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Abstract— For enjoying 3D video to its full extent, it is imperative that access and consumption of it is user centric, 

which in turn ensures improved 3D video perception. Several important factors including video characteristics, users’ 

preferences, contexts prevailing in various usage environments, etc have influences on 3D video perception. Thus, to as-

sist efficient provision of user centric media, user perception of 3D video should be modeled considering the factors af-

fecting perception. Considering ambient illumination context to model 3D video perception is an interesting research top-

ic, which has not been particularly investigated in literature. This context is taken into account while modeling video 

quality and depth perception of 3D video in this paper. For the video quality perception model: motion and structural 

feature characteristics of color texture sequences; and for the depth perception model: luminance contrast of color tex-

ture and depth intensity of depth map sequences of 3D video are used as primary content related factors in the paper. 

Results derived using the video quality and depth perception models demonstrate that these models can efficiently predict 

user perception of 3D video considering the ambient illumination context in user centric media access and consumption 

environments.  

Index Terms— 3D video, 3D user perception model, ambient illumination context, depth perception, user centric 3D 
media access and consumption, video quality perception. 

1. INTRODUCTION 

3-Dimensional (3D) video distribution and access in heterogeneous usage environments have posed significant re-

search and technology development challenges for delivering 3D video to a wide range of users. These challenges 

have been exacerbated not only by the existence of different networking infrastructures, diverse user terminals, and 

numerous media content representations, but also by the users themselves and their various preferences and high lev-

Modeling User Perception of 3D Video  
Based on Ambient Illumination Context for  

Enhanced User Centric Media  
Access and Consumption 

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Loughborough University Institutional Repository

https://core.ac.uk/display/288372031?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 
 

 

2

2

els of expectations. In turn, this has led the research efforts to focus on user centricity while providing media services 

rather than conventional purely technology orientated service provisions.  

Although the development of 3D video related technologies such as capture, representation, coding, transmission, 

rendering, etc are evolving promptly, the influence of these technologies on 3D perceptual quality to enrich prolifera-

tion of user centric 3D video applications into the consumer market has not been thoroughly investigated to date. One 

of the reasons for this is the lack of available 3D video perception models to predict the user perception towards 3D 

video. Even though, there are commonly used 2D objective quality assessment models available in literature, which 

correlate with Human Visual System (HVS), these models cannot provide accurate video quality and depth percep-

tion assessments for 3D video due to the multi-dimensional nature of it (e.g., video quality, depth perception, natu-

ralness, etc)  [1]. Therefore, reliably assessing 3D video perception can only be performed using subjective quality 

assessment techniques currently, which are conducted with real human observers. However, subjective quality as-

sessment techniques are expensive in terms of time and effort. Thus, 3D user perception models should be developed 

to assist the advancement of 3D media technologies that support user centric access and consumption of 3D video, 

which in turn will ensure enhanced 3D user perception.  

User perception of 3D video is influenced by several factors including 3D video characteristics, usage environment 

contexts, etc. Such factors should firstly be determined to develop models for predicting 3D user perception accurate-

ly. The effects of varying ambient illumination context in the usage environment surrounding the user on the use and 

experience of video quality and depth perception of 3D video have been reported in our previous study  [2]. Extend-

ing on this work, video quality and depth perception of 3D video are modeled considering ambient illumination con-

text in this paper.  

Color-plus-depth map 3D video representation is employed for the research carried out in the paper since it has 

many advantages compared to the left and right 3D video representation, and has also been highly exploited in re-

search and standardization activities to date  [1].  

In order to model user perception of 3D video considering ambient illumination context, the video quality and 

depth perception of users towards 3D video are monitored under different ambient illumination conditions through a 

series of subjective experiments initially. Afterwards, video quality and depth perception models are developed by 

exploiting the results of the subjective experiments conducted. Motion and structural feature of color texture se-
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quences are exploited as the primary content related contexts in the video quality perception model. Luminance con-

trast of color texture and depth variation of depth map sequences are considered as the content related contexts while 

developing the depth perception model.  

The rest of the paper is organized as follows. Assessment of 3D video quality and depth perception using the exist-

ing quality assessment methods is discussed in Section 2. Section 3 introduces the experimental set-up for the subjec-

tive experiments and discusses the results of these experiments. The developed video quality and depth perception 

models are defined in Section 4. Section 5 discusses the video quality and depth perception assessment results pre-

dicted using the developed models. Moreover, the video quality and depth perception results of the subjective exper-

iments are compared with those of the predicted ones using the developed models in this section. The paper is con-

cluded in Section 6. 

2. 3D VIDEO QUALITY ASSESSMENT USING THE EXISTING QUALITY ASSESSMENT METHODS 

Even though a significant amount of work has been carried out to develop 2D objective quality assessment tech-

niques to measure perceptual quality of 2D video contents, same effort has not been performed for developing 3D 

objective quality assessment techniques to date. There are three commonly objective quality assessment models for 

2D video in literature namely: Peak Signal-to-Noise Ratio (PSNR), Video Quality Metric (VQM), and Structural 

SIMilarity (SSIM).  

PSNR is a widely used 2D objective quality assessment technique that is measured on logarithmic scale. It re-

lies on the Mean Squared Error (MSE) between an original and a distorted video frame. The MSE calculation is as 

follows  [3]: 
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where g (i,j) is the original signal at pixel (i,j), G (i,j) is the degraded signal and M x N is the frame size, where M 

and N refer to the width and height of a frame, respectively. The resultant (i.e., MSE value) is a single number in dec-

ibels (dBs). For n bits per frame, PSNR is calculated as follows  [4]: 
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PSNR has low computational complexity and thus produces quick results. However, it has poor correlation 

with real human perception  [5]. Limitation of PSNR has led the researchers to develop quality evaluation techniques 

that approximate the responses of real human observers. VQM is an objective quality measurement technique that 

provides video quality assessment, which is highly correlated to HVS. VQM comprises two phases for video quality 

assessments, namely: Calibration and Calculation. Calibration phase involves spatial alignment, valid region estima-

tion, gain-offset calculation, and temporal alignment of the distorted video contents. Jerkiness, color distortion, blur-

riness, global noise, and block distortion of the calibrated video content are measured compared to the original one 

within the VQM’s Calculation phase. As a result, both the spatial impairments (e.g., blurriness) and temporal im-

pairments (e.g., jerkiness) are determined at the same time for the quality evaluations using VQM. Due to its good 

correlation with HVS, VQM has been standardized by the American National Standards Institute (ANSI) in 2004, 

and added as a normative video quality estimation method in the International Telecommunication Union-

Recommendation (ITU-R) BT. 500-11  [5]  [7]  [8]. Compared to PSNR, however, VQM has higher computational 

complexity  [5].   

