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Abstract. 

 

Lake Hayq is a closed, freshwater basin on the eastern margin of the north-central 

highlands, Ethiopia. Using a sediment core extracted from the northern basin, this 

thesis aims to provide a high-resolution, detailed palaeolimnological reconstruction of 

changes to the environment and climate in the region since the late Pleistocene. A 

multi-proxy approach was applied, utilising diatoms, photosynthetic pigments and X-

ray fluorescence (XRF) spectrometry. Lithological and chronological analyses were 

also performed, as well as the development of a transfer function to model diatom-

inferred conductivity, and other quantitative analyses. 

 

Between ~ 15.6 – 15.1 cal kyr BP, Lake Hayq experienced a lowstand, synchronous 

with the timing of Heinrich Event 1 and an intense drought across East Africa. At ~ 

15.1 cal kyr BP a lake began to develop at the core site in response to wetter, more 

humid conditions, most likely caused by the reactivation of the African-Indian 

monsoonal circulation. This was abruptly ended however at ~ 14.7 cal kyr BP, as the 

climate shifted back towards aridity and Lake Hayq shallowed, in contrast to the 

majority of other East African lakes, which continued to refill. This most likely reflects 

changes to the Indian Ocean monsoon system caused by variability in the Atlantic 

Meridional Overturning Circulation at this time, in conjunction with site-specific 

mechanisms affecting the delivery of precipitation to Lake Hayq.  

 

At ~ 12.3 cal kyr BP the African Humid Period resumed over Lake Hayq and the lake 

refilled, reaching maximum water depth between ~ 12.0 – 10.0 cal kyr BP. The lake 

was dominated by planktonic diatom taxa and photosynthetic pigments indicate it 

was meromictic. Lake level gradually declined throughout the Holocene, culminating 

in the termination of the African Humid Period. A high-resolution study of the period 

tentatively suggests that climate ‘flickering’, in the form of oscillations between 

dominant diatom taxa, occurred in the build up to the major climatic shift. The 

termination spanned ~ 600 cal years between ~ 5.2 – 4.6 cal kyr BP. A lowstand 

occurred between ~ 3.9 – 2.2 cal kyr BP, during which the lake became occasionally 

subsaline. In the late Holocene, ~ 2.2 – 1.3 cal kyr BP, Lake Hayq became deep and 

fresh again, although there is evidence of lake level variability.  
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The palaeo-record from Lake Hayq indicates that it broadly experienced the same 

high-latitude, glacial-interglacial dynamics and sub-millennial shifts in climate found in 

other palaeolimnological records from across East Africa. The precise timing and 

expression of these climatic events is not always synchronous between Lake Hayq 

and other East African waterbodies however, most likely caused by local, site-

specific positive feedback mechanisms and variability in lake morphometry. This 

highlights the heterogeneous pattern of climate across the region and the 

significance of regional drivers.   

 

This palaeo-record, spanning the late Quaternary, will help bridge gaps in current 

knowledge and understanding of the underrepresented, climatically sensitive and 

vulnerable north Ethiopian highlands. This is vital for future climate change modelling 

and regional downscaling, and may also inform ethnographic-archaeological 

research in a region considered to be the ‘cradle of humankind’.  

 

Key words: Ethiopia, Lake Hayq, palaeolimnology, diatoms, photosynthetic 

pigments, conductivity, late Pleistocene, Holocene. 
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Chapter 1 

Introduction and Context. 

 

1.1 Research Context 

The Ethiopian climate system is a function of both global and regional climate-

environmental dynamics. The annual climate is characterised by strong rainfall 

seasonality as a result of the annual migration of the Intertropical Convergence Zone 

(ITCZ) and its effect on the prevailing winds. This has resulted in three rainfall 

seasons across Ethiopia (kiremt, bega and the belg), driven by the convergence of 

various air masses and monsoon systems (Nicholson 1996; Umer et al. 2004; 

Chenug et al. 2008). When superimposed over the large changes in elevation over 

short distances, a patchwork of seasonal rainfall patterns and microclimates can be 

identified across Ethiopia (Friis et al. 2011). Local climate variability is influenced 

further by soils, vegetation, albedo, lakes and other water bodies, jet streams and in 

recent centuries, anthropogenic activities such as land use change, settlement 

patterns and population growth (Nicholson 1996; Gasse 2000; Friis et al. 2011). 

 

Northern Ethiopia is perhaps the most climatically sensitive region of Ethiopia. 

Located at the northern most limit of the ITCZ, even a slight displacement in position, 

or weakening of the monsoon system, can cause the rains to fail. Numerous studies 

have demonstrated the relationship between East African rainfall variability, sea 

surface temperature (SST) anomalies in the Atlantic and Indian Oceans, the El Niño 

Southern Oscillation (ENSO) phenomenon and La Niña (Nicholson and Entekhabi 

1986; Ogallo 1987; Ropelewski and Halpert 1987; Farmer 1988; Nicholson and 

Selato 2000). As such, the region has a long history of meteorological drought. The 

impact of droughts on the population is amplified by the vulnerability of the people to 

climatic variability. Poverty, agricultural dependence, gender and class inequality, 

rapid population increase in the last fifty years, lack of resources and technology, as 

well as local and regional conflicts, have all weakened the ability of local populations 

to predict, plan for, mitigate and respond to droughts effectively. Famine often 

ensues, which in recent decades (notably the 1980s) has received unprecedented 

international attention and an outpouring of aid relief given the severe, life-
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threatening impact to the people affected (Clay and Holcomb 1986; BBC 2000; 

Meze-Hausken 2004; Hillier and Dempsey 2012).  

 

In order to understanding such climate variability and sensitivity, knowledge of long-

term changes in Ethiopia and East Africa on the millennial scale is necessary, with 

the use of palaeo-records. Archives from lake basins contain potentially excellent 

records of historical climatic and environmental change in the sediments 

accumulating at the bottom of them (Verschuren 2003). Continuous, high-resolution 

records can be found in climatically-sensitive lakes where the potential to respond to 

and record short-term fluctuations in climate is high and the signal is clear (Battarbee 

2000; Umer et al. 2004). However, sedimentary records can be affected by issues 

such as identifying a suitable lake site, chronology, interrupted sedimentation and 

the uncertain relationship between sedimentary climate-proxy indicators and primary 

climate variables (Verschuren 2003). As such, multi-proxy approaches are often 

preferable in reconstructions of historical climatic and environmental conditions. 

Such studies provide more data and enable lake-catchment system responses to 

climate, and other external forces such as anthropogenic activities, to be more 

thoroughly identified, and quantitatively and qualitatively inferred (Battarbee 2000). 

Given the distribution of climatically sensitive lakes from across subtropical, tropical 

and arid areas of Africa, a comprehensive understanding of regional climatic and 

environmental dynamics is now possible, including how African climate sensitivity is 

affected by global teleconnections on a range of time scales. 

 

On the millennial scale, the African climate is very sensitive to high-latitude glacial 

conditions and has been paced by Milankovitch cycles (~ 23.0 – 19.0 kyr) (Kutzbach 

and Street-Perrott 1985; Trauth et al. 2003; Gasse 2006). During the Last Glacial 

Maximum (~ 23.0 – 18.0 kyr BP), the most recent interval when Northern 

Hemisphere ice sheets were at their maximum extent, the majority of East African 

lakes were experiencing lowstands in response to reduced moisture and low 

temperatures (Gasse 2000; 2006; Ray and Adams 2001). During deglaciation (~ 

20.0 – 11.5 kyr BP) East Africa experienced wetter and warmer conditions, 

punctuated by abrupt transitions from arid to humid, and humid to arid phases. The 

first major shift towards aridity occurred between ~ 18.0 – 15.0 kyr BP in response to 

Heinrich Event 1 (Stager et al. 2011). Lakes across the region experienced declining 



3 

 

water levels and some records suggest water bodies may have completely have 

dried out (Gasse 1977; Peck et al. 2004; Williams et al. 2006; Marshall et al. 2009; 

2011; Stager et al. 2011). 

 

At ~ 15.0 kyr BP the African Humid Period began, following a change in precession 

during a period of low eccentricity (Barker et al. 2004; Garcin et al. 2009). The 

African-Indian monsoon system was rejuvenated and lake basins across the region 

refilled (deMenocal et al. 2000; Garcin et al. 2012; Tierney and deMenocal 2013). 

This was abruptly interrupted between ~ 12.8 – 11.6 kyr BP by the Younger Dryas 

Stadial, a high-latitude event caused by the release of freshwater from disintegrating 

ice-sheets into the North Atlantic. Widespread drought and aridity occurred across 

East Africa and again, lake levels declined (Nicholson 1982). Monsoon circulation 

resumed at the start of the Holocene and lakes deepened, and in some cases, 

overflowed (Gasse and Van Campo 1994; Umer et al. 2004; Benvenuti et al. 2013). 

The African Humid Period terminated around 5.5 kyr BP as a result of declining 

summer insolation, which saw the monsoon and associated rain belts shift 

southwards. This culminated in a severe drought at 4.2 kyr BP, which is now 

recognised as being global in nature, and is believed to have contributed to the 

collapse of the Ancient Egyptian Old Kingdom and several other ancient civilisations 

(Bell 1971; Street and Grove 1979; Cullen et al. 2000; deMenocal 2001; Walker et al. 

2012; Blanchet et al. 2013).  

 

The late Holocene saw several brief periods of increased humidity and in the last 

millennium East Africa experienced a drier climate during Europe’s Medieval Climatic 

Anomaly (~ 950 – 680 yr BP) and a relatively wet climate during the Little Ice Age (~ 

680 – 100 yr BP) (Jones et al. 2001; Nicholson et al. 2013). Overall, aridity increased 

as the climate transitioned towards present day conditions.  

 

The impact of long-term glacial-interglacial dynamics during the late Quaternary is 

therefore, relatively well understood. However, increasingly attention is being placed 

on examining short-term, sub-millennial shifts in climate (and sub-precessional 

cycles), as despite the breadth of high-quality, high-resolution data available, the 

nature of more abrupt shifts and changes to the palaeohydrology, cannot be 

adequately explained by orbital forcing alone (Verschuren et al. 2009). A series of 
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feedback mechanisms must have operated at various times and magnitudes in order 

to account for the non-linear climate sensitivity observed in some records. For 

example, the nature of the onset and termination of the African Humid Period are 

debated, with some records indicating a gradual transition and others an abrupt shift 

in climate (deMenocal et al. 2000; Fleitmann et al. 2003; Asrat et al. 2007; Kropelin 

et al. 2008). The extent to which local, non-linear mechanisms or ocean-atmosphere 

feedbacks affected the local expression of sub-millennial shifts is consequently 

unclear and in need of further research (deMenocal et al. 2000; Tierney and 

deMenocal 2013; deMenocal 2015; Shanahan et al. 2015). This is of critical 

importance for climate prediction, modelling and hindcasting under various 

scenarios, as increasingly public interest is on short-term, immediate changes in 

local climate within the next several decades, which may directly impact on them and 

their livelihoods. This will be particularly important for the climatically sensitive and 

vulnerable north of Ethiopia, which is often one of the first areas in the Horn of Africa 

to be affected by drought (Wolde-Mariam 1986). In addition, understanding abrupt 

shifts in climate and environment will also inform archaeological research (the study 

site, Lake Hayq, is approximately 540 km south of the ancient Kingdom of Aksum, an 

empire built on, and ultimately collapsing in response to changes in climate) and 

understanding of human evolution in this region, a possible location for the ‘cradle of 

humankind’, where some of the oldest hominid fossils have been found (Tattersall 

2003; Gibbons 2009). 

 

Palaeoclimatic and palaeoenvironmental research across Ethiopia has generally 

focused on the Rift Lakes in the Main Ethiopian Rift; the Ziway-Shala lakes basin 

(Grove et al. 1975; Gillespie et al. 1983; Benvenuti et al. 2002), Lakes Tilo (Telford 

and Lamb 1999; Lamb et al. 2000), Awassa (Telford et al. 1999) and Abhé in the 

Afar Depression (Gasse 1977), as well as peat records from the Bale Mountains, 

southern Ethiopia (Mohammed and Bonnefille 1998). It is only recently, in the last 

decade, that attention has been given to lake records from the northern highlands 

(the same is true of southern Ethiopian lake records such as Chew Bahir; Foerster et 

al. 2012). Near continuous sedimentary records have been collected from Lakes 

Ashenge (Marshall 2006; Marshall et al. 2009) and Tana (Lamb et al. 2007a; 

Marshall et al. 2011; Costa et al. 2014) and studied using multi-proxy approaches to 

assess climatic and environmental change and variability during the late Pleistocene 
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and Holocene. These records indicate that not only was the region affected by 

millennial scale variations in the monsoon system, in agreement with records from 

the Rift Lakes across East Africa, but that local, site-specific feedback mechanisms 

may have affected the nature and local expression of sub-millennial shifts in climate 

(Marshall 2006; Marshall et al. 2009; Costa et al. 2014).  

 

The north Ethiopian highlands are therefore currently underrepresented in regional 

palaeo-records, creating a knowledge gap in the understanding of this climatically 

sensitivity and vulnerable area. The purpose of this research, conducted at Lake 

Hayq on the eastern margin of the north-central highlands, is to help to bridge that 

gap.  

 

1.2 Research Aims 

The aim of this research is to provide a high-resolution, detailed palaeolimnological 

reconstruction of changes to the environment and climate in the north-central 

Ethiopian highlands since the late Pleistocene, and to place these into a wider 

regional context. The sedimentary record from Lake Hayq is investigated using a 

multi-proxy approach, focussing on diatom, photosynthetic pigment and X-ray 

fluorescence (XRF) analyses. The combination of proxies will provide a quantitative 

assessment of changes to the both the lake and surrounding catchment during the 

time in question. From this, inferences can be made relating to changes in the local 

and regional climate and environment. 

 

Specific research questions and hypotheses are:  

1. Is there palaeolimnological evidence to suggest millennial scale hydrological 

changes during the glacial-interglacial period? 

 Hypothesis 1: Lake Hayq shows evidence of shifts towards aridity at the 

time of Heinrich Event 1 (~ 18.0 – 15.0 kyr BP) and the Younger Dryas 

Stadial (~ 12.8 – 11.6 kyr BP). 

 Hypothesis 2: Lake Hayq shows evidence of lake refilling at the time of the 

African Humid Period’s onset (~ 15.0 kyr BP). 

2. Is there palaeolimnological evidence to suggest hydrological changes during the 

Holocene? 
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 Hypothesis 3: Lake Hayq shows evidence of lake refilling following the 

Younger Dryas Stadial. 

 Hypothesis 4: Lake Hayq shows evidence of sub-millennial drought events 

at ~ 8.2 kyr BP (8.2 event) and ~ 4.2 kyr BP (4.2 event). 

3. How is the termination of the African Humid Period expressed in the 

palaeolimnological record? 

 Hypothesis 5: Lake Hayq shows evidence of lake level decline beginning 

around ~ 5.5 kyr BP in response to the termination of the African Humid 

Period.  

 Was the termination abrupt or gradual? 

4. How do the findings from Lake Hayq compare to other records from Ethiopia, the 

Horn of Africa and subtropical Africa? 

 Hypothesis 6: The climate signal at Lake Hayq is expressed indirectly 

through changes in lake hydrology and associated catchment processes. 

 Hypothesis 7: Lake Hayq is in synchronicity with other palaeolake records 

from Ethiopia, the Horn of Africa and the wider region of subtropical Africa 

and further afield (the Mediterranean and Middle East).   

 What are the possible mechanisms controlling the expression of climatic 

events at Lake Hayq? 

5. Is there palaeolimnological evidence of anthropogenic impacts to the lake 

catchment? 

 Hypothesis 8: Lake Hayq does not show any discernible evidence of 

anthropogenic activity in the catchment. 

 

1.3 Thesis Outline 

This thesis comprises nine chapters. Following this introduction to the research, 

Chapter 2 provides a regional overview of Ethiopia, discussing firstly how the African 

monsoonal climate system has shaped the environmental and climatic features of 

the country and the Horn of Africa. This is followed by an assessment of the current 

and historical pressures on the environment and natural resources. Chapter 3 then 

reviews recent progress, advances and challenges in the field of palaeolimnology, 

before moving on to an overview of current knowledge and understanding of the 
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palaeoclimate of tropical and subtropical Africa since the Last Glacial Maximum, 

utilising records from the continent and further afield.  

 

Chapter 4 identifies the research approach and methods applied to this study. 

Chapter 5 is a stand-alone chapter, presenting the original plans for this thesis at 

Done Ella in the south-west Gamo-Gofa highlands. Despite major problems with the 

sedimentary record at this lake, which resulted in the change of site to Lake Hayq, 

this chapter has been included (1) as evidence of the authors’ field work capabilities, 

(2) as an example of some of the pit-falls in palaeolimnological research, and (3) to 

publish the first limnological and palaeolimnological findings from a previously 

unstudied lake. The cultural history of the region is considered, followed by field 

work, methodology and results, which are then discussed.  

 

The results of the study are then presented. Chapter 6 considers the complete 

sediment record, identifying changes in the lithology, geochemical, diatom and 

pigment data between ~ 15.6 – 1.3 cal kyr BP. Chapter 7 is a high-resolution study of 

a section of core pertaining to the termination of the African Humid Period. Both 

chapters discuss the results in terms of changes in the lake system, local climate 

and environment. Chapter 8 discusses the results from the study in the context of 

wider Ethiopia, the Horn of Africa and East Africa, identifying how the record from 

Lake Hayq compares to other records from the region. Thought is given to the 

impact the findings may have on predicting future climate change in the region, as 

well as methodological considerations. The research is concluded in Chapter 9.  
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Chapter 2 

The African Monsoonal Climate System: The Physical Environment & Human 

Interactions. 

 

2.1 Introduction 

Ethiopia is currently at the forefront of an innovative research effort aimed at 

answering a key question on human evolution: how did hominins respond to the 

environment they lived in? The Hominin Sites and Paleolakes Drilling Project 

(http://hspdp.asu.edu/) is an international venture which will oversee drilling at six 

ancient lake beds across Ethiopia and Kenya with the aim of obtaining continuous 

climate records spanning the last 500,000 years in places where hominins lived and 

died. This research is crucial in pinning down exactly how and when climate 

variability affected human lineage and may help answer questions regarding the 

capacity of hominins to adapt to natural fluctuations in climate (Thomas et al. 2012; 

Gibbons 2013). Such interest in the Ethiopian and Kenyan rift as a possible 

candidate for the ‘cradle of humankind’ has existed since the discovery of older 

hominid fossils there, notably Lucy in 1974, the 3.6 Myr old Australopithecus 

afarensis discovered in Hadar, Ethiopia, and the 1.6 Myr old ‘Turkana boy’ in 1984, a 

near complete Homo ergaster skeleton who possessed an essentially modern body 

structure (Tattersall 2003). Most recently, Ardi, a 4.4 Myr old Ardipithecus ramidus 

was discovered in Aramis, Ethiopia, in 1992 (reconstructed by 2009) making her the 

earliest (partial) hominid skeleton found (Gibbons 2009). The Ethiopian environment 

and climate is therefore central in framing those early evolutionary steps.  

 

In contrast to the study of past climate conditions, improved understanding of the 

current Ethiopian climate and environment is becoming more important as the effects 

of modern climate change become apparent. Already in Ethiopia minimum 

temperature is increasing considerably faster than maximum or mean temperatures, 

and changes in runoff and hydrology have been documented (Legesse et al. 2003; 

Conway et al. 2004). A 2011 report by the Institute for Environmental Security 

highlighted the increasing threat to human life in Ethiopia and the Horn of Africa from 

climate change as it amplifies other pressures such as environmental degradation 

and resource scarcity (Van de Giessen 2011). Food insecurity for example, may 

become more widespread as pressure from a rapidly rising population – 108.92 
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million people in 2012 (World Bank 2014) – burdens already strained resources and 

as a consequence, conflict between pastoralists, farmers and tribes may become 

more frequent (Brandt et al. 1997; Van de Giessen 2011). Access to fresh water is 

likewise a source of tension; plans to allocate more water to Ethiopia by building 

hydroelectric plants on the Blue Nile were met with threats of action from the 

Egyptian President Mohammed Morsi, which have continued to make headlines as 

recently as June 2013 (BBC 2013). 

 

Comprehensive knowledge of Ethiopia’s past climates and environments is therefore 

a topic of immense relevance and significance as two spectra of interest have 

emerged; one looking at the past and one looking at the future. In order to 

understand and quantify these changes, one must first look to the current state of the 

climate. This chapter considers the African monsoonal climate system and how it, 

along with other features, has shaped the modern physical environment of Ethiopia 

and the Horn of Africa, the wider study area of this research. The African monsoonal 

system is discussed and in Part I used to interpret the distribution of climatic zones, 

vegetation and environmental features in Ethiopia and the Horn of Africa. The 

distribution of lakes is then discussed, including a brief description of several lakes 

whose palaeo-records are discussed in further detail in the following chapter. This is 

followed in Part II by a review of current pressures on the environment and natural 

resources in the Horn of Africa, as well as current and historical human interactions 

with the environment. 

 

2.2 African Monsoonal Circulation 

The African climate is modulated by the pattern of upper air circulation and pressure 

that govern monsoon circulation (Fig. 2.1). Three major air streams flow over the 

continent: the north-east monsoon (Trade Winds) coming from the Arabian Desert, 

the south-east monsoon coming off the Indian Ocean, and the Congo Air with 

westerly, south-westerly flow, originating in the South Atlantic (Nicholson 1996; 

Kiage and Liu 2006). Both monsoons are thermally stable and associated with 

subsiding air, making them relatively dry. In contrast, the Congo Air is thermally 

unstable, convergent and humid, and therefore associated with rainfall. Two surface 

convergence zones separate these air flows: the Intertropical Convergence Zone  
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Figure 2.1. Schematic of the general annual pattern of winds and air pressure over 

Africa. The red line indicates the Intertropical Convergence Zone and the blue line 

indicates the Congo Air Boundary (adapted from Nicholson 1996).  
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(ITCZ), which separates the two monsoons, and the Congo Air Boundary (CAB), an 

area of north-east to south-west convergence which separates the easterlies and 

westerlies (Nicholson 1996; Trauth et al. 2003). A third convergence zone separates 

the dry, stable northerly flow from the Sahara and the humid southerly flow.  

 

The northern and southern ends of the African continent experience a Mediterranean 

climate (dry summers and wet winters) due to the displacement of the mid-latitude 

westerlies towards the equator (Gasse 2000). These regions border subtropical 

deserts (the Sahara in the north and the Namib coastal desert in the south-west) 

dominated by subtropical anticyclones, which are separated by a wide belt of tropical 

climate (Gasse 2000). The tropical African climate is governed by the seasonal 

migration of the ITCZ between 10 º north and south as it responds to changes in 

maximum solar heating (Nicholson 1996; Gasse 2000; Nicholson 2000; Peyron et al. 

2000; Gasse 2006). During the Northern Hemisphere winter, when the ITCZ lies to 

the south, high pressure builds up over the cold landmasses in the north and low 

pressure develops over the warm Southern Hemisphere. South-easterly winds flow 

from the high to low pressure. During the spring and summer as the Northern 

Hemisphere begins to warm in response to increasing insolation, the temperature 

difference between the land and ocean causes the ITCZ to migrate north. This 

causes the air above the land to rise and draw in humid air off the Indian Ocean. As 

this humid air rises, moisture is lost as monsoonal precipitation, resulting in northern 

and southern monsoonal climates with summer rains and winter dryness, and a 

humid equatorial zone with a bi-modal rainfall pattern (Gasse 2000; Gasse 2006). 

 

Fluctuations in the intensity of interannual precipitation have been statistically linked 

with the El Niño Southern Oscillation (ENSO) (Nicholson 1996; Gasse 2000). 

However, these fluctuations may be a more direct response to sea surface 

temperature (SST) anomalies in the Atlantic and Indian Oceans, including the Indian 

Ocean Dipole (IOD) and strengthened/weakened monsoon systems and their 

interaction with the unstable CAB, which occur in the context of an ENSO event 

(Nicholson 1996; Gasse 2000; Gupta et al. 2010; Tierney et al. 2013). La Niña 

events have also been associated with African rainfall variability (Nicholson and 

Selato 2000).   
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On the orbital timescale, the African climate has been paced by variations in Earth’s 

insolation as a result of orbital precession – the Milankovitch cycle (Trauth et al. 

2003; Gasse 2006). Due to the geometry of precessional patterns, changes in 

summer solar radiation are in antiphase between the hemispheres. In North and 

Southern Africa, this results in monsoonal circulation and humid climates at 19.0 – 

23.0 kyr intervals and in East Africa every 10.0 – 11.0 kyr following maximum 

equatorial insolation (Trauth et al. 2003; Verschuren et al. 2009). Clement et al. 

(2004) demonstrated the significance of precessional forcing on tropical moisture 

using climate modelling, which showed that a 180 ° shift in precession could alter 

annual precipitation in the tropics by at least 180 mm per year as well as induce 

shifts in seasonality. Other forcing factors influencing African climate on the glacial-

interglacial timescale include Northern Hemisphere ice sheet volume, atmospheric 

transparency, surface boundary conditions, atmospheric gases, ocean properties 

and tectonic activity (Barker et al. 2004; Maslin and Christensen 2007). The African 

climate is thus sensitive to global teleconnections on a range of scales, from 

interannual variability to several millennia. Understanding these connections and 

how they are expressed in the climate is essential for interpreting palaeo-records 

and modelling future climate change.  

 

2.3 Part I: The Physical Environment in the Horn of Africa 

2.3.1 Defining the Horn of Africa 

The East African region has been defined under various political and geographical 

guises. Based on the UN scheme of geographic sub-regions, East Africa can refer to 

the countries of Tanzania, Kenya, Uganda, Rwanda, Burundi (collectively known as 

the East African Community), Ethiopia, Djibouti, Eritrea, Somalia, Mozambique, 

Madagascar, Malawi, Zambia, Zimbabwe, South Sudan, Egypt and Sudan (the latter 

two also being considered part of North Africa) as well as several islands in the 

Indian Ocean. In the context of this research, ‘East Africa’ shall be used to refer to 

Tanzania, Kenya, Uganda, Rwanda, Burundi, Ethiopia, Djibouti, Eritrea and Somalia. 

 

The Horn of Africa is a peninsula in East Africa projecting into the Arabian Sea. It 

comprises the countries of Ethiopia, Djibouti, Eritrea and Somalia (Stock 2004). The 

International Crisis Group also includes Sudan in the term, whilst The Horn of Africa 

Regional Environment Centre and Network includes Kenya. Political organisations 
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such as the European Commission and the Intergovernmental Authority on 

Development (IGAD) refer to the Horn of Africa as Ethiopia, Eritrea, Somalia, 

Djibouti, Sudan, Kenya and Uganda. In the context of this research, the ‘Horn of 

Africa’ shall be used to refer to Ethiopia, Djibouti, Eritrea and Somalia.  

 

Ethiopia, officially known as the Federal Democratic Republic of Ethiopia, is a 

culturally rich and diverse nation. The Ethiopian government officially recognizes 

eighty-six ethnic groups and is divided into nine ethnically based states – Afar, 

Amhara, Benishangul-Gumuz, Gambella, Harari, Oromia, Somali, Southern Nations, 

Nationalities and Peoples' State, and Tigray – and two chartered cities – Addis 

Ababa and Dire Dawa (CSA 2007a). 

 

2.3.2 Relief and Geology 

Due to intensive volcanic and tectonic activity over the past 15 million years, the 

Horn of Africa is characterised by significant changes in elevation over short 

distances (Fig. 2.2 and 2.3). The Ethiopian highlands form an extensive uplift plateau 

exceeding 4000 m in altitude (the highest peak, Ras Dashan, is 4620 m above sea 

level) surrounded by peripheral lowlands to the east and west. The two largest and 

highest massifs in the highlands are the Semien Mountains in the north and the Bale 

Mountains in the south. In the north-east of Ethiopia and Djibouti lies the Afar 

Depression, an area formed by the triple (tectonic) junction where the spreading 

axes of the Gulf of Aden and the Red Sea meet the East African rift system on the 

continent. Most of the Afar region is < 1500 m in altitude and Lake Asal lies 155 m 

below sea level, making it the lowest depression in Africa. The south, south-eastern 

and western lowlands are also < 1500 m in altitude.  

 

Such marked changes in altitude across Ethiopia and the Horn of Africa have 

created pronounced precipitation, temperature and evaporation gradients, resulting 

in various microclimates: (1) the kolla, a hot zone found in the Danakil Depression 

and the Blue Nile valley where elevations are < 1500 m; (2) the weina dega, a 

temperate area in the central plateau, with elevations between 1500 – 2400 m and 

daily temperatures of 16 – 30 ºC; (3) the dega, found in parts of the western and 

eastern areas of the north-western plateau. Elevations here are > 2400 m and daily  
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Figure 2.2. Schematic showing altitudes (metres above sea level) in Ethiopia 

(adapted from Friis et al. 2011).  
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Figure 2.3. Schematic showing important topographical features of Ethiopia (adapted 

from Friis et al. 2011). Addis Ababa is indicated by the red diamond. Changes in 

colour indicate varying altitudes (see Fig. 2.2). Topographic features are indicated by 

numbers or letters. Mountain massifs: (1) Semien, including the peaks Ras Dashan 

and Bwahit, (2) Amba-Alage, (3) Abune Yosef, (4) Guna, (5) Amba Farit, (6) Abuye 

Meda, (7) Choke, (8) Gurage, (9) Mountains of Arussi, including Chilalo, Bada and 

Kaka, (10) Gara Muleta, (11) Bale Mountains, including Batu and Tulu Dimtu. Lakes 

and reservoirs: (A) Turkana, (B) Chew Bahir, (C) Chamo, (D) Abaya, (E) central 

group of Rift Valley lakes, including (from south to north) Awasa, Shala, Abijata, 

Langeno and Ziway, (F) Metahara, (G) cluster of desert lakes, including Afambo, 

Bario, Laitaf, Gamari and Abe, (H) Afrera, (J) cluster of desert lake in the Afar 

lowlands, including Asale, Karum and other unnamed lakes, (K) Ashenge, (L) Hayq 

and Hardibo, (M) Tana, (N) Wonchi, (P) Fincha and Chomen reservoirs. Rivers: (a) 

Mereb, (b) Tekeze, (c) Abay (Blue Nile), (d) Baro, with the southern tributaries Akobo 

and Gilo, (e) Omo, with the northern tributaries Gojeb and Gibe, (f) Genale, (g) Wabi 

Shebele, (h) Awash. Solid grey lines separate floristic regions (based on previous 

ethnic regions) used for recording distributions in the Flora of Ethiopia and Eritrea 
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project (Friis and Ryding 2001): (HA) Harerge, (BA) Bale, (SD) Sidamo, (GG) Gamo-

Gofa, (KF) Kefa, (IL) Illubabor, (WG) Welega, (GJ) Gojam, (AR) Arussi, (SU) upland 

Shewa, (GJ) Gojam, (TU) upland Tigray, (WU) upland Welo, (AF) Afar. 

  



17 

 

temperatures are between 0 – 16 ºC (Chenug et al. 2008). As a result of such 

significant climatic and altitudinal variability, precipitation is spatially varied (Fig. 2.4).  

 

During kiremt the wettest regions in the south-east of Ethiopia can receive > 350 mm 

of rainfall per month (McSweeney and Lizcano 2012), whilst the Afar Depression,  

one of the world’s hottest and most arid deserts, receives < 300 mm from December 

to January (Lowenstern et al. 1999). Annually the western and central highlands 

receive the most rainfall (800 – > 2400 mm annually) whilst the Afar region, southern 

and eastern regions receive considerably less (0 – 400 mm annually) (Friis et al. 

2011).  

 

Friis et al. (2011) have reviewed the geology of Ethiopia (Fig. 2.5). The highlands are 

dominated by volcanic Tertiary extrusive and intrusive rocks, including agglomerates, 

basalts, ignimbrites, rhyolites, trachytes and tuffs. These rocks vary in thickness 

between 500 – 2500 m but reach a maximum of 3000 – 3500 m in the Semien 

Mountains. Northern Ethiopia is characterised by Palaeozoic and Mesozoic rocks 

and the east by a Mesozoic complex. The Mesozoic rocks consist of limestone and 

sandstone. Enticho sandstone, Adigrat sandstone, Antalo limestone and Angula 

shale are particularly prominent in central parts of the western highlands. Limestone 

is common in the eastern highlands. The Afar Depression contains Quaternary 

extrusive and intrusive formations whilst the Blue Nile gorge is characterised by 

Precambrian and Jurassic rocks. Precambrian rocks underlie all the other rock types 

in Ethiopia.  

 

2.3.3 Modern Climate 

Climate in the Horn of Africa is characterised by strong rainfall seasonality as a result 

of the annual migration of the ITCZ and its effect on the prevailing winds. Three 

seasons exist (Nicholson 1996; Umer et al. 2004; Chenug et al. 2008): (1) Kiremt, 

the longest rainy season, which lasts from June to September and delivers 50 – 70 

% of rainfall. The rainfall is derived predominantly from south-westerly Congo Air 

converging with the south-east monsoon along the CAB. The rains cover all of 

Ethiopia except the far south and south-east, but during a strengthened Indian 

summer monsoon the CAB can bring the rains even further eastward; (2) Bega, the 

dry season, lasts from October to February when the ITCZ is most southerly and the  
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Figure 2.4. Mean annual rainfall (mm) across Ethiopia (adapted from Friis et al. 

2011). 
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Figure 2.5. Schematic showing the geology of Ethiopia (adapted from Friis et al. 

2011).  
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north-east monsoon over the Middle East dominates. Occasionally rain does fall in 

this season when Northern Hemisphere winter frontal systems interact with tropical 

systems and source depressions over the Indian Ocean; (3) Belg, the small rainy 

season occurs from March to May during which 20 – 30 % of annual rainfall occurs. 

It is the main source of rainfall for the south and south-east regions.  

 

Generally the onset and duration of the rains follows a latitudinal pattern associated 

with the seasonal shift of the convergence zones. However, these seasons are not 

uniform across Ethiopia as a result of the position of the ITCZ superimposed over 

relief features. There are four major seasonal rainfall patterns across Ethiopia and 

Eritrea (Friis et al. 2011) (Fig. 2.6): (A) a bimodal rainfall pattern, as described above 

with a short dry season, found across central Ethiopia and flanking the Afar region; 

(B) a unimodal rainfall pattern with strong kiremt rains and rain during most of the 

year also, found in the western regions including Tigray and Wello; (C) a bimodal 

rainfall pattern with a long dry season, found in the southern and eastern regions; (D) 

an erratic rainfall pattern with a winter maximum, found in the Afar region.  

 

Whilst the ITCZ is the dominant feature governing rainfall distribution across the 

Horn of Africa, altitudinal gradients play an important role in local climate variability. 

The Ethiopian highlands, for example, affect local climate by blocking unstable, 

moist, westerly Congo Air, preventing it from reaching the coastal areas in Ethiopia, 

Eritrea and Somalia, thus creating a coastal arid zone (Nicholson 1996; Umer et al. 

2004). The highlands also result in leeward rain shadows, creating a complex 

patchwork of dry, subsiding air alternating with humid patches, causing rainfall 

variability over a few tens of kilometres (Nicholson 1996). Jet streams affect local 

climate; the Turkana jet, for example, enhances local aridity in northern Kenya and 

southern Ethiopia due to its descending air, as does the Somali jet stream which 

parallels the coast and increases frictional divergence (Nicholson 1996; Umer et al. 

2004). The upwelling of cold water along the Somali coast supresses’ rainfall further. 

Lakes and water bodies may further affect local climate; the larger East African Rift 

Lakes (or Great Lakes) can moderate regional hydrology and climate as they play a 

significant role in water recycling (Gasse 2000). Lakes Tanganyika, Malawi and 

Victoria in particular have been shown to modify diurnal cycles of cloudiness and 

convective activity and therefore the rainfall regime over their catchments (Nicholson  



21 

 

Figure 2.6. Schematic showing the major seasonal rainfall patterns in Ethiopia (Friis 

et al. 2011). See text for descriptions of regions A to D.  
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and Yin 2002). Lakes in the Horn of Africa therefore may affect local climate and 

environments by altering processes and mechanisms such as local soil moisture, 

runoff patterns, vegetation and forest cover (Trauth et al. 2010). 

 

2.3.4 Soils 

Friis et al. (2011) have reviewed the soil complexes of Ethiopia (Fig. 2.7). The soil 

types of Ethiopia form a complex mosaic. Last (2009) identified six broad soil groups 

based on region: (1) the plateau soil region, which is found in the highlands. Soils 

are derived from basaltic and other volcanic rocks and are mainly red lateritic or 

black vertisol soils. They are usually quite fertile; (2) the crystalline highlands soil, 

which is found at the edges of the highlands and are derived from metamorphosed, 

crystalline rocks. Soils are thin, acidic and not particularly fertile; (3) the desert soil 

region. In the Afar Depression, these soils are derived from recent lava or river 

deposits and so can be quite saline. In the Ogaden region the soils have been 

formed from sedimentary rocks and are rich in phosphorus; (4) the Ogaden dry 

steppe. These soils are derived from limestone and are rich in carbonates and are 

fertile; (5) the Rift Lakes region. Soils are derived from volcanic rocks and/or 

Quaternary sediments deposited by the larger lakes. The parent rocks vary in origin 

either coming from the flanks of the Rift Valley or the basaltic highlands; (6) the 

alluvial plains, which are found on the flood plains of larger rivers. These soils 

originate from material that has been transported from within the rivers catchment 

and so can be considerably fertile. 

 

 2.3.5 Modern Natural Vegetation  

The distribution of vegetation in the Horn of Africa is governed by mean annual 

precipitation, topography, length of the dry season and, at high elevations, 

temperature (Peyron et al. 2000; Kiage and Liu 2006). Based on the work of White 

(1983), three vegetation zones have been identified in the plateau region: (1) 

Somalia-Massai vegetation types including deciduous savannah woodland and 

Acacia at low altitudes; (2) the Sudano-Zambezian zone with Acacia-Commiphora 

woodland at mid-altitudes; (3) Afro-montane vegetation in the highlands, including 

broad-leaf rainforest in the west, mixed humid forest on wet slopes to the south and 

coniferous forest with Juniperus, Olea and Podocarpus on dry slopes in the north 

and south. Friis et al. (2011) review and expand on White’s (1983) classification (Fig.  
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Figure 2.7. Schematic showing the soil types of Ethiopia (adapted from Friis et al. 

2011).   
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Figure 2.8. Schematic showing the natural vegetation types of Ethiopia (adapted 

from Friis et al. 2011).  

Desert and semi-desert scrubland 

Acacia-Commiphora woodland and bushland proper 

Acacia wooded grassland of the Rift Valley 

Wooded grassland of the Western Gambela region 

Combretum-Terminalia woodland and wooded grassland 

Dry evergreen afromontane forest and grassland complex 

Moist evergreen Afromontane forest 

 Transitional rainforest 

Ericaceous belt 

Afroalpine vegetation 

Freshwater lakes- open water vegetation 

Freshwater marshes and swamps, floodplains and lake shore vegetation 

Salt lakes- open water vegetation 

Salt pans, saline/brackish and intermittent wetlands and salt-lake shore 
vegetation 



25 

 

2.8). The south, east and Afar Depression are dominated by Acacia-Commiphora 

woodland and bushland, with patches of desert and semi-desert containing salt pans 

and intermittent brackish wetlands, on the Eritrean and Somali borders. Western 

Ethiopia is characterised by Combretum-Terminalia woodland and wooded 

grasslands, with large areas of transitional rainforest and moist evergreen 

Afromontane forest in the south-west and wooded grassland in the western Gambela 

region. In the central highlands and along the Ethiopian Rift Valley, dry evergreen 

Afromontane forest and grassland dominate, with patches of Afroalpine and 

Ericaceous vegetation found throughout. An area of Acacia wooded grassland is 

found in the centre of the Ethiopian Rift Valley.  

 

2.3.6 The Distribution of Lakes 

Ethiopia is often referred to as the ‘water tower of Africa’ – of the 1.1 million km2 that 

make up the country, 70,000 km2 is covered by lakes, river and wetlands (Ayenew 

2009). These inland water bodies are fundamental for the Ethiopian and wider East 

African ecosystems, as well as for the people who live around and work on them. 

Lakes in particular are important for the development of fisheries, irrigation and 

tourism, meaning that economic development in some locations is dependent on the 

sustainable use of these crucial water sources (Ayenew 2009).  

 

The distribution of lakes in the Horn of Africa is governed by the geomorphology of 

physiographic regions shaped over tens of millions of years by volcanic-tectonic 

activity. Three main physiographic regions can be identified: the Rift Valley, 

highlands, escarpments and lowlands. Most lakes are confined to the Ethiopian Rift 

Valley (ERV) which extends from the Kenyan boarder in the south to the Afar 

Depression in the north (Fig. 2.3). The ERV comprises four systems: Lake Turkana, 

Chew Bahir, the Afar-Danakil Depression (the Afambo-Abhé lake group, Lake Afdera 

and Lake Asal) and the Main Ethiopian Rift (MER). The MER transects the highlands 

for 1000 km from the southern Afar in the north to the southern basin of Lake Chamo 

in the Gamo highlands. Lakes in the MER include Lakes Chamo, Abaya, Hawassa-

Shallo, Chitu, Shala, Abijata, Langano and Ziwai1. There are several other small 

crater lakes scattered elsewhere in the ERV occupying small catchments. Rivers in 

                                                           
1
 ‘Ziwai’ is the Ethiopian spelling of the lake. It is more commonly referred to as Lake Ziway in 

academic literature and shall be referred to as such from here on in. 
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the highlands provide a sustained water supply to the Rift Lakes but water levels 

fluctuate with the amount and distribution of rainfall in the highlands (Street 1979a; 

Ayenew 1998).  

 

Lake Tana, the largest lake in Ethiopia, is located in the north-western highlands. 

Other crater lakes in the northern highlands include Lakes Hayq2 and Ardibo3 in the 

South Wollo region, Lake Ashenge in the Tigray region and Dendi and Wonchi in the 

Shewa highlands. In the eastern highlands only a few lakes can be found close to 

the rift escarpment: Lakes Haromaya, Adele, Finkle and several small lakes in the 

Bale Mountains. Small crater lakes exist in the transitional escarpments; Lake Hare 

Seitan near the Guraghe Mountains, the Bishoftu lakes south of Addis Ababa and a 

small group of lakes in the Bilate River basin. The lowlands surrounding the 

Ethiopian plateau are largely devoid of lakes and swamps with the exception of the 

Gambela region, where wetlands and small ponds exist along the Baro and Akobo 

Rivers. Importantly, highland lakes and outflowing rivers feed the semi-arid and arid 

lowlands.  

 

2.3.6.1 Lake Turkana Lake Turkana, formerly Lake Rudolph, straddles the 

Kenya-Ethiopia border and is the world’s largest permanent desert lake and is a 

closed waterbody fed by three rivers – Kerio, Omo and Turkwel. There is no surface 

outflow and consequently the lake is highly sensitive to climatic fluctuations and 

depends on the balance between river and groundwater inflow and evaporation from 

the surface (annual evaporation is estimated to be 2335 mm [Ayenew 2009]). The 

River Omo accounts for 90 – 98 % of Turkana’s hydrological input and originates in 

the central Ethiopian highlands (Beadle 1981). This inflow of water, sourced from the 

rain-fed highlands, maintains lake level in the desert. The Lake Turkana National 

Park in Kenya is a UNESCO World Heritage Site.  

 

2.3.6.2 Chew Bahir  Previously called Lake Stephanie, Chew Bahir means salt 

lake in Amharic. It is the most southerly and lowest (48 m above sea level) of a 

series of rift lakes in the north-easterly continuation of the Kenya Rift. It is an 

                                                           
2
 The study site for this research. 

3
 ‘Ardibo’ is the Ethiopian spelling of the lake. It is more commonly referred to as Lake Hardibo in 

academic literature and shall be referred to as such from here on in. 
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ephemeral, saline lake in a wide, shallow basin approximately 64 by 24 km. It is fed 

by the Weyto River in the north and receives seasonal outflow from Lake Chamo. 

Today much of the area is a salt plain. Other habitats include marshes, mudflats, 

springs, bushland and mixed broadleaved scrub. When freshwater enters, this 

creates swamps and pools (Ayenew 2009).  

 

2.3.6.3 The Ziway-Shala Basin  The Ziway-Shala basin comprises four 

lakes – Lakes Ziway, Langano, Abijata and Shala – occupying volcano-tectonic 

depressions in the MER. A closed basin, the catchment covers 13,000 km2, of which 

1,433 km2 is occupied by permanent water bodies. Lakes Ziway and Shala receive 

water from the western escarpment and Lake Langano from the eastern escarpment. 

Lake Abiyata is maintained by overflow from Lakes Ziway and Langano. 

 

2.3.6.4 Lake Tana & the Blue Nile  Lake Tana occupies a wide (66 by 84 

km) lava-dammed depression, 1800 m above sea level. The lake has at least thirty-

seven islands on it, twenty of which are home to churches and monasteries. Monks 

from the Ethiopian Orthodox Church have inhabited some of the islands for over 500 

years (Ayenew 2009). Nowadays the lake is used for hydroelectric power generation, 

navigation, recreation, fishing and is a popular tourist destination.  

 

The lake is fed by approximately forty rivers, the main ones being Gelda, Gilgel, 

Gumera, Infraz, Megech and Rib, which contribute 95 % of inflow (Ayenew 2009). 

The outflowing river is the Blue Nile, or Abay River, one of the two main tributaries of 

the River Nile (the other being the White Nile whose source is found in the 

headwaters of Lake Victoria). The Blue Nile provides the dominant contribution of 

peak flow (~ 68 %) and annual sediment load (~ 72 %) to the River Nile, especially in 

the spring floods when the river can rise by as much as 7 m (Williams 2009). As 

such, the Nile flood records, which date back to AD 622, when the record at the 

Roda Nilometer in Old Cairo began, can be used as a proxy for spring rainfall and 

drainage over northern Ethiopia. Approximately thirty kilometres downstream, the 

Blue Nile plunges down 45 m, forming the Blue Nile Falls, known locally as Tiss Isat, 

meaning smoke of fire. The river flows south from Lake Tana, then west across 

Ethiopia and then north-west into Sudan. The Blue Nile meets the White Nile at 

Khartoum, where it forms the River Nile. Approximately 300 million people live in the 
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River Nile’s basin, spread across 10 countries (all of which are some of the poorest 

nations in the world), and 160 million people depend on the water for their livelihoods 

(Kameri-Mbote 2007). 

 

2.3.6.5 Lake Ashenge Lake Ashenge is located 2440 m above sea level, 

covering an area of approximately 20 km2. The catchment area is 129 km2 and is 

used mainly for animal grazing. The level of the lake is believed to have dropped in 

the last 100 years due to neo-tectonic processes and to a lesser extent, the diversion 

of several tributaries for irrigation (Ayenew 2009).  

 

2.4 Part II: Human Interactions with the Environment 

2.4.1 A Climate Hazard: Drought 

Drought is a complex natural hazard that differs from other natural hazards (for 

example, cyclones, earthquakes, floods) in several ways. Firstly, the effects of 

drought often accumulate slowly over a long period of time (one to several years) 

and can persist long after the event terminates. Due to this, droughts are sometimes 

referred to as a ‘creeping phenomenon’ as it is often difficult to identify the onset and 

end of a drought (Wilhite 1993). Secondly, there is no universally accepted definition 

of what a drought is, as its impacts vary with region and economic sector (Wilhite et 

al. 2013). The effects of a drought are superimposed onto a population’s exposure to 

the hazard and their vulnerability to it. Meze-Hausken (2004) argues further that 

drought is defined by people’s perceptions of it. For example, how does a population 

perceive changes in rainfall over a given time period, what are their rainfall needs for 

agricultural production and how does a population perceive one drought in contrast 

to another? These factors can make drought a difficult natural hazard to identify, 

respond to and mitigate.  

 

Ethiopia has a long history of meteorological drought. Degefu (1987) compiled a 

long-term history of drought and famine in Ethiopia using data from the River Nile 

flood level records, historical archives and meteorological records. Twenty-seven 

events were identified from 253 – 242 BC to AD 1982, describing incidents of famine 

and crop failure, low River Nile flow, monsoon failures, social and political unrest, 

outbreaks of disease and plagues, high human mortality (resulting from starvation, 

suicide and murder) and high animal mortality (both domestic and wild). 
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2.4.1.1 ENSO, SST Anomalies & Rainfall Variability  Multiple studies have 

demonstrated the existence of a relationship between East African rainfall variability, 

SST anomalies and the ENSO phenomenon (Nicholson and Entekhabi 1986; Ogallo 

1987; Ropelewski and Halpert 1987; Farmer 1988). Periods of decreased rainfall in 

sub-Saharan Africa have been related to warmer SST in the equatorial Pacific, whilst 

other studies have identified a high degree of climate variability and monsoonal 

rainfall in ENSO affected areas (Nicholls 1988; Nicholls and Wong 1990; Comenetz 

and Caviedes 2002). Nicholson (1996) found that for the period 1901 – 1985, rainfall 

displayed an irregular periodic pattern with a dominant time scale of 5 – 6 years 

concurrent with ENSO events. Rainfall tended to be above average in East Africa 

during the ENSO year and was followed by drought the following year. A seasonal 

preference related to rainfall variability was also identified, with the positive anomaly 

tending to occur during the short belg rains of the ENSO year, and the drought 

occurring both in the belg rains the year prior to the ENSO event and during the long 

kiremt rains the year following the ENSO event (Nicholson 1996). Other studies have 

also statistically correlated reduced flows in the Blue Nile, River Nile and Atbara 

River with ENSO events (Eltahir 1996). Haile (1988) further identified that in Ethiopia 

the occurrence of droughts and famine corresponded to ENSO years. By evaluating 

the processes involved in drought causation, it appears that ENSO events and 

associated SST anomalies affect the distribution and intensity of rainfall across 

Ethiopia by disrupting and displacing the air masses responsible for producing rain 

(Haile 1988).  

 

Through these assessments it has been shown that ENSO events and SST 

anomalies in the Atlantic and Indian Oceans can affect the intensity and delivery of 

rainfall to Ethiopia by displacing the ITCZ southwards and/or weakening the 

monsoon systems. Given the strong correlation between ENSO events and rainfall 

variability, successfully predicting when an ENSO event will occur could significantly 

assist with natural disaster preparation, including preparing for famine in vulnerable 

(often rural) areas. Additional drought monitoring and early warning systems could 

assist with this and inform policy makers regarding appropriate mitigation measures. 

 

2.4.1.2 Historical Drought & Famine  As previously discussed, Ethiopia is 

economically dependent on its agricultural sector, which is driven by the seasonal 
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occurrence of the rains across the country. The rains pace the pattern of planting, 

growth and harvesting around Ethiopia: 85 – 95 % of food production occurs during 

the kiremt rains and 5 – 15 % during the belg rains (Degefu 1987). The main harvest 

occurs during the bega season and the occasional rainfall that does fall in this 

season is usually sufficient to maintain grassland for livestock grazing. Ethiopia is 

also a financially vulnerable country, with limited capital, technology and resources 

available to adapt to and mitigate the effects of climate variability, including natural 

disasters. This combination of agricultural dependence and high vulnerability of its 

large population makes the country especially susceptible to famine, and so the 

occurrence of El Niño is potentially disastrous. If monsoon rains are weakened, late 

or fail, crop growth can be stunted or fail, resulting in shortages of food and fodder. 

This in turn may lead to livestock mortality and famine (Comenetz and Caviedes 

2002). A spatial pattern of drought progression has been identified for Ethiopia 

based on drought occurrences from 1958 – 1977 (Wolde-Mariam 1986): droughts 

and the subsequent famine tend to be felt initially in the arid northern mountains of 

Eritrea and Tigray, before spreading south-east into the Awash Valley and then 

further south to the Harari and Bale regions. If the drought intensifies in severity, the 

central highland areas of Arsi, Omo, Shewa and Wello can become affected, 

followed by Gojam, Gonder, Ilubabor and Welega in the west. 

 

Notable droughts and famines in Ethiopia include ‘The Great Starvation’ from 1835 – 

1837. This drought affected Eritrea and the north and western provenances of 

Ethiopia after a failure of the rains. Historical records document that many people 

and livestock starved to death and there were outbreaks of cholera and cattle 

disease (Degefu 1987). From 1888 – 1892 one of the worst droughts in Ethiopian 

history occurred. Affecting the whole country, the drought became known historically 

as kifu ken, meaning the ‘harsh days’. In 1888 both the kiremt and belg rains failed 

(meaning that agricultural and grazing land was not replenished following the dry 

bega season) and conditions were notably hot, causing a large proportion of the 

crops to fail. The effects of the famine were magnified by a rinderpest epidemic4, 

which had decimated the Ethiopian cattle population and much of the rest of the 

                                                           
4
 An infectious viral disease affecting cattle and other ruminants. Symptoms include loss of appetite, 

fever, nasal and eye discharges, erosions in the mouth, nose and genitals, as well as diarrhoea 
followed by constipation. Animals die within 6 – 12 days of the onset of symptoms.  
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population across Africa by 1897, having been introduced accidentally through cattle 

trading by Italian colonists in 1885. To make matters worse, swarms of caterpillars, 

locust and rats annihilated what crops were left. Food prices soared as a result and 

there was widespread civil unrest (Pankhurt 1966). Given the high number of 

unburied human and animal corpses, sanitary conditions deteriorated rapidly and 

outbreaks of cholera, typhus, smallpox, dysentery, influenza and bronchitis added to 

the death rate (Pankhurt 1966). Additionally, there were reports of suicide, 

cannibalism and of animals attacking humans (Degefu 1987).   

 

Another severe drought occurred in 1972 after an ENSO event which proved to be 

particularly disastrous for Africa. In Ethiopia the belg rains completely failed and the 

kiremt rains partially failed, which reduced the crop harvest, particularly in the north-

east. Despite the suffering of the people, the government refused to acknowledge 

the situation and avert the impending disaster (Keller 1992). The government instead 

continued to focus on foreign exchange, exporting grain throughout the drought, 

including re-bagging grain that had entered the country as relief supplies (Wigger 

1998). In 1973 the kiremt rains failed again and by 1974 the whole country was 

experiencing famine (Degefu 1987). A documentary was broadcast in Europe during 

this time depicting the scenes of extreme drought, hunger and poverty. This 

prompted some relief aid being sent to Ethiopia but due to political corruption and 

instability, it failed to reach the most drought stricken areas where it was most 

needed (Wigger 1998). The same documentary was broadcast across Ethiopia in 

1974 with additional scenes showing the emperor, Haile Selassie, eating expensive 

food, drinking champagne and feeding his dogs from a silver tray. This sparked civil 

unrest and led to a military coup by the Derg.  

 

In 1982 an ENSO event caused a two month delay of the kiremt rains and crop 

failure in northern Ethiopia. Below average rainfall followed in 1983 and the 

persistent drought caused rural populations to migrate in search of food and water. 

After initially denying how severe the situation was, the Ethiopian government 

reported in 1984 that only 6.2 million tonnes of food could be produced that year and 

5 – 6 million people were at risk of starvation (BBC 2000). Pastoralist herders lost 

livestock due to lack of water and grazing grounds (Tiki et al. 2011). This drought in 

1984 attracted an unprecedented amount of global interest and response from the 
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west, when images of emaciated, hunger stricken Ethiopians were broadcast around 

the world. The outpour of contributions from the west was phenomenal, raising US 

$1.2 billion in just over a year (Clay and Holcomb 1986). Western agencies became 

concerned however, by the lack of information and restrictions placed on them when 

attempting to deliver famine relief, and other aspects of the drought such as the war 

between government troops and liberation front forces were significantly 

downplayed; when food-aid arrived in the country it was often used to feed the army 

rather than famine affected areas (Keller 1992). Ethiopians fled the war and famine 

into neighbouring Sudan. In 1991, the EPRDM marched into Addis Ababa and 

ousted the Mengistu government and gradually conditions began to improve. This 

drought did result in the establishment of Early Warning Systems (EWS) by the 

international community; the Famine Early Warning Systems Network (FEWS NET) 

was put in place in the mid-1980s to ensure that vulnerability information was 

available (Kim and Guha-Sapir 2012).  

 

The more recent drought in 2002 again attracted worldwide media coverage. In 

many parts of Ethiopia the belg rains failed completely and the kiremt rains were 

delayed by almost six weeks and were then considerably weaker than usual (Meze-

Hausken 2004). The Afar, Oromiya and northern Somali regions were particularly 

hard hit and an estimated 11.5 – 15.0 million people were affected by food and water 

shortages across the country. The situation was worsened by a prolonged dry period 

between the belg and kiremt rains, which reduced the ability of people to prepare 

agricultural land for when the rains did eventually arrive. Sowing was delayed and 

the amount of seed available was reduced, pushing up food prices. Areas available 

for grazing and water for livestock were seriously reduced and weak animals 

succumbed to outbreaks of tuberculosis and scabies (Meze-Hausken 2004). 

Pastoralists were forced to herd their animals to grazing grounds up to 100 km away, 

but these grounds became overcrowded and overgrazed, resulting in violent conflict 

between some groups.  

 

In 2011 a crisis erupted across Ethiopia and the rest of the Horn of Africa when, 

following the complete failure of the 2010 rains, the belg rains were significantly 

weakened. Malnutrition and hunger were widespread, affecting 10 – 13 million 

people and an estimated 50,000 – 100,000 people died (Hillier and Dempsey 2012; 
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Kim and Guha-Sapir 2012). The tragedy of the drought was that it has been 

predicted. EWS indicated an impending drought in August 2010 as changing 

weather conditions caused by La Niña were confirmed, and forecasts became more 

urgent in November 2010 when the rains failed (Hillier and Dempsey 2012). Between 

December 2010 and February 2011 multi-agency planning took place to begin 

contingency and response preparation and warnings were issued on the alarming 

situation. However, the window of opportunity to avert the impending crisis was 

missed and it was only in mid-2011 when a famine was declared that the 

humanitarian systems began to respond and aid arrived (Kim and Guha-Sapir 2012). 

By that time, global acute malnutrition levels exceeded 30 % in the affected regions 

(a level that the Integrated Food Security Phase Classification identifies as a 

catastrophe) and Crude Mortality Rates exceeded the emergency threshold of 

1/10,000 per day (Kim and Guha-Sapir 2012). This disaster reflects both failings of 

the national governments in the Horn of Africa, as well as the international 

community, and highlights the need to manage the risk, rather than the crisis, by 

responding to early warnings effectively, rather than waiting until certainty is 

confirmed (Hillier and Dempsey 2012). 

 

2.4.2 Environmental Pressures and Climate Change 

Africa is the most vulnerable continent in the world to climate change and climate 

variability, a situation amplified by multiple ‘stresses’ operating across the continent: 

endemic poverty, complex and sometimes unstable governments and institutions, 

limited access to capital for economic growth (markets, infrastructure and 

technology), degrading ecosystems (deforestation, soil erosion and salinisation, 

desertification), natural disasters (meteorological droughts and floods), access to 

and management of safe drinking water, and internal conflicts. These factors 

complicate and reduce Africa’s capacity to mitigate the effects of climate change and 

adapt. The Intergovernmental Panel on Climate Change’s (IPCC) fourth (FAR) and 

fifth (AR5) assessment reports identified Africa’s current climatic sensitivity and 

vulnerable sectors, future climate projections, adaptation costs, constraints and 

opportunities (Boko et al. 2007; Niang et al. 2014). These reports consider 

continental Africa but identify specific climate variability and sensitivities in Ethiopia, 

the Horn of Africa and East Africa.  

 



34 

 

There is evidence (with “high confidence” in the Working Group I [WGI] AR5 

terminology) of warming over land regions across Africa consistent with 

anthropogenic climate change, with decadal temperature analyses indicating 

significant warming over the last 50 – 100 years (Niang at al. 2014). In Ethiopia (and 

also South Africa), minimum temperatures have increased marginally faster than 

maximum and mean temperatures and in many parts of Kenya, South Sudan and 

Uganda the seasonal mean temperature has seen increases over the last 50 years 

(Conway et al. 2004; Kruger and Shongwe 2004; Funk et al. 2011; 2012). An 

increase in the frequency of extreme warm events has also been documented for 

countries bordering the western Indian Ocean between 1961– 2008 (Vincent et al. 

2011). The warming trend is not uniform across the region however, and in East 

Africa an overall decrease in temperatures has been observed from weather stations 

along the coast and near to lakes (King’uyu et al. 2000). It is anticipated that under 

the A1B5 and A26 scenarios, mean annual temperature rise over Africa (compared to 

the late 20th century mean annual temperature) will exceed 2 ºC by the end of this 

century (Niang et al. 2014).   

 

Precipitation is also predicted to see changes in distribution and intensity by the end 

of the 21st century. East Africa has been experiencing an intensifying dipole rainfall 

pattern on the decadal time scale but this is spatially uneven with more rain falling in 

the northern sector and less in the south of the region (Schreck and Semazzi 2004). 

Overall, rainfall has decreased across the region over the last three decades 

between March and June (Funk et al. 2008; Williams and Funk 2011) and in the 

Horn of Africa, summer monsoonal rain has been decreasing for the last sixty years 

(Williams et al. 2012). However, areas of high or complex topography such as the 

Ethiopian highlands are likely to experience increases in rainfall and extreme events 

by the end of the century (Niang et al. 2014). Changes in runoff and hydrology have 

already been observed in Ethiopia, Kenya and Tanzania (Legesse et al. 2002; 

Eriksen et al. 2005).  

 

                                                           
5
 An emissions scenario describing a future world with rapid economic growth, a global population 

peaking mid-century and then declining, and a rapid introduction of efficient technologies. The 
technological emphasis is on a balance between fossil and non-fossil energy sources.  
6
 An emissions scenario describing a heterogeneous future world, based on self-reliance. 
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Few regional and sub-regional climate change scenarios using regional climate 

models or empirical downscaling exist for Africa due to insufficient climate data, 

limited computational facilities and a lack of human resources (Boko et al. 2007). For 

2080 – 2099 under a medium-high emissions scenario using twenty general 

circulation models (GCMs), annual mean surface temperature is expected to 

increase by 3 – 4 °C compared to 1980 – 1999, with the least warming occurring in 

equatorial and coastal areas (Christensen et al. 2007). Regional climate models tend 

to give smaller temperature increases but again this is complicated by predicted 

changes in vegetation and land use cover (Boko et al. 2007). For equatorial East 

Africa, maximum and minimum temperatures are projected to show an increase in 

the number of days warmer than 2 ºC above the 1981 – 2000 average by the mid- to 

late 21st century under A1B and A2 scenarios (Anyah and Qui 2012). Climate model 

projections for Ethiopia under the A2 and B17 scenarios show warming across all 

seasons, which may enhance evaporation as well as the frequency of heat waves 

(Conway and Schipper 2011). Temperatures over the upper Blue Nile are predicted 

to rise by 2 – 5 ºC by the end of this century under the A1B scenario compared to 

the 1961 – 1990 baselines (Elshamy et al. 2009).   

 

Projected changes in precipitation are less consistent with models indicating 

significant differences in the range of seasonal mean rainfall. This is partly due to the 

inability of GCMs to successfully reproduce the mechanisms responsible for 

precipitation such as orography and the hydrological cycle, as well as global 

teleconnections, SST anomalies (which are particularly important for the Sahel), dust 

aerosol emissions, soil moisture and deforestation along the equator (Lebel et al. 

2000). An assessment of twelve CMIP3 (the Coupled Model Intercomparison 

Project, phase 3) GCMs over East Africa suggests a wetter climate with more 

intense rainy seasons, including an increase in the number of extreme wet days, and 

less severe dry seasons by the end of this century due to recent cooling in the 

equatorial eastern Pacific (Moise and Hudson 2008; Shongwe et al. 2011; Vizy and 

Cook 2012). There are regional discrepancies however, as GCMs predict a wide 

range of spatial rainfall patterns over Ethiopia, whilst others indicate drying over 

                                                           
7
 An emissions scenario describing a future world with a global population peaking in the mid-century 

and then declining, a rapid change in economic structures toward a service and information economy, 
and the introduction of resource-efficient technologies. 
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large parts of Kenya, Uganda, Somalia, South Sudan and Tanzania. These 

inconsistencies have now been dubbed the ‘East African climate paradox’; whilst 

climate projections indicate future warming and increased rainfall, the East Africa 

long rains are actually declining. The inability of models to agree on the magnitude 

and direction of change as well as extremes will severely limit and hinder the ability 

of policy makers to manage water resources in the future. Discrepancies between 

models exist for the entirety of the African continent; for the western Sahel some 

models predict progressive drying, whilst others indicate wetter conditions with the 

expansion of vegetation (Hulme et al. 2001; Claussen et al. 2003).  

 

Some models are also unable to simulate land use changes and extreme climate 

events including ENSO. This highlights the importance of resolving and improving 

the representation of regional atmospheric processes, alongside local climate 

effects, in climate models in order to improve the precision and reliability of 

simulations. Palaeoclimate simulations in conjunction with climate models may 

provide an important tool for resolving and assisting with constraining model 

parameters by supplementing the constraints of the instrumental record; they can 

distinguish between models which are overly sensitive and those which are not 

sensitive enough (Von Deimling et al. 2008). Palaeoclimate simulations may also be 

used to assign relative likelihood to different ensemble members and scenarios in 

probabilistic climate change prediction (Brown et al. 2008). 

 

Despite the limitations and discrepancies, climate models do provide a useful 

baseline for identifying the likely impacts of climate change, within a likely envelope 

of behaviour. Water stress, for example, will become a greater risk to nations with 

climate change (“high confidence”). Six climate models show an increase in the 

number of people experiencing water stress in North and Southern Africa, whilst in 

East and West Africa people are likely to see a reduction in water stress (Boko et al. 

