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Abstract 

Although much research indicates positive safety climate is associated with reduced safety risk, 

we argue this association is not universal and may even be reversed in some contexts. 

Specifically, we argue that positive safety climate can be associated with increased safety risk 

when there is pressure to prioritize production over safety and where workers have some 

detachment from the consequences of their actions, such as found in engineering design work. 

We used two indicators of safety risk: use of heuristics at the individual level and design 

complexity at the design team level. Using experience sampling data (N = 165, 42 design teams, 

k = 5752 observations), we found design engineers’ perceptions of team positive safety climate 

were associated with a less use of heuristics when engineers were not working to deadlines, but  

more use of heuristics when engineers were working to deadlines. Independent ratings were 

obtained of 31 teams’ designs of offshore oil and gas platforms (N = 121). For teams that worked 

infrequently to deadlines, positive team safety climate was associated with less design 

complexity. For teams that worked frequently to deadlines, positive team safety climate was 

associated with more design complexity. 

(193 words) 
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Safety climate is a specific facet of social climate in organizations that relates to perceptions of 

the priority of safety and policies, procedures, practices, systems, management actions, and 

norms of behavior that support safety (Flin et al., 2000; Zohar, 2000; Zohar and Luria, 2005). A 

positive safety climate reflects perceptions that, within a given social group, safe acts are prioritized 

and organizational processes support safety. A negative safety climate reflects safety as a low priority 

and organizational processes that do not support or even conflict with safety. Meta-analyses have 

indicated that positive safety climate is usually associated with safety-related outcomes (e.g., 

lower accident rates, compliance with safety procedures, Beus et al., 2010; Christian et al., 2009; 

Clarke, 2006, 2010). Rollenhagen (2010) has questioned whether positive safety climate is 

always related to safer outcomes. Accordingly, we investigate whether there are conditions in 

which a positive safety climate is associated with actions that may increase, rather than decrease, 

risks to safety. Thereby, we justify further scrutiny of the contexts within which safety climate 

has its effects (cf. Johns, 2006).  

Noting that the intensification of work often makes safety goals subservient to production 

goals (Collinson, 1999; Nichols, 1997), in the present study, we examine whether salient 

production goals (specifically working to deadlines) weaken or even reverse the relationship 

between safety climate and safety related outcomes. Moreover, we focus on a context within 

which workers are remote from the consequences of their decisions. Contextual factors may 

activate alternative theoretical mechanisms to those usually associated with certain phenomena 

(cf. Pawson and Manzano-Santaella, 2012) through influencing cognitive, social and system-

wide processes (cf. Greasley and Edwards, 2015; Edwards, 2005; Ram et al., 2015). In the 

present study, we consider intensification and distance from the consequences of decisions to be 

two contextual features that may act as boundary conditions on the relationship between positive 
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safety climate and reduced safety risk. Identifying boundary conditions illuminates processes 

through which safety climate may have an influence on safety (cf. Gray and Cooper, 2010).  

We contribute to the literature in two ways. First, we illustrate how to derive research 

questions that can lead to theoretical refinement by bringing together: a) notions of the broader 

context of work (the omnibus context, Johns, 2006) and b) aspects of the specific and time 

varying context (the discrete context, Johns). Second and more specifically, we question whether 

received views of how safety climate has its effects need to be supplemented with other 

theoretical lenses at the individual and group levels and whether research on safety climate needs 

to take into account ‘tipping’ points in which any beneficial effects of safety climate are eroded 

or reversed. 

Safety climate and safe working 

Safety climate is usually construed in respect of personal or co-workers’ safety (Flin et al., 2000). 

Safety climate can also reflect prioritization of safety for others (e.g., patient safety, Singer et al., 

2007). Safety climate can exist at multiple levels, for example at the level of the organization or 

work team (Zohar and Luria, 2005). In the present study, we focus on safety climate at the team 

level. For example, positive team safety climate would reflect team members’ perceptions that 

the team as a whole valued and prioritized safety (Zohar and Luria, 2005). Therefore, safety 

climate reflects a referent shift model (Chan, 1998) that is comprised of an aggregation of 

individual perceptions of the social group. Safety climate is thought to influence safety because the 

extent to which we believe others value certain actions, especially powerful others such as 

supervisors and senior managers, exerts a strong influence on intentions and motivations to perform 

those actions (Azjen, 1991; Neal and Griffin, 2006).  
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In spite of numerous studies demonstrating associations between safety climate and 

positive safety outcomes (Beus et al., 2010; Christian et al., 2009; Clarke, 2006, 2010), it cannot 

be assumed that safety climate will influence safety in all contexts. This is because most 

evidence for the benefits of positive safety climate is derived from situations in which there are 

direct personal consequences for unsafe actions (e.g. Flin et al., 2000; Flin et al., 2006) or there 

is close contact with victims of unsafe acts (e.g., other organizational members {Neal and 

Griffin, 2006; Zohar, 2000} or patients {Hofmann and Mark, 2006}). However, in some jobs 

(e.g., policy makers, senior managers in large multinationals), workers make decisions 

concerning others’ safety yet there is a less of a direct link to personal outcomes for the decision 

maker, weaker feelings of culpability, and no close contact with potential victims. Design 

engineering is an example of a job in which workers make safety-related decisions yet the 

decision-makers are relatively detached from the consequences of those decisions. We argue that 

design engineering is a context within which a positive safety climate may not always exert a 

strong influence on decisions that reduce safety-related risk. 