SSIM is another objective quality measurement technique, which evaluates the structural distortion of a distort-

ed video compared to the original one. SSIM is formed based on the fact that HVS is specialized in extracting struc-

tural information from a visual scene rather than the errors in the scene  [9].  

The equation for SSIM is shown below: 
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where, x = {xi | i = 1,2,…,N} is the original signal, y = {yi | i = 1, 2, …, N} is the distorted signal, and i is the pixel 

index. x , y , 2
x , 2

y and 2
xy  are the mean of x, mean of y, the variance of x, the variance of y and the covari-

ance of x and y, respectively. C1 and C2 are constants. The SSIM metric takes values between 0 and 1. 0 corresponds 

to the lowest quality whereas 1 corresponds to the highest quality. SSIM has less computational complexity than 

VQM  [9].  

Due to the multi-dimensional nature of 3D video (e.g., video quality, depth perception, naturalness, etc), these 

commonly used 2D objective quality assessment techniques cannot provide 100% accurate measurements for video 

quality and depth perception of 3D video  [1]. Currently, assessing 3D video quality in a reliable way can only be per-
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formed using subjective quality assessment techniques conducted with real human observers. Nevertheless, subjec-

tively assessing video quality is highly time and effort consuming. Therefore, 3D user perception models should be 

developed to enrich the progression of user centric 3D related video technologies to yield enhanced 3D video percep-

tion of users. Moreover, content-related characteristics and usage environment contexts, which have significant ef-

fects on 3D video perception, should also be considered while developing these models to enrich the enhanced per-

ception. 

3. SUBJECTIVE ASSESSMENT OF 3D VIDEO QUALITY AND DEPTH PERCEPTION UNDER DIFFERENT AMBIENT 

ILLUMINATION CONDITIONS 

In order to understand how 3D video quality and depth are perceived under different ambient illumination conditions, 

a set of subjective experiments were conducted in a controlled environment. These experiments were conducted ac-

cording to the ITU-R BT. 500-11  [8] guidelines except for those related to the ambient illumination condition. In this 

section, first of all, the experimental set-up for the subjective assessments is explained. Afterwards, the results are 

discussed.  

3.1. Experimental Set-up  

For the experiments, publicly available Interview, Chess, Windmill, Ice, Advertisement, and Eagle test sequences 

were used. The color texture and depth map sequences of the 3D video clips were of High Definition (HD) resolution 

(i.e., 1920 × 1080 pixels) at 25 fps. The Joint Scalable Video Model (JSVM) reference software version 9.13.1  [10] 

was used to encode the sequences. Four different channel bandwidths (i.e., 512, 768, 1024, and 1536 kbps) were se-

lected as target bit rates. 80% of the target bit rate was allocated for the color sequences and the remaining bit rate 

(i.e., 20%) was allocated for the depth map sequences while performing the experiments  [11]. These sequences were 

displayed on a 42” Philips multi-view auto stereoscopic display, which has a resolution of 1920 × 1080 pixels.  

The effects of the ambient illumination on perceptual quality and depth perception were assessed under four 

different ambient illumination conditions (i.e., 5, 52, 116, and 192 lux), created in the self-contained media laborato-

ry facilities of I-Lab, University of Surrey. 5 lux corresponds to a dark condition, while 192 lux indicates a bright 

light environment. These conditions were measured using a Gretag Macbeth Eye-One Display 2 device  [12]. 16 vol-

unteers (5 females and 11 males) participated in the experiments. They were all non-expert viewers, whose ages 
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ranged from 20 to 35. Their eye acuity was tested against Snellen eye chart and the stereo vision was tested with the 

TNO stereo test. All of them surpassed 0.7 eye acuity and 60 seconds of arc stereo vision levels, respectively. Fur-

thermore, their color vision was verified with the Ishihara test, and all viewers were reported to have good color vi-

sion  [1]. The subjective tests were conducted with each viewer to assess all of the test sequences individually, which 

were randomly ordered for each environment condition to avoid any potential prejudices. The subjects were asked to 

assess both the video quality and depth perception by comparing the impaired video sequences with the reference 

ones. Following the experiments, the Mean Opinion Scores (MOSs)  [8] obtained from all of the viewers were com-

puted. A score of 5 in the MOS assessment scale means the impaired video has the same perceptual quality or depth 

perception as the reference one, while a score of 1 means very annoying presentation. The tests lasted 20 minutes on 

average, including the initial training session. 

3.2. Subjective Assessment Results 

The results of the video quality and depth perception assessment experiments are presented in this sub-section. 

3.2.1. Video Quality Perception Results 

Fig. 1 illustrates the bit rate versus MOS results reported on viewers’ video quality perception assessment experi-

ments. As can be observed from the results, the video sequences viewed under different ambient illumination condi-

tions have demonstrated an increasing perceptual quality rating pattern as the amount of light in the environment in-

creases across all of the bit rate range that was considered in the experiments. Here, the perceived video quality pre-

sents the lowest subjective scores in the 5 lux environment compared to those in the other environments regardless of 

the varying bit rate. When the ambient illumination increases (i.e., from 5 lux to 52 lux; to 116 lux; and to 192 lux), 

the subjective scores given by the viewers also increase. The sensitivity of HVS towards perceiving finer details in a 

3D video sequence changes according to the amount of light the eyes capture from the viewing environment and the 

iris’ adaptation of its size corresponding to this amount.  

