the random variable {Xt} can take values from a discrete set of states {i0 . . . , iN}
and satisfies the following so-called Markov property for conditional probabilities:

P (Xt+1 = it+1 | Xt = it, Xt−1 = it−1, . . . , X0 = i0) = P (Xt+1 = it+1 | Xt = it).

In other words, the probability of the state at time t + 1 depends only on the state at time t.
Denote P (Xt+1 = j | Xt = i) = pij for all states i and j. The transition probability matrix for
a first order MC with s states can be written as

P =


p1,1 p1,2 · · · p1,s
p2,1 p2,2 · · · p2,s

...
... . . . ...

ps,1 ps,2 · · · ps,s

 .
According to the definition, we have

pij ≥ 0, and
s∑
j=1

pij = 1 for all i, j = 1, . . . , s.

The transition probability matrix (TPM) can be constructed by using the following formula
[18],

pij =
nij∑s
j=1 nij

,

where nij represents the number of transitions from state i to state j during one period. The
cumulative probability matrix (CPM) C = [Cik] can be constructed according to [18]:

Cik =
k∑
j=1

pij.

A second order MC is defined similarly, i.e., we require

P (Xt+1 = it+1 | Xt = it, Xt−1 = it−1, . . . , X0 = i0)

= P (Xt+1 = it+1 | Xt = it, Xt−1 = it−1).

Denoting
P (Xt+1 = k | Xt = j,Xt−1 = i) = pijk

for all states i, j and k, we can write a second order transition probability matrix as

P̃ =



p1,1,1 p1,1,2 · · · p1,1,s
p1,2,1 p1,2,2 · · · p1,2,s

...
... . . . ...

p1,s,1 p1,s,2 · · · p1,s,s
p2,1,1 p2,1,2 · · · p2,1,s

...
... . . . ...

ps,s,1 ps,s,2 · · · ps,s,s


.
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Actual data 1st order 2nd order
Mean 10.41 10.33 10.46
Std deviation 6.014 6.31 5.879
Variance 36.16 39.81 34.57
Median 9.252 8.988 9.354
Minimum 0.514 0.500 0.500
Maximum 34.95 35.44 35.28
Weibull scale 11.74 11.62 11.80
Weibull shape 1.818 1.714 1.866

Table 4 Descriptive statistics of synthetic and actual data

Similarly, then the CPM C = [Cijk] can be calculated according to [18] as follows:

Cijk =
k∑
l=1

pijl.

The MC simulation procedure for synthetic generation of wind speed time-series is accom-
plished following the following steps [18]:

1. Define the states of the MC and construct the TPM from the available data.
2. Construct the CPM.
3. Generate uniformly distributed random numbers between 0 and 1.
4. Select an initial state i.
5. Compare the value of the generated random number with the elements of ith row of the

CPM. The next state is determined as follows: the value of the random number is greater
than the cumulative probability from previous state but no more than that of the following
state, say j. Then the next random number needs to be compared with the elements from
the jth row of the CPM.

6. A transition from state i to state j in CPM can be converted into wind speed by Z =
Zj−1 +Vi(Zj−Zj−1), where Zj−1 and Zj are the lower and upper boundaries of the state,
Vi is the random number.

Based on the visual examination of the histogram of the wind speed, the wind speed states
have been adopted with an upper and lower limit with a difference of 1 m/s. The upper and
lower limit are highly subjective values [19]. In our study, we divide the wind speed data
set into 35 states for Aberdeen. For validation of the model, we use a combination of visual
evaluation and comparison of statistical properties, which consist of descriptive statistics and
Weibull distribution parameters of the probability distribution of the wind speed time-series, as
illustrated in Table 4.

Figures 1 and 2 represent the mean absolute percent error between actual and synthetic data
of the first order and second order MC model, respectively. The probability distribution and
the autocorrelation function (ACF) of the observed and synthetic data are shown in Figures 3
and 4. The comparisons between the actual and the simulation data show that the statistical
characteristics are satisfactorily reproduced and comparison of the descriptive statistics indicate
that the simulations are close to actual data. The general behaviour of the ACF of the synthetic
data of both models are very similar. It does not seem to suggest that a second order MC is
more effective than a first order MC model by comparing the corresponding ACF plot with the
ACF plot of the observed wind speed series. However, from the general statistics and Weibull
distribution parameters, our results suggest that a second order MC model generates relatively
better results than a first order MC model.
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Fig. 1. First order MC: Absolute difference between actual and synthetic wind speed

Fig. 2. Second order MC: Absolute difference between actual and synthetic wind speed

Figure 5 is a bar diagram for the values of energy produced by a 2MW wind turbine for the
observed time series and the synthetic time series. The blue bar represents the energy produced
from observed, while the red and green bar represent the energy produced from synthetic ones,
first and second order respectively. The corresponding hourly errors of wind energy production
are shown in Figures 6 and 7.