Design engineering, safety climate, time pressures, and increased risk 

Teams of design engineers are tasked with the design of installations (e.g., offshore oil 

and gas platforms), facilities (e.g., factories, offices), and products (e.g., medical devices). 

Complex design engineering decisions requires sustained commitment of cognitive resources, in 

the form of allocation of attention, effortful and detailed information search, recall and use of 

complex and multiple pieces of information. Complex design engineering decisions also involve 

gathering and elaborating relevant knowledge about the likely future behavior of both those who 

construct or manufacture the design (henceforth constructors) and end users that operate the 

design (Decker, 2005; Konda et al., 1992). However, engineers may not fully understand how 



Safety climate and working to deadlines 6 

constructors and end users behave (Busby and Hibberd, 2002) and there often is little or no 

contact between engineers and those that bear the safety risks of engineers’ actions (Dekker, 

2005; Toole and Gambatese, 2008). This may lead to design engineers building inaccurate or 

incomplete models of constructors’ and end users’ behavior, leading to decisions that may 

increase risk to others and which then may become embedded in the design (Busby and Hibberd, 

2002; Sharit, 1997). 

With group norms that encourage and support adherence to safety procedures, a positive 

safety climate represents one way in which design engineers may obtain social cues from other 

workers on appropriate decisions and safety performance (McLain, 2014). Thus it might be 

expected that, in some circumstances, positive safety climate may be associated with design 

decisions that reduce risk embedded in designs. In particular, because the intellectual nature and 

complexity of engineering tasks may require greater use of cognitive resources for detailed, 

deliberative, and effortful information processing (Hofmann and Frese, 2011), we expect, that in 

some circumstances, positive team safety climate will be associated with social cues that 

encourage design engineers to direct cognitive resources to processing information about safety. 

In such circumstances, engineers may work through design problems in a manner which 

minimizes risk to constructors and end users. 

However, design engineers have to make trade-offs between attaining productivity goals 

(e.g., project completion deadlines) and safety (Flin et al., 2000; Zohar, 2000; Zohar and Luria, 

2005). Working to deadlines in particular is likely to lead to prioritization and motivation to 

attain productivity goals (Nichols, 1997; Wallace and Chen, 2006). We expect working to 

deadlines to be one situation in which positive team safety climate may be associated with a 

greater incidence of decisions that increase risk in engineering designs. Because deadlines make 
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production targets salient, design engineers direct their attention and other cognitive resources 

away from safety concerns and towards attaining production targets (e.g., completion of design), 

thus impeding safety performance (Yechiam and Hochman, 2013). For example, directing 

cognitive resources to reaching productivity goals may lead to failures or delays in detecting 

safety related problems in design engineering (Zapf et al., 1992). Moreover, working to 

deadlines increases the costs of devoting time to optimizing safety in designs. Therefore, in order 

to attain productivity goals, working to deadlines may encourage design engineers to take short-

cuts in making safety related decisions (Hofmann and Stetzer, 1996) or devote less effort to 

searching for safer alternatives (Barton and Sutcliffe, 2009). 

The diversion of cognitive resources from safety goals to productivity goals in response 

to deadlines implies that engineers may make more decisions with potential to increase risk as 

engineers devote less attention to working through the safety-related implications of their 

decisions (Hollnagel, 2011). However, we expect that engineers working to deadlines and who 

perceive that there is a positive team safety climate will make more decisions with potential to 

increase risk than engineers working to deadlines but who perceive a negative team safety 

climate. Because engineers’ perceptions of safety climate are based on what others value and 

prioritize (Zohar and Luria, 2005), safety climate provides cues on how others are expected to 

behave: Where a design engineer perceives a positive team safety climate, design engineers may 

expect co-workers to prioritize safety goals, so allowing the design engineer further latitude to 

prioritize production goals when working to deadlines. Social compensation (Williams and 

Karau, 1991) provides an explanation for this expectation. 

Williams and Karau (1991) advanced the social compensation hypothesis to explain how 

expectations of group members may influence an individuals’ effort on group tasks. The social 
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compensation hypothesis predicts that people will devote more effort on collective tasks if they 

expect their co-workers to perform poorly on a task (Williams and Karau, 1991; see also Karau 

and Williams, 1993). In relation to safety in design engineering, our expectation is that design 

engineers with salient production goals will engage less effort in processing information about 

safety when they perceive co-workers as reliable, willing, and able to detect and correct safety 

related-problems embedded in designs: That is when engineers perceive they are working in 

teams with positive safety climate. Indeed, there is evidence that workers are less likely to voice 

safety concerns if they believe co-workers to be competent in dealing with safety-related issues 

(Barton and Sutcliffe, 2009). Moreover, people have a tendency to overestimate the future 

incidence of probable events (reliable, willing, and able colleagues will attend to safety-related 

problems) and underestimate the future incidence of improbable events (design error will cause 

an accident) (Mezias and Starbuck, 2008). 

We expect downwards social compensation through engaging less effort to process 

safety-related information to become manifest only when engineers are working to deadlines. 

This is because productivity goals become more salient relative to safety goals when working to 

deadlines (Hofmann and Stetzer, 1996; Wallace and Chen, 2006).  