While viewing the video sequence in a dark room, almost all the light captured by the eyes is originated at the 

device used to display the content. In this situation, the iris enlarges to let more light in that comes from the device. 

Thus, the details in the content become more distinguishable to the eye. When the video clip is viewed in a bright 

environment, the eyes capture the ambient light from the display device, light bulbs, windows, reflections of the 
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walls and objects in the room, etc. In this situation, the size of the iris decreases to control the amount of light taken 

in, because excessive light energy would harm the eye. Hence, only a small amount of light is captured from the de-

vice. As a result, the fine details in the content are less visible to the HVS.  
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Fig. 1. The (a) Interview (b) Chess (c) Windmill (d) Ice (e) Advertisement (f) Eagle sequence bit rate versus MOS under different 

ambient illumination conditions (5, 52, 116, and 192 lux) based on video quality perception assessments 

3.2.2. Depth Perception Results 

The depth perception assessment results are shown in Fig. 2. As can be realized from the results, the video sequences 

viewed under different ambient illumination conditions have demonstrated a decreasing depth perception rating pat-

tern as the amount of light in the environment increases across all of the bit rate range. Indeed, the perceived depth 

presents the highest subjective scores in the 5 lux environment when compared with those in the other environments 

regardless of the varying bit rate. When the ambient illumination increases (i.e., from 5 lux to 52 lux; to 116 lux; and 

to 192 lux), the subjective scores given by the viewers reduce. These results reveal that the lower the amount of am-

bient illumination in the 3D video access and consumption environment the better the depth perception is. This can 

be explained as follows: the sensitivity of HVS towards detecting sharpness, shadows, reflections, contrast, etc in the 

visual content, all of which are essential cues to enhance depth perception of 3D video, decreases due to the increase 

in the ambient illumination  [13]. 
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Fig. 2. The (a) Interview (b) Chess (c) Windmill (d) Ice (e) Advertisement (f) Eagle sequence bit rate versus MOS under different 

ambient illumination conditions (5, 52, 116, and 192 lux) based on depth perception assessments  

4. USER PERCEPTION MODEL 

In this section, the video quality and depth perception models developed based on the video quality and depth percep-

tion results of the subjective experiments are discussed in the following sub-section.  

4.1. Video Quality Perception Model  

In order to model video quality perception of users towards 3D video contents viewed under different ambient illu-

mination conditions, the mathematical function of every curve in Fig. 1 was determined, as also shown in the figure. 

It has been observed from the mathematical functions that they all present the following pattern: 

RBPMOS  )ln(  (4) 

where, P and R are two constants and B is the bit rate. We proposed to devise generic functions for P and R using 

content related contexts that can affect their values and ambient illumination context. In this way, it is possible to 

derive a video quality perception model for predicting the 3D video quality perception for a given video sequence 

encoded at B bit rate and consumed under a known ambient illumination condition.  

The “Experimental values” column of Table I presents the values of P and R that approximate the experimental 

results shown in Fig. 1. As seen from the table, when the ambient illumination changes the values of the constants 

also differ. For example, the P values for the Interview sequence are 0.203, 0.194, 0.175, and 0.166 when it is viewed 

under 5, 52, 116, and 192 lux ambient illumination conditions, respectively. Similar observations can also be made 
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for the R values. Accordingly, it can be argued that one of the contexts that the values of the constants depend on is 

ambient illumination. As can also be observed from the table, the values of the constants are video content dependant 

for the same ambient illumination condition. For instance, the Chess and Windmill sequences have 0.279 and 0.380 

values, respectively, for the 5 lux ambient illumination condition. Similar findings can also be observed for the R 

values. This clearly indicates that P and R are not only ambient illumination dependant but also they depend on con-

tent related contexts. The content related contexts affecting the values of the constants (i.e., P and R) will be ex-

plained in the following section. 

TABLE I 
EXPERIMENTAL VALUES OF P AND R AND THEIR PREDICTED VALUES USING THE VIDEO QUALITY PERCEPTION MODEL  

FOR THE VIDEO SEQUENCES USED IN THE SUBJECTIVE EXPERIMENTS 

Sequence 
Ambient 

Illumination 
Experimental Predicted

P R P R 

Interview 

5 0.203 3.216 0.301 2.566 
52 0.194 3.341 0.262 2.962 
116 0.175 3.600 0.221 3.274 
192 0.166 3.725 0.202 3.502 

Chess 

5 0.279 2.258 0.302 2.292 
52 0.227 2.786 0.236 2.781 
116 0.226 2.976 0.224 3.041 
192 0.174 3.475 0.213 3.171 

Windmill 

5 0.380 1.393 0.415 1.116 
52 0.354 1.943 0.404 1.308 
116 0.343 2.171 0.391 1.611 
192 0.331 2.210 0.366 1.798 

Ice 

5 0.371 1.783 0.484 0.653 
52 0.353 1.868 0.462 0.979 
116 0.305 1.944 0.391 1.482 
192 0.280 2.077 0.356 1.774 

Advertisement 

5 0.328 1.106 0.192 1.991 
52 0.287 1.928 0.187 2.134 
116 0.223 2.094 0.172 2.261 
192 0.165 2.193 0.165 2.508 

Eagle 

5 0.414 0.876 0.334 1.923 
52 0.361 1.500 0.306 2.262 
116 0.336 2.214 0.288 2.426 
192 0.314 2.564 0.280 2.517 

 

4.1.1. Content Related Contexts of the Video Quality Perception Model 

Observing that the values of the constants alter for video sequences presenting different motion activity characteristics 

a metric to measure the motion activity of a color texture sequence is proposed. This proposed metric is discussed in 

the following sub-section.  