4.2. Electricity demand

In addition to the intermittency of renewable energy sources as discussed above, the energy
demand itself is also intermittent. To model the stochastic behaviour of energy demand, we
will use the method proposed in [3]. This method is selected due to its uniqueness in the way
that it attempts to make the long-term forecasting with an hourly accuracy. Traditionally, long-
term forecasting is typically performed on a yearly average basis, whereas hourly accuracy is
used for short-term prediction. With this method, we are able to forecast the demand load in
the long-term with hourly resolution.

The methodology is demonstrated with hourly actual loads of Aberdeen from 2010 to 2012
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Fig. 3. Probability distribution of observed and synthetic wind speed

Fig. 4. Autocorrelation functions of observed and synthetic wind speed
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Fig. 5. Energy produced by a 2MW wind turbine for observed and synthetic wind speed

Fig. 6. First order MC: Absolute difference of wind power generated from actual and synthetic
wind speed
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Fig. 7. Second order MC: Absolute difference of wind power generated from actual and syn-
thetic wind speed

and annual energy consumption values from 2005 to 2012. We use half hourly data at the
GB level (national) from the the National Grid, which we subsequently aggregate to obtain an
hourly average. The hourly national consumption data is then scaled down to match the value
of the annual regional consumption (obtained from the Department of Energy and Climate
Change).

The method proposed in [3] consists of three steps. The first step is the modelling of the
yearly demand changes, followed by the modelling of the weekly residual variations within a
year, and the hourly variations within a week. The model is then constructed by summing these
three parts together.

1. Yearly modelling: We use the demand load from 2005 to 2012 and fit a function that
approximates the behaviour on the yearly resolution. The yearly resolution can be approx-
imated by various functions, such as linear, polynomial or power functions. We consider a
linear function with a goodness of fit R2 = 0.988.

Applying a curve fitting algorithm in MATLAB results in the following yearly load model
(with 95% accuracy):

f(x) = −3.175x+ 10080, x = 1, . . . , 416,

where x = 1 denotes the first week of 2005 and x = 416 the last week of 2012.

2. Weekly residual modelling: We assume that the weekly load model is a combination
of the yearly load model and variations on a weekly basis. The weekly variation is obtained by
dividing the yearly averaged data, which we call the weekly residual load variations within a
year. Since we only have hourly data from 2010 to 2012, we compute the weekly residual data
for the period 2010 to 2012 and consider fitting a model. Here we choose to model the weekly
residual load by a sum of three sine functions due to the relatively oscillatory behaviour of the
available data. The chosen function is considered to be a sum of three terms. We apply a curve
fitting algorithm in MATLAB and the resulting functional form (with 95% accuracy) is:

g(x) =3.227 sin(0.004007x+ 7.472) + 1.97 sin(0.006008x+ 10.11)

+ 0.1459 sin(0.1198x+ 1.657),
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where x starts in week 261 from 2005, i.e., week 1 of 2010.
We assume that the weekly residual load variation for 2005 to 2010 can be modelled sim-

ilarly to the weekly residual load variation for 2010 to 2012. In other words, we can extend
the domain of g(x) to the period 2005 to 2012. Define the demand load function with weekly
resolution, D′(x), as the product f(x) and g(x):

D′(x) = f(x)g(x), for x = 1, . . . , 416.

3. Hourly modelling: We assume that the hourly load model is a combination of the
weekly load model and variations on a hourly basis. We observe that the hourly variations
within a single week are quite similar throughout the year, and so we assume that the hourly
variations within a week can be well represented by the averaged hourly load shape across a
week. We denote this shape as the week-to-hour template. Since we have three-years period of
hourly data, to avoid the effects of overall increase or decrease within a year, we normalize the
template so that the volume under the surface is 1.

We denote the week-to-hour template by T (h, d), where d represents the days of the week
and h represents the hours of the day d. To obtain T (h, d), we consider the week-to-hour
template as a 24 × 7 matrix, and apply the 2-D discrete cosine transform (2-D DCT). Next,
we pick out the seven entries with the largest magnitude and set all other entries to zero. We
then apply the inverse 2-D discrete cosine transform to obtain T (h, d). In this case, only seven
coefficients are required to generate the week template data.