Design engineering involves complex cognitive processes (Decker, 2005; Konda et al., 

1992). Withdraw of effort from complex decision making can involve the use of heuristic 

processing that provides short-cuts that enable engineers: to pay less attention to safety related 

issues; to rapidly fill information gaps and make predictions about the behavior of constructors 

and end users; and to substitute for detailed working through of engineering problems 

(Hollnagel, 2011; Milkmann et al., 2009). Heuristics enable rapid and effortless processing of 

information but are necessarily less accurate than detailed processing of information, subject to 
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biases, and can potentially ignore or misrepresent critical information for the safe construction or 

operation of equipment and installations (cf. Hoffman and Frese, 2011; Medin and Bazerman, 

1999; Milkmann et al., 2009). Heuristic processing may be, therefore, considered detrimental for 

safe engineering design. For example, heuristics that enable assumptions about missing data may 

be less safe than more time consuming attempts to obtain accurate and verifiable data. Heuristics 

are not inherently risky and do not inevitably lead constructors and end users to be exposed to 

hazards. Rather, heuristic processing can potentially increase risk.  

Because deadlines make productivity goals salient, we expect design engineers to divert 

cognitive resources away from safety related information (e.g. pay less attention to safety-related 

information). Directing cognitive resources away from safety-related information in turn may 

lead to heuristic processing that becomes manifest as design decisions that may potentially 

embed into designs risks to the safety of constructors and end users: 

Hypothesis 1: There is an interaction between working to deadlines and design engineers’ 

perception of safety climate, such that: a) design engineers use heuristics least frequently 

when they are not working to deadlines and design engineers perceive positive team safety 

climate; b) design engineers use heuristics most frequently when design engineers are 

working to deadlines and they perceive positive team safety climate. 

Our first hypothesis is at the individual level of analysis. It may be possible for similar 

relationships between safety climate, working to deadlines, and risk to hold also at the team 

level. If homologous relationships are found to operate at individual and team levels of analysis, 

the breadth of the explanation is enhanced and there is support for a multilevel model that 

accounts for phenomena at individual and team levels (Klein et al., 1994). 
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Group polarization may explain how team level safety climate and working to deadlines 

interact at a team-level to predict risk (Isenberg, 1986). Group polarization occurs when 

collective decisions and actions become more extreme than individuals’ initial positions 

following discussions between team members that hold similar views. For example, a group of 

workers that might be willing to bear moderate risk individually may collectively be prepared to 

bear high levels of risk following discussion of risk. Group polarization may occur because 

individuals wish to be seen in a favorable light by the rest of the group so shift their views in the 

direction perceived to be valued by the group and/or because group discussion exposes 

individuals to a wider range of arguments in favor of a specific position (Isenberg, 1986).  

Exposure to arguments in favor of a position may exert the strongest effects of group 

polarization (Isenberg, 1986). Zhu (2013) notes that during group discussion, individuals tend to 

emphasize information and arguments consistent with their own position and that individuals 

may become more confident in their views if position-consistent arguments prevail. When teams 

with a positive safety climate have team members that are infrequently working to few deadlines, 

we would expect that group polarization effects may serve to make collective action by teams 

with a positive safety climate more cautious. This is because workers will use fewer design 

heuristics (Hypothesis 1) and engage in more effortful and detailed information processing. 

Consequently, team members will be frequently exposed to many co-workers’ safety-related 

justifications for not using design heuristics and instead engaging in careful and deliberative 

design decision making. In turn, this will shift team members’ intentions toward deliberative 

decision making and concern for safety. Therefore, collective actions will be consistent with a 

cautious approach. 
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However, when teams with a positive safety climate have team members frequently 

working to deadlines, we would expect collective action to become risky. This is because many 

designers are frequently using design heuristics (Hypothesis 1) and will make arguments to 

justify use of heuristics and why it is safe to do so. In turn, other team members may be 

influenced by the prevalence of such arguments, begin to favor using design heuristics instead of 

detailed information processing, and therefore collectively leading to group polarization in an 

apparently risky direction. 

We took design complexity as an indicator of safety-related risk at the group-level. 

Design complexity is an output of collective design team action and designs that are optimized 

for safety must avoid unnecessary complexity in the processes of construction and operation 

(Pahl et al., 2007; Rollenhagen, 2010): Complex designs contain risk to constructors and end 

users because there are more opportunities for unpredicted events and failures to occur (HSE, 

2003; Perrow, 1984; Sammarco, 2005; Sharit, 2000). Moreover, complex operating processes 

draw attention away from safety concerns (Rollenhagen, 2010). Achieving simplicity in design 

may be time consuming for at least three reasons. First, the design team has to co-ordinate 

individual members to follow detailed procedures to optimize jointly safety as well as other 

processes to ensure that the equipment and systems can be constructed economically and are able 

to cope with the operating environment (Pahl et al., 2007). Second, clients may desire the overall 

design to incorporate innovative technologies with additional functionalities. The incorporation 

of new technologies without creating complexity may be difficult in practice (Sha, 2001). Third, 

achieving simplicity in design requires engineers to have in-depth understanding of the design 

problem and the ability to organize detailed design concepts into coherent super-ordinate 

categories (Maeda, 2006). In practice, engineers rely on time-consuming and detailed approaches 
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to gain this understanding and develop meaningful categories (Stolterman, 2008). As with 

heuristic based design decisions, design complexity does not inevitably lead constructors and end 

users to be exposed to risk: Rather design complexity increases the potential for increased risk. 

Hypothesis 2: There is an interaction between team working to deadlines and design team 

safety climate, such that: a) design complexity is lowest for teams who work to deadlines 

infrequently and have positive safety climates and b) design complexity is higher for teams 

who frequently work to deadlines and have positive safety climates. 