 

4.1.2. Motion 
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The motion activity of a color texture sequence is measured using its motion intensity in this paper. The optical flow 

algorithm of the pyramidal implementation of the Lucas and Kanade technique  [14] is used for motion intensity 

measurements in the paper. Motion information is not evenly distributed to all parts of an image. Therefore, the prom-

inent points which can be taken into account in the optical flow measurements should be determined. Shi and Tomasi 

algorithm  [15] which selects the corners of the objects as the prominent feature points is used in the optical flow 

measurements in this research study. After the prominent points are selected, they are tracked from frame to frame in 

a video sequence by the pyramidal implementation of the Lucas and Kanade technique  [14]. Let MV(x, y) be the mo-

tion vector of a feature point having x and y direction components, the motion intensity of a frame of a sequence is 

calculated as: 





NoP

d
iid yxMVi

1

),()(  (5)

where, Π(i) is the motion intensity of the ith frame of a sequence. d and NoP are a feature point and the number of fea-

ture points in the frame, respectively. MVd (xi, yi) is the motion vector of the ith frame at the feature point d. The mo-

tion intensity is measured in terms of pixels. It should also be noted that the motion intensity of a frame is directly 

proportional to spatial resolution of the frame and inversely proportional to the temporal resolution of the video se-

quence. Therefore, the normalized average motion intensity over a given video sequence can be calculated as follows: 

S

F
i

M i 






NoF

)(
NoF

1  
(6)

 
where, M is the motion value in a color texture sequence. NoF is the number of frames in the sequence. F and S are 

the frame rate and spatial resolutions of the sequence, respectively. 

Using this metric, the motion, M, of each sequence used in the subjective assessments was measured. Resulting 

M values are shown in Table II. As can be realized from Table I and II, the values of the constants, P and R, are dif-

ferent for the video sequences having different motion values, Ms. However, even though the motion values, Ms, of 

the Ice and Eagle sequences are very similar (i.e., 0.219 and 0.207), the values of the constants are different at the 

same ambient illumination conditions. This clearly shows that motion is not the only content related context that has 

an effect on the values of the constants, P and R.  

It has been envisaged that structural feature is another content related factor that has an influence on determin-
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ing the values. The reason why structural feature is also important for perceiving 3D video quality so as for determin-

ing the constant values is that the HVS is sensitive to extract structural information from a scene rather than the errors 

in the scene  [9]. Accordingly, the HVS perceives the structural distortion in the objects and background in 3D video 

contents as quality related visual artifacts. The change in the 3D video quality perception under different ambient il-

lumination conditions corresponds to the visibility of visual artifacts in those conditions. The following sub-section 

elaborates how the structural feature is measured in this paper. 

4.1.3. Structural Feature 

Contours, which characterize the boundaries of the objects in video frames, are used to represent the structural feature

of the visual scenes in this paper. Canny edge detection algorithm  [16] was used to determine the contours in the 

frames without suppressing the pixels that are considered as edges by setting them to 1  [17]. To develop the structural 

feature algorithm, the number of pixels that are set to 1 is counted in every frame of a video sequence  [18]  [19]. The 

total value is then normalized using the NoF and S to provide consistency across different video sequences as follows: 

S

i
C i

NoF

)(
NoF

1




 
(7) 

 

where, C is the measured structural feature value in a color texture sequence, δ(i) is the number of edge pixels in the 

ith frame of the sequence. The measured structural feature, C, values of the video sequences are also illustrated in Ta-

ble II.  

TABLE II 
THE M AND C VALUES OF THE VIDEO SEQUENCES USED IN THE SUBJECTIVE EXPERIMENTS 

  quences M C 
Interview 0.088 0.120 

Chess 0.312 0.141 
Windmill 0.182 0.129 

Ice 0.219 0.009 
Advertisement 0.493 0.134 

Eagle 0.207 0.083 

4.1.4. Generic Functions of the Constants of the Video Quality Perception Model 

In order to devise generic functions for P and R using the contextual factors affecting their values, the graphs repre-

senting the M vs P, C vs P, I vs P, M vs R, C vs R, and I vs R were plotted, as presented in Fig. 3. Then, curve fitting 

functions  [20] were utilized to approximate the relationships between all of these pairs, as also illustrated in the figure. 

The constants in the functions are shown with a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, r, s, t, u, v, y, z, ψ, λ, ,Φ, ¥, П, θ, 
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з, α, β, φ, א, ч, and ω in the figure. As the third step, a set of numerical constants were introduced to each of the func-

tions to calculate the P and R values that best correlate with the P and R values obtained experimentally. Accordingly, 

the functions of P and R are devised as follows: 
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Subsequently, the functions of P and R were integrated together to devise their generic functions as follows: 

               )()()( IfCfMfP ;  )()()( IgCgMgR   (9) 
 

Using (9), P and R are predicted and the predicted values are shown in the “Predicted values” column of Table I. 
 

 
 

                                    (a)                              (b) 
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                                       (c) (d) 

 
                                        (e)                                (f) 

Fig. 3. P versus (a) M (b) C (c) I; and R versus (d) M (e) C (f) I 

4.2. Depth Perception Model 

In order to devise the depth perception model, the mathematical functions of the curves in Fig. 2 are determined. It 

has been observed from these functions that they also present the pattern introduced in (4). Thus, (4) is used to devise 

depth perception model in this research study, yet with a slight modification. The modification is that V and Y are as-

signed as constants for depth perception modeling instead of P and R of (4), respectively. The V and Y values of the 

curves in Fig. 2 are presented in the “Experimental values” column of Table III. As can be observed from the table, 

one of the contexts affecting the values of the constants is ambient illumination since the values of the constants 

change for different ambient illumination conditions for the video sequences. As can also be seen from the table, the 

values of the constants are different even for the similar ambient illumination conditions. Therefore, it is concluded 

that ambient illumination is not only the context influencing the values of the constants, and thus the content related 

contexts are similarly noted to have an effect on determining the constant values, as discussed in the following sub-

section. 
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TABLE III 
EXPERIMENTAL VALUES OF V AND Y AND THEIR PREDICTED VALUES USING THE DEPTH PERCEPTION MODEL  