2007). Even in the absence of climate change, present population trends and water 

use patterns suggest that many African countries will exceed their economically 

sustainable land-based water resources by 2025 (Ashton 2002). Under A2 and B1 

scenarios, stream flow in the River Nile is expected to increase in the medium term 

(2010 – 2039) and then decline in the second half of this century due to a 

combination of declining rainfall and increasing evaporative demand (Beyene et al. 
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2010; Kingston and Taylor 2010). Changes in the Lake Tana basin, source of the 

Blue Nile, are inconclusive (Taye et al. 2011).  

 

Lake systems are particularly at risk to changes in temperature, precipitation and 

changes in hydrology (Ayenew 2007). In Ethiopia for example, Lake Abiyata, the 

terminal lake in the Ziway-Shala basin, decreased by more than 50 % in size 

between 1973 and 2006 (Getnet et al. 2014). Although no significant changes have 

been documented in rainfall over the basin for the period 1975 – 2008, linear 

temperature increases have been observed in the surrounding Assela, Zeway and 

Butajira highlands. Land use in the basin has also seen substantial changes in 

recent decades. In 1990, 30.8 % of land was intensively cultivated which by 2007 

had increased to 49.9 % (Getnet et al. 2014). Some land use types completely 

disappeared in this time period including bush-shrub grassland, dense woodland and 

wooded grassland. Associated with these changes, surface runoff increased in 35 % 

of the basins land area and decreased in 15 % of the land area. Irrigation and water 

abstraction have also increased across the basin in this time period. From 2002 – 

2009 the area being irrigated for agriculture in two districts north and west of Lake 

Ziway increased from 1,435 ha to 16,510 ha. As a consequence of the increasing 

temperatures, land use change and pressure on resources, 207 Mm3 of additional 

water has been lost through evaporation from the lakes and evapotranspiration from 

the land surface in 2007 compared to 1990 (Getnet et al. 2014). Given the 

magnitude of the changes observed over a relatively short time period, it is clear how 

current climate sensitivity coupled with additional anthropogenic pressures can 

severely reduce a system’s ability to respond and essentially buffer the detrimental 

effects it incurs. This trend is likely to continue as long as resources are 

overexploited and climate patterns continue to change.   

 

Climate change will also burden the health sector in Africa (“medium-high 

confidence”) as it acts as a multiplier to existing health vulnerabilities such as 

insufficient access to safe drinking water and sanitation and food insecurity (Niang et 

al. 2014). Under various emission scenarios, the areas suitable for malaria 

transmission will expand and contract depending on location by 2020, 2050 and 

2080 (though multiple drivers such as drug resistance, land use change, human 

migration will also affect transmission) (Thomas et al. 2004). East Africa in particular 
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is more likely to become suitable for malaria transmission (Hartmann et al. 2002). 

More rainfall falling in the warmer kiremt season could see previously malaria-free 

highland areas in Kenya, Ethiopia, Rwanda and Burundi experience modest 

increases in malaria by 2050 with even greater incursions by 2080. Siraj et al. (2014) 

estimate that a 1 ºC rise in temperature, without mitigation, would result in 410,000 

additional infections per year in Ethiopia as malaria expands into new territories. This 

could be amplified by already compromised populations such as those afflicted with 

HIV and AIDS, or in conflict areas where access to health care and medical facilities 

is limited or restricted.  

 

Agriculture is likely to be seriously, detrimentally affected in some regions by climate 

change (“high confidence”). South Africa and Zimbabwe could experience yield 

losses of up to 30 % as temperatures increase and precipitation decreases. Pest, 

weed and disease pressures on crop and livestock may also increase with climate 

change. However, in other areas the growing season is likely to be extended and 

benefit from warming; maize production in East Africa could expand to higher 

elevations (Thornton et al. 2009). Agriculture and food security will be significantly 

affected by additional forces though, such as access to capital and markets, 

technological innovation as well as the increasing trend of urbanisation across the 

continent and globalising food chains (Niang et al. 2014). Whilst some progress has 

been made in managing risks to food production from current climate variability, 

there is a “high confidence” that this will not be sufficient enough to address the long-

term impacts of climate change (Niang et al. 2014). 

 

Ecosystems will most likely see substantial changes due to climate variability, which 

alongside anthropogenic drivers such as land use change (in particular agricultural 

expansion) could be mostly detrimental. The ice cap of Mt. Kilimanjaro for example, 

could disappear between 2015 – 2020, having already seen an 80 % reduction in the 

areal extent of its’ ice fields in the 20th century (Thompson et al .2002). The HadCM3 

(Hadley Centre Coupled Model, version 3) GCM shows that under various emission 

scenarios, mixed rain-fed semi-arid systems will be affected in the Sahel, the Rift 

Lakes region and East Africa (Boko et al. 2007). Declines in fisheries in some of the 

East African Rift Lakes could potentially occur due to climate change; small 

variations in climate may affect thermal stratification, nutrient availability and water 
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inflow, all of which could destabilise plankton dynamics and therefore trophic 

interactions at higher levels (Verburg and Hecky 2009; Magadza 2010). The 

potential impact to fisheries is uncertain however, given the multitude of factors such 

as pollution, invasive species and overfishing, operating across the lakes, which 

themselves could be affected by climate change (Tumbare 2008). Coastal 

ecosystems will also be affected by climate change; episodes of coral bleaching and 

species invasions (including the outbreak of crown-of-thorns starfish) linked to 

climate variability have already been documented in Djibouti and Somalia (Boko et 

al. 2007). Sea-level rise is expected to adversely affect many African nations. Indian 

Ocean islands could see changes in the intensity, frequency and location of cyclones 

and the East African coast could similarly be affected by changes in the intensity and 

frequency of ENSO events. A 1 m rise in sea-level could cost Kenya US $500 million 

in crop losses based on current valuations, whilst in Eritrea the same amount of rise 

would cost US $250 million in damages to infrastructure (Boko et al. 2007).  

 

Based on the multitude of potential climate change scenarios, forecast against a 

background of complex and multiple stresses, Africa clearly needs to adapt. 

However, limited availability of data and the uncertainty of climate modelling make it 

difficult to quantify where and how adaptation responses are most necessary, how 

much they will cost, and how much not adapting could cost (including the financial, 

social, environmental and cultural costs). These uncertainties are complicated and 

amplified by a multitude of factors such as extreme poverty, conflicts, lack of 

resources and technology, imperfect and sometimes corrupt governance systems, 

and economies dependent on the climatically-sensitive agricultural sector. In all 

regions of the African continent, national governments are attempting to implement 

adaptation systems but the evolving frameworks are not yet able to effectively 

coordinate the range of responses required due to under-resourced, incomplete and 

fragmented institutional planning (Niang et al. 2014). The best progress has been 

made at the individual or household level, without the support of governments, policy 

makers and stake holders (Berrang-Ford et al. 2011; Niang et al. 2014). Poverty and 

vulnerability are identified as the primary reason for overwhelming the adaptive 

capacity of African nations and as such, new policies need to strengthen the links 

between adaptation and development pathways with a focus on building resilience in 

order to increase adaptive capacity. Improved understanding of climate variability, 
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including better representation of the climate system and global teleconnections, 

using high-quality, high-resolution data (including palaeodata) will assist with this, 

and bring climate change to the forefront of African national planning. 

  

2.4.3 Historical Interactions with Climate: The Kingdom of Aksum 

It is clear that the people of the Horn of Africa are used to interacting with their 

climate, which has shaped their cultural, social and economic practices and will 

ultimately shape their future. Such interaction with climate is not a recent 

phenomenon and can be traced back to the establishment and decline of the 

Aksumite civilisation of late antiquity. The Kingdom of Aksum8 rose to prominence in 

the Tigray region (approximately 960 km north of Addis Ababa and 540 km north of 

Lake Hayq) around 400 BC and became an international political and economic 

power before declining around AD 700. It has been hypothesised by Butzer (1981) 

that climate change was key in facilitating growth and development of the civilisation 

by allowing population growth. A subsequent climate shift, alongside political and 

economic instability, led to the decline and ultimate collapse of the kingdom by 

causing it to become increasingly inhospitable to the point it could no longer sustain 

its’ population (Butzer 1981) (caution should be aired when interpreting Butzer’s 

[1981] chronological framework given the various materials and techniques applied, 

as well as improvements in chronological analyses since the study was undertaken).  

  

Archaeological evidence indicates that in the pre-Aksumite period (900/800 – 400 

BC) a well-established, administrated society ruled by kings and queens existed on 

the northern Ethiopian plateau (Fattovich 2010). In the Tigray region, towns, villages, 

hamlets and ceremonial centres have been unearthed (Michels 2005). The two 

largest settlements were located at Yeha, where bronze and iron tools and weapons 

were found, and Matara. A large South Arabian influence was found in the 

architecture, ceramics, administrative devices, sculptures, inscriptions and writings 

(Anfray 1968; Ricci 1984; Fattovich 2010). Given the state of the current 

environment at Axum, it is apparent that for the civilisation to have established here, 

conditions and resources must have been significantly more productive and 

hospitable to allow a population to sustain itself. The environment around Axum 

                                                           
8
 ‘Aksum’ traditionally refers to the ancient Ethiopian city whilst ‘Axum’ refers to the modern city.  
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today has been degraded by years of intensive agriculture, unsustainable land use 

and deforestation. Much of the land is experiencing severe soil erosion; Ciampalini et 

al. (2012) calculated that erosion during the Aksumite reign was 2.8 t ha -1 yr -1 

whereas more recently (1975 – 2006) this has increased to 65.8 t ha -1 yr -1 due to 

the conversion of terraces into grazing land without adequate soil conservation 

practices. This is enhanced by a lack of vegetation cover to protect and stabilise 

soils from the monsoon rains, which has caused them to thin considerably (Butzer 

1981). Water is also scarce, and stream discharge and runoff are variable (Butzer 

1981). These conditions could not have supported a population the size of Aksum’s 

2.8 kyr ago (10,000 – 20,000 people in AD 500; Butzer 1981). Evidence instead 

indicates that the land and climate were favourable enough to allow the developing 

civilisation to apply practices such as cattle ploughing, irrigation and terracing 

(Butzer 1981). It is important to consider that these practices during the pre-

Aksumite period would have been applied during a single growing season of short, 

heavy kiremt rains, similar to what Axum receives at present, given its location in the 

far northern highlands.  

 

By AD 50 the archaeological evidence supports the establishment of a kingdom at 

Aksum, indicated through architecture, settlement patterns, elite tombs and coinage 

(Phillips 1997; Finneran 2007; Fattovich 2008). Around this time a shift in climate has 

been hypothesised which would have increased the capacity of Aksum to grow food 

and therefore feed a larger population (Butzer 1981; Sulas et al. 2009). A northward 

extension of the ITCZ would have caused Aksum to receive the belg rains in the 

springtime in addition to the kiremt rains. Terwilliger et al. (2013) used stable 

hydrogen isotopic ratios (δD) of land plant-derived fatty acids to confirm that the 

Aksumite Kingdom emerged during a short, moderate wet period following a stable 

climate. Machado et al. (1998) likewise found evidence of a wet period around this 

time from infilled valley deposits in the Tigray region, and Marshall et al. (2009) 

identified a wet period in the Lake Ashenge (approximately 220 km south-east of 

Axum) diatom record from 200 BC – AD 500, indicating a climate shift. This suggests 

that the increase in precipitation did not trigger an immediate rise in Aksum’s 

prominence, but rather created suitable conditions to which the population gradually 

responded to and utilised (Marshall et al. 2009). Geo-archaeological evidence from 

Aksum itself, and the surrounding landscape, provides evidence of this climate shift 
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(Butzer 1981); sediments deposited in drainage channels between ~ AD 100 and AD 

350 indicate seasonally abundant soil moisture, wet slope soils and strong periodic 

floods. This would have significantly lengthened the growing season for agriculture 

from five to seven, or even nine months, thus allowing two crops to be grown per 

year, as well as improving the supply of surface and subsurface water. Improved 

farming techniques, irrigation and terracing practices would have increased the area 

available for agriculture by expanding onto previously unworkable soils, as well as 

making farming more efficient and productive (Reader 1998; Sulas 2009). The effect 

of this climate shift would have substantially increased the capacity of the kingdom to 

grow food and feed its population, which in turn enabled the civilisation to 

concentrate on its territorial, economic and cultural expansion. 

 

The international prominence of the kingdom as an economic and politically powerful 

trading centre developed around AD 100 when it began to utilise its proximity to the 

Red Sea port of Adulis (modern day Massawa) to funnel its import and export 

commodities. References to tropical timber, ivory, rhinoceros horn, hippopotamus 

hides, civet, slaves, gold dust and frankincense have been found in historical 

documents and archives (Butzer 1981; Casson 1989). The Roman and Byzantine 

empires were particularly important trading partners who paid with iron tools, cloth, 

glass beads and vessels. Other important trade links included Egypt, Gaul (western 

Europe during the Roman era), India, Nubia, Syria, Persia, China and the Black Sea 

region. By the 3rd century AD, the various kings of Aksum had progressively 

incorporated the surrounding regions into the kingdom, including all of modern day 

Tigray, Eritrea, the Sudan, the coastal plains and for a short time, Yemen (Anfray 

1990; Fattovich 2008; 2010). In AD 330 King Ezana converted from worshipping the 

Greek deities to Christianity and so churches and monasteries were erected and by 

around AD 500 the kingdom had reached its maximum expansion (Phillips 1997; 

Fattovich 2010). The city covered an estimated 75 ha and supported a population of 

10,000 – 20,000 people (Butzer 1981).  

 

The kingdom began to decline however in the 7th and 8th centuries AD and finally 

collapsed at the end of the first millennium (Fattovich 2008). This collapse was 

driven by a combination of environmental and economic causes (Butzer 1981; 

Fattovich 2010). Conflict arose when the Beja nomads formed an independent polity 
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in the Eritrean highlands during the 7th – 9th centuries AD, cutting off Aksum’s access 

to the coast (Fattovich 1987; 1990). Arab conquests and Muslim expansion along the 

Red Sea and in the Mediterranean in the 7th – 10th centuries compounded this further 

by replacing Aksum as the key trading authority in the region. The kingdom’s 

economic prosperity began to fade as a result, leading to political instability.  

 

This volatility was compounded further by progressive exhaustion of the landscape 

through intensive agriculture and deforestation. Timber was used for construction, 

manufacture, cooking and heating, and forest was additionally cleared to make room 

for agricultural expansion (Reader 1998). This scale of deforestation would have 

increased topsoil erosion and mobilisation by exposing the surface to the intensity of 

the monsoon rains, causing leaching of soil nutrients, thereby reducing soil fertility 

(Bard et al. 2000). Deposits in the sedimentological records from Aksum at this time 

contain cultural debris, rubble and evidence of saturated soils (Butzer 1981). This 

would imply there was widespread field abandonment in Aksum, most likely when 

land was no longer productive, and that the monsoon rains washed away rubble and 

debris in mudflows, covering abandoned buildings in the city. It is also hypothesised 

that at around AD 750, the climate reverted back to its previous (and present) state 

of one season of kiremt rains per year (a unimodal rainfall regime) (Butzer 1981). 

River Nile flood data support this change in climate (Williams 2009); Nile floods were 

high in AD 622 and continued to be high until AD 750 when they began fluctuating to 

slightly below average flow. From AD 930 – 1070 the flood records registered flow as 

abnormally low (Hassan 1981; 1997; 2007). This supports the hypothesis of reduced 

rains in northern Ethiopia at this time.  

 

The diatom and stable isotope record from Lake Ashenge also supports a rapid shift 

back towards a drier climate and a unimodal rainfall regime, though some 250 years 

prior to that suggested by Butzer (1981) when Aksum was still the central economic 

and political power in the region (Marshall et al. 2009). This would suggest a more 

gradual decrease in rainfall, rather than an abrupt decline leading to catastrophic 

population decrease (Marshall et al. 2009). Whether abrupt or gradual however, the 

decrease in rainfall alongside environmental degradation would have meant only one 

harvest could be produced a year and so farming could no longer provide enough 

food to sustain the city’s population. Consequently, droughts, famines and epidemics 
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may have become more frequent and widespread, as well as increasingly hostile 

attacks from neighbouring pastoralists. The population struggled to cope with the 

environmental changes and increasing isolation, causing them to migrate 

southwards (Pankhurst 1985; 1992; Bard et al. 2000). The city collapsed and was 

abandoned during the 8th century (Butzer 1981).  

  

2.5 Conclusion 

The African monsoonal system and its interaction with the ITCZ and CAB, is the 

driving force behind the climate, distribution of rainfall and seasonality in Ethiopia 

and the Horn of Africa. The expression of regional climate differences is amplified by 

variations in topography, the distribution of lakes and other hydrological features. 

Decadal climate variability may result from ENSO events and SST anomalies, which 

can be particularly hazardous to people through the occurrence of droughts. Perhaps 

most worrying is the potential impact of anthropogenic climate change on future 

climate variability in the Horn of Africa. Current GCMs and regional climate models 

are limited by a lack of regional data and by their ability to simulate the complex 

climate mechanisms, including the position and movement of the ITCZ and ENSO, 

operating across Africa. As a result it is difficult to identify how the Horn of Africa will 

be affected by climate change and how nations could begin to adapt and plan 

mitigation strategies now. Improved predictions and more robust climate models are 

essential for long-term plans as well as for hazard preparation. High-quality, high-

resolution palaeo-records from across the region are essential for this, as they 

identify how the climate responded to previous climate perturbations, which is used 

in testing (hindcasting) and evaluating model sensitivity, as well as constraining 

model parameters.  
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Chapter 3 

Environmental and Climatic Variability in East Africa Since the Last Glacial 

Maximum. 

 

3.1 Introduction 

This chapter aims to review current knowledge and understanding of the 

palaeoclimate of tropical and subtropical Africa in the late Quaternary. First, the 

application of palaeolimnology (the focus of this study) in East Africa is discussed, 

identifying recent progress and advances in the field, as well as key issues affecting 

research. Then, environmental and climatic variability during the late Quaternary is 

discussed. Three time-periods are identified based on the major climatic shifts: the 

Last Glacial Maximum, the last glacial-interglacial transition, and the Holocene. 

Consideration is given to a range of palaeo-records indicative of general climatic and 

environmental trends during these periods, identifying the high magnitude, 

sometimes abrupt events that shaped East African (and continental African) 

hydrology and the environment. For the benefit of the reader, events have been 

described in a chronological order. It is important to consider however that the 

events described did not occur during a definitive time period but were instead 

expressed at different magnitudes and frequencies across Africa at slightly different 

times, given the diversity of feedbacks operating across a patchwork of 

environmental conditions. Events have only been described in such a static fashion 

to help identify the cause and (cumulative) effect of climatic fluctuations in palaeo-

records. Emphases is placed on hydrological and climate records from Ethiopia, the 

Horn of Africa and East Africa but terrestrial and marine records from elsewhere in 

the continent (West and Southern Africa, the Sahel) and further afield are also 

considered (Fig. 3.1).  

 

3.2 Palaeolimnology in East Africa 

Sedimentary sequences from tropical African lakes have been used to reconstruct 

climate and environmental changes at a range of time scales. The focus of these 

reconstructions has shifted from long-term glacial-interglacial dynamics during the 

Quaternary, to short-term (century to inter-annual scale), regional responses relevant 

to current issues of anthropogenic climate change and human societies. Previously, 

reconstructing such responses in East Africa had been hindered by a lack of  
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Figure 3.1 (a). Lakes and palaeo-record sites across Africa and the Mediterranean 

(Google Maps 2015): (1) Lake Victoria; (2) Lake Albert; (3) Lakes Edward, George, 

Kibengo, Kitagata, Kasenda and Wandakara; (4) Lake Tanganyika; (5) Lake Rukwa; 

(6) Lake Massoko; (7) Lake Malawi; (8) Wonderkrater spring mound; (9) Pretoria 

saltpan; (10) Lake Challa, Mt. Kilimanjaro; (11) Lake Turkana; (12) Lake Tana; (13) 

Jebel Marra, Marrah Mountains; (14) Tibesti Mountains; (15) Lake Chad; (16) Lake 

Barombi Mbo; (17) Lake Bosumtwi; (18) Lake Tritrivakely; (19) Soreq Cave; (20) 

eastern Mediterranean sapropels (multiple sites). 
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Figure 3.1 (b). Inset of Figure 9 (a), lakes and palaeo-record sites across the Horn of 

Africa (Google Earth 2013a): (1) Lake Victoria; (10) Lake Challa, Mt. Kilimanjaro; 

(11) Lake Turkana; (12) Lake Tana; (21) Lake Nabugabo; (22) Lake Manyara; (23) 

Lake Magadi; (24) Lake Naivasha; (25) Lakes Bogoria, Nakuru, Elementeita; (26) 

Sacred Lake, Mt. Kenya; (27) Lake Suguta; (28) Chew Bahir; (29) Lake Garba 

Guracha and the Tamsaa swamp, Bale Mountains; (30) Ziway-Shala basin (Lakes 

Ziway, Langano, Abijata and Shala); (31) Lake Tilo; (32) Mt. Bada, Arussi Mountains; 

(33) Lake Hayq; (34) Lake Ashenge; (35) Mekele outlier; (36) Lake Abhé; (37) Done 

Ella. 

  

N 

500 km 
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instrumental records prior to European colonisation, and by the limited potential of 

other high-resolution climate records such as ice cores, speleothems and tree rings 

(Verschuren 2003). Lakes therefore provide an excellent opportunity to reconstruct 

continental and regional climate variations using the sediments accumulating at the 

bottom of them.  

 

Selecting a suitable lake and understanding the lake system is a crucial first step in 

obtaining a reliable sedimentary sequence and successfully interpreting it (Olaka et 

al. 2010). Continuous, high-resolution records needed for climate reconstructions are 

found in climatically sensitive lakes where the potential to respond to and record 

short-term fluctuations in climate is high, and the signal is preserved in an 

uninterrupted sequence (Battarbee 2000; Umer et al. 2004). Climatically sensitive 

lakes include hydrologically closed basins where evaporation dominates the water 

balance; hydrologically open lakes where surface/subsurface outflow is low in 

comparison to evaporation; and amplifier lakes where highly variable precipitation or 

river inflows override the stabilising effect of outflows, in a basin of unique, often 

tectonically formed morphology (Street 1980; Street-Perrott and Harrison 1985; 

Verschuren 2003; Olaka et al. 2010). Such lakes have been identified across the 

African tropics, subtropics and subtropical desert regions (Table 3.1). Continuous, 

long-term, climate-proxy records from across the African continent provide a spatial 

gradient of climatic and environmental variability, thus making investigations into 

regional hemispheric differences as well as inter-hemispheric symmetry (or 

asymmetry) possible. 

 

Olaka et al. (2010) investigated the sensitivity of ten lake basins in the East African 

Rift Systems (EARS; Lakes Awassa, Manyara, Naivasha, Suguta, Turkana, Victoria 

and the Magadi-Natron, Nakuru-Elmenteita, Baringo-Bogoria and Ziway-Shala 

basins [Fig. 3.1]) and their potential for recording climate variability by assessing 

features such as lake form and hydrology. Tectonic control on basin geomorphology 

was demonstrated to affect the potential of a lake to yield good sedimentary 

sequences; graben-shaped lakes (Lakes Awassa, Naivasha, Suguta and the 

Nakuru-Elmenteita and Ziway-Shala basins, as well as the study site, Lake Hayq) 

show greater oscillations in lake level relative to surface area due to the steep sided 

catchments which constrain and protect them from wind-driven mixing. This 
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increases their potential to preserve sedimentary records. In contrast, pan-shaped 

lakes with gentle slopes (Lakes Manyara, Turkana and Victoria and the Baringo-

Bogoria and Magadi-Natron basins) show greater oscillations in surface area to 

depth ratio, and sediment records tended to show greater evidence of erosion, 

reworking and drying out during Holocene arid-humid transitions.  

 

Table 3.1. African lakes with continuous climate-proxy records. 

Lake Location 
Length of record 

(kyr BP)  
Authority 

Naivasha Kenya 175 Bergner et al. 2003; Trauth et al. 2003 

Challa Mt. Kilimajaro 140 Moernaut et al. 2010 

Tanganyika EARS 100 Scholz et al. 2003; Tierney et al. 2010 

Malawi EARS 79 Scholz and Finney 1994 

Abhé Ethiopia-Djibouti 70 Gasse 1977; Gasse et al. 1980 

Massoko Tanzania 50 Barker et al. 2003; Garcin et al. 2006 

Chad West Africa 50 Durand 1982 

Tritrivakely Madagascar 40 Gasse and Van Campo 1998 

Albert EARS 30 Beuning et al. 1997 

Bosumtwi Ghana 26 Maley 1992; Peck et al. 2004 

Victoria EARS 25 Stager et al. 1986 

Rukwa Tanzania 23 Vincens et al. 2005 

 

Burrough and Thomas (2009) previously identified that lakes with a large catchment 

to surface area ratio tend to have a greater amplification factor and therefore do not 

require high inputs of water to maintain a positive hydrological balance. This would 

account for the magnitude of palaeolakes Suguta, Turkana, Naivasha, Awassa and 

the Ziway-Shala basin but not the Baringo-Bogoria and Magadi-Natron basins, which 

have large groundwater catchments (Olaka et al. 2010). This indicates that surface 

and subsurface flow must be considered when assessing amplification potential and 

climatic sensitivity of African lakes. The most sensitive lakes to local and regional 

climate fluctuations are the Rift Lakes with graben morphologies, humid conditions 

and a water balance dominated by rainfall and surface inflow (Lakes Awassa, 

Naivasha and the Ziway-Shala basin) (Olaka et al. 2010). Other lakes with similar 

morphology that receive low rainfall (Lake Suguta and the Nakuru-Elmenteita basin) 

do not record local signals of climate variability as they receive groundwater from 

neighbouring catchments (Olaka et al. 2010). They provide better evidence of 
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regional climate changes and explain why lake level fluctuations varied in magnitude 

across the region during the Holocene.  

 

This demonstrates the complexity of lake sensitivity and amplification as well as 

highlighting how such sensitivity can affect the interpretation of sedimentary records 

in terms of local and regional climate events. However, even after giving due 

consideration to these variables, climatically sensitive lakes may still not guarantee 

continuous, high-resolution, sedimentary records. Hydrologically closed basins and 

shallow lakes are susceptible to drying out in response to short-term rainfall 

variability, which may truncate or destroy the climate record accumulating in their 

sediments (Verschuren 1999a). Given the magnitude of climatic fluctuations that 

occurred across the African continent since the Last Glacial Maximum, it is 

unsurprising that many lakes have at some point in time, dried up (Table 3.2). In the 

deeper lakes such as Lakes Tanganyika (maximum depth 1470 m) and Malawi 

(maximum depth 700 m) this is not an issue as they remained waterlogged during 

arid periods and sedimentation continued (Johnson 1996). On average, 

sedimentation rates across East Africa are about 1 mm yr-1 (although this is 

extremely variable) and so at lakes that remained wet during the late Pleistocene 

and Holocene, sub-sampling of palaeoclimatic data can occur at a century, decadal 

or even sub-decadal scale temporal resolution (Johnson 1996; Battarbee 2000). Site 

selection is thus crucial for accurately deciphering the complexity and magnitude of 

climate signals concealed in lake sediments (Verschuren 2003).  

 

Table 3.2. African water bodies which show evidence of desiccation since the LGM. 

Lake Location Authority 

Victoria EARS Talbot and Livingstone 1989; Stager et al. 2002 

Albert EARS Beuning et al. 1997; Williams et al. 2006 

Challa Mt. Kilimanjaro Verschuren et al. 2009; Barker et al. 2013 

Magadi Kenya Barker and Gasse 2003 

Tana Ethiopia Lamb et al. 2007a 

Abhé Ethiopia-Djibouti Gasse 1977; Gasse et al. 1980 

Bosumtwi Ghana Talbot and Johannessen 1992; Peck et al. 2004; 

Brooks et al. 2005 

Blue and White Nile 

headwaters  

East Africa Marshall et al. 2011 
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Chronology is a second important issue affecting lacustrine records in East Africa 

(Johnson 1996; Verschuren 2003). Finely laminated sediments with annual 

resolutions are the obvious preference for reconstructing climate variability at a 

century to decadal time scale but such records in intertropical Africa are very rare 

due to the complexity of the seasonal climate cycle and its preservation in sediments 

(Verschuren 2003). Exceptions where truly annual laminations have been found 

include Lake Malawi (Johnson et al. 2002) and Lake Hora in Ethiopia (Lamb et al. 

2002b). With regard to obtaining radiocarbon dates (14C), conventional methods and 

accelerator mass spectrometry (AMS) are both easily obtained on organic matter or 

carbonates but they are not always reliable (Johnson 1996). Sources of error include 

contamination by younger carbon though root penetration or bioturbation, 

contamination by minerogenic ‘dead’ carbon, the lake reservoir effect and the hard-

water reservoir effect (Björck and Wohlfarth 2001; Lowe et al. 2004). These factors 

can hamper the accuracy of 14C dating of bulk organic sediment samples, especially 

in organic lake sediments (Törnqvist et al. 1992). It is well recognised that the use of 

terrestrial macrofossils (twigs, leaves of deciduous trees, conifer needles, insect 

remains and charcoal) for 14C dating improves results considerably since they are 

unlikely to be affected by such disturbances (Törnqvist et al. 1992). Therefore, 

macrofossils are the obvious preference for providing a reliable and accurate 

chronology but they cannot always be found in lake sediments.   

 

Due to such discrepancies in the accuracy between chronological methods as well 

as multiple sources of error and issues of contamination, it has been necessary on 

several occasions to re-date a sediment sequence to confirm the reliability of the 

original chronology. For example, a reliable chronology was only obtained for core 

64-2 from Pilkington Bay, Lake Victoria, after it was discovered the original dates 

were 330 years too old due to contamination with ancient carbon (Stager et al. 

2003). Core LT84-8P from Lake Turkana was also re-dated after it was realised that 

the bulk carbonate dates were too old due to aeolian influxes of micrite and small 

ostracods from the east of the lake (Johnson 1996).  

 

Given such complications in obtaining a reliable chronology, Verschuren (2003) 

recommends producing an accurate age model by (1) selecting a lake small enough 

to bury and preserve adequate quantities of terrestrial plant fossils; (2) obtaining 14C 
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dates at intervals near to the two-sigma counting error of each date; (3) carefully 

selecting dates to be included in the age model; and (4) increasing the precision of 

the age model by wiggle-matching sediment ages against the atmospheric 14C 

calibration curve. 

 

A third complicating factor in East African lacustrine records is the often uncertain 

relationship between sedimentary climate-proxy indicators (physical, chemical or 

biological), and the primary climate variables of temperature, precipitation and wind 

(Verschuren 2003). In contrast to lakes in the northern temperate regions, where a 

range of climate proxies can be assumed to be directly controlled by variations in 

temperature, a reliable proxy of temperature change in Africa has not been 

established (Verschuren 2003). Recently, several African lake temperature records 

have been produced through the application of the TEX86 temperature proxy9 but this 

may not be as reliable in small lakes where the signal may be compounded by 

substantial amounts of isoprenoid tetraether compounds derived from soil (Berke et 

al. 2012a).  

 

Climate and environmental reconstructions therefore rely on inferring and calibrating 

the relationship between the sediment, water column and climate. Diatom-inferred 

conductivity for example, is used extensively across East Africa (L. Abiyata – Chalié 

and Gasse 2002a; L. Rukwa – Barker et al. 2002; L. Kasenda and Wandakara – 

Ryves et al. 2011; Munya wa Gicheru – Owen et al. 2012) either separately or in 

combination with other proxies. It has proved more difficult to calibrate diatom 

community assemblages with water depth. Where a significant relationship has been 

demonstrated, the robustness and sensitivity of calibrations and training sets 

remains disputed as the palaeolimnological model will be influenced by secondary 

variables (i.e. climate, human activity, catchment processes) not accounted for in the 

simulation (Battarbee 1991; Barker et al. 1994; Brugam et al. 1998; Juggins 2013). 

Likewise, a suitably robust training set has not been developed to calibrate diatom 

assemblages with water temperature despite several efforts (Pienitz et al. 1995; 

Lotter et al. 1997). Although some studies show evidence of apparent statistical 

                                                           
9
 TEX86 is based on the degree of formation of membrane lipids from aquatic Thaumarchaeota, 

specifically isoprenoid glycerol dialkyl glycerol tetraethers (GDGTs), which are often well preserved in 
lacustrine (as well as marine) sediments (Berke et al. 2012a). 
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significance, Anderson (2000) argues that quantitative reconstructions model a 

whole system, and so the effect of temperature will be shared amongst other 

variables (i.e. dissolved organic carbon, alkalinity, conductivity), which may exert a 

stronger influence on community assemblage than temperature, as well as 

secondary variables (Battarbee 2000; Juggins 2013).  

 

Therefore, whilst some proxies can be used to reconstruct climate variables directly, 

most approaches are indirect and require a comprehensive understanding of 

processes occurring between the water column, the sediment record and the climate 

(Battarbee 2000). As a result, multi-proxy approaches are commonly used in 

palaeolimnology as not only do they provide more data, they enable lake-catchment 

system responses to climate, and other external forces such as anthropogenic 

activities (i.e. agricultural practices, clearing by burning), to be more thoroughly 

identified and inferred. Comparisons can then be made between responses and 

response rates to the external forcing, and the relationships between proxies, lake 

system and the forcing mechanism (Battarbee 2000).  

 

3.3 The Last Glacial Maximum  

The Last Glacial Maximum (LGM, ~ 23.0 – 18.0 kyr BP) is the most recent interval in 

global history when Northern Hemisphere ice sheets reached their maximum volume 

(Ray and Adams 2001). The combination of increased continental and sea ice 

volume, low sea surface temperatures (SST), heightened continental elevation in 

glaciated regions, intensified albedo and altered atmospheric and ocean circulation, 

caused global temperatures to decline (Clark and Mix 2002). In the tropical Atlantic 

the drop in air temperature and SST reduced moisture transport along the Congo Air 

Boundary (CAB), resulting in increasing aridity and cooler temperatures in central 

and tropical Africa (Kendall 1969; Street and Grove 1976; Hamilton and Taylor 1991; 

Jolly et al. 1998; Gasse 2000; Foerster et al. 2012).  

 

The low temperatures and reduced moisture had significant impacts on hydrology in 

East Africa with the general effect of reducing regional lake levels and river flows 

(Hamilton and Taylor 1991). In the East African Rift System, Lake Tanganyika (Fig. 

3.1 [a] site 4) was ~ 300 m lower than present at 21.0 kyr BP (Fig. 3.2; Gasse et al. 

1989; Gasse 2000). Lake Victoria (Fig. 3.1 [a] site 1) was almost, if not completely,  
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Figure 3.2. Water level fluctuations (height [meters] above present level) for Lakes 

Abhé (Gasse and Street 1978), Turkana (Johnson 1996), Albert (Talbot and 

Livingstone 1989), Tanganyika (Gasse et al. 1989) and Malawi (Finney et al. 1996; 

Johnson 1996). Key time periods are identified: LGM – blue, HE-1 – red, AHP – 

green box, YD – purple, HCO – yellow, and the 4.2 event – red line (adapted from 

Gasse 2000).   
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desiccated at 20.5 kyr BP (Talbot and Livingstone 1989) and Lake Albert (Fig. 3.1 [a] 

site 2) was 46 – 58 m lower than present from 20.2 – 18.0 kyr BP (Fig. 3.2; Beuning 

et al. 1997). At Lake Malawi (Fig. 3.1 [a] site 7) the concentration and percentage of 

periphytic diatoms in the fossil diatom record from the northern basin indicate a 

shallow lake was present during the LGM from 22.8 – 17.0 kyr BP (Gasse et al. 

2002). Similarly in Tanzania, Lake Rukwa (Fig. 3.1 [a] site 5) was a shallow swamp-

like waterbody divided into several sub-basins from 22.1 – 19.6 kyr BP (Barker et al. 

2002; Barker and Gasse 2003). The Lake Massoko (Fig. 3.1 [a] site 6) fossil diatom 

record indicates an increase in the abundance of periphytic and aerophilous diatoms 

as well as maximum diatom-inferred conductivity at 20.0 kyr BP due to shallow water 

conditions (Barker and Gasse 2003). In Kenya a hiatus in sediment accumulation at 

Lake Magadi (Fig. 3.1 [b] site 23) occurred from 24.0 – 15.0 kyr BP, which has been 

attributed to a desiccation event (Barker and Gasse 2003). At Lake Challa (Fig. 3.1 

[a] site 10) the precipitation-evaporation balance (P/E) began to drop at 23.0 kyr BP, 

indicating increasingly dry conditions and temperatures 3.5 – 6.0 °C lower than 

present (Barker et al. 2011; Sinninghe Damste et al. 2011; Barker et al. 2013). 

Seismic-reflection data also confirms the lake level declined at 20.5 kyr BP, although 

aridity was modest in comparison to previous Quaternary ‘megadrought’ events such 

as the period from ~ 114.0 – 97.0 kyr BP (Moernaut et al. 2010). 

 

In Ethiopia a core from Chew Bahir (Fig. 3.1 [b] site 28) shows sharp increases in 

potassium (K) from 23.0 – 19.0 kyr BP indicating increasing aridity (Fig. 3.3); during 

dry environmental conditions and sparse vegetation cover, the K-rich gneisses in the 

lake catchment were easily eroded and washed into the basin via alluvial fans 

(Foerster et al. 2012). In the Main Ethiopian Rift (MER), the Ziway-Shala megalake 

(Fig. 3.1 [b] site 30), which was ~ 83 m above the present Lake Shala level (Shala 

Datum Level, AD 1972, 1558 m) from 30.0 – 25.0 kyr BP, declined significantly until 

14.5 kyr BP, equating to a 9 – 32 % reduction in precipitation during the LGM, 

assuming temperatures 3.0 – 6.0 °C cooler than present (Street 1979a; Street 

1979b). At Lake Abhé (Fig. 3.1 [b] site 36), the terminal lake for the Awash River in 

the Afar Depression, a stepwise fall in lake level occurred from 27.0 – 20.2 kyr BP 

and a palaeosol developed from 20.2 – 19.0 kyr BP, indicating the previously large 

(6000 km²) and deep (170 m) freshwater lake was either desiccated, or very nearly 

so (Gasse 1977; Gasse et al. 1980). At Lake Tana (Fig. 3.1 [a] site 12), high- 
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Figure 3.3. Element content (K – Potassium, Ca – Calcium, Sr – Strontium) of core 

CB-01-2009, recovered from Chew Bahir, Ethiopia, in 2009 from the now-dry 

western margin of the lake basin (N 04°50’6; E 36°46’8), against time. Key time 

periods are identified: LGM – blue, HE-1 – red, AHP – African Humid Period, YD – 

Younger Dryas Stadial, and the 4.2 event – red line (adapted from Foerster et al. 

2012).   
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resolution seismic data suggest the lake may have been completely desiccated prior 

to 18.7 kyr BP (Lamb et al. 2007a). There is also evidence of reduced seasonal 

discharge from the Blue Nile during the LGM (Said 1993; Marshall 2006). 

 

In contrast to the regionally low lake levels, there is evidence of glaciations on 

several mountain ranges in East Africa during the LGM. Dating of moraines, cirques 

and other glacial features indicate glaciers were present on the Simen and Bale 

Mountains and on Mt. Bada, Ethiopia (Fig. 3 and 9 [b] site 32) (Osmaston and 

Harrison 2005). Mounts Kilimanjaro, Kenya, Elgon and the Rwenzori and Aberdare 

Mountains were also glaciated during the LGM (Osmaston and Harrison 2005).  

 

In the Madagascan highlands, terrestrial pollen records from Lake Tritrivakely (Fig. 

3.1 [a] site 18) show evidence of low temperatures from 40.0 – 17.0 kyr BP, 

punctuated by short-term warm-dry periods, whilst diatom and sedimentary records 

show a positive P/E balance from 38.0 – 32.0 kyr BP followed by increasing aridity 

(Gasse and Van Campo 1998; Williamson et al. 1998). The lake was at least 

seasonally dry from 22.0 – 17.5 kyr BP (Gasse 2000). A SST alkenone-temperature 

record from an Indian Ocean core confirms glacial cooling (approximately – 2.5 °C) 

culminating around 20.0 – 19.5 kyr BP (Bard et al. 1997). 

 

In the Sahel a cold (~ 6.0 °C cooler than present), wet period associated with the 

recharge of the confined “Middle aquifer of the Chad Formation” in Niger ended at 

23.3 kyr BP (Edmunds et al. 1999). In the Sahara, dry season flow in the White Nile 

was low, if not absent, and parts of the channel became blocked behind dunes and 

mobile sand-bars, resulting in seasonal ponding of water (Williams and Adamson 

1980; Said 1993; Williams et al. 2000). Studies from Morocco likewise show that 

mobile sand-bars migrated inland from west to east during the LGM, implying 

conditions were windier than present (Rognon and Coudé-Gaussen 1996). In Egypt 

River Nile flow was highly seasonal during the LGM and around the headwaters the 

channel became braided (Adamson et al. 1980), whilst the channels south of 

Khartoum (the Blue Nile and White Nile) were highly seasonal with low discharge 

(Maley 2000).  

 

http://www.sciencedirect.com/science/article/pii/S0921818100000394#BIB71
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Certain locations in North Africa do appear to have retained wet conditions during 

this time. Radiocarbon ages of algal limestone in the caldera at Jebel Marra (Fig. 3.1 

[a] site 13), indicate high lake levels from 23.5 – 16.5 kyr BP (Williams 2009). Lakes 

were also present in the Tibesti Mountains (Fig. 3.1 [a] site 14), from 24.0 – 18.7 kyr 

BP and 18.3 – 14.6 kyr BP, and in southern Egypt and in Sudanese Nubia the main 

River Nile is said to have had continuous flow (Maley 2000).  

 

In West Africa, pollen records from Lakes Barombi Mbo and Bosumtwi (Fig. 3.1 [a] 

sites 16 and 17) indicate dry conditions during the LGM (Maley 1992; Maley and 

Brenac 1998; Gasse 2000). The period is characterised however by non-linear 

oscillations between dry and humid periods; at Lake Bosumtwi, δ18O of calcite and 

δ15N of organic matter indicate dry periods centred at 25.9 kyr BP, 21.9 kyr BP and 

17.5 kyr BP, and a humid period from 21.0 – 18.5 kyr BP (Talbot and Johannessen 

1992; Gasse 2000). In Southern Africa, the fossil pollen records from the 

Wonderkrater spring mound (Fig. 3.1 [a] site 8), indicates that summer temperatures 

during the LGM were ~ 4.0 °C cooler than present, whilst high-resolution stable 

isotope records from the Cold Air Cave speleothem, South Africa, imply it was less 

humid than the Holocene (Lee-Thorp et al. 2001; Holmgren et al. 2003; Truc et al. 

2013). The stable isotope record from a stalagmite in Botswana likewise indicates 

glacial cooling of 2.0 – 3.0 °C (Holmgren et al. 1995; Gasse 2000) and the 

precipitation time series from the Pretoria saltpan (Fig. 3.1 [a] site 9), suggests 15 – 

20 % less precipitation during the LGM than present (Partridge et al. 1997).  

 

At the millennial scale, the rainfall deficit and cool temperatures observed in 

subtropical and tropical Africa may be accounted for by half-precessional intervals 

(Milankovitch cycles, ~ 11.5 kyr) in phase with orbitally-induced fluctuations in 

summer insolation (Fig. 3.4). Greater summer insolation during the LGM resulted in 

intensified monsoon circulation by enhancing the inter-hemispheric ocean-land 

pressure gradient which drew the monsoon winds inland (Kutzbach et al. 1993; 

Gasse 2006). This adequately explains the occurrence of dry conditions in the 

northern tropics. Given that the Southern Hemisphere is in antiphase with the 

Northern Hemisphere, the south would be expected to have experienced intensified 

monsoon rainfall during the LGM, which contradicts the findings presented 

(Nicholson 1986). This indicates that the hydrological budget of Africa during glacial  
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Figure 3.4 (a). Pleistocene variability in (a) summer solar radiation (watts per square 

meter, W.m-2) in the northern and southern subtropics (Berger 1978), (b) the 

monsoonal precipitation index at 20 ° N based on fossil fauna assemblage variations 

in a deep-sea sediment core (RC24-07, equatorial Atlantic; McIntyre et al. 1989), 

and (c) South African monsoon precipitation reconstructed from a sedimentary 

record from the Pretoria Saltpan (Partridge et al. 1997) (adapted from Gasse 2000). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4 (b). Millennial changes in summer solar radiation (watts per square meter, 

W/m2) over the past 25.0 kyr. Key time periods are identified: Last Glacial Maximum 

– LGM, HE-1 – red, AHP – green, Younger Dryas Stadial – YD, and the 4.2 event – 

red line (adapted from Gasse 2006). 
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periods was not solely paced by Milankovitch cycles. Coupled atmosphere-ocean 

General Circulation Models (GCMs) indicate that tropical aridity during the LGM was 

due to increased northward transport of oceanic heat away from the tropics. This 

was amplified by upwellings and zonal advection of cold water in the upper 

equatorial ocean which enhanced trade winds and consequently reduced Congo Air 

flow (Barker and Gasse 2003). GCMs therefore indicate the global hydrological cycle 

during the LGM was weaker than today (Bush and Philander 1998; Ganopolski et al. 

1998).  

 

3.4 The Last Glacial-Interglacial Transition 

Palaeoclimatic reconstructions from East Africa during the last deglaciation (~ 20.0 – 

11.5 kyr BP) indicate increasingly wetter and warmer conditions across the region, 

punctuated by abrupt transitions from arid to humid and humid to arid periods. 

Following on from a major desiccation event (Heinrich Event 1), the first arid-humid 

transition was centred at ~ 17.0 – 16.0 kyr BP, followed by additional events at 15.0 

– 14.5 kyr BP and 11.5 – 11.0 kyr BP, the latter two being associated with the 

reactivation of the monsoon system (Fig. 3.4). The effect, relative strength and timing 

of these events varied with latitude and there is evidence of both an early end of full 

glacial conditions, as observed in both the Antarctic Byrd (21.0 kyr BP) and Vostok 

(18.5 kyr BP) ice records, and a stepped transition to interglacial conditions (14.6 kyr 

BP and 11.6 kyr BP), as found in records from Greenland (Johnsen et al. 1972; 

1992; Jouzel et al. 1987; Blunier et al. 1998; Gasse 2000).  

 

3.4.1 Heinrich Event 1  

Heinrich Events occurred at approximately 7.0 kyr intervals throughout the last 

glaciation, during which massive influxes of freshwater were released into the North 

Atlantic, temporarily disrupting the northward transport of heat by the thermohaline 

circulation (THC) away from the tropics (Heinrich 1988; Vidal et al. 1997; Hemming 

2004; Gherardi et al. 2005; Stager et al. 2011). Heinrich Event 1 (HE-1) was a mass 

iceberg discharge event that occurred between ~ 18.0 – 15.0 kyr BP and has been 

associated with reduced rainfall across tropical Africa (Bard et al. 2000; Waelbroeck 

et al. 2001). The release of freshwater during HE-1 would have caused SST’s in the 

tropical Atlantic to rise, lessening the ocean-continent temperature-pressure ratio. 

Climate models suggest a southward shift of the Intertropical Convergence Zone 
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(ITCZ), a weakened Atlantic monsoon and reduced precipitation across the northern 

tropics as a result (Ruhlemann et al. 1999; Stager et al. 2002; Scholz et al. 2003; 

Brooks et al. 2005; Dahl et al. 2005). However, the intensity of the aridity and its 

extent (the signal has been detected in the Indian Ocean and western Pacific) 

suggests that severe, systemic weakening of the Afro-Asian rainfall systems also 

occurred, probably in response to cooler SST in the south-east Atlantic and Indian 

Oceans, which reduced the evaporative moisture content of the ITCZ (Stager et al. 

2011). Therefore, the height of the HE-1 stadial likely coincided with an extreme and 

widespread drought, which resulted in many lakes becoming completely, or very 

nearly, desiccated.  

 

At Lake Victoria, dating and re-examination of coring and seismic profiling data have 

confirmed lake level fell dramatically in the late Pleistocene; the physical properties 

of the cores Ibis 1 and 3 (taken from 32 m depth in the Damba Channel and from 66 

– 68 m depth offshore) reveal at least two discontinuities corresponding to low lake 

levels and contain layers of littoral gastropods, which indicate oxidation and 

desiccation of sediments during lowstands, as well as rootlets or burrows, 

desiccation cracks and colour changes (Stager et al. 1986; Talbot and Livingstone 

1989; Kiage and Liu 2006). New 14C dates indicate the lake was desiccated from 

17.0 – 16.0 kyr BP (Stager et al. 2011). A second desiccation event occurred at 

some point between 15.0 – 14.0 kyr BP and was not as widespread across 

equatorial East Africa (Stager et al. 2011). The first desiccation event from 17.0 – 

16.0 kyr BP coincides with fluctuations in δ14C and HE-1, pointing to casual links 

between North Atlantic ice-rafting events, solar variability and African aridity.   

 

In the EARS, spikes in total organic carbon (TOC) and δ13C values in core T97-52V 

(taken from 393 m depth between the Kavala Island Ridge and the Mahali peninsula) 

from Lake Tanganyika appear to coincide with Heinrich Events 1 – 6 (Scholz et al. 

2003). Spectral analysis of key proxies indicate an 11.0 – 16.0 kyr cycle, most likely 

in response to water column productivity following mixing, increased nutrient 

availability and rapidly rising water levels after a lowstand event, such as the ice-

rafting events in the North Atlantic (Scholz et al. 2003). At Lake Turkana (Fig. 3.1 [a] 

site 11), a lowstand is documented in the sediment record from ~ 19.0 – 18.0 kyr BP 

by high total inorganic carbon (TIC), high calcium (Ca) counts and the presence of 
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sand. The lake was at least 110 m lower than the current lake level and the South 

Basin was most likely desiccated (Morrissey and Scholz 2014). In Ethiopia a period 

of intense aridity at the time of HE-1 has been confirmed at Lake Tana through 

mineral magnetic, geochemical and seismic data, which has identified a distinctly 

aeolian, possibly Saharan, sediment component in a core from the centre of the lake, 

which currently has a maximum depth of 14 m (Marshall et al. 2011). 

 

Elsewhere in East Africa, the timing of a desiccation event synchronous with HE-1 

has been documented at Lakes Albert (Beuning et al. 1997; Williams et al. 2006), 

Challa (Verschuren et al. 2009), Ashenge (unconfirmed) (Fig. 3.1 [b] site 34; 

Marshall et al. 2009), Abhé (Gasse 1977) (Fig. 3.1 [b] site 36), Bosumtwi (Talbot and 

Johannessen 1992; Peck et al. 2004; Brooks et al. 2005), as well as the desiccation 

of the Blue and White Nile headwaters (Marshall et al. 2011). The nature of HE-1 

was not static however, and many lakes (and other palaeo-sites) show a complex 

environmental response, especially in Southern Africa and the eastern 

Mediterranean, with some evidence of wetter conditions and lake highstands at this 

time (Thomas et al. 2012).  

 

3.4.2 17.0 – 15.0 kyr BP Arid-Humid Transition  

Despite the widespread aridity following the LGM, a transitional arid to humid period 

occurred around 17.0 – 15.0 kyr BP, marking the onset of more humid conditions 

across the African continent. During this time, precipitation began to increase in parts 

of East Africa and some lake levels began to rise. 

 

In northern Ethiopia, Lake Tana saw a shallow water swamp develop in the centre of 

the lake from 16.7 – 15.7 kyr BP whilst the lake margins remained dry (Lamb et al. 

2007a). An increase in periphytic and planktonic diatoms indicates initial lake infilling 

after the desiccation caused by HE-1. The shallow swamp was then succeeded by a 

shallow Cyperus swamp at the centre of the lake basin from 15.7 – 15.1 kyr BP. The 

water level is estimated to have been 24 m lower than present and most likely fed by 

seasonal stream flow, as evapotranspiration by the swamp vegetation would have 

exceeded inflow (Lamb et al. 2007a). Temperatures are estimated to have warmed 

by 3.7 ºC during this time (~ 16.0 ºC average), based on reconstructions using the 

branched glycerol dialkyl glycerol tetraether (brGDGT) paleotemperature proxy 
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(Loomis et al. 2015). At Lake Ashenge, an increase in effective moisture is 

documented at ~ 16.2 kyr BP by the diatom flora; from 17.2 – 16.2 kyr BP an 

abundance of lake-marginal and aerophilous species suggest the core site was 

partially exposed or close to the shore line (Fig. 3.5). An increase in the dominance 

of freshwater taxa after 16.2 kyr BP indicates lake level began to rise, resulting in a 

freshwater environment. In southern Ethiopia, Chew Bahir likewise saw an increase 

in more humid conditions slightly earlier than other lakes from 19.0 – 15.0 kyr BP 

(Fig. 3.6; Foerster et al. 2012). Lake Turkana also saw an increase in lake level from 

18.0 – 17.5 kyr BP after which it decreased again, indicated by an increase in calcite 

preservation and a high amplitude reflection surface in the seismic data (Morrissey 

and Scholz 2014). 

 

In the EARS, the Lake Tanganyika sedimentation rate increased from 6.0 mm 

century-1 at 20.5 kyr BP to 1.6 cm century-1 at 17.0 kyr BP, suggesting the 

establishment of wetter conditions (Fig. 3.2; Burnett et al. 2011). Pollen based 

reconstructions concur with this, indicating that temperature and precipitation 

increased from ~ 18.0 – 17.0 kyr BP, and the diatom record likewise indicates a 

positive lake water balance became established around 16.0 kyr BP (Chalié 1995; 

Gasse et al. 1989). Lake Malawi saw a 4 – 5 ‰ decrease in δ13C values of TOC 

from 17.0 – 15.7 kyr BP indicating increased precipitation (Barker and Gasse 2003). 

At Lake Rukwa lake level began to rise at 16.2 kyr BP, evidenced by a planktonic 

diatom assemblage (Barker et al. 2002). The lake remained saline however, 

indicating water entered the lake from elsewhere, possibly as a result of the 

previously fragmented basin being reunited. Laminated diatomite and thick clay-

stone deposits at Lake Suguta, a palaeo-lake in the northern Kenyan Rift (Fig. 3.1 [b] 

site 27), indicate the lake level was high from 16.5 – 15.0 kyr BP (Garcin et al. 2009). 

Lakes Victoria and Albert saw an early post-LGM humid period bracketed by two 

palaeosols indicating lowstands (Talbot and Livingstone 1989). A brief wet phase 

was recorded by the lake sediments between 16.0 – 15.0 kyr BP, pre-dating major 

lake refilling during the African Humid Period. 

 

3.4.3 The Onset of the African Humid Period   

The African Humid Period (AHP) is the most recent multi-millennial wet episode in 

East Africa, lasting from ~ 15.0 – 5.0 kyr BP, punctuated by the Younger Dryas 



64 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.5. The diatom record (habitats and valve concentration) of Lake Ashenge 

against time and depth. Key time periods are identified: LGM – blue, AHP – green 

box, HCO – yellow, and the 4.2 event – red line (adapted from Marshall et al. 2009).    
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Figure 3.6. Comparison of the onset and termination of the African Humid Period 

(AHP) and Younger Dryas Stadial (YD) at Chew Bahir (potassium, K, record [note 

reverse scale]; Foerster et al. 2012), lake level records from Lakes Nakuru 

(Richardson and Dussinger 1986), Turkana (Johnson et al. 1991; Brown and Fuller 

2008) and the Ziway-Shala basin (Gillespie et al. 1983), with the dust record from Mt. 

Kilimanjaro (Thompson et al. 2002), δDwax records from Lake Challa (Tierney et al. 

2011), the oxygen-isotope record from Dongge cave (China; Dykoski et al. 2005), 

and the paleo-ENSO record from Laguna Pallcacocha, southern Ecuador (Moy et al. 

2002). Dark grey bars indicate dry episodes and light grey bars indicative humid 

episodes. The 4.2 event is shown by the red line. Potential overflow events are 

indicated by blue arrows, the Ziway-Shala macro-lake phase by the red arrow and 
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the Holocene separated lake phase by the green arrow (adapted from Foerster et al. 

2012).  
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stadial (~ 12.8 – 11.6 kyr BP). The AHP is attributed to precessional changes during 

periods of low eccentricity, which saw an increase in Northern Hemisphere summer 

season insolation (approximately 8 % greater than today) (Fig. 3.4; Barker et al. 

2004; Garcin et al. 2009). An eastward shift in the CAB, caused by deepening of the 

atmospheric low over India, enhanced the pressure gradient between India and Asia, 

which in combination with higher SSTs (~ 5.0 ºC rise in the Red Sea, Arabian Sea 

and eastern Mediterranean [Loomis et al. 2015]), resulted in significantly more humid 

conditions (Adkins et al. 2006). This rejuvenated the African-Indian monsoon 

circulation, bringing more moisture to Africa. Climate models indicate the 

strengthened summer insolation caused monsoon rainfall to increase by 35 – 45 % 

in northern tropical Africa (Prell and Kutzback 1987). The dramatic effect of this was 

to cause vegetation belts to migrate northwards resulting in the greening of the now 

hyper-arid Sahara (deMenocal et al. 2000; Gasse 2000; Garcin et al. 2012; Tierney 

and deMenocal 2013). A diversity of flora and fauna (hippos, crocodiles, elephants, 

giraffes and antelope) colonised the grasslands, and the landscape was incised by 

river networks and lakes (deMenocal 2015).  

 

The AHP was still cool but effectively brought East African glaciation to an end 

(Hamilton and Taylor 1991; Hailemichael et al. 2002; Foerster et al. 2012). Pollen 

evidence from Tamsaa swamp and the small Lake Garba Guracha (Fig. 3.1 [b] site 

29) suggest that deglaciation occurred between 16.7 – 15.0 kyr BP in conjunction 

with increased moisture availability (Mohammed and Bonneville 1998; Umer et al. 

2007). A peat core from a cirque in the Arussi Mountains likewise indicates the ice 

cap on Mt. Bada had completely disappeared by 13.6 kyr BP (Street 1979a; 

Hamilton 1982). As a consequence spectacular lake basin refilling occurred across 

the region at this time. The onset (and termination) of the phase was not uniform 

across East Africa however, appearing to be abrupt at some lakes (Lakes 

Tanganyika and Tana) and gradual at others (Lakes Victoria and Challa) (Costa et 

al. 2014). 

 

Lake Tana saw an increase in water depth between 15.9 – 15.3 kyr BP, fed by 

seasonal inflow from freshwater streams (Marshall et al. 2011). At 15.3 kyr BP, 

significant lake deepening occurred across the entire basin, evidenced by freshwater 

planktonic flora dominating the diatom assemblage. The lake rose to the overflow 
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level causing it to spill into the Blue Nile, which resulted in high flood levels from 13.9 

– 13.2 kyr BP and in the main Nile River from 14.5 – 12.0 kyr BP (Williams 2009; 

Marshall et al. 2011). The hydrogen isotope composition of terrestrial leaf wax 

compounds (δDwax) indicates however, that the onset of the AHP at Lake Tana did 

not fully occur until 13.0 kyr BP (Costa et al. 2014). The Ziway-Shala basin saw the 

reestablishment of wet conditions in two phases, the first being at 14.5 kyr BP and 

the second, more significant, at 11.5 kyr BP which saw the formation of a single giant 

lake (the macro-lake phase) (Fig. 3.6; Grove et al. 1975; Gillespie et al. 1983; Chalié 

and Gasse 2002a). Chew Bahir also documented a substantial increase in humidity 

from 14.5 –12.8 kyr BP, evidenced from the K record (Fig. 3.3; Foerster et al. 2012). 

At Lake Turkana a deep water environment developed rapidly at 14.0 kyr BP, 

evidenced by increased organic carbon and decreased TIC, as well as other 

significant changes in sediment type and the seismic character of the record 

(Morrissey and Scholz 2014). The seismic data during this highstand indicates the 

lake remained deep and undisturbed. Finely laminated sediments and extremely low 

inorganic carbon preservation provide further indication that water column 

stratification had developed and bottom waters were anoxic.   

 

Geomorphological evidence in the Mekele outlier, an 8000 km2 area on the western 

margin of the Ethiopian Rift (Fig. 3.1 [b] site 35), similarly indicates wetter conditions 

during the late Pleistocene. Seventeen individual landslides dated to this period 

provide evidence of peaking hydrostatic soil pressure due to perched water tables 

(arguments for the landslides being tectonic in origin were ruled out based on their 

length to width ratio and the occurrence of landslides in other areas in East Africa 

around this time) (Moeyersons et al. 2006). Eight tufa dams were also studied to 

determine the timing of the late Pleistocene wet period. The dams are a sedimentary 

response to karstic (limestone) system activity and are formed during relatively 

warm, wet environmental conditions when a near continuous flow of surface water 

and percolation occurs (Goudie et al. 1993). Two reliable dates were obtained from 

K’arano (15.8 kyr BP) and Tsigaba (14.1 kyr BP), providing evidence of increased 

moisture availability in the late Pleistocene (Moeyersons et al. 2006).  

 

In East Africa, Lake Victoria saw major basin refilling from 15.0 – 14.0 kyr BP and at 

Lake Albert just prior to 13.8 kyr BP (Johnson et al. 1996; Beuning et al. 1997; Talbot 
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and Lærdal 2000). Studies of the White Nile using strontium isotope analysis as a 

water source tracer, indicate that flow from Lake Victoria via Lake Albert into the 

main River Nile reestablished between 14.7 – 14.5 kyr BP (Talbot and Lærdal 2000; 

Williams et al. 2006; Williams 2009; Box et al. 2011). The White Nile maintained high 

flood levels until 13.1 kyr BP (Williams 2009). Lake refilling also occurred at Lakes 

Magadi (Roberts et al. 1993), Manyara (Fig. 3.1 [b] site 22; Barker et al. 2004), 

Tanganyika (Gasse et al. 1989) and Malawi (Gasse et al. 2002; Johnson et al. 2004) 

between 15.5 – 15.0 kyr BP and Lake Rukwa reached its maximum water depth 

around 13.6 kyr BP (Barker et al. 2002). Lake Suguta began refilling at ~ 14.8 kyr BP 

and was overflowing into the Lake Turkana basin by at least 13.0 kyr BP (Garcin et 

al. 2009). Lake Suguta may have also received periodic overflow from the Baringo-

Bogoria basin around this time, causing Lake Suguta to reach its highest shoreline 

by 13.8 kyr BP at the latest (Garcin et al. 2009). This created a hydrologically open 

system throughout the northern Kenyan Rift Valley, providing additional input for the 

Turkana-Nile River (Morrissey and Scholz 2014). The maximum highstand at Lake 

Suguta occurred at 12.8 kyr BP, with the mega-lake covering 2200 km2 and being 

almost 300 m deep (Garcin et al. 2009; Borchardt and Trauth 2012; Junginger et al. 

2013; Junginger and Trauth 2013).  

 

In contrast, Lake Ashenge refilling preceded the AHP, lasting from 16.2 – 15.2 kyr 

BP, indicated by planktonic diatoms and low diatom-inferred conductivity (~ 1600 μS 

cm-¹) (Fig. 3.5; Marshall et al. 2009). However, actual diatom-inferred conductivity 

may have been even lower due to underrepresentation of key taxa in the modern 

training set (Marshall et al. 2009). The lake then became shallower from 15.2 – 14.2 

kyr BP, presumably due to a localised shift towards low effective moisture and a 

more arid climate. Salinity at the lake became enhanced during this time, evidenced 

by the precipitation of calcite and the dominance of halophytic diatom taxa. The lake 

began to refill at 14.2 kyr BP but maximum δ18Ocarbonate values between 13.6 – 11.8 

kyr BP indicate the lake became shallow again due to a period of prolonged aridity. 

The most positive δ18O values occurred during this time along with enhanced 

carbonate precipitation and deposition of a shell horizon (Marshall et al. 2009). Lake 

Turkana also remained low at this time but the lake water level curve for this period 

remains poorly constrained (Garcin et al. 2012).  
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Other lakes across East Africa also experienced a return to cool, arid conditions 

following basin refilling and proceeding the Younger Dryas Stadial from ~ 14.0 – 11.5 

kyr BP. Lake Albert appears to have responded most dramatically during this time, 

as temperatures dropped by ~ 3.0 ºC at 12.9 kyr BP. Considerable reductions in 

rainfall also occurred, indicated by a 40 ‰ enrichment in δDwax (Berke et al. 2014). 

Cooling is further indicated by a pronounced increase in grass pollen as well as a 

reduction in semi-deciduous forest taxa (Berke et al. 2014). A slight recovery of 

Moraceae forest taxa indicates five wet centuries from 12.8 – 12.3 kyr BP, after 

which dry, cool conditions returned. Lakes Malawi and Tanganyika similarly 

experienced a 1 – 2 ºC cooling between 14.0 – 11.5 kyr BP (Powers et al. 2005; 

Tierney et al. 2008), and a hiatus in de-glacial warming occurred at Lake Victoria 

(Berke et al. 2012b) and the Congo Basin (Weijers et al. 2007).  

 

3.4.4 The Younger Dryas Stadial  

Lakes across East Africa exhibited an extreme shift back to arid conditions from ~ 

12.8 – 11.6 kyr BP, which correlates with the high-latitude European Younger Dryas 

Stadial (YD) (Alley 2000). The YD occurred as a result of freshwater inputs from 

disintegrating ice-sheets weakening the North Atlantic Deep Water formation 

(NADW) causing anomalies in SST (Street-Perrott and Perrott 1990). Renssen et al. 