In relation to John’s (2006) differentiation of omnibus and discrete context, the critical 

features of the omnibus context are the distance between design engineers and constructors and 

end users, unclear safety performance standards, and little direct feedback on safety 

performance. The critical and time varying feature of the discrete context is the incidence of 

working to deadlines. For Hypothesis 1, we expect safety climate to influence use of design 

heuristics through a process of social compensation. For Hypothesis 2, the process is group 

polarization and the outcome is design complexity. 

Method 

We used a sample of design engineers working in teams on major construction projects for 

offshore oil and gas extraction or onshore industrial facilities (e.g., pharmaceuticals factories). 

We evaluated levels of team safety climate by questionnaire. Subsequently, we assessed working 

to deadlines and decisions with potential to increase risk using an experience sampling 

methodology (ESM). We used experience sampling because of the dynamic and experiential 

nature of the phenomena under study and because design engineers may easily forget when they 

have made decisions that could have implications for the safety of constructors and end users 
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(Bolger et al., 2003). Design complexity was assessed at the end of design projects by ratings 

given by two independent engineers with expertise in safety. 

Sample and procedure 

Participants were design engineers from three separate companies working on designing offshore oil 

and gas extraction installations (two companies, designing primarily for North Sea installations, one 

based in the UK and one in the Netherlands) or onshore industrial facilities (one company, and based 

in the UK). These organizations experience strong regulatory, advisory, and industry influences on 

developing positive safety climates. For example, designs require external approval by regulators, 

and many organizations employ consultants to pre-check designs before seeking regulatory approval. 

Managers with overall responsibility for health, safety, and environment often occupy senior 

positions and typically are independent of the human resource management function. In the North 

Sea sector and UK construction, the relevant regulatory and professional bodies publish guidance on 

establishing positive safety climates. Many of the design engineers have no direct experience 

working on construction sites or offshore and the design engineers have very little, if any, contact 

with those that build or operate the installations and facilities.1  

To recruit participants, we first asked senior managers’ in participating companies for access 

to design teams working on projects that would be ongoing for some months after data collection had 

started. We then recruited design engineers by making presentations on the research to design teams. 

Participants from the offshore sector worked in Aberdeen, London, and Dordrecht. Other participants 

worked in the English Midlands. The sample consisted of 165 design engineers (average age = 42.71 

years, SD = 13.43, 94% male) in 42 teams. 

Data were collected using personal digital assistants (PDAs). The PDAs administered 

questionnaires four times daily over the working week (Monday to Friday). The PDAs’ alarm 
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signaled when the questionnaire was to be completed (10.00 a.m., 12.00 p.m., 2.00 p.m., 4.00 p.m.). 

Participants were asked to complete the questionnaires over two, three, or four separate weeks, 

depending on the length of the design project the participants’ teams were working on. Participants 

were asked to complete questionnaires four to seven weeks apart. Some participants were re-assigned 

to other projects after the first, second, or third phases of the study, and so their data were only 

available for earlier phases. Participants provided data on 5780 occasions. After accounting for 

known absences (scheduled leave, etc.), the average compliance rate was 63% (range 25% to 75%).  

In the week preceding the first round of data collection with PDAs, participants completed a 

questionnaire. The questionnaire assessed team safety climate and demographics. All questionnaires 

were returned before the start of data collection with PDAs. 

Participants’ data were included in the analyses only if two or more responses were available 

from each team, resulting in the exclusion of 22 participants’ data. Twenty participants provided data 

on less than 25% of available occasions during the ESM stage of the study. Participants with 

compliance rates of less than 25% were excluded from the analyses (as recommended by Stone et al., 

2003). Comparisons between those included in the final sample and those excluded revealed that: the 

non-compliant group had less positive safety climate scores than those included and those excluded 

because of group sizes (p < .01). There were no other differences on questionnaire or ESM variables 

between those included in the analyses and those excluded (p > .05). 

After completion of design projects, we were allowed access to design documentation for 31 

out of the 42 design teams (all offshore projects). On the basis of this documentation, we were able to 

estimate design complexity. 
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ESM measures 

Design heuristics.     We assessed the frequency with which participants used heuristics with four 

items assessing the use of risky protocols in design work (Daniels et al., 2008). Designers were 

asked to state whether they had used any of these protocols during the previous hour (1 = yes, 0 = 

no). The items indicate assumptions about how the design will operate. The items were: ‘In the 

past hour, have you made assumptions about missing pieces of data?’ (potential risk to 

constructor and end user safety comes from incorrect or unstated assumptions); ‘In the past hour, 

have you reused a previous design that has not been updated?’ (potential risk to constructor and 

end user safety comes from not adapting design to current build and operating contexts);  ‘In the 

past hour, have you applied solutions that have worked well in the past?’ (potential risk to 

constructor and end user safety comes from not adapting solution to current build and operating 

contexts); and ‘In the past hour, have you added a design feature fit-for-purpose, but others need 

to decide if it’s correct?’ (potential risk to constructor and end user safety comes from others 

being unaware that the design feature needs to be checked).  

It is the potential non-alignment of assumptions with actual build or operating processes 

that increases the risk of accidents during construction or operation (Busby and Hibberd, 2002; 

Sharit, 1997). Items were summed to form an index (i.e. formative indicator) of design 

heuristics. 