FOR THE VIDEO SEQUENCES USED IN THE SUBJECTIVE EXPERIMENTS 

Sequence 
Ambient 

Illumination 
Experimental Predicted 
V Y V Y 

Interview 

5 0.032 4.038 0.032 4.054 
52 0.036 3.938 0.035 4.036 

116 0.041 3.780 0.036 4.031 
192 0.048 3.495 0.037 4.027 

Chess 

5 0.042 4.536 0.055 4.321 
52 0.053 4.338 0.062 4.117 

116 0.059 4.150 0.063 4.049 
192 0.062 4.002 0.064 4.007 

Windmill 

5 0.120 4.040 0.212 3.251 
52 0.126 3.855 0.238 3.105 

116 0.135 3.665 0.241 3.056 
192 0.141 3.480 0.242 3.026 

Ice 

5 0.252 2.913 0.297 2.618 
52 0.258 2.688 0.301 2.538 

116 0.261 2.520 0.303 2.512 
192 0.276 2.463 0.304 2.495 

Advertisement 

5 0.052 4.473 0.196 3.533 
52 0.066 4.353 0.221 3.137 

116 0.082 3.855 0.222 3.005 
192 0.134 3.400 0.223 2.922 

Eagle 

5 0.320 2.563 0.266 2.972 
52 0.356 2.248 0.299 2.653 

116 0.387 1.766 0.302 2.546 
192 0.413 1.429 0.303 2.280 

4.2.1. Content Related Contexts of the Depth Perception Model 

Luminance contrast  [21]  [22] is envisaged as a depth perception related factor that has an effect on the values. It is an 

important factor, as it presents varying levels of contrast between the objects and background in a 3D visual scene, 

which indicate different depth levels. When the contrast in a color texture sequence increases, the depth perception al-

so increases  [23]. The metric discussed in the next sub-section is proposed for the luminance contrast measurements 

in this research work.  

4.2.2. Luminance Contrast 

The luminance contrast of a color texture sequence is measured using Median Absolute Deviation (MAD) in this pa-

per. MAD is a measure of statistical dispersion of a set of data  [24], and is utilized to measure the contrast in a color 

texture sequence because it computes the distance from the median not the difference from the mean of the data. Thus, 

it is more suitable to measure the luminance contrast rather than using other statistical methods  [25]  [26].The MAD of 

a frame of a color texture sequence is measured as follows:  
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where, MAD (i) is the luminance contrast of the ith frame of a color texture sequence. t represents each luminance val-

ue and med (t) is the median of the luminance values in the frame. The MAD computed for each frame is then inte-

grated together to determine the MAD across the color texture sequences. The calculated MADs are normalized with 

NoF and S for providing consistent measurement among different video sequences. Accordingly, the metric presented 

below is devised for luminance contrast measurements in color texture sequences: 

S

iMAD
L i

NoF

)(
NoF

1

  (11) 

where, L is the luminance contrast of a color texture sequence.  

The luminance contrast, L, values of the sequences utilized in the subjective assessments are also presented in Table 

IV. As can be observed from Tables III and IV, even though the Ice and Windmill sequences have similar luminance 

contrast, L, values (i.e., 35.328 and 32.808), they have different V and Y values. Therefore, it is clear that luminance 

contrast is not the only depth perception related factor that has an effect on computing the V and Y values.  

Depth variation is considered as another depth perception related factor for determining the V and Y values. Each 

pixel in the depth map frame of color plus depth representation format of 3D video contents has an associated pixel in 

the color texture frame. The pixels in the depth map determine the distance of the associated color texture pixel to the 

viewer. They take grey values ranging from 0 to 255. 0 represents the furthest away pixel from the viewer, while 255 

corresponds to the closest pixel to the viewer in a 3D scene during presentation  [27]. The variation in the pixel depth 

values in the depth maps corresponds to depth variation in this paper. Depth variation is another important depth per-

ception related factor since the pixel depth values aid in perceiving the distance to the objects and background of a 3D 

video content by the HVS. Depth variation of a depth map is measured with the proposed metric discussed in the fol-

lowing sub-section. 

4.2.3. Depth Variance 

Depth variation is measured by applying standard deviation  [25] to the pixel depth values in depth map frames in this 

research study. The reason behind using the standard deviation for the measurement of depth variation is that it is the 

measure of the dispersion or variability of a set of values around the mean or arithmetic average of that set  [27]. Thus, 

if the depth map has high variability of the pixel depth values in the depth map frames, the standard deviation of the 
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pixel depth values is expected to be high. The standard deviation in a depth map frame is measured as follows: 

S

iix

iSD
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k
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 1

2))()((
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(12)

where, SD(i) is the standard deviation of the ith frame of a depth map frame. x and μ are the pixel depth values and 

mean of the pixel depth values in the depth map frame, respectively. S is the number of pixels in the depth map frame 

(i.e., width × height of the depth map frame), which is equal to the S of the associated color texture frame. Subse-

quently, the average depth variation over a given depth map sequence, D, can be calculated as follows: 

NoF

)(
NoF

1

 i

iSD
D  (13) 

where, NoF is the number of frames in the depth map sequence which is the same as the number of frames in the cor-

responding color texture sequence. The depth variances of the video sequences used in the subjective assessments 

were measured using (13), and the measurement results were also presented in Table IV. 

TABLE IV 
THE L AND D VALUES OF THE VIDEO SEQUENCES USED IN THE SUBJECTIVE EXPERIMENTS 

Sequences L D 
Interview 29.545 1380.38 

Chess 49.009 3916.73 
Windmill 32.808 5122.35 

Ice 35.328 3385.02 
Advertisement 54.237 5044.35 

Eagle 69.121 3377.64 

4.2.4. Generic Functions of the Constants of the Depth Perception Model 

Similar to the video perception modeling, the graphs representing the M vs V, C vs V, I vs V, M vs Y, C vs Y, and I vs 

Y were plotted, as presented in Fig. 4, to devise generic functions for V and Y using the contextual factors influencing 

depth perception of users. The curve fitting functions  [20] used to approximate the relationships between all of these 

pairs are also shown in the figure. The constants in the functions are presented with в, ϑ, , , , ħ, Я, , , , , ℘, 

, , , , , , , ℓ, , , , , , , , , , , , , , , , , ,	 ,	 ,and in the figure. Subsequently, a set of 

numerical constants were introduced to each of the functions to calculate the predicted V and Y values that best corre-

late with the V and Y values obtained experimentally. In this way, the following functions are devised:   
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Similar to the video perception model, the functions of V and Y were integrated together to devise the generic func-

tions as follows: 

                             )()()( IhDhLhV  ,  )()()( IqDqLqY   (15) 
 

Using (15), V and Y are predicted and the predicted values are presented in the “Predicted values” column of Table 

III. 

 
 

                                   (a)    (b) 

 
 

                                    (c) (d) 
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                                    (e) (f) 

Fig. 4. V versus (a) L (b) D (c) I; and Y versus (d) L (e) D (f) I 

5. RESULTS AND DISCUSSION 

The performance assessment results of the developed video quality and depth perception models are discussed in this 

section for the video sequences used in the subjective experiments (i.e., Interview, Chess, Windmill, Ice, Advertise-

ment, and Eagle) and for two additional video sequences (i.e., Butterfly and Couples). The additional test sequences 

were utilized in the experiments to verify the validity of the proposed models on different sequences other than those 

used during the training and development phases. The M, C, L, and D values of the additional video sequences are 

presented in Table V. Moreover, their predicted values of P and R are computed using (9) as shown in Table VI.  

 
TABLE V 

THE M, C, L, AND D VALUES OF THE BUTTERFLY AND COUPLES SEQUENCES  
Sequence M C L D 
Butterlfy 0.117 0.020 2.394 2120.45 
Couples 0.110 0.039 1.777 1891.69 

 

TABLE VI 
PREDICTED VALUES OF P AND R USING THE VIDEO QUALITY PERCEPTION MODEL  

FOR THE BUTTERFLY AND COUPLES SEQUENCES 

Sequence 
Ambient 

Illumination 
Predicted 

P R 

Butterfly 

5 0.418 1.743 
52 0.381 2.108 
116 0.351 2.371 
192 0.289 2.812 

Couples 

5 0.397 1.921 
52 0.371 2.186 
116 0.366 2.261 
192 0.331 2.558 

Similar to the Interview, Chess, Windmill, Ice, Advertisement, and Eagle sequences, subjective experiments 

were conducted for the Butterfly and Couples sequences using the experimental set-up discussed in Section 3.1. The 
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MOS results of the video quality related subjective experiments and those predicted using the developed video quali-

ty perception model are illustrated for all of the sequences in Table VII. Absolute error percentages (i.e., |Error| (%)) 

between the experimental and predicted MOS results for the 3D video sequences are also presented in the table. As 

can be observed from the results, the absolute error percentages vary for different 3D video sequences. An average 

absolute error percentage of 2.47% can be achieved using the model for predicting video quality perception of users 

considering ambient illumination context of the viewing environment.  

The results presented in the table also show that the absolute error percentages are different for changing ambi-

ent illumination conditions. The average absolute error percentage results (i.e., the average |Error| (%)) calculated for 

each ambient illumination condition using the Interview, Chess, Windmill, Ice, Advertisement, Eagle, Butterfly, and 

Couples sequences are shown in Table VIII. These results indicate that the average deviation of the predicted MOS 

score is less than 3.19% when the proposed video quality perception model is used. 

To further demonstrate the efficiency of the proposed video quality perception model, the average absolute er-

ror percentages dedicated to the additional video sequences (i.e., Butterfly and Couples) considering each of the am-

bient illumination condition are presented in a separate table (Table IX). As observed from this table, a maximum of 

1.51% average absolute error percentage can be achieved using the video quality perception model. 

 

TABLE VII 
THE MOS RESULTS OF THE VIDEO QUALITY RELATED SUBJECTIVE EXPERIMENTS AND VIDEO QUALITY PERCEPTION MODEL 

Ambient 
Illumination (lux) 

Bit Rate 
(kbps) S

eq
. Experimental 

MOS 
Predicted 

MOS 
|Error| 

(%) S
eq

 Experimental 
MOS 

Predicted 
MOS 

|Error| 
(%) 

5 

512 

In
te

rv
ie

w
 

4.500 4.443 1.27 

Ic
e 

3.562 3.672 4.49 
768 4.562 4.565 0.07 3.625 3.868 8.08 
1024 4.625 4.652 0.58 3.687 4.007 10.04 
1536 4.687 4.774 1.86 3.875 4.203 9.75 

52 

512 4.625 4.596 0.63 3.687 3.861 4.72 
768 4.687 4.702 0.32 3.812 4.048 6.19 
1024 4.750 4.777 0.57 3.937 4.181 6.20 
1536 4.812 4.884 1.50 4.125 4.368 5.89 

116 

512 4.687 4.658 0.62 3.875 3.921 1.19 
768 4.750 4.749 0.02 4.062 4.079 0.42 
1024 4.812 4.805 0.14 4.187 4.192 0.12 
1536 4.875 4.902 0.55 4.375 4.370 0.11 

192 

512 4.812 4.762 1.04 4.125 4.044 1.96 
768 4.875 4.843 0.66 4.387 4.188 4.54 
1024 4.937 4.902 0.71 4.562 4.291 5.94 
1536 5.000 4.983 0.34 4.750 4.335 8.74 
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5 

512 

C
h

es
s 

4.000 4.175 4.38 

A
dv

er
ti

se
m

en
t 

2.875 3.158 9.84 
768 4.125 4.298 4.19 3.062 3.246 6.01 
1024 4.187 4.385 4.73 3.187 3.301 3.58 
1536 4.312 4.507 4.52 3.312 3.379 2.02 

52 
 

512 4.187 4.253 1.58 3.125 3.300 5.60 
768 4.312 4.348 0.83 3.312 3.376 1.93 
1024 4.375 4.416 0.94 3.437 3.430 0.20 
1536 4.437 4.512 1.69 3.625 3.505 3.31 

116 
 

512 4.375 4.438 1.44 3.437 3.383 1.57 
768 4.500 4.529 0.64 3.625 3.453 4.74 
1024 4.562 4.593 0.68 3.812 3.503 8.11 
1536 4.625 4.684 1.28 3.937 3.572 9.27 

192 

512 4.562 4.499 1.38 3.812 3.587 5.90 
768 4.625 4.585 0.86 4.062 3.654 10.04 
1024 4.687 4.647 0.85 4.250 3.701 12.92 
1536 4.750 4.733 0.36 4.250 3.768 11.34 

5 

512 

W
in

dm
il

l 

3.687 3.734 1.27 

E
ag

le
 

4.000 4.006 0.15 
768 3.875 3.902 0.70 4.187 4.141 1.10 
1024 3.937 4.022 2.16 4.375 4.237 3.15 
1536 4.000 4.190 4.75 4.437 4.373 1.44 

52 

512 3.875 3.838 0.95 4.187 4.171 0.38 
768 4.062 4.001 1.50 4.250 4.294 1.04 
1024 4.187 4.118 1.65 4.437 4.382 1.24 
1536 4.312 4.281 0.72 4.562 4.506 1.23 

116 

512 4.125 4.160 0.85 4.312 4.222 2.09 
768 4.312 4.318 0.14 4.375 4.339 0.82 
1024 4.437 4.431 0.14 4.562 4.422 3.07 
1536 4.562 4.589 0.59 4.687 4.538 3.18 

192 

512 4.437 4.290 3.31 4.375 4.263 2.56 
768 4.562 4.438 2.72 4.437 4.377 1.35 
1024 4.687 4.543 3.07 4.625 4.457 3.63 
1536 4.750 4.692 1.22 4.812 4.571 5.01 

5 

512 

B
u

tte
rf

ly
 

4.375 4.350 0.57 

C
ou

pl
es

 

4.437 4.397 0.90 
768 4.562 4.519 0.94 4.500 4.558 1.29 
1024 4.625 4.640 0.32 4.562 4.672 2.41 
1536 4.687 4.809 2.60 4.687 4.833 3.11 

52 

512 4.437 4.484 1.06 4.562 4.501 1.34 
768 4.625 4.638 0.28 4.625 4.651 0.56 
1024 4.687 4.748 1.30 4.687 4.757 1.49 
1536 4.750 4.903 3.22 4.812 4.907 1.97 

116 

512 4.500 4.561 1.36 4.625 4.544 1.75
768 4.687 4.702 0.32 4.750 4.692 1.22 
1024 4.750 4.803 1.12 4.812 4.797 0.31 
1536 4.812 4.945 2.76 4.937 4.945 0.16 

192 

512 4.583 4.614 0.68 4.812 4.623 3.93 
768 4.750 4.731 0.40 4.875 4.757 2.42 
1024 4.812 4.815 0.06 4.937 4.852 1.72 
1536 4.875 4.932 1.17 4.937 4.986 0.99 
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TABLE VIII 
THE AVERAGE |ERROR| % FOR THE AMBIENT ILLUMINATION CONDITIONS CONSIDERING  

THE VIDEO QUALITY PERCEPTION MODEL FOR THE INTERVIEW, CHESS, WINDMILL, ICE,  
ADVERTISEMENT, EAGLE, BUTTERFLY, AND COUPLES SEQUENCES  

Ambient 
Illumination (lux) 

Average 
|Error| (%) 

5 3.19 
52 1.94 

116 1.58 
192 3.18 

 
TABLE IX 

THE AVERAGE |ERROR| % FOR THE AMBIENT ILLUMINATION CONDITIONS CONSIDERING  
THE VIDEO QUALITY PERCEPTION MODEL FOR THE BUTTERFLY AND COUPLES SEQUENCES 

Ambient 
Illumination (lux) 

Average 
|Error| (%) 

5 1.51 
52 1.40 

116 1.12 
192 1.42 

In order to show the performance assessment results of the depth perception model for the Butterfly and Cou-

ples sequences, the predicted values of V and Y are calculated for these sequences using (15), and the calculated val-

ues are presented in Table X.  

TABLE X 
PREDICTED VALUES OF V AND Y USING THE DEPTH PERCEPTION MODEL 

FOR THE BUTTERFLY AND COUPLES SEQUENCES 

Sequence 
Ambient 

Illumination 
Predicted 

V Y 

Butterfly 

5 0.264 2.977 
52 0.271 2.783 
116 0.273 2.782 
192 0.274 2.781 

Couples 

5 0.151 3.289 
52 0.16 3.168 
116 0.162 2.956 
192 0.163 2.735 

The MOS results of the depth perception related subjective experiments and those predicted by the developed 

depth perception model, as well as the absolute error percentages between the experimental and predicted MOS re-

sults are shown in Table XI for the Interview, Chess, Windmill, Ice, Advertisement, Eagle, Butterfly, and Couples se-

quences. As can be observed from these results, similar to the video quality perception related findings, the absolute 

error percentages change for each of the 3D video sequences in the table. An average absolute error percentage of 

2.82% can be attained using the depth perception model.  
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TABLE XI 
THE MOS RESULTS OF THE DEPTH RELATED SUBJECTIVE EXPERIMENTS AND DEPTH PERCEPTION MODEL 

Ambient 
Illumination (lux) 

Bit Rate 
(kbps) S

eq
. Experimental 

MOS 
Predicted 

MOS 
|Error|

(%) S
eq

. Experimental 
MOS 

Predicted 
MOS 

|Error| 
(%) 

5 

512 

In
te

rv
ie

w
 

4.250 4.253 1.07 

Ic
e 

4.625 4.471 3.33 
768 4.312 4.266 0.86 4.687 4.591 2.05 
1024 4.312 4.275 0.56 4.687 4.676 0.23 
1536 4.312 4.288 3.13 4.687 4.796 2.33 

52 

512 4.125 4.254 1.93 4.500 4.415 1.89 
768 4.187 4.268 2.17 4.562 4.537 0.55 
1024 4.187 4.278 2.51 4.562 4.624 1.36 
1536 4.187 4.292 6.38 4.562 4.746 4.03 

116 

512 4.000 4.255 5.12 4.437 4.402 0.79 
768 4.062 4.270 5.39 4.500 4.524 0.53 
1024 4.062 4.281 5.74 4.500 4.612 2.49 
1536 4.062 4.295 11.67 4.500 4.734 5.20 

192 

512 3.812 4.257 10.25 4.375 4.391 0.37 
768 3.875 4.272 10.53 4.437 4.514 1.74 
1024 3.875 4.283 10.92 4.437 4.602 3.72 
1536 3.875 4.298 6.36 4.437 4.725 6.49 

5 

512 

C
h

es
s 

4.875 4.565 3.88 

A
dv

er
tis

em
en

t 

4.875 4.755 2.46 
768 4.875 4.686 3.55 4.875 4.835 0.82 
1024 4.875 4.702 4.31 4.937 4.891 0.93 
1536 4.937 4.724 3.93 4.937 4.907 0.61 

52 

512 4.687 4.503 3.39 4.625 4.515 2.38 
768 4.687 4.528 3.01 4.625 4.605 0.43 
1024 4.687 4.546 3.77 4.750 4.668 1.73 
1536 4.750 4.571 1.29 4.750 4.758 0.17 

116 

512 4.500 4.442 0.73 4.375 4.389 0.32 
768 4.500 4.467 0.33 4.437 4.479 0.95 
1024 4.500 4.485 1.57 4.437 4.543 2.39 
1536 4.583 4.511 0.25 4.437 4.633 4.42 

192 

512 4.375 4.364 0.25 4.250 4.313 1.48 
768 4.375 4.386 0.62 4.250 4.403 3.60 
1024 4.375 4.402 0.29 4.375 4.467 2.10 
1536 4.437 4.424 4.97 4.375 4.557 4.16 

5 

512 

W
in

dm
ill

 

4.812 4.573 3.18 

E
ag

le
 

4.750 4.631 2.51 
768 4.812 4.659 3.18 4.812 4.739 1.52 
1024 4.875 4.720 2.65 4.875 4.815 1.23 
1536 4.937 4.806 0.78 4.937 4.873 1.30

52 

512 4.625 4.589 1.32 4.687 4.518 3.61 
768 4.625 4.686 1.43 4.750 4.639 2.34 
1024 4.687 4.754 2.13 4.812 4.725 1.81 
1536 4.750 4.851 2.75 4.812 4.846 0.71 

116 

512 4.437 4.559 4.94 4.562 4.429 2.92 
768 4.437 4.656 5.02 4.562 4.552 0.22 
1024 4.500 4.726 5.72 4.625 4.639 0.30 
1536 4.562 4.823 6.71 4.625 4.761 2.94 

192 

512 4.250 4.535 9.01 4.375 4.170 4.69 
768 4.250 4.633 9.07 4.437 4.292 3.27 
1024 4.312 4.703 9.74 4.500 4.380 2.67 
1536 4.375 4.801 5.17 4.562 4.503 1.29 



 
 

 

24

24

5 

512 

B
u

tte
rf

ly
 

4.875 4.623 2.95 

C
ou

pl
es

 

4.250 4.231 0.45 
768 4.875 4.731 2.63 4.312 4.292 0.46 
1024 4.937 4.807 0.49 4.375 4.335 0.91 
1536 4.937 4.913 6.04 4.500 4.397 2.29 

52 

512 4.750 4.463 3.73 4.062 4.166 2.56
768 4.750 4.573 3.35 4.125 4.231 2.57 
1024 4.812 4.651 1.06 4.187 4.276 2.13 
1536 4.812 4.761 2.75 4.312 4.342 0.70 

116 

512 4.612 4.485 0.35 3.875 3.966 2.35 
768 4.612 4.596 0.28 3.937 4.032 2.41 
1024 4.687 4.674 2.07 4.000 4.078 1.95 
1536 4.687 4.784 1.19 4.125 4.144 0.46 

192 

512 4.437 4.490 3.70 3.625 3.752 3.50 
768 4.437 4.601 4.00 3.750 3.818 1.81 
1024 4.500 4.680 6.47 3.812 3.865 1.39 
1536 4.500 4.791 1.07 3.937 3.931 0.15 

 
The results of the table present that the absolute error percentages are also different for each of the varying am-

bient illumination conditions. The average absolute error percentage results computed for each ambient illumination 

condition are shown in Table XII. The results in this table show that the average deviation of the predicted MOS 

score is less than 4.21% when the proposed depth perception model is used. 

Similar to the video quality perception model, absolute average error percentages are calculated for the Butter-

fly and Couples sequences (i.e., the additional video sequences) to emphasize the efficiency of the depth perception 

model as shown in Table XIII. As can be noted from the table, a maximum of 2.76% absolute error percentage can be 

attained by utilizing the depth perception model.  

TABLE XII 
THE AVERAGE |ERROR| % FOR THE AMBIENT ILLUMINATION CONDITIONS CONSIDERING  

THE DEPTH PERCEPTION MODEL FOR THE INTERVIEW, CHESS, WINDMILL, ICE,  
ADVERTISEMENT, EAGLE, BUTTERFLY, AND COUPLES SEQUENCES  

Ambient 
Illumination (lux) 

Average 
|Error| (%) 

5 2.08 
52 2.25 

116 2.74 
192 4.21 
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TABLE XIII 
THE AVERAGE |ERROR| % FOR THE AMBIENT ILLUMINATION CONDITIONS CONSIDERING  

THE DEPTH PERCEPTION MODEL FOR THE BUTTERFLY AND COUPLES SEQUENCES  

Ambient 
Illumination (lux) 

Average 
|Error| (%) 

5 2.03 
52 2.36 

116 1.38 
192 2.76 

6. CONCLUSION 

Video quality and depth perception of users towards 3D video viewed under different ambient illumination con-

ditions are modeled in this paper. Motion and structural feature of color texture sequence of 3D video are used 

as content related contexts while modeling video quality perception of users. Luminance contrast of color tex-

ture and depth variation of depth map sequences act as primary content related contexts in the depth perception 

model. The results demonstrate that both the video quality and depth perception models can be efficiently uti-

lized to predict the user perception of video quality and depth of 3D video. The video quality and depth percep-

tion models proposed in this research study can accelerate the advancement of user centric 3D video related 

technologies into the 3D consumer market, which in turn will ensure enhanced video quality and depth percep-

tion of users, particularly in user centric media access and consumption scenarios. 
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