We now assume that the model week-to-hour template is representative of the hourly varia-
tion within a week. Thus, the demand model with hourly resolution is

D(h, d, x, y) = D′(x̂)T (h, d)

for h = 1, . . . , 24; d = 1, . . . , 7; x = 1, . . . , 52; and y = 1, . . . , 8; where D′(x̂) = f(x̂)g(x̂)
and x̂ = (52y+x), while h, d, x and y indicate respectively hours, days, weeks and years from
2005 to 2012.

Finally the demand model established in the above three-step procedure is validated by
comparing the predicted values with actual values for year 2012, which is shown in Figure 8.
The mean absolute percentage error is calculated and displayed in Figures 9 and 10. The former
displays the error terms in absolute values, and the latter displays the signed error terms. The
blue curve represents the actual consumption, while the green curve is the predicted consump-
tion.

From the above analysis, the demand model works quite well. For the calculation of the
mean absolute percentage error, we have included the absolute error and the signed error, as
it is useful to see when and where the negative values occur within the electricity market. In
practice, the negative values are more costly than positive values. The error terms seem to
be higher towards the end of the plot (see Figure 9), which may be due to the effect of the
Christmas and the New Year period.

In our model, we have made the assumption that hourly variations within a week of the
year can be represented by the averaged hourly load shape across a week. This will smooth
out the hour resolution and thus the predicted consumption pattern tends to be flatter than its
actual pattern. Moreover, the data used for testing is scaled down from national-level, and
the actual regional hourly consumption pattern may differ from national consumption patterns
as the consumption behaviour varies from region to region. Due to the unavailability and
inaccessibility of the actual hourly regional data, we did not take this into account. In addition,
for the yearly modelling, we have the limitation that only a few years of data are available to
test the model. From the eight data points, we can only deduce a decreasing trend. However, it
is not clear whether it is a linear relationship. If a much longer period of data was present, we
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Fig. 8. Predicted against actual hourly consumption in 2012

Fig. 9. Absolute value of error term of D(h, d, x, y) of 2012

Fig. 10. Error term of D(h, d, x, y) of 2012
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could fit a model with more accuracy and predict more accurately. For the weekly and hourly
modelling, it may be helpful to have a longer period of data for further observation and finer
tuning. Longer period of data would help increase the goodness of fit R2 in the weekly and
hourly fitting. However, we do not expect these changes to be significant.

4.3. Numerical examples

We provide a numerical example as we have done in Section 3.2, but rather than using real data,
we use our wind speed simulated with a second order MC model and electricity consumption
predicted with the model described above. The other settings will remain the same as described
in Section 3.2.

Type Aberdeen Rugby
Yg∗ 11.7 11.8
Sw∗ 10 70
Rs∗ 30 60

Table 5 Optimal capacities for energy storage and generators

With the same choice of parameter values, the optimization algorithm returns optimal ca-
pacities (Y ∗g , S

∗
w, R

∗
s) = (11.7, 10, 30) for Aberdeen and (Y ∗g , S

∗
w, R

∗
s) = (11.8, 70, 60) for

Rugby. Their corresponding total costs over the year 2012 are £2.73 million and £6.43 million,
respectively.

The optimal capacities generated by the stochastic model differ only in the capacity of gas-
fired plant. There is respectively a 0.1 million and 0.07 million difference in the total annual
cost for Aberdeen and Rugby. Since errors are always present with forecasting or simulating,
we expect small changes in the optimal capacities and thus in the total annual cost.

5. Connection to the National Grid

In this section, we relax assumption (a) that we made at the beginning of Section 3 for our basic
model by allowing import and export of electricity. That is, if the demand exceeds the sum of
the current power generation and the power stored in the battery, then we can import power
from the National Grid; and if there is a surplus and our storage device is full, we can export to
the National Grid.

5.1. Extended model

We assume that a network connecting to the National Grid already exists, and thus we do not
look into the process of how to establish a network. However, we set up the restriction that the
National Grid makes up at most γ% of the demand, and thus this forces our system to generate
at least (100− γ)% of the demand all the times, where 0 ≤ γ < 100.

If we have a deficit at time t, i.e., Dt > Wt + Yt + Rt, then we deplete all the surplus
power in the battery and import the difference from the National Grid. Hence, Rt+1 = 0 and
we import Gt = Dt −Wt − Yt − Rt > 0. On the other hand, if we have a surplus at time t,
i.e., Dt < Wt + Yt +Rt, our first priority is to fill up the battery, and then export the remainder
Ht to the National Grid. We introduce a degree of flexibility into the system by imposing the
constraint that we only export a certain percentage of the surplus. Consequently, we have the
following procedure in the case of surplus: If Rt+1 = Rt + ρR ∗ (Wt + Yt − Dt) < Rs, then
we export nothing. Otherwise, if Rt+1 > Rs, then we export the amount Ht = β(Rt+1 − Rs),
and then let Rt+1 = Rs, where 0 ≤ β ≤ 1 is a parameter that enables us to control how much
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of the surplus we will export. For instance, setting β = 0.1 amounts to exporting only 10% of
the surplus.