(2015) suggest that in addition to this, moderate negative radiative forcing and 

changes in atmospheric circulation may have occurred. The combined effect of these 

mechanisms on tropical Africa was to decrease precipitation, as it is thought the 

ITCZ was forced south of the equator during the event, causing widespread arid 

conditions (Nicholson 1982). 

 

At Lake Tana, seismic reflector surfaces and reduced allochthonous inputs between 

~ 13.0 – 11.5 kyr BP indicate a significantly lowered lake level and reduced 

precipitation and runoff in the catchment (Lamb et al. 2007a; Marshall et al. 2011). 

This lowstand led to exposure of the lake margins and declining sedimentation rates 

in the lake centre (Marshall et al. 2011). The Blue Nile and White Nile similarly do not 

indicate high flood events between ~ 13.0 – 9.7 kyr BP (Williams 2009). The Chew 

Bahir record is in agreement with this, showing a rapid shift towards arid conditions 

from 12.8 – 11.6 kyr BP. The K record shows a sharp increase in the lake basin at 

this time, likely caused by increasingly arid conditions and sparse vegetation cover 
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(Fig. 3.3; Foerster et al. 2012). The K record then indicates a short-term return to wet 

conditions at 11.8 kyr BP and then an abrupt, final return to full humid conditions at 

11.6 kyr BP.  

 

Lake Abiyata in the Ziway-Shala basin also shows evidence of lake regression from 

12.6 – 12.0 kyr BP, indicated by increased calcium carbonate precipitation and a fine 

diatomaceous silt layer below a thick sand layer (Chalié and Gasse 2002a). The 

diatom assemblage however shows a mixture of taxa with various ecological 

tolerances, not indicative of a lowstand (Chalié and Gasse 2002a).  

 

In equatorial East Africa, lake regression associated with the YD has been 

documented at Lakes Victoria (Johnson et al. 2000; Talbot and Lærdal 2000; Stager 

et al. 2002), Albert (Beuning et al. 1997; 1998), Tanganyika (Gasse et al. 1989), 

Suguta (Garcin et al. 2009), Challa (Barker et al. 2011), Massoko (Garcin et al. 

2007) and Sacred Lake (Fig. 3.1 [b] site 26; Street-Perrott et al. 2007). Additional 

evidence of the YD can be identified in a shift to grassland pollen in the Burundi 

highlands (Bonnefille et al. 1995) and in variations of organic matter in a peat bog on 

Mt. Satima, Kenya (Street-Perrott and Perrott 1990). In West Africa, lake regressions 

coincident with the YD have also been reconstructed at Lakes Bosumtwi (Peck et al. 

2004; Shanahan et al. 2006) and Barombi Mbo (Maley and Brenac 1998). The YD 

may have been multi-phasic in nature however, as palynological evidence from Lake 

Albert indicates a brief return to humid conditions from 10.9 – 10.4 kyr BP, 

interrupting the YD between 11.5 – 9.8 kyr BP (Beuning et al. 1998). 

 

Lake Ashenge, in contrast, was at a lowstand 900 years before (13.6 – 11.8 kyr BP) 

the time period corresponding to the YD in other East African lakes and the 

Greenland ice cores (Alley 2000; Marshall et al. 2009). It appears therefore that the 

onset of the YD occurred earlier at Lake Ashenge compared to other lakes in East 

Africa. A degree of uncertainty in the timing of the event has been observed 

elsewhere in continental Africa; in the Sahel the drier conditions relating to the YD 

were observed from 14.5 – 11.5 kyr BP (Gasse 2000) and arid conditions at Lake 

Chad (Fig. 3.1 [a] site 15) occurred at 13.6 kyr BP (Marshall et al. 2009). Reduced 

lake levels at Lake Edward (Fig. 3.1 [a] site 3) began as early as 13.5 kyr BP and a 

lowstand at Lake Malawi preceded the YD by 200 years, as inferred from the diatom 



72 

 

record (Gasse et al. 2002; Lærdal et al. 2002). A core taken off the west coast of 

Africa similarly documents an arid event 800 years prior to the onset of the YD, but 

the offset can be explained by discrepancies in the marine 14C reservoir (deMenocal 

et al. 2000). A core from the mouth of the Niger River documenting a premature 

onset to the YD by 700 years cannot be explained by such discrepancies (Lezine et 

al. 2005). Therefore the early onset of lake level response at Lake Ashenge may be 

the result of a progressive suppression of the ITCZ to the south, in conjunction with 

gradual cooling at high northerly latitudes prior to the start of the YD (Alley 2000; 

Marshall et al. 2009). 

 

The trigger for the termination of the YD remains inconclusive; in Greenland, 

warming of 10 ºC (± 4 ºC) occurred within a decade and snow accumulation 

increased twofold in three years (Taylor et al. 1997; Grachev and Severinghaus 

2005). The extremity and rapidity of the climate change in association with the 

termination of the YD indicates that atmospheric circulation was most likely the 

primary trigger, in conjunction with changes in oceanic circulation as well as 

feedback processes, such as albedo and vegetation cover (Garcin et al. 2007). 

Garcin et al. (2007) speculate that in the tropics, when the influence of the global 

cold surge weakened, a climatic threshold was crossed, probably driven in part by 

the orbital configuration affecting the Northern Hemisphere. This enhanced solar 

heating would have aided in recovery of the monsoon system and caused the ITCZ 

to shift northwards (Garcin et al. 2007).  

 

3.5 The Holocene 

The most recent geological epoch (11.7 kyr BP – to present) has seen significant 

changes in African (and global) hydrology and climate. The early to mid-Holocene 

saw the resumption of the AHP whilst conditions became cooler and more arid in the 

mid- to late Holocene. This time period was also punctuated by abrupt, high 

magnitude arid events, some of which are now known to have been global in nature, 

and saw the first major signs of human disturbance in the climatic and environmental 

record.  

 

3.5.1 The Holocene Climatic Optimum   

The transition from the YD to Holocene (12.0 – 11.3 kyr BP) saw a return of  
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increased seasonality in regional rainfall, indicating that monsoon circulation had 

recovered and the migration of the ITCZ became more pronounced following its 

suppression southwards (Garcin et al. 2007). This resumption of humid conditions 

was far more significant than those at the onset of the AHP, and had a more 

pronounced effect on East African hydrology; preserved snow accumulation on Mt. 

Kilimanjaro is dated at 11.7 kyr BP, indicating that the monsoon was once again 

active across Africa and promoting ice cap growth (Thompson et al. 2002). This 

period of ‘optimum’ climate (increased moisture and warmer temperatures) was most 

distinct between ~ 10.0 – 6.0 kyr BP (the Holocene Climatic Optimum, HCO), with 

evidence of the event found in both the Northern and Southern Hemispheres (Ciais 

et al. 1992). In East Africa the effect of the monsoon rejuvenation on lakes, was to 

cause most to deepen and in some cases, overflow.  

 

In northern Ethiopia, Lake Tana’s water level increased at the start of the Holocene 

and conditions appear to have remained stable for the duration of the HCO (Marshall 

et al. 2011). Temperatures gradually warmed (18.1 ºC at 13.0 kyr BP) throughout the 

Holocene (Loomis et al. 2015). The hydrogen isotope record of leaf waxes shows 

depleted δDwax values in response to increased precipitation at Lake Tana; maximum 

humidity occurred at ~ 10.0 kyr BP (Costa et al. 2014). Magnetic and geochemical 

core data indicate a lowstand occurred from 8.4 – 7.5 kyr BP, as allochthonous 

inputs to the lake were reduced, signalling reduced precipitation and runoff in the 

catchment. The hydrogen isotope record likewise indicates an arid event from D-

enriched waxes, though beginning slightly earlier at 8.5 kyr BP and lasting until 7.0 

kyr BP (Costa et al. 2014). From ~ 7.2 – 6.8 kyr BP, lake level appears to have 

increased as allochthonous inputs from a destabilising catchment increased again, 

before the start of a long-term reduction in lake level at 6.8 kyr BP (Marshall et al. 

2011). Temperatures by 6.6 kyr BP had reached 21.9 ºC, after which a steady 

cooling is observed (Loomis et al. 2015). At Lake Ashenge there is a hiatus in the 

sediment record from 11.8 – 7.6 kyr BP; sediments were most likely removed by 

aeolian deflation during a lowstand, and/or after rapid lake refilling following a 

lowstand (Marshall et al. 2009).  

 

In the Ziway-Shala basin, diatom-inferred conductivity and chemistry at Lake Abiyata 

indicate conditions were significantly wetter than present from 12.0 kyr BP onwards 
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(Chalié and Gasse 2002a; Umer et al. 2004). As a result, the four separate lakes 

began to rise and a single macro-lake formed 74 – 122 m above the present level of 

Lake Shala (Nilsson 1940; Gillespie et al. 1983; Umer et al. 2004). Deposits above 

Lake Shala indicate the single, giant lake had a rich biodiversity as remains of fish 

species including an unknown Barbus resembling a North African species, were 

found in the sediments (Grove et al. 1975). This macro-lake reached an outlet and 

overflowed twice around 10.7 – 9.5 kyr BP and 6.3 – 5.1 kyr BP into the Awash River 

and subsequently into Lake Abhé (as well as other lakes along the river), causing it 

to reach its maximum extent (160 m deep) and dilution between 9.4 – 8.3 kyr BP 

(Butzer et al. 1972; Fontes et al. 1973; Gasse and Van Campo 1994; Umer et al. 

2004; Benvenuti et al. 2013). During this time the sediment yield of the system 

reached a maximum, documented by high-relief incision surfaces in the Bulbula and 

Gademota areas, which provide evidence of flushing of huge volumes of late 

Pleistocene sediments (Roberts and Barker 1993; Thomas and Thorp 1995). The 

Tora geosol also appears to have formed at this time, indicating major chemical 

weathering and soil development in response to the humid conditions (Benvenuti et 

al. 2002). Lake level reconstructions from the MER and Lake Abhé indicate brief 

periods of aridity from 8.7 – 8.1 kyr BP and 7.8 – 7.2 kyr BP and a less severe drop 

in lake level at 6.7 kyr BP (Gasse and Street 1978; Street 1979a; Gillespie et al. 

1983; Gasse 2000; Chalié and Gasse 2002a; Lamb et al. 2002a).  

 

Elsewhere in the MER, Lake Tilo (Fig. 3.1 [b] site 31) shows evidence of stable, 

humid conditions in the early Holocene. Although Lake Tilo is fed by hydrothermal 

groundwater, the flow rate was relatively stable during the Holocene and thus 

climatically induced changes to the water budget can be inferred from variations in 

δ18O and δ13C ratios. The negative δ18Ocalcite record from ~ 8.8 – 8.0 kyr BP indicates 

a combination of higher precipitation, lower evaporation and greater spring-water 

inflow, as does the diatom assemblage from ~ 8.8 – 7.6 kyr BP (Telford and Lamb 

1999; Lamb et al. 2000). As a result, the lake level at this time was 40 m higher than 

the present level (Leng et al. 1999) and fish bones deposited at the rim of this high 

lake level indicate there may have been overflow (Lamb et al. 2000). From 7.9 – 7.6 

kyr BP a regional arid event is documented by a peak in δ18Ocalcite, after which both 

δ18Ocalcite and δ18Odiatom fall, before slowly increasing again at 6.0 kyr BP, reflecting 

less humid conditions (Lamb et al. 2005). A second peak in δ18Odiatom and δ18Ocalcite 
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then occurred at 5.9 kyr BP, indicating diminishing rainfall in the basin and increasing 

aridity (Lamb et al. 2005).  

 

To the south, Chew Bahir documents an increase in K at 11.8 kyr BP indicating the 

return of humid conditions, and then another more substantial increase at 11.6 kyr 

BP, suggesting a rapid termination of the YD (Foerster et al. 2012). Having reached 

maximum humid conditions, fluctuations in K, Ca and strontium (Sr) indicate several 

brief arid episodes at 10.8 – 10.5 kyr BP and 9.8 – 9.1 kyr BP, a gradual increase in 

aridity from 8.0 – 7.5 kyr BP and a major drought event at 7.0 kyr BP (Fig. 3.3). Lake 

Turkana similarly saw rapid and significant lake level rise from 11.5 kyr BP, causing 

the lake to reach its overflow level (100 m higher than the present lake level, making 

the lake 460 m above sea level) and become connected to the White Nile basin via 

the now dry Turkana-Nile River (Garcin et al. 2012; Morrissey and Scholz 2014). 

There may have been a brief decrease in water level (~ 15 m) around 10.2 kyr BP, 

based on prehistoric near-shore settlements, but overall this highstand was relatively 

stable, and saw the formation of the highest and most distinctive shoreline in the 

basin until 8.5 kyr BP.  

 

A substantial lake regression is then documented at Lake Turkana following this 

early Holocene highstand, which saw the water level decrease by 50 – 100 m. 

Evidence of the timing of the lowstand is conflicted however, with some records 

indicting drying between 9.0 – 8.5 kyr BP (Owen et al. 1982; Garcin et al. 2012) and 

others suggesting a later onset at 7.5 kyr BP (Forman et al. 2014). Between 7.5 – 

7.0 kyr BP a highstand occurred at the lake, with evidence of relict beaches on the 

Mt. Porr strand plain indicating an 80 m increase in water level by 6.8 kyr BP (Garcin 

et al. 2012; Forman et al. 2014). The termination of this highstand is also debated, 

with evidence of a 60 m drop in lake level on the Mt. Porr strand plain from 6.4 – 6.0 

kyr BP (Forman et al. 2014), and shoreline date from South Island suggesting an 

abrupt regression occurring from 5.3 kyr BP (Garcin et al. 2012).   

 

Elsewhere in East Africa, early Holocene highstands were also documented at Lakes 

Edward and George (Fig. 3.1 [a] site 3) (Lærdal et al. 2002), Suguta (Garcin et al. 

2009; Borchardt and Trauth 2012; Junginger et al. 2013), Challa (Damsté et al. 

2011), Naivasha (Fig. 3.1 [b] site 24; Bergner et al. 2003), Victoria (Stager et al. 
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2003; Berke et al. 2012b), Albert (Barker et al. 2004), Rukwa (Barker et al. 2002) 

and Malawi (Gasse et al. 2002; Konecky et al. 2011). Lake Bosumtwi also 

documents a dramatic wetting event at 11.5 – 10.5 kyr BP (Talbot and Johannessen 

1992). Records from many of these lakes indicate a major dry period centred at 8.2 

kyr BP (the mechanisms for this climate event are discussed in section 3.4.2). At 

Lake Suguta the regression was especially dramatic as a 240 m drop in lake level 

occurred over 1000 years, beginning just after 8.5 kyr BP (Garcin et al. 2009). This 

marked the onset of Lake Suguta’s disappearance. At Lake Victoria, the diatom 

records from Pilkington Bay and Damba Channel document a major reduction in the 

duration and/or intensity of water column mixing from 8.3 – 7.8 kyr BP (Stager et al. 

2003). At Lake Malawi the regression occurred from 8.5 – 8.0 kyr BP (Fig. 3.2; 

Gasse et al. 2002). Pollen and micro-charcoal records from the Cederberg 

Mountains and the Tswaing crater, South Africa, likewise indicate a decrease in 

water availability from 9.4 – 7.2 kyr BP (Valsecchi et al. 2013; Metwally et al. 2014).  

 

In North Africa, two wet periods can be identified in the Sahara from 10.5 – 8.5 kyr 

BP and from 7.5 – 5.0 kyr BP (Giraudi et al. 2012). Two arid phases have been 

identified from 8.5 – 8.0 kyr BP and 7.8 – 7.5 kyr BP, the latter of which caused the 

Sahara-Sahel vegetation to shift northwards (Giraudi et al. 2012). A more permanent 

shift towards arid conditions began in the eastern Sahara at 6.3 kyr BP and spread 

westwards (Damnati 2000; Mercuri et al. 2011). The River Nile similarly shows a 

gradual decline in river runoff beginning at 8.0 kyr BP, although prior to this a short-

term decrease in Blue Nile contribution and sedimentation occurred from 8.5 – 7.3 

kyr BP (Blanchet et al. 2013). 

 

In the eastern Mediterranean Sea, the formation of sapropels provide additional 

evidence of orbital forcing inducing intensified (northern) summer monsoons during 

the HCO (Rossignol-Strick 1985). Sapropels are a distinct feature of the sediments 

in the eastern Mediterranean; a discrete, black, organic-rich layer containing an 

abundance of well-preserved planktonic microfossils and pollen (Bar-Matthews et al. 

2000). The layers were deposited in dysoxic-anoxic bottom waters when deep water 

ventilation was reduced due to either, or a combination of, large fluxes of marine or 

continental organic matter (Rohling and Hilgen 1991). Low δ18O values within 

sapropels indicate that surface water salinity was decreased at the time of 



77 

 

deposition, which may be attributed to increased River Nile runoff as well as 

increased precipitation and/or decreased evaporation over the eastern 

Mediterranean (Rholing and Hilgen 1991).  

 

Although the exact ages of sapropels are debated, it is accepted that the S1 

sapropel (Fig. 3.1 [a] site 20) was deposited between ~ 9.0 – 6.0 kyr BP when the 

AHP had resumed. Precipitation over the Ethiopian highlands had increased during 

this time as a result of the HCO and consequently, River Nile summer floods were 

high (Martinson et al. 1987; Rohling and Hilgen 1991; Fontugne et al. 1994). The 

δ18O and δ13C values from speleothems in the Soreq cave, Israel (Fig. 3.1 [a] site 

19), similarly characterise a very wet period with annual precipitation almost double 

that of the present day from 8.5 – 7.0 kyr BP (Bar-Matthews and Ayalon 1997; Bar-

Matthews et al. 2000). S1 formation was interrupted by a deteriorating climate 

following the optimum conditions during the AHP. The increasingly arid climate that 

marked the termination of the AHP significantly altered the freshwater balance in the 

Mediterranean by improving deep-water ventilation in relation to surface water 

cooling, thus ending sapropel formation (De Rijk et al. 1999). 

 

3.5.2 The 8.2 Event  

The regressions in lake level and river runoff documented in East and North Africa 

from ~ 8.5 – 7.5 kyr BP may equate to the abrupt 8.2 kyr BP cooling episode 

recorded in central Greenland ice cores (hereafter, the 8.2 event). From 8.4 – 8.2 kyr 

BP catastrophic melt water outburst from two North American proglacial lakes (Lakes 

Agassiz and Ojibway) released ~ 2 x 1014 m3 of freshwater into the Labrador Sea 

(Barber et al. 1999). This discharge reduced salinity in the North Atlantic and 

subsequently weakened the NADW and slowed ocean circulation, causing 

anomalies in global SST (Rohling and Palike 2005). The event is clearly marked by a 

shift to low 18O/16O values in the oxygen isotope records from the Greenland ice 

sheet, as well as a decline in ice-core annual layer thickness, a minimum in 

atmospheric methane and subsequent increase in atmospheric CO2, as well as a 

strong volcanic signal, most likely from an Icelandic volcano (Rasmussen et al. 2007; 

Walker et al. 2012). The event has been identified in numerous proxy records 

(pollen, lake sediments, chironomid and cladoceran assemblages, marine 

foraminiferal assemblages, cave speleothems) from around the world including the 
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Middle East, China, Brazil (Fleitmann et al. 2007; Cheng et al. 2009), the 

Mediterranean (Magri and Parra 2002; Peyron et al. 2011), the north-west Pacific 

(Hua et al. 2008), the South Atlantic (Broecker 1998), East Antarctica (Cremer et al. 

2007), New Zealand (Augustinus et al. 2008), as well as Africa (Gasse 2000). As 

such, the 8.2 event has been suggested as a formal subdivision between the early 

and middle Holocene by a Working Group of INTIMATE (Integration of ice-core, 

marine and terrestrial records) and the Subcommision on Quaternary Stratigraphy 

(SQS) of the International Commission on Stratigraphy (ICS) (Walker et al. 2012) 

 

Around Africa, SST anomalies in the monsoon moisture source region reduced 

precipitation across the tropical and subtropical regions, resulting in widespread 

aridity centred at 8.2 kyr BP. However, the Mt. Kilimanjaro ice core record identified 

a peak in wind-blown fluoride from dry lake basins at 8.4 kyr BP (Thompson et al. 

2002) and evidence of an abrupt drought is found in Lake Bosumtwi at 8.6 kyr BP 

(Shanahan et al. 2006). These records indicate that the arid event occurred 200 – 

400 years before the 8.2 event. Other climate proxy records from around the globe, 

such as the record of dust supply to Greenland, similarly indicate climatic change 

from 8.6 – 8.0 kyr BP, suggesting that the sharp changes observed around the 8.2 

event may be superimposed on a long-term background climatic anomaly (Rohling 

and Palike 2005).  

 

3.5.3 Termination of the African Humid Period  

The AHP came to an end around 5.5 kyr BP as a result of declining summer 

insolation causing the African monsoon and associated rain belts to shift southwards 

(Street and Grove 1979; Gasse and Van Campo 1994; Blanchet et al. 2013). The 

magnitude and timing of the termination is debated as marine cores from the north-

west coast indicate an abrupt onset and termination of the AHP (deMenocal et al. 

2000), whilst lacustrine sediments from the Sahara and stalagmites from Ethiopia 

and Oman suggest a more gradual transition from as early as 7.8 kyr BP (Fleitmann 

et al. 2003; Asrat et al. 2007; Kropelin et al. 2008). A north to south progression of 

the AHP termination is suggested by deMenocal (2015), matching what would be 

expected from orbital forcing, interspersed with locally abrupt events due to 

additional nonlinear mechanisms. The overall effect of the end of the AHP was to 
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see a resumption of arid conditions across East Africa, causing lake and river 

systems to become desiccated and the Saharan grasslands to retreat.  

 

Diatom and stable isotope evidence from Lake Ashenge indicate a shift at ~ 5.6 kyr 

BP towards aridity, which saw δ18Ocarbonate values increase by 10 ‰ in 200 years, 

followed by a stepped transition that lasted until 2.3 kyr BP (Fig. 3.5; Marshall et al. 

2009). During this time δ13C values increased, indicating enhanced evaporative 

concentration and a fall in lake level, further evidenced by a decline in the relative 

abundance of freshwater diatom taxa and diatom productivity. This is not interpreted 

by Marshall (2006) as an abrupt termination of the AHP. Lake Tana likewise saw a 

decline in allochthonous inputs, reflecting declining precipitation from as early as 6.8 

kyr BP and lasting the following 2.5 kyr (Marshall et al. 2011). This period of 

increasing aridity culminated in a drought event at 4.2 kyr BP (Marshall et al. 2011). 

Reconstruction of the hydrogen isotope record from leaf waxes is in agreement with 

this, indicating a gradual termination of the AHP aided by vegetation feedbacks, until 

an abrupt drought event at 4.5 kyr BP (Costa et al. 2014). Lake Abhé also saw a 

declining lake level from 5.1 – 4.6 kyr BP (Fig. 3.2; Umer et al. 2004). 

 

In the MER, the Ziway-Shala basin experienced declining lake levels from as early 

as 6.5 kyr BP in response to increasing aridity. The decline was amplified further by 

a south-eastern shift in the drainage network which saw the Awash and Mojo Rivers 

abandon the Ziway-Shala basin and instead flow towards the Afar Depression (Sagri 

et al. 2008). The loss of these rivers made the basin even more susceptible to 

fluctuations in climate and from 5.7 – 5.1 kyr BP a major decrease in lake level 

occurred, leading to the separation of Lake Ziway by 5.0 kyr BP and marking the 

beginning of the Holocene separated lake phase (Fig. 3.6; Grove et al. 1975; 

Benvenuti et al. 2002; Umer et al. 2004). Diatom-inferred conductivity from Lake 

Abiyata confirms a major decrease in precipitation and a water deficit from 5.7 – 3.8 

kyr BP causing the lake to become shallow and saline (Umer et al. 2004). Brief wet 

periods were documented from 4.3 – 3.6 kyr BP and 2.9 – 2.6 kyr BP (Umer et al. 

2004). Lake Tilo also experienced a substantial reduction in lake volume from 5.5 – 

5.1 kyr BP, evidenced by a rapid increase in δ18O, a decline in mineral accumulation 

rates and increasing salinity in the mid-Holocene (Telford and Lamb 1999; Lamb et 

al. 2000; Lamb et al. 2005). Lake Awassa saw increasing δ18O and δ13O values, 
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indicating a shift towards aridity from 4.8 kyr BP, slightly later than in the MER (Lamb 

et al. 2002a). At 4.2 kyr BP, Lake Tilo records a further substantial increase in δ18O, 

marking a fall in lake level (Lamb et al. 2000). A wet period then occurred from 3.7 – 

3.4 kyr BP, indicated by a switch to freshwater diatom species (Lamb et al. 2000).  

 

In southern Ethiopia, the K record at Chew Bahir indicates the AHP began to end 

around 6.0 kyr and the transition took 1000 years for full aridity to be reached (Fig. 

3.3; Foerster et al. 2012). At Lake Turkana, steady warming occurred from 5.7 kyr 

BP, based on reconstructed palaeo-temperatures using the TEX86 temperature 

proxy, culminating in the warmest, most arid conditions at 5.0 kyr BP (Berke et al. 

2012a). Shoreline data from South Island shows that water level began falling 

abruptly from 5.3 kyr BP, and a sharp rise in the abundance of endogenic calcite in 

the southern basin at 5.0 kyr BP confirms that peak aridity occurred at this time 

(Halfman et al. 1994; Garcin et al. 2012). This also coincides with the youngest 

radiocarbon age of a raised beach terrace at the elevation of basin overflow into the 

River Nile, signifying a shift from an open to closed basin (Butzer 1980; Owen et al. 

1982). Geomorphic evidence from the Mt. Porr strand plain indicates lake level was 

constrained to below 20 m by 4.5 kyr BP and remained below this level for the rest of 

the Holocene (Forman et al. 2014). At 4.2 kyr BP an abrupt and dramatic shift 

occurred in the diatom assemblage from one indicative of low conductivity to an 

assemblage associated with high conductivity and brackish waters (Halfman et al. 

1992). This change signifies a substantial decrease in water depth in response to 

reduced precipitation in the basin which lasted until ~ 2.0 kyr BP (Ricketts and 

Johnson 1996; Garcin et al. 2012).  

 

In Kenya, data from Lake Suguta is in agreement with the trends observed at Chew 

Bahir and Lake Turkana. Precipitation in the catchment began to decrease around 

6.7 kyr BP, causing the lake level to drop by ~ 250 m over the following 1.7 kyr 

(Junginger et al. 2013). This indicates a gradual termination of the AHP. However, 

given the difference between the maximum and minimum shorelines of the palaeo-

lake, it is possible the lake level remained high until 5.4 kyr BP for the onset of a 

gradual termination or until 5.2 kyr BP if followed by an abrupt reduction in 

precipitation (Junginger et al. 2013). Lake Rukwa also saw a regression beginning at 

6.7 kyr BP which caused the lake to become saline by 5.5 kyr BP (Barker et al. 
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2002). Lake Victoria had been experiencing greater seasonal restriction of rainfall 

since ~ 7.8 kyr BP but it is not until 5.8 kyr BP that lake levels began to decline 

(though sediment accumulation and outlet down-cutting may also have contributed to 

the increasingly shallow lake trend) (Stager et al. 2003). Changes in vegetation 

around the basin further indicate the climate was becoming dryer as semi-deciduous 

forest declined and open grasslands established (Ssemmanda and Vincens 2002). 

The decline in lake level at Lake Victoria coincidently led to the formation of Lake 

Nabugabo (Fig. 3.1 [b] site 21). The lake was most likely a protected bay of Lake 

Victoria during the early Holocene but as the level of Lake Victoria declined, a 

longshore bar cut the bay off and formed a new isolated lake around 5.0 kyr BP 

(Stager et al. 2005). The lake is now renowned among evolutionary biologists for its 

five endemic species of haplochromine cichlid fish, a feat that would not have 

occurred without the termination of the AHP.  

 

In contrast, δDwax records and palynological data from Lake Malawi indicate that 

conditions at the lake were wet from 6.15 – 3.0 kyr BP (Konecky et al. 2011). 

Biogenic silica profiles likewise indicate a shift to wetter conditions around 4.5 kyr 

BP, which culminated in a highstand shortly after (Johnson et al. 2004). This is most 

likely a result of the southern location of the lake in relation to the position of the 

ITCZ during the mid-Holocene. This ‘climatic hinge’ is a lateral boundary which 

divides tropical and subtropical Africa (Konecky et al. 2011). 

 

The demographic response in North Africa to the termination of the AHP was a 

major, unreversed population collapse (deMenocal 2015). Radiocarbon dating of ~ 

1000 archaeological sites from the western, central, eastern and northern (Atlas 

Mountain range) Sahara indicate a 1.8 % population loss per generation at the end 

of the AHP, and a 55.0 % loss from 6.3 – 5.2 kyr BP (Manning and Timpson 2014). 

Ultimately, this led to the emergence of Egypt’s Pharaonic civilisation in the Nile 

Valley as populations were forced to mobilise in order to survive (Kuper and Kröpelin 

2006).  

 

3.5.4 The 4.2 Event  

The termination of the AHP culminated in a severe and abrupt drought event centred 

at 4.2 kyr BP (hereafter, the 4.2 event) in response to temporary weakening of the 



82 

 

monsoon system. Whilst the forcing mechanism for the 4.2 event is less clear than 

for the 8.2 event (i.e. there is no evidence of a major release of freshwater into the 

North Atlantic or of significant ice growth in the Northern Hemisphere), a southwards 

migration of the ITCZ would be consistent with the documented low-latitude aridity. 

This would also account for the increase in strength of westerlies over the North 

Atlantic and a cooling of the oceans’ surface waters (1 – 2 ºC), increased 

precipitation and subsequent glacial advances in North America (Mayewski et al. 

2004; Walker et al. 2012). It is also suggested that Pacific tropical deep waters 

cooled enough at this time to trigger the start of the modern El Niño Southern 

Oscillation (ENSO) regime, which subsequently became more pronounced in the 

mid-latitude regions (Fig. 3.6; Sun 2000).  

 

The 4.2 event is now recognised as being global with evidence of it found throughout 

tropical and North Africa (Gasse 2000; Thompson et al. 2002; Williams 2009), the 

Middle East and Gulf of Oman (Bar Matthews and Ayalon 1997; Cullen et al. 2000; 

Gupta et al. 2003), Asia (Gasse and Van Campo 1994; Prasad and Enzel 2006), 

China (Wang et al. 2005; Huang et al. 2007; 2011), Europe (Hughes et al. 2000; 

Drysdale et al. 2006), North America (Dean 1997; Booth et al. 2005) and Peru (Davis 

and Thompson 2006).  

 

In East Africa, evidence of this drought event has been found in the Ziway-Shala 

basin (Gillespie et al. 1983; Chalié and Gasse 2002a), Lakes Tana (Marshall et al. 

2011), Awassa (Telford et al. 1999; Lamb et al. 2002a), Tilo (Telford and Lamb 1999; 

Lamb et al. 2000), Abhé (Gasse 1977), Turkana (Owen et al. 1982; Johnson et al. 

1996; Marshall et al. 2011), Victoria (Stanley et al. 2003), Edward and George 

(Lærdal et al. 2002), the Bahr-el-Ghazal depression in South Sudan (Gasse and Van 

Campo 1994), as well as the Mt. Kilimanjaro ice core record (Fig. 3.6; Thompson et 

al. 2002). However, the 4.2 event can be difficult to identify in lacustrine records as it 

occurs when the climate was more arid than at any other time since the LGM 

(Marshall et al. 2011).  

 

In North Africa evidence of the 4.2 event has been found in River Nile flow records 

and geoarchaeological evidence. A sediment core from the Nile deep-sea fan 

indicates a highly arid period from 4.3 – 3.7 kyr BP in the River Nile drainage area, 
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characterised by an increase in the contribution of aeolian dust, a decrease in the 

intensity of Blue Nile discharge and a decrease in the proportion of sediment derived 

from the White Nile (Williams 2009; Blanchet et al. 2013). In contrast, oxygen isotope 

compositions from the teeth and bones of ancient Egyptian mummies indicate 

aridification occurred more gradually from 5.5 kyr BP onwards (Touzeau et al. 2013). 

Geological and geoarchaeological data from an excavation at the Saqqara 

necropolis supports both records, identifying a gradually drying climate from 5.0 – 

4.5 kyr BP, culminating in an extreme shift towards a very dry climate at 4.2 kyr BP 

(Welc and Marks 2014).  

 

It is believed that the arid event was so severe it had a dramatic impact on human 

population dynamics in North Africa. In Egypt, a failure of the annual flood of the 

River Nile occurred due to a drastically reduced summer monsoon in the Blue Nile 

basin (at present, the Blue Nile contributes ~ 68 % of the River Nile’s summer flood 

[Lamb et al. 2007a]). Ancient texts from this time describe the desert spreading 

across the land and the Nile Delta being so low it was crossed on foot (Bell 1971). 

This proved to be disastrous and plunged the Old Kingdom into the First Dark Age; 

widespread drought and famine resulted in extreme social, political and economic 

instability across the land, which is thought to have contributed significantly to the 

collapse of the Egyptian Old Kingdom (~ 4600 – 4100 yr BP) (Bell 1971). The 

associated desertification to the east and west of the River Nile has also been 

connected with the movement of people from the Libyan dessert into the Nile Valley 

and southwards, following the shifting rain belts (Welc and Marks 2014). Other 

civilisations and cities in the eastern Mediterranean also began to disintegrate 

around this time, including the Akkadian Empire in Mesopotamia (Cullen et al. 2000; 

deMenocal 2001), the city of Byblos (Lebanon) as well as several others in Syria and 

Palestine (Bell 1971). As such, the 4.2 event appears to be one of the most 

significant climatic events of the Holocene in terms of its widespread (mostly 

detrimental) impact on humans and has been proposed as a formal boundary 

between the middle and late Holocene by a Working Group of INTIMATE and SQS 

of ICS (Walker et al. 2012). 
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3.5.5 The Late Holocene  

The late Holocene saw several brief periods of increased humidity following the 4.2 

event centred at ~ 3.0 – 2.0 kyr BP, ~ 1.6 kyr BP and ~ 1.3 kyr BP. It has been 

suggested that enhanced, higher frequency ENSO events during this time caused 

these periods of stable humid conditions, which saw brief increases in regional lake 

levels (Fig. 3.6; Foerster et al. 2012). In the last millennium, East Africa experienced 

a drier climate during Europe’s Medieval Climatic Anomaly (MCA, ~ 950 – 680 yr BP) 

and a relatively wet climate during the Little Ice Age (LIA, ~ 680 – 100 yr BP) which 

was interrupted by three prolonged arid periods (Jones et al. 2001). Overall however, 

aridity increased as the climate transitioned towards present day conditions. The 

period also began to see more significant alterations to the environment by human 

activity as populations grew and agricultural practices and cultivation became more 

intensive and widespread. 

 

In northern Ethiopia, Lake Ashenge recorded an overall low lake level and gradually 

intensifying aridity during the late Holocene. Magnetic susceptibility data show an 

increase in allochthonous inputs from 3.9 kyr BP culminating at 2.9 – 2.7 kyr BP 

(Marshall et al. 2009). Whilst this may indicate increased rainfall in the catchment, no 

lake water dilution is inferred from the diatom assemblage. Therefore it is more likely 

that anthropogenic activity from agricultural and cultivation caused the excessive soil 

erosion documented in the lake, although the first signs of intensive cultivation at 

Lake Tana are documented much later around 1.7 kyr BP (Marshall et al. 2011). 

From 2.2 – 1.5 kyr BP a wet episode occurred, shown by an increase in freshwater 

diatom taxa and slightly reduced conductivity (Marshall et al. 2009). Evidence of this 

wet period was also found in the Tigray deposits, which resulted in increased soil 

formation, and at Lake Hayq10 (Fig. 3.1 [b] site 33), where δ18O values show slightly 

wetter conditions (Machado et al. 1998; Lamb et al. 2007b).  

 

From 1.5 – 1.0 kyr BP the climate in the Lake Ashenge basin became increasing dry 

again. An abrupt increase in the dominance of benthic and aerophilous diatom taxa 

and a minor positive shift in the isotope values, indicate the water level at Lake 

Ashenge had decreased in response to the enhanced evaporative concentration 

                                                           
10

 The study site for this research. 
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(Fig. 3.5; Marshall et al. 2009). Amplified allochthonous inputs indicate that the rate 

of erosion was high during this period, implying the catchment was becoming 

increasingly unstable. The deposits from Tigray likewise show a period of soil 

degradation at this time (Machado et al. 1998). This catchment instability was most 

likely driven by intensive agricultural practices in the catchment and a short, but 

intensive, wet season enhancing sediment supply to the lake. From 1.0 kyr BP to 

present, the Lake Ashenge diatom assemblage indicates a shallow, saline lake 

interrupted only by a brief wet spell from 500 – 300 yr BP. The Tigray valley deposits 

confirm this shift towards aridity (Machado et al. 1998). 

 

At Lake Tilo, stable δ18Ocarbonate values indicate low precipitation in the basin until ~ 

3.7 kyr BP when a brief wet episode occurred, lasting for approximately 300 years 

(Lamb et al. 2000). Following this, lake level dropped and became increasing saline 

in response to the increasing aridity, reaching its present condition around 2.0 kyr BP 

(Telford and Lamb 1999; Lamb et al. 2005). The last period of lake level rise in the 

Ziway-Shala basin occurred later, from 2.5 – 2.0 kyr BP, in response to increased 

humidity beginning at ~ 4.0 kyr BP, which may have seen Lakes Shala, Langano and 

Abijata briefly reunite before establishing the boundaries they occupy today (Fig. 3.6; 

Benvenuti et al. 2002; Chalié and Gasse 2002a; Lamb et al. 2002a; Mohammed et 

al. 2002). 

 

Chew Bahir continued to experience arid conditions until 2.0 kyr BP, interrupted only 

by a brief humid period at 3.0 kyr BP. At 2.0 kyr BP a longer humid period occurred, 

lasting until 1.3 kyr BP when it terminated abruptly (Fig. 3.3; Foerster et al. 2012). 

The Lake Turkana water level also continued to decline after the 4.2 event, falling 

below its modern level between 2.6 – 1.5 kyr BP (Fig. 3.6; Umer et al. 2004). A 

humid phase at 1.5 kyr BP caused lake level to rise above its modern level, after 

which it declined again, reaching its present day water level. Despite these major 

fluctuations, Lake Turkana has always been a permanent waterbody in an otherwise 

inhospitable desert, and therefore a refuge for people. Following the mid-Holocene 

fall in water level, Lake Turkana saw the emergence and/or expansion of pastoral 

herders into the basin, seeking sufficient water and pasture for livestock, alongside 

the hunter-gatherers who relied on fishing (Robbins 1972; Ashley et al. 2011; 

Ndiema et al. 2011). This transition and amalgamation of different people and 
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lifestyles led to new social, cultural and economic practices in the Turkana basin 

(Wright 2011).  

 

In the last millennium, aridity and warming synchronous with the MCA is evident 

across East and Southern Africa at Lakes Victoria (Stager et al. 2003), Bogoria, 

Nakuru, Elementeita (Fig 9. [b] site 25; De Cort et al. 2013), Sacred Lake (Konecky 

et al. 2014) and Tanganyika (Tierney et al. 2008), the Ethiopian highlands (Bonnefille 

and Umer 1994), the Kuiseb River (Namibia; Scott 1996), the Cango Cave system 

(South Africa; Talma and Vogel 1992) and the Wonderkrater records (Scott and 

Thackeray 1987; Scott 1999). The onset of MCA conditions was not synchronous 

across Africa however, with parts of Southern Africa experiencing greater warming in 

the early MCA and central and North Africa experiencing greater warming in the later 

MCA (Nicholson et al. 2013).  

 

LIA cooling is documented in pollen records from Ethiopia and Southern Africa 

(Bonnefille and Umer 1994; Scott 1996; Scott et al. 2003) as well as Lakes Victoria 

(Stager et al. 2003), Naivasha (Verschuren et al. 2000), Bogoria, Nakuru, 

Elementeita (De Cort et al. 2013), Malawi (Powers et al. 2011), Chilwa (Malawi; 

Owen and Crossley 1989) and glaciers in the Rwenzori Mountains (Russell et al. 

2009). In contrast, the western Ugandan crater lakes Kibengo, Kitagata, Kasenda 

and Wandakara and Lake Edward (Fig. 3.1 [a] site 3) suggest century-scale 

droughts during the height of the LIA (Russell and Johnson 2005; Russell et al. 

2003; 2007; Ryves et al. 2011). Russell et al. (2007) therefore suggest a rainfall 

gradient across East Africa during the LIA with the most western regions being dry 

and eastern regions being wet. Lake Tanganyika and Lake Sibaya (South Africa) 

also document relatively dry conditions during the LIA but this is most likely driven by 

their southerly locations on the ‘climatic hinge’ between the wet equatorial regions 

and the dry south (Stager et al. 2009; 2013).  

 

Most recently general warming has occurred over Africa since the 1880s, punctuated 

by a cool spell in the mid-20th century (19th – 21st century Ethiopian climate events 

are discussed in Chapter 2) (Nicholson et al. 2013; Nicholson 2014).  
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3.6 Conclusion 

It is clear that global teleconnections have played a role in both general climate 

variability and abrupt climatic shifts in tropical and subtropical Africa. The expression 

of these changes has been different locally and regionally, complicated by the effects 

of orography on monsoon system variability, the distribution of lakes and more 

recently by anthropogenic activities altering the hydrology and water balance of lake 

basins. This review therefore provides a regional framework against which new 

findings may be compared and contrasted.  

 

Based on the breadth of palaeoclimatic evidence from across the region, there are 

two issues arising which need addressing. First, it is evident from the records that 

the availability of high quality data across Ethiopia and the Horn of Africa is spatially 

uneven. High-resolution palaeo-records come predominantly from lakes in the MER 

(the Ziway-Shala basin, Lake Turkana and Chew Bahir) and, despite recent findings 

from Lakes Tana and Ashenge in the north, the highlands and escarpments are 

sparsely represented.  

 

Secondly, despite the numerous climate archives from across East Africa, there are 

discrepancies between records regarding regional climatic events such as the 

termination of the AHP. Uncertainty remains regarding the timing (due to errors in 

dating methods) and expression of these high-magnitude transitional periods based 

on the diverging response of biotic and hydrological systems not only between sites 

but also within the same site. Lake Turkana is a prime example of this, where 

palaeo-shoreline and relict beach evidence conflict when identifying the timing of 

Holocene high- and lowstand periods (Garcin et al. 2012; Forman et al. 2014). 

Isotope composition of terrestrial leaf wax compounds and biogenic silica profiles 

from Lake Malawi, likewise fail to agree on the timing and duration of mid-Holocene 

wet periods (Johnson et al. 2004; Konecky et al. 2011), whilst palaeo-shorelines and 

hydrological modelling at Lake Suguta provide contrasting evidence of both a 

gradual and abrupt termination of the AHP (Junginger et al. 2013).  

 

Therefore, the apparent response of a system to a climatic event may be biased by 

the sensitivity of the climatic proxy, chronological restraints and resolution, and 

model assumptions. Additional records from across East Africa are necessary in 
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addressing this issue, as by providing further high quality, high-resolution evidence 

of climatic and environmental change since the LGM, our understanding of the 

complex mechanisms that govern the East African climate will be improved. 

Providing these data is essential for accurate and robust reconstructions of past 

climate fluctuations, which can be utilised in future climate and environmental 

modelling under varying scenarios, including adaptation and mitigation responses by 

the population of this vulnerable region. 
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Chapter 4 

Research Approach and Methods. 

 

4.1 Introduction 

This chapter describes the palaeolimnological approaches used in this study. A 

detailed description of the study site, Lake Hayq, is presented first. Field sampling is 

then described, followed by laboratory procedures and sampling methods. Emphasis 

is placed on diatom and photosynthetic pigment analyses as these are the two main 

proxies used in this research for inferring environmental and climatic variability at the 

site. Finally, the numerical analyses applied in the study are discussed.  

 

4.2 Study Site: Lake Hayq 

Lake Hayq is located on the eastern margin of the north-central highlands in the 

South Wollo province of the Amhara region, northern Ethiopia (11º20’53’’N, 

39º42’32’’E; 1950 m altitude) (Fig. 3.1 [b] site 33). The lake sits in a graben formed 

within Tertiary volcanic bedrock. The lake is within the Awash River basin, 30 km 

north of the town Dessie and close to the Ambasel Mountains (Lamb et al. 2007b; 

Ayenew 2009). The Ethiopian Rift lies 25 – 30 km to the east where it widens into the 

Afar Depression. 

 

4.2.1 Geology  

The geology of northern Ethiopia has been described in detail in Chapter 2. The 

basin sits on Termaber basalt that formed during the Miocene to early Pliocene. The 

basalt consists of lenticular basalts, tuffs and rhyolitic lava flows. Diatomaceous 

deposits and thick palaeosols also occur at different levels in the bedrock indicating 

periods of volcanic quiescence when soils developed and the lake formed (Ghinassi 

et al. 2012). Three units were identified by Ghinassi et al. (2012) in the basalt: Unit I, 

a 450 m thick layer of basalts containing basaltic breccias and red palaeosols; Unit 

II, a layer consisting of ignimbritic flow deposits and basaltic layers approximately 

250 m thick; and Unit III, a deeply weathered 300 m thick basalt layer with paleosol 

and lacustrine diatomaceous deposits. 

 

4.2.2 Climate  

The climate of northern Ethiopia has been described in detail in Chapter 2. The  



90 

 

Lake Hayq basin climate can be defined as subhumid, with a mean annual 

temperature of 18 ºC with a diurnal range of 8 – 23 ºC. Climate data from four 

stations within 50 km of the lake record the influence of the south-east monsoon and 

high-elevation westerlies on the distribution of precipitation; total annual rainfall is 

1000 – 1100 mm yr-1, with 79 % of rainfall occurring between April and September 

(Demelie 2000; Darbyshire et al. 2003). 

 

4.2.3 Land Cover  

The surrounding lowlands and lake shores are intensively cultivated. Common crops 

include tef, wheat, millet, maize, coffee, chickpeas, Citrus species and Eucalyptus 

plantations (Darbyshire et al. 2003). Terracing permits agriculture on steeper slopes 

as well. Natural vegetation only occurs in small pockets at elevations below 2400 m. 

This includes savannah woodland and evergreen bushland (Acacia spp., Dodonaea 

angustifolia, Euclea schimperi, Euphorbia candelabrum, Ficus spp., Teclea 

simplicifolia, Ziziphus mucronata), ruderal herbs, (Rumex spp., Solanum incanum, 

Tribulus terrestris) and grasses (Hyparrhenia hirta, Pennisetum sphacelatum) 

(Darybshire et al. 2003). The natural montane vegetation of the region is the dry 

Juniperus procera forest but very little remains. Around the lake the forest is largely 

restricted to isolated shrubby pockets on steep, inaccessible slopes. Other scattered 

stands of forest on slopes over 2400 m contain J. procera together with Acacia 

abyssinica, Celtis africana, Cordia africana, Olea europaea, and in particularly 

sheltered valleys, Podocarpus falcatus.  

 

4.2.4 Drainage Basin and Hydrology  

Lake Hayq is 6.7 km long and 6.0 km wide, with a surface area of 23.2 km² and a 

catchment of 65.0 km² (Lamb et al. 2007b). It is a deeply shelving lake with a mean 

depth of 37.4 m (Fig. 4.1 and 4.2). In 1938 the maximum lake depth was 88.8 m but 

in 2000 this had decreased to 81.0 m, indicating a 7.8 m fall over 60 years (Lamb et 

al. 2007b). The main input to the lake comes from the Ankwarka River (Demlie et al. 

2007). The lake has no visible outlet. An apparent palaeochannel indicates that the 

nearby Lake Hardibo overflowed into Lake Hayq at some point in history (overflow 

ceased most recently in 1962 [Yesuf et al. 2013]). Ghinassi et al. (2012) suggest that 

during these historical overflow events, Lake Hayq’s surface area expanded up to 

three times. The palaeochannel is now permanently dry and would require a 16 –  
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Figure 4.1. Map of Lake Hayq showing bathymetry and the surrounding catchment. 

Inset shows location of Lake Hayq in Ethiopia (adapted from Lamb et al. 2007b). The 

red box indicates the location of core HYK99-1 extracted in 1999 and used by Lamb 

et al. (2007b) and Darbyshire et al. (2003). The approximate location of core Hayk-

01-2010 is indicated by the red circle. The Ankwarka River is indicated in blue and 

the town of Hayq by the green box. 
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Figure 4.2 (a). Bathymetric map and depth-area relation of Lake Hayq (adapted from 

Demlie et al. 2007). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2 (b). A three-dimensional meshed, shaded-rendering surface map of Lake 

Hayq. Changes in depth are indicated by colour; red shows the lake surface (0), 

whilst black indicates the deepest layers of the lake (- 800), close the location of 

Hayk-01-2010. The map was created to inform long-term management of the lake, 

as well as for fishing and recreational purposes (adapted from Yesuf et al. 2013).   
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18 m rise in water level at Lake Hardibo to cause overflow again. Occasional water 

flow now occurs between the lakes through an artificial irrigation canal. A second 

palaeochannel indicates that Lake Hayq overflowed during highstands into the Wazi 

River, a tributary of the Mille River which ultimately joins the Awash River in the 

south of the Afar Depression (Ayenew 2009). It is estimated a rise of ~ 40 m would 

be required to make Lake Hayq overflow again (Lamb et al. 2007b). More recent 

lake level changes have been documented through the transformation of an island 

near the western margin of the lake into a peninsula; in 1938 the 9th century Istifanos 

monastery was located on the island but by 1969 lake level had dropped causing the 

island to become attached to the mainland (Lamb et al. 2007b). Further declines in 

lake level have been documented during the 1970s and 1980s and more recently, 

caused by inappropriate farming practises, removal of vegetation and poor land 

management, which have reduced discharge from the upstream watersheds (Fig. 

4.3; Yesuf et al. 2013). 

 

4.2.5 Limnology  

The limnology of Lake Hayq was described by Baxter and Golobitsch (1970) who 

concluded that based on Talling and Talling’s (1965) classification of African lakes, 

Lake Hayq is a fairly typical class II11, oligotrophic tropical lake. Conductivity was 920 

µS cm-1 making it a freshwater lake. Chemical stratification was not pronounced 

although there was some accumulation of ammonia, phosphate and silica at greater 

depths. The predominant cation is magnesium and the predominant anions are 

bicarbonate and carbonate. Baxter and Golobitsch (1970) further state that the 

thermal stratification is similar to that of other Ethiopian lakes of comparable depth 

but the oxygenated layer was relatively deeper compared to others (around 40 m). 

The lake was also notable for its unusual water clarity (transparency measured with 

a Secchi disk was 9 m) and its low plankton density (chlorophyll a was < 1 µg l-1) at 

the time of observation.  

 

Since then, phytoplankton biomass has increased significantly (chlorophyll a was ~ 

12.5 – 22.9 µg l-1 in the early 1990s) which has reduced water clarity (transparency  

                                                           
11

 A lake with high total ion concentrations (alkalinity of 6 – 60 meq/l) arising from accumulation and 
evaporation in closed basins, or by inflow rich in solutes (carbonate, bicarbonate, sodium). 
Conductivity is between 600 – 6000 µS. Typical lakes include Lakes Albert, Edward, Kivu, Rukwa 
Tanganyika and Turkana. 
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Figure 4.3. Lake level (m) records for Lakes Tana, Hayq and Ashenge from 1969 – 

2001 (Ayenew 2009).  
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measured with a Secchi disk was 1.24 m) (Elizabeth et al. 1992). The oxygenated 

layer had also decreased to 10 m. These changes in limnology have been attributed 

to the introduction of planktivorous fish in 1978, which released phytoplankton from 

grazer control. Other factors that may have contributed to these changes include an 

increase in cultural eutrophication and a decrease in water level. A spate of fish kills 

in the lake have most likely been driven by these changes also; given the depth of 

the lake, the instability of the water column and the shallow oxygenated layer, anoxia 

is common following mixing in the lake, resulting in high fish mortality (Elizabeth et 

al. 1992). Fetahi et al. (2011a; 2011b) further identify that episodic mixing may have 

driven changes in zooplankton community structure.  

 

The water balance of Lake Hayq is relatively well understood given the availability of 

hydrometeorological data, field hydrogeological investigations and groundwater 

modelling (Ayenew and Demlie 2004; Asmare 2005; Demelie et al. 2007). Total 

annual inflow from precipitation, catchment runoff and rivers into Lake Hayq is 45.2 

million m3 (Table 4.1). Evaporation is the main outflow from the lake (65 % of losses), 

which combined with abstraction for irrigation has an annual loss of 34.6 x 106 m3. 

Groundwater inflow (5.9 x 106 m3 yr-1, 11 %) and outflow (1.4 x 106 m3 yr-1, 3 %) also 

play a significant role in the lake’s hydrology (Lamb et al. 2007b). Additionally, the 

net unmeasured groundwater flux suggests a further 15 x 106 m3 yr-1 (29 %) 

groundwater outflow. Stable isotope composition from the lake has δ18O values from 

+ 7.1 – + 9.1 ‰ between 1975 and 2001, indicating evaporative enrichment in 

comparison to the mean annual precipitation value of - 1.2 ‰ (Lamb et al. 2007b). 

 

4.3 Field Sampling 

Lake Hayq was cored in January 2010 by Henry Lamb, Michael Marshall, Helene 

Ducrotoy (Aberystwyth University) and Oliver Langkamp (University of Cologne). 

Coring was carried out from an anchored raft in the northern basin of the lake at the 

GPS recorded point N 11°20'46.4"; E 39°42'23.2", 1905 m elevation and 78.2 m 

water depth (Fig. 4.4). The sediment core was taken from the raft using a UWITEC 

hammered piston corer, with a 5.8 cm diameter and 210 cm barrel with a plastic 

liner, which was manually hammered into the lake bed (Aaby and Digerfeldt 1986). 
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Coring began 89 cm below the sediment surface and the core, Hayk-01-201012, was 

extracted in nine drives, labelled 1 – 9, totalling ~ 1200 cm. One known repeat drive 

was extracted (drives 2 and 3). Plant arrangers’ oasis was used to stabilise the 

sediment-water interface and the cores were cut into two sections (with the 

exception of drives 6 and 9, which were shorter in comparison to the other cores), 

labelled A and B, for packing and transport (Table 4.2). 

 

Table 4.1. Water balance estimates for Lake Hayq (Lamb et al. 2007b). Inflows are 

estimated from field measurements of the Ankwarka River and spring flows in 

February and March 2000, average rainfall from 1966 – 1999, and a runoff 

coefficient of 0.3 (estimated using area weighting of six land-use, five slope and two 

soil type units of the lake catchment [Tripathi and Singh 1993]). Evaporation is based 

on Penman estimates combined with a seven year Colorado Class-A pan 

evaporation record (1985 – 1991) measured at the town of Hayq. 

Source 
Water balance estimate 

(m³ x 10
6
 yr

-1
) (%) 

Precipitation on lake + 26.0 + 52.0 

Catchment runoff + 19.0 + 37.0 

Groundwater inflow + 5.9 + 11.0 

Groundwater outflow - 1.4 - 3.0 

Evaporation - 33.0 - 65.0 

Abstraction - 1.6 - 3.0 

Net unmeasured ground water flux (outflow) - 15.0 - 29.0 

 

4.4 Laboratory Methods 

On return to the laboratory at Aberystwyth University the core was refrigerated at 4 

°C. In February 2013 the core was made available for the purpose of this research. 

Each core section was cut in half lengthways using a steel wire and each half was 

covered in cling film, resealed in plastic casing and labelled. One half of each core 

was kept refrigerated at Aberystwyth University for archiving and the other ‘working’ 

half was transported to Loughborough University to undergo analyses. When not 

being sub-sampled, working halves were kept sealed in cling film and refrigerated. 

 

 

                                                           
12

 ‘Hayk’ is an alternative spelling for L. Hayq and shall only be used in reference to the core Hayk-01-
2010. 
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Figure 4.4. Aerial view of Lake Hayq (Google Earth 2013b). The red circle shows the 

location of core Hayk-01-2010. The blue circle indicates the approximate location of 

core HYK99-1 extracted in 1999 and used by Lamb et al. (2007b) and Darbyshire et 

al. (2003). The black box indicates the position of the Istifanos monastery, located on 

an island in the 9th century, which has since become attached to the mainland as the 

water level has dropped. 

  

N 

3.39 km 
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Table 4.2. Drive details of core Hayk-01-2010.  

Drive Subdrive 

Core 

length 

(cm) 

Depth below 

sediment 

surface (cm) 

Sampling interval (cm) 

Diatoms Pigments 

1 A 95.5 89.0 – 184.5 2 2 

 B 87.0 184.5 – 271.5 2 2 

2 A 93.5 247.5 – 341.0 2 Not sampled 

 B 47.0 341.0 – 388.0 2 Not sampled 

3 A 83.5 236.5 – 320.0 2 Not sampled 

 B 50.5 320.0 – 370.5 2 Not sampled 

4 A 89.0 226.5 – 315.5 0.5 cm between 269.0 – 

301.0, remainder at 2 cm 

0.5 cm between 269.0 – 

301.0, remainder at 2 cm 

 B 90.0 315.5 – 405.5 2 2 

5 A 84.5 369.0 – 453.5 0.5 cm between 387.0 – 

412.5 cm, remainder at 2 cm 

0.5 cm between 387.0 – 

412.5 cm, remainder at 2 cm 

 B 67.0 453.5 – 520.5 2 2 

6  90.0 522.5 – 612.5 0.5 cm between 523.0 – 

531.0 cm, remainder at 2 cm 

0.5 cm between 523.0 – 

531.0 cm, remainder at 2 cm 

7 A 93.0 572.5 – 665.5 2 14 

 B 81.5 665.5 – 747.0 2 14 

8 A 21.5 723.5 – 745.0 2 14 

 B 77.0 745.0 – 828.0 2 14 

9  47.0 773.0 – 820.0 2 Not sampled 

 

4.4.1 Troels-Smith Sediment Classification   

Each core half was cleaned and photographed in preparation for sediment 

description. The sedimentary sequence was then divided into lithostratigraphic units 

based on sediment type and colour. The Troels-Smith sediment classification 

scheme was applied to characterise and define the units accurately (Aaby and 

Berglund 1986; Schnurrenberger et al. 2003). Changes in colour were identified 

using a Munsell colour chart. 

 

4.4.2 Organic, Carbonate and Water Content   

Loss-on-ignition (LOI) was used to estimate the organic (Corg) and carbonate content 

(CO3) of the sediment. Methodology followed standard techniques (Dean 1974). At 

least 1 cm3 of sediment (typically weighing 1 – 2 g) was extracted from the core at 2 

cm intervals. The samples were placed in pre-weighed crucibles, re-weighed and 

dried overnight at 105 °C. After cooling in a dry desiccator, samples were weighed 

again. The loss in mass is taken as an estimate of water content. The samples were 
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then placed in a furnace at 550 °C for two hours. After cooling, samples were 

weighed. The resulting weight loss is attributed to the combustion of organic matter 

and is a measure of LOI. The final heating was for four hours at 925 °C, after which 

samples cooled and were weighed. The amount of carbon dioxide lost in the process 

is a result of carbonates being converted to oxides and so is used to determine 

carbonate content.  

 

In order to identify any depth discrepancies as a result of the coring process, 

organic, carbonate and water content profiles were compared between cores. This 

served as the main tool for identifying overlap or gaps between core sections and 

was used in conjunction with diatom and elemental profile data, as well original field 

notes.  

 

4.4.3 Diatoms    

4.4.3.1 Ecology, Morphology and Distribution 

Diatoms are a microscopic, unicellular group of photosynthesising algae belonging to 

the Division Chrysophyta, Class Bacillariophyceae (Battarbee et al. 2001). Two main 

forms of diatoms have been identified: centrics (Centrales) and pennates (araphid 

and raphid) (Pennales) (Julius and Theriot 2010). These forms vary in cell size 

(typically 20 – 200 μm), frustule shape, striae and punctae/areolae density and 

pattern and form of raphe ends (Mann and Droop 1996). It is the arrangement of 

these skeletal features which are used to describe and identify diatoms to variety, 

species or sub-species level in palaeoenvironmental research, without the need to 

extract DNA.  

 

Diatoms serve as powerful ecological indicators in limnological environments due to 

several unique characteristics. Firstly, diatoms are ecologically sensitive to the 

environment in which they are present. There are currently > 24,000 identified 

diatom species (though there could be as many as 100,000 – 200,000 taxa; Julius 

and Theriot 2010), which have adapted to a variety of aquatic conditions (Guillard 

and Kilham 1977; Mann and Droop 1996). Physical conditions include factors such 

as temperature, light, turbulence and ice-cover, whilst chemical conditions include 

nutrient availability, pH, dissolved organic carbon and salinity (Battarbee et al. 2001). 

The many combinations of environmental conditions have created a diversity of 
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niches enabling diatoms to be found in almost every aquatic (even simply moist) 

environment, including fresh and marine waters, as well as soil. Consequently, many 

diatom species are cosmopolitan, having a wide geographical distribution, whilst 

others are more restricted and some are endemic to a particular region. Given the 

diversity of habitat combinations and the abundance of diatoms, discovery of a new 

species occurs frequently (Julius and Theriot 2010; You et al. 2015; Kopalova et al. 

2015). Secondly, diatoms respond rapidly to environmental fluctuations, so should 

the environmental conditions change to beyond the tolerance threshold of a certain 

taxon, the diatom assemblage will respond rapidly to reflect the new environmental 

conditions. The frequent species turnover exhibited by diatoms makes them 

preferable to other palaeoenvironmental proxies such as chironomids, which 

respond slower to environmental changes (Verschuren 2003). Finally, diatoms have 

a silica wall which preserves them in sediments. They are often found preserved in 

multi-millennial sediment records.  

 

Being mostly autotrophic, diatoms are restricted to the photic zone but can occupy a 

diversity of habitats found within that region where there is sufficient light. In general, 

the species found in different habitats within a lake are characteristic of each 

particular habitat, although species can be found in more than one habitat (Battarbee 

et al. 2001; Julius and Theriot 2010). Planktonic diatoms are those which spend their 

entire life cycle suspended in the water column. In general, centric diatoms are 

considered planktonic. Benthic diatoms live attached to some form of substrate 

around the margins of lakes. Diatoms found on stones are referred to as epilithic, on 

aquatic vegetation as epiphytic, on mud as epipelic and on sand as epipsammic. 

Substrate disturbance frequency and magnitude is also a factor affecting species 

distribution. In general, pennate diatoms are benthic. Facultatively planktonic 

diatoms may include centric and pennate taxa, which spend part of their life cycle 

both floating free in the water column and attached to substrates. Tychoplanktonic 

diatoms are those that have been swept into the plankton through a disturbance, 

such as turbulence, in their benthic habitat. Aerophilous species are found in 

subaerial environments such as soils, bogs and marshes. However, the ecology of 

many species is not known in detail, and so continued monitoring and research is 

necessary to inform understanding of species’ ‘optimum’ conditions. Within habitats, 

both centric and pennate diatoms can be found as single, individual cells or in large 
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colonies attached to one another by mucous filaments (Battarbee et al. 2001). In 

large enough numbers, diatoms can form sediment comprised entirely of frustules: 

diatomite.  

 

4.4.3.2 Diatom Based Studies in East Africa 

Extensive diatom based studies have been carried out across lakes in East Africa 

since the early 20th century. The first intensive diatom studies were carried out in 

central East African lakes by Müller (1903; 1904; 1905; 1910), Forti (1909 – 1910), 

Hustedt (1922) and Zanon (1941). This was followed by Hustedt (1949) who was the 

first to characterise East African waters according to their diatom flora. Cholnoky 

(1964) was the first to publish quantitative studies from the Ruwenzori Mountains as 

well as Mount Kenya and the Bangweulu swamps (Zambia) (Gasse 1986). Hustedt’s 

(1949) work was later expanded on by Richardson (1968; 1969), Hecky and Kilham 

(1973) and Richardson et al. (1978). Other work in the 20th century considered 

diatom resource requirements; Kilham (1971) studied ambient silica concentrations 

and the conditions leading to dominance of the major planktonic diatom groups. 

Kilham et al. (1986) expanded on this, investigating resource relationships 

(phosphorus, silica and light requirements) among planktonic diatoms, and Kilham 

and Kilham (1990) related diatom occurrence, specifically Stephanodiscus species, 

to elemental and nutrient loading in African lakes. Work on diatom flora in desert 

regions has been less extensive but publications have been made by Bastow (1960) 

who studied the diatom flora of drainage ditches near Khartoum, and Karim (1975) at 

Jebel Marra. Gasse (1975; 1980) has published diatom studies from Ethiopia and 

Djibouti.   

 

Research in the late 20th century and early 21st century has built upon these 

relatively descriptive studies by using diatoms as palaeo-indicators to infer long-term 

(millennial to sub-millennial scale) changes in lake level and hydrochemical 

composition associated with climate variability during the Quaternary. Such studies 

have been conducted at Lakes Victoria (Stager 1998; Stager et al. 2003), Malawi 

(Gasse et al. 2002), Tanganyika (Cocquyt 1998; Stager et al. 2009), Abhé (Gasse 

1977), Abiyata (Chalié and Gasse 2002a), Challa (Barker et al. 2011), Munya wa 

Gicheru (Owen et al. 2012), Rukwa (Barker et al. 2002), Tilo (Telford and Lamb 

1999), several small lakes on Mt. Kenya (Barker et al. 2001; Street-Perrott et al. 
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2007) and on deposits on the Baringo basin (Kingston et al. 2007). More recently, 

the focus has shifted to short-term (century to decadal scale) investigations of abrupt 

regional climate shifts, as well as environmental changes associated with 

anthropogenic activity, during the late Pleistocene and Holocene. Such studies have 

been conducted at Lakes Tana (Marshall 2006; Lamb et al. 2007a), Ashenge 

(Marshall 2006; Marshall et al. 2009), Abijata (Legesse et al. 2002), Duluti (Öberg et 

al. 2012), Nabugabo (Stager et al. 2005) and the Ugandan crater lakes (Mills 2009; 

Ryves et al. 2011).  

 

4.4.3.3 Diatom Analysis 

4.4.3.3.1 Preparation  Diatom and microscope slide preparation followed 

standard methodology (Battarbee 1986; Renberg 1990). Approximately 0.1 g of wet 

weight sediment per sample was used for analysis. Five millilitres of 30 % H2O2 was 

added to each sample before being placed in a water bath in a fume cupboard and 

slowly heated to 80 °C. Samples were observed frequently to ensure they did not dry 

out and remained in the water bath for 5 – 8 hours until the reaction had stopped. 

Then 1 – 2 drops of 50 % HCI were added to each sample to eliminate any 

remaining H2O2 and carbonates. Samples were topped up with distilled water and left 

to settle overnight. The supernatant liquid was decanted off the following morning 

and samples were topped up again with distilled water. This washing process was 

repeated four times. Two drops of weak ammonia was added to samples with the 

final wash to keeps any clays in suspension. Once washed, samples were diluted 

and placed on coverslips and allowed to dry. The coverslips were then mounted in 

Naphrax and heated on a hot plate in a fume cupboard at 130 °C.  

 

4.4.3.3.2 Counting Strategy In general 300 valves were counted per sample 

under oil-immersion phase-contrast light microscope (LM) at x 1000 magnification on 

a Leica DMRA research microscope. In certain sections of the core it was necessary 

to modify the counting procedure due to variability in valve abundance or a sample 

being dominated by a single taxon. In samples where valve abundance was low the 

count was reduced to a seemingly more practical target count. This was done by 

performing a transect across a section of a microscope slide and then based on the 

occurrence of valves in that space, scaling the target count down. In some instances 

the target was revised to as few as 50 valves when diatom abundance was very low. 



103 

 

In other samples it was not deemed worthwhile to continue counting and taxa were 

simply identified as being present in the sample. Ultimately this scaling down 

approach was judged based on the practicality of counting a representative number 

of identifiable valves in a given time period. Advice and guidance from colleagues 

was sought when making such decisions (Ryves; Lewis; Hogan 2013 pers. comm.). 

 

In instances where a single taxon dominated the assemblage (accounting for > 33.3 

% of valves) counts were increased by 200 valves (500 valves in total) and the 

dominant taxon no longer included, following the DARES (2004) protocol. This 

method was time consuming however, given the dominance of a single taxon in 

some samples and so was not performed on every sample. Instead it was 

considered more practical to revert back to standard counts of 300 valves. Before 

doing so however, it was deemed necessary to ensure that species diversity and 

relative species abundance (how common or rare a species is relative to other 

species in a defined community) would not be significantly affected by counting 

fewer valves than recommended by DARES (2004). To do this, twenty-one samples 

dominated by a single taxon, were randomly selected (with the exception of three 

which had already been counted according to the DARES [2004] protocol) and 

counted to 500 valves, recording the cumulative number of species after every 

twenty valves. The results indicate that in 90.5 % of samples, the number of species 

plateaued before 500 valves were counted. Of these, 21.1 % saw no change in the 

number of species between 300 and 500 valves. In 26.3 % just one additional taxon 

was identified and in 47.4 % two additional taxa were identified. These increases in 

the number of taxa however, only accounted for 0.2 – 0.8 % of valves in a count of 

500. A comparison of the three samples counted using the standard method (300 

valves) and the DARES (2004) protocol found that the relative species abundance 

was not significantly different between the two methods (Fig. 4.5). It was concluded 

that relative species abundance was not significantly affected by standard counts of 

300 valves, rather than the additional valves recommended by DARES (2004), and 

so would be sufficiently accurate for samples dominated by a single taxon. 
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Figure 4.5. Comparison of three samples (a – 1A 36.5 cm, b – 4B, 118.0 cm, c – 5B, 12.5 cm) counted using the standard method 

(300 valves) (light grey) and the DARES (2004) protocol (dark grey) showing percentage differences between the dominant taxon  

and benthic taxa. Error bars are indicated.   
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In sections of the core sampled at a high-resolution (drives 4A, 42.5 – 74.5 cm; 5A, 

18.0 – 43.5 cm; 6, 0.5 – 8.5 cm at 0.5 cm resolution) replicate counts were 

performed in order to separate the diatom signal from external variables. In each 

high-resolution section, a representative (> 10 %) number of evenly spaced intervals 

were selected and for each one, three samples made from the same diatom solution. 

Three-hundred valves were counted for each sample. The standard deviation of the 

relative abundance of the dominant taxa identified in replicate samples was used to 

calculate within sample variability (Fig. 4.6). It was found that generally, species with 

a larger average abundance had a greater standard deviation but this did vary within 

samples (Table 4.3). The average standard deviation across all samples was 

calculated as 2.82 % which may be applied to all diatom samples in order to 

estimate within sample variability. Changes in the relative abundance of dominant 

taxa between samples within this variability are considered to be the diatom signal 

and therefore accepted error of the method. Variability beyond this estimate is 

considered significant. 

 

 Table 4.3. Dominant taxa found in replicate samples and their standard deviation 

which serves as an estimate of within sample variability. 

Taxa 
Number of 

replicate samples 

Average 

abundance (%) 

Average standard 

deviation (%) 

Stephanodiscus parvus 3 56.01 12.03 

Aulacoseira granulata var. angustissima 39 51.39 7.00 

Fragilaria radians 18 44.92 2.59 

Gomphonema parvulum 18 8.62 1.69 

Ulnaria ulna var. ulna 36 5.67 1.37 

Nitzschia subcommunis 18 7.25 0.91 

Ulnaria delicatissima 36 3.29 0.76 

Gomphonema pumilum 18 3.27 0.90 

All taxa combined 186 - 2.82 

 

4.4.3.3.3 Taxonomy, Concentration and Dissolution  Diatom 

taxonomy follows Krammer and Lange-Bertalot (1988; 1991a; 1991b; 1999), Gasse 

(1986), Hustedt (1949) and Patrick and Reimer (1966). Currently accepted names 

were verified against recent publications (Williams 2011) and authoritative databases 

(AlgaeBase 2015; DiatCode 2015). Valves were identified to species level where 

possible. Diatom concentration was estimated by adding a known number of  
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Figure 4.6. Mean abundance of dominant taxa identified in replicate counts and their 

within sample variability (error bars) calculated using the standard deviation: 

Stephanodiscus parvus (cyan), Aulacoseira granulata var. angustissima (blue), 

Fragilaria radians (red), Gomphonema parvulum (green), Ulnaria ulna var. ulna 

(purple), Nitzschia subcommunis (brown), Ulnaria delicatissima (black) and 

Gomphonema pumilum (yellow).  
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microspheres to the samples (Battarbee and Kneen 1982). Valve dissolution was 

assessed during counting using a binary system with valves marked as either ‘0’ for 

visibly dissolved or ‘1’ being non-dissolved or ‘pristine’. This strategy was used to 

calculate the proportion of pristine to all classifiable valves within a species or 

assemblage (Flower and Likhoshway 1993; Ryves et al. 2001; 2006): 

(1) 

 

 

 

 

In this fractional dissolution index (or F index), nij is the number of pristine valves of 

species j (of m) counted in a sample i, compared to Nij, the total number of 

classifiable valves of species j. F varies between 0 (all valves visibly dissolved) and 1 

(perfect preservation).  

 

4.4.3.3.4 Nitzschia subcommunis There is a high degree of morphological 

similarity between many of the smaller, slender Nitzschia species found in East 

Africa as well as diversity of form within species (Gasse 1986). As such, identifying a 

single taxon amongst a variety of similar species can be problematic. Such an issue 

was encountered when trying to identify the species recognised in this research as 

Nitzschia subcommunis (Hustedt) (15 – 50 μm long, 2.5 – 3.5 μm wide; Fig. 4.7). In 

order to establish the taxonomy of the species, 105 valves were measured in length 

from a randomly selected sample dominated by the taxon (5A, 71.5 cm, 56 % 

dominance). Valves varied from 24 – 66 μm in length. The majority of valves (44.6 

%) were between 42 – 50 μm in length and 81.6 % were ≤ 50 μm (Fig. 4.7). Based 

on these results and the morphological structure of the valves, as well as seeking 

advice from colleagues, it was concluded that the species in question was Nitzschia 

subcommunis as identified by Hustedt (1949) at Lake Albert (see Plate VI).  

 

4.4.3.3.5 Separating Fragilaria-Ulnaria taxa  Several varieties of the longer, 

slender Fragilaria-Ulnaria taxa have been amalgamated by taxonomists due to 

difficulties distinguishing between the sub-species in sample material. Gasse (1986) 

and Cocquyt (1998) use Synedra acus to refer collectively to the varieties radians, 

angustissima and delicatissima. Patrick and Reimer (1966) in contrast, distinguish  
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Figure 4.7 (a). Hustedt’s (1949) classification of Nitzschia subcommunis (specimens 

100 – 106) (adapted from Hustedt 1949, Plate XIII). 

 

 

Figure 4.7 (b). Size class distribution of 105 Nitzschia subcommunis valves (15 – 50 

μm based on Hustedt’s [1949] classification), used to aid its identification. 
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between Synedra acus, Synedra delicatissima and Synedra radians (referred to as 

Ulnaria acus, Ulnaria delicatissima and Fragilaria radians in this research) (Fig. 4.8). 

Given the distinguishable morphological differences between Fragilaria-Ulnaria taxa 

in this study, it was decided by the author to base their classification on the varieties 

identified by Patrick and Reimer (1966), rather than amalgamate the valves and 

potentially loose palaeolimnological data (see Plates III and IV for photographs).  

 

4.4.4 Photosynthetic Pigments  

4.4.4.1 Ecology, Morphology and Distribution 

Photosynthetic pigments are found in phototrophs for the purpose of light harvesting 

for photosynthesis, or for protection against damaging levels of light. In aquatic 

environments the pigments of photosynthetic organisms include chlorophylls (Chl), 

carotenoids (carotenes and xanthophylls), photoprotective compounds and their 

derivatives (isomers, allomers, epimers, pyrolysis products as well as pigment-

specific structural modifications) (Leavitt and Hodgson 2001). Chlorophylls are 

magnesium coordination complexes made up of four pyrrole units cyclically arranged 

with an isocyclic ring (McGowan 2013). Carotenoids are larger compounds 

characterised by an aliphatic polyene chain comprised of eight isoprene (C5H8) units 

(McGowan 2013). They are produced by benthic and planktonic algal communities 

(Chl a, b and c), phototrophic bacteria (bacteriochlorophylls, Bchls), aquatic plants 

and macrophytes, and may also be present in detrital material which may become 

re-suspended or transported (Brown 1969; McGowan 2013).  

 

The majority of pigments degrade rapidly in the water column (> 95 % of 

compounds, half-life of days) before reaching the sediment due to processes such 

as microbial oxidation, grazing by invertebrates, bacterial degradation, cell lysis and 

enzymatic metabolism during senescence (Leavitt and Hodgson 2001). Water 

column properties may cause additional degradation through variability in oxygen, 

light and heat concentration (as such, care should be taken during pigment handling 

and storage during analysis) (Leavitt 1993; Cuddington and Leavitt 1999). Pigment 

degradation is slower once in sediments, especially under anoxic conditions, but can 

be affected by light variability and invertebrate burrowing (Leavitt and Carpenter 

1989). Degradation among pigments varies. Chlorophylls are easily broken down but  
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Figure 4.8. Patrick and Reimer’s (1966) classification of (1) Synedra acus (Ulnaria 

acus), (2) Synedra delicatissima (Ulnaria delicatissima), (3) Synedra delicatissima 

var. angustissima and (4) Synedra radians (Fragilaria radians) (adapted from Patrick 

and Reimer 1966, Plate 5, pg. 172). 
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as they produce detectable breakdown products, they can be easily identified in 

sediment. Carotenoids in general are more stable. As a result, whilst pigments will 

record changes in the dominant algal groups, fossil records may be biased due to 

preferential deposition and differential degradation of certain pigments (additional 

bias is caused by standard algal monitoring techniques which rarely sample the 

entire water column) (McGowan 2013). The most favourable conditions for pigment 

preservation are those in a shallow, non-turbid lake, where pigments are buried 

rapidly (due to a smaller sinking depth), and removed from exposure to heat, light 

and oxygen.  

 

If pigments can pass through these initial stages of deposition and once the 

morphological structures of the source photosynthetic organisms have disintegrated, 

the lipid-soluble chlorophylls, carotenoids and derivatives provide a signature of 

historical aquatic environments preserved in the sediment (water-soluble phycobilins 

are less commonly used due to poor preservation) (Leavitt and Hodgson 2001; 

McGowan 2013). As such, pigments make excellent biomarkers as they are: (1) 

widely distributed, due to being a fundamental component of all photosynthetic 

organisms; (2) being taxonomically affiliated with specific groupings of 

photosynthetic organisms (Table 4.4); (3) relatively simple to isolate and quantify 

using a variety of analytical techniques; and (4) persistent in the sedimentary 

environment under favourable conditions (McGowan 2013).  

 

Since the identification and isolation of pigments in sediments during the early to 

mid-20th century, pigments have been used as a tool in palaeolimnological research 

(Fox 1944; Cook 1945; Vallentyne 1954). Early studies used pigments as a 

biomarker for former populations of phototrophic prokaryotes and as a measure for 

estimating historical changes in lake productivity (Fogg and Belcher 1961; Brown 

and Coleman 1963; Brown 1968). As analytical techniques, chemical identification 

methods, pigment taphonomy and determinations of compound distribution 

improved, the range for palaeolimnological applications expanded (Leavitt and 

Hodgson 2001). Fossil pigments are now used to quantify historical changes in algal 

and photosynthetic bacterial community composition (Yacobi et al. 1990), food-web 

interactions (Leavitt et al. 1994a; 1994b), lake acidification (Guilizzoni et al. 1992), 
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Table 4.4. Pigments commonly found in lake sediments and their taxonomic 

affinities, source (listed in order of quantitative importance, P: planktonic, L: littoral, 

T: terrestrial, S: sedimentary) and stability (1: most stable to 4: least stable) (adapted 

from Leavitt and Hodgson 2001; McGowan 2013). 

Pigment Affinity Source Stability 

Chl a All photosynthetic algae, higher plants P, L 3 

Chl b Green algae, euglenophytes, higher plants P, L 2 

Chl c Dinoflagellates, diatoms, chrysophytes P, L 4 

Bchls a and b Purple sulfur and nonsulfur bacteria - - 

Bchls c, d and e Green sulfur bacteria - - 

Pheophytin a Chl a derivative P, L, T, S 1 

Pheophytin b Chl b derivative P, L, T, S 2 

Pheophorbide a Grazing, senescent diatoms P, L, S 3 

Pyro-pheo (pigments) Derivatives of a and b phorbins L, S 2 

Steryl chlorin esters Chlorophyll derivatives from grazing - - 

β-carotene Most algae and plants P, L, S 1 

α-carotene Cryptophytes, prochlorophytes and rhodophytes P, L 2 

Alloxanthin Cryptophytes P 1 

Fucoxanthin Diatoms, prymnesiophytes,chrysophytes, raphidophytes, 

several dinoflagellates 

P, L 2 

Diadinoxanthin Diatoms, dinoflagellates, prymnesiophytes, chrysophytes, 

raphidophytes, euglenophytes and cryptophytes 

P, L, S 3 

Diatoxanthin Diatoms, dinoflagellates, chrysophytes P, L, S 2 

Peridinin Dinoflagellates P 4 

Canthaxanthin Colonial cyanobacteria, herbivore tissues P, L 1 

Echinenone Colonial cyanobacteria P, L 1 

Myxoxanthophyll Colonial cyanobacteria P, L 2 

Oscillaxanthin Cyanobacteria (Oscillatoriaceae) P, L 2 

Scytonemin Colonial cyanobacteria L, P - 

Zeaxanthin Cyanobacteria P, L 1 

Lutein Green algae, euglenophytes, higher plants P, L, T, S 1 

Neoxanthin Green algae, euglenophytes, higher plants L 4 

Violaxanthin Green algae, euglenophytes, higher plants L 4 

Isorenieratene Green sulfur bacteria P 1 

Okenone Purple sulfur bacteria P 1 

Rhodopinal Purple sulfur bacteria - - 

Astaxanthin Herbivore tissue, N-limited green algae P, L 4 

 

variation in salinity (Vinebrooke et al. 1998), changes in physical lake structure 

(Hodgson et al. 1998), mass fluxes within lakes (Ostrovsky and Yacobi 1999), UV 

radiation records (Leavitt et al. 1997; 1999), as well as primary productivity (Leavitt 

and Hodgson 2001; McGowan 2013). Pigments can also be used as indicators of 
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anthropogenic activities such as eutrophication (Lami et al. 1991; Bunting et al. 

2007), fisheries management, land use practices, atmospheric deposition of 

contaminants (Guilizzoni et al. 1992; Vinebrooke et al. 2002) and climate change 

(Leavitt et al. 1994c; Hall et al. 1999; Leavitt and Hodgson 2001). The reliability of 

historical pigment reconstructions has likewise improved as understanding of 

pigment production, deposition and biogeochemistry has developed. Increasingly 

pigments are being used (independently or alongside additional proxies) for 

environmental reconstructions during the Holocene and the Pleistocene.  

 

4.4.4.2 Pigment Based Studies in East Africa 

The first intensive studies of pigments in East Africa were conducted by Talling 

(1965; 1966) who used short-term field experiments over varying time scales to 

study photosynthetic behaviour at Lakes Victoria, Albert, Edward, George, Bunyoni 

and Mulche (Uganda). Since then, pigments have been used extensively in lake 

monitoring across East Africa, either as an independent biomarker or in conjunction 

with other proxies in order to address phytoplankton composition and dynamics as 

well as improve understanding of the role and ecological significance pelagic algal 

communities play in limnetic systems and communities. Many of these studies have 

used algal pigments to measure contemporary changes in lake productivity.  

 

Melack (1981) for example, conducted a survey of photosynthetic activity in four 

Kenyan soda lakes (Lakes Bogoria, Elmenteita, Simbi and Sonachi) over an 18 

month period with the purpose of comparing and contrasting diurnal and monthly 

variability in photosynthetic activity, rates and phytoplankton abundance. Overall, it 

was found that the highest and most efficient photosynthetic rates in African soda 

lakes occur during blooms of cyanophytes (Melack 1981). Lake Sonachi was 

investigated again by Verschuren et al. (1999) in order to ascertain long-term 

controls on algal and invertebrate communities over the past 175 years in 

conjunction with documented lake level fluctuations and changes in the lake mixing 

regime (Verschuren 1999b). It was found that long-term changes in nutrient supply 

associated with vegetation succession in the catchment were responsible for 

successive phases in the ecological community (Verschuren et al. 1999).  
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At Lake Tanganyika, Descy et al. (2005) conducted a two year study (2002 – 2003) 

of chlorophyll and carotenoid pigments from several on- and off-shore stations to 

measure primary productivity as well as degradation processes over relatively short 

time periods (months, seasons, years). Whilst broadly similar to previous findings 

from the lake (Hecky and Kling 1981), Descy et al. (2005) concluded that high 

interannual variation and spatial heterogeneity of the phytoplankton may render it 

difficult to assess long-term changes in phytoplankton driven by climate change, in 

particular, warming lake temperatures. A parallel study was conducted at Lake Kivu 

by Sarmento et al. (2006) from 2002 – 2004. Wind patterns and water column 

stability were found to cause substantial interannual variability in algal biomass and 

assemblage composition, and it was concluded that based on the dominant 

phytoplankton functional groups,  Lake Kivu was in an intermediate trophic position 

between the oligotrophic Lakes Tanganyika and Malawi and the eutrophic Lake 

Victoria (Sarmento et al. 2006). 

 

At Lake Zeekoevlei in South Africa, pigments were used alongside stable isotopes 

(δ13C and δ15N), rates of primary palaeo-productivity and total inorganic carbon (TIC) 

to investigate changes in plankton and macrophyte communities in response to 

anthropogenic activity (Das et al. 2009). The lake was transformed during the 20th 

century as it became a popular yachting destination and dams were established to 

maintain water level, causing it to become hyper-eutrophic. Cyanobacteria have 

since declined, though the hyper-eutrophic conditions continue. The lake is currently 

characterised by chlorophyll a, β-carotene, echinenone, fucoxanthin and zeaxanthin 

with seasonal blooms of cyanobacteria and diatoms (Das et al. 2009). 

 

As well as contemporary studies, pigments have been used as a palaeo-tool for 

reconstructing past limnetic environments. At Lake Malawi, Castañeda et al. (2009) 

used algae and compound-specific carbon isotopes to examine past variations in 

algal community composition and primary productivity since the LGM. Mohammed et 

al. (2002) similarly used pigment analysis to assess primary productivity at three 

Ethiopian lakes (Lakes Langano, Abijata and Shala) during the late Holocene. 

However, the application of pigments as a palaeo-tool is limited and little is known 

regarding the effect of major hydrological fluctuations, such as those during the 

Quaternary, on algal ecosystems in East African lakes. It is not clear how lake 



115 

 

primary productivity was affected by changes in lake level, whether there were shifts 

in the dominant algal groups or what the effect was of changing surface 

temperatures or wind regimes on algal groups (Castañeda et al. 2009).  

 

Understanding these dynamics in East African lake systems is important given the 

potential implications for organisms high in the food chain (i.e. fish and people). By 

assessing how the aquatic ecosystems were affected by historical periods of climate 

variability it may be possible to predict how lakes may respond to future episodes of 

climate change and therefore planning, mitigation and adaptation policies can be 

implemented.  

 

4.4.4.3 Pigment Analysis 

4.4.4.3.1 Pigment Extraction Pigments were extracted at the University of 

Nottingham, following standard methodology (Leavitt and Hodgson 2001; McGowan 

2013). Approximately 200 mg of freeze-dried sediment were used per sample for 

analysis, to which 5 ml of extraction solvent was added. Samples were stored 

overnight in a freezer to extract. Samples were then filtered using a 0.22 μm lock-on 

syringe filter and dried with nitrogen. Dried samples were immediately capped and 

stored in a freezer in order to preserve pigments in an inert atmosphere. In 

preparation for high performance liquid chromatography (HPLC) analysis, a known 

measure of injection solvent was added to each dried sample and the dissolved 

extract transferred to the associated autosampler vial. Lighting was subdued at all 

times during the extraction process. 

 

4.4.4.3.2 HPLC Analysis  HPLC analysis was conducted at the University of 

Nottingham using the method prescribed by Chen et al. (2001) and an Agilent 1200 

Series separation module with quaternary pump. Carotenoids and chlorophyll 

concentrations are quantified using reversed-phase HPLC (RP-HPLC) (Pfander and 

Riesen 1995; Jeffrey et al. 1999). Pigments are separated in a column of fine 

particles (< 10 μm) based on their differential attraction to the packing material (the 

non-polar stationary phase) and the solvents moving at high pressure (> 2000 kPa) 

through the column (the polar mobile phase) (Leavitt and Hodgson 2001; McGowan 

2013). In RP-HPLC the stationary phase consists of a Thermo Scientific ODS 

Hypersil column (205 x 4.6 mm; 5 μm particle size) and the mobile phase of three 
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solvents: solvent A (80: 20, methanol: 0.5 M ammonium acetate), solvent B (9: 1, 

acetonitrile: water) and solvent C (ethyl acetate), modified from Chen et al. (2001). 

As the pigment mixture is introduced through the column, polar pigments will be 

more strongly attracted to the polar solvents and so pass through the HPLC column 

rapidly. They are the first compounds to be identified by the photo-diode array 

detector, which detects UV-visible spectral data every two seconds. Inversely, non-

polar pigments are attracted to the non-polar packing and so are not re-dissolved in 

the mobile phase until its polarity is decreased by gradually altering the solvent 

composition, until their affinity for the mobile phase exceeds that of the stationary 

phase. Polarity is the prime driver in elution order as pigment compounds are 

released from the stationary phase (the retention time) (McGowan 2013). Once 

pigments have been eluted from the HPLC column, the compounds are scanned 

with a spectrophotometer at a wavelength of maximal pigment absorbance to 

produce a chromatogram (McGowan 2013). Some reversals in the chromatographic 

sequence may occur as a result of pigments co-eluting.  

 

Whilst the criteria for HPLC at the University of Nottingham are stated above, there 

are a multitude of methods (e.g. saponification, phase partitioning), hardware, 

software, gradient systems and solvent mixes available for separating pigments. 

Methods will be optimised depending on the type of material from which pigments 

are to be extracted, the ultimate goal of the study, as well as investigator experience 

using a specific HPLC system (Leavitt and Hodgson 2001; McGowan 2013).  

 

4.4.4.3.3 Pigment Identification  Pigments were identified according to 

Jeffrey et al. (1997) and Roy et al. (2011) by comparing retention times and the 

absorption spectra of the chromatogram with an authentic standard under the same 

separation conditions.  

 

4.4.5 X-ray Fluorescence (XRF) Spectrometry  

X-ray fluorescence (XRF) analysis was performed on the sediment core at  

Aberystwyth University by Catherine Martin-Jones using the Itrax® core scanner. 

The method focuses an intense micro x-ray beam through a flat capillary waveguide 

onto the sedimentary surface. This irradiates the surface, causing it to emit 

secondary x-rays due to the photoelectric effect (Boyle 2001; Croudace et al. 2006); 
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the incoming x-rays eject electrons from inner atomic shells. This creates gaps which 

are filled by electrons falling back from the outer shells and the energy released is 

emitted as a secondary pulse of x-radiation (Weltje and Tjallingii 2008). The 

wavelength spectra are characteristic of the elements involved and are used to 

estimate their relative abundances (Boyle 2001). The rate of emission varies with the 

concentration of the elements present and the absorption of the outgoing x-rays by 

the sample. The Itrax® core scanner collects high-resolution, near continuous 

elemental profiles as well as optical and x-radiographic images. The advantage of 

the method is that continuous, high-resolution data can be obtained very rapidly in a 

non-destructive manner.  

 

Following the standard procedure described by Croudace et al. (2006), the sub-

drives were loaded into the horizontal cradle (< 1.8 m per scan). The Core Scanner 

Navigator programme was then used to define the analytical parameters of the scan. 

This included setting the length of the core to be scanned, the voltage and current to 

the x-ray tube (30 mA and 30 kv with a 10 second exposure time) and measuring the 

topographic surface scan of the core to ensure that no contact between the XRF 

detector and sediment surface occurs. The Q-Spec programme was used to define 

the likely elements in the core sample and then refine the elemental peak area to get 

the best spectral fit. The Core Scanner Navigator programme was used to calibrate 

the x-ray line camera diode and record a reference response for the x-ray detector 

before finally setting the x-ray and XRF exposure time. All the sub-cores were 

scanned at 200 µm intervals. After scanning samples were re-sealed and returned 

the refrigerator for storage.  

 

4.5 Chronological Analysis   

4.5.1 Dating Macrofossils   

Prior to bulk samples being sent for analysis, sediment was sampled for planned 

dating using terrestrial macrofossils (e.g. twigs, leaves of deciduous trees, conifer 

needles, insect remains) or macrocharcoal. Multiple 1 cm thick sediment samples 

were taken from varying depths in one of the repeat drives and sieved through a 

250 µm, 125 µm and 63 µm mesh size with deionised water. The residues were 

transferred to petri-dishes and observed under a Leica dissecting microscope (x 10 – 

50 magnification) with the intention of picking out samples to be used for obtaining 

http://www.sciencedirect.com/science/article/pii/S0012821X08004974
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dates. However, upon observation none of the residues contained appropriate 

samples and so it was concluded that bulk dates would suffice.  

 

4.5.2 AMS 14C Analyses   

Fourteen bulk sediment samples were extracted from core Hayk-01-2010 for 

accelerator mass spectrometry (AMS) 14C dates. Nine were sent to the 14CHRONO 

Centres’ radiocarbon dating laboratory at Queens University Belfast, and five to the 

Oxford Radiocarbon Accelerator Unit (ORAU) at the University of Oxford.  

 

Samples were treated following standard techniques (Reimer 2014 pers. comm.); 

bulk sediment sample were treated with hydrochloric acid (HCl, 4 %) and digested 

(two hours at 80 ºC) to remove any carbonates, before being washed with deionized 

water. Samples were dried overnight (60 ºC), weighed into a pre-combusted quartz 

tube with an excess of copper oxide (CuO), sealed and combusted to carbon dioxide 

(CO2). Samples were converted to graphite on an iron catalyst using the zinc 

reduction method (graphitization reaction) (Slota et al. 1987) and the 14C/12C and 

13C/12C ratios then measured by AMS. The sample 14C/12C ratio was corrected and 

normalised to the HOXII standard (SRM-4990C; National Institute of Standards and 

Technology). The radiocarbon ages were corrected for isotope fractionation using 

the δ13C measured by AMS, which accounts for both natural and machine 

fractionation. The radiocarbon age and one standard deviation were calculated using 

the Libby half-life of 5568 years (Stuiver and Polach 1977).  

 

Results were reported as conventional radiocarbon years before present (yr BP) 

relative to AD 1950 and calibrated using the CALIB Rev 7.0.2 programme (Stuiver 

and Polach 1977; Stuiver and Reimer 1986; 1993). In order to provide the maximum 

degree of model flexibility, an age-depth model was constructed by J. Tyler 

(University of Adelaide) based on a 0.4 span smooth spline interpolation using the 

programme CLAM for R (Blaauw 2010; Tyler 2015 pers. comm.). 

 

4.6 Numerical Analyses   

4.6.1 Statistical Zonation of Diatom and Pigment Datasets  

Assemblage zones reflecting distinctive natural groupings were determined for the 

stratigraphical diatom data using the optimal sum of squares partitioning method 

https://email.lboro.ac.uk/owa/redir.aspx?C=UWQUsbpj9kGNW8-xDZA7FMzUOMizidEIL4TKHwp4ubOf-THRChmWP6jIoG4PQbY6AiXdNi1EMlk.&URL=https%3a%2f%2famsprd0710.outlook.com%2fowa%2f%23_ENREF_34
https://email.lboro.ac.uk/owa/redir.aspx?C=UWQUsbpj9kGNW8-xDZA7FMzUOMizidEIL4TKHwp4ubOf-THRChmWP6jIoG4PQbY6AiXdNi1EMlk.&URL=https%3a%2f%2famsprd0710.outlook.com%2fowa%2f%23_ENREF_35
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(Birks and Gordon 1985) in the programme PsimPoll 4.27 (Bennett 1995 – 2007). 

Statistically significant splits were identified using a broken-stick model (Bennett 

1996). Pigment abundances were zoned using the same method after being 

normalised using a log (x + 1) transformation. Optional splits (i.e. those not deemed 

statistically significant by the broken-stick model) have been included in some 

diagrams as additional sub-zones in order to ease interpretation.  

 

4.6.2 Ordination Analyses 

Exploratory analysis of the diatom and pigment data was carried out in the 

programme CANOCO version 4.5 (ter Braak and Šmilauer 2002). The ordination 

technique, detrended correspondence analysis (DCA), was applied to reveal the 

major patterns between diatom species (percentage data) and depths (hereafter, 

samples) (Correspondence Analysis [CA] revealed an arch in the data and so was 

deemed inappropriate for use). Detrending was by segments and species data was 

log transformed in order to reduce high species abundance values skewing the 

ordination distribution. Rare species were down-weighted and samples with < 50 

valves were omitted. The gradient length of axis one was used to determine whether 

unimodal or linear ordination techniques were most appropriate; DCA was deemed 

the most appropriate method as the gradient length of axis 1 exceeded 2 standard 

deviations (SD) and so no other ordination techniques were applied. The linear 

ordination technique, principle components analysis (PCA), was applied to the 

pigment data. Species (pigment concentration data) and samples were centred and 

species data were log transformed. Ordination plots of axes one and two were 

produced in CanoDraw (ter Braak and Šmilauer 2002). 

 

4.6.3 Quantitative Reconstructions  

Diatoms analysis is one of the most successfully applied and powerful tools used in 

palaeolimnology for understanding climatic and environmental change recorded in 

lake sediments. By calibrating the modern day distribution of diatom species (found 

in surface sediment samples representing the most recent years of sediment 

accumulation) against a known environmental variable/gradient, it is possible to infer 

palaeoenvironmental changes in fossil diatom assemblages (Gasse et al. 1995; 

Battarbee et al. 2001; Mills and Ryves 2012; Juggins 2013). Clear correlations have 

been made between diatom species composition and a range of physical variables, 
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including water temperature (Weckström et al. 1997a; 1997b) and water depth 

(Brugam et al. 1998; Stone and Fritz 2004; Wolin and Stone 2010), as well as 

hydrochemical variables, such as pH (Gasse and Tekaia 1983; Birks et al. 1990), 

salinity (Cumming and Smol 1993; Reed 1998a; Davies et al. 2002), ionic 

composition (Gasse et al. 1983; Fritz et al. 1993) and nutrient content (Bradshaw et 

al. 2002), in a range of lake types around the world. However, the relationship 

between diatoms and some environmental variables is better understood than others 

(Chapter 3, 3.2) and so the robustness and sensitivity of reconstructions can vary 

(Verschuren 2003). Telford and Birks (2011) for example, identified that uneven 

sampling of an environment gradient can bias transfer function performance as the 

part of the gradient with more observations will have precise estimates of species 

optimal conditions, as well as more analogues, in contrast to the part of the gradient 

with fewer samples. Conductivity (salinity) is a particularly robust variable and is 

widely use in transfer functions. The relationship between diatoms and conductivity 

is well understood, as is the response by lakes to climate variability, expressed 

through changes in water volume and salt concentration (Gasse et al. 1995; Gasse 

et al. 1997; Battarbee 2000; Mills and Ryves 2012). As such, conductivity can be 

successfully used in a transfer function in climatically sensitive lakes. Lake Hayq is a 

closed basin (although it may have been an open system at times during the late 

Quaternary given the presence of palaeochannels between the waterbody and Lake 

Hardibo) known to have experienced historical changes in water depth and lake 

volume in response to climate variability, evidenced recently by the connection of the 

Istifanos monastrey island to the shore. It is likely therefore that a conductivity 

transfer function may be successfully applied to the fossil diatom record from Hayk-

01-2010 in order to infer palaeoclimatic variability. 

 

Modern calibration (training) sets for Africa (and Europe) have been established on 

the European Diatom Database (EDDI; http://craticula.ncl.ac.uk/Eddi/jsp/) by 

combining and harmonising data from a series of smaller datasets to create a 

database of diatom training sets and transfer functions. The African dataset is a 

merger of the harmonised North African and East African datasets. It comprises 284 

samples, which were collected from 1960 – 1986 (EDDI 2015a). Countries sampled 

include Algeria, Tunisia, Morocco and Niger in North Africa, and Djibouti, Ethiopia, 

Kenya, Malawi, Niger, Rwanda, Tanzania, Uganda and Zaire in East Africa. Sites 
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vary from hypersaline lakes located below sea level to afro-alpine bogs at 4000 m 

altitude, hydrothermal springs to small artificial ponds. Site conductivities range from 

40 – 400,000 µS cm-1 and pH from 5.5 – 10.9. Diatoms were counted and described 

by Ben Khelifa (1989) and Gasse (1986). A total of 604 taxa were identified. 

Environmental data include alkalinity, calcium, chloride, conductivity, magnesium, 

pH, potassium, salinity, silica, sodium, sulphate and total phosphorus.  

 

The East African conductivity transfer function and model has been applied to diatom 

sequences to reconstruct hydrological histories (Barker et al. 2002; Chalié and 

Gasse 2002a; Stager et al. 2009; 2011). A regional training set has also been 

developed for west Ugandan crater lakes by Mills and Ryves (2012) to improve the 

accuracy of palaeo-conductivity reconstructions compared to the larger East African 

training sets. In total, 64 surface sediment samples were collected (although only 58 

samples contained diatoms) from 56 crater lakes in western Uganda along with 

water chemistry data. In order to bridge the gap between fresh and hypersaline lakes 

and improve the representation of key diatom taxa found in fossil assemblages, 

eighteen additional lake sites (with salinities of 1,050 – 16,300 μS cm−1) were 

integrated into the dataset from the EDDI East African training set.  

 

Inferred changes in climate and environment using modern training sets and fossil 

diatom assemblages are based on several assumptions: (1) the diatom taxa in the 

modern training set are connected in some way to the environment they live in; (2) 

the environmental variable to be reconstructed is an important ecological 

determinant in the system of interest; (3) the diatom taxa is the same biologically in 

the modern calibration set as it is in the fossil assemblage, and its ecological 

response to the environmental variable of interest has not changed over time; (4) the 

mathematical methods applied, sufficiently model the biological response of the 

diatom taxa to the environmental variable of interest and allow for unbiased, 

accurate reconstructions; (5) other environmental variables that are not of interest 

have a insignificant influence on reconstructions (Juggins 2013). Therefore, where a 

diatom assemblage demonstrates a strong response to an environmental gradient 

(e.g. freshwater to saline, alkaline to acidic transitions), a transfer function can be 

created (Birks 1998). This requires regression (where modern diatom assemblage 

response to the variable of interest are modelled) and calibration (where modelled 
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responses are used to infer past variable levels from the fossil assemblage 

composition). The training set should encompass a range of sites from the 

geographical region of interest, which span the limnological gradient of the variable 

in question. Based on the distribution of taxa preserved in the surface sediments of 

the training set lakes, regression techniques can be applied in order to quantify the 

response of each diatom taxa to the environmental variable of interest (Gasse et al. 

1995; Fritz et al. 2010). 

 

The development of numerical techniques has allowed the relationship between 

diatom assemblages and environmental variables to be successfully quantified and 

resolved. However, limitations have been identified in reconstructing particular 

variables, such as temperature (Anderson 2000; Battarbee et al. 2002), in 

application to certain systems such as shallow lakes (Sayer 2001), or with particular 

training set design or other spatially dependent calibrations (Cwynar et al. 2012). 

Juggins (2013) argues that whilst such quantitative reconstructions are useful for 

simplifying the complex, multivariate relationships between taxa and their 

environment, the fundamental assumption on which reconstructions are based (that 

the relationships between taxa and their environment which are embodied in the 

model coefficients do not vary in time and space) are often violated, which may 

result in confounding effects in some variables and possibly hidden or misleading 

reconstructions. To limit such problems, Juggins (2013) recommends: (1) better 

understanding of the causal relationship between the environmental variable and the 

taxa of interest, and avoid reconstructing variables that are acting as surrogates for 

other underlying aspects; (2) stating the relative explanatory power of a variable in 

the training set and avoid using variables with low values; (3) avoid using automated 

procedures for identifying which variables can be reconstructed; (4) recognise that 

reconstructions of variables that account for only a small fraction of the variance in 

the diatom assemblage are problematic and are most likely affected by secondary 

variables; (5) collaborate, use and compare training sets from different provinces. 

When given due attention, such issues can be resolved effectively and quantitative 

reconstructions performed successfully to interpret the ecological signal in lake 

sediments. 
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4.6.4 Quantitative Reconstructions of Salinity using a Transfer Function 

Transfer function development was carried out in the programme C2 version 1.7.2 

(Juggins 2007) by merging the EDDI combined African dataset with selected 

European sites from the combined TP (total phosphorus) dataset. This was done in 

order to ensure the validity of the model by including all taxa, including Cyclotella 

ocellata. This taxon was found to dominate (41.5 – 100.0 %) the fossil assemblage 

at certain intervals but is poorly represented in the combined African training set, 

being present in only 10.9 % of samples (Gasse et al. 1995). The taxon does not 

exceed 2.6 % abundance in 93.5 % of these samples. The two samples where it 

reaches its greatest abundances are a plankton sample from the Medjerda Channel, 

Tunisia (8.5 %, 1,574.0 μS cm−1) and a rock-scrap sample from Lake Aguelmane 

Azigza, Morocco (8.3 %, 410.0 μS cm−1). Few of the samples originate from 

freshwater (minimum of 115.0 μS cm−1, Diffa, Niger) and most are from high-salinity 

lakes (maximum of 47,680.0 μS cm−1, Bara, Niger). 

 

As such, the optimum and tolerance of Cyclotella ocellata is known to bias transfer 

functions reconstructing African water conductivity as the modern samples it is 

present in are mostly from high-salinity lakes (mean of 11,865.0 µS cm−1) (Chalié 

and Gasse 2002b; Marshall et al. 2009). In contrast, the European samples where it 

reaches its optimum development (maximum of 68.4 % at Dittligsee, Switzerland) 

have significantly lower conductivities (mean of 286.1 µS cm−1, optimum of ~ 390.0 

µS cm−1) (Fig. 4.9). Therefore, where quantitative interpretations of fossil 

assemblages in which Cyclotella ocellata is present are made, caution should be 

aired (Chalié and Gasse 2002b; Marshall et al. 2009).  

 

In order to compensate for this inherent bias in the African training set, a new 

training set was developed that would increase the coverage of the conductivity 

gradient for Cyclotella ocellata, reducing the ecological gap in the training set, and 

therefore improving the modelled response. This involved identifying the closest 

modern analogues for Cyclotella ocellata and combining them with the African 

training set. Prior to the transfer function development, the complete (733.0 – 0.5 

cm) fossil dataset (as percentages) was verified against the combined African 

training set and the Cyclotella ocellata dominated interval (678.0 – 429.0 cm) against 

the combined TP training set to check for miscoding, mismatching and possible no 
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analogue situations. The Modern Analogue Technique (MAT) was then applied to 

identify the mean or weighted mean of the closest five analogues for each fossil 

sample. For the complete fossil dataset, 76.26 % of the closest analogues were 

derived from the East African training set and 18.49 % from the North African training 

set. As such it was decided to use the combined African training set. For the 

Cyclotella ocellata interval, sites occurring as the nearest analogue ten or more 

times were selected for inclusion in the transfer function. In total, twelve European 

sites were selected as the closest analogues, accounting for 68.78 % of the nearest 

analogues (Table 4.5). Not all analogues contained Cyclotella ocellata due to the 

presence of other diatom species in the section of interest, but the taxon retained 

high abundances in those that it did. It was deemed that the analogues selected for 

inclusion appropriately represented the diversity of taxa found in the Cyclotella 

ocellata interval (678.0 – 429.0 cm).  

 

A new training set (‘Combined Africa & Europe’) was created by combining species 

and environmental (conductivity) data from the African training set with the twelve 

European sites, as well as deleting thirty-one samples from the African training set 

that contained Cyclotella ocellata; the new training set comprised 251 sites and 852 

species. Two models were created in order to compare and evaluate their 

performance; one using Weighted Averaging Partial Least Squares (WA-PLS) and 

one using Weighted Averaging (WA). Both were cross validated using the 

bootstrapping technique (10,000 cycles). The predictive power of the WA-PLS model 

was evaluated by assessing the root mean squared error of prediction (RMSEP) 

scores for components 1 – 5. RMSEP did not improve with increasing complexity 

and so the model was not used. Both classical and inverse deshrinking were 

performed using WA (Table 4.6). A comparison of the RMSEP scores found that WA 

inverse deshrinking performed best (RMSEP – 0.466). The model was assessed 

further based on reconstruction diagnostics; minimum distance to the closest modern 

analogue, the sample sum in fossil data and the sample standard error of 

conductivity bootstrap estimates by WA inverse deshrinking. The minimum distance 

to the closest modern analogue averaged 47.7, whilst the mean sample sum in fossil 

data was 96.6 indicating a very high degree of matching between the fossil and 

training set data. Sample standard error was generally low, ranging from 1.1 – 2.4  
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Table 4.5. The twelve closest analogue matches from the combined TP training set 

for fossil samples within the Cyclotella ocellata interval (678.0 – 429.0 cm). 

Site name Country Site code 
Occurrences 

in MAT 

Max. 

depth (m) 

Conductivity 

(µS cm
−1

) 

C. ocellata 

presence 

(%) 

Dittligsee Switzerland CH019 42 (10.42 %) 16.5 564.8 68.4 

Lago di Endine Switzerland CH021 42 (10.42 %) 8.0 353.7 66.2 

Gerzensee Switzerland CH026 40 (9.76 %) 10.0 448.0 57.4 

Lac de Bret Switzerland CH014 42 (10.24 %) 18.0 356.8 54.2 

Unterer Chatzensee Switzerland CH017 42 (10.24 %) 7.8 318.0 53.8 

Öschlesee Germany CEUR056 12 (2.93 %) 15.0 435.0 0.2 

Lac de l'Esclauze France FRO12 10 (2.44 %) 4.0 57.0 0.2 

Wannisbordsee Switzerland CH076 12 (2.93 %) 14.0 20.5 - 

Lago di Annone 

(east) 

Italy CEUR006 10 (2.44 %) 11.3 344.0 - 

Niedersonthofener 

See 

Germany CEUR054 10 (2.44 %) 21.0 315.0 - 

Lac Tanay Switzerland CH070 10 (2.44 %) 31.0 170.0 - 

Tullybrick Lough UK NI029 10 (2.44 %) 11.2 454.3 - 

 

μS cm-1. It was concluded that this newly developed training set would therefore be 

appropriate for use on all fossil samples identified in Hayk-01-2010. 

 

4.7 Conclusion 

The range of proxies and laboratory methods used in this research will provide a 

quantitative and qualitative reconstruction of palaeolimnological variability in Lake 

Hayq during the late Pleistocene and Holocene, from which local climatic and 

environmental changes can be made. By using a combination of biological, 

geochemical and elemental proxies, inferences can be independently made and 

verified, giving strength to the overall interpretation of the record. Consideration has 

been given to the use of numerical analyses and quantitative reconstructions, in 

order to maintain accuracy and produce precise, unbiased data. The information 
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obtained will be used not only to indicate changes in the Lake Hayq basin, but also 

to allow for comparison to other palaeolimnological records at a range of temporal 

scales from Ethiopia and the wider region of East Africa. 
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Table 4.6. Performance statistics for Weighted Averaging showing, (a) codes and names, (b) performance statistics.  

(a) 

Code Name 

WA_Inv Weighted averaging model (inverse deshrinking) for Cond 

WA_Cla Weighted averaging model (classical deshrinking) for Cond 

WATOL_Inv Weighted averaging model (tolerance downweighted, inverse deshrinking) for Cond 

WATOL_Cla Weighted averaging model (tolerance downweighted, classical deshrinking) for Cond 

RMSE Root mean squared error for the training set (apparent RMSE) 

R2 Squared correlation between inferred and observed values 

Ave_Bias Average bias in residuals 

Max_Bias Maximum bias in residuals 

Boot_R2 Squared correlation between bootstrap predicted and observed values 

Boot_Ave_Bias Average bias in bootstrap residuals 

Boot_Max_Bias Maximum bias in bootstrap residuals 

RMSE_s1 Root mean squared error of prediction s1(bootstrap RMSEP) 

RMSE_s2 Root mean squared error of prediction s2 (bootstrap RMSEP) 

RMSEP Root mean squared error of prediction (s1 + s2) (bootstrap RMSEP) 

%Change % Reduction in RMSEP 

Rand. t-test Randomisation t-test significance 

 

(b) 

Code RMSE R2 Ave_Bias Max_Bias Boot_R2 Boot_Ave_Bias Boot_Max_Bias RMSE_s1 RMSE_s2 RMSEP %Change 
Rand. 

t-test 

WA_Inv 0.35441 0.842619 1.57E-15 0.47717 0.753859 0.025772 1.31888 0.135622 0.445923 0.466091   

WA_Cla 0.386092 0.842619 8.06E-16 0.295902 0.754579 0.029753 1.11323 0.156394 0.449966 0.47637 -2.20544 0.729 

WATOL_Inv 0.288975 0.895369 1.35E-15 0.453019 0.768461 0.052249 1.45284 0.228946 0.435889 0.492357   

WATOL_Cla 0.305393 0.895369 1.16E-15 0.336785 0.768879 0.056559 1.3541 0.248143 0.433403 0.499413 -1.43297 0.245 
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Figure 4.9. Cyclotella ocellata abundance (%) and log conductivity (µS cm−1) of the 

thirty-one samples from the combined African training set (blue circles) and ninety-

eight samples from the combined TP training set (red circles) containing the taxon. 

Optimum conductivity values are indicated for the African training set (blue line), the 

12 European analogue sites (red line) and for the combined training set (black line).  
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Chapter 5 

A Planned Study of Holocene Climate in the Gamo-Gofa Highlands. 

 

5.1 Introduction 

Originally this PhD project planned to reconstruct Holocene climate and 

environmental change in the south-west Gamo-Gofa13 highlands of Ethiopia. The 

region has been the focus of ethnographic and archaeological research investigating 

the evolution of the caste system among the indigenous Gamo people during the 

mid- to late Holocene and is currently the focus of a NSF funded project. Several 

lakes, including Lakes Chamo and Abaya, lie within close proximity to important 

archaeological sites under investigation in the area. The intention of the project was 

to collect new core material from a lake in the region and employ palaeolimnological 

techniques (physical analysis, chronological methods and diatom analysis) to 

provide an environmental context for the archaeological research being conducted. 

The project was in collaboration with Dr Robert Marchant (Department of 

Environment, University of York) and Drs John and Kathy Arthur (Department of 

Anthropology, Interdisciplinary Studies and Criminology, University of South Florida).  

 

Field work was undertaken in the summer of 2012 at a small lake, Done Ella14, 

approximately 19 km west of Lake Abaya, and a 7 m sediment sequence recovered. 

Preliminary diatom analysis the following October at Loughborough University found 

that diatoms were irregularly present in the top ~ 30 cm of sediment only and absent 

below this depth. As a result it was decided to abandon the project for the purpose of 

this PhD research (though chronological and XRF analyses continued at other 

institutions). Despite no longer being the focus of research, this short chapter has 

been included detailing the work that was carried out at Done Ella, as despite the 

sparseness of diatoms, this in itself is a finding and is worthy of documenting for 

future research efforts in the region. The cultural history of the Gamo-Gofa province 

shall be considered first, followed by a description of the lake based on field 

observations. The methods employed and findings are then discussed.  

                                                           
13

 The Gamo-Gofa province is now, with some boundary changes, known as the North Omo Zone. It 
is still referred to as Gamo-Gofa in much of the literature and as such it shall be referred to as so in 
this chapter. 
14

 ‘Done Ella’ is the local name for the lake. It is also known as Lake Abysaa but shall be referred to 
as Done Ella from here on in.  
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5.2 Cultural History and Ethnoarchaeology 

Excavations at the Mochena Borago Rockshelter indicate the south-west highlands 

have been occupied by hunter-gatherers since ~ 53.0 – 38.0 kyr BP (Brandt et al. 

2012). Since then the hunter-gatherers have developed to become the Gamo 

(meaning lion); a complex and dynamic mix of ~ 1,104,400 people living in 

approximately forty societies across the southern highlands of Ethiopia (CSA 2007a). 

The Gamo live by a complex caste system used to ensure the survival of their 

community by upholding the wishes of their ancestors’ wills. The Gamo divide 

themselves into groups based on occupation which is determined at birth by 

patrilineal kinship; a child will belong to the same caste as their father and shall only 

marry within the same caste (Asante 2009). Birth into a caste is therefore considered 

destiny. Occupations include mala (farmers, smiths and weavers), tsoma chinasha 

(potters and ironsmiths), tsoma mana (potters) and tsoma degala (hide workers, 

smiths, ground-stone makers) (Weedman Arthur et al. 2009). The mala are 

considered the most prestigious and powerful in terms of hierarchal status as their 

occupation is considered sacred, pure (as they work with, and produce, raw products 

such as grain and milk) and fundamental to life. The artisans in contrast are less 

pure than the mala and therefore not considered full members of Gamo society. As 

such they do not participate in community assemblies, have no political rights and 

cannot be elected to positions of authority (Weedman 2006). They are still perceived 

as important members of Gamo society however and often have mediating roles 

such as messengers and healers. Communication and interactions between the 

mala and artisans is often restricted due to perceptions of impurity and pollution 

(Weedman Arthur et al. 2009). This system is used to orchestrate Gamo society, 

determining wealth, status and access to materials and resources.  

 

Access to agricultural land serves as an extension of the caste system used to 

determine wealth, position within the tribe, ability to perform cultural practices and 

role in political and economic matters. Common crops in the Gamo region include 

maize, the tree cabbage, sorghum, barley, potatoes, chickpeas, horse beans and the 

‘false banana’ plant, enset. Animal husbandry is also a crucial aspect of agricultural 

practices. Access to land is based on six historical characteristics (Olmstead 1973): 

(1) Land is restricted to males only. Females are reliant on males (their father, 

husband or brothers) for their economic and ritual needs; (2) Access is only 
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permitted to Gamo citizens. This has changed during the course of the 20th century 

due to the Ethiopian political system which now allows non-citizens, women and ex-

slaves to access land; (3) Sharecropping is permitted on a temporary basis; (4) 

Permanent transfers of land are legal; (5) Land is unambiguously assigned to an 

individual and that individual shall have the right to that land throughout their lifetime 

unless they decide to relinquish it. Ownership of the land also encompasses a ritual 

connection which allows the owner to make sacrifices, place curses and engage in 

sexual relationships on his land only. To do so on another mans’ land would breach 

the rules of taboo; (6) Inheritance of land may be divided among heirs. These rigid 

rules maintain division between the mala and artisans, citizens and non-citizens.  

 

The religion of the Gamo is based on the philosophy of their ancestors (Asante 

2009). The head of the village or village elder is known as the cbima and it is he who 

guides the village (kebele) along the path of order, harmony and balance that equate 

to the good behaviour (woga) prescribed by their ancestors. When behaviour 

prohibited by the moral and cultural rules occurs (goma) it is believed to bring 

suffering to the kebele by breaching the rules of taboo (gome). The cbima will 

perform sacrifices in the spirit house (tsosa'ketsa) to appease the ancestors for the 

sake of the villagers. Only someone belonging to the mala can perform this ritual, not 

an artisan. The artisans can only perform rites of passage on an individual level, for 

example, healing rites or circumcisions.  

 

Understanding this caste system is essential for interpreting archaeological findings 

as the mala and artisans will have separate housing locations, material artefacts and 

burial grounds. It will also inform research as to how long such a system has been in 

place in Gamo culture, including when social divisions occurred and structures were 

put in place. As such, excavations of sites and successfully identifying to which caste 

an archaeological artefact belongs can reveal details of socioeconomic status, 

marital status, cultural beliefs, traditions, ceremonies and practices in historical 

Gamo societies.  

 

Recent ethnoarchaeological studies in the Gamo highlands have tended to focus on 

craft specialisms such as middle Palaeolithic (100,000 – 40,000 years BP) stone tool 

hafting and ceramics (Weedman 2006). For example, the morphology and 
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distribution of hide worker tools act as a useful indicator of social status in Gamo 

culture (Weedman 2006). The type and material of a tool handle and its decoration 

may reflect political and economic change, ethnic relationships, marriages, 

friendships, ethnic identify, language and ties to other Gamo regions. For example, 

the Gamo use zucano and tutuma type handles. Both are known currently and 

historically to other central and southern Ethiopian cultures and their presence in 

Gamo society is an indication of past social networks, geographical positions, 

migrations and regional identity. Political affiliations have also been evidenced 

through tool handle type. When the regional capital moved from the central Gamo 

highlands to the south at the end of the 20th century, the tutuma handle became 

more widespread, signalling the change in political and economic affiliation. Only 

those with strong ties to the north continued to use the zucano handle type. 

Therefore tools and their morphology can be seen as a material manifestation of 

changing social, cultural, political and economic boundaries (Weedman 2006). They 

are not just a product of the environment and available resources, but are markers of 

social identify, twinned with cultural, social and geographic divisions (Weedman 

2000).  

 

Pottery, beer fermentation and food in Gamo society is another example of how 

archaeologists have been able to document and interpret past social and economic 

status through material culture (Arthur 2002; 2003). Only wealthier households could 

afford to grow additional grains to make beer and purchase the large beer jars to 

store it. In addition to beer, wealthier households also owned more land and cattle 

enabling them to produce and eat luxury foods containing grain and animal by-

products such as milk and butter, which require larger, more expensive jars for 

storage. The vessels used for beer and luxury food storage also contain a higher 

degree of attrition in their surfaces than those of poorer households due to the 

cultural practice of not washing the vessel after food preparation. Poor households 

would not be able to afford beer, luxury foods or the jars for storage. Pottery 

assemblages and their surface attrition is therefore an exceptional indicator of 

household socioeconomic status, allowing archaeologists to interpret Gamo wealth 

variations (Arthur 2002; 2003).  
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Gamo society and culture are therefore complex and dynamic institutions based on 

historical concepts of patrilineal-endogamous ancestry. These concepts, alongside 

religious beliefs, are used to orchestrate and divide the Gamo into a very specific 

hierarchy which governs every aspect of Gamo life. Ethnoarchaeology is a useful 

tool for understanding and interpreting archaeological findings in the region by 

inferring that ancient societies used the same techniques as their modern 

counterparts. As such, historical understandings of the Gamo people are continually 

being improved upon and new archaeological findings are being made.  

 

5.3 Study Site: Done Ella  

Done Ella is located in the Main Ethiopian Rift, ~ 19 km west of Lake Abaya in the 

Gamo-Gofa highlands (~ 3000 m altitude) in the Southern Nations, Nationalities and 

People’s Region (SNNPR) administrative province (6°15'32.93"N, 37°39'48.05"E, 

2005 m altitude) (Fig. 3.1 [b], site 37 and Fig. 5.1). The lake is approximately 200 km 

south of the Ziway-Shala basin, 340 km south of Addis Ababa and 28 km north-west 

of Arba Minch, the provincial capital of the region. No literature has been published 

on the lake at present so all of the following observations were made in the field. 

 

5.3.1 Climate  

The climate of southern Ethiopia has been described in detail in Chapter 2. Based on 

the assessment made by Friis et al. (2011), Done Ella sits in a complex area where 

the boundaries of the biomodal and unimodal rainfall patterns meet. Climate data are 

available from a meteorological station at Arba Minch (National Meteorology Agency 

2014). The region has a single rainy season from April to September. Most rainfall 

occurs in July and August, reaching around 240 mm per month. From November to 

March less than 25 mm may fall per month. The mean minimum temperature does 

not fluctuate substantially during the year (14 – 16 °C). Mean maximum temperature 

in contrast shows greater seasonal fluctuations, ranging from 24 – 25 °C from June 

to September and 28 – 32 °C from November to March.  

 

5.3.2 Land Cover   

The lake shores and surrounding highlands are intensively cultivated and include 

terracing and ploughing. Common crops in the Gamo-Gofa highlands include maize, 

sorghum, peas, beans, potatoes and cabbage. Enset is also an important crop  
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Figure 5.1. Location of Done Ella (red circle) in the Main Ethiopian Rift (Google Earth 

2013d). Nearby lakes are indicated.   

170 km 

N 

L. Abaya 

L. Chamo 

L. Awassa 

L. Ziway 

L. Shala 

L. Abijata & 

Langano 



135 

 

grown in the region. There were no large herds of grazing livestock around the lake. 

Natural vegetation occurs in pockets on steeper slopes in the Done Ella basin. This 

includes Acacia-Commiphora woodland and bushland and Combretum-Terminalia 

woodland and wooded grassland (Friis et al. 2011).  

 

5.3.3 Hydrology and Limnology  

Done Ella sits in a steep sided basin formed in Quaternary extrusive and intrusive 

rock formations (Fig. 5.2). Inflow comes from one small stream and outflow from 

another small stream at the northern end of the lake. It is a shallow lake with an 

average depth (based on multiple GPS echo sounder measurements from around 

the lake) of 5.0 m. The maximum lake depth recorded was 5.7 m using a GPS echo 

sounder. At the centre of the lake, the photic-pelagic zone is very shallow, < 0.5 m 

deep, due to a dense mat of a species of Myriophyllum. An area of open water 

encircles the area of Myriophyllum species. The littoral zone is characterised by the 

water lily, Nymphaea species, tall grasses and Cyperus reeds (Fig. 5.3). A marsh 

area exists around the lake margin.  

 

The lake has experienced historical fluctuations in water level. A palaeo-shoreline is 

evident in the slopes around the lake indicating the water level was significantly 

higher and considerably deeper (estimated as > 10 m deeper) than present at some 

point in history (Fig. 5.4). Anecdotal evidence of higher lake levels was also 

obtained; around the edge of the lake several buildings were abandoned when the 

water level began to rise. All that remains now of the buildings are the impression of 

the foundations in the ground (Fig. 5.5). Whilst it was not clear exactly when this 

event happened, it did occur during the lifetime of the tribal elders in the village, so 

potentially within the last 60 – 70 years. It was believed by the villagers that the rise 

in lake level, which caused the buildings to be abandoned, was punishment for 

prohibited behaviour. The lake level has since declined and the foundations now lay 

in a marsh area.  

 

The lake is not used recreationally or for fishing by the local people living in the small 

village around the lake. As a result it was difficult to establish what animal species, if 

any, lived in and around the lake. No fish were observed during field sampling and 

only a few water birds such as stalk and ibis were seen.  
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Figure 5.2. Photographs of Done Ella. In (a) Lake Abaya can be seen in the background. Photographs by Katie Loakes. 
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Figure 5.3. Photographs of Done Ella macrophytes: (a) – (c) the water lily, Nymphaea, and Cyperus reeds; (d) the littoral marsh 

area. Photographs by Katie Loakes.
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Figure 5.4. Palaeo-shoreline (indicated by the red line) around Done Ella. 

Photograph by Katie Loakes.  

 

Figure 5.5. Foundations (indicated by the red line) of four buildings around Done 

Ella, flooded by rising waters. Photograph by Katie Loakes. 
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5.4 Field Sampling 

Field work took place in June and July 2012. Bathymetry was measured using a 

GPS echo sounder to establish the lakes’ depth profile and identify sites appropriate 

for coring. Four short cores (labelled HON-Kajak 1 – 4 and varying in length from 29 

– 67 cm) containing unconsolidated surface sediments were extracted from around 

the lake using a HON-Kajak sediment corer with a 1 m tube from an anchored 

inflatable boat (Fig. 5.6). The cores were divided into 1 cm sections in the field and 

sealed in labelled plastic sample bags. A long sediment core (DE-2012) was taken 

from the centre of the lake (6°15'36.4"N, 37°39'51.8"E, 5.3 m water depth) from an 

anchored raft using a Russian peat corer, 5 cm diameter and 50 cm chamber (Aaby 

and Digerfeldt 1986). The corer was pressed 40 cm into the sediment and through 

the process of adding consecutive rods and rotating the core chamber, used to core 

7 m into the sediment, extracted as fourteen 50 cm drives, labelled 1 – 14. Each 

drive was wrapped in cling film, tinfoil and placed in PVC tubes cut in half which were 

wrapped in more tinfoil and labelled for packaging and transport. A YSI probe was 

used to record depth (m), temperature (°C), conductivity (µS cm-¹), dissolved oxygen 

(percentage and mg l-¹) and pH through the water column at the core site.  

 

Additional measurements using the YSI probe were taken from a small inflatable 

boat at three locations within the littoral zone to compare spatial variability according 

to vegetation density (locations were identified as within the area of Myriophyllum, 

open water and within the area of Nymphaea). Six macrophytes were identified in 

the lake and two samples of each were collected and sealed in plastic sample bags. 

One sample of each macrophyte was sent to the National Museums of Kenya for 

identification by Dr Stephen Ruccina and the other was transported back to 

Loughborough University for diatom analysis.  

 

5.5 Laboratory Methods 

On return to the laboratory at Loughborough University the four HON-Kajak cores 

and DE-2012 were refrigerated at 4 °C. The macrophytes samples were frozen. 
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Figure 5.6. Aerial view of Done Ella (Google Earth 2013c). Locations of the HON-

Kajak cores and DE-2012 are indicated by the coloured circles. Cores extracted 

using the HON-Kajak sediment corer are represented by the red (HON-Kajak core 

1), blue (HON-Kajak core 2), yellow (HON-Kajak core 3) and green (HON-Kajak core 

4) circles and DE-2012 by the purple circle.   

286 m 

N 
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5.5.1 Diatom Analysis  

Diatom and microscope slide preparation followed the standard methodology 

described in detail in Chapter 4. Taxonomy follows Krammer and Lange-Bertalot 

(1988; 1991a; 1991b; 1999), Gasse (1986) and Hustedt (1949). Currently accepted 

names were verified against recent publications, literature and authoritative 

databases (AlgaeBase 2015; DiatCode 2015). Valves were identified to species level 

where possible. For the majority of samples it was necessary to lower the count from 

300 valves to a more practical target due to very low valve concentrations. This was 

done after firstly scanning each sample for ten minutes and then based on the 

occurrence of valves in that time, scaling the target count down. For most samples 

the target was revised to 50 valves. Valve dissolution was assessed using a binary 

system with 0 being visibly dissolved and 1 being pristine (F index; Ryves et al. 

2001). Diatom concentration was estimated by adding a known number of 

microspheres to the samples (Battarbee and Kneen 1982). Preliminary diatom 

analysis was conducted at approximately 5 cm intervals in the four HON-Kajak cores 

and 20 – 30 cm intervals in DE-2012. 

 

5.5.2 X-ray Fluorescence (XRF) Spectrometry  

XRF analysis was performed on DE-2012 by the author at Aberystwyth University 

using the Itrax® core scanner. The methodology is described in detail in Chapter 4. 

The fourteen cores were scanned at 700 µm intervals for 10 seconds. After scanning 

the cores were re-sealed and returned the refrigerator for storage. In additional to 

elemental data, a digital image was taken of each core. 

 

5.6 Chronological Analysis  

Five bulk sediment samples of 1 cm thickness, weighing between 2.8 – 6.5 g, were 

taken at 30 cm, 250 cm, 300 cm, 400 cm and 700 cm depth from DE-2012 for 

accelerator mass spectrometry (AMS) 14C dating at the Beta Analytic laboratory in 

London.  

 

Samples were treated following standard techniques; each sample was dispersed in 

deionized water and then sieved through a < 180 µm mesh size to check for rootlets 

and other plant macrofossil materials. The < 180 µm fraction was treated with 

hydrochloric acid (HCl) and digested (several hours at 70 ºC) to remove any 
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carbonates, before being washed with deionized water. Samples were dried 

overnight (90 ºC). Prior to combustion, the sample material was examined under at x 

45 magnification on a binocular scope to inspect for any remaining physical 

contamination. A small sub-sample from each sediment sample was placed into 

concentrated HCl to verify that no acid resistance carbonates such as dolomite had 

survived the pretreatment. Upon verification, the remaining sample was combusted 

to carbon dioxide (CO2), graphitized and the 14C/12C and 13C/12C ratios measured by 

AMS. The 13C/12C ratio was measured directly from the sample combustion in an 

Isotope Ratio Mass Spectrometer (IRMS).  

 

5.7 Results 

5.7.1 Chronology   

The AMS 14C dates obtained from DE-2012 ranged in age from 1490 to 3640 cal yr 

BP, based on the median estimate of the age range at the two-sigma calibration 

(Table 5.1). However, the calibrated ages did not occur in sequential order. Instead, 

the youngest sediments were located in the shallowest and deepest sediments, 

sandwiching the oldest sediments in the middle of the core. Consequently, the ages 

measured for this core cannot be used to produce a reliable chronology.  

 

Table 5.1. AMS radiocarbon chronology of Done Ella, core DE-2012.  

Beta 

Analytic 

laboratory 

number 

Depth from 

sediment 

surface (cm) 

Conventional 

age, 
14

C yrs 

BP 

Calibrated age, cal yr BP, 

weighted average, 2 sigma 

calibration (relative area under 

probability distribution) 

Calibrated age, cal yr 

BP, median estimate 

(to the nearest 10 yrs) 

376434 70.0 1610 ± 30 1560 - 1410 1490 

376435 290.0 3400 ± 30 3700 - 3575 3640 

376436 340.0 3370 ± 30 3690 - 3660 and 3650 to 3560 3630 

376437 440.0 2800 ± 30 2965 - 2845 2910 

376438 740.0 1650 ± 30 1610 - 1525 1570 

 

5.7.2 XRF Geochemistry   

Selected geochemical elemental concentrations for DE-2012 are shown in Fig. 5.7. 

Peak area profiles for calcium (Ca), iron (Fe), potassium (K), silicon (Si) and titanium 

(Ti) have been normalised by incoherent scatter (inc) to minimise the effect of  
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Figure 5.7. XRF results for DE-2012. Elemental data is given as peak area units with element X-ray fluorescence values divided by 

incoherent scatter (inc). Magnetic susceptibility is given as κ, SI units. The average trend is indicated in red. The blue zone 

indicates where diatoms were found in the sediment.    
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organic matter and water content variability, unrelated to sediment geochemistry 

(Marshall et al. 2011). Ratios of potassium: aluminium (K/Al), silicon: titanium (Si/Ti) 

and zirconium: rubidium (Zr/Rb) are shown, as well as the incoherent: coherent 

backscatter intensity ratio (inc/coh).  

 

The lithogenic elementals Ca, Fe, K, Si and Ti increase from the base of the core, 

reaching maximum values early in the sequence at 639.9 cm. After peaking, the 

elements follow the same trend, simultaneously increasing and decreasing in value 

up to 456.2 cm. At 442.0 cm all elements experience a sharp drop in value but 

recover and return to the pattern of regular increases and decreases. K/Al similarly 

experiences frequent rises and declines in concentration with large peaks at 661.2 

cm, 569.2 cm, 371.3 cm, 314.7 cm, 265.2 cm, 222.8 cm and 180.4 cm. Si/Ti (an 

estimate of biogenic silica, particularly the abundance of siliceous microfossils 

[Conley 1988]) experiences a more gradual increase in concentration up to 456.2 cm 

after which it declines reaching a minimum value at 350.1 cm. A second period of 

increase is then observed, followed by a second decrease. In contrast, Zr/Rb and 

inc/coh remain constant in value with minor peaks at 548.0 cm and 236.9 cm for 

Zr/Rb and a single peak at 442.0 cm for Inc/Coh.  

 

At 236.9 cm Ca, Fe, K, Si and Ti simultaneously dip in value, after which values 

increase – Fe and Si gradually, Ca, K and Ti sharply – and peak at 180.4 cm. 

Elements then decline in a pattern of smaller rises and declines, reaching minimum 

values at 31.9 cm followed by a sharp increase at 17.7 cm. After a peak at 180.4 cm, 

K/Al demonstrates the same trend, reaching a minimum value at 31.9 cm before an 

increase at 17.7 cm. After a gradual increase in value up to 95.5 cm, Si/Ti 

experiences a pattern of sharp increases and decreases centred at 67.2 cm, 53.0 cm 

and 31.9 cm. Zr/Rb similarly demonstrates significant increases centred at 81.3 cm, 

60.1 cm and 31.9 cm. Inc/Coh reaches a maximum value at 60.1 cm after which 

values return to those previously observed.  

 

Magnetic susceptibility (a proxy of allochthonous inputs) remains stable throughout 

the record, showing very little overall variability.   
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5.7.3 Water Column Profiles  

At the site of DE-2012, measurements using the YSI probe were taken at 0.1 – 0.5 m 

intervals from the surface to 5.5 m depth (Fig. 5.8). Temperature declined slightly 

with water depth, as did pH from 8.27 at the surface to 6.58 at 5.5 m. Conductivity 

increased steadily from the surface to 5.0 m water depth where it increased from 

197.0 µS cm-1 to 240.0 µS cm-1 at 5.5 m water depth. Dissolved oxygen showed the 

greatest variability in measurement, which ranged between 9.46 (105.5 %) – 10.46 

mg l-1 (112.7 %) from the surface to 3.6 m depth before decreasing to 1.57 mg l-1 

(15.8 %) at 5.5 m depth. 

 

In the littoral zone, measurements from within the area dominated by Myriophyllum 

were taken at 10 cm intervals to a depth of 3.5 m (Fig. 5.9). Temperature ranged 

between 20.88 ºC at the surface to 19.13 ºC at 3.5 m. Conductivity showed little 

variation through the water column. From the surface to 1.75 m depth, conductivity 

was consistently measured as 161 µS cm-1. From 2.0 – 3.5 m conductivity varied 

slightly between 159 – 162 µS cm-1. The pH of the water varied between 8.03 at the 

surface to 7.57 at 3.5 m depth. Dissolved oxygen ranged between 10.77 mg l-1 

(117.4 %) at the surface to 10.23 mg l-1 (111.8 %) at 1.25 m depth. At 1.5 m 

dissolved oxygen dropped to 9.16 mg l-1 (101.1%) and continued to decline to 2.42 

mg l-1 (28.2 %) at 3.5 m depth. 

 

In the area of open water within the littoral zone, measurements were taken at 10 cm 

intervals to 90 cm (Fig. 5.9). Temperature varied between 20.1 – 22.0 ºC through the 

water column. Conductivity showed very little variability (159 – 160 µS cm-1). The pH 

of the water also showed little variability declining linearly from 8.64 at the surface to 

8.01 at 90 cm. Dissolved oxygen varied through the water column; at 10 cm depth 

dissolved oxygen was measured as 8.28 mg l-1 (94.3 %). At 20 cm this dropped to 

6.93 mg l-1 (81.0 %) but then increased to 7.43 mg l-1 (82.9 %) after which it 

continued to rise to 9.22 mg l-1 (101.5 %) at 90 cm.  

 

In the area closest to the shore, which was dominated by the lily Nymphaea, 

measurements were taken at 25 cm intervals to 2.0 m water depth (Fig. 5.9). 

Temperatures varied slightly from 20.05 ºC at the surface to 19.42 ºC at 2.0 m.  
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Figure 5.8. Water column properties at the site of core DE-2012, showing (a) pH, (b) temperature (ºC), (c) conductivity (μS cm-1), 

and (d) dissolved oxygen as mg/l (grey) and percentage (%, black) against depth (m).  
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Figure 5.9. Water column properties at the littoral site (blue), the area of open water within the littoral zone (red) and the area 

closest to the shore (green), showing (a) pH, (b) temperature (ºC), (c) conductivity (μS cm-1), and (d) dissolved oxygen as mg/l 

(dark lines) and percentage (%, light lines) against depth (m).
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Conductivity ranged between 161 µS cm-1 and 163 µS cm-1 and pH between 7.46 

and 7.85. Dissolved oxygen declined with depth from 9.27 mg l-1 (102.6 %) at the 

surface to 7.84 mg l-1 (85.3 %) at 2.0 m. An anomalous measurement occurred at 

1.75 m where dissolved oxygen was measured as 4.85 mg l-1 (52.6 %).    

 

5.7.4 Diatoms  

Neither the HON-Kajak cores or DE-2012 contained an abundance of diatoms. The 

macrophyte samples were not used for diatom analysis based on the results from 

the sediment cores.  

 

HON-Kajak core 1 was 29 cm long. Diatoms were found at irregular intervals through 

the core (Fig. 5.10 [a]). Of the five samples, valves were found at a countable 

concentration in three (1.5 cm, 9.5 cm, 19.5 cm). Common taxa included Aulacoseira 

granulata, Ulnaria delicatissima, Gomphonema parvulum, Gomphonema pumilum, 

Cocconeis placentula var. lineata, Cocconeis placentula var. placentula, Navicula 

cryptotenella, Nitzschia subacicularis and Rhopalodia gibba. Of these, 64.7 – 91.8 % 

of valves were in pristine condition. Valve concentration was low, ranging between 

7.9 – 19.5 x 105
 g

-1 wet sediment. 

 

HON-Kajak core 2 was 52 cm long. Diatoms at a countable concentration were only 

found in three of eight samples (9.5 cm, 29.5 cm and 39.5 cm; Fig. 5.10 [b]). 

Seventeen species were identified in the samples from this core. Common taxa 

included A. granulata, U. delicatissima, C. placentula var. lineata, G. parvulum, G. 

pumilum, N. cryptotenella, Luticola mutica and N. subacicularis. Valve concentration 

was very low and ranged between 0.95 – 7.19 x 105
 g

-1 wet sediment. The majority 

(76 – 100 %) of diatoms were in pristine condition.   

 

HON-Kajak core 3 was 65 cm long. Diatoms were not present in samples below 50 

cm and were only found at countable concentrations in three samples above 30 cm 

(9.5 cm, 19.5 cm and 29.5 cm; Fig. 5.10 [c]). Common taxa included A. granulata, U. 

delicatissima, Fragilaria radians, Ulnaria ulna var. ulna, G. parvulum, G. pumilum, C. 

placentula var. lineata and C. placentula var. placentula. Diatom preservation was 

high, with 77.3 – 100.0 % of valves being in pristine condition. Valve concentration 

ranged between 0.56 – 48.14 x 105
 g

-1 wet sediment.  
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 (a)          (b) 

 

 

Figure 5.10. Diatom data, shown as percentages (%), for (a) HON-Kajak core 1 and (b) HON-Kajak core 2. Circles represent 

depths at which a taxon is present in low abundances (< 0.5 %).   
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Figure 5.10. Diatom data, shown as percentages (%), for (c) HON-Kajak core 3, and (d) DE-2012. Circles represent depths at 

which a taxon is present in low abundances (< 0.5 %).    
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HON-Kajak core 4 was 67 cm long. Diatoms were only found in the surface sediment 

(0.5 cm). Diatoms present were Achnanthes minutissima var. scotica, U. 

delicatissima, U. ulna var. ulna, N. subacicularis and Synedra familiaris. Of these 

89.8 % were in pristine condition.  

 

In DE-2012 diatoms were only observed in the top 25 cm (Fig. 5.10 [d]). Fourteen 

species were identified in the samples extracted above this depth. Dominant taxa 

included A. granulata, C. placentula var. lineata, C. placentula var. placentula, U. 

delicatissima, G. parvulum, G. pumilum and N .cryptotenella. Of these valves 60 – 

84 % were in pristine condition and valve concentration varied between 22.7 – 45.6 x 

105
 g

-1 wet sediment. Below 25 cm, valves were found sporadically (0 – 3 valves per 

sample) with concentrations varying from 1.9 – 8.4 x 105
 g

-1. 

 

5.8 Discussion 

5.8.1 Diatom Preservation and Dissolution  

Given the sparseness of diatoms in the sediment it was not possible to perform 

reliable statistical analyses on the data to produce a climatic and environmental 

record. Understanding this loss of information is nevertheless important for 

assessing the quality of the palaeoenvironmental inferences that can be made from 

this record. Without additional data from the lake it is difficult to establish definitively 

why diatom concentration was low and why preservation was poor. It would seem 

likely that either the physical and/or chemical properties of the lake were inhospitable 

for diatoms and prevented a community from establishing, or the properties of the 

lake led to silica dissolution and valve fragmentation, which biased the assemblage 

to more resistant taxa (Ryves et al. 2001; Battarbee et al. 2001; 2005). 

 

Diatom preservation in lake sediments has been linked to multiple aspects of 

physical limnology, water chemistry and biological interactions (see Chapter 6 for 

further discussion) (Lewin 1961; Haberyan 1985; 1990; Flower 1993; Barker et al. 

1994; McMinn 1995; Reed 1998a; 1998b; Bidle and Azam 1999; Gibson et al. 2000; 

Ryves et al. 2001; 2006; Bidle et al. 2002; 2003). Whilst it is not possible to state 

categorically which limnological variables, if any, may have contributed to the low 

diatom concentration (through destruction and/or fragmentation) observed at Done 

Ella, the limnetic conditions may have produced inhospitable conditions for diatom 
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community development and/or preservation in the sediments. For example, the 

shallowness of Done Ella may result in turbulent mixing of the uppermost sediments, 

promoting dissolution through initial valve breakage and re-suspension of valves into 

silica under-saturated waters. In-wash of sediment from the steep, agriculturally 

intensive catchment may likewise encourage turbulence and promote physical valve 

breakage (Fig. 5.2). In-wash is certainly an issue affecting the neighbouring Lake 

Abaya, whose water is clearly sediment laden in contrast to Lake Chamo (Fig. 5.1). 

 

Water pH may also be a potentially contributing factor at Done Ella to valve 

dissolution. In general, lakes with a low pH tend to preserve valves better than those 

with a high pH as silica dissolution increases above pH 9.0 (Lewin 1961; Round 

1964; Flower 1993; Ryves et al. 2006). Barker (1992) for example, found poor 

diatom preservation at Lake Manyara (Tanzania) which has a pH of close to 10. At 

Done Ella, the highest pH was recorded as 8.47 at 1.5 m water depth. This pH may 

encourage valve dissolution with it being on the cusp of the threshold value needed 

to dissolve silica. However, well preserved diatom records have been extracted from 

alkaline lakes also and pH has not be a significant factor affecting valve preservation 

in data sets from Spanish and other East African lakes (Hecky and Kilham 1973; 

Flower 1993; Reed 1998b). 

 

Without additional data from Done Ella regarding factors such as salinity, silica 

concentration, sedimentation rate and biological interactions, it is not possible to 

state why diatom concentration was low. There are numerous factors which may 

have discouraged diatom growth or increased valve dissolution but their significance 

at Done Ella cannot be determined.  

 

5.8.2 Geochemical Interpretation    

Calcium, iron, potassium, silicon and titanium indicate allochthonous inputs from 

varying mineral hosts (Boës et al. 2011). However, as there is little variability in the 

elemental geochemistry, it is difficult to assess whether the nature of detrital material 

entering the lake is a result of varying hydrological activity.  

 

As diatoms are largely absent from Done Ella, variability in biogenic silica is likely 

due to catchment supply; catchment soils containing silicon may be washed into the 
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lake during periods of wetter climate (Burnett et al. 2011). As such, the geochemical 

data indicates a gradual shift to a drier climate between 700.0 – ~ 100.0 cm after 

which the climate appears to experience more abrupt, short-lived, wet periods (81.3 

– 24.7 cm). This is in agreement with increased kaolinite concentrations signalling 

chemical weathering under humid conditions (Burnett et al. 2011). Increased 

mechanical weathering between 700.0 – ~ 100.0 cm suggests a drier climate 

punctuated by frequent wet spells, until chemical weathering increases again 

between 81.3 – 31.8 cm, suggesting a wetter climate. The incoherent: coherent 

backscatter intensity ratio provides further evidence of a drier climate transitioning to 

a wetter one given the peak at 60.1 cm, indicating higher productivity and 

preservation within the lake (Burnett et al. 2011). Grain size becomes coarser during 

this wet period which indicates a greater proportion of clastic sediment (Kylander et 

al. 2011).  

 

However, whilst the XFR data may suggest a climatic change, the effect of human 

impact through settlement, land use change, deforestation and agricultural practices 

cannot be ruled out. Human activity in the basin may destabilise catchment 

processes resulting in a false climate signal being exhibited in the data. In order to 

determine whether the signal is indeed a result of climate or due to human activity, a 

reliable age-depth model is required so that the results may be put into the 

chronological context of human development and activity in the region.  

 

5.8.3 Chronology   

As the chronology of the sediment record is unreliable, it is very difficult to determine 

when changes in the catchment occurred and why. It is likewise difficult to state the 

reason for the unreliable chronology at Done Ella. Although pre-treatment before 

radiocarbon measurement is undertaken very carefully at laboratory facilities, there 

are still a large number of unknown factors which may result in a sample being 

ascribed a false age, especially if obtained from bulk sediment samples (Björk and 

Wohlfarth 2001). An important source of error in lake sediments is contamination by 

younger or older organic material. Such contamination may occur as a result of root 

penetration, percolation by younger humic acids or bioturbation (Karland et al. 1984; 

Olsson 1991; Björk and Wohlfarth 2001). Björk et al. (1998) for example found that 

late-glacial bulk sediment ages were 200 – 600 years older than the corresponding 
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ages of plant macrofossils in a study in south-west Sweden. This was attributed to 

sediment reworking during periods of increased soil erosion, which led to 

incorporation of older organic material (Björk et al. 1998). 

 

A second known source of error may arise from the ‘reservoir effect’, when the 

14C/12C ratio in the lake is lower than the atmospheric ratio (Olsson 1986; Wang and 

Amundson 1996; Reimer et al. 2013). For example, if submerged plants in the lake 

contribute to the sediment then the 14C determination will indicate an earlier event 

than the actual date (Olsson 1986). A low 14C/12C ratio may also be derived from 

dissolved old carbonate (the hard-water effect), the lake being sealed off from the 

atmosphere by perennial ice cover (although this does not apply to Done Ella), or the 

lake being fed by water or groundwater containing old carbon (Björk and Wohlfarth 

2001). Other source of error include lake water composition, which may limit the 

accuracy of radiocarbon ages on bulk sediment, aquatic plant and animal samples 

(Olsson 1986; 1991) and contamination by bacteria, fungi or dust during sample 

storage (Björk and Wohlfarth 2001). 

 

Dating error has also been shown to result in some African lake records from 

sediment being periodically (once in several decades) eroded, re-deposited or 

slumping due to wave turbulence during severe storms (wave theory) (Verschuren 

2003). Verschuren et al. (1998) for example, found using 210Pb-dating that deep-

water sediments in the central basin of Lake Victoria had been subjected to a 

widespread sediment erosion event, which effectively limited the time resolution of 

the study to centuries rather than decades. Poor correlation between inferred 

climatic events in fossil diatom records has also been found between sites in the 

middle of Lake Victoria (Stager and Johnson 2000) and a 30 m deep channel 

between offshore islands (Stager et al. 1997), highlighting variability of site-specific 

sedimentation conditions (Verschuren 2003). This shows how high-frequency 

‘signals’ in proxy climate records may be a result of re-suspension and deposition of 

surface sediments rather than ecological or climatic variability (Verschuren 2003). 

Selecting a suitable lake is therefore imperative. Crater lakes may appear to be a 

suitable choice as crater rims tend to protect them from wind driven turbulence. 

However, steep bottom slopes in these lakes may promote sediment slumping 

(Hilton 1985; Verschuren 2003). By assessing basin topography, lake morphometry 
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and mean and annual peak wind speeds and directions it can be determined 

whether wave theory may be applied to determine the dominant process of sediment 

distribution (Håkanson and Jansson 1983; Hilton 1985). These variables can then be 

used to evaluate whether or not local sedimentation conditions within a lake are 

likely to allow for continuous, undisturbed accumulation of sediment and climate 

proxies (Verschuren 2003).  

 

An alternative reason for the unreliable chronology may result from the methodology 

used in the field. Whilst Russian peat corers are designed to minimise disturbance to 

the sediment profile (Aaby and Digerfeldt 1986), it is possible that some may have 

occurred during sediment extraction in the field, affecting the linear chronology of the 

sediment cores as they were collected.  

 

Clearly there is a complex range of factors operating within lake systems, which may 

affect AMS 14C dating and result in sediment samples being ascribed a false age. 

The unreliable chronology at Done Ella may be a result of one or several of these 

sources of error. Given the discontinuities in the chronology, it is difficult to determine 

where the error has originated from and whether the entire sequence or just a single 

date has been affected. As a result, the chronology cannot be credited as being an 

undisturbed, continuous record and as such is not reliable.  

 

5.9 Conclusion 

Originally this PhD project planned to reconstruct Holocene climate and 

environmental change in the south-west Gamo-Gofa highlands of Ethiopia, in order 

to provide a climatic context for ethnographic and archaeological research being 

conducted in the region. Field work was carried out successfully at the small lake 

Done Ella in 2012, a site where no research had previously been conducted. 

Unfortunately, the sediment cores collected from the lake yielded very limited diatom 

data from which no interpretations can be made. The chronology of the sediment 

core is likewise unreliable, which further taints the accuracy of the elemental profiles. 

Whilst it is not possible to state categorically how these records have been affected 

so as to produce such unreliably archives, speculation can be made based on 

current understanding of lake processes, sources of error and contamination issues. 

It was decided that given the scarcity and unreliability of data, the project could not 
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be continued for the purpose of the authors’ PhD research. Despite this, the findings 

from Done Ella are still significant as being the first research carried out at the lake 

and may act as a precautionary warning to other researchers considering work at the 

site. Pollen analysis is ongoing at the National Museums of Kenya and options to 

improve the chronology are being considered at the University of York.  
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Chapter 6 

Results: The Palaeolimnology of Lake Hayq. 

 

6.1 Introduction 

This chapter presents the palaeolimnological results from Lake Hayq. The 

chronological framework of the core, Hayk-01-2010, is presented first, followed by a 

lithological overview and the geochemistry. A detailed description of the diatom and 

photosynthetic pigment records is then presented. The combined data provide a 

detailed body of evidence for the palaeolimnological changes that occurred in the 

Lake Hayq basin during the late Pleistocene and Holocene, against which 

interpretations of the environmental and climate can be made. 

 

6.2 Chronology 

The Lake Hayq chronology is based on fourteen AMS 14C dates derived from bulk 

sediment samples extracted from Hayk-01-2010 (Table 6.1). Figure 6.1 shows the 

age-depth model constructed using a 0.4 span smooth spline interpolation. The 

stratigraphic dates indicate the core covers the period 15,600 – 1,350 cal yr BP. 

Sedimentation rates vary over five main periods (Fig. 6.3); (1) Between 15,600 – 

15,450 cal yr BP (822.0 – 789.0 cm) the sediment accumulation rate is relatively 

stable and high, averaging 0.2 cm yr-1, (2) from 15,450 – 12,200 cal yr BP (789.0 – 

541.0 cm) sedimentation decreases, reaching a low of 0.05 cm yr-1 (14,100 – 13,400 

cal yr BP, 670.0 – 626.0 cm), before steadily increasing again, (3) between 12,200 – 

11,800 cal yr BP (541.0 – 474.0 cm) accumulation is stable again, averaging 0.2 cm 

yr-1, (4) at 11,800 cal yr BP, sedimentation declines again to a minimum of 0.01 cm 

yr-1 (296.25 cm) before increasing, and (5) from 2,500 – 1,350 cal yr BP (200.0 – 

89.5 cm) sedimentation averages 0.1 cm yr-1. These rates are generally comparable 

to average sedimentation across the larger East African Rift Lakes, such as Lakes 

Malawi and Tanganyika, during the Holocene (0.1 cm yr-1; Johnson 1996). 

 

6.3 Lithology 

Three main lithostratigraphical units are identified in Hayk-01-2010 based on 

variations in composition and physical properties of the sediment layers (Figs. 6.2 

and 6.3, see Appendix 1 and 2 for full details). Water, organic and carbonate 

content, and other physical properties, are described for each unit.  
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Figure 6.1. Age-depth model of fourteen bulk AMS 14C dates from core Hayk-01-

2010, constructed by J. Tyler using the program CLAM for R. Depth refers to depth 

below the top of the sediment core. The individual age distribution for each date, as 

relative area under probability distribution, is shown in blue. The black line indicates 

the most likely age-depth distribution, whilst the grey envelope represents the 

models chronological uncertainty. 
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 Table 6.1. AMS radiocarbon chronology of Lake Hayq, core Hayk-01-2010. 

Laboratory 
Laboratory 

reference 

Depth 

below top 

of 

sediment 

sequence 

(cm) 

Conventional 

age, 
14

C yrs 

BP 

Calibrated age, cal yr 

BP, weighted average, 

2 sigma calibration 

(relative area under 

probability distribution) 

Calibrated age, 

cal yr BP, 

median 

probability (to 

nearest 10 yrs) 

14
CHRONO 

Centre 

UBA-27072 12.5 1583 ± 32 1404 - 1545 (1.00) 1470 

ORAU OxA-30960 100 2485 ± 32 2432 - 2728 (0.99) 2580 

ORAU OxA-30883 140 2795 ± 31 2837 - 2965 (0.93) 2900 

14
CHRONO 

Centre 

UBA-25092 172 3563 ± 36 3816 - 3934 (0.74) 3860 

ORAU OxA-30885 183 4068 ± 33 4496 - 4645 (0.68) 4560 

ORAU OxA-30886 196 4914 ± 35 5592 - 5715 (1.00) 5640 

ORAU OxA-30887 240 7650 ± 45 8386 - 8540 (1.00) 8440 

14
CHRONO 

Centre 

UBA-27073 314.5 9643 ± 79 10749 - 11204 (1.00) 10970 

14
CHRONO 

Centre 

UBA-27074 396.5 10102 ± 44 11587 - 11840 (0.69) 11710 

14
CHRONO 

Centre 

UBA-25093 429 10393 ± 45 12061 - 12423 (0.98) 12270 

14
CHRONO 

Centre 

UBA-25094 442 10287 ± 46 11926 - 12241 (0.85) 12060 

14
CHRONO 

Centre 

UBA-27075 447.5 10254 ± 62 11756 - 12239 (0.96) 12000 

14
CHRONO 

Centre 

UBA-27076 657.5 12846 ± 67 15120 - 15596 (1.00) 15320 

14
CHRONO 

Centre 

UBA-25095 717.5 12873 ± 60 15157 - 15614 (1.00) 15360 

 

The basal, and smallest, unit (L-I, 822.0 – 797.0 cm) consists of stiff black clay (grain 

size < 0.002 mm) with some fine sand (grain size 0.2 – 0.6 mm) intermixed. Organic 

matter (6.5 – 7.1 %), carbonate (4.8 – 6.5 %) and water content (36.2 – 38.3 %) are 

all low in this unit. Dry mass, organic and minerogenic accumulation rates are at their 

maximum. The overlying unit (L-II, 797.0 – 595.0 cm) is characterised by grey gyttja 

– common lake mud comprised of organic matter – intermixed with silt (grain size 

0.06 – 0.02 mm). The shade of colour varies in this unit (light to dark grey) and is  
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Figure 6.2. Lithological profile of Hayk-01-2010.

Plant material 

Brown gyttja 

Laminations of the diatom 
species, Fragilaria-Ulnaria, 

in brown gyttja 

Grey gyttja 

Laminations of the diatom 
species, Fragilaria-Ulnaria, 

in grey gyttja 

Black clay with fine sand 

Key 
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Figure 6.3. The three main lithostratigraphical units (L-I – III) identified in Hayk-01-2010. Organic, carbonate and water content are 

expressed as percentages of the total wet weight of the sediment, sedimentation accumulation rate as cm yr-1, dry mass, organic 

matter, calcium carbonate (CaCO3) and minerogenic accumulation rates as mg cm-2 yr-1. 
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occasionally marbled with brown gyttja. Between 739.0 – 754.5 cm faint marl 

laminations are identifiable at irregular intervals. Organic matter remains low and 

relatively constant (4.7 – 10.8 %) throughout the unit. Carbonate content varies 

significantly (3.0 – 44.7 %) in a series of peaks and troughs, whilst water content 

shows an overall increase from 37.6 – 75.8 %. Dry mass, organic matter and 

minerogenic accumulation rates all decline in this unit and then plateau, whilst 

calcium carbonate increases in the mid-zone (750.0 – 710.5 cm) and then declines. 

The largest unit (L-III, 595.0 – 89.0 cm) consists of brown gyttja (varying from dark 

brown-grey to brown in colour) intermixed with silt. Traces of plant material (> 0.1 – < 

2.0 mm in size) are found in the top 70.0 cm. This unit is reasonably well stratified 

throughout. A feature of interest is the irregularly spaced, thick (> 1.0 – 7.0 mm) 

matrix of laminations consisting of a pulp-like dark yellow deposit. Smear slides of 

this deposit show that it contains dense mats of the long, slender diatom taxa, 

Fragilaria and Ulnaria. Organic matter increases steadily from 595.0 cm (9.3 %), 

reaching maximum values between 340.0 – 298.0 cm (38.0 – 30.7 %) after which it 

declines (11.2 %). Carbonate content gradually declines between 595.0 – 388.0 cm 

(21.8 – 13.7 %) before peaking at 380.0 cm (54.2 %). A steady low (x̅ = 5.8 %) is 

then observed between 376.0 – 272.0 cm, after which it increases (11.8 %) between 

380.0 – 89.0 cm. Water content is highest in this unit, remaining relatively constant (x̅ 

= 74.8 %). Dry mass, organic matter, minerogenic and calcium carbonate 

accumulation rates increase from the base of the unit up to ~ 544.5 – 536.0 cm. 

Rates then steadily decline and reach minimum values between ~ 334.0 – 320.0 cm. 

Values increase again and remain relatively stable between ~ 196.0 – 89.0 cm.  

 

6.4 X-ray Fluorescence (XRF) Geochemistry 

Selected geochemical elemental concentrations for Hayk-01-2010 are shown in 

Figure 6.4. Peak area profiles for calcium (Ca), potassium (K), silicon (Si) and 

titanium (Ti) have been normalised by incoherent scatter (inc) to minimise the effect 

of organic matter and water content variability, unrelated to sediment geochemistry 

(Marshall et al. 2011). Ratios of potassium: aluminium (K/Al, an approximation of 

chemical over mechanical weathering; Burnett et al. 2011), silicon: titanium (Si/Ti, a 

proxy for biogenic silica productivity) and zirconium: rubidium (Zr/Rb, a proxy for 

grain size of allochthonous material found in lake sediments) are shown. Magnetic 

susceptibility (κ) is used as a proxy of allochthonous inputs, whilst the incoherent: 
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Figure 6.4. XRF results for Hayk-01-2010. Elemental data is given as peak area units with element X-ray fluorescence values 

divided by incoherent scatter (inc). Magnetic susceptibility is given as κ, SI units. The mean trend is indicated in red.  
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coherent (inc/coh) backscatter intensity ratio serves as a qualitative proxy of organic 

matter content. The ratio is dependent on the average atomic number of material in 

the sediment; organic carbon has a lower average atomic mass than carbonates, 

aluminosilicates, or silica. The ratio therefore increases with greater organic carbon 

concentration (Burnett et al. 2011). Ratios are dimensionless. Unfortunately, the 

Itrax® core scanner became inoperable and required mechanical maintenance 

before core 7B could be scanned. As such, geochemical data are not available 

between 722.83 – 673.14 cm.  

 

The lithogenic elements, K, Si and Ti are at their maximum values at the base of the 

sediment record and immediately decline, plateauing at ~ 743.5 cm. Ca values, 

representing authigenic carbonate minerals or biogenic calcium carbonates, in 

contrast, show a slight increase from ~ 822.0 – 799.0 cm, which then become more 

rapid and peak at ~ 759.0 cm before declining. Similar to Ca, inc/coh increases from 

the base of the sediment, peaking at ~ 735.5 cm. The K/Al ratio also increases early 

in the sediment record, reaching maximum values between ~ 793.5 – 769.0 cm and 

then declining. Si/Ti and Zr/Rb show little overall variability from the base of the 

sediment record to 722.8 cm.  

 

Between ~ 673.1 – 249.0 cm, most of the elemental profiles show moderate 

fluctuations but are stable overall. K, Si and Ti show a slight decline, as does Ca, 

though the decrease is more pronounced and minimum values are reached earlier 

than other elements between ~ 367.0 – 305.5 cm. In all these profiles, a minor 

decrease occurs at ~ 588.0 cm but elemental values recover and maintain their 

steady trends. This same decrease is also evident in the Si/Ti ratio after which 

values maintain a relatively stable trend. In the inc/coh ratio, an increase is evident at 

~ 588.0 cm, as well as in the Si/Ti ratio, though the increase is less substantial. After 

this fluctuation, all elemental ratios maintain stable values. In contrast to the other 

profiles, Zr/Rb reaches maximum values at ~ 671.5 cm, after which it declines 

sharply until ~ 629.0 cm and then demonstrates an overall, slight decrease. 

 

All profile values vary between ~ 249.0 – 189.0 cm. K, Ti, K/Al and Zr/Rb experience 

a decrease centred at ~ 231.0 – 227.0 cm. Ca shows a very minor decline centred at 

~ 229.0 cm but it is less pronounced that the other elemental profiles. Si, Si/Ti and 
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inc/coh demonstrate an increase between ~ 249.0 – 189.0 cm. Upon recovery, 

elemental profiles are relatively stable again. K, Ti and K/Al show slight declines from 

~ 165.0 cm to the top of the sediment record, whilst inc/coh shows a steady 

increase. Magnetic susceptibility remains stable throughout the record, showing very 

little overall variability.   

 

6.5 The Diatom Record  

The diatom record for Hayk-01-2010 is shown in Figure 6.5. In addition, habitat 

groups, valve concentration (valves x 105 g1 dry sediment, hereafter x 105 g-1), 

accumulation rate (x 106 valves cm-2 yr-1), dissolution index (F index), Hill’s N2 

species diversity index, which measures the number of species in each sediment 

interval where each taxon is weighted by its abundance (Hill 1973), as well as DCA 

axis 1 and 2 values are displayed in Figure 6.6. Diatom-inferred (DI) conductivity is 

shown in Figure 6.7. The stratigraphic diagrams have been divided into ten 

statistically significant zones (D-I – D-X).  

 

6.5.1 Zone D-I (822.0 – 748.0 cm, 15,600 – 15,200 cal yr BP) Diatoms were 

not preserved in sufficient quantities in this zone to count and so have been simply 

identified as being present (Fig. 6.8). Diatoms identified include Cyclotella 

cyclopuncta, Cyclotella ocellata and Hantzschia amphioxys. Diatom-inferred 

conductivity reaches a maximum in this zone (~ 9,000 μS cm-1) but then declines 

significantly towards the top of the zone (< ~ 800 μS cm-1). 

 

6.5.2 Zone D-II (748.0 – 716.0 cm, 15,200 – 14,800 cal yr BP) This zone is 

characterised by the dominance of the planktonic C. ocellata, which ranges between 

41.5 – 100.0 % abundance (Fig. 6.8). In the upper zone (730.5 – 711.0 cm), less 

common species include the planktonic C. cyclopuncta (x̅ = 3.2 %) and the 

facultatively planktonic Pseudostaurosira brevistriata (x̅ = 1.5 %) and Staurosirella 

pinnata (x̅ = 2.6 %). The benthic Encyonema muelleri (x̅ = 9.8 %) and Epithemia 

sorex (x̅ = 5.1 %) are rare. Valve concentration is low (x̅ = 100 x 105 g-1), and 

preservation is poor (maximum F index value of 0.3). Diatom-inferred conductivity 

averages ~ 300 μS cm-1. 

http://craticula.ncl.ac.uk/EADiatomKey/html/taxon13440010.html
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Figure 6.5 (a). Diatom data, shown as percentages (%), for core Hayk-01-2010, against depth (cm), arranged according to habitat 

preference. Circles represent depths at which a taxon is present in low abundances (< 0.5 %). Average sample standard deviation 

is 2.82 %. 
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Figure 6.5 (b). Diatom data, shown as percentages (%), for core Hayk-01-2010, against age (cal yr BP), arranged according to 

habitat preference. Circles represent depths at which a taxon is present in low abundances (< 0.5 %). Average sample standard 

deviation is 2.82 %. 
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Figure 6.6. Associated diatom metrics. Habitats are shown as percentage of total diatom assemblage (%), concentration as valves 

x 105 g-1 dry sediment and accumulation rate as x 106 valves cm-2 yr-1.
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Figure 6.7. Diatom-inferred (DI) conductivity created using weighted averaging inverse deshrinking. Conductivity is given as μS cm-

1. Conductivity recorded in 1969 (920 μS cm-1) is indicated by the red line (Baxter and Golobitsh 1970). Reconstruction diagnostics 

are used to evaluate model performance. Diatom preservation is poor in zones D-I – D-III (see Fig. 6.6), hence the intermittently 

low sample sum in fossil data.  
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Figure 6.8. Diatom data, shown as percentages (%), for zones D-I to D-III, arranged according to habitat preference. Circles 

represent depths at which a taxon is present in low abundances (< 0.5 %). Diatom concentration is shown as valves x 105 g-1 dry 

sediment and accumulation rate as x 106 valves cm-2 yr-1. Average sample standard deviation is 2.82 %.  
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6.5.3 Zone D-III (716.0 – 528.13 cm, 14,800 – 12,100 cal yr BP) This zone can 

be divided into two sub-zones; the first being mostly devoid of diatoms, and the 

second which acts as a transition between depths where diatoms are largely absent 

and the overlying zones where valve concentration increases dramatically (Fig. 6.8). 

Sub-zone D-III-A (716.0 – 553.0 cm, 14,800 – 12,300 cal yr BP) is the largest sub-

zone but diatoms were not preserved in sufficient quantities and so have been 

simply identified as being present. Diatoms identified include Aulacoseira granulata 

var. angustissima, P. brevistriata, S. pinnata, Ulnaria ulna var. ulna and Nitzschia 

epiphytica. Diatom-inferred conductivity is low (x̅ = ~ 260 μS cm-1), however it is 

important to note there are few samples to reconstruct conductivity from in this sub-

zone, which will have disproportionately biased the model.   

 

Sub-zone D-III-B (553.0 – 528.13 cm, 12,300 - 12,100 cal yr BP) is characterised by 

the establishment of a diverse diatom assemblage featuring planktonic, facultatively 

planktonic and benthic taxa. Cyclotella cyclopuncta and C. ocellata simultaneously 

peak at the start of the sub-zone (18.0 % and 24.0 % respectively, 553.5 cm) and 

then maintain low abundances (< 5.4 %). The facultatively planktonic P. brevistriata 

and S. pinnata begin to increase at 547.0 cm and reach moderate abundances (26.0 

% and 44.7 % respectively) between 539.0 – 533.0 cm, before declining (both 1.3 

%). Nitzschia epiphytica likewise increases at 547.0 cm and maintains an average 

abundance of 11.2 %. The aerophilous, H. amphioxys and Nitzschia amphibia var. 

amphibia are also present (2.0 % and 4.0 % respectively). Hill’s N2 diversity values 

indicate that species diversity increased considerably in this sub-zone. Diatom-

inferred conductivity demonstrates considerably variability in this sub-zone, ranging 

from ~ 150 – 1000 μS cm-1. 

 

6.5.4 Zone D-IV (528.13 – 521.13 cm, 12,100 – 12,050 cal yr BP)  This zone 

is dominated by the planktonic taxon, Stephanodiscus parvus (Fig. 6.9). With the 

exception of a single, isolated occurrence in Zone IX (4.4 %, 219.5 cm), this is the 

only zone in the diatom record where S. parvus is present. The taxon increases 

rapidly from 56.0 % to 81.5 % (528.0 – 526.25 cm), and with the exception of a 

short-lived decrease towards the mid-zone (8.0 %, 525.0 cm), maintains high 

abundances throughout (x̅ = 60.0 %). Aulacoseira granulata var. angustissima  

http://www.phycologia.org/doi/abs/10.2216/10-61.1
http://www.phycologia.org/doi/abs/10.2216/10-61.1
http://www.phycologia.org/doi/abs/10.2216/10-61.1
http://craticula.ncl.ac.uk/EADiatomKey/html/taxon13440010.html
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Figure 6.9. Diatom data, shown as percentages (%), for zones D-IV to D-VI, arranged according to habitat preference. Circles 

represent depths at which a taxon is present in low abundances (< 0.5 %). Diatom concentration is shown as valves x 105 g-1 dry 

sediment and accumulation rate as x 106 valves cm-2 yr-1. Average sample standard deviation is 2.82 %.  
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demonstrates a dramatic increase in abundance from 27.3 % to 91.0 % (528.0 – 

525.0 cm), coinciding with the drop in S. parvus, after which it maintains a steady 

occurrence (x̅ = 24.5 %). Hantzschia amphioxys and N. amphibia var. amphibia 

continue to be rare. Valve preservation is poor at the base of the zone but improves 

significantly (F index values of 0.36 – 0.92). Valve concentration averages ~ 1,700 x 

105 g-1. Diatom-inferred conductivity is very low, averaging ~ 90 μS cm-1. A minimum 

of 70 μS cm-1 is observed at 526.25 cm.  

 

6.5.5 Zone D-V (521.13 – 376.05 cm, 12,050 – 10,300 cal yr BP)  This zone 

is characterised by the dominance of the planktonic A. granulata var. angustissima, 

which has an average abundance of 81.8 % (Fig. 6.9). Due to the dominance of A. 

granulata var. angustissima, Hill’s N2 diversity values indicate that species diversity 

is low throughout this zone. Valves are very well preserved (F index values of 0.79 – 

0.99) and concentration averages ~ 4,000 x 105 g-1. Accumulation rate is greatest in 

this zone, reaching a maximum of 67.91 x 106 valves cm2 yr-1. Diatom-inferred 

conductivity is generally stable, ranging from ~ 140 – 250 μS cm-1. 

 

Sub-zone D-V-A (521.13 – 488.0 cm, 12,050 – 11,850 cal yr BP) is characterised by 

the overwhelming dominance of A. granulata var. angustissima, which accounts for 

81.0 – 99.0 % of all diatoms present. The facultatively planktonic U. ulna var. ulna is 

present intermittently in low abundances (< 8.5 %). Nitzschia adapta is present at 

520.0 cm (14.7 %), whilst the planktonic Ulnaria delicatissima and benthic Nitzschia 

subcommunis occur at several depths in very low abundances (2.0 % and 5.3 % 

respectively).  

 

Sub-zone D-V-B (488.0 – 376.05 cm, 11,850 – 10,300 cal yr BP) continues to be 

dominated by A. granulata var. angustissima (x̅ = 80.5 %). Several periods of decline 

are evident however. The first is between 488.0 – 480.0 cm, where A. granulata var. 

angustissima declines to an average of 55.7 %. This occurs simultaneously with the 

appearance of N. subcommunis, which increases rapidly from 35.1 – 73.0 % 

between 488.0 – 482.0 cm. The second period of A. granulata var. angustissima 

decline is found from 448.0 – 444.0 cm where it decreases to 66.1 %, and the third 

at 430.0 cm and 424.0 cm where the taxon declines to 27.3 %, sandwiching a period 

of higher abundance (95.8 %, 428.0 – 426.0 cm). Several other short-lived 

http://craticula.ncl.ac.uk/EADiatomKey/html/taxon13440010.html
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decreases occur at 404.4 cm (25.3 %), 390.0 cm (57.8 %) and 386.0 cm (58.2 %). 

Also present in this sub-zone is N. subcommunis, which exhibits a series of peaks 

and troughs. Following low abundances (x̅ = 5.1 %), N. subcommunis experiences a 

substantial increase (33.6 – 55.8 %) between 448.0 – 441.0 cm. A decline occurs, 

after which the taxon exhibits several peaks (66.0 % and 74.8 %) from 430.0 – 424.0 

cm. Following a second decline, N. subcommunis peaks at 404.0 cm (73.7 %) and 

then ranges between 4.3 – 35.2 %. Ulnaria delicatissima increases dramatically at 

410.3 cm (34.7 %), after which it decreases slightly (26.7 %, 315.4 cm) and then 

maintains low abundances (< 12.7 %). Ulnaria ulna var. ulna continues to occur in 

low abundances (x̅ = 5.8 %).  

 

6.5.6 Zone D-VI (376.05 – 299.0 cm, 10,300 – 6,500 cal yr BP) This zone 

continues to be dominated by A. granulata var. angustissima, though in slightly lower 

abundances than the underlying zone (x̅ = 67.5 %) (Fig. 6.9). A series of declines 

occur at 359.0 cm (20.6 %), 331.0 cm (27.6 %), 327.0 cm (33.3 %) and 316.0 cm 

(25.8 %). The facultatively planktonic U. ulna var. ulna experiences large increases 

in abundance throughout the zone (35.5 – 70.6 %) in a series of peaks isolated by 

lower abundances (x̅ = 10.8 %). Ulnaria delicatissima peaks at 372.0 cm (50.7 %) 

after which it declines dramatically, exhibiting only two moderate increases at 314.0 

cm (31.3 %) and 300.0 cm (33.3 %). Fragilaria radians likewise exhibits a series of 

peaks in abundance (27.0 – 63.5 %) at 359.0 cm, 337.0 cm and 331.0 cm. It is 

notable that several of the peaks in Fragilaria and Ulnaria taxa occur simultaneously 

with declines in A. granulata var. angustissima. Rare taxa include S. pinnata, 

Nitzschia perminuta and the benthic E. muelleri, Nitzschia adapta, Tryblionella 

gracilis and N. subcommunis. Valve concentration increases to an average of ~ 

4,400 x 105 g-1, whilst accumulation rate declines (< 8.2 x 106 valves cm2 yr-1). 

Preservation is excellent (average F index value of 0.91). Diatom-inferred 

conductivity continues to remain stable, averaging ~ 170 μS cm-1. 

 

6.5.7 Zone D-VII (299.0 – 280.13 cm, 6,500 – 5,200 cal yr BP)  This zone sees 

large increases in the abundance of the facultatively planktonic F. radians (x̅ = 46.5 

%), which reaches a maximum of 88.4 % at 293.25 cm (Fig. 6.10). By 281.25 cm 

abundance has declined rapidly to 3.0 %. Ulnaria delicatissima is very low at the 

base of the zone (< 2.8 %) until 288.0 cm when it rises to 17.9 % and then steadily  
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Figure 6.10. Diatom data, shown as percentages (%), for zones D-VII to D-X, arranged according to habitat preference. Circles 

represent depths at which a taxon is present in low abundances (< 0.5 %). Diatom concentration is shown as valves x 105 g-1 dry 

sediment and accumulation rate as x 106 valves cm-2 yr-1. Average sample standard deviation is 2.82 %.  



176 

 

increases, peaking at 72.0 % (280.0 cm) before a moderate decline (43.4 %, 278.8 

cm). Ulnaria ulna var. ulna maintains a steady abundance (x̅ = 5.2 %). Aulacoseira 

granulata var. angustissima declines in this zone, averaging 36.6 %, though a peak 

occurs at 287.25 cm (79.7 %). Gomphonema parvulum occurs sporadically (< 4.3 

%). Nitzschia subcommunis likewise appears intermittently (< 8.2 %). Maximum 

valve concentration in the diatom record occurs at 288.75 cm, reaching ~ 47,100 x 

105 g-1 and preservation is excellent (average F index value of 0.85). Diatom-inferred 

conductivity increases marginally, averaging ~ 180 μS cm-1. 

 

6.5.8 Zone D-VIII (280.13 – 257.5 cm, 5,200 – 3,950 cal yr BP) This zone is 

characterised by the establishment of the benthic taxon, G. parvulum, which 

maintains a relatively stable abundance (x̅ = 19.5 %) (Fig. 6.10). Gomphonema 

pumilum similarly established itself, though at lower abundances (x̅ = 4.8 %). The 

benthic N. subcommunis continues to appear occasionally, varying significantly 

between 0.33 – 57.1 %. Ulnaria ulna var. ulna continues to maintain a steady 

abundance (x̅ = 6.0 %). The planktonic U. delicatissima reaches a maximum at the 

base of the zone (72.0 %) before declining to lower abundances (< 6.9 %). A second 

peak of 70.0 % occurs at 261.0 cm, before declining again. Aulacoseira granulata 

var. angustissima similarly continues a pattern of rising and declining, ranging 

between 0.33 – 91.7 %. Fragilaria radians is mostly absent from this zone (< 3.3 %) 

except at the base (22.2 %, 279.3 cm). Other rare taxa include the benthic E. 

muelleri, Fragilaria vaucheria, Sellaphora pupula, Navicula cryptotenella, Nitzschia 

palea and Nitzschia sociabilis. Valve concentration declines significantly in this zone 

to an average of ~ 1,270 x 105 g-1 and accumulation rate reaches a minimum (< 0.3 x 

106 valves cm2 yr-1). Preservation overall remains very good, but is occasionally poor 

(F index value range of 0.53 – 0.98). Diatom-inferred conductivity increases in this 

zone from ~ 200 μS cm-1 at 279.25 cm, to ~ 300 μS cm-1 at 262.0 cm. 

 

6.5.9 Zone D-IX (257.5 – 173.0 cm, 3,950 – 2,200 cal yr BP) This zone is 

defined by the rapid decline, disappearance and recovery of A. granulata var. 

angustissima in conjunction with an increase in the diversity of facultatively 

planktonic and benthic taxa (Fig. 6.10). Hill’s N2 diversity values indicate this is the 

most species diverse zone in the sediment record. Valves continue to be well 
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preserved (average F index values of 0.79), whilst concentration ranges 

considerably from ~ 30 – 5,300 x 105 g-1. 

 

Sub-zone D-IX-A (257.5 – 203.0 cm, 3,950 – 2,500 cal yr BP) sees A. granulata var. 

angustissima fluctuate between 4.0 – 76.1 % up to 228.0 cm, after which it almost 

completely disappears from the diatom record (< 0.3 %). Ulnaria delicatissima 

maintains a relatively steady abundance, averaging 31.1 %. The planktonic Ulnaria 

acus appears once at 217.0 cm (35.9 %). Gomphonema parvulum continues to 

average 16.6 % abundance until 231.0 cm when it drops to 6.2 %. Gomphonema 

pumilum similarly declines to an average abundance of 1.8 %. Ulnaria ulna var. ulna 

increases steadily, reaching a maximum of 83.3 % (221.0 cm) after which is declines 

substantially (< 9.9 %). The facultatively planktonic F. radians, S. pinnata and the 

benthic Gomphonema acuminatum, Gomphonema affine are present in low 

abundances, as are the benthic taxa Amphora copulata, E. muelleri, F. vaucheria, S. 

pupula, N. cryptotenella, Navicula utermoehlii and N. sociabilis. The aerophilous H. 

amphioxys and N. amphibia var. amphibia appear intermittently (< 7.3 %). Diatom-

inferred conductivity increases significantly throughout this zone from ~ 170 μS cm-1 

(256.0 cm) to 1,800 μS cm-1 (230.0 cm). 

 

Sub-zone D-IX-B (203.0 – 173.0 cm, 2,500 – 2,200 cal yr BP) is characterised by the 

rejuvenation of A. granulata var. angustissima. Two small peaks are observed at 

191.0 cm (18.9 %) and 187.0 cm (26.0 %), after which the taxon declines again. 

Abundance then increases and reaches 78.9 % at 172.0 cm. Ulnaria delicatissima 

maintains high abundances, reaching 79.9 % (193.0 cm) before declining. 

Gomphonema parvulum averages 8.9 %, whereas G. pumilum appears infrequently 

in low abundances (< 5.6 %). Ulnaria ulna var. ulna continues to increase, reaching a 

maximum of 93.7 % (180.0 cm). Fragilaria radians, G. affine and Nitzschia pusilla 

are present in low abundances, as are the benthic taxa S. pupula, N. cryptotenella, 

N. utermoehlii and N. palea, which reaches a maximum of 68.7 % at 182.0 cm. The 

aerophilous N. amphibia var. amphibia is also present (4.3 %). Diatom-inferred 

conductivity continues to fluctuate, ranging from ~ 200 – 800 μS cm-1. 

 

6.5.10 Zone X (173.0 – 89.0 cm, 2,200 – 1,350 cal yr BP)  This zone is 

characterised by the recovery of A. granulata var. angustissima; the taxon exhibits a 

http://craticula.ncl.ac.uk/EADiatomKey/html/taxon13440010.html
http://craticula.ncl.ac.uk/EADiatomKey/html/taxon13440010.html
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pattern of rising and declining, ranging between 1.6 – 97.0 % (Fig. 6.10). Declines at 

164.0 cm, 150.0 cm, 134.0 cm and 103.5 cm are met with increases in U. ulna var. 

ulna (82.0 % at 134.0 cm). Overall, U. ulna var. ulna declines, reaching 8.0 % at 89.5 

cm. Ulnaria delicatissima appears sporadically towards the base and top of the zone, 

averaging 9.0 %. Other facultatively planktonic and benthic taxa decline in this zone; 

G. parvulum averages 1.8 %, whilst N. pusilla, A. copulata and N. adapta appear 

intermittently. Hill’s N2 values indicate species diversity declined in comparison to 

Zone IX, but remains high overall. Valves are very well preserved, and on occasion 

in pristine condition (F index values of 0.7 – 1.0), with the exception of a period from 

146.0 – 136.0 cm where valves were more highly dissolved (F index values of 0.3 – 

0.8). Valve concentration increases in comparison to the underlying zone, averaging 

~ 1,900 x 105 g-1. Accumulation rate also increases, peaking at 51.1 x 106 valves cm2 

yr-1 (152.5 cm). Diatom-inferred conductivity declines in comparison to the previous 

zone (x̅ = ~ 200 μS cm-1) but large peaks are evident at 136.0 cm (~ 670 μS cm-1) 

and 105.5 cm (~ 360 μS cm-1). 

 

6.6 Unimodal Ordination: Detrended Correspondence Analysis (DCA) 

For the complete diatom dataset, DCA was deemed the most appropriate ordination 

technique as the axis 1 gradient length was 4.875 SD (standard deviation of species 

turnover) units (Table 6.2). The first and second axes account for 26.2 % of variation 

in the dataset, with the addition of axes 3 and 4 accounting for very little cumulative 

variance (33.7 %). A DCA plot of the diatom species and samples, split into the 

major zones identified in section 6.5 is shown in Figure 6.11.  Axis 1 provides a 

summary of the major compositional shifts in the diatom record. The highest DCA 

scores reflect the oldest zones, D-II – D-IV, characterised by the planktonic C. 

ocellata and C. cyclopuncta as well as other associated benthic taxa such as P. 

brevistriata (Chalié and Gasse 2002b). The lower DCA scores correspond to the 

younger zones, D-V – D-X, which are largely dominated by A. granulata var. 

angustissima, as well other significant taxa such as F. radians and U. ulna var. ulna. 

This reflects various stages of lake development from the late Pleistocene through to 

the Holocene, from initial colonisation to deep water formation. This can be broadly 

interpreted as an indication of water permanence and depth at the core site. Axis 2 

appears to be driven by diatom habitat preferences, with lower DCA scores 

corresponding to zones characterised by facultatively planktonic and benthic taxa (G. 



179 

 

Table 6.2. Summary of DCA results for the Lake Hayq diatom dataset. 

Dataset 
No. of 

samples 

No. of 

species 

Total 

inertia 
Axis 1 2 3 4 

All diatoms 423 281 2.824 

Eigen values 

 

Length of gradient 

 

Cumulative % variance 

of species data 

0.543 

 

4.875 

 

19.2 

0.195 

 

2.503 

 

26.2 

0.123 

 

2.232 

 

30.5 

0.091 

 

1.967 

 

33.7 

Diatom 

samples 

522.0 – 

89.0 cm 

379 256 1.772 

Eigen values 

 

Length of gradient 

 

Cumulative % variance 

of species data 

0.358 

 

2.641

 

20.2 

0.156 

 

2.264 

 

29.0 

0.091 

 

1.899 

 

34.1 

0.085 

 

1.735 

 

38.9 

 

acuminatum and N. sociabilis, zones D-VII, D-VIII and D-IX), and higher DCA scores 

to zones dominated by planktonic taxa (A. granulata var. angustissima and S. 

parvus, zones D-V, D-VI and D-X), which can be interpreted as an indicator of lake 

depth and habitat availability. 

 

The repeated DCA technique on the condensed dataset (including only samples 

between 522.0 – 89.0 cm) again produced an axis 1 gradient length exceeding 2 SD 

units (2.641), making it the most suitable technique (Table 6.2). The first and second 

axes account for slightly more cumulative variation than for the complete dataset at 

29.0 %, as do the first four axes (38.9 %). A DCA plot of the diatom species and 

samples, split into the major zones identified in section 6.5 is shown in Figure 6.12.  

Axis 1 is driven by diatom habitat preferences with lower DCA scores corresponding 

to zones characterised by facultatively planktonic and benthic taxa (G. acuminatum 

and N. utermoehlii, zones D-VIII and D-IX) and higher scores to zones dominated by 

planktonic taxa (A. granulata var. angustissima and C. cyclopuncta, zones D-V, D-VI, 

D-VII and D-X), which can be interpreted as an indicator of lake depth and habitat 

availability. The dissimilarity in axis 2 is more subtle; there are no extreme ecological 

differences in tolerance thresholds for the taxa present (i.e. pH, salinity). Similar to 

axis 1, it seems axis 2 may be driven by diatom habitat preferences, with lower 

scores corresponding to zones characterised by facultatively planktonic and benthic 

taxa during shallow water periods (Gomphonema minutum, G. acuminatum, N. 
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Figure 6.11. DCA results for the complete diatom dataset showing (a) samples according to zone (D-II – cyan square, D-III – pink 

star, D-IV – orange triangle, D-V – purple cross, D-VI – green triangle, D-VII – blue diamond, D-VIII – blue square, D-IX – yellow 

triangle, D-X – red circle), and (b) species (taxa > 5.0 % shown as blue circles, all other taxa as a black cross). Taxa located at the 

extremities of axes have been identified. 

(b) (a) 

(a) 

S. parvus N. paleacea 

C. ocellata 

C. cyclopuncta 

G. acuminatum 

N. sociabilis 

A. granulata var. 
angustissima 

N. subcommunis 

U. ulna var. ulna 

F. radians 

N. subrostrata 

A. pediculus & F. brevistrata 

S. pinnata var. pinnata, E. 
sorex & N. lancettula 

N. perminuta 
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Figure 6.12. DCA results of the condensed dataset (including only samples between 522.0 – 89.0 cm) showing (a) samples 

according to zone (D-V – purple cross, D-VI – green triangle, D-VII – blue diamond, D-VIII – blue square, D-IX – yellow triangle, D-

X – red circle ), and (b) species (taxa > 5.0 % shown as blue circles, all other taxa as a black cross). Taxa located at the extremities 

of axes have been identified. The red lines illustrate the approximate divide between planktonic and benthic taxa on axis 1, and 

benthic and facultatively planktonic taxa on axis 2, reflecting diatom habitat availability during high and low lake levels.
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fonticola and F. radians, zones D-VII and D-IX) and higher DCA scores 

corresponding to benthic taxa present during periods of deep water (N. 

subcommunis, N. adapta and N. palea, zone D-V). This may reflect changing 

availability of habitats in the littoral zone with variations in water level; benthic habitat 

areas may increase or decrease with water level rise depending on basin 

morphology (Stone and Fritz 2004).  

 

6.7 The Pigment Record 

The pigment record for Hayk-01-2010 is shown in Figure 6.13. Fourteen pigments 

(six chlorophylls/chlorophyll degradation products and eight carotenoids) have been 

identified and are presented in concentration (nmol pigments g-1 organic matter, 

hereafter nmol pigments g-1 OM). Affinities of pigments are based on those identified 

by Leavitt and Hodgson (2001) and McGowan (2013). The stratigraphic diagram has 

been divided into ten statistically significant zones (P-I – P-X). 

  

6.7.1 Zone P-I (822.0 – 763.0 cm, 15,600 – 15,300 cal yr BP)  The only 

pigment present in this zone is isorenieratene (green sulfur bacteria) in low 

concentrations (2.2 – 3.4 nmol pigments g-1 OM). 

 

6.7.2 Zone P-II (763.0 – 749.0 cm, 15,300 – 15,200 cal yr BP)  Present in 

this zone are lutein-zeaxanthin (green algae, euglenophytes, higher plants and 

cyanobacteria), canthaxanthin (colonial cyanobacteria and herbivore tissues), 

isorenieratene, chlorobactene (green sulfur bacteria), β-carotene (most plants and 

algae), the chlorophyll degradation product pheophorbide a (grazing and senescent 

diatoms) and bacteriochlorophyll e (green sulfur bacteria). All are found in low 

concentrations (1.9 – 30.0 nmol pigments g-1 OM). Total pigment concentration is 

83.5 nmol pigments g-1 OM. 

 

6.7.3 Zone P-III (749.0 – 736.0 cm, 15,200 – 15,050 cal yr BP) The only 

pigment present in this zone is isorenieratene (3.3 nmol pigments g-1 OM). 

 

6.7.4 Zone P-IV (736.0 – 656.5 cm, 15,050 – 13,900 cal yr BP) This zone is 

dominated by carotenoid pigments. Alloxanthin (cryptophytes), diatoxanthin 

(diatoms, dinoflagellates, chrysophytes), lutein-zeaxanthin, canthaxanthin,  
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Figure 6.13 (a). Pigment concentration (nmol pigments g-1 OM) for core Hayk-01-2010 and associated metrics, against depth (cm). 

Pigment accumulation rate is shown as picomol cm-2 yr-1. PCA scores refer to carotenoid pigments only.
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Figure 6.13 (b). Pigment concentration (nmol pigments g-1 OM) for core Hayk-01-2010 and associated metrics, against age (cal yr 

BP). Pigment accumulation rate is shown as picomol cm-2 yr-1. PCA scores refer to carotenoid pigments only.  
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isorenieratene, chlorobactene and β-carotene are intermittently present in varying 

concentration. Pheophorbide a, bacteriochlorophyll e, chlorophyll a (all 

photosynthetic algae and higher plants) and pheophytin b (derivative of chlorophyll 

b) are also present. Total pigment concentration is greatest at 707.5 cm and then 

declines considerably (225.0 – 12.5 nmol pigments g-1 OM). 

 

6.7.5 Zone P-V (656.5 – 616.5 cm, 13,900 – 13,200 cal yr BP) Total pigment 

concentration is low in this zone (10.4 – 16.4 nmol pigments g-1 OM). Alloxanthin, 

lutein-zeaxanthin, canthaxanthin and β-carotene are present in moderate 

concentrations. Chlorophylls and associated degradation products are absent. 

 

6.7.6 Zone P-VI (616.5 – 546.5 cm, 13,200 – 12,250 cal yr BP) Total pigment 

concentration increases in this zone reaching 81.6 nmol pigments g-1 OM at 553.5 

cm. Canthaxanthin and β-carotene are present throughout, whilst alloxanthin and 

lutein-zeaxanthin appear sporadically. Fucoxanthin (diatoms, prymnesiophytes, 

chrysophytes, raphidophytes and several dinoflagellates) occurs for the first time in 

the pigment record at 567.5 cm (7.2 nmol pigments g-1 OM). Pheophorbide a and 

pheophytin b are also present intermittently. 

 

6.7.7 Zone P-VII (546.5 – 408.5 cm, 12,250 – 11,050 cal yr BP) This zone sees a 

gradual increase in total pigment concentration as carotenoids become more 

abundant in the record. Accumulation rate mirrors total pigment concertation and 

ranges between 290.2 – 2,455.2 pmol cm2 yr-1. Carotenoids concentrations at the 

base of this zone are generally high (243.8 nmol pigments g-1 OM) but decline 

significantly (27.0 nmol pigments g-1 OM, 531.0 cm) before rising again at ~ 515.5 

cm (263.5 nmol pigments g-1 OM). Chlorobactene disappears from the record 

between 519.5 – 495.5 cm but recovers and maintains a generally stable 

concentration. Other carotenoids also maintain high concentrations, though a decline 

is evident at 453.5 cm, which is most pronounced in diatoxanthin as it decreases 

from 3.8 to 0.8 nmol pigments g-1 OM. Fucoxanthin appears intermittently from 537.5 

– 461.5 cm and then disappears from the pigment record. Pheophorbide a is present 

from 533.5 cm onwards in high concentrations (x̅ = 122.9 nmol pigments g-1 OM). 

Bacteriochlorophyll e likewise become more established in this zone but fluctuates 

significantly in concentration, ranging from 1.8 – 51.8 nmol pigments g-1 OM. 
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Pheophytin b is found between 519.5 – 435.5 cm only, and pyropheophytin a 

(derivative of a and b phorbins) between 489.5 – 433.5 cm.  

 

6.7.8 Zone P-VIII (408.5 – 325.5 cm, 11,050 – 8,050 cal yr BP) Total pigment 

concentration decreases in this zone from a range of 24.2 – 455.5 nmol pigments g-1 

OM between 408.5 – 354.5 cm, to a minimum of 13.2 nmol pigments g-1 OM at 352.5 

cm. The carotenoids show the same general trend of declining towards the top of the 

zone, with β-carotene disappearing from the record at 366.5 cm and reappearing at 

348.5 cm. Isorenieratene and chlorobactene maintain the most stable concentrations 

(54.2 and 10.5 nmol pigments g-1 OM respectively). Pheophorbide a is also stable (x̅ 

= 82.5 nmol pigments g-1 OM), whereas bacteriochlorophyll e fluctuates considerably 

and disappears from the record at certain depths. Accumulation rate declines then 

remains stable (< 552.2 pmol cm2 yr-1). 

 

6.7.9 Zone P-IX (325.5 – 268.89 cm, 8,050 – 4,550 cal yr BP) This zone is 

characterised by stable total pigment concentrations (x̅ = 138.0 nmol pigments g-1 

OM) with a maximum of 453.2 nmol pigments g-1 OM at 287.5 cm. The base of the 

zone sees small declines in the concentration of several carotenoids (alloxanthin, 

diatoxanthin, lutein-zeaxanthin and canthaxanthin) after which they increase and 

maintain steady concentrations. Diatoxanthin and β-carotene disappear occasionally, 

whilst fucoxanthin is found intermittently from 303.5 cm onward in low concentrations 

(< 2.9 nmol pigments g-1 OM). Several increases are evident in the carotenoids at 

287.5 cm, 283.0 cm, 278.5 cm and 269.5 cm. Pheophorbide a and 

bacteriochlorophyll e maintain steady concentrations (x̅ = 40.7 and 8.9 nmol 

pigments g-1 OM respectively) though occasionally disappear. Pyropheophytin a is 

also present intermittently from 313.5 cm onwards in moderate concentrations. 

Accumulation rate continues to remain stable (< 273.3 pmol cm2 yr-1). 

 

6.7.10 Zone P-X (268.89 – 89.0 cm, 4,550 – 1,350 cal yr BP) Total pigment 

concentration reaches greatest values in this zone with peaks of 861.7, 1044.0 and 

1068.0 nmol pigments g-1 OM (234.5 cm, 181.5 cm and 129.5 cm). These peaks are 

matched by significant decreases however, and a minimum of 21.0 nmol pigments g-

1 OM is observed at 145.5 cm. Accumulation rate fluctuates considerably throughout 

this zone, ranging between 86.3 – 4,537.3 pmol cm2 yr-1, but generally mirror total 
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pigment concentration. The carotenoids display a similar trend of rising and 

declining. Alloxanthin and β-carotene in particular, decline significantly between 

153.5 – 133.5 cm and 125.5 – 115.5 cm, sandwiching higher concentrations at 129.5 

cm. Fucoxanthin appears intermittently at moderate concentrations (x̅ = 19.2 nmol 

pigments g-1 OM). Pheophorbide a becomes scarce, occurring sporadically in high 

concentrations (x̅ = 105.2 nmol pigments g-1 OM). Bacteriochlorophyll e is found in 

high concentrations (x̅ = 97.2 nmol pigments g-1 OM) up to 202.5 cm, after which it 

disappears from the record until 141.5 cm where it returns to similar concentrations 

as before. Pheophytin b likewise appears less frequently in the mid-zone (218.5 – 

129.5 cm). The decline of bacteriochlorophyll e and pheophytin b coincides with the 

establishment of chlorophyll a in the sediment between 218.5 – 133.5 cm where it 

averages 6.5 nmol pigments g-1 OM. Pyropheophytin a occurs frequently from 238.5 

cm onwards and maintains an average of 38.9 nmol pigments g-1 OM.  

 

6.8 Linear Ordination: Principal Components Analysis (PCA) 

Following PCA analysis of the pigment dataset, the first axis accounts for 30.8 % of 

variance and the second axis for 16.2 % (Table 6.3). The cumulative variance 

explained by the four axes is 70.0 %. A PCA plot of the sedimentary pigments 

identified and samples split into the major zones identified in section 6.7 is shown in 

Figure 6.14. Axis 1 shows a clear division between sedimentary pigments derived 

from macrofaunal grazing and those derived directly from the breakdown of 

phytoplankton groups, which may be interpreted as an indication of the zooplankton 

population size in Lake Hayq. Low PCA axis 1 scores correspond to zones 

containing an abundance of the grazing indicator, pheophorbide a (zones P-VII and 

P-VIII), suggesting a larger zooplankton population, whilst high scores reflect zones 

containing higher concentrations of pigments derived from the degradation of 

cyanobacteria and other algae, indicating a small or absent zooplankton population 

(zones P-IV, P-VI and P-X).  

 

Axis 2 separates green sulfur bacteria from general indicators of total algal 

abundance (β-carotene, chlorophyll a and canthaxanthin), which may be interpreted 

as a gauge for lake depth, mixing regime and light intensity. Low PCA axis 2 scores 

correspond to zones dominated by green sulfur bacteria (zones P-VII, P-VIII and P- 
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Figure 6.14. PCA results for the complete sedimentary pigment dataset showing (a) samples according to zone (P-I – X symbol, P-

II – orange diamond, P-III – pink diamond, P-IV – blue star, P-V - cyan square, P-VI – purple diamond, P-VII - yellow triangle, P-VIII 

– blue cross, P-IX – red circle, P-X – green triangle), and (b) sedimentary pigments. 

   

(a) (b) 
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Table 6.3. Summary of PCA results for the Lake Hayq pigment dataset. 

Dataset 
No. of 

samples 

No. of 

species 

Total 

variance 
Axis 1 2 3 4 

All pigments 263 14 1 

Eigen values 0.308 0.162 0.143 0.088 

Cumulative % 

variance of 

species data 

30.8 47.0 61.2 70.0 

Carotenoids 

only 
263 8 1 

Eigen values 0.406 0.166 0.122 0.1 

Cumulative % 

variance of 

species data 

40.6 57.2 69.4 79.3 

 

IX), which indicates meromixis in a deep lake with some light penetrating the anoxic 

zone. Higher scores correspond to zones with an availability of benthic habitats, 

signalling a low lake level, and reduced light in the water column due to the 

abundance of phytoplankton (zones P-VI and P-X). 

 

PCA analysis was repeated to include only carotenoid pigments, as chlorophylls 

have been intermittently preserved at times throughout the sediment record, 

evidenced by the presence of chlorophyll degradation products. Axis 1 and 2 

account for 57.2 % of variance, whilst the addition of axis 3 and 4 increase 

cumulative variance to 79.3 % (Table 6.3). A PCA plot of the pigment species and 

samples split into the major zones identified in section 6.7 is shown in Figure 6.15. 

Axis 1 shows a division between zones dominated by green sulfur bacteria and more 

common pigments found in most plants and algae. Low PCA correspond to zones 

dominated by isorenieratene and chlorobactene (zones P-VIII and P-IX), whilst 

higher PCA scores are associated with zones containing a greater concentration of 

β-carotene and canthaxanthin (zones P-IV, P-VI and P-X), similar to axis 2 of the 

complete pigment record. This generally reflects changes in lake depth (and by 

association, availability of benthic habitats), mixing regime and light intensity.  

 

Axis 2 separates fucoxanthin and diatoxanthin. High PCA scores correspond to zone 

P-X, which contains the highest concentrations of fucoxanthin and low, intermittent 
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Figure 6.15. PCA results for carotenoid pigments only, showing (a) samples according to zone (P-I – X symbol, P-II – orange 

diamond, P-III – pink diamond, P-IV – blue star, P-V - cyan square, P-VI – purple diamond, P-VII - yellow triangle, P-VIII – blue 

cross, P-IX – red circle, P-X – green triangle), and (b) sedimentary pigments.  

(a) 

(b) 
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concentrations of diatoxanthin, whilst lower PCA scores correspond to zone P-VII, 

which shows the opposite trend (low, intermittent concentrations of fucoxanthin and 

higher concentrations of diatoxanthin). Both carotenoids are derived from similar 

phytoplankton groups (diatoms, dinoflagellates, chrysophytes) and so the division 

most likely reflects the lability of fucoxanthin. As such, the pigment is often only 

found in the uppermost sections of sediment records (McGowan 2013). 

 

6.9 Interpretation and Synthesis of the Lake Hayq Record 

All available data from the independent proxy records analysed from core Hayk-01-

2010 are now interpreted in terms of limnetic and environmental changes that have 

taken place in the Lake Hayq basin over the past ~ 15.6 – 1.3 cal kyr BP. Figures 

6.16 and 6.17 provide a summary of the major shifts in the proxy records; the 

records are divided into eleven major zones (Hayq-I – Hayq-XI). Zones are based on 

significant shifts in the diatom data, which is the primary proxy in this research. 

Figure 6.18 is a simplified lake level curve based on the collective interpretation of 

the available proxies, indictaing changes in the lake system, including connectivity.  

 

6.9.1 Hayq-I (822.0 – 748.0 cm, 15,600 – 15,200 cal yr BP)  Geochemical 

data indicates that the Lake Hayq basin was experiencing extremely arid conditions 

during this time period. High values of lithogenic potassium and titanium are 

indicative of allochthonous inputs to the core site and therefore catchment erosion. 

Under generally dry conditions with low vegetation cover, Foerster et al. (2012) 

argues that lithogenic material is more easily eroded and transported to the basin. 

This is in agreement with grain size values, which indicate coarser material at the 

core site and therefore a greater proportion of clastic sediment (Burnett et al. 2011). 

Evidence of this was found physically in the core as sand particles were identified. 

The authigenic calcium component shows a delayed response in comparison to the 

lithogenic elements but likewise indicates dry environmental conditions; precipitation 

of lacustrine calcium occurs when calcium become supersaturated in the water 

column as a result of increased temperatures and the removal of carbon dioxide 

(Tucker and Wright 1990; Brown 2011). 
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Figure 6.16. Summary proxy records showing major compositional changes. Sedimentation accumulation rate is expressed as cm 

yr-1, organic matter content as a percentage of the total wet weight of the sediment, and dry mass and organic matter accumulation 
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rates as mg cm-2 yr-1. Diatom accumulation rate is expressed as x 106 valves cm-2 yr-1 and diatom-inferred (DI) conductivity as μS 

cm-1. Conductivity recorded in 1969 (920 μS cm-1) is indicated by the red line (Baxter and Golobitsh 1970). Pigment concentration 

is shown as nmol pigments g-1 OM and accumulation rate as picomol cm-2 yr-1. PCA scores refer to carotenoid pigments only. See 

Figure 6.2 for lithological profile key. 
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Figure 6.17. Summary diagram of key diatoms and pigments, showing major compositional changes. Diatoms are shown as 

percentage presence (%). Average sample standard deviation is 2.82 %. Pigments are shown as concentration (nmol pigments g-1 

OM).  
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Table 6.4. Conductivity classifications based on schemes devised by Williams (1967) 

and Hammer (1986), and Gasse (1986). 

Authority Classification Conductivity (μS cm
-1

) 

 

Williams (1967) and 

Hammer (1986) 

 

Freshwater < 670 

Subsaline 670 - 5,500 

Saline > 5,500 

o    Hyposaline 5,500 - 30,000 

o    Mesosaline 30,000 - 70,000 

o    Hypersaline > 70,000 

 

Gasse (1986) 

 

Very low < 300 

Low 300 - < 1,000 

Medium 1,000 - 3,000 

High 3,000 - 10,000 

Very high > 10,000 

 

The diatom record concurs with the geochemical data, which indicates the lake was 

at a lowstand, expressed by the negligible concentrations of diatoms and traces of 

benthic and aerophilous taxa. The occurrence of Hantzschia amphioxys in this zone 

provides further evidence of a shallow lake environment and indicates sediment 

reworking from marginal or exposed areas in the catchment. This is in agreement 

with the compacted nature of the sediment as well as the low water content, which 

suggests the core site may have been exposed at times, possibly alternating 

between longer periods of dry, saline conditions and short wet episodes, when runoff 

in the catchment would have been channelled down the steep-sided lake basin to 

the core site. Diatom-inferred conductivity and the variable preservation indicate the 

core site was saline-hyposaline when it did contain water (which may have 

prevented vegetation and soils from developing) but it most likely repeatedly dried 

out during this time (Table 6.4). Water residence time at the core site would have 

been quite short, given the extremity of this environment.  

 

Pigment concentration was similarly low during this period, indicating poor 

preservation conditions. Over exposure to light, oxygen rich (causing photo- 

oxidation) and high temperature conditions in a very shallow lake habitat, as well as 

physical reworking of the sediments (as evidenced by the diatom record) may have 

degraded pigments in the water column and in the uppermost sediments, preventing 

them from being incorporated into the fossil record.   
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6.9.2 Hayq-II (748.0 – 716.0 cm, 15,200 – 14,800 cal yr BP)  This zone is 

characterised by the dominance of Cyclotella ocellata in the diatom record, signalling 

an increase in lake depth and (for the time being) water permanence. Cyclotella 

ocellata is considered a pioneer taxon in lake colonisation and has a wide ecological 

tolerance in terms of tropic state, being present in ultra-oligotrophic to eutrophic 

lakes (Servant-Vildary 1978; Servant and Servant-Vildary 1980; Cremer and Wagner 

2003). Optimum pH is 8.5 indicating the lake was most likely alkaline (Gasse et al. 

1995; EDDI 2015b). The taxon is able to maintain itself in both deep water and 

littoral environments (Stoermer and Yang 1970; Gasse et al. 1989). Based on data 

from the EDDI (2015b) combined TP training set, Cyclotella ocellata reaches 

optimum development in European (particularly Swiss) lakes, of ~ 8 m depth, 

although it is present in lakes up to 370 m deep (Lago Maggiore, Italy, 0.2 % 

abundance). Average depth of lakes where Cyclotella ocellata accounts for < 10.0 % 

is 29 m (EDDI 2015b). In European lakes where the taxon accounts for > 10.0 % 

abundance, conductivity averages 322.3 μS cm-1, indicating a preference for 

freshwater and total phosphorus averages ~ 45.2 µg/l, suggesting eutrophic 

conditions (EDDI 2015b). The presence of other facultatively planktonic and benthic 

taxa, including Pseudostaurosira brevistriata, which is commonly found in 

association with Cyclotella ocellata, indicates the core site was still fairly close to the 

littoral zone at this time (Chalié and Gasse 2002b). 

 

This increase in lake depth and area, from an essentially dry core site in the previous 

zone, to a permanent waterbody approximately ~ 8 m deep, with an area of < 4 km², 

is supported by the geochemical data, as declines in calcium and potassium indicate 

increasingly humid, wetter conditions (Demlie et al. 2007; Brown 2011; Burnett et al. 

2011). Grain size at the core site became smaller, signalling a greater distance 

between the shoreline and core site and therefore a deeper lake (Burnett et al. 

2011). The abruptness of both the diatom and geochemical response would suggest 

the shift from arid to wet conditions was relatively quick, spanning three to four 

decades (~ 15,200 – 15,170 cal yr BP). The effect of the wetter conditions 

subsequently diluted the water at Lake Hayq, signalling a positive water balance. 

Diatom-inferred conductivity confirms the lake was fresh. 

 



197 

 

However, as valve preservation is poor in this zone, it is possible that the 

assemblage has been biased towards the robust, more silicified Cyclotella taxon 

over finer forms (Cyclotella ocellata is clearly identifiable even when dissolved; see 

Plate II). Diatom preservation in lake sediments has been linked to multiple aspects 

of physical limnology, water chemistry and biological interactions: temperature 

(Lewin 1961; Bidle et al. 2002), pH (Lewin 1961; Barker et al. 1994; McMinn 1995), 

salinity (Lewin 1961; Barker et al. 1994; Reed 1998a; Ryves et al. 2006), ionic 

strength (Lewin 1961), organic, carbonate and silica content (Flower 1993; Ryves et 

al. 2001), stratification and meromixis (McMinn 1995; Ryves et al. 2006), water depth 

(Flower 1993), water permanence (Reed 1998b), sedimentation processes 

(Haberyan 1990), bioturbation (Gibson et al. 2000), bacterial dissolution (Bidle and 

Azam 1999; Bidle et al. 2003) and grazing and faecal pelletisation by zooplankton 

(Haberyan 1985). Potentially other diatom taxa have been removed from the 

sediment record as a result of such factors, especially those linked to water depth 

and permanence, leaving only the robust Cyclotella taxon. This may have a 

disproportionate effect on assemblage-based inferences, such as the conductivity 

model, and interpretations (Ryves et al. 2001; 2006). Despite this, Ryves et al. 

(2001) found that reconstructions of salinity at Devils Lake, North Dakota, still 

performed well with significant dissolution and up to 50 % valve loss (F index value 

of < 0.3). Furthermore, Cyclotella ocellata has been identified as a dominant taxa in 

late Quaternary sediments from lakes across East Africa, including the nearby Lake 

Ashenge (~ 200 km north of Lake Hayq) from 16.2 – 15.2 cal kyr BP where it 

colonised the core site following exposure (Marshall et al. 2009), and Lake Abiyata 

from ~ 12.0 – 7.0 kyr BP (Chalié and Gasse 2002b). This lends support to the 

(above) interpretation of the core site. 

 

Sedimentary pigments are similarly affected by preservation during this time. There 

is a greater diversity of carotenoids as they are generally more stable than labile 

chlorophylls (McGowan 2013). β-carotene in particular is a common pigment found 

in almost all algae groups and is a very stable carotenoid, as is canthaxanthin, which 

is indicative of colonial cyanobacteria, signaling the core site may have experienced 

nutrient enrichment at this time (Reuss et al. 2005). However, limited preservation 

favoring stable carotenoids precludes any evaluation of phytoplankton community 

changes at this time. 
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6.9.3 Hayq-III (716.0 – 553.0 cm, 14,800 – 12,300 cal yr BP) The diatom 

record indicates an equally sudden end to the wet conditions (~ 14,740 – 14,720 cal 

yr BP) and a return to very shallow lake conditions at the start of this zone, 

evidenced by the sudden decline and disappearance of Cyclotella ocellata. The 

intermittent variety of planktonic, facultatively planktonic and benthic taxa found in 

only trace amounts suggests a fluctuating lake level; at times the core site may have 

been occasionally wet and fresh (confirmed by diatom-inferred conductivity, although 

as previously mentioned in 6.5.3, model reliability may be biased in this zone due to 

the lack of diatoms present) but at other periods, lake level would have been very 

low, repeatedly drying out, which would have prevented the preservation of diatom 

taxa at the core site. The sedimentary pigment data likewise indicates a poor 

preservation environment, based on the irregular pattern in which pigments have 

been incorporated into the fossil record. β-carotene and canthaxanthin are the only 

pigments to appear consistently throughout this zone, most likely due to their stable 

chemical structure, although both are in lower concentrations than the previous zone 

(as is total pigment concentration) indicating productivity at the core sight was very 

much reduced, signally drier conditions and a shallow lake.  

 

As the geochemical data is fragmented for this zone, it is difficult to identify the 

nature of change in the climate and environment at this time. There is some 

indication of an arid climate; grain size increased, suggesting a closer proximity of 

the shoreline to the core site, and the authigenic calcium component indicates 

evaporative conditions. However, the disjointed nature of the data inhibits definitive 

conclusions from being made. Sedimentation declines in this zone, similar to rates 

identified at Lake Ashenge during this time (0.22 mm yr-1; Marshall 2006).  

 

6.9.4 Hayq-IV (553.0 – 528.13 cm, 12,300 – 12,100 cal yr BP) This zone may 

be considered as a transitional period between a shallow waterbody and a deeper, 

stable lake system. The diatom assemblage is again characterised by Cyclotella 

ocellata, as well as Cyclotella cyclopuncta. Cyclotella cyclopuncta is often found in 

lakes across Europe and, like Cyclotella ocellata, may be considered a pioneer 

species in lake colonisation or recovery following an arid period (Marciniak and 

Khursevich 2002; Scussolini et al. 2011). The two have been found as dominant taxa 

in assemblages together and indicate a moderately deep (~ 8 m), oligotrophic to 
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mesotrophic lake in the first stages of existence (Scussolini et al. 2011). Water 

permanence would have become longer as the lake became established and depth 

increased. 

 

Pseudostaurosira brevistriata continues to be present, given its association with 

Cyclotella ocellata. Nitzschia epiphytica, a tropical African species, has also been 

found to be associated with Cyclotella taxa (Barker et al. 2002). This benthic and 

facultatively planktonic assemblage indicates that whilst a deeper lake was certainly 

developing in the basin, the core site was still fairly close to the littoral zone at this 

time (Chalié and Gasse 2002b). This is further evidence by the aerophilous taxa, 

Hantzschia amphioxys and Nitzschia amphibia var. amphibia, which suggest 

sediment reworking from other exposed sections of the basin. The assemblage is 

indicative of freshwater and includes less saline tolerant taxa such as Epithemia 

sorex. Diatom-inferred conductivity confirms the lake was generally fresh but may 

have become subsaline at times. The water remained alkaline, with pH ranging from 

7.8 – 8.5 (Gasse et al. 1995).  

 

The increased diversity of sedimentary pigments (carotenoids and chlorophyll 

degradation products) indicates that preservation conditions at the core site 

improved substantially in order to allow incorporation into the fossil record. There is a 

delayed response in the pigment record compared to the diatoms (pigments do not 

become well established until ~ 539.0 cm, ~ 12,200 cal yr BP). This may suggest 

that preservation conditions improved as a result of primary production by diatoms, 

which, upon settling and decomposing at depth, reduced oxygen concentration in the 

bottom waters, although this phenomenon is difficult to identify (Leavitt 1993). 

Alternatively, the establishment of colonial blue-green algae and cryptophyte algae 

may instead reflect a shift from benthic to pelagic habitat availability as a result of 

lake deepening (McGowan et al. 2005).  

 

Dinoflagellate, chrysophyte and green sulfur bacteria assemblages begin 

establishing themselves in the lake at this time, indicating an availability of fresh, 

benthic conditions. The large increase in colonial blue-green algae was likely to have 

been important in supporting diatom taxa in the developing lake. The facultatively 

planktonic Nitzschia fonticola is defined as a nitrogen heterotroph, which obtains 

https://www.google.co.uk/search?rlz=1T4AURU_enGB501GB501&q=Nitzschia+epiphytica&spell=1&sa=X&ei=bAcMVa-VBcXSaIDbgrgE&ved=0CBsQvwUoAA
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nitrogen solely from amino acids (Pseudostaurosira brevistriata is another nitrogen 

heterotroph) (Kilham et al. 1986). The defining feature of this taxon’s ecology is its 

symbiotic relationship with non-nitrogen fixing colonial blue-green algae; the taxon 

lives on colonies of the algae which reduces Nitzschia fonticola losses through 

sinking and grazing as well as providing it with a source of organic nitrogen 

compounds (Kilham et al. 1986). Together, this combination indicates relatively 

stable, warm, stratified waters. Nutrients (phosphorus in particular) may have been 

limiting, although not so severe as to eliminate the colonial blue-green algae from the 

waterbody.  

 

Short-term fluctuations in the geochemical data provide an indication of wetter, more 

humid conditions in the Lake Hayq basin, which would have caused the lake to 

deepen. The decline of calcium suggests less evaporative conditions, and therefore 

increased humidity, which prevented preservation. Grain size similarly decreases 

and the incoherent: coherent backscatter intensity ratio indicates improved 

preservation and higher productivity as a result of a wetter climate (Burnett et al. 

2011). Increasing accumulation rates, caused by the steep basin focusing the 

sediments in this developing lake stage, also indicate enhanced productivity in the 

lake, which would suggest a positive water balance (Balis and Kalff 1995). 

 

6.9.5 Hayq-V (528.13 – 521.13 cm, 12,100 – 12,050 cal yr)  The alternating 

dominance between Stephanodiscus parvus and Aulacoseira granulata var. 

angustissima in this zone may represent decadal fluctuations (~ 20 cal years) in 

nutrient availability in the lake, expressed as dominant seasonal blooms. Both are 

planktonic taxa, indicating a deep, fresh (in agreement with diatom-inferred 

conductivity), alkaline lake with low light conditions, but the taxa favour different 

silicon: phosphorus (Si: P) ratios.  

 

Stephanodiscus parvus is a good competitor for silicon (Si) and a poor competitor for 

phosphorus (P). The taxon therefore requires a high supply rate of phosphorus to the 

epilimnion in order to become dominant. Its’ optimal molar Si: P ratio is ~ 1.0 (Kilham 

et al. 1986). Therefore, when Stephanodiscus parvus dominates at Lake Hayq, this 

indicates a low Si: P ratio. The competitive nature of the taxon for nutrients is further 

evidenced by its increase in abundance following blooms of Nitzschia fonticola and 
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Nitzschia epiphytica in the previous zone, which has been documented at Lakes 

Malawi and Tanganyika (Kilham et al. 1986). 

 

Aulacoseira granulata var. angustissima in contrast is a poor competitor for silicon 

and so requires a high Si: P ratio (Kilham et al. 1986). The short-lived dominance of 

the taxon in the mid-zone suggests a favourable, temporary change in nutrient 

upwelling (Gasse et al. 2002). This may have been caused by catchment or in-lake 

processes. However, as diatom species diversity is low and geochemical data do not 

indicate any significant climatic shift in this zone, it is not possible to identify what 

processes may have caused this temporary shift in the Si: P ratio.  

 

Given the high supply rate of phosphorus to Lake Hayq at this time, it may be 

expected that sedimentary pigment concentration would have increased with the 

availability of nutrients. However, the majority of sedimentary pigments decline. This 

is likely to have been driven by in-lake processes that regulate silicon and 

phosphorus loading rates to the epilimnion of tropical lakes. Kilham and Kilham 

(1990) have proposed a series of processes that could have produced low Si: P 

ratios in the epilimnion of African lakes in the early Holocene when water levels were 

at a maximum and Stephanodiscus taxa dominated. The major hypothesis presented 

is that there is a positive relationship between lake depth and increased phosphorus 

loading to the epilimnion. In some lakes this may be a result of strong physical 

mixing of the water column due to fetch length. The wind energy could cause large 

quantities of phosphorus to be transferred from below the mixed layer. This is 

evidenced at Lake Albert, which became dominated by Stephanodiscus taxa at 12.0 

kyr BP and continues to be so today (Harvey 1976). The lake has very low silicon (< 

16 μM Si) and relatively high phosphorus (> 4 μM P) concentrations, giving it a low 

Si: P ratio of 0.5 – 4.0 (Talling 1963). Lake Albert is generally well mixed and 

oxygenated to the bottom (58 m). In contrast, lakes that are shallow or meromictic, 

such as Lake Kivu, are dominated by other planktonic diatoms (Kilham et al. 1986). 

This positive lake depth and phosphorus loading relationship would account for the 

dominance of Stephanodiscus parvus at Lake Hayq alongside low sedimentary 

pigments as the hypoxic conditions required for pigment preservation would not be 

present.  
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6.9.6 Hayq-VI (521.13 – 376.05 cm, 12,050 – 10,300 cal yr BP)  Geochemical 

data indicates the Lake Hayq basin experienced increasingly humid, wet conditions 

during this period. Increased chemical weathering, biogenic silica and smaller grain 

sizes are indicative of a wetter, humid environment as a result of enhanced 

precipitation (Brown 2011). Lacustrine carbonate content also declines marginally, 

indicating lower water column temperatures and dilution (freshening) of the lake. 

Increasing water content similarly indicates the core site was submerged. 

Allochthonous inputs remain fairly constant indicating catchment stability.  

As a result of the wetter climate, Lake Hayq experienced water level rise and lake 

deepening, whilst continuing to remain fresh (confirmed by diatom-inferred 

conductivity). This is evidenced by the dominance of freshwater, planktonic taxa. 

Aulacoseira granulata var. angustissima is one of the most widely distributed species 

of the genus in Africa (Kilham et al. 1986). The species has the lowest light 

requirements of common Aulacoseira taxa in Africa and signals that Lake Hayq was 

fairly deep and well mixed (a necessity to keep the heavily silicified valves in 

suspension), driven by intense wind mixing in a cooler, enhanced rainfall regime 

(Kilham et al. 1986; Gómez et al. 1995; Marshall et al. 2009). Optimum pH is around 

8.0 – 8.5, indicating the water was alkaline (Gasse 1986). 

 

As previously discussed, Aulacoseira granulata var. angustissima flourishes in lakes 

where silicon is not limiting, and in comparison to other Aulacoseira taxa has high 

phosphorus requirements; it is an indicator of carbonate-rich, moderately alkaline, 

eutrophic conditions (Kilham 1971; Kilham et al. 1986). Its increase in abundance in 

conjunction with the abrupt decline and disappearance of Stephanodiscus parvus in 

the previous zone (Hayq-V) indicates a greater availability of silicon in the lake. 

Gasse et al. (2002) used up-core changes in the ratio Aulacoseira/Cyclostephanos + 

Stephanodiscus (A/C+S), to infer changes in nutrient upwelling at Lake Malawi. 

Increases in Aulacoseira taxa (a high A/C+S ratio) implied a deep mixed layer with a 

strong nutrient flux from the hypolimnion, resulting in high Si: P ratios in the euphotic 

zone (Gasse et al. 2002). However, whilst Gasse et al. (2002) interpret a low A/C+S 

ratio as a more stratified lake, it is evident in the previous zone that Lake Hayq must 

have been well mixed in the deeper water. Therefore, the rapid increase in 

Aulacoseira granulata var. angustissima dominance over Stephanodiscus parvus is 

potentially a result of a critical threshold in lake depth being crossed, caused by a 
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major rise in water level and lake opening in response to a wetter climate, as 

documented at Lake Tanganyika around 15.0 kyr BP (Gasse et al. 1989).  

 

The most likely cause of this threshold being crossed at this time is that Lake Hayq 

may have become connected to Lake Hardibo and received its overflow, assuming 

that given their proximity to one another, Lake Hardibo was also experiencing a 

highstand in response to the wetter, humid conditions. Ghinassi et al. (2012) 

estimate that Lake Hardibo would require a 16 – 18 m rise in water level in order to 

overflow into Lake Hayq. The overflow would have caused Lake Hayq to increase in 

depth and volume, inundating the surrounding shoreline. The wide coastal plain on 

the southern margin of the lake would have flooded first, as the Ankwarka River 

channel was backfilled, followed by the slopes around the eastern and northern lake 

margins. Given the steepness of the slopes around the west of the lake, there would 

have been little area available to accommodate water level rise. Overall, the rise in 

lake level would have increased the surface area of Lake Hayq by up to three times, 

covering a maximum of ~ 70 km² (Ghinassi et al. 2012). Lake Hayq may have 

subsequently overflowed itself into the Wazi River, creating a hydrologically open 

system, which Lamb et al. (2007b) estimate would require Lake Hayq to have been ~ 

40 m higher than present (Ayenew 2009). This period may be identified as a 

highstand at Lake Hayq, reaching maximum water level (potentially ~ 120 m deep) 

during the Holocene (Fig. 6.18). Water residence would have decreased in response 

to the combination of inflow and outflow, promoting the flushing of many nutrients, 

organic matter, potential contaminants and other particles, preventing them from 

becoming incorporated into the sediments.  

 

Wind driven mixing would have continued to prevail at Lake Hayq, but depth 

increased to a threshold level whereby the bottom water become impenetrable to 

wind energy and was no longer mixed. This deeper mixed layer resulted in higher 

silicon availability, which favoured Aulacoseira granulata var. angustissima. This 

Aulacoseira dominated period therefore represents water level maximum at Lake 

Hayq. This contrasts to Kilham and Kilham’s (1990) argument that Stephanodiscus 

indicates maximum water level; the Stephanodiscus parvus dominated period at 

Lake Hayq is too brief (~ 50 years) and early (12,100 – 12,050 cal yr BP, Hayq-V) in 

comparison to other Ethiopian lake highstands to be considered as representing  
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Figure 6.18. Annotated map of Lake Hayq and the surrounding area. The lake 

catchment is indicated in yellow (with black outline) and lake level maximum (~ 120 

m) in dark blue. The direction of overflow into the Wazi River is shown by the red 

arrow (Soviet military 1984).   
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maximum lake depth. Most Ethiopian and East African lakes experienced highstands 

and overflowed for several centuries to millennia during the Holocene Climatic 

Optimum (~ 10.0 – 6.0 kyr BP; Chapter 3, 3.5.1), a period that corresponds to 

Aulacoseira granulata var. angustissima dominance at Lake Hayq.  

 

This deep, stratified lake system is in agreement with the sedimentary pigment 

record. The dominance of green sulfur bacteria provides evidence of strong 

stratification. Lake Hayq would have been well-mixed in the upper lake stratum (the 

mixolimnion), where Aulacoseira granulata var. angustissima dominated, but a 

chemocline developed in the bottom waters, which wind energy could not penetrate. 

This chemocline separated the upper water layers from a dense layer of anoxic 

conditions in the monimolimnion. Green sulfur bacteria are a characteristic pigment 

of these meromictic lake conditions, as they photo-oxidize hydrogen sulfide 

produced in the anoxic sediments (Parkin and Brock 1981; Hodgson et al. 1996; 

McGowan 2013). The presence of green sulfur bacteria provides additional evidence 

of the turbulent conditions in the upper waters as they are able to tolerate low light 

intensity of poor quality (Parkin and Brock 1980; Chen et al. 2001). 

 

Ulnaria ulna var. ulna was also present in low abundances in the zone and similar to 

Aulacoseira granulata var. angustissima, is a poor competitor for silicon, making it a 

high Si: P species. It does however, have somewhat higher phosphorus 

requirements than other Ulnaria taxa (Kilham 1986). Its presence indicates 

submerged macrophytes in the littoral area (Gasse 1987).  

 

Nitzschia subcommunis has not been widely identified in African lakes and may have 

been amalgamated with other taxa at times. Haberyan (1987) for example, 

collectively referred to Nitzschia subcommunis and several other Nitzschia taxa at 

Lake Rukwa as Nitzschia cf. spiculum. Its presence at Lake Hayq is indicative of 

fresh, alkaline water and it may live in an epiphytic or epipelic form. Hustedt (1949) 

identified it as a benthic taxa found in association with algae. Nitzschia subcommunis 

is therefore likely to be an obligate nitrogen heterotroph, similar to Nitzschia fonticola 

(Kilham et al. 1986), indicated by is greatest abundances during stable periods of 

profuse colonial cyanobacteria. The manner in which Nitzschia subcommunis 

appears in greatest abundances, synchronous with declines in Aulacoseira granulata 
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var. angustissima may indicate brief, temporary declines in water level in response to 

short-lived arid spells, or alternatively, periods of reduced wind driven mixing.  

 

The phytoplankton community is relatively stable in this zone with evidence of green 

algae and higher plants, cryptophytes, dinoflagellates (further indicting Lake Hayq 

was stratified and eutrophic) and chrysophytes (McGowan 2013). The high 

concentrations of pheophorbide a alongside low chlorophyll a concentrations, signal 

that zooplankton populations became well established at Lake Hayq (Hurley and 

Armstrong 1990). Both the diatom and pigment records indicate this was the first 

significant period of biological productivity in Lake Hayq, evidenced by the sudden 

increases in diatom and total pigment concentration and accumulation rates (as well 

as organic matter and minerogenic accumulation rates), and improved preservation 

in comparison to the previous zones. The increase in diatom accumulation rate and 

concentration at the start of this zone (~ 480.0 cm) may also account for an increase 

in biogenic silica, which may represent diatom productivity (as well as contributions 

from chrysophytes and sponges) as silica frustules are preserved in the lake 

sediment (Fig. 6.19). However, after this initial synchronous peak, biogenic silica 

productivity does not appear to reflect diatom accumulation rate and they become 

asynchronous. This is most likely a result of increased dust deposition or due to 

improved preservation caused by higher temperatures, which may indicate a 

gradually shifting climate towards the end of this time period (Burnett et al. 2011). 

 

6.9.7 Hayq-VII (376.05 – 299.0 cm, 10,300 – 6,500 cal yr BP) This zone may 

be characterised as the start of gradual water level and lake area decline at Lake 

Hayq. The decline would have been most evident firstly in the steep northern 

margins of the lake. Aulacoseira granulata var. angustissima continues to dominate 

the diatom assemblage but abundance declines in conjunction with increases in 

facultatively planktonic and benthic taxa. The increase in epiphytic Ulnaria ulna var. 

ulna indicates greater availability of benthic vegetation. Increases in the planktonic 

Ulnaria delicatissima and facultatively planktonic Fragilaria radians may also be 

indicative of lake level decline; Gasse (1986) identifies these varieties as important 

components of the plankton and bottom mud in small, shallow lakes such as Lakes 

Naivasha (7.3 m) and Chibwera (Uganda) (12.5 m), though it is also present in 

deeper lakes such as Lake Luhondo (Rwanda) (68.0 m). This assemblage indicates 
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Figure 6.19. Biogenic silica production (shown as peak area units with element X-ray fluorescence values divided by incoherent 

scatter. The mean trend is indicated in red) and diatom accumulation rate (x 106 valves cm-2 yr-1) and concertation (valves x 105 g-1 

dry sediment).  
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that water level was beginning to decline (which would have consequently reduced 

lake surface area and volume) but the lake remained alkaline and fresh (confirmed 

by diatom-inferred conductivity). The long, slender species Ulnaria delicatissima and 

Fragilaria radians are poor competitors for silicon, similar to Aulacoseira granulata 

var. angustissima, but they are highly competitive for phosphorus. They have 

marginally greater silicon and lower phosphorus requirements than Ulnaria ulna var. 

ulna and so indicate that phosphorus availability was beginning to decline with lake 

level (Kilham et al. 1986). This is supported by the decrease in colonial 

cyanobacteria towards the centre of this zone. Water pH remained alkaline, ranging 

from 7.6 – 8.6 (Gasse et al. 1995).  

 

Green sulfur bacteria continued to dominate the pigment record, confirming that the 

lake remained meromictic. Pheophorbide a indicates that zooplankton maintained a 

steady population at the lake. Cryptophytes, chrysophytes and dinoflagellates 

decline in this zone but total algal abundance remains relatively stable indicating 

productivity did not decline. Diatom accumulation rate and valve concentration does 

not suggest a decline in productivity either; similarly high concentrations of valves 

have been identified in records from Lakes Ashenge, Tana and the Ziway-Shala 

basin around this early to mid-Holocene stage, indicating a period of regionally high 

productivity (Chalié and Gasse 2002b; Marshall 2006; Marshall et al. 2009).  

 

Geochemical data do not indicate any significant, abrupt change in climate at this 

time, although allochthonous elements and authigenic calcium do show a gradual 

decline, which may indicate of a steady shift towards aridity. The diatom record does 

indicate a declining lake level however, which may be attributed to a reduction in 

effective moisture. Sediment accumulation rates also decline, reaching a minimum of 

0.1 mm yr-1, which is significantly lower than other Ethiopian lakes at this time (Lakes 

Tana [0.98 mm yr-1], Ashenge [0.92 mm yr-1] and the Ziway-Shala basin [0.70 mm yr-

1]; Chalié and Gasse 2002b; Marshall 2006). It is important to emphasise however, 

that whilst there is evidence of water level decline, Lake Hayq remained overall, a 

relatively deep lake system and this zone is only the start of a gradual shallowing 

process that would span the following 2.4 cal kyr. The lake most likely closed during 

this time as water level declined, but it may have continued to receive overflow from 

Lake Hardibo.  
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6.9.8 Hayq-VIII (299.0 – 280.13 cm, 6,500 – 5,200 cal yr BP) The diatom 

assemblage in the zone suggests that water level continued to fall during this time, 

evidenced by further declines of Aulacoseira granulata var. angustissima. Green 

sulfur bacteria indicates that Lake Hayq was still meromictic however, suggesting 

that lake depth had not declined to such an extent that the waterbody was 

completely mixed. The increase and subsequent maximum abundance of Fragilaria 

radians may be a result of two processes; the first being a decline in the availability 

of phosphorus in the water, increasing the Si: P ratio, but this is not supported by the 

cyanobacteria, which is more stable and abundant than the previous zone, or by the 

decline of Aulacoseira granulata var. angustissima. Alternatively, a decline in wind-

driven mixing, or short-term fluctuations in effective moisture which caused changes 

in lake depth, may have favoured Fragilaria radians over Aulacoseira granulata var. 

angustissima. The lake remained fresh (evidenced by diatom-inferred conductivity), 

alkaline (pH 7.4 – 7.8) and lake chemistry did not change significantly (Gasse 1986).  

 

Similar to the previous zone (Hayq-VII), no significant climate shift is evident from the 

geochemical data at this time, and despite evidence of gradual water level decline, 

Lake Hayq was still a relatively deep waterbody. Diatom and total pigment 

accumulation rates indicate that productivity was lower at this time in comparison to 

the early Holocene. Sedimentation and other accumulation rates also reach their 

minimum value, which would suggest a change in productivity. Cryptophytes, 

dinoflagellates and chrysophytes, as well as zooplankton populations, remain 

relatively stable. 

 

6.9.9 Hayq-IX (280.13 – 257.5 cm, 5,200 – 3,950 cal yr BP)  This zone shows 

evidence of the first significant water level decline at Lake Hayq, potentially as a 

critical threshold in depth is crossed following gradual decline since the early 

Holocene. Overflow most likely ceased to and from Lake Hayq during this time 

period, creating a climatically sensitive, hydrologically closed system (Battarbee 

2000; Umer et al. 2004). The lake would have most likely been shallower than its’ 

modern state (maximum depth of ~ 80 – 90 m), which at this depth, has been 

dominated by Aulacoseira taxa in recent centuries and receives no overflow from 

Lake Hardibo and does not overflow itself (Lamb et al. 2007b).  
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The periphytic Gomphonema parvulum and Gomphonema pumilum rapidly increase 

in abundance, alongside an increase in the diversity of other benthic taxa, as well as 

further declines of Aulacoseira granulata var. angustissima and Fragilaria radians. 

This indicates an upsurge in the availability of macrophyte habitat in a shallow 

benthic area (Cocquyt 1998; Barker et al. 2003). Gomphonema taxa are commonly 

found in epilithon samples as well as on floating mats of swamp vegetation (Barker 

et al. 2003) and indicate Lake Hayq was still dilute (diatom-inferred conductivity does 

increase in this zone but is still within the boundaries of being fresh [Table 6.4]). This 

would suggest that as lake level declined, shallow near-shore sections of the lake 

basin were exposed and colonised. Alternatively, or in addition to, if Lake Hayq had 

been receiving overflow from Lake Hardibo (or overflowing itself), and this gradually 

declined, this would have left swamp-like, marsh areas in the wide coastal plain in 

the southern margin if the lake, abundant with macrophytes, suitable for 

Gomphonema taxa and other benthic diatoms. The collection of benthic taxa present 

suggests Lake Hayq may have increased slightly in alkalinity (Sellaphora pupula has 

an optimum pH of 8.0).  

 

Despite the decline in water level, Lake Hayq was still meromictic, evidenced by the 

presence of green sulfur bacteria. Green algae, cryptophyte, dinoflagellate and 

chrysophyte populations remain relatively stable. Total pigment concentration does 

not indicate a significant change in phytoplankton production.   

 

6.9.10 Hayq-X (257.5 – 173.0 cm, 3,950 – 2,200 cal yr BP)  Lake Hayq 

reaches a Holocene lowstand in this zone. Diatom-inferred conductivity indicates the 

lake was subsaline at times and the abundance and diversity of benthic diatom taxa 

signals that lake level had declined and was at its shallowest of the Holocene period. 

The Lake Hayq system would have been closed, as overflow to and from the 

waterbody ceased. This would have significantly reduced the lake surface area and 

volume in the steep sided lake basin. Potentially Lake Hayq may have declined to ~ 

30 m or less, where the deeply shelving morphometry gives way to a larger, shallow 

expanse on the lake bottom (Fig. 6.20). Lake surface area would have subsequently 

been reduced to < ~ 16 km² (Demlie et al. 2007).  
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Figure 6.20. Annotated map of Lake Hayq and the surrounding area. The lake 

catchment is indicated in yellow (with black outline) and the Holocene lake level 

minimum (~ 30 m) in dark blue (Soviet military 1984).   
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Water residence time at Lake Hayq would have most likely increased during this time 

period as inflow and outflow ceased. This would have promoted water transparency 

at the lake, given the low supply rate of dissolved (and coloured) organic matter from 

the catchment, which would have been photo-oxidised and bleached by ultraviolet 

radiation (Kalff 2003). Assuming Lake Hayq experienced the same remarkable water 

clarity as found in the mid- to late 20th century prior to anthropogenic activity 

(evidenced by generally low chlorophyll a concentrations and a 9 m Secchi disk 

depth [Baxter and Golobitsch 1970]), light may have penetrated to approximately 

22.5 m depth (based on Cole’s [1975] premise of light penetration equating to two 

and a half times the Secchi disk depth), providing a large expanse of suitable 

habitats for benthic diatom species to colonise.  

 

The zone is largely dominated by Ulnaria taxa; the epiphyte Ulnaria ulna var. ulna 

indicates shallow water conditions and abundant macrophytes, whilst Ulnaria 

delicatissima, generally considered a planktonic taxon, is also indicative of low water 

levels, having been associated with several shallow lakes across East Africa (Gasse 

1986). The increase of dense mats of Ulnaria delicatissima, resulting in laminations 

in the sediment, is likely a result of short-lived turbulent periods mixing the shallow 

water in the littoral zone. In these wind penetrable areas, most likely on the lake 

shelves, frustules are re-suspended and rapidly deposited into the sediment, forming 

the mass of intertwined valves (Gasse 1986; Verschuren 2001). 

 

The switch from an assemblage dominated by Aulacoseira granulata var. 

angustissima to one dominated by Ulnaria taxa signals a drop in lake level rather 

than a change in the availability of nutrients; a negative shift in the Si: P ratio would 

favour Ulnaria over Aulacoseira taxa, causing a switch between dominance, but this 

would also trigger a decline in cyanobacteria (Barker et al. 2000; Barker et al. 2003). 

No decrease in colonial cyanobacteria is evident at Lake Hayq at this time. In 

contrast, canthaxanthin concentrations are relatively high in this zone, signalling an 

availability of phosphorus. Colonial cyanobacteria predominate among the benthic 

algae of many lakes, providing further support for lake level decline, and its 

abundance in this zone also accounts for the increase in the obligate nitrogen 

heterotroph, Nitzschia subcommunis (Kalff 2003).  
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Although low in concertation in comparison to other pigments at this time, the 

appearance of chlorophyll a may also be indicative of increased availability of 

phosphorus at Lake Hayq, as well as a decrease in lake depth; the diversity of 

benthic substrates would have encouraged growth of algae in the shallow, protected 

regions of the lake, which also improved preservation by reducing sinking depth 

(Moss 1968; Cyr 1998; McGowan 2013). Fucoxanthin may similarly indicate 

improved preservation as it is particularly labile (McGowan 2013). Many chlorophyll 

degradation products are still present however, indicating how easily chlorophyll a is 

broken down, with the exception of pheophorbide a, which declines, signalling a 

reduction in macrofauna (Leavitt and Brown 1988).  

 

The abundance of colonial cyanobacteria, euglenophytes as well as benthic and 

green algae may have caused the decline of green sulfur bacteria during this time. 

These groups are commonly found co-dominating and are often found in abundance 

in littoral habitats of shallow, saline lakes (Kalff 2003). The abundance of 

phytoplankton due to nutrient enrichment in the upper water column would have 

caused water transparency to decline to such a degree that light could no longer 

penetrate the anoxic bottom waters, causing green sulfur bacteria to decline as it 

could not photo-oxidize hydrogen sulfide (McGowan 2013). This decline in light 

availability may have also contributed to the decline of Aulacoseira granulata var. 

angustissima. Alternatively and more likely, the decrease in lake level may have 

enabled wind energy to penetrate the thermocline and mix the water column, 

weakening meromixis (other pigments continue to be present, indicating meromixis 

did not completely break down) and green sulfur bacteria to deteriorate. However, 

the disappearance of Aulacoseira granulata var. angustissima from this zone may 

also indicate a decline in wind driven mixing, which would have maintained the 

meromictic conditions. Chrysophytes and cryptophytes also demonstrate peaks in 

this zone, though they are more common in oligotrophic-mesotrophic waters.  

  

Overall, the diatom and phytoplankton assemblage is typical of shallow (~ 30 m 

deep), fresh-subsaline, mesotrophic-eutrophic East African lakes with an availability 

of epiphytic and epilithic habitats, and indicates Lake Hayq had a low to medium 

alkalinity and pH of 7.0 – 8.0 (Gasse 1986). The aerophilous Hantzschia amphioxys 
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and Nitzschia amphibia var. amphibia increase in abundance in this zone which may 

also indicate sediment reworking from exposed sections of the basin. 

 

The geochemical data show significant variability during this time period and the 

overall trend, in contrast to the diatom and phytoplankton assemblage, is indicative 

of wetter conditions in the mid-zone (~ 237.0 – 204.0 cm, 3,150 – 2,500 cal yr BP). 

However, the fluctuations exhibited by elemental profiles may instead be interpreted 

as climate instability rather than a direct climatic transition from dry to humid 

conditions. The weathering proxy (potassium: aluminium ratio) indicates increased 

chemical weathering towards the mid-zone, which suggests wetter conditions. 

However, two peaks sandwiching this apparent wet period signal greater mechanical 

weathering and extreme aridity of equal measure to zone Hayq-I, which was 

interpreted as a late Pleistocene lowstand at the lake basin. Calcium, potassium and 

grain size profiles follow this same trend of low values in the mid-zone indicating 

enhanced precipitation, bracketed by extreme aridity and enhanced evaporitic 

conditions, causing the core site to become closer to the shoreline (Brown 2011; 

Burentt et al. 2011; Foerster et al. 2012). The incoherent: coherent backscatter 

intensity ratio, although high towards the centre of the zone, reaches minimum 

values which may be interpreted as low productivity and poor preservation due to a 

drier climate. It seems therefore that the climate may have experienced a shift to 

aridity between ~ 3,850 – 2,900 cal yr BP. This aridity was interrupted however by a 

wet period (~ 2,900 – 2,550 cal yr BP), but the extremity of aridity was great enough 

to supress lake level recovery and prevent water level from rising, evidenced by the 

abundance of benthic diatoms and algae as well as low lake productivity. This aridity 

was later reinforced from ~ 2,450 – 2,400 cal yr BP, which maintained the shallow 

lake conditions.  

 

6.9.11 Hayq-XI (173.0 – 89.0 cm, 2,200 – 1,350 cal yr BP)  The 

geochemical data in this zone sees a return in values to those observed earlier in the 

sediment core in zone Hayq-V to Hayq-VI. This indicates that following aridity from ~ 

3,850 – 2,400 (Hayq-X), the climate became wetter, cooler and windier again, as 

experienced during the early to mid-Holocene (12,100 – 6,500 cal yr BP). 

Sedimentation, and other accumulation rates, increased in this zone, becoming 

comparable to average rates found in lakes in the East African Rift Valley and Lake 
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Victoria during the Holocene (0.1 cm yr-1; Johnson 1996; Stager et al. 1997), as well 

as Lakes Ashenge and the Ziway-Shala basin (0.8 mm yr-1 and 1.4 mm yr-1 

respectively; Chalié and Gasse 2002b; Marshall 2006). 

 

The enhanced precipitation regime led to the recovery of lake level; diatom-inferred 

conductivity shows that Lake Hayq was fresh again, although values are on the cusp 

of being subsaline at the start of this zone and gradually decrease, indicating a 

steady recovery rather than abrupt transition. Aulacoseira granulata var. 

angustissima in contrast does rapidly return and dominate the diatom record. This 

indicates that Lake Hayq was once again deep and relatively well mixed (Gasse 

1986). Potentially, the lake may have reached a similar depth, as well as volume and 

area, as its’ modern state; the diatom assemblage over the past 100 years has also 

been dominated by Aulacoseira taxa, and records of maximum lake level range from 

81.0 – 88.2 m between 1938 – 2001 (Baxter and Golobitsch 1970; Lamb et al. 

2007b). It is possible therefore that during this late Holocene period, Lake Hayq was 

at a maximum depth of approximately 80 – 90 m, with a surface area of > ~ 23 km².  

 

Benthic taxa and species diversity decline as Aulacoseira granulata var. 

angustissima becomes reestablished. Ulnaria ulna var. ulna and Ulnaria 

delicatissima continue to feature in this zone suggesting that submerged 

macrophytes were present in the littoral zone. The decline and disappearance of 

chlorophyll a also indicates an increase in lake depth, which in conjunction with the 

reestablishment of green sulfur bacteria in the anoxic zone, suggests that 

phosphorus availability became more limiting.  

 

Lake level was not stable however and short-term drops in water level are evidenced 

by decreases in Aulacoseira granulata var. angustissima in conjunction with 

increases in Ulnaria ulna var. ulna and other benthic and facultatively planktonic taxa 

such as Gomphonema parvulum, Amphora copulata and Nitzschia adapta. The 

phytoplankton assemblage is also indicative of short-term fluctuations in lake level as 

peaks in dinoflagellates, chrysophytes, euglenophytes and colonial cyanobacteria 

occur synchronous with peaks in Ulnaria ulna var. ulna. These short-term 

fluctuations may potentially equate to the 7.8 m drop over 60 years during the 20th 

century (Lamb et al. 2007b).  
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Overall, this zone is characterised by a return of early to mid-Holocene climatic 

conditions which triggered a recovery in lake level and reestablishment of an 

Aulacoseira granulata var. angustissima dominated diatom assemblage. 

Sedimentation and accumulation rates likewise recover in this zone and maintain 

values similar to those found in zone Hayq-VI. 

 

6.10 Summary of the Palaeolimnological Record of Lake Hayq 

The interpretation of these limnetic and environmental changes inferred from the 

available data are summarised below. 

 

Hayq-I (822.0 – 748.0 cm, 15,600 – 15,200 cal yr BP)  

 Lake lowstand and hyposaline conditions in response to alternating periods of 

longer, dry conditions and short, wet episodes. 

 Hydrologically closed and no connection with Lake Hardibo. 

 Low diatom and pigment concentrations indicate negligible lake productivity 

and poor preservation.  

 Aerophilous taxa indicate sediment reworking from exposed areas of the 

catchment.  

 

Hayq-II (748.0 – 716.0 cm, 15,200 – 14,800 cal yr BP)  

 Increased lake depth (~ 8 m deep, < 4 km² surface area), fresh water and 

increased water permanence. 

 Colonisation by pioneer taxa. 

 

Hayq-III (716.0 – 553.0 cm, 14,800 – 12,300 cal yr BP) 

 Climatic shift back to arid conditions. 

 Lake level decline and an intermittent mix of planktonic, facultatively 

planktonic diatoms. 

 

Hayq-IV (553.0 – 528.13 cm, 12,300 – 12,100 cal yr BP) 

 Transitional period of lake colonisation dominated by pioneer data, due to a 

wetter climate. 
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 A moderately deep (~ 8 m depth), oligotrophic-mesotrophic, fresh-subsaline 

lake. 

 Evidence of symbiotic relationships between diatoms and pigments and 

improved preservation. 

 

Hayq-V (528.13 – 521.13 cm, 12,100 – 12,050 cal yr BP)  

 A deep, fresh, well mixed lake, with phosphorus being transferred from below 

the mixed layer. 

 Short-term fluctuations in nutrient availability causing shifts in diatom taxa 

dominance. 

 

Hayq-VI (521.13 – 376.05 cm, 12,050 – 10,300 cal yr BP) 

 Major water level rise and lake potentially hydrologically open in response to 

increasing precipitation and humidity in the region, which may have triggered 

overflow from Lake Hardibo and caused Lake Hayq overflow itself. 

 A deep (maximum of ~ 120 m, ~ 70 km² surface area), fresh, turbid (wind 

driven mixing) lake, with carbonate rich, alkaline waters and an availability of 

silicon. 

 Meromictic conditions allowing for green sulfur bacteria to establish in the 

anoxic bottom waters. 

 Further evidence of symbiotic relationships between obligate nitrogen 

heterotroph diatoms and pigments. 

 Presence of green algae, cryptophytes, dinoflagellates, chrysophytes and 

zooplankton. 

 First period of significant lake productivity and improved preservation.  

 

Hayq-VII (376.05 – 299.0, 10,300 – 6,500 cal yr BP) 

 Some indication of a shift towards aridity which triggered the start of gradual 

lake level decline due to reduced effective moisture. 

 Lake becomes hydrologically closed (no outflow) but was still connected to 

Lake Hardibo via overflow. 

 Increased availability of benthic habitats and declining phosphorus 

concentrations.  
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Hayq-VIII (299.0 – 280.13 cm, 6,500 – 5,200 cal yr BP) 

 Lake level declining with shallow areas in the littoral zone. 

 Gradual decline of overflow from Lake Hardibo. 

 Still relatively productive. 

 

Hayq-IX (280.13 – 257.5 cm, 5,200 – 3,950 cal yr BP) 

 First period of significant lake level decline and greater availability of benthic 

habitats and submerged macrophytes. 

 Hydrologically closed and no longer connected to Lake Hardibo. 

 Presence of green algae, cryptophytes, dinoflagellates, chrysophytes and 

zooplankton. 

 

Hayq-X (257.5 – 173.0 cm, 3,950 – 2,200 cal yr BP)  

 Holocene lowstand (~ 30 m deep, < ~ 16 km². surface area), causing the lake 

to become subsaline. 

 A closed system. 

 Abundance of macrophytes and presence of benthic algae.  

 Decreased lake level enabled wind energy to penetrate the thermocline, 

mixing the water column and weakening meromixis. 

 

Hayq-XI (173.0 – 89.0 cm, 2,200 – 1,350 cal yr BP) 

 Climate returned to conditions similar to those of Hayq-V and Hayq-VI; wetter, 

cooler and windier. 

 Recovery of lake level (potentially a similar depth and area as the modern 

lake state), causing it to freshen. 

 Short-term fluctuations in lake level, though still a closed system. 
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Chapter 7 

Results: A High-Resolution Study of the Termination of the African Humid Period. 

 

7.1 Introduction 

This chapter presents high-resolution palaeolimnological results from a section of 

core Hayk-01-2010 attributed to the termination of the African Humid Period (AHP). 

As previously discussed in Chapter 3, the timing and abruptness of the termination of 

the AHP is subject to an ongoing debate as to whether the termination occurred 

gradually over several millennia as a linear response to orbital changes, or whether 

non-linear climate feedback dynamics (i.e. vegetation feedbacks) caused abrupt 

shifts within just a few centuries (deMenocal 2015). Conflicting evidence and 

unresolved discrepancies between proxy records and sites across Africa intensify 

the debate and consequently, current understanding of the nature and impact of 

abrupt climate transitions in Africa remains limited, as well as the impact this had on 

palaeoenvironments and human development.  

 

The Horn of Africa remains underrepresented in the study of the termination of the 

AHP, despite being a key area in terms of climatic variability, sensitivity and 

vulnerability (Chapter 2). Tierney and deMenocal (2013) used hydrogen isotopic 

composition of leaf waxes (δDwax) from a marine core record (P178-15P) from the 

Gulf of Aden to reconstruct regional shifts in the hydrological cycle during the late 

Quaternary. The δDwax record indicates an abrupt transition at the end of AHP 

around 5.0 kyr BP, synchronous with other δDwax records from Lakes Tanganyika 

and Challa. The average timing of the termination at these sites is 4,960 ± 70 yr BP 

(similar to West Africa which is estimated to have begun at 4,900 ± 400 yr BP) and 

lasted between 280 – 490 years, indicating an abrupt end to the AHP (Tierney and 

deMenocal 2013). Whilst this study provides a reference point for characterising the 

nature of the AHP’s termination, additional evidence from multiple proxies and sites 

across the Horn of Africa is required in order to definitively identify the mechanisms 

driving the climatic shift, as well as the regional impact on the palaeoclimate and 

palaeoenvironment.  

 

A section of Hayk-01-2010 (302.0 – 267.0 cm) has been sampled for diatoms and 

pigments at 0.5 cm resolution (average sediment accumulation rate of 0.02 cm yr-1) 
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in order to provide a high-resolution, continuous record detailing the palaeolimnology 

of Lake Hayq between ~ 6,650 – 4,450 cal yr BP, the period during which the AHP is 

believed to have terminated. Geochemical data are provided first, followed by a 

detailed description of the diatom and pigment record. The interpretation of this high-

resolution palaeolimnological data will provide a detailed record of the environmental 

and climatic changes that occurred in the Lake Hayq basin in response to the 

termination of the AHP, identifying when the AHP ended and over what time scale.  

 

7.2 X-ray Fluorescence (XRF) Geochemistry 

Selected geochemical elemental concentrations for the high-resolution section of 

Hayk-01-2010 (302.0 – 267.0 cm) are shown in Figure 7.1. Peak area profiles for 

calcium (Ca), potassium (K), silicon (Si), titanium (Ti) have been normalised by 

incoherent scatter (inc) to minimise the effect of organic matter and water content 

variability, unrelated to sediment geochemistry (Marshall et al. 2011). Ratios of 

potassium: aluminium (K/Al) and silicon: titanium and (Si/Ti) are shown as well as 

the incoherent: coherent (inc/coh) backscatter intensity ratio. Ratios are 

dimensionless.  

 

The lithogenic elements, K, Si and Ti are low in concentration from 302.0 – 290.5 

cm, showing very little overall variability. Between 291.0 – 288.5 cm these elements 

all demonstrate an increase, which peaks at ~ 286.0 cm. A minor decrease occurs 

but elements remain relatively stable and in higher concentrations than before the 

peak. A second increase is documented at ~ 279.0 cm, peaking at 277.3 cm when K, 

Si and Ti reach their maximum concentration. It is at this depth that Ca (a proxy for 

authigenic carbonate minerals or biogenic calcium carbonates) begins its stepped 

increase, having been exceptionally low in concentration up until ~ 279.0 cm. K, Si 

and Ti once again decline, returning to concentrations similar to those before the 

second peak by ~ 274.5 cm. Ca experiences a second increase at this depth. A third 

increase in K, Si and Ti occurs at ~ 270.5 cm and concentrations remain high. Ca 

also increases at 270.0 cm but declines after reaching its maximum concentration.  

 

The K/Al ratio (an approximation of chemical over mechanical weathering) follows 

the same overall pattern as K, Si and Ti. Two small peaks centred at ~ 297.5 cm and 

~ 294.5 cm are evident in the K/Al record, which are less apparent in the lithogenic 
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Figure 7.1. XRF results for the high-resolution section (302.0 – 267.0 cm) of Hayk-01-2010. Elemental data is given as peak area 

units with element X-ray fluorescence values divided by incoherent scatter (inc). Magnetic susceptibility is given as κ, SI units. The 

mean trend is indicated in red.    
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element profiles. The Si/Ti ratio (a proxy for biogenic silica productivity) declines 

slightly between 302.0 – 297.9 cm, before increasing and peaking at ~ 296.5 cm. 

Si/Ti declines again before a second rise centred at ~ 292.0 cm. After this second 

peak, Si/Ti declines to a relatively stable, low concentration between ~ 289.0 – 267.0 

cm. The inc/coh ratio (a proxy for organic content) demonstrates a more stepped 

increase between 302.0 – 293.5 cm; a small peak occurs at ~ 300.5 cm, followed by 

a second rise from 298.5 – 296.5 cm and a final peak centred at ~ 293.5 cm. The 

inc/coh ratio then declines to values similar to those at the start of the profile and 

then continues to decrease, demonstrating small fluctuations around ~ 280.5 cm and 

~ 272.5 cm. Magnetic susceptibility remains relatively stable; fluctuation does occur 

between ~ 280.5 – 276.5 cm but the overall trend shows very little variability.   

 

7.3 The High-Resolution Diatom Record  

The high-resolution diatom record for 302.0 – 267.0 cm is shown in Figure 7.2. In 

addition, habitat groups, valve concentration (valves x 105 g1 dry sediment, hereafter 

x 105 g-1), accumulation rate (x 106 valves cm-2 yr-1), dissolution index (F index), Hill’s 

N2 species diversity index, DCA axis 1 and 2 values, as well as diatom-inferred 

conductivity are displayed in Figure 7.3. This high-resolution section falls across 

zones D-VI, D-VII, D-VII of those identified in the complete diatom record (822.0 – 

89.0 cm) (Chapter 6, 6.5). In order to identify the natural groupings in the high-

resolution diatom record, which may be less apparent amongst the complete record, 

the section has been zoned again separately using the same method (Chapter 4, 

4.6.1). The stratigraphic diagrams have been divided into six statistically significant 

zones (AHP-D-I – AHP-D-VI). 

 

7.3.1 Zone AHP-D-I (302.0 – 299.0 cm, 6,650 – 6,450 cal yr BP)  This zone 

is dominated by Aulacoseira granulata var. angustissima, which reaches a maximum 

abundance of 94.8 %. Ulnaria delicatissima is found at 300.0 cm where it accounts 

for 33.3 %. Fragilaria radians and Gomphonema parvulum occur in low abundances 

(x̅ = 4.8 % and 3.4 % respectively). Ulnaria ulna var. ulna increases from 8.7 % 

(302.0 cm) to 23.3 % (300.0 cm), whilst Nitzschia subcommunis is found at 300.8 cm 

(13.8 %). Valve preservation is very good (average F index value of 0.8) and 

concentration is low, averaging ~ 2,900 x 105 g-1. Diatom-inferred conductivity 

ranges between ~ 150 – 240 μS cm-1. 
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Figure 7.2 (a). Diatom data, shown as percentages (%), for the high-resolution section (302.0 – 267.0 cm) of Hayk-01-2010, against 

depth (cm), arranged according to habitat preference. Circles represent depths at which a taxon is present in low abundances (< 

0.5 %). Average sample standard deviation is 2.82 %. 
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Figure 7.2 (b). Diatom data, shown as percentages (%), for the high-resolution section (302.0 – 267.0 cm) of Hayk-01-2010, against 

age (cal yr BP), arranged according to habitat preference. Circles represent depths at which a taxon is present in low abundances 

(< 0.5 %). Average sample standard deviation is 2.82 %. 
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Figure 7.3. Associated diatom metrics for the high-resolution section (302.0 – 267.0 cm). Habitats are shown as percentage of total 

diatom assemblage (%), concentration as valves x 105 g-1 dry sediment, accumulation rate as x 106 valves cm-2 yr-1 and diatom-

inferred conductivity as μS cm-1.



226 

 

7.3.2 Zone AHP-D-II (299.0 – 280.6 cm, 6,450 – 5,250 cal yr BP)  This zone 

is characterised by an increase in the abundance of F. radians and a pattern of 

peaks and troughs by A. granulata var. angustissima. Fragilaria radians increases 

significantly at the base of the zone (58.6 %, 298.8 cm) after which the taxon 

demonstrates a pattern of rising and declining. Peaks are centred at 296.9 cm (74.0 

%), 293.3 cm (88.1 %), 290.0 cm (87.0 %) and 185.4 cm (79.1 %), separated by 

lower concentrations (4.3 – 54.0 %). The rises and declines exhibited by F. radians 

alternate with A. granulata var. angustissima in dominance. The highest 

concentrations of A. granulata var. angustissima occur at 295.3 cm (68.4 %), 291.4 

cm (58.5 %), 287.3 cm (79.7 %), 283.3 cm (63.0 %) and 282.0 cm (65.6 %). These 

increases in A. granulata var. angustissima occur simultaneously with the declines 

exhibited by F. radians. 

 

Ulnaria delicatissima occurs in low abundances from 299.0 – 288.3 cm (< 4.0 %) 

until 288.0 cm when it increases to 17.9 %. After a decline (3.0 %, 284.3 cm), the 

taxon increases in a series of peaks to 34.9 % (281.3 cm). Ulnaria ulna var. ulna 

appears in low abundances (x̅ = 5.9 %), demonstrating a decline from the base 

towards the centre of the zone (0.7 %, 285.35 cm) before increasing. Other taxa 

present include G. parvulum, which occurs intermittently (< 4.3 %) at the base and 

towards the top of the zone, and N. subcommunis, which is found between 287.3 – 

282.8 cm in low abundances (< 8.2 %). Rare benthic taxa include Encyonema 

muelleri, Mayamaea atomus, Nitzschia consummata, Tryblionella gracilis and 

Nitzschia subrostrata. 

 

Valve preservation remains very good (F index value of 0.7 – 1.0), whilst 

concentration increases steadily from the base to the mid-zone (~ 1,250 – 47,100 x 

105 g-1, 299.0 – 288.75 cm) and then decreases. Accumulation rate increases from 

the base of the zone, reaching a maximum of 5.5 x 106 valves cm-2 yr-1 (294.5 cm), 

before declining. Two smaller peaks of 4.3 and 2.6 x 106 valves cm-2 yr-1 occur at 

286.5 cm and 282.5 cm. Hill’s N2 diversity values indicate that species diversity 

remains relatively stable throughout the zone. Diatom-inferred conductivity is low 

between 299.0 – 288.0 cm (< ~ 175 μS cm-1) with the exception of a peak at 297.0 

cm when it increases to ~ 230 μS cm-1. After a second peak at 287.0 cm (~ 240 μS 
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cm-1), diatom-inferred conductivity increases slightly, ranging between ~ 175 – 200 

μS cm-1. 

 

7.3.3 Zone AHP-D-III (280.6 – 280.13 cm, 5,250 – 5,200 cal yr BP) This is the 

smallest zone in the high-resolution diatom record and sees a major peak in F. 

radians as it reaches 82.6 % abundance. This occurs simultaneously with a drop in 

A. granulata var. angustissima (x̅ = 7.5 %). Ulnaria ulna var. ulna and G. parvulum 

maintain low abundances (x̅ = 5.5 % and 2.5 % respectively).  

 

7.3.4 Zone AHP-D-IV (280.13 – 278.5 cm, 5,200 – 5,100 cal yr BP) This zone 

sees a significant decline in F. radians as it drops to 22.2 % (279.3 cm). Ulnaria 

delicatissima also decreases in several stages from 72.0 % (280.0 cm) to 43.4 % 

(278.8 cm) and then 1.3 % at the top of the zone. Aulacoseira granulata var. 

angustissima is only present at 279.25 cm (28.2 %). Ulnaria ulna var. ulna continues 

to occur in low abundances (x̅ = 6.7 %), whilst G. parvulum sees a steady increase, 

reaching 20.2 % (278.8 cm). Gomphonema pumilum also occurs in low abundances, 

as does N. subcommunis (x̅ = 2.8 % and 5.0 % respectively). Preservation is 

excellent (average F index value of 0.9) and Hill’s N2 diversity values indicate 

species diversity increases slightly. Diatom-inferred conductivity averages ~ 200 μS 

cm-1. 

 

7.3.5 Zone AHP-D-V (278.5 – 270.9 cm, 5,100 – 4,650 cal yr BP)  This zone 

is defined by the alternating dominance of benthic and planktonic taxa. Between 

278.25 – 275.25 cm, a substantial increase in the abundance of G. parvulum occurs 

(x̅ = 24.9 %) and, to a lesser extent, G. pumilum, (x̅ = 6.4 %). These taxa then 

decline from 275.25 – 272.25 cm. Gomphonema parvulum decreases to an average 

of 5.7 % before increasing slightly to 13.1 % and G. pumilum declines to a steady 

average of 2.0 %. This decline in benthic taxa occurs simultaneously with a 

substantial increase in the abundance of A. granulata var. angustissima, from 19.0 % 

to 91.7 % (277.3 – 272.75 cm). Aulacoseira granulata var. angustissima then 

declines slightly, simultaneous with increases in both G. parvulum and G. pumilum (x̅ 

= 19.3 % and 5.7 % respectively). Ulnaria ulna var. ulna maintains a steady 

abundance (x̅ = 6.0 %). Other taxa present in this zone in low abundances include 
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Sellaphora pupula, Cocconeis placentula var. lineata, Navicula cryptotenella, 

Nitzschia sociabilis, N. subcommunis and the aerophilous Hantzschia amphioxys.  

 

Valve preservation is varied but generally good (F index values of 0.7 – 0.9). 

Concentration is minor, averaging ~ 1,000 x 105 g-1, and accumulation rate also 

remains low (< 0.3 x 106 valves cm-2 yr-1). Hill’s N2 diversity values indicate that 

species diversity is greatest towards the base of the zone. Diatom-inferred 

conductivity is low, ranging between ~ 170 – 200 μS cm-1. 

 

7.3.6 Zone AHP-D-VI (270.9 – 267.0 cm, 4,650 – 4,450 cal yr BP)   This zone 

is defined by a reappearance of facultatively planktonic and benthic taxa. 

Gomphonema parvulum increases substantially, reaching a maximum of 44.6 % 

(269.6 cm). Gomphonema pumilum also increases and maintains an average of 8.1 

%. Other facultatively planktonic and benthic taxa occurring in this zone include 

Gomphonema affine and S. pupula. Ulnaria ulna var. ulna is found in low 

abundances (x̅ = 1.5 %) until 269.0 cm when it increases substantially to 19.6 % 

before declining again. The diversity of taxa increases in this zone; Lemnicola 

hungarica, C. placentula var. lineata, Cocconeis placentula var. euglypta, E. muelleri, 

Fragilaria capucina, Fragilaria vaucheriae, N. cryptotenella, N. subcommunis, 

Nitzschia palea and the aerophilous H. amphioxys are all found in low abundances. 

Consequently, Hill’s N2 diversity values indicate species diversity is greatest in this 

zone. Aulacoseira granulata var. angustissima fluctuates between 10.3 – 47.1 %. 

Valve preservation reaches a minimum in this zone but is still good overall (average 

F index value of 0.7). Valve concentration is likewise very low (x̅ = 470 x 105 g-1), as 

is accumulation rate (< 0.3 x 106 cm-2 yr-1). Diatom-inferred conductivity is low, 

ranging between ~ 160 – 190 μS cm-1. 

 

7.4 Unimodal Ordination: Detrended Correspondence Analysis (DCA) 

For the high-resolution diatom dataset, DCA was deemed the most appropriate 

ordination technique as the axis 1 gradient length was 2.257 SD (standard deviation 

of species turnover) units (Table 7.1). The first and second axes cumulatively 

account for 32.2 % of variation in the dataset, with axes 3 and 4 accounting for very 

little additional cumulative variance (38.8%). A DCA plot of the diatom species and 

samples is shown in Figure 7.4, which has been divided into the zones identified in 
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Figure 7.4. DCA results for the high-resolution diatom dataset showing (a) samples according to zone (AHP-D-I – dark blue star, 

AHP-D-II – red circle, AHP-D-III – light blue cross, AHP-D-IV – purple square, AHP-D-V – yellow diamond, AHP-D-VI – green 

triangle), and (b) species (taxa > 5.0 % shown as blue circles, all other taxa as black cross). Taxa located at the extremities of axes 

have been identified. The red lines illustrate the approximate divide between periods of high lake level and low lake level. 
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Table 7.1. Summary of DCA results for the high-resolution Lake Hayq diatom dataset 

(302.0 – 267.0 cm). 

Dataset 
No. of 

samples 

No. of 

species 

Total 

inertia 
Axis 1 2 3 4 

High-

resolution 

diatoms 

81 135 1.232 

Eigen values 

 

Length of gradient 

 

Cumulative % variance of 

species data 

0.322 

 

2.257 

 

26.2 

0.075 

 

1.546 

 

32.2 

0.043 

 

1.401 

 

35.7 

0.038 

 

1.007 

 

38.8 

 

section 7.3. Axis 1 provides a summary of the major compositional shifts in the high-

resolution diatom record. The lowest scores correlate to the youngest zones 

dominated by benthic taxa (C. placentula var. lineata and F. capucina, zones AHP-

D-V and AHP-D-VI) and higher scores correspond to the oldest zones dominated by 

planktonic taxa (A. granulata var. angustissima and U. delicatissima, zone AHP-D-II). 

This reflects changes in diatom habitat availability, which can be used as an 

indication of changes in lake depth. Dissimilarity between axis 2 DCA scores 

represents the transitional period between a deeper and shallower lake; low scores 

correspond to zones dominated by benthic taxa (C. placentula var. euglypta and F. 

vaucheriae, zone AHP-D-V), whilst higher scores reflect zone AHP-D-IV, a period 

when abrupt declines in planktonic taxa occur simultaneously with the establishment 

of benthic and facultatively planktonic taxa. Collectively, axis 1 and 2 summarise the 

mid-Holocene changes in water level at Lake Hayq. 

 

7.5 The High-Resolution Pigment Record 

The high-resolution pigment record for 302.0 – 267.0 cm is shown in Figure 7.5. 

Thirteen pigments have been identified and are presented in concentration (nmol 

pigments g-1 organic matter, hereafter nmol pigments g-1 OM). This high-resolution 

section falls across zones P-XI and P-X of the complete pigment record (Chapter 6, 

6.7) but has been zoned again separately to identify natural groupings using the 

same method (Chapter 4, 4.6.1). The stratigraphic diagram has been divided into 

seven statistically significant zones (AHP-P-I – AHP-P-VII). 
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Figure 7.5 (a).  Pigment concentration (nmol pigments g-1 OM) for the high-resolution section (302.0 – 267.0 cm) and associated 

metrics, arranged according to depth (cm). Pigment accumulation rate is shown as picomol cm-2 yr-1. 
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Figure 7.5 (b).  Pigment concentration (nmol pigments g-1 OM) for the high-resolution section (302.0 – 267.0 cm) and associated 

metrics, arranged according to age (cal yr BP). Pigment accumulation rate is shown as picomol cm-2 yr-1.  
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7.5.1 Zone AHP-P-I (302.0 – 300.75 cm, 6,650 – 6,550 cal yr BP)   This zone 

is characterised by moderate total pigment concentrations (x̅ = 118.4 nmol pigments 

g-1 OM) and dominance by carotenoid pigments. Isorenieratene and lutein-

zeaxanthin are found in the greatest quantities (34.5 and 31.9 nmol pigments g-1 OM 

respectively) whilst other carotenoids are found in stable concentrations. 

Pyropheophytin a is also present in low concentrations (x̅ = 4.6 nmol pigments g-1 

OM).  

 

7.5.2 Zone AHP-P-II (300.75 – 295.5 cm, 6,550 – 6,200 cal yr BP)  This zone 

continues to maintain a steady total pigment concentration, though slightly higher 

than the underlying zone (x̅ = 149.8 nmol pigments g-1 OM). Carotenoid 

concentrations fluctuate, with some showing slight increases towards the mid-zone 

(alloxanthin, diatoxanthin and canthaxanthin). β-carotene in contrast, disappears 

intermittently from the record, as does fucoxanthin which is not found past 297.5 cm. 

Pyropheophytin a also disappears at 298.5 cm but is present again at 296.0 cm. 

Pheophorbide a and bacteriochlorophyll e appear intermittently in moderate 

concentrations (x̅ = 49.2 and 9.6 nmol pigments g-1 OM respectively). Accumulation 

rate is stable, averaging 129.8 pmol cm2 yr-1. 

 

7.5.3 Zone AHP-P-III (295.5 – 291.5 cm, 6,200 – 5,950 cal yr BP)  This zone 

sees total pigment concentration decline from 182.7 to 14.4 nmol pigments g-1 OM 

(295.0 – 292.0 cm). Carotenoid pigments continue to vary but overall concentrations 

are fairly stable. β-carotene and diatoxanthin are not present at 294.0 cm and 

fucoxanthin is absent throughout. Pheophorbide a and bacteriochlorophyll e continue 

to appear irregularly (x̅ = 40.6 and 7.6 nmol pigments g-1 OM respectively). 

Pyropheophytin a is found at the base and top of the zone only (x̅ = 7.4 nmol 

pigments g-1 OM).  

 

7.5.4 Zone AHP-P-IV (291.5 – 290.25 cm, 5,950 – 5,850 cal yr BP) This is the 

smallest zone in the high-resolution pigment record and is characterised by slightly 

increased total pigment concentrations (x̅ = 178.7 nmol pigments g-1 OM). β-

carotene is not present in the record and diatoxanthin disappears past 291.0 cm. 

Pheophorbide a and pyropheophytin a are both found in moderate concentrations (x̅ 

= 44.6 and 7.9 nmol pigments g-1 OM respectively). 
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7.5.5 Zone AHP-P-V (290.25 – 277.75 cm, 5,850 – 5,050 cal yr BP) This zone 

sees an overall decline in total pigment concentration from 453.2 to 79.4 nmol 

pigments g-1 OM (287.5 – 283.5 cm). Accumulation rate is steady, ranging between 

50.1 – 127.6 pmol cm2 yr-1. Carotenoids vary considerably in concentration 

throughout this zone and chlorophyll degradation products continue to appear 

intermittently.  

 

Sub-zone AHP-P-V-A (290.25 – 283.5 cm, 5,850 – 5,450 cal yr BP) is characterised 

by relatively stable total pigment concentrations (x̅ = 182.7 nmol pigments g-1 OM), 

with the exception of a single peak reaching 453.2 nmol pigments g-1 OM (287.5 

cm). This is reflected by the carotenoids, all of which show increases at this depth, 

some as a gradual rise (lutein-zeaxanthin and canthaxanthin) and other as a 

significant peak (chlorobactene and β-carotene). Total pigment concentration then 

declines to 112.3 nmol pigments g-1 OM (283.5 cm), which is similarly reflected by 

carotenoid concentrations; β-carotene reaches a minimum of 0.7 nmol pigments g-1 

OM (283.5 cm). Fucoxanthin is irregularly present in this sub-zone. 

Bacteriochlorophyll e and pyropheophytin a are found in stable concentrations (x̅ = 

5.7 and 6.7 nmol pigments g-1 OM respectively). Pheophorbide a occurs frequently 

whilst pheophytin b is only present at 287.5 cm. 

 

Sub-zone AHP-P-V-B (283.5 – 277.75 cm, 5,450 – 5,050 cal yr BP) shows greater 

variability in total pigment concentration, ranging from 79.4 – 419.3 nmol pigments g-

1 OM. The carotenoids similarly demonstrate significant variability in this sub-zone. 

Alloxanthin, canthaxanthin, isorenieratene and chlorobactene experience a peak in 

concentration at 283.0 cm (11.4 – 286.2 nmol pigments g-1 OM). Canthaxanthin and 

β-carotene exhibit smaller peaks at 281.5 cm. Alloxanthin, canthaxanthin, 

isorenieratene, chlorobactene and β-carotene peak again between 279.0 – 278.5 

cm. Diatoxanthin in contrast peaks at 279.5 cm and then temporarily disappears 

from the record, whilst lutein-zeaxanthin shows a gradual increase in pigment 

concentration throughout the sub-zone. Fucoxanthin continues to appear irregularly. 

Pheophorbide a, bacteriochlorophyll e and pyropheophytin a are present in moderate 

to high concentration at regular intervals (x̅ = 43.3, 9.2 and 9.3 nmol pigments g-1 

OM respectively). 
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7.5.6 Zone AHP-P-VI (277.75 – 272.75 cm, 5,050 – 4,750 cal yr BP)  This zone 

is characterised by low total pigment concentrations at the base of the zone (70.8 

nmol pigments g-1 OM, 277.0 cm) after which an increase occurs, reaching 158.5 

nmol pigments g-1 OM (273.5 cm). Diatoxanthin, canthaxanthin, lutein-zeaxanthin 

and isorenieratene follow this same general trend. Alloxanthin in contrast peaks 

earlier (3.8 nmol pigments g-1 OM, 275.0 – 274.5 cm), before declining slightly. 

Chlorobactene maintains a relatively stable abundance (x̅ = 5.9 nmol pigments g-1 

OM) with the exception of a large peak at 273.5 cm (12.7 nmol pigments g-1 OM), 

when β-carotene is present. Pheophorbide a appears in moderate abundances, as 

does bacteriochlorophyll e (x̅ = 44.6 and 13.1 nmol pigments g-1 OM respectively), 

though intermittently.  

 

7.5.7 Zone AHP-P-VII (272.75 – 267.0 cm, 4,750 – 4,450 cal yr BP) This zone 

features a very low total pigment concentration at the base of the zone, after which it 

immediately increases (100.7 – 248.4 nmol pigments g-1 OM). The carotenoid 

pigments demonstrate this same initial peak at the base of the zone and then 

fluctuate in abundance; canthaxanthin ranges between 3.4 – 16.6 nmol pigments g-1 

OM and chlorobactene between 2.2 – 13.3 nmol pigments g-1 OM. Highest 

concentrations for most carotenoids occur at the top of the zone. Fucoxanthin is 

present at 182.5 cm and 179.5 – 178.0 cm. Pheophorbide a occurs in a steady 

abundance towards the mid-zone (x̅ = 42.2 nmol pigments g-1 OM), whilst 

bacteriochlorophyll e and pyropheophytin a are found sporadically. Accumulation 

rate increases, averaging 264.2 pmol cm2 yr-1. 

 

7.6 Linear Ordination: Principal Components Analysis (PCA)  

PCA analysis of the high-resolution pigment dataset shows that the first axis 

accounts for 41.3 % of variance and cumulatively with the second axis for 62.5 % 

(Table 7.2). The cumulative variance explained by the four axes is 85.6 %. A PCA 

plot of the pigment species and samples is shown in Figure 7.6. As found in the 

complete pigment record (Chapter 6, 6.7), axis 1 shows a clear division between 

sedimentary pigments derived from macrofaunal grazing and those derived directly 

from the breakdown of phytoplankton groups. Low PCA scores correspond to zones 

containing an abundance of the grazing indicator, pheophorbide a (zones AHP-P-IV 

and AHP-P-VI), whilst higher scores reflect zones containing high concentrations of 
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Figure 7.6. PCA results for the high-resolution sedimentary pigment dataset showing (a) samples according to zone (AHP-P-I – 

pink triangle, AHP-P-II – green triangle, AHP-P-III – cyan star, AHP-P-IV – purple square, AHP-P-V – red circle, AHP-P-VI – yellow 

square, AHP-P-VII – blue triangle), and (b) sedimentary pigments. 

(b) (a) 
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Table 7.2. Summary of PCA results for the high-resolution Lake Hayq pigment 

dataset (302.0 – 267.0 cm). 

Dataset 
No. of 

samples 

No. of 

species 

Total 

variance 
Axis 1 2 3 4 

High-

resolution 

pigments 

83 13 1 

Eigen 

values 
0.413 0.212 0.152 0.079 

Cumulative 

% variance 

of species 

data 

41.3 62.5 77.7 85.6 

Carotenoids 

only 
83 8 1 

Eigen 

values 
0.431 0.333 0.166 0.045 

Cumulative 

% variance 

of species 

data 

43.1 76.5 93.1 97.6 

 

pigments derived from the degradation of cyanobacteria and other algae 

(alloxanthin, canthaxanthin, zone AHP-P-V). This reflects the changing size of the 

zooplankton population. Axis 2 separates bacteriochlorophyll e (zone AHP-P-VII) 

from pyropheophytin a (zone AHP-P-IV), which may reflect changes between 

periods of meromixis and greater mixing. 

 

As for the complete pigment record in Chapter 6, PCA analysis was repeated to 

include only carotenoid pigments, as chlorophylls have been intermittently 

preserved. Axis 1 and 2 cumulatively account for 43.1 % and 76.5 % of variance, 

whilst the addition of axis 3 and 4 increase cumulative variance to 97.6 % (Table 

7.2). A PCA plot of the pigment species and samples split into the major zones 

identified in section 7.5 is shown in Figure 7.7. Axis 1 separates fucoxanthin and 

diatoxanthin. High PCA scores correspond to zones containing fucoxanthin (zones 

AHP-P-I – II and AHP-P-V – VII), whilst low PCA scores reflect zones containing 

higher concentrations of diatoxanthin (AHP-P-III – IV). This most likely reflects the 

lability of fucoxanthin in the sediment record.  

 

Axis 2 shows a division between zones dominated by green sulfur bacteria and more 

common pigments found in most plants and algae. Low PCA correspond to zones  
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Figure 7.7. PCA results for the high-resolution carotenoid dataset only showing (a) samples according to zone (AHP-P-I – pink 

triangle, AHP-P-II – green triangle, AHP-P-III – cyan star, AHP-P-IV – purple square, AHP-P-V – red circle, AHP-P-VI – yellow 

square, AHP-P-VII – blue triangle), and (b) sedimentary pigments.  

(a) (b) 
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containing high concentrations of β-carotene (zones AHP-P-V and AHP-P-VII), whilst 

higher PCA scores are associated with zones containing the derivatives of green 

sulfur bacteria, isorenieratene and chlorobactene (zones AHP-P-II – III and AHP-P-

V. This reflects changes in lake depth, habitat availability, mixing regime and light 

intensity.  

 

7.7 Interpretation and Synthesis of the High-Resolution Palaeolimnological 

Record 

The independent proxy records analysed from the high-resolution section of core 

Hayk-01-2010 are now interpreted in terms of limnetic and environmental changes 

that have taken place in the Lake Hayq basin between 6,650 – 4,450 cal yr BP. It is 

important to consider this high-resolution study in the context of the complete 

sediment proxy records (Chapter 6, 6.9); it has previously been interpreted as the 

start of a gradual shallowing phase (Hayq-VII, Hayq-VIII and Hayq-IX), eventually 

leading to a late-Holocene lowstand from 3,950 – 2,200 cal yr BP. Figure 7.8 

provides a summary of the major shifts in the proxy records; the record is divided 

into six major zones based on significant shifts in the palaeoenvironmental data. The 

ecology of dominant taxa is discussed in detail in Chapter 6 but is used to inform 

interpretation here. 

 

7.7.1 Hayq-AHP-I (302.0 – 299.0 cm, 6,650 – 6,450 cal yr BP) The diatom 

assemblage of this zone indicates that Lake Hayq was relatively deep, fresh and 

turbulent (evidenced by diatom-inferred conductivity [Table 6.4]), given the 

dominance of the planktonic Aulacoseira granulata var. angustissima and, to a lesser 

extent, Ulnaria delicatissima. Lake depth, as well as area and volume, may have 

been similar to the lakes’ current state; in the most recent 100 cal yr BP, Lake Hayq 

has been dominated by Aulacoseira taxa of equal measure to this mid-Holocene 

period, and maximum lake level varied between 81.0 – 88.8 m (1939 – 2000). 

Potentially lake depth at this time, having declined from a possible highstand of ~ 

120 m during the early Holocene, may have been between a maximum depth of ~ 80 

– 90 m, with a surface area of > ~ 23 km². Lake Hayq was most likely hydrologically 

closed at this time but may have still received some overflow from Lake Hardibo. 
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Figure 7.8. Summary diatom and pigment diagram showing major compositional changes in the high-resolution section (302.0 –
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267.0 cm) of Hayk-01-2010. Sedimentation accumulation rate is expressed as cm yr-1, organic matter content as a percentage of 

the total wet weight of the sediment, and dry mass and organic matter accumulation rates as mg cm-2 yr-1. Diatom accumulation 

rate is expressed as million valves cm-2 yr-1 and diatom-inferred (DI) conductivity as μS cm-1. Pigment concentration is shown as 

nmol pigments g-1 OM and accumulation rate as picomol cm-2 yr-1. PCA scores refer to carotenoid pigments only.
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Ulnaria ulna var. ulna is also present in this zone, signalling a high Si: P ratio, as well 

as submerged macrophytes (also indicated by the minor presence of Gomphonema 

parvulum) in the littoral zone and marsh, swamp-like area left around the shoreline 

as the water level recedes (Kilham et al. 1986; Gasse 1987). 

 

The presence of green sulfur bacteria confirms meromictic conditions in the lake.  

Cryptophytes, dinoflagellates (an additional indicator of stratified conditions), green 

algae, euglenophytes and colonial cyanobacteria are also present, as well as a 

steady zooplankton population (Hurley and Armstrong 1990). Pigment accumulation 

rate indicates this was a relatively productive period, most likely a mesotrophic-

eutrophic state, and preservation was very good. The geochemical data at this time 

does not indicate any significant change in climate, although a decline in lithogenic 

silica is evident.  

 

7.7.2 Hayq-AHP-II (299.0 – 280.6 cm, 6,450 – 5,250 cal yr BP) Evidence of 

decadal to centennial changes in lake level are found in the zone, given the abrupt 

shifts in the diatom assemblage. Aulacoseira granulata var. angustissima fluctuates 

regularly throughout this zone, alternating dominance with Fragilaria radians. Both 

taxa have high Si: P requirements so it is unlikely that major changes in nutrient 

availability caused the large swings in abundance (further evidenced by the near 

continuous presence of Ulnaria ulna var. ulna also). As previously discussed, Gasse 

(1986) identifies Fragilaria radians as an important component of the bottom mud in 

small, shallow lakes (though it is generally considered to be a facultatively planktonic 

species, rather than benthic). As such, its sudden increase in abundance at the start 

of the zone and frequent dominance, alongside declines in Aulacoseira granulata 

var. angustissima, are likely an indication of a decrease in water level (including 

associated changes in turbidity and light availability in the water column) and a 

greater availability of shallow water habitats in the benthic areas in response to 

greater aridity. This is further evidenced by spikes in diatom-inferred conductivity 

which occurs simultaneously with peaks in Fragilaria radians. However, these spikes 

are minor in comparison to the complete diatom-inferred conductivity record, varying 

by < 100 μS cm-1, and the lake never becomes subsaline (Table 6.4). Increases in 

Ulnaria delicatissima towards the top of the zone may similarly indicate intensifying 

aridity, as despite being generally considered planktonic, it too is known to occur on 
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the bottom mud of shallow lakes (Gasse 1986). As the climate became wetter again 

and lake level rises, Aulacoseira granulata var. angustissima resumes dominance 

and Fragilaria radians declines. The frequency at which the taxa dominate is 

irregular; Aulacoseira granulata var. angustissima peaks every ~ 80 – 270 years (1.3 

– 4.0 cm), whilst Fragilaria radians dominates every ~ 50 – 320 years (0.7 – 5.0 cm). 

The alternations between the two occur at ~ 40 – 180 year intervals. If Lake Hardibo 

had assumedly been experiencing the same changes in climate, given its proximity 

to Lake Hayq, the variability in overflow Lake Hayq had been receiving would have 

most likely amplified the changes in lake level. Given the recent changes in water 

level at Lake Hayq documented during the 20th century, it is possible that lake depth 

may have fluctuated by ~ 7 m or more during this time.  

 

Despite these periodic declines in water level, the continued presence of green sulfur 

bacteria indicates that Lake Hayq was still meromictic. Therefore lake depth never 

declined to such an extent that the waterbody was completely mixed. The 

surrounding topography and bathymetry of the lake may have also reduced wind 

fetch; the gradual decline in lake level since the early to mid-Holocene may have 

exposed the steep shelving margins of the lake creating protection against wind 

exposure. Chrysophytes, cryptophytes, dinoflagellates, as well as zooplankton 

populations are still present throughout this zone, generally increasing in 

concentration during periods of higher water level. The abundance of colonial 

cyanobacteria, which are often found amongst the benthic algae of lakes, provides 

further support for episodes of lake level decline, and its presence may account for 

periodic occurrences of the obligate nitrogen heterotroph Nitzschia subcommunis 

(Kalff 2003). Total pigment and diatom concentration and accumulation rates both 

peak between ~ 5,780 – 5,700 cal yr BP (288.8 – 287.5 cm) indicating optimal 

conditions for productivity in the lake during this period. Following this peak, diatom 

concentration remains consistently low throughout the remainder of the high-

resolution sediment record.  

 

The changing climate is evidenced further by the geochemical data, which indicates 

a shift towards aridity at ~ 5.8 cal kyr BP (~ 289.0 cm). The incoherent: coherent 

backscatter intensity ratio and biogenic silica both decline from the bottom to the top 

of the zone, signalling lower productivity (supported by the steeply declining diatom 
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accumulation rate; Fig. 6.19) and preservation at the lake, associated with drying 

conditions. Increased mechanical weathering towards the top of the zone similarly 

indicates aridity, as does increasing concentrations of calcium (as enhanced 

evaporitic conditions allow for enhanced preservation), potassium (eroded from 

exposed rock formations with sparse vegetation cover) and titanium (indicating 

enhanced erosion and transportation of silt and fine sand) (Burnett et al. 2011; 

Brown 2012; Foerster et al. 2012).  

 

7.7.3 Hayq-AHP-III (280.6 – 280.13 cm, 5,250 – 5,200 cal yr BP)   This zone 

is characterised by a peak in Fragilaria radians, alongside a decline in Aulacoseira 

granulata var. angustissima, which indicates a fall in lake level and therefore arid 

conditions. Diatom-inferred conductivity exhibits a slight increase in this zone, but the 

lake remained fresh. Aridity is further indicated by reduced concentrations of 

cryptophytes, dinoflagellates, colonial cyanobacteria as well as green sulfur bacteria. 

This suggests that meromictic conditions may have temporarily been disturbed or 

weakened, potentially a result of declining lake level which made the water column 

more susceptible to mixing by wind, although complete overturn did not occur.  

 

7.7.4 Hayq-AHP-IV (280.13 – 278.5 cm, 5,200 – 5,100 cal yr BP)  The 

abrupt decline of Fragilaria radians, synchronous with the increase of Ulnaria 

delicatissima in this zone, indicates a second phase of lake level decline and 

heightened aridity at Lake Hayq. Although associated with planktonic taxa, in Figure 

7.4 (b), Ulnaria delicatissima has a slightly lower DCA axis 1 score than Fragilaria 

radians, which may indicate that it is found in marginally shallower waters. As such, 

its occurrence in the diatom record is interpreted as another, more substantial fall in 

lake level, amplified by the steep shelving nature of the lake, and an increase in the 

availability of benthic habitat. This is evidenced further by the temporary 

disappearance of Aulacoseira granulata var. angustissima from the sediment record, 

as well as increasing abundances of Gomphonema parvulum and Gomphonema 

pumilum. The taxa present indicate that Lake Hayq remained alkaline (pH of 7.4 – 

7.8 [Gasse 1986]) and, along with diatom-inferred conductivity, fresh.  

 

Despite a decline in lake depth, total pigment concentration increases in this zone 

(pigment accumulation rate remains stable), as phytoplankton such as green algae 
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and colonial cyanobacteria favour benthic habitats. A rise in green sulfur bacteria 

suggests that meromictic conditions reestablished and/or intensified, potentially a 

result of a decrease in wind-driven mixing allowing the water to become stratified 

again (which would further support the decrease of Aulacoseira granulata var. 

angustissima). Based on the phytoplankton present, the lake was most likely still in a 

mesotrophic-eutrophic condition.  

 

Geochemical data in this zone supports a further shift towards aridity; a minor 

decrease in the incoherent: coherent backscatter intensity ratio and an increase in 

calcium concentration signals increasingly dry, evaporitic conditions at the core site 

(Burnett et al. 2011).  

 

7.7.5 Hayq-AHP-V (278.5 – 270.9 cm, 5,100 – 4,650 cal yr BP) The start of a 

significant period of declining water level and surface area at Lake Hayq, driven by 

increasing aridity, occurs in this zone. The increase in the periphytic Gomphonema 

parvulum and Gomphonema pumilum at the start of the zone indicates increasing 

availability of shallow water habitats and submerged macrophytes (Cocquyt 1998; 

Barker et al. 2003). Most likely as the lake level declined, shallow, swamp-marsh 

areas became established on the steep lake shelves as they became exposed. 

Overflow from Lake Hardibo most likely ceased at this time, increasing water 

residence time at the lake as it remained hydrologically closed. 

 

Green sulfur bacteria also decline, indicating the breakdown of meromixis driven by 

the shallowing conditions, which would have resulted in mixing throughout the water 

column and possibly some sediment disturbance (Parkin and Brock 1980; Chen et 

al. 2001). Light conditions would have also declined in the water column as a 

consequence, leading to lower diatom accumulation. These conditions (along with 

declining lake level), may have further contributed to the decline of Aulacoseira 

granulata var. angustissima at this time, as well as providing a greater diversity of 

benthic habitats in the lake margins, triggering an increase in species diversity. The 

collective diatom assemblage indicates Lake Hayq was still fresh (also indicated by 

diatom-inferred conductivity) and had a low to medium alkalinity (pH 7.2 – 7.8) 

(Gasse 1986). Total pigment concentration and diatom accumulation rate indicates 

that productivity declined at this time. Most green and blue algae and plants as well 
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as cryptophytes and euglenophytes saw declining concentrations as a result of 

shallowing habitats, as well as reduced nutrient availability.   

 

However, shallowing was not a continual process and was temporarily interrupted 

between ~ 4,900 – 4,750 cal yr BP (275.25 – 272.25 cm), most likely due to a short-

lived wet period. The abundance of Aulacoseira granulata var. angustissima 

increases during this period, indicating a rise in lake level, whilst the abundance of 

Gomphonema taxa and species diversity decline, signalling a reduction the 

availability of benthic substrates. Diatom-inferred conductivity also declines slightly 

during this time as a result of lake deepening. Zooplankton populations were 

rejuvenated during this period in response to lake deepening, which would have 

increased lake area and therefore created a greater diversity of both littoral and 

pelagic habitats (Kalff 2003).  

 

Shallowing resumed after ~ 4,750 cal yr BP, evidenced by increases in the 

abundance of Gomphonema parvulum and Gomphonema pumilum, synchronous 

with the decline of Aulacoseira granulata var. angustissima, as well as increased 

species diversity and diatom-inferred conductivity. Many photosynthetic pigments, as 

well as total pigment concentration, increase at this time despite the shallow 

conditions. The availability of benthic habitats would have favoured colonies of green 

algae and cyanobacteria.  

 

The geochemical data generally agree with the diatom and pigment record. The 

greatest shift towards aridity occurred at ~ 5.0 cal kyr BP (~277.0 cm), indicated by 

increased concentrations of potassium, calcium, titanium as well as mechanical 

weathering at the core sight. After this peak in aridity, elemental profiles return to 

values similar to those of Hayq-AHP-IV, Hayq-AHP-III and the top of Hayq-AHP-II, 

rather than signalling a direct shift to wetter conditions. Aridity increases again 

towards the top of the zone (~ 271.5 cm, ~ 4.7 cal kyr BP). 

 

7.7.6 Hayq-AHP-VI (270.9 – 267.0 cm, 4,650 – 4,450 cal yr BP) The diatom 

assemblage in this zone indicates another significant decline in lake level as 

Gomphonema parvulum and Gomphonema pumilum see considerable increases in 

abundance and Aulacoseira granulata var. angustissima experiences a rapid decline 
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and begins to disappear from the sediment record. Lake Hayq would have been 

approaching its (potential) Holocene lowstand depth of ~ 30 m or less at this time, as 

the decline in water depth revealed a shallow, less steeply shelving morphometry, 

with a surface area of < ~ 16 km² (Demlie et al. 2007). Aerophilous taxa were also 

observed in this zone, suggesting that parts of the basin were being exposed and 

sediment re-worked. Diatom-inferred conductivity increases slightly, reaching 

maximum values for this high-resolution time period (though Lake Hayq remained 

fresh), as does species diversity, suggesting a greater availability and range of 

benthic habitats. Photosynthetic pigment concentrations do not show a significant 

shift at this time, although accumulation rate increases slightly.  

 

The geochemical data indicates gradually increasing aridity (rather than an abrupt 

shift), evidenced by a low incoherent: coherent backscatter intensity ratio 

(suggesting poor productivity and preservation), as well as increasing concentrations 

of potassium, silicon and titanium (Burnett et al. 2011; Brown 2012; Foerster et al. 

2012). The calcium profile does indicate a peak in aridity centred at ~ 270.0 cm, 

suggesting enhanced evaporitic conditions (Burnett et al. 2011).  

 

7.8 Summary of the High-Resolution Palaeolimnological Record 

The interpretations of the limnetic and environmental changes inferred from the 

available date are summarised below. 

 

Hayq-AHP-I (302.0 – 299.0 cm, 6,650 – 6,450 cal yr BP) 

 A deep (~ 80 – 90 m, > ~ 23 km² surface area), fresh, alkaline lake. 

 Hydrologically closed but connected to Lake Hardibo by overflow. 

 Meromictic conditions allowing for green sulfur bacteria to dominate in the 

anoxic bottom waters. 

 Presence of cryptophytes, dinoflagellates, colonial cyanobacteria and 

zooplankton indicate mesotrophic-eutrophic conditions. 

 

Hayq-AHP-II (299.0 – 280.6 cm, 6,450 – 5,250 cal yr BP) 

 Beginning of climate instability, causing fluctuations in lake depth.  

 Diverse phytoplankton assemblage. 
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 Peak diatom and pigment concentrations (5,772 – 5,690 cal yr BP) followed 

by decline.  

 Peaks in diatom-inferred conductivity but still a fresh water lake.  

 Shift towards aridity at ~ 5.8 cal kyr BP. 

 

Hayq-AHP-III (280.6 – 280.13 cm, 5,250 – 5,200 cal yr BP) 

 Reduced lake level in response to aridity, amplified by lake morphometry. 

 Reduced phytoplankton. 

 Weakened meromixis. 

 

Hayq-AHP-IV (280.13 – 278.5 cm, 5,200 – 5,100 cal yr BP) 

 Further decline in lake level due to arid conditions and lake morphometry. 

 Still a fresh, alkaline lake. 

 Meromictic conditions reestablished. 

 

Hayq-AHP-V (278.5 – 270.9 cm, 5,100 – 4,650 cal yr BP) 

 Significant period of lake level decline, interrupted briefly from ~ 4,900 – 4,750 

cal yr BP by a wet period.  

 Hydrologically closed but no longer receiving overflow from Lake Hardibo. 

 Less turbulent, intensive light conditions in water column and reduced nutrient 

availability.  

 Increased availability of benthic habitats, causing increased diatom species 

diversity. 

 Declining phytoplankton productivity.  

 

Hayq-AHP-VI (270.9 – 267.0 cm, 4,650 – 4,450 cal yr BP) 

 Further decline in lake level, marking the start of Lake Hayq’s Holocene 

lowstand (3,950 – 2,200 cal yr BP). 

 Lake depth potentially approaching ~ 30 m, with a surface area of < ~ 16 km².  
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Chapter 8 

Discussion. 

 

8.1 Introduction 

In this discussion, the palaeolimnological results presented in Chapters 6 and 7 are 

synthesised and considered with reference to the research aim, questions and 

hypotheses outlined in Chapter 1. The results are examined in the context of other 

Ethiopian, East African and intertropical African palaeoclimatic and 

palaeoenvironmental records from the late Pleistocene and Holocene.  

 

8.2 Late Quaternary Palaeolimnology and Environmental Change at Lake Hayq 

8.2.1 The Late Pleistocene  

The palaeolimnological record strongly suggests that Lake Hayq was experiencing a 

lowstand in response to extremely arid conditions, which began prior to ~ 15.6 cal 

kyr BP. The stiff, compacted sediment, low water content, minimum sedimentation 

rate and poor diatom preservation at the base of Hayk-01-2010 implies a very low 

water level at the core site that was, at times, exposed, given the presence of 

aerophilous diatoms. The sporadic occurrence of other benthic and planktonic 

diatom taxa and phytoplankton indicate alternating periods of longer, dry, saline 

conditions and short flood events, which may have reworked the sediments at the 

core site between ~ 15.6 – 15.1 cal kyr BP (Fig. 8.1).  

 

As the preceding conditions of this arid event at Lake Hayq are unknown, it cannot 

be confirmed what the trajectory of change may have been and as such, hypothesis 

1 cannot be accepted with certainty. However, lowstand events in other East African 

lakes, as well as the desiccation of the River Nile, around this time period have been 

linked to Heinrich Event 1 (see Chapter 3, 3.4.1). In Ethiopia, Lake Tana dried out 

some time after 18.7 kyr BP and remained closed until 15.7 kyr BP when a Cyperus 

swamp, fed by seasonal inflows, developed at the centre of the lake basin (Marshall 

2006; Fig. 7.2 and 7.3). Lamb et al. (2007a) used a simple hydrological model to 

reconstruct the rainfall necessary to form the shallow water sediments found at the 

base of the central deep water core, 03TL3, at Lake Tana; rainfall was at the most, 

just 40 % of modern precipitation values. Lake Ashenge may also have been 
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Figure 8.1. Summary diagram of stratigraphic data from Lake Hayq. Sediment accumulation rate is expressed as cm yr-1. Diatom 

data are shown as a percentage (%), concentration as x 105 g-1, accumulation rate as x 106 valves cm-2 yr-1 and log diatom-inferred 
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(DI) conductivity as μS cm-1. Conductivity recorded in 1969 (920 μS cm-1) is indicated by the red line (Baxter and Golobitsh 1970). 

Total pigment concentration is shown as nmol pigments g-1 OM and accumulation rate as picomol cm2 yr-1. A simple lake level 

curve, representing maximum depth, is shown based on the collective interpretation of the available proxies. Maximum lake level in 

2000 (81.0 m; Lamb et al. 2007b) is indicated by the blue line. Key time periods identified in Chapter 3 are indicated: HE-1 – 

Heinrich Event 1, AHP – African Humid Period and YD – Younger Dryas. 
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Figure 8.2. Comparison of the onset and termination of Ethiopian lake levels arranged in an approximate north to south order (see 
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Figure 3.1 [b] for location map). Lakes Tana (Marshall 2006), Ashenge (Marshall et al. 2009) and Hayq (a) are shown as diatom-

inferred conductivity (μS cm-1). Lake Hayq (b) is shown as DCA axis 1. Lakes Abhé (Gasse and Street 1978), the Ziway-Shala 

basin (Gillespie et al. 1983) and Turkana (Johnson 1996) are shown as lake level (m) and Chew Bahir (Foerster et al. 2012) as 

potassium (K, cps) content. Key time periods identified in Chapter 3 are indicated: HE-1 – Heinrich Event 1, AHP – African Humid 

Period and YD – Younger Dryas. The axes for Lakes Tana, Ashenge, Hayq and Chew Bahir have been reversed to show the 

comparative shallow (dry) to deep (wet) lake trend from left to right. 
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Figure 8.3. Comparison of the onset and termination of East African lake levels and other palaeo-records, arranged in an 

approximate south to north order (see Figure 3.1 [a] and [b] for location map). The paleo-ENSO record from Laguna Pallcacocha, 

southern Ecuador, is shown as events per century (Moy et al. 2002). Lakes Tanganyika (approximate height above present lake 

level; Gasse et al. 1989), Nakuru (Richardson and Dussinger 1986) and Turkana (Johnson et al. 1991; Brown and Fuller 2008) are 
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shown as lake level (m). Lake Challa is shown as (a) δD leaf wax (Tierney et al. 2011) and (b) as a 10 sample running mean of 

stable carbon isotope composition of organic carbon contained within diatom silica (δ13Cdiatom) (Barker et al. 2013). Mt. Kilimanjaro 

is shown as the eolian dust record (NIF3 dust 105; Thompson et al. 2002) and Chew Bahir as potassium (K, cps) content (Foerster 

et al. 2012). Lakes Hayq (a), Tana (Marshall 2006) and Ashenge (Marshall et al. 2009) are shown as diatom-inferred conductivity 

(μS cm-1). Lake Hayq (b) is shown as DCA axis 1. The Dongge cave record, China, is shown as oxygen-isotope values (Dykoski et 

al. 2005). Key time periods identified in Chapter 3 are indicated: HE-1 – Heinrich Event 1, AHP – African Humid Period and YD – 

Younger Dryas. Note the reversed axes for Lakes Challa, Chew Bahir, Hayq, Tana, Ashenge and the Dongge Cave record to show 

the shallow/dry to deep/wet trend between sites from left to right. 
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exposed between 17.2 – 16.2 kyr BP, evidenced by a relatively slow accumulation 

rate, compacted sediments and presence of aerophilous and other lake marginal 

diatom taxa (Marshall et al. 2009). Both of these arid episodes occurred 

synchronous with the timing of Heinrich Event 1.  

 

The cooling in the North Atlantic as a result of ice-rafting during Heinrich Event 1 

would have caused meridional repositioning of the Intertropical Convergence Zone 

(ITCZ) southward, by up to 10 latitudinal degrees. However, given the far reaching 

nature of Heinrich Event 1, Stager et al. (2011) argue that the mega-drought 

conditions were not caused by displacement of the ITCZ alone. Whilst the northern 

tropics would have undoubtedly received less rainfall due to a more southerly 

position of the ITCZ, the equatorial regions should have continued to receive rainfall 

once or twice annually. Drying has been documented at Lake Challa, where 

δ13Cdiatom values (average of – 31.3 ‰ from 25.0 – 15.8 kyr BP) indicated a low 

precipitation-evaporation balance (P/E), causing soils to become desiccated and 

reduce biogenic carbon transport to the lake (Fig. 8.3; Barker et al. 2013). Extreme 

aridity is also found in records from Lake Bosumtwi, Ghana (Peck et al. 2004), the 

Niger-Sanaga and Congo watersheds (Weijers et al. 2007; Weldeab et al. 2007), as 

well as in oxygen isotope records from stalagmites in northern Borneo (Partin et al. 

2007), a feat that would have only occurred with an extreme, and unlikely, shift of the 

ITCZ southwards by twenty or more latitudinal degrees (Stager et al. 2011).  

 

Instead it is more likely that in addition to the southwards displacement of the ITCZ, 

there was a reduction in convection and/or moisture content of the regional rainfall 

systems. This would have resulted in the droughts observed with or without the shift 

in position. Denton et al. (2010) suggest weakening of the tropical Hadley cell’s 

southern limb during Heinrich Event 1 as a possible cause of drought across 

equatorial and Southern Africa. Lower sea surface temperatures (SST) in the south-

east Atlantic, along the West African coast, may have also reduced tropical rainfall 

by reducing the evaporative moisture content of the ITCZ, causing the summer 

monsoons to fail (Mulitza et al. 2008). Stronger upwelling from the Southern Ocean 

may have cooled the western margins of the Indian Ocean, deflecting cool, eastward 

flowing water towards the equator, resulting in aridity across East Africa (Stager et 

al. 2011). SST may have been cooled further in the northern Indian Ocean by winter 
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monsoon winds moving southward over land masses that were being cooled by 

conditions in the Mediterranean and North Atlantic (Denton et al. 2010; Stager et al. 

2011).  

 

Whatever the cause, the combined effect of Heinrich Event 1 synchronous with a 

systemic weakening of the Afro-Asian rainfall systems would have resulted in the 

intense and widely distributed drought conditions observed across East Africa and is 

most likely the cause for the aridity observed at Lake Hayq between ~ 15.6 – 15.2 

cal kyr BP. However, it should be noted that the occurrence of an ‘extreme and 

widespread’ mega-drought at this time, as suggested by Stager et al. (2011), is 

debated. There is doubt as to whether data sets have been appropriately interpreted 

and synthesized in an attempt to follow the current ‘fashion’ of using extreme climate 

events to explain the drivers of ancestral human behaviour and Paleolithic cultures in 

Africa (Thomas et al. 2012). 

 

8.2.2 The African Humid Period 

An abrupt (~ 100 years) shift towards wetter, more humid conditions is documented 

at Lake Hayq from ~ 15.2 – 15.1 cal kyr BP, evidenced by lithological changes and 

the geochemical data record. This shift resulted in an increase in water depth at the 

core site, and a lake began to develop between ~ 15.1 – 14.8 cal kyr BP, dominated 

by pioneer diatom taxa associated with lake colonisation.   

 

This transition coincides with the timing of rapid refilling at other tropical lake sites 

across Ethiopia and East Africa caused by the first phase of monsoon reactivation 

associated with the onset of the African Humid Period at ~ 15.0 kyr BP. The 

rejuvenation of the African-Indian monsoonal circulation has been attributed to an 

increase in Northern Hemisphere summer insolation based on general circulation 

modelling (Prell and Kutzbach 1987; Adkins et al. 2006). However, given the 

evidence for an orbitally-forced African Humid Period, the spatial and temporal 

pattern for the onset and intensity of the wetter, warmer conditions is debated, as the 

event appear to be synchronous and abrupt at some sites and asynchronous and 

gradual at others (Fig 8.4) (Costa et al. 2014). Climate models are likewise  
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Figure 8.4. Site map of records showing average hydrological conditions between (a) 15 – 14 kyr BP and (b) 14 – 13 kyr BP 

(Google Maps 2015). See Figure 3.1 for location map and Table 8.1 for authorities.  
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inconclusive, suggesting a gradual transition in East Africa, an abrupt transition in 

West Africa or abrupt vegetation collapse followed by a gradual decline in 

precipitation (Liu et al. 2007; Hély et al. 2009). However, this is perhaps not 

unsurprising given the behaviour of varying air masses and seasonal changes 

occurring over such a large geographical area. Therefore, other bio-geophysical 

mechanisms must have influenced the expression of the climate. For example, 

Adkins et al. (2006) suggest that vegetation cover may amplify a rainfall response 

through evapotranspiration, as higher soil moisture can enhance the water vapour 

flux and latent heating of the atmosphere. Responses may also have been affected 

by SST in the Indian Ocean, Red Sea, Arabian Sea and eastern Mediterranean, 

which altered feedbacks between the monsoon systems, coastal upwelling intensity, 

migration of the tropical rain belts and Congo Air Boundary, as well as convergence 

zones over Africa (Adkins et al. 2006; Tierney et al. 2008; Loomis et al. 2015).  

 

At Lake Ashenge an early return of monsoon circulation in the Ethiopian highlands is 

documented between ~ 16.2 – 15.2 kyr BP, causing lake level to rise following the 

Heinrich Event 1 lowstand (Fig. 8.2; Marshall 2006; Marshall et al. 2009). The diatom 

record is dominated (> 50 %) by Cyclotella ocellata during this period, as found at 

Lake Hayq. Diatom-inferred conductivity at Lake Ashenge is lower than the modern 

lake (~ 1600 μS cm-1) and was probably even lower than estimated given the 

underrepresentation of Cyclotella ocellata in the European Diatom Database (EDDI) 

African training set (Fig. 8.5; Marshall et al. 2009; see Chapter 4, 4.6.4). At Lake 

Tana, magnetic and geochemical data from core 03TL3 indicate abrupt lake 

deepening and flooding at 15.3 – 15.2 kyr BP following Heinrich Event 1 and 

freshwater conditions resumed (Fig. 8.2; Marshall et al. 2011; Loomis et al. 2015). 

Previously, this rapid (~ 100 years) increase in water depth between 15.3 – 15.2 kyr 

BP had been reported to have happened at 14.7 kyr BP by Lamb et al. (2007a). 

However, more recent dating of bulk sediment samples, as well as plant and charred 

material, by Marshall et al. (2011) shows the increase in water level caused Lake 

Tana to overflow into the Blue Nile, occurring at the same time as refilling at Lakes 

Victoria and Albert, the sources of the White Nile (Talbot and Lærdal 2000; Williams 

et al. 2006; Williams 2009). This suggests that Blue Nile overflow preceded that of 

the White Nile, most likely due to the shallower depth of Lake Tana in comparison to  

http://www.sciencedirect.com/science/article/pii/S0277379113004319#bib31
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Figure 8.5. Summary diagram of stratigraphic data from Lake Ashenge. Squares on 

the diatom-inferred conductivity plot indicate values where Cyclotella ocellata was 

excluded from the transfer function procedure. Key time periods are identified: LGM 

– blue, AHP – green and the 4.2 event – red line. The hiatus in the sediment record 

is shown in yellow (adapted from Marshall et al. 2009).   
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Lake Victoria, causing it to overflow faster (Marshall et al. 2011). As a result, flow in 

the main River Nile reestablished between 14.7 – 14.5 kyr BP (Talbot and Lærdal 

2000; Williams et al. 2006; Williams 2009; Box et al. 2011). 

 

Elsewhere in East Africa, lake deepening in response to the onset of the African 

Humid Period has been found in the Ziway-Shala basin (14.5 kyr BP; Grove et al. 

1975), Lake Turkana (14.0 kyr BP; Morrissey and Scholz 2014), Chew Bahir (Fig. 

8.2; 14.5 kyr BP; Foerster et al. 2012), palaeo-lake Suguta (14.8 kyr BP; Garcin et al.  

2009) and at Lakes Magadi (Roberts et al. 1993), Manyara (Barker et al. 2004), 

Nakuru (Fig 8.3; Richardson and Dussinger 1986), Challa (Fig. 8.3; Tierney et al. 

2011; Barker et al. 2013) and Tanganyika (Fig 8.3; Gasse et al. 1989; Costa et al. 

2014) around 15.0 kyr BP (Fig. 8.4a). Refilling was not a rapid, linear process at all 

sites however, and some lakes such as Lakes Ashenge and Tanganyika show 

oscillations in lake level during this time (Fig. 8.4).  

 

Therefore, it would appear the shift to wet, humid conditions at Lake Hayq is a result 

of the onset of the African Humid Period in the north Ethiopian highlands, and as 

such, hypothesis 2 may be accepted. Discrepancies in the timing of the start of the 

African Humid Period reflect local manifestations of variability in precipitation 

amount, water vapour transport and convection over East Africa caused by shifts in 

the position of major convergence zones such as the Congo Air Boundary, which in 

turn are affected by SST variability in the Atlantic and Indian Oceans, the Red Sea 

and Mediterranean (Nicholson 2000; Tierney et al. 2011; Costa et al. 2014). As such, 

Costa et al. (2014) propose a time-transgressive change in atmospheric circulation 

caused by a north-south migration of the tropical rain belts and an east-west 

migration of the Congo Air Boundary. This would account for the gradual onset of the 

African Humid Period across lakes in Ethiopia, beginning at Lake Ashenge (~ 16.2 

kyr BP; Marshall 2006; Marshall et al. 2009) and Lake Hayq and ending at Chew 

Bahir and Lake Turkana (14.5 – 14.0 kyr BP; Foerster et al. 2012). 

 

It is important to consider however, that some discrepancies in the timing of the start 

of the African Humid Period, as well as other climatic events, may have arisen from 

chronological issues (see Chapter 3, 3.2). For example, terrestrial macrofossils were 

not sufficiently present in the Lake Ashenge core 03AL3/2 and so radiocarbon dating 
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was performed on bulk sediment samples, despite being less accurate (Marshall et 

al. 2009). The same applies to this study of Lake Hayq and Done Ella.  

 

Sedimentation may likewise affect the chronology in lakes which were desiccated in 

response to aridity, truncating or destroying the climate record in the sediments 

accumulating at the bottom of them (Verschuren 1999a); an issue also affecting the 

Lake Ashenge sediment record (Marshall et al. 2009). It is important to consider 

these issues when interpreting any palaeo-record obtained from a lake site and 

when making comparisons between sites.  

 

8.2.3 The Deglacial Transition: Evidence of Regional Climatic Heterogeneity 

Following apparent lake colonisation between ~ 15.1 – 14.8 cal kyr BP, the diatom 

and pigment data indicate that Lake Hayq suddenly became shallower again 

between ~ 14.7 – 12.3 cal kyr BP, presumably in response to evaporative 

concentration caused by a return to arid conditions (Figs. 8.1 and 8.4). This contrasts 

to the majority of other tropical lake sites across Ethiopia and East Africa, which 

continued to refill and reached highstands following the beginning of the African 

Humid Period around ~ 15.0 kyr BP (Fig. 8.4b). Refilling around this time is 

documented at the Ziway-Shala basin (Fig. 8.2; Grove et al. 1975; Gillespie et al. 

1983; Chalié and Gasse 2002a), Chew Bahir (Fig. 8.2; Foerster et al. 2012), Lakes 

Victoria (Johnson et al. 1996; Beuning et al. 1997; Talbot and Lærdal 2000), Magadi 

(Roberts et al. 1993), Manyara (Barker et al. 2004), Malawi (Gasse et al. 2002; 

Johnson et al. 2004), Rukwa (Barker et al. 2002) and palaeo-Lake Suguta (Garcin et 

al. 2009). These lakes then demonstrate a shift to aridity between 12.8 – 11.6 kyr BP 

in response to the high-latitude European Younger Dryas Stadial (see Chapter 3, 

3.4.4; Fig. 8.6a).  

 

The Younger Dryas has been identified in numerous records across Europe and its 

signal is well-constrained in the GRIP and GISP2 ice cores from central Greenland, 

indicating rapid Northern Hemisphere cooling between ~ 12.8 – 11.6 kyr BP (Alley 

2000). The drying documented at Lake Hayq during the deglacial transition precedes  
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Figure 8.6. Site map of records showing average hydrological conditions between (a) 12.8 – 11.6 kyr BP and (b) 11.6 – 5.5 kyr BP 

(Google Maps 2015). See Figure 3.1 for location map and Table 8.1 for authorities. See Figure 8.4 for key.   
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the Younger Dryas by ~ 1.9 cal kyr BP, at a time when the Greenland ice core δ18O 

records indicate step-wise cooling in the Northern Hemisphere. During the Younger 

Dryas proper, Lake Hayq began refilling and rapidly deepened, in stark contrast to 

other lake and palaeo-sites across subtropical Africa and the Mediterranean. 

Therefore hypothesis 1 may be rejected (Fig. 8.6a). 

 

Early onset aridity has been documented at other subtropical African sites during this 

deglacial transition however. For example, in the Sahelian belt, monsoon reactivation 

occurred in two stages at 15.0 – 14.5 kyr BP and 11.5 – 11.0 kyr BP, sandwiching 

drier conditions, which precedes the Younger Dryas by 1.7 kyr (Gasse 2000). Off the 

coast of south-west Africa, marine core GeoBio1023 records aridity between 14.4 – 

12.5 kyr BP, a period thought to have been more arid than any other time since the 

Last Glacial Maximum (Shi et al. 1998). This resulted in the expansion of 

desert/semi-desert vegetation, particularly Tribulus and Chenopodiaceae between 

13°S and 21°S, covering the northern Namib Desert, the Angola-northern Namibian 

highlands and the north-western Kalahari (Shi et al. 1998).  

 

Lake Ashenge experienced drying ~ 900 years prior to the start of the Younger 

Dryas (Fig 8.4b) (Marshall et al. 2009). At 14.2 kyr BP, low calcite content, increased 

organic matter and negative δ18O and δ13C values indicate an increase in surface 

water input, which caused Lake Ashenge to deepen. This was interrupted at 13.6 kyr 

BP, evidenced by maximum δ18O and δ13C values of authigenic carbonates and 

enhanced aragonite precipitation, signaling a highly negative water balance and lake 

shallowing. This lasted until at least ~ 11.8 kyr BP when a hiatus in the sediment 

record occurred (Marshall et al. 2009). 

 

At Lake Albert, Berke et al. (2014) used the TEX86 temperature proxy, δ13Cwax and 

δD analysis to reconstruct the climatic expression (evidenced by temperature, 

precipitation and vegetation change) of the deglacial transition prior to the Younger 

Dryas. Between 13.8 – 11.5 kyr BP, significant aridity and cooling (~ 3 °C) occurred 

at Lake Albert causing a decline in lake level and a prominent increase in grass 

pollen (Fig. 8.4b) (Berke et al. 2014). Cooling is also documented at Lakes 

Tanganyika (~ 1 °C) (Tierney et al. 2008) and Malawi (~ 2 °C) (Powers et al. 2005) 
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between 13.8 – 13.6 kyr BP, resulting in reduced lake levels (Fig. 8.4b). These lakes 

reached minimum temperatures by ~ 13.4 kyr BP, whilst Lake Albert continued 

cooling until 12.9 kyr BP (Berke et al. 2014). Lake Victoria (Berke et al. 2012) and 

the Congo Basin (Weijers et al. 2007) saw a break in warming between ~ 14.0 – 11.5 

kyr BP, whilst Lake Challa experienced a gradual increase in temperature and a 

comparable shift in its δD record as Lake Albert between 14.0 – 13.0 kyr BP and 

during the Younger Dryas (Tierney et al. 2011; Sinninghe Damste et al. 2012).  

 

The cooling and drying documented at Lakes Albert, Challa and Tanganyika, as well 

as Lakes Ashenge and Hayq prior to the Younger Dryas, indicate a complex pattern 

of spatial and temporal heterogeneity (Fig. 8.4b), which coincides with step-wise 

cooling in Greenland and the warm, wet Bølling-Allerød interstadial (~ 14.7 – 12.8 

kyr BP), as well as the Antarctic Climatic Reversal cold interval in the Southern 

Hemisphere (ACR, ~ 14.8 – 12.0 kyr BP) (Jouzel et al. 1995; Alley and Clark 1999). 

Beal et al. (2011) suggest that at this time, the ACR may have impacted the Agulhas 

current (the western boundary current in the south-western Indian Ocean off the 

coast of Southern Africa) by reducing the exchange of water between the Indian and 

Atlantic Oceans around Africa. This may have subsequently weakened the Atlantic 

Meridional Overturning Circulation (AMOC) (Shakun and Carlson 2010). 

Reconstructions of the AMOC using 231Pa/230Th, temperature proxies and δ13C values 

of benthic foraminifera indicate reduced circulation strength in the AMOC at ~ 14.0 

kyr BP (Vidal et al. 1997; McManus et al. 2004; Ritz et al. 2013). Although this 

reduction is not as significant as at the Younger Dryas, it may have been sufficient 

enough to cause anomalies in Indian Ocean SST and consequently weakened the 

Indian Ocean monsoon. Berke et al. (2014) conclude this disturbance to the 

monsoon system triggered the cooling and drying observed at subtropical African 

lake sites as the ITCZ migrated southwards.  

 

The aridity observed at Lake Hayq beginning at ~ 14.7 cal kyr BP coincides with the 

proposed changes to the Indian Ocean monsoon system caused by the ACR and 

disturbance to the AMOC. It is likely that the drying observed reflects a manifestation 

of the changes to the monsoon alongside local, site-specific mechanisms affecting 

moisture delivery. These manifestations occurred during a period of complex climate 

change that remains poorly constrained in East African palaeo-records. For example, 
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Berke et al. (2014) attribute patterns of rainfall delivery in the Rift Valley (Lakes 

Albert and Tanganyika) and coastal regions (Lake Challa) to a zonal gradient of SST 

in the Indian Ocean, although this is not well understood. Orography may similarly 

affected regional hydroclimates (see Chapter 2). As such, the aridity at Lake Hayq 

and other East African lakes during this deglacial period prior to the Younger Dryas, 

highlights the complex spatial and temporal pattern of heterogeneous climate 

expression and the importance of regional drivers, as well as the role of global 

teleconnections such as the links between conditions in the North Atlantic Ocean 

and monsoon circulation in the Indian Ocean.  

 

8.2.4 Resumption of the African Humid Period 

Following the end of the Younger Dryas at ~ 11.6 kyr BP, monsoon circulation over 

East Africa resumed, seeing a return of increased seasonality in regional rainfall. A 

continuous record of the Asian monsoon (one of three major air streams modulating 

monsoon circulation over Africa; see Chapter 2, 2.2) over the last 16.0 kyr BP is 

available from δ18O measurements of stalagmite calcite taken from Dongge Cave in 

south China (Dykoski et al. 2005). A dramatic decrease in δ18O occurred at 11.5 kyr 

BP lasting until the mid-Holocene, signalling a period of intense monsoon activity 

(Fig. 8.3; Dykoski et al. 2005). Ice accumulation is also documented at Mt. 

Kilimanjaro from 11.65 kyr BP, indicating that the monsoon was once again active, 

promoting ice cap growth (Fig. 8.3; Thompson et al. 2002). 

 

At Lake Hayq, a rise in lake level is interpreted as the reactivation of the monsoon 

system. Organic, carbonate and water content all increase in the sediment and 

geochemical data indicators (chemical weathering, biogenic silica and grain size) 

show a shift towards increased precipitation and humidity as evaporative conditions 

declined. The diatom data indicates Lake Hayq was recolonised by pioneer taxa 

between ~ 12.3 – 12.1 cal kyr BP following this climatic shift, and experienced 

fluctuations in nutrient availability as the lake became established. Between ~ 12.0 – 

10.0 cal kyr BP water levels rose significantly, potentially reaching maximum depth, 

given the dominance of Aulacoseira granulata var. angustissima and low diatom-

inferred conductivity (Fig. 7.1). This most likely reflects peak intensity (a stable 

maximum), or ‘optimum’ humid conditions at Lake Hayq. It is possible that Lake 

Hayq became connected to Lake Hardibo during this time via a now permanently dry 
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palaeochannel and was receiving overflow, which in conjunction with wetter, humid 

condition would have caused a rapid increase in lake depth and seen the lake 

expand up to three times its’ modern surface area (Ghinassi et al. 2012). Lake Hayq 

may have then begun overflowing into the Wazi River, eventually reaching the Afar 

Depression, creating an open hydrological system (Fig. 8.7, H1) (Ayenew 2009). If 

so, this highlights the significance of local, site-specific feedbacks, including lake and 

catchment bathymetry, morphology and connectivity, for affecting the regional 

expression and timing of high-magnitude climate events, paced by precessional 

cycling. As this refilling at Lake Hayq precedes the end of the Younger Dryas Stadial 

by approximately 700 years, hypothesis 3 must be rejected.  

 

From ~ 10.0 – 5.2 cal kyr BP, Lake Hayq remained deep, fresh and productive, with 

symbiotic relationships forming between diatoms and pigments, and meromictic 

conditions (Fig. 8.1). There is evidence of a gradually declining lake level over time, 

as benthic and facultatively planktonic diatom taxa gradually increase in abundance 

and the lake most likely became hydrologically closed as outflow ceased (Fig. 8.7, 

H2). Potentially it may have still received some overflow from Lake Hardibo. Overall, 

the lake remained deep in response to a positive water balance.  

 

Other lakes across Ethiopia also experienced dramatic refilling at the beginning of 

the Holocene, following the termination of the Younger Dryas proper (12.8 – 11.6 kyr 

BP; Alley 2000), synchronous with the rejuvenation of the monsoon system (Fig. 

8.6b). At Lake Tana (as well as Lake Victoria) the hydrogen isotope record from leaf 

waxes (δDwax) indicates that peak intensity of the African Humid Period occurred 

between ~ 11.5 – 8.5 kyr BP (Costa et al. 2014). Lake level increased and diatom-

inferred conductivity indicates the lake was fresh (Fig. 8.2; Marshall 2006; Marshall 

et al. 2011). At Lake Ashenge, despite a hiatus in the sediment record (sediments 

were probably removed either by aeolian deflation during a lowstand, and/or 

following a lowstand when the lake refilled [Marshall et al. 2009]), water level had 

also risen substantially by 7.6 kyr BP in response to resumption of the African Humid 

Period (Marshall et al. 2009). Potentially, the lake was overflowing at its southern  
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Fig. 8.7. A simple maximum lake level curve (based on the collective interpretation of the available proxies) against time, showing 

changes in the hydrological functioning and connectivity of Lake Hayq. Maximum lake level in 2000 (81.0 m; Lamb et al. 2007b) is 

indicated by the red line. H1 – Lake Hayq was an open system, receiving overflow from Lake Hardibo and overflowing itself during 

a highstand; H2 – Lake Hayq was closed (there was no out flow) but potentially received some overflow from Lake Hardibo; H3 – 

Lake Hayq was a closed system and did not receive inflow from Lake Hardibo.  
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shore, requiring a water level rise of 12 m (above present depth), resulting in the 

filling of the southern basin, creating a major waterbody comprised of two smaller 

basins (Marshall et al. 2009). As at Lake Hayq, biological productivity at Lake 

Ashenge was also high during this time and diatom-inferred conductivity indicate a 

fresh lake and therefore, positive water balance (Fig. 8.5; Marshall et al. 2009). 

Foerster et al. (2012) and Costa et al. (2014) suggest that the extreme humidity 

experienced in northern Ethiopia during this time, which caused lake levels to rise so 

dramatically, was a result of an eastward shift in the Congo Air Boundary due to a 

deepening of the atmospheric low over India, which enhanced the pressure gradient 

between India and Asia. In combination with rising SST, this resulted in continuous 

moisture availability.  

 

Elsewhere in Ethiopia, the water level at the Ziway-Shala basin also rose 

significantly, resulting in the formation of a macro-lake, which overflowed twice in the 

early to mid-Holocene (Nilsson 1940; Gillespie et al. 1983; Umer et al. 2004) and 

subsequently resulted in Lake Abhé also reaching its maximum extent between 9.4 – 

8.3 kyr BP (Fig. 8.2; Butzer et al. 1972; Fontes et al. 1973; Gasse and Van Campo 

1994; Umer et al. 2004; Benvenuti et al. 2013). At Chew Bahir, the potassium record 

indicates the monsoon returned in two phases; the first at 11.8 kyr BP and then a 

second, abrupt return (~ 200 years) to full humid conditions at 11.6 kyr BP (Fig. 8.2; 

Foerster at al. 2012). Potentially this same phenomenon also occurred at Lake Hayq, 

although slightly earlier given the lakes more northerly position, at ~ 12.3 cal kyr BP 

when it was dominated by pioneer diatom taxa, and then more abruptly at ~ 12.0 cal 

kyr BP, when maximum lake level occurred. At Lake Turkana water level between 

13.0 – 11.5 kyr BP reached elevations of ~ 440 – 410 m above sea level (as palaeo-

lake Suguta overflowed into it) and began overflowing into the White Nile basin (Fig. 

8.2; Garcin et al. 2012). Morrissey and Scholz (2014) likewise argue that the 

consistent nature of the sediment record from cores 4P, 14P, and 46P, indicate a 

high, stable water level at Lake Turkana between ~ 12.5 – 5.0 kyr BP. 

 

Regionally, other Ethiopian and East African lakes exhibit similar signals to Lake 

Hayq as highstands occurred between 13.0 – 5.0 kyr BP in response to the 

resumption of the African Humid Period (Fig. 8.6b) (Barker et al. 2002; Lærdal et al. 

2002; Bergner et al. 2003; Stager et al. 2003; Barker et al. 2004; Damsté et al. 2011; 
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Konecky et al. 2011; Junginger et al. 2013). Lakes Tanganyika and Nakuru both 

document highstands in the early Holocene (Fig. 8.3; Richardson and Dussinger 

1986; Gasse et al. 1989). At Lake Challa, peaks in δ13Cdiatom and δDwax similarly 

indicate the most positive water balance occurred at ~ 11.5 – 9.8 kyr BP, after which 

the lake level and aquatic productivity remained high (Fig. 8.3; Tierney et al. 2011; 

Barker et al. 2013). Increasingly wet and humid conditions are also documented at 

sites in North Africa (Giraudi et al. 2012) and the Mediterranean (Bar-Matthews and 

Ayalon 1997; Bar-Matthews et al. 2000) at the start of the Holocene, including the 

formation of the eastern Mediterranean sapropels (Rossignol-Strick 1985; Rholing 

and Hilgen 1991; see Chapter 3, 3.5.1).  

 

There does not appear to be any significant change or variability in the 

palaeolimnological record at Lake Hayq in response to the 8.2 event (see Chapter 3, 

3.5.2), despite a high-resolution diatom study being undertaken. Therefore 

hypothesis 4 is rejected. Potentially, with improved dating, an arid episode pertaining 

to the 8.2 event may become identifiable and constrained. It is evident though from 

the current state of the sediment record that even if the arid interval were to be 

identified, it did not have such an extreme effect on the lake system as other arid 

events such as Heinrich Event 1 or the Younger Dryas Stadial. Alternatively, the 

reason for no 8.2 event signal being identified in the Lake Hayq sediment is 

because, as previously discussed in Chapter 3 (3.5.2), the 8.2 event is not an abrupt 

occurrence caused by catastrophic melt water outburst, but is instead a fluctuation in 

a long-term background climatic anomaly (Rohling and Palike 2005). Unlike 

European sites, most lakes across subtropical Africa, incuding Lake Hayq, do not 

exhibit a clear climatic response to the 8.2 event and no distinct signal is preserved 

in the palaeo-records (Fig. 8.8). Where a fluctuation is observable in a palaeo-record 

around this time period (several hundred years either side of 8.2 kyr BP, within the 

margin of dating errors), it more likely reflects long-term changes in East African 

climate rather than an abrupt event. For example, Marshall et al. (2011) argues that 

the decline in rainfall at Lake Tana from ~ 8.5 kyr BP onwards is due to the gradual 

migration of the tropical rain belts southward, which saw rainfall become more 

variable and seasonal. This has also been identified by Stager et al. (2003) in a  
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Figure 8.8. Site map of records showing average hydrological conditions at 8.2 kyr BP (Google Maps 2015). See Figure 3.1 for 

location map and Table 8.1 for authorities.   
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study of the White Nile, as well as the Nile Delta (Revel et al. 2010) and from a 

marine core extracted off the coast of Somalia (Jung et al. 2004). This would account 

for the long-term decline in water level observed at Lake Hayq from the early to mid-

Holocene, rather than an abrupt shift centred at 8.2 kyr BP.  

 

8.2.5 Termination of the African Humid Period 

The high-resolution study of the termination of the African Humid Period indicates 

that in the build-up to the end of wet, humid conditions (~ 6.4 – 5.2 cal kyr BP), 

oscillations occurred in the diatom record; switches in dominance occurred between 

Aulacoseira granulata var. angustissima and Fragilaria radians every ~ 40 – 180 cal 

years, most likely reflecting periods of lake level rise and decline. These changes in 

water depth and, by association, lake volume and area will have subsequently 

affected (to varying degrees) the light and mixing regime (including wind fetch) of the 

lake, as well nutrient ratios. 

 

These oscillations potentially signal climate instability leading up to the cessation of 

the African Humid Period. ‘Flickering’ in systems may occur before a critical 

transition or tipping point; systems switch back and forth between alternative states  

in the build-up to large external impacts, which can be interpreted as an early 

warning of substantial changes or disturbance to the system (Brock and Carpenter 

2010; Dakos et al. 2012; Wang et al. 2012; Dakos et al. 2013). Wang et al. (2012) 

argue that such a phenomenon has occurred at Lake Erhai, China, where ‘flickering’ 

in the diatom assemblage and other water quality indicators signalled a regime shift 

in the lakes trophic state. Carstensen et al. (2013) have refuted the findings of Wang 

et al. (2012) however, arguing that the phenomenon may instead be a result of data 

processing rather than a true signal of system change (Wang et al. [2013] replied 

stating that the results of their findings should not be overturned). At Lake Hayq, the 

switches in the diatom assemblage may be verified as a true diatom signal, rather 

than an error in data analysis, given the use of replicate counting, which identifies 

the range of natural variability (see Chapter 4, 4.4.3.3.2; Fig. 4.6). As such, the 

changing states between a deeper and shallower lake may, potentially, reflect 

‘flickering’ as a result of climate instability caused by the build-up to the termination 

of the African Humid Period. 
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However, the high-resolution record is not long enough to state definitively whether 

the fluctuations (or ‘flickering’) in the diatom assemblage and lake level are a result 

of a climatic tipping point, or are long-term cycles in response to century scale 

climate variability. During the Holocene, temporary weakening of the south-west 

Indian Ocean summer monsoon occurred in response to reduced northward heat 

transport in the North Atlantic (Gupta et al. 2003). As a result, precipitation regimes 

across North and tropical Africa experienced greater seasonality (Lamb et al. 1995; 

Stager and Mayewski 1997). At Lake Victoria rapid (three to four decades) switches 

between Aulacoseira and Nitzschia dominated assemblages occurred between 7.2 – 

2.2 kyr BP due to greater rainfall variability and lake mixing (Stager et al. 1997). 

Given the comparable depths at Lakes Victoria and Hayq (average and maximum 

depths: 40 m and 80 m at L. Victoria, 37.4 m and 81.0 m at L. Hayq; Stager et al. 

2002; Lamb et al. 2007b), potentially the shifts in diatom assemblage at Lake Hayq 

are a result of the same phenomenon; enhanced seasonality due to temporary 

weakening of the monsoon circulation. Therefore, without a longer record, spanning 

at least the early to mid-Holocene, at the same decadal to centennial resolution, it is 

difficult to determine whether the shifts between Aulacoseira granulata var. 

angustissima and Fragilaria radians are a threshold response to the termination of 

the African Humid Period or due to century-scale climate variability. 

 

The geochemical data indicate a shift towards aridity occurred at ~ 5.8 cal kyr but it 

is not until ~ 5.2 – 5.1 cal kyr BP that the first changes are observed in the diatom 

and pigment record, comprised of two small declines in water depth, which saw 

productivity decrease and meromixis weakened (Fig. 8.1). The next, more significant 

change occurred at ~ 5.1 cal kyr BP when a major increase in benthic diatom taxa 

indicates an abundance of shallow water habitats, synchronous with the 

disappearance of Aulacoseira granulata var. angustissima. A short-lived wet period 

is documented in the diatom and pigment records between ~ 4.9 – 4.7 cal kyr BP, 

which temporarily rejuvenated lake productivity, but intense aridity is indicated again 

at ~ 4.6 cal kyr BP, when further increases in benthic and aerophilous taxa occurred.  

 

Based on the palaeo-records, it appears that Lake Hayq experienced a relatively 

quick termination of the African Humid Period, superimposed on a long-term decline 

in lake depth. Between ~ 10.0 – 6.4 cal kyr BP a gradual decline in lake depth is 
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inferred from the diatom data, most likely due to the gradual migration of the rain 

belts southward (although geochemical data do not indicate a major shift in climate) 

but it is not until ~ 5.2 cal kyr BP that the first significant changes in the diatoms and 

phytoplankton are observed, in response to an increasingly arid, evaporative climate 

which resulted in a negative water balance. The lake would have remained closed 

and overflow from Lake Hardibo would have ended (Fig. 8.7, H3). Therefore, it is 

(tentatively) interpreted that the African Humid Period termination, in terms of diatom 

and pigment response, was relatively abrupt, spanning ~ 600 cal years between ~ 

5.2 – 4.6 cal kyr BP (hypothesis 5 is accepted). The geochemical data in the high-

resolution section suggests a longer termination beginning at ~ 5.8 cal kyr BP but 

when compared to the complete XRF record, the shifts towards aridity are minor. In 

comparison to other terminations within the Horn of Africa, the theoretical duration of 

the termination period from the Gulf of Aden record ranges from 280 – 490 years, 

slightly less than that observed at Lake Hayq (~ 600 yr), but overall the termination 

may be described as relatively abrupt, lasting several centuries rather than millennia.  

 

Tierney and deMenocal (2013) suggest the average timing of the termination of the 

African Humid Period in the Horn of Africa and East Africa is 4,960 ± 70 yr BP, 

based on records from Lakes Tanganyika and Challa and the Gulf of Aden. In West 

Africa, termination is placed at 4,900 ± 400 yr BP by Tierney and deMenocal (2013), 

although deMenocal et al. (2000) suggest it occurred earlier at 5,440 ± 30 yr BP. At 

Lake Chad, Armitage et al. (2015) argue that lake level fell abruptly in response to 

aridity at 5.0 kyr BP. Based on these average terminations, the Lake Hayq record is 

broadly synchronous with regional records and closest to that of Lake Turkana, 

which is placed at 5,270 ± 300 yr BP (Tierney and deMenocal 2013). This reflects 

the north to south progression of the end of the African Humid Period as monsoon 

rains were progressively reduced with latitude in response to decreasing summer 

insolation, as well as the southward migration of the tropical rain belts (deMenocal 

2015; Shanahan et al. 2015).  

 

However, despite this latitudinal decline in precipitation, lake system responses to 

the termination do not mirror this north to south trend. The earliest recorded 

responses are identified at Qunf cave, Oman (Fleitmann et al. 2007) and Lake 

Victoria (Stager et al. 1997), whilst the latest signal are found in proxy records from 



275 

 

the River Nile (Williams 2009), Lake Chad (Armitage et al. 2015), Lake Tritrivakely 

(Gasse and Van Campo 1998) and the Gulf of Aden (Tierney and deMenocal 2013) 

(Fig. 8.9 and Table 8.1). Therefore, there is no discernible geographic pattern in 

terms of climatic response to the termination of the African Humid Period across the 

continent. The termination at Lake Hayq is neither significantly early nor late in 

comparison to other records from Ethiopia, the Horn of Africa or subtropical Africa, 

but in combination with these other records, emphasises the heterogeneous pattern 

of regional response to this climatic event across the African continent. 

 

Variability in the timing and length of termination between sites, resulting in such a 

heterogeneous pattern, is most likely in response to local, non-linear mechanisms. 

The CLIMBER2 climate and biosphere model15 found that abrupt responses to 

gradual insolation forcing during the termination of the African Humid Period were 

attributed to positive feedbacks caused by vegetation cover, surface albedo, soil 

moisture and precipitation. For example, declining precipitation would reduce 

vegetation cover, raising surface albedo and reducing the efficiency of the initial 

radiation forcing of the monsoon (Claussen et al. 1999; deMenocal et al. 2000). 

Reduced vegetation density would also affect catchment runoff, as well as sediment 

and nutrient supply to the lake. In contrast, atmosphere only, coupled ocean-

atmosphere simulations without responsive vegetation, exhibited a smooth climatic 

response to the gradual orbital forcing (Claussen et al. 1999; deMenocal et al. 2000). 

However, Tierney and deMenocal (2013) suggest there was no great regional shift 

observed in vegetation across the Horn of Africa, and so the full extent of a 

vegetation-driven feedback is potentially unlikely in the most arid areas of East Africa 

(deMenocal 2015; Shanahan et al. 2015); Lake Hayq has a subhumid climate 

though, and so potentially the effect of vegetation feedbacks on local climate is 

greater than anticipated.  

 

                                                           
15

 A zonally averaged, coupled ocean-atmosphere model with an equilibrium vegetative subsystem 
(Claussen et al. 1999). 
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Figure 8.9. Site map of records showing the timing of the start of the African Humid Period termination between 8.0 – 4.0 kyr BP 

(Google Maps 2015). See Figure 3.1 for location map and Table 8.1 for authorities.   

Termination between: 

8.0 – 7.1 kyr BP 

7.0 – 6.1 kyr BP 

6.0 – 5.1 kyr BP 

5.0 – 4.0 kyr BP 

No termination 

 



277 

 

Table 8.1. Palaeo-records from Africa, the Mediterranean and Europe (arranged in an approximate north to south order) and their 

approximate termination of the African Humid Period.  

Site  
Country/  
Location 

Map ID Authority 
Approximate termination of the 

AHP 

Ebro desert Spain 41 Davis and Stevenson (2007) N/A 

Lake Accessa Italy 42 Peyron et al. (2011) N/A 

Tenaghi Philippon  Greece 43 Peyron et al. (2011) N/A 

Antalaya Turkey 44 Weninger et al. (2006) N/A 

Soreq cave Israel 19 Bar-Matthews et al. (1997) 7.0 

River Nile Egypt 40 Williams (2009) 4.3 

Saqqara necropolis Egypt 46 Welc and Marks (2014) 5.0 

Qunf cave Oman 47 Fleitmann et al. (2007) 7.8 

Lake Yoa Chad 48 Kröpelin et al. (2008) 5.6 

Lake Chad Chad 14 Armitage et al. (2015) 5.0 

Socotra Island Yemen 38 Shakun et al. (2007) - 

Lake Ashenge Ethiopia 34 Marshall et al. (2009)  5.6 

Lake Tana Ethiopia 12 Marshall et al. (2011) 6.3 

Lake Hayq Ethiopia 33 This study 5.2 

Gulf of Aden Arabian Sea 45 Tierney and deMenocal (2013) 5.0 

Ziway-Shala basin Ethiopia 30 Benvenuti et al. (2002) 5.0 

Lake Turkana Keyna 11 Morrissey and Scholz (2014) 5.2 

Chew Bahir Ethiopia 28 Foerster et al. (2012) 5.0 

paleo- Lake Suguta Keyna 27 Junginger et al. (2013) 6.7 

Lake Challa Kenya 10 Barker et al. (2013) 5.5 

Gulf of Guinea West Africa 39 Armitage et al. (2015) 4.9 

Lake Albert Rift Lake 2 Berke et al. (2014) - 

Lake Victoria Rift Lake 1 Stager et al. (1997) 7.2 

Lake Tanganyika Rift Lake 4 Tierney et al. (2010) 6.2 

Lake Malawi Rift Lake 7 Konecky et al. (2011) Lake highstand from 6.2 - 3.0 

Lake Tritrivakely Madagascar 18 Gasse and Van Campo (1998) 4.0 
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A second positive feedback process is Indian Ocean surface temperature-moisture 

transport. Western Indian Ocean SSTs are close to the threshold boundary for deep 

convection (26 – 28 ºC) and so very small changes in temperature caused by the El 

Niño Southern Oscillation (ENSO), the Indian Ocean Dipole or multi-decadal 

oscillations, can alter Walker Circulation, inducing deep convection and heavy 

rainfall in East Africa (Tierney and deMenocal 2013). Therefore, abrupt shifts in East 

African climate may reflect convective feedback with seasonal dimensions; as the 

summer monsoon winds migrated southwards during the Holocene in response to 

orbital forcing, a critical SST threshold may have been crossed causing the sudden 

cessation of the deep convection in the Indian Ocean rainy season, resulting in 

regional aridity across the Horn of Africa (Tierney and deMenocal 2013). 

 

In contrast to Lake Hayq, Lake Tana saw a long-term shift away from aridity as the 

African Humid Period came to an end. Between 6.3 – 4.1 kyr BP, a decline in the 

supply of titanomagnetite and lithogenic elements (titanium and zirconium) occurred, 

as well as an increase in the concentration of haematite. Marshall (2006) interprets 

this as a long-term reduction in rainfall and runoff, as well as increased aeolian dust 

supply and enhanced oxidation of iron minerals within non-waterlogged aerobic 

catchment soils. The differences in duration of termination between Lakes Hayq and 

Tana may, either completely or partially, be due to differences in lake basin  

morphometry (including the lake and surrounding catchment), which encompasses a 

multitude of physical, biological and chemical components and processes, including 

in recent centuries, anthropogenic activities (Table 8.2). Lake morphometry may 

buffer or amplify the impact of climate variability by increasing or decreasing the area 

on which climate variability is expressed. In contrast, at Lake Ashenge, a step-wise 

decline in productivity is observed from ~ 5.6 kyr BP, as well as an increase in 

diatom-inferred conductivity and stable isotope values, with δ18O increasing by ~ 10 

‰ over two centuries, indicating intensified aridity (Fig. 8.2 and 8.4; Marshall 2006; 

Marshall et al. 2009). This indicates a relatively quick termination of the African 

Humid Period.  

 

Given the proximity of Lakes Tana and Ashenge to Lake Hayq and their differing 

responses to the end of humid conditions in the mid-Holocene, this would indicate 

that positive feedback mechanisms (including the effect of morphological 
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differences) were operating at Lake Hayq, rather than a direct, linear response to 

gradual climatic forcing. The variability in timing, duration and expression of the 

termination of the African Humid Period between sites, highlights the significance of 

site specific, non-linear feedbacks on local (as opposed to regional) climate and 

environment responses. The results from Lake Hayq indicating an abrupt termination 

of the African Humid Period may provide a new benchmark for hydroclimatic and 

palaeoclimatic history in the underrepresented Horn of Africa. 

 

Table 8.2. Morphological characteristics of Lakes Hayq, Tana and Ashenge 

(Marshall 2006; Lamb et al. 2007b; Ashenge 2009; Yesuf et al. 2013). 

 
Lake Hayq Lake Tana Lake Ashenge 

Latitude 11º20’53’’N 12°01’58’’N 12°34’45’’N 

Longitude 39º42’32’’E 37°18’23’’E 39°30’05’’E 

Altitude (m) 1,950 1,775 2,440 

Lake area (km²) 23.2 3,156.0 15.4 

Lake volume (km³) 1.0 28.4 0.35 

Maximum depth (m) 88.8 (1938) 

81.0 (2000) 

14.0 

 

23.0 

Mean depth (m) 37.4 9.0 14.0 

Catchment area (km²) 65.0 16,500.0 82.0 

Lake area/Catchment area 0.35 0.19 0.18 

 

8.2.6 The Late Holocene and Other Records from Lake Hayq 

The termination of the African Humid Period culminated in a late Holocene lowstand 

at Lake Hayq from ~ 3.9 – 2.2 cal kyr BP. The lake became subsaline at times in 

response to a negative water balance and benthic diatoms dominated the 

assemblage indicating an availability of shallow water habitats, as well as increases 

in the abundance of benthic algae (Fig. 8.1). The lake most likely became a closed 

system at this time, following the gradual decline of overflow from Lake Hardibo after 

the early Holocene highstand. Unlike other records from Ethiopia and East Africa, 

there is no evidence of the 4.2 event at Lake Hayq (see Chapter 3, 3.5.4); no 

observable change in the diatom, pigment or geochemical data occurred around this 

time period. Ghinassi et al. (2012) suggest that a lowstand identified by 

stratigraphical and geomorphological analyses at Lake Hayq prior to 3.25 kyr BP 

was probably due to the 4.2 event but more likely this is due to the lowstand 

beginning at ~ 3.9 cal kyr BP, or the termination of the African Humid Period. 
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Potentially the effects of the 4.2 drought event may have been supressed by natural 

feedback mechanisms (vegetation cover, soil moisture) in the basin resulting in 

minimal impact. Alternatively, the event is the final cessation of the African Humid 

Period, rather than a separate short-term drought. The highstand identified by 

Ghinassi et al. (2012) between 3.25 – 3.0 cal kyr BP is not identified in the diatom, 

pigment or geochemical records.  

 

The record from Lake Ashenge is most similar to Lake Hayq during this time, 

although many lakes across Ethiopia and East Africa experienced lowstands 

following the end of humid conditions in the mid-Holocene (Fig. 8.2 and 8.3). After 

the termination of the African Humid Period, water level at Lake Ashenge continued 

to fall in response to increasing aridity (Marshall et al. 2009). Diatom productivity 

declined from 5.6 kyr BP onwards, as did the abundance of planktonic diatoms. 

Between 2.2 – 2.3 kyr BP, a further decrease in water level occurred at Lake 

Ashenge, evidenced by the dominance of benthic diatom taxa and changing δ18O 

and δ13C values, which indicate increased evaporative concentration.  

 

Both Lake Hayq and Lake Ashenge saw an increase in lake depth and wetter 

conditions at ~ 2.2 cal kyr BP, evidenced by the rise of planktonic diatoms in both 

records (Fig. 8.2). This contrasts to the more southerly Lake Challa, where the 

δ13Cdiatom record became strongly depleted at 2.0 kyr BP, indicating that aquatic 

productivity has declined, suggesting a shift towards aridity (Fig. 8.3; Barker et al. 

2013). At Lake Hayq, this wet period lasted until at least ~ 1.3 cal kyr BP, when the 

core Hayk-01-2010 ends, and is most likely the same highstand identified in the 

Uarababo and Ankarka River districts from 2.6 – 0.95 kyr BP (Ghinassi et al. 2012). 

This is in agreement with the oxygen isotope record from 2.35 – 1.36 kyr BP when 

δ18O values were relatively uniform, ranging from + 3.8 – + 4.8 ‰. This indicates 

climatic conditions were stable although slightly wetter than present (in May 2002 

δ18O was + 8.7 ‰ ± 0.1 ‰; Lamb et al. 2007b). This interpretation does require 

caution however due to low sample resolution and possible sediment disturbance 

(Lamb et al. 2007b). 

 

The wet period at Lake Hayq between ~ 2.2 – 1.3 cal kyr BP provides additional 

support to the hypothesis put forward by Butzer (1981) of an extended growing 
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season in northern Ethiopia. Butzer (1981) proposes that a northward extension of 

the ITCZ allowed for a strongly bi-modal rainfall season to develop over Tigray, 

which enabled greater food production in the region to support a growing population. 

This allowed the Aksumite Empire to rise to power. Evidence of this wet period has 

also been found at Lake Ashenge (Marshall et al. 2009), from infilled valley deposits 

in the Tigray region (Machado et al. 1998), as well as Aksum itself, in stable 

hydrogen isotopic ratios (δD) of land plant-derived fatty acids (Terwilliger et al. 

2013). There is tentative evidence of a drop in water level at Lake Hayq at ~ 1.5 cal 

kyr BP, as both total pigment concentration and Aulacoseira granulata var. 

angustissima decline, synchronous with an increase in benthic taxa (Fig. 8.1). This 

may coincide with a similar shift observed at Lake Ashenge at 1.5 kyr BP, which 

signals a move towards aridity (Marshall 2006). This lends further support to Butzer’s 

(1981) theory that a shift in climate back towards drier conditions in northern Ethiopia 

occurred, as the climate reverted back to its previous (and present) state of a 

unimodal rainfall regime. This would have reduced the capacity of the Aksumite 

Kingdom to grow food for its population, which in combination with other factors such 

as political instability and environmental degradation, ultimately led to its collapse 

(Butzer 1981; Fattovich 1987; 1990; 2010). However, as at Lake Ashenge, the shift 

towards aridity at Lake Hayq occurred ~ 250 cal years earlier than suggested by 

Butzer (1981), who argues a change in climate during the 8th century was disastrous 

for Aksumite agricultural productivity. The shift at Lake Hayq was also short-lived 

and by ~ 1.3 cal kyr BP, the lake level was high again (Fig. 8.1). Therefore, whilst 

there is no evidence of a permanent shift towards aridity at this time, the climate in 

northern Ethiopia was potentially becoming less stable, which may have contributed 

to the demise of the Kingdom of Aksum.  

 

Potentially, a possible mechanism for the relatively quick shifts in aridity-humidity at 

Lake Hayq during the late Holocene (as indicated by the large shifts in the 

abundance of Aulacoseira granulata var. angustissima and benthic diatom taxa, as 

well as diatom-inferred conductivity and pigment accumulation rate; Fig. 8.1), may 

reflect an enhanced, higher frequency ENSO regime caused by cooling of the Pacific 

tropical deep waters (Sun 2000; Moy et al. 2002; Foerster et al. 2012; Fig. 8.3). In 

particular, a period of heightened ENSO periodicities centred at 1.6 cal kyr BP and 
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1.3 cal kyr BP may account for the variability seen in the Lake Hayq record (Moy et 

al. 2002).  

 

As Hayk-01-2010 ends at ~ 1.3 cal kyr, late Holocene climate at Lake Hayq is based 

on interpretations from HYK99-1 (Lamb et al. 2007b). Effective precipitation 

increased from 1.3 kyr BP, peaking at 1.24 kyr BP (average δ18O of - 0.9 ‰), after 

which rainfall rapidly declined and peak aridity occurred at 1.15 kyr BP (average 

δ18O of + 6.2 ‰). From 1.15 – 0.75 kyr BP there was significant interdecadal 

variability but conditions were on average similar to, if not slightly more humid, than 

present. A decrease in lake level occurred during this time from 950 – 650 yr BP, 

which lowered the shoreline by at least 8 – 9 m (Ghinassi et al. 2012).  

 

Ghinassi et al. (2012) document a highstand at Lake Hayq beginning at 650 yr BP 

which caused the lake level to rise by 9 – 10 m. Effective precipitation likewise 

increased to a maximum value at 650 yr BP (average δ18O of - 4.0 ‰). This period of 

low oxygen and carbon isotopes coincides with an unlaminated section of core 

containing peak diatom concentration and abundant microfossil remains of the green 

alga, Pediastrum (Lamb et al. 2007b). These features indicate that the bottom waters 

of Lake Hayq were most likely oxygenated at this time due to frequent overturn; 

meromixis at Lake Hayq had ended. Increased rainfall would have reduced salinity 

and lowered lake surface temperatures, thus aiding mixing during this time and 

enhancing productivity in the epilimnion (Lamb et al. 2007b). The lake highstand 

lasted until 160 yr BP, just after the driest conditions of the last two millennia were 

recorded (200 yr BP, average δ18O of + 6.9 ‰). 

 

8.2.7 Vegetation Change and Anthropogenic Impacts at Lake Hayq 

Prior to 2.5 kyr BP the highlands surrounding Lake Hayq were covered in a 

coniferous forest dominated by Podocarpus falcatus and Juniperus procera (similar 

to the Afromontane forest of central Ethiopia today). The occurrence of Poaceae 

pollen also suggests an open forest and/or littoral grasses (Darbyshire et al. 2003). 

At 2.45 kyr BP the pollen record indicates the Podocarpus-Juniperus forest declined 

rapidly and was replaced by disturbed, secondary bushland vegetation containing 

common ruderal taxa such as Rumex species and the pioneer shrub, Dodonaea 

angustifolia. The peak in the charcoal record indicates the change was driven by 
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people using fire to clear the forest, most likely to make room for agriculture and for 

animal grazing (Darbyshire et al. 2003). Ducrotoy (2013) likewise attributed the 

decrease in Afromontane taxa at 2.4 kyr BP to the onset of pastoral and arable 

agriculture, using a core taken from the western edge of Lake Hayq. Whilst both 

these cores overlap temporally with Hayk-01-2010, there is no discernible signal in 

the palaeolimnological records obtained in this research to suggest anthropogenic 

impact to the lake, such as the leaching of nutrients from the catchment to lake 

following deforestation; hypothesis 8 may be accepted. Potentially the effect of 

human activity may have been supressed in the palaeo-record by the changes in 

climate, which had a more significant and pronounced effect on the lake. The human 

population at 2.45 kyr BP would have been significantly smaller in comparison to the 

current population (in 2007 ~ 12,640 people lived in the town of Hayq; CSA 2007b) 

and so impacts on the lake, in comparison to the catchment, may not be so 

immediate as activities such as deforestation and burning. Cultural eutrophication for 

example is a recent phenomenon caused by the widespread use of industrial 

fertilisers, and whilst this would be identifiable in modern limnological records, it 

would not have been an issue in the late Holocene.  

 

By 750 yr BP, the Podocarpus-Juniperus had almost completely disappeared from 

the region (Darbyshire et al. 2003). Between 750 – 550 yr BP, Dodonaea and 

Rumex declined, alongside an increase in Poaceae. The conversion of the 

secondary bushland to grassland was most likely in response to livestock grazing, as 

well as increased burning to clear land (Darbyshire et al. 2003). Higher abundances 

of Cyperaceae pollen also suggest the lake may have declined in water level, which 

allowed sedges to increase in the littoral zone. The appearance of Pediastrum 

duplex signals a change in lake trophic status, although this is the opposite of what 

would be expected from soil erosion associated with anthropogenic vegetation 

degradation (Darbyshire et al. 2003). 

 

The period 550 – 250 yr BP saw an increase in the extent of Juniperus dominated by 

dry Afromontane forest. This increase was broadly synchronous across East Africa 

and most likely signals a regional increase in rainfall, or a local reduction in human 

impact. Whilst it is believed the Juniperus forest was the natural vegetation of the 

northern Ethiopian highlands it appears to actually have been a relatively recent 
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development. In the last three centuries Cupressaceae, Olea and Celtis all declined, 

signalling a second phase of deforestation and soil erosion most likely due to an 

increase in agricultural activity and human population density (Darbyshire et al. 

2003). Soil erosion consequently increased, although fire may have been a less 

significant tool used in anthropogenic vegetation change.  

 

8.3 Implications for Future Climate Research 

This new record from Lake Hayq adds to a growing body of research, which is 

improving the fundamental knowledge and understanding of the climatically sensitive 

and vulnerable region of northern Ethiopia. The use of palaeo-data is well 

recognised as an important and valuable tool in future climate prediction, as the 

records and proxies provide data on the climate and environment beyond the 

timescale of the modern instrumental records (Henderson et al. 2009). Palaeo-data 

provides a reference against which future climate projections can be tested, refined 

and evaluated (Henderson et al. 2009).  

 

This record from Lake Hayq identifies historical changes in the climate, environment 

and lake system during the late Pleistocene and Holocene. In particular, this record 

highlights the role of global teleconnections in influencing regional East African 

climate and how site-specific feedback dynamics can affect the local expression of 

climate over varying timescales within the same geographical region. As such, this 

information has the potential to fill research gaps identified in the Intergovernmental 

Panel on Climate Change’s (IPCC) fifth assessment report (AR5) (Niang et al. 2014). 

Regional climate data are imperative for downscaling General Circulation Models 

(GCM) in order to identify the influence of topography and hydrology and the regional 

impacts (Niang et al. 2014). This will also inform how long-term changes affect 

critical ecosystems such as lakes and the highlands, and how this in turn feeds back 

into the regional climate system (Niang et al. 2014).  

Importantly for the climatically vulnerable and drought prone north of Ethiopia, is how 

future climate change will affect local hydrology, water quality and access, as well as 

the impact on food security and human well-being (Niang et al. 2014). At Lake Hayq, 

identifying the range of lake level rise and decline in response to natural climate 

variability is vital for informing future predictions of how the lake may respond to 

more or less precipitation or evaporation, and how this will affect other systems. The 
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ability to manage future access to water is vital to the population of Ethiopia; small 

scale farmers and pastoralists in particular, are likely to shoulder the majority of 

negative impacts of climate change such as changing weather regimes, including 

potentially less precipitation.  

 

Managing access to water for agriculture and livestock is not only fundamental to 

maintaining life in northern Ethiopia but it may also improve adaptive capacity and 

reduce vulnerability of other susceptible economic and cultural sectors of Ethiopia. 

For example, if farmers do not have to move their herds to better grazing grounds, 

they are less likely to remove their children from school to help, which will improve 

education and literacy rates across the country (Oxfam 2010). Women are often 

disproportionately affected by climate change as they will stay at home with the 

children when the men move away to find new grazing grounds or other means of 

survival. Women will often eat last and have limited access to their own wealth whilst 

the men are away and so are more likely to succumb to the hardships of climate 

change. Improved capacity to adapt will prevent the gender gap from widening any 

further (Oxfam 2010). Therefore, the ability to predict how access to water in the 

future may change is vital for not only improving the adaptive capacity of the 

immediate dependant sectors such as agriculture, but also for reducing the 

vulnerability of Ethiopian culture, society and the economy, which in turn, has the 

potential to buffer the detrimental impacts of climate change.  

 

Perhaps most importantly in terms of future climate change modelling is the ability to 

predict how fast the climate and lake system may respond, which will inform the 

timescale for response and adaptation. At Lake Hayq, the high-resolution study of 

the termination of the African Humid Period provides a reference for how quickly the 

lake system may respond to natural climate variability on a multi-decadal scale, 

which has the potential to be amplified or supressed under anthropogenic climate 

change. This may inform current research initiatives such as Future Climate for 

Africa (FCFA), a five year international project funded by the UK`s Department for 

International Development (DFID) and the Natural Environment Research Council 

(NERC) (http://futureclimateafrica.org/). The research aims to improve understanding 

of climate variability and change across sub-Saharan Africa, including East Africa, 

with the intention of advancing prediction of climate variability and change on 5 to 40 
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year timescales to improve the capacity for long-term decision making. The ability to 

identify such short-term changes in a lake system is essential for informing such 

work and increasing the resilience and adaptability of the local and wider region. The 

high-resolution study from Lake Hayq may also offer insight into how systems 

respond in the build-up to a climatic shift through observable ‘flickering’ (although 

this is only speculative in the observations), which has the potential to serve as a 

warning signal in future climate observations.  

 

8.4 Methodological Considerations 

The proxies used in this study have provided a quantitative and qualitative record of 

the palaeolimnology of Lake Hayq since the late Pleistocene. Significant changes 

have been identified in the biological, geochemical, lithological and elemental 

proxies, which with the use of quantitative analyses, have been interpreted in terms 

of limnological variability in response to climate change. This has provided a 

comprehensive, detailed record of the changes in climate and environment in the 

Lake Hayk basin over the past ~ 15.6 cal kyr BP.   

  

It is evident however, that different proxies have diverging responses to climatic 

variability. It has been a common feature of the elemental profiles to indicate a 

climatic transition of different magnitude, duration and timing to the diatom and 

pigment records. For example, the wet period between ~ 2,900 – 2,550 cal yr BP 

indicated by the elemental records is not found in the diatom record. Similarly, the 

elemental record suggests the termination of the African Humid Period began 

approximately 600 cal years earlier than changes observed in the diatom and 

pigment data. Such discrepancies between proxies has already been identified as an 

issue affecting East African palaeolimnology (see Chapter 3, 3.6; Johnson et al. 

2004; Konecky et al. 2011; Garcin et al. 2012; Junginger et al. 2013; Forman et al. 

2014). In this research, emphasis has been placed on diatoms given their power as 

an ecological indicator (see Chapter 4, 4.4.3), as well as their widespread usage 

across East Africa, which has assisted making comparisons between sites. By using 

a multi-proxy approach, combining biological, geochemical, lithological and 

elemental proxies, from both the lake and catchment, strength is given to 

interpretations made by independently confirming the climatic sensitivity of the Lake 

Hayq basin. Whilst it is not possible to solve the discrepancies between proxies – 
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diatom and elemental proxies will continue to respond differently given their 

fundamental variability – by combining multiple proxies, it is possible to gain a 

comprehensive understanding of how the entire lake system, including its’ 

catchment, was operating and functioning at different times.  

 

The development of the diatom-inferred conductivity model to include European sites 

containing Cyclotella ocellata, has attempted to improve the robustness and 

predictive capacity (based purely on the statistical output) of the conductivity 

reconstruction at Lake Hayq by compensating for the inherent bias caused by this 

taxon in the African training set (Chapter 4, 4.6.4). The model could be improved by 

incorporating more analogues from the European combined TP training set to 

increase the conductivity gradient coverage further. It appears though the model has 

improved the reconstruction sufficiently enough to indicate low conductivity during 

Cyclotella ocellata dominated time periods, as expected, given the modern day 

distribution and ecological tolerances of the taxon. An alternative would have been to 

exclude Cyclotella ocellata from the transfer function. Experiments by Chalié and 

Gasse (2002b) and Marshall et al. (2009) (Fig. 8.5) indicate a high degree of 

similarity between including and excluding the taxon from a transfer function when 

calculating diatom-inferred conductivity, despite its underrepresentation in the 

modern day training set. However, it was deemed worthwhile by the author to 

attempt to improve the predictive capacity of the transfer function given the 

overwhelming dominance and significance of the taxon in sections of the sediment 

record, rather than accept the inherent bias. Three-dimensional modelling of Lake 

Hayq’s morphometry may strengthen the diatom-based interpretations by enabling a 

conceptual understanding of how diatom habitat areas respond to climatic driven 

changes in lake depth and area, particularly given the lakes steeply shelving form 

(Stone and Fritz 2004).  

 

This research has been affected by methodological and technical constraints. Core 

7B for example, could not be scanned by the Itrax® core scanner due to the machine 

requiring maintenance abroad. Furthermore, the sediment record is incomplete (the 

most recent ~ 1.3 cal kyr BP are missing from the record) and so a continuous 

record of change throughout the Holocene is not available from the core. The core 

HYK99-1 collected by Lamb et al. (2007b) does cover this missing time period, 
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although stable oxygen and carbon isotope analysis is the primary proxy used, which 

is not directly comparable to the Hayk-01-2010 proxies (diatoms are also analysed in 

HYK99-1 but interpretation may require caution [see 8.4.1]). Despite these 

limitations, every effort has been made to produce an accurate and precise 

reconstruction of the environmental and climatic changes that have occurred over 

the past ~ 15.6 cal kyr BP. For example, replicate counting of diatom samples were 

used to identify within sample variability (average of 2.82 %) and error, which was 

found to vary between taxa. Within sample variability was not found to affect the 

abundance of taxa or interpretation of the diatom record, including the high-

resolution section across the termination of the African Humid Period.     

 

At the time of writing, four additional sediment samples were awaiting chronological 

analysis using luminescence dating at Aberystwyth University by Dr Helen Roberts. 

Fine grained (4 – 11 μm in diameter), polymineral material will be used for dating in 

order to improve the chronology of the core between 311.0 – 206.5 cm (~ 7.2 – 2.5 

cal kyr BP), a section of sediment originally believed to pertain to the 4.2 event. 

These additional dates will increase confidence in the chronological model for Hayk-

01-2010 further. As previously discussed (see Chapter 3, 3.2) bulk dating of organic 

sediment is problematic, given the potential to be affected by various sources of 

error. Caution should be used when interpreting the timing of events presented in 

this thesis; Blaauw et al. (2011) estimate age offsets of 200 – 450 years for dating of 

bulk organic carbon samples from Lake Challa. Potentially, the dates obtained in this 

study at Lake Hayq may be affected in a similar way. Luminescence dating of 

additional samples therefore, will improve the current age-depth model.  

8.4.1 The Diatom Record from HYK99-1 The dominant planktonic taxa 

identified in core HYK99-1 was Aulacoseira ambigua (~ 10 – 100 %), except in the 

uppermost sample where it was absent (Lamb et al. 2007b). Aulacoseira granulata 

was found in low abundances (< 15 %) throughout the sediment core. Whilst the two 

taxa are known to occur simultaneously within the same lake system (Stager et al. 

1997; 2003), it seems highly unlikely that such a rapid, significant switch between 

dominance would have occurred without evidence of it also being observed in Hayk-

01-2010, given the ~ 1000 year overlap between the two cores. Aulacoseira ambigua 

was only identified in Hayk-01-2010 in five samples, all older than the overlapping 

section, where it accounted for 0.3 – 1.9 % of valves.  
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The identification of Aulacoseira granulata var. angustissima in Hayk-01-2010 was 

verified by colleagues at Loughborough University. Separation spines were evident, 

clearly distinguishing Aulacoseira granulata var. angustissima from Aulacoseira 

ambigua (see Plate I). Efforts were made to obtain the original diatom slides 

prepared from HYK99-1 but they were unavailable. Therefore, whilst it is not possible 

to verify the identification of the Aulacoseira taxon in HYK99-1, it can be confidently 

stated that Aulacoseira granulata var. angustissima was present in Hayk-01-2010.  

 

8.4.2 Defining Abrupt Climate Change  One arising issue from the current 

literature is how to define a climatic transition in terms of its abruptness. The US 

National Research Council (NRC) formally define abrupt climate change as,  

 

‘…when the climate system is forced to cross some threshold, triggering a transition 

to a new state at a rate determined by the climate system itself and faster than the 

cause. The cause may be chaotic and thus undetectably small’ (NRC 2002:14). 

 

This definition is mostly applied in terms of the effect of abrupt climate change on 

society, human perturbations and anthropogenic forcing and does not include the 

intricate responses by lake systems to climate and environmental changes (Hulme 

2003; Lenton et al. 2008). Defining a climatic transition beyond the need for human 

consideration differs, being based largely on various proxy records from a multitude 

of sources, all with varying responses over different time periods. For example, until 

recently the formal subdivision of the Holocene had not been agreed upon and 

inconsistencies across the literature caused confusion and limited direct 

comparisons between records (Walker et al. 2012).  

 

In African palaeoclimate research, the termination of the African Humid Period in 

terms of its rapidity is open to interpretation, based on the range of data from various 

proxy records. The termination is loosely described as either gradual, taking several 

millennia, or abrupt, taking place within several centuries (deMenocal et al. 2000; 

Fleitmann et al. 2003; Asrat et al. 2007; Kropelin et al. 2008; Tierney and deMenocal 

2013). The question arises though, at what point does abrupt become gradual? 

Would 900 – 950 years duration for example, be a gradual or abrupt transition? 
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Tierney and deMenocal (2015) describe the average duration for termination, based 

on hydrogen isotopic composition of leaf waxes (δDwax), as 280 – 490 years in terms 

of being abrupt, whereas deMenocal et al. (2000) describe geological evidence 

documenting the termination over one millennia from 6.0 – 5.0 kyr BP as ‘relatively 

abrupt’ (deMenocal et al. 2000: 348). This contradicts the vague termination and 

leads to a further question; how many millennia constitute gradual? This lack of 

clarity is evidently open to interpretation in the literature; Marshall (2006) describes 

the transition from the African Humid Period towards Holocene aridity at Lake 

Ashenge as ‘not so abrupt’ (Marshall 2006: 231), but Marshall et al. (2009) describe 

the same transition as abrupt (for the purpose of comparison to Lake Hayq, the more 

recent interpretation of an abrupt termination at Lake Ashenge is cited [Marshall et 

al. 2011]). Interpretation is therefore, clearly based on human perception of time, 

which is not always quantitative, and how the rate of change for different proxy 

records is perceived.  

 

Formally defining what is meant by an abrupt change in terms of duration of 

termination of the African Humid Period may be useful in order to ensure consistency 

of interpretations. This may improve understanding of regional and continental 

hydroclimate, as well as by how much the effect of non-linear feedbacks (vegetation 

cover, soil moisture and albedo) can speed up or slow down a response.  

 

 

8.5 Conclusion 

The palaeolimnological record indicates that Lake Hayq is a climatically sensitive 

waterbody, which has responded to climatic and environmental variability during the 

course of the late Pleistocene and Holocene. Evidence of changes in the physical 

lake morphometry (lake depth and surface area) is apparent, as are changes in the 

biological, lithological and chemical properties of the waterbody. Regionally, Lake 

Hayq appears to have been affected by many of the same high-latitude, glacial-

interglacial dynamics and sub-millennial shifts in climate found in other 

palaeolimnological records from across East Africa and the wider study region. 

Tentative evidence of Heinrich Event 1 and the onset and termination of the African 

Humid Period are found in the Lake Hayq records. However, there is no evidence of 
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a hydrological response to the Younger Dryas Stadial at Lake Hayq and in contrast 

to other subtropical African waterbodies, the lake is at a highstand during this time.  

Differences in the timing and expression of response to these climatic events have 

not been synchronous between Lake Hayq and other lakes (beyond any dating 

errors), indicating regional climatic heterogeneity; hypothesis 7 is rejected as a 

result. Positive feedback mechanisms have been postulated as possible causes for 

the variability observed between sites. The data obtained from Lake Hayq have the 

potential to inform future climate change modelling and prediction by identifying the 

natural range of lake response to such variability. This is of critical importance to the 

climatically sensitive and vulnerable north of Ethiopia.   
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Chapter 9 

Conclusion. 

 

9.1 Introduction 

This thesis has aimed to present a high-resolution, detailed paleolimnological 

reconstruction of changes to the environment and climate of the north-central 

Ethiopian highlands since the late Pleistocene, by applying a multi-proxy approach to 

a continuous sediment record (Hayk-01-2010) from Lake Hayq. Based on the 

biological, geochemical, lithological and elemental proxies and analyses used, 

quantitative palaeolimnological evidence has been obtained from the sediment, 

which has been successfully used to infer changes in the lake system. These 

records have not only provided reliable evidence of local changes to the environment 

and climate, but have allowed for wider comparison to records from Ethiopia, the 

Horn of Africa and East Africa during the late Pleistocene, identifying how long- and 

short-term climate trends have been expressed at different sites since the Last 

Glacial Maximum. 

 

9.2 The Palaeolimnology of Lake Hayq 

The palaeolimnological evidence suggests that Lake Hayq was experiencing a 

lowstand in response to extremely arid conditions, which began prior to ~ 15.6 cal 

kyr BP and lasted until ~15.1 cal kyr BP. This lowstand coincides with the timing of 

Heinrich Event 1 (~ 18.0 – 15.0 kyr BP) in the North Atlantic, as well as a mega-

drought in East Africa, which saw the displacement of the Intertropical Convergence 

Zone (ITCZ) southwards and weakening of the Afro-Asian rainfall systems 

(Verschuren et al. 2009; Marshall et al. 2011; Stager et al. 2011; Barker et al. 2013). 

Lakes across East Africa document a fall in water level at this time and in some 

cases became desiccated (Stager et al. 1986; Talbot and Livingstone 1989; Lamb et 

al. 2007a; Marshall et al. 2009; Barker et al. 2013). It is most likely that this is the 

cause of the Lake Hayq lowstand. 

 

More humid, wetter conditions occurred between ~ 15.1 – 14.8 cal kyr BP, which 

saw a lake begin to develop at the core site, dominated by pioneer diatom taxa. This 

positive shift towards a wetter climate is interpreted as the reactivation of the African- 
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Indian monsoon system, attributed to an increase in Northern Hemisphere summer 

insolation; this marks this start of the African Humid Period at Lake Hayq (Prell and 

Kutzbach 1987; Adkins et al. 2006). However, the wet, humid conditions appear to 

have been cut short as a shift back towards aridity is documented in the 

palaeolimnological records between ~ 14.7 – 12.3 cal kyr BP. This contrasts to the 

majority of other tropical lake sites across Ethiopia and East Africa, which continued 

refilling during this time (Gasse 2000). The aridity at Lake Hayq is interpreted as a 

manifestation of changes to the Indian Ocean monsoon system caused by variability 

in the Atlantic Meridional Overturning Circulation, combined with site-specific 

mechanisms, which affected the delivery of monsoon precipitation to Lake Hayq 

(Berke et al. 2014).   

 

The African Humid Period resumed at Lake Hayq at ~ 12.3 cal kyr BP. The 

palaeolimnological record indicates that the lake was recolonised by pioneer diatom 

taxa as the water level began to increase at the core site, and saw fluctuations in 

nutrient availability as the lake system established and opened. Lake level maximum 

was reached between ~ 12.0 – 10.0 cal kyr BP, after which Lake Hayq remained 

fresh, deep, productive and meromictic. There is evidence of a gradually declining 

lake level with time as the rain belts migrated southward, but overall the conditions 

identified at Lake Hayq during the early to mid-Holocene are synchronous with 

records from across East and North Africa and the Mediterranean (Rholing and 

Hilgen 1991; Rossignol-Strick 1985; Bar-Matthews et al. 2000; Gasse 2000). No 

evidence of the sub-millennial 8.2 event is found in the Lake Hayq palaeolimnology. 

 

A high-resolution study of the termination of the African Humid Period indicates that 

Lake Hayq experienced a (tentatively interpreted) abrupt end to wet conditions 

between ~ 5.2 – 4.6 cal kyr BP, based on the diatom and pigment records, which 

saw several drops in lake level before the full onset of aridity. In the build-up to this 

shift in climate, there is potential evidence of climatic ‘flickering’, as the lake system 

switched back and forth between alternative states. This serves potentially as an 

early warning for a disturbance to the system (Brock and Carpenter 2010; Dakos et 

al. 2012; Wang et al. 2012; Dakos et al. 2013). In combination with other records 

from across Africa and the Mediterranean, the Lake Hayq record indicates that there 

was no distinct geographic trend in the timing of the termination of the African Humid 
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Period, highlighting the heterogeneous pattern of regional response to this climatic 

event. The termination at Lake Hayq was neither early nor late in comparison to 

other records from Ethiopia, the Horn of Africa or subtropical Africa,  

 

The termination of the African Humid Period culminated in a late Holocene lowstand 

at Lake Hayq from ~ 3.9 – 2.2 cal kyr BP. There is no palaeolimnological evidence of 

the 4.2 event. At ~ 2.2 cal kyr BP a return to wetter conditions occurred at Lake 

Hayq, evidenced by the dominance of planktonic diatom taxa at the core site, which 

lasted until at least ~ 1.3 cal kyr BP. The Lake Hayq record is most similar to Lake 

Ashenge at this time and provides additional support for Butzer’s (1981) hypothesis 

of an extended growing season in northern Ethiopia caused by a northward 

extension of the ITCZ. There is palaeolimnological evidence of climate variability 

during this time however, and the lake most likely experienced short-term rises and 

declines, as well as changes in volume and surface area, in response to variability in 

the precipitation-evaporation ratio. The Lake Hayq record does not provide any 

discernible evidence for anthropogenic impact to the catchment.  

 

The Hayk-01-2010 sediment record ends at ~ 1350 cal yr BP. Other records from the 

late Holocene at Lake Hayq are available, which provide an overview of climatic and 

environmental changes, including vegetation change, as well as anthropogenic 

activity (Darbyshire et al. 2003; Lamb et al. 2007b; Ghinassi et al. 2012).  

 

9.3 An Evaluation of Lake Hayq’s Climatic Sensitivity  

The palaeolimnological records obtained from Lake Hayq using a multi-proxy 

approach have successfully provided high-resolution evidence of millennial to multi-

decadal variability in the lake. Changes identified in the lake system since ~ 15.6 cal 

kyr BP includes variability in nutrient availability, productivity and trophic state, 

stratification and overturn, catchment weathering and erosion, preservation and most 

importantly in terms of identifying climatic signals, changing lake level (and by 

association volume and surface area, as well as changes in catchment size) and 

conductivity. These changes in the palaeolimnology since the late Pleistocene 

indicate that the climate signal at Lake Hayq has been expressed indirectly through 

changes in lake hydrology and associated catchment processes and can be used to 
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infer variability in the local environment and climate of the north-central Ethiopian 

highlands; hypothesis 6 is accepted.  

 

At the millennial scale, the palaeolimnological records indicate that the local climate 

at Lake Hayq has been sensitive to high-latitude glacial conditions and paced over 

thousands of years by variations in insolation caused by changes in Earth’s orbital 

precession (Milankovitch cycles) (Gasse 2000; Trauth et al. 2003). Hydrological 

changes have been driven by ocean surface temperature conditions and ocean-

atmosphere and ocean-land interactions, which caused variability in ocean heat 

transport into and away from the tropics, affecting precipitation deliver to the African 

continent (Gasse 2000). As such, Lake Hayq experienced the same transitions from 

arid to humid and humid to arid as experienced by other lake sites across East Africa 

since the Last Glacial Maximum, including high-magnitude events such as Heinrich 

Event 1 (~ 18.0 – 15.0 kyr BP), the onset and termination of the African Humid 

Period (~ 15.0 – 5.0 kyr BP) and the Younger Dryas Stadial (~ 12.8 – 11.6 kyr BP). 

 

Though broadly synchronous, there are discrepancies in the precise timing and 

expression of climatic events and comparison of the Lake Hayq sedimentary record 

to other sites from the region shows variability in the nature of climate shifts. Minor 

discrepancies may be attributed to chronological issues between sites which, as 

demonstrated, has been an issue affecting the chronology of this record (see 

Chapter 4, 4.5) and that of Done Ella (Verschuren 2003). Beyond this, response to 

climatic change reflects the inherent climatic sensitivity of individual lake basins. 

Lake Hayq is a closed lake, making it sensitive to changes in the precipitation-

evaporation ratio (see Table 4.1 for Lake Hayq’s water balance estimates). It most 

likely acted as an open system during the early Holocene however, receiving 

overflow and overflowing itself. Morphometric differences in the lake and its’ basin, 

including inflow, outflow and the role of groundwater, will also affect a sites ability to 

record a climatic change in its sediment, as well as its ability to buffer or amplify the 

effects of such shifts (Burrough and Thomas 2009; Olaka et al. 2010). Such 

differences are the likely cause of discrepancies between the Lake Hayq, Tana and 

Ashenge records, despite their proximity to one another, as well as discrepancies 

between Lake Hayq and other sites across Ethiopia and East Africa.  
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The role of local, non-linear mechanisms has been highlighted in this study as 

another crucial aspect affecting a lakes’ climate sensitivity. Positive feedbacks 

caused by vegetation cover in particular, surface albedo, soil moisture and 

precipitation have been shown to reduce/enhance the efficiency of the initial 

radiation forcing of the monsoon beyond the response threshold by orbital forcing 

alone (Claussen et al. 1999; deMenocal et al. 2000). Understanding the role of these 

mechanisms is vital for identifying the full nature of climate change and the 

comprehensive impact this has on the system.  

 

The ability of a proxy to adequately respond to climatic-hydrological change and be 

preserved in the sediment is another issue affecting climate sensitivity. Responses 

are often complex and not always directly related to climate or hydrology 

(Verschuren 2003). Even if a response does occur, post-depositional processes and 

preservation may modify or remove the signal from the sedimentary archive. For 

example, diatoms and photosynthetic pigments were affected by preservation during 

the late Pleistocene (~ 15.5 – 15.1 cal kyr BP and ~ 14.8 – 12.3 cal kyr BP) but 

climate data was still obtained from the elemental responses. This highlights the 

advantages and significance of using a multi-proxy approach for not only gaining 

more data, but for independently confirming and verifying a climate signal when 

discrepancies between proxies occur.  

 

Further work to expand this investigation would be useful at Lake Hardibo, the 

source of potential overflow into Lake Hayq. Identifying if and when overflow 

occurred and ceased would improve the reliability of inferences made in this thesis 

by improving current understanding of Lake Hayq’s climatic sensitivity. Increasing 

the sample time resolution during the early to mid-Holocene would also be beneficial 

for improving understanding of how lake sensitivity is expressed in the build-up to a 

significant climatic shift by identifying whether the climate ‘flickering’ observed is a 

true signal of change. Utilising a wider range of proxies, such as pollen analysis, 

stable isotope analysis and branched glycerol dialkyl glycerol tetraether (brGDGT) 

paleotemperature reconstructions, would invariably expand the data available from 

which interpretations may be made, and provide additional independent verification 

of limnological and climatic changes. However, introducing a greater number of 

proxies may also increase the discrepancies between records when responses 
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diverge. Sediment cores collected closer to the shoreline may constrain lake level 

changes and potentially improve dating with the presence of terrestrial macrofossils 

that have not been destroyed by transportation processes to the deeper lake.  

 

9.4 Final Comments 

In conclusion, Lake Hayq is a climatically sensitive lake, which has experienced 

significant long-term (millennial scale) changes, most significantly in lake depth, over 

the last ~ 15.6 – 1.3 cal kyr BP. These changes have been driven by high-latitude 

glacial conditions, paced by variability in orbital precession. As a result, Lake Hayq 

demonstrated the same general shifts between aridity and humidity as identified in 

other lake records from across East Africa, including Heinrich Event 1 and the onset 

and termination of the African Humid Period. There are discrepancies between the 

records however, caused by site-specific variability in lake sensitivity and positive 

feedback processes, which have altered the spatial and temporal delivery of 

precipitation to the tropics. The Lake Hayq palaeo-record therefore indicates that 

response to climatic events were regionally heterogeneous.  

 

The information obtained from Lake Hayq is important in identifying the natural range 

of sensitivity and response to climate change for the site. The information gained will 

improve current understanding and knowledge of the climatically sensitive and 

vulnerable northern Ethiopia, which will be vital for future regional climate prediction 

and modelling, as well as preparation for the populations that may be potentially 

affected. The sedimentary archive may also provide an environmental context for 

important ethnographic-archaeological research in the region. As such, the Lake 

Hayq palaeo-record may help bridge knowledge gaps in the currently 

underrepresented, climatically vulnerable north of Ethiopia. 
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Appendix 1 

Troels-Smith Lithological Description. 

 

Key: 

Ld - limus detrituosus, common lake mud. 

Lso - limus siliceous organogenes, siliceous remains of plants or animals. 

Lc - limus calcareous, compacted calcium carbonate. 

As - argrilla steatodes, clay < 0.002 mm in size. 

Ag - argrilla granosa, silt > 0.002 mm and < 0.06 mm in size. 

Ga - grana arenosa, fine sand. 

Gs - grana suburralia, coarse sand. 

Gg - grana glareosa, small to medium gravel. 

 

Subdrive 1A 

Depth (cm) Description 

0.0 – 4.5 Oasis, top 4.5 cm sediment missing. 

4.5 – 7.0 Dark brown gyttja containing almost pure white laminations. Y2.5 2.5/1 (black), strf 2, diffuse lim. Dg+, Ld1, Lso1, Ag 2. 

7.0 – 10.0 Dark brown gyttja containing pulpy laminations (dark yellow-brown). Y2.5 2.5/1, strf 1, diffuse lim. Ld1, Lso1, Ag 2. 

10.0 – 18.0 Darker brown gyttja, homogenous in texture without laminations. Traces of larger particles, possibly sand, and black organic material. 

Y2.5 2.5/1, strf 0, gradual lim. Dg++, Ld2, Ag2, Gs+. 

18.0 – 20.0  Dark brown gyttja containing pulpy laminations up to 2.5 mm thick. Y2.5 2.5/1, strf 3, gradual lim. Dg, Ld1, Lso1, Ag2, Ga+. 

20.0 – 31.0  Dark brown gyttja containing thin, straight laminations up to 1.0 mm thick. Y2.5 2.5/1, strf 3, gradual lim. Dg, Ld1, Lso1, Ag2, Ga+. 

31.0 – 33.0 Dark brown gyttja containing pulpy laminations. Y2.5 2.5/1, strf 3, gradual lim. Dg, Ld1, Lso1, Ag2, Ga+. 
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Subdrive 1B 

Depth (cm) Description 

0.0 – 11.5  Dark brown-black gyttja with thin (< 1.0 mm), straight laminations (brown-yellow). Y2.5 2.5/1 (black), strf 2, gradual lim. Dg+, Ag2, Ld1, 

Lso1. 

11.5 – 15.0  Dark brown-black gyttja with pulpy laminations 2.0 mm thick and unevenly spaced. Y2.5 2.5/1, strf 3, gradual lim. Ag2, Ld1, Lso1. 

15.0 – 20.0  Lighter brown-black gyttja with thin (1.0 mm), straight laminations (light brown) spaced at 2.0 mm intervals. Y2.5 3/1 (very dark grey), 

strf 3, sharp lim. Ag2, Ld1, Lso1. 

20.0 – 25.0  Dark brown-black gyttja containing a pulp matrix of laminations (light brown to dirty yellow) up to 5.0 mm thick in places. Y2.5 2.5/1, strf 

4, sharp lim