Working to deadlines.     We assessed whether participants were working to deadlines by 

asking “Are you currently working to a strict deadline?”. Participants were given the options of 

“No”, “Yes but not imminent” and “Yes – imminent”. Responses were coded into two dummy 

variables, representing non-imminent and imminent deadlines (0 = no, 1 = yes but not imminent, 

yes – imminent) and imminent deadlines only (0 = no, 0 = yes but not imminent = 1, yes – 



Safety climate and working to deadlines 16 

imminent). To calculate a team-level variable for working to deadlines, each dummy variable 

was averaged over each individual’s observations and then individual averages were averaged 

for each team. This represents conceptualizing team-level working to deadlines as an additive 

composition model: In additive models, the extent of within-group variability is ‘of no 

theoretical or operational concern for composing the lower level construct to the higher level 

construct’ (Chan, 1998: 236).  

Questionnaire measure: Team safety climate for design.      

Team safety climate for design was assessed with five items rated on five-point scales (1= 

strongly disagree, 5= strongly agree). The items were developed to be appropriate to safety 

climate in design engineering, reflect an orientation to safety in design rather than personal 

safety, and reflect behaviors rather than espoused values (Zohar, 2010). The items were 

developed to be applicable to the design engineering context from items in other, validated safety 

climate scales (Cox and Cheyne, 2000; Zohar and Luria, 2005). Participants were asked to rate 

their design team. The items related to team support for safety (one item ‘We often give tips to 

each other to maximize the safety of our designs’), leader support for safety (one item ‘Our team 

leader suggests new ways of making our designs safer’), communication (one item ‘We are 

strongly encouraged to report unsafe design features) and leader priority for safety (two items 

‘Our team leader shows determination to ensure our designs are safe’ and ‘Our team leader 

behaves in a way that displays commitment to safe designs’). 

Multilevel confirmatory factor analysis indicated a single factor could explain the 

relationships between the items (Comparative Fit Index = 1.00, Root Mean Square Error of 

Approximation {RMSEA} = 0.01). All free factor loadings were significant and in the 
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hypothesized direction (within-level loadings, range 0.98 – 1.43, p < .001, between-level 

loadings range 0.89 – 1.07, p < .06). 

Items were summed and divided by 5 to give a score for individual perceptions of 

climate. Team averages provided an estimate of team safety climate. At the individual level, the 

scale had acceptable reliability (α = .81). There was sufficient within-team agreement to justify 

using an aggregate score to represent team safety climate (ICC1 = .19; ICC2 = .48; median rwg = 

.92, .86 and .83 under null distributions with random, slight positive and moderate positive skew, 

see LeBreton and Senter, 2008). 

Design team measures: Design complexity.  

After completion of the projects, we were allowed access to design documentation for 31 teams 

working on offshore engineering projects. To evaluate risk embedded in design, an experienced 

engineer specializing in safety in offshore platforms examined the design documentation 

(SECOND AUTHOR) and rated the complexity of each design. Five items assessed design 

complexity: The extent to which the design was novel; required a complex installation method or 

conversion; was simple (reversed coded); had low inclusion of new equipment onto an existing 

installation (reversed coded); and included self-contained modules on decks (reversed coded, 

self-containment limits interactions between different parts of the system).  

Items were rated on a 7-point scale (1= not at all, 7= very much so). Ratings were made 

blind to data on safety climate and working to deadlines. The internal consistency was acceptable 

for the engineer’s ratings (α = .86). A principal components analysis indicated the items could be 

explained by a single component accounting for 65% of the variance (eigenvalue = 3.25, 

eigenvalue for second factor = 1.26). A second experienced safety engineer examined the 

designs from 19 of the 31 teams to establish inter-rater agreement (intra-class correlation = .90). 
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This second engineer was independent of the research team and also blind to data on safety 

climate and working to deadlines. 

Analyses 

To examine Hypothesis 1, we used multilevel regression implemented with the HLM-7 program 

(Raudenbush et al., 2011). We fitted a three-level model to the data, in which hourly responses 

from participants (level 1) were nested within individuals (level 2), nested within teams (level 3). 

Because we assessed the frequency with which design engineers used design heuristics, we used 

multilevel Poisson regression, which is appropriate for such data (Raudenbush et al., 2011). We 

centered individual perceptions of safety climate at each design team mean for two reasons. By 

centering at the group mean, we ensured that the analyses do not confound individual level 

effects as stipulated in Hypothesis 1 with group level effects (Raudenbush and Bryk 2002). The 

dummy variables representing working to deadlines were centered at person-means to ensure that 

hourly effects were not confounded by between-person differences in working to deadlines. The 

interaction stated in Hypothesis 1 was examined by regressing individual perceptions of safety 

climate on the regression slopes of the working to deadline dummies (Raudenbush and Bryk 

2002). In estimating the model, we allowed the relationships between working to deadlines and 

design heuristics to vary between teams and individuals and the relationship between perceived 

safety climate and design heuristics to vary between teams. Doing so meant the analyses were 

able to account for potential variability between individuals and groups in the relationships 

between variables. Because we allowed variability in regression coefficients, the regression 

coefficients reported represent the average across individuals and teams as appropriate. We 

reported estimates of the variance accounted for in the use of design heuristics and estimates of 
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the variance accounted by perceived safety climate in the regression coefficients of working to 

deadlines on design heuristics (see Aguinis et al., 2013). 

Hypothesis 2 was examined using single-level moderated regression with team level data. 

Prior to calculating the cross-products of team safety climate and the team average for each 

working to deadline dummy, variables were standardized (Aiken and West, 1991). We entered 

variables in three steps. In the first step, we entered the main effects. In the second step, we 

entered the interaction between the mean of all deadlines for the design team and team level 

safety climate. In the third step, we entered the interaction between the mean of imminent 

deadlines and team level safety climate. Because design complexity had a bimodal distribution, 

we used bias corrected bootstrapping to account for non-normality in estimating the standard 

errors. 

Results 

INSERT TABLES 1 AND 2 HERE 

Table 1 shows the means, standard deviations, internal consistencies, and correlations. Table 2 

shows the results of the multilevel regression analyses that examined Hypothesis 1. The model 

accounted for an estimated 41% of variance in the use of design heuristics. There was no 

significant main effect of perceived safety climate on design heuristics (B = 0.12, ns). There was 

a significant main effect of all deadlines on design heuristics in (B = 0.42, p < .01). The 

relationship between all deadlines and design heuristics was moderated by perceived safety 

climate (B = 0.33, p < .05). Perceived safety climate explained 30% of the variation in the 

relationship between all deadlines and design heuristics. An analysis of simple slopes (Preacher 

et al., 2006) indicated that the slope of deadlines and design heuristics became significant at 0.55 

standard deviations below the mean for perceived safety climate (B = 0.22, p = .05). The relationship 
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between deadlines and design heuristics become more positive at more positive values of perceived 

safety climate. Figure 1 illustrates the form of the interaction. 

INSERT FIGURE 1 HERE 

The results are consistent with Hypothesis 1. In any given hour when a design engineer 

has no deadlines to work to, Figure 1 shows that the design engineer will tend to use fewer 

design heuristics if the engineer perceives his/her team to have a positive safety climate 

compared to those engineers who perceive their team to have negative safety climates. Figure 1 

also shows that the association between working to deadlines and design heuristics is stronger at 

higher levels of perceived positive safety climate, with positive perceived safety climate being 

associated with the greatest use of design heuristics when designers work to deadlines. 

There was no relationship between imminent deadlines and design heuristics (B = 0.11, 

ns). Neither did perceived safety climate moderate this relationship (B = -0.19, ns).  

INSERT TABLE3 AND FIGURE 2 HERE 

Table 3 shows the moderated regression that examined Hypothesis 2. At Step 2 in the 

analysis, there was a significant interaction between team safety climate and the mean level of all 

hourly deadlines in each team (B = 0.60, p < .05). At Step 3, the interactions between team safety 

climate and mean levels of all deadlines and imminent deadlines were not significant (B = 0.46, 

B = 0.21, ns). The non-significant results at Step 3 are most likely due to shared variance 

between the two interaction terms (r = 0.82, p < .01). Therefore, we calculated simple slopes for 

the significant interaction at Step 2 (Preacher et al., 2006).  Average level of working to all 

deadlines was positively associated with design complexity at 0.89 standard deviations above the 

mean for safety climate (B = 0.87, p = .05). There was no association between working to all 

deadlines and design complexity for any lower values of safety climate. Figure 2 illustrates the 
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form of the interaction. Overall, the form of the interaction indicates that teams with positive safety 

climates produce less complex designs when teams work to deadlines infrequently, but more 

complex designs when teams work to deadlines frequently. These results support Hypothesis 2. For 

teams with negative safety climate, there is no relationship between design complexity and working 

to deadlines.2 

Discussion 

In the present study, we examined design engineers who have responsibility for others’ 

safety through their decisions, yet do not directly bear the safety related consequences of their 

decisions. Investigating this context allowed us to examine circumstances within which 

potentially safety adverse social and cognitive processes may surface and thus provide a more 

contextually grounded analysis of positive safety climate, incorporating alternative and 

contextually specific theoretical mechanisms and outcomes (Edwards, 2005; Pawson and 

Manzano-Santaella, 2012). In the omnibus context of design engineering (Johns, 2006), we 

found that working to deadlines could be a discrete and dynamic contextual factor that may 

activate social compensation processes at the individual level and group polarization processes at 

the group level leading to elevated risk to constructors and end users through more frequent use 

of decision heuristics by individual designers (Hypothesis 1) and greater complexity in teams’ 

designs (Hypothesis 2). As such, in the omnibus context of design work, working to deadlines 

may be a discrete contextual factor that operates as a tipping point, reversing the relationship 

between positive safety climate and reduced safety risk to one in which positive safety climate is 

associated with increased safety risk. 



Safety climate and working to deadlines 22 

Implications for research 

In general terms, the present study suggests that research on safety climate may benefit from 

paying close attention to a range of theoretical processes that may become activated in different 

contexts. In the present study, we focused on social psychological processes. The scope of 

enquiry may be extended to other include cognitive, social, or institutional processes. 

Evidence indicates that relationships between positive safety climate and safe behavior to 

others can be non-linear (Hofmann & Mark, 2006; Katz-Navon et al., 2005; Leroy et al., 2012; 

Naveh et al., 2005). In some instances, different aspects of positive safety climate and leaders’ 

positive safety behavior can be mutually reinforcing to achieve synergistic effects on safety 

outcomes (LeRoy et al., 2012; Naveh et al., 2005). In other circumstances, positive safety 

climate appears to buffer potentially adverse effects on safety outcomes of complex work 

(Hoffman & Mark, 2006) and too much or too little detail in safety procedures (Katz-Navon et 

al., 2005). In the present study, we found that positive safety climate accentuated the relationship 

between salient production goals and factors that may increase risk to constructors and end users. 

There may be other factors that add further nuances to our findings. 

At the individual level, there are several factors that may serve to alter social 

compensation effects and may also alter the combined effects of safety climate and production 

goals on risk. Downwards social compensation may be less likely where there are incentives to 

perform well (Shepperd, 1993), for tasks that are perceived to be attractive (Zaccaro, 1984), and 

for individual tasks that are unique and visible (Harkins and Petty, 1982; Karau and Williams, 

1993). Therefore, it could be suggested that the following may moderate the interaction between 

safety climate and production goals on risk: the presence of performance criteria that are clear 

and unique for each individual and for each team; the visibility of safety performance to others; 
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clear contingencies between safety performance and individual and collective rewards; 

compatibility of safety contingent rewards with other rewards (see also Mattson et al., 2014); and 

attractive and intrinsically motivating tasks. 

The distance between design engineers on the one hand and constructors and end users on 

the other reduces the perceived impact design engineers have on those that bear the safety-related 

risk of designers’ decisions (Latané, 1981) and accountability to those that bear the safety-related 

risk (Sosik et al., 1997). However, workers who identify with those that bear the safety-related 

consequences of their actions may be less likely to prioritize production goals over safety goals 

because they have more empathy for those that bear the consequences (Hogg and Terry, 2000): 

In such a circumstance, we might expect positive safety climate and identification with others 

jointly to reduce risk (Ford and Tetrick, 2008). 

Leadership is a central element of safety climate (Flin et al., 2000) and may often 

reinforce other elements of safety climate (LeRoy et al., 2012; Naveh et al., 2005). However, 

where team members are dependent on their team leader for safety performance (cf. Eisenbeiss 

and Boerner, 2013), then positive safety climate and salient production goals may have a 

stronger relationship with risk compared to situations in which teams are not dependent on the 

team leader for safety performance. 

Given that time pressures may also prompt the unintentional and unconscious use of 

decision heuristics (Dutton, 1993), the pattern of responses observed at the individual level in the 

present study may reflect habitual responses to production goals. Designers in teams with 

positive safety climate may learn that other team members address safety concerns, and so taking 

decisions that have the potential to increase risk may become a habitual response to production 

goals. Such habits take time to learn (Schneider and Chein, 2003). Therefore, factors such as 
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familiarity with other team members and length of time working with the same team members on 

different projects may further accentuate the combined effects of safety climate and production 

goals on risk. 

Group polarization can occur where individuals are exposed to novel information 

consistent with the individuals’ position and where individuals wish to maintain favor with the 

rest of the group (Isenberg, 1986). Therefore, the group-level relationship between the 

combination of salient production goals and positive safety climate on risk might be weakened 

by factors that act against position consistent information and strong group identities, as might be 

the case in multidisciplinary teams or where team members are actively encouraged to seek 

advice from outside of their own team or professional discipline (Tamuz and Lewis, 2008). 

One important and discrete factor is the individuals’ moral or ethical beliefs concerning 

safety. As Rollenhagen (2010) notes, safety climate measures usually do not assess such moral or 

ethical beliefs. Consequently, any beneficial or adverse effects of safety climate may be 

secondary to the personal beliefs of workers concerning safety and workers’ latitude to enact 

those beliefs.  

Strengths and limitations  

The strengths of the current study are: the relatively large sample size and extended time frame 

for an ESM study in work settings (Ohly et al., 2010); the use of multiple methods, including 

independent raters; and examination of multiple levels of analysis.  

It may be argued that we did not assess safety outcomes directly, and therefore our results 

have no bearing on whether positive design team safety climate can have beneficial or adverse 

effects for constructors and end users. However, it would be virtually impossible and require 

considerable effort to attribute any incidents or accidents to a single designer’s decision making. 
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Moreover, incidents or accidents are also reliant on a confluence of adverse conditions to 

become realized (Reason, 1980) and may become corrected during verification by external 

regulators or during construction. Even so, we used measures which reflect risk (i.e., increases in 

the probability of harm rather than harm per se).  

Design complexity was our group level measure of safety-related risk and the complexity 

of a design may be influenced by requirements of the client articulated before or during the life 

of a design project. We believe client requirements are unlikely to confound our results for two 

reasons. First, for client requirements to confound our results, client requirements to create a 

complex design would need to influence working to deadlines and safety climate in two separate 

ways: a) Client requirements would need to simultaneously increase working to deadlines and 

positive safety climate; b) Client requirements would need to increase negative safety climate. It 

is unlikely that client requirements would increase two variables in tandem, and at the same time 

also increase one of those variables in the opposite direction. Second, client requirements to 

produce complex designs could increase job demands, including working to deadlines. However, 

the results supporting Hypothesis 2 were replicated in ancillary analyses that controlled for 

different measures of job demands2 and Table 1 shows there are no significant zero order 

relations between working to deadlines and design complexity. 

There are potential concerns over the use of single item measures of working to 

deadlines. In ESM, repeated sampling mitigates against problems of use of single item measures 

(Fisher and Lo, 2012). Moreover, clear item wording and short-time frame for assessment (one 

hour) is also likely to enhance recall and hence accuracy (Bolger et al., 2003). In addition to 

neutral wording, two factors are likely to neutralize social desirability biases on the four design 

decision items: self-administration of the items through PDAs and ethical requirements that the 
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research team informed the participants that their data would be confidential (Tourangeau and 

Yan, 2007). 

Two major questions concern the extent to which our results generalize beyond different 

operationalizations of safety climate and from design engineering in the construction sector to 

other sectors where workers have responsibility for others’ safety. Our Hypotheses were based 

on reasoning that safety climate provides cues on how others are expected to behave and so is 

based on ratings of the extent to which workers believe others in the team value safety (referent 

shift model). Climate can be operationalized as direct consensus (Chan, 1998), in which team 

members’ reports of their own values are aggregated. Given referent shift and direct consensus 

reflect different constructs and have differential relations with outcomes (Wallace et al., in 

press), it is probable that our results would not generalize to studies that use a direct consensus 

approach to safety climate. This is because a direct consensus approach may be grounded in the 

aggregation of personal ethical and moral values concerning the safety of others. However, we 

do expect that our results would generalize to situations in which safety climate is 

operationalized as a referent shift and with similar contextual characteristics to the present study. 

That is situations characterized by: ambiguity concerning individual contributions; unclear safety 

performance standards; and low priority of safety compared to other goals. 

Conclusion 

One implication of our findings therefore is that where decision makers are disconnected from 

those that bear the safety-related consequences of decisions and are subject to work 

intensification, improvements in safety climate alone may not be sufficient to minimize risk. 

Rather the processes that produce work intensification may also need to be addressed. Although 

the circumstances we investigated may be characterized by remote risks, major disasters have 
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been attributed to design decisions (Kinnersley and Roelen, 2007). Moreover, we have 

demonstrated that positive safety climate might have adverse effects on safety related outcomes 

at multiple levels of analysis (individual and team). This indicates that potential adverse 

consequences of positive safety climate may need to be addressed at multiple levels of analysis. 

Our analyses also indicate that it can be fruitful to consider the wider context of work, the 

specific context of work, and alternative theoretical processes that may operate in different 

contexts. 

 

Notes 

1 The observations about the context are based on interviews conducted with design 

engineers, design managers, clients, and regulators before the present study (N = 23) and 

contact with industry insiders throughout the course of the study, including visits to 

design organizations and manager and regulator presence on a project steering group. 

2 The Hypotheses were also examined after controlling for a range of other variables. 

Hypothesis 1 was examined in a fixed effects multilevel regression controlling for hourly 

problem-solving demands, job control, social support, job demands, the Big 5 personality 

traits, team level safety climate and safety climate strength, an index of team size, 

offshore versus onshore facilities, participants’ level of compliance with requests to 

provide data, time of day, day of week, and week of the study in which experience 

sampling data were provided. Hypothesis 2 was examined with controls at the team level 

for average levels of hourly problem-solving demands, average levels of job demands, 

team size, and team safety climate strength. The results in relation to Hypotheses 1 and 2 

were replicated. However, in the results with control variables in the test of Hypothesis 2, 
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there was a significant negative relationship between design complexity and working to 

non-imminent and imminent deadlines for teams with negative safety climate. Because 

this result occurred only for analyses with control variables included, it may warrant 

further investigation. However, this result does not undermine consistent support for the 

finding that teams with positive safety climate produce the least complex designs when 

working to deadlines infrequently and more complex designs when working to deadlines 

frequently. Details of these ancillary analyses, including the measures used, can be 

obtained from the first author on request. 
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Table 1 Means, standard deviations, internal consistencies, and correlations 

 M SD 1. 2. 3. 4. 5. 

1. Design heuristics 0.87 0.64 --     

2. Non-imminent deadlines  0.41 0.49 .17 --    

3. Imminent deadlines  0.23 0.42 .11 -.41** --   

4. Safety climate   3.90 0.89 .01 .01 .21** .81  

5. Design complexity 2.99 1.76 .06 .17 -.26 -.17 .86 

Note. Sample N = 165, sampled on 5752 occasions.  

Reliabilities (Cronbach’s alpha) shown on primary diagonal. For risk in design, correlations are at the team level from 31 design 

teams. All other correlations are between-person correlations. Experience sampling data are aggregated at person or team level as 

appropriate. 

* p < .05, ** p < .01.  
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Table 2 Multilevel regression on design heuristics 

Independent variables    B  t  Variance component 

ESM variables 

All deadlines     0.42  6.12** 

Imminent deadlines    0.11  1.68 

Person level variables    

Perceived safety climate   0.12  0.67 

Interactions    

Perceived safety climate     

X all deadlines    0.33  2.36* 

X imminent deadlines    -0.19  -1.19  

Person level variance components       

Intercept         0.69** 

All deadlines         0.13** 

Imminent deadlines        0.09** 

Team level variance components       

Intercept         0.05 

All deadlines         0.05** 

Imminent deadlines        0.04 

Perceived safety climate       0.04 

Safety climate * all deadlines       0.14  

Safety climate * imminent deadlines      0.35** 

Estimated variance accounted for in use of design heuristics   41%** 

Note. Sample N = 165, sampled on 5780 occasions. Results are from population average 

models. 

* p < .05, ** p < .01.
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Table 3 Regressions on design complexity 

       Step 1  Step 2  Step 3 

Independent variables     B  B   B          

Team safety climate (standardized)   -0.32  -0.09  -0.08 

All deadlines (standardized mean)   0.27  0.33  0.38 

Imminent deadlines (standardized mean)  -0.58  -0.47  -0.53 

Interactions 

Team safety climate X all deadlines     0.60*  0.46 

Team safety climate X imminent deadlines      0.21 

ΔR2       .11  .18**  .00 

Note. Sample N = 31 teams. 

* p < .05, ** p < .01.  
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Figure 1.  Interaction of between perceived safety climate and hourly deadlines on 

probability of risky design decisions. 

Note. To ease interpretation, the predicted incidence of design heuristics is based 

on coding working to deadlines in its raw metric (0 = not working to any 

deadlines, 1 = working to deadlines) 
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Figure 2.  Form of interaction of between team safety climate and hourly deadlines on risk 

embedded in design. 
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