At the same time, we replace the last constraint in (3) with

Gt ≤ γDt and Dt ≤ Wt + Yt +Rt +Gt.

Since connecting to the National Grid may incur other costs (positive or negative) such as costs
for distribution or imports, revenue for selling surplus. Accordingly, we add the following term
to the objective functional (1):

n∑
t=1

(PeGt − PsHt + (Ac + AdHt)− PwWt) ,

where Pe and Ps are import and export price of electricity, respectively; Pw is the price paid to
wind farms for energy generation; while Ac and Ad are fixed and variable component, respec-
tively, of the distribution charge. The above equation is explained as follows: For each unit of
power we import from the National Grid, we pay a price of Pe, thus it generates a cost of PeGt

in each period. Similarly we obtain a revenue of PsHt in each period from exporting. Accord-
ing to the National Grid policy, wind farms get paid by the National Grid for power generation
regardless whether the power is exported, which leads to a revenue of PwWt. There are also
charges from the distributors for the power to be distributed while exporting to the National
Grid. The charges usually involve a fixed component and a component that varies with the
quantity, which lead to the term Ac + AdHt.

5.2. Numerical examples

We now provide numerical examples in order to make a comparison with the results obtained
in Section 4.3. The setting remains the same with Pe and Ps obtained from Elexon. The price
paid for generation is obtained from Ofgem’s website, Pw = 3.41 p/kWh. The distribution cost
differs from region to region, which is usually made up of a fixed component and a component
that varies with quantity. For Aberdeen, the daily fixed component Ac = 5.45 p/kW, whereas
the variable cost Ad is 1.22 p/kW during peak period, and 0.17 p/kW during off-peak period.
For Rugby, there is no fixed cost, Ac = 0. The variable cost Ad is 2.13 p/kW during peak time
and 0.43 p/kW during off-peak time. In our study, we consider peak time as 7am–7pm, and set
γ = 0.1 and β = 0.1.

Type Aberdeen Rugby
Yg∗ 11.6 11.8
Sw∗ 10 70
Rs∗ 30 60

Table 6 Optimal capacities for energy storage and generators

With the above choice of parameter values, the optimization algorithm returns optimal ca-
pacities (Y ∗g , S

∗
w, R

∗
s) = (11.6, 10, 30) and (Y ∗g , S

∗
w, R

∗
s) = (11.8, 70, 60) for Aberdeen and

Rugby, respectively. The total cost over the year 2012 is £2.50 million and £6.30 million, re-
spectively. By comparing the results with the ones obtained in Section 4.3, we can see that
the optimal solutions almost remain unchanged but there is a decrease in the total costs. With
the supply from the National Grid, it should release the pressure on the gas-fired plant and the
wind turbines. Due to the small fraction of import level, our results show very small change
(0.1 MW decrease) in the optimal capacity of gas-fired plant for Aberdeen, others remain the
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Fig. 11. Amount to be exported to the National Grid at each period for Aberdeen and Rugby

same. This is because in most of the periods, there is no need to import, as shown in the nu-
merical examples in Section 4.3, the system is well capable of satisfying demand on its own,
and it will only import if the level of storage in the battery has dropped to the minimum level.
However, with connection to the National Grid, the surplus from wind that would otherwise be
dumped can be sold to the National Grid to make some revenue after filling up the battery.

Figure 11 shows the amount exported to the National Grid, where blue bars represent the
export from Aberdeen and red bars from Rugby. As shown in category 0, Rugby does not have
any export for over half of the periods over the one-year period. However, occasionally it can
export more than 1 MW per time period. Whereas, Aberdeen is more consistent, exporting for
over 80% of the time periods. Based on the amount exported, the total cost has decreased by
0.23 million and 0.13 million for Aberdeen and Rugby, respectively.

6. Conclusions

In this study, we have investigated the joint optimization of renewable generation and energy
storage by formulating the problem in a cost minimization framework. We want to determine
optimal capacities for the generator and storage that minimize the associated total cost, provid-
ing demand is met all the time. The problem is first formulated as a deterministic model and
then extended to increase its flexibility. We have also studied how the system can operate more
efficiently and economically. As future work, we will include the effects of other storage tech-
nologies by studying their characteristics and modifying the corresponding cost functionals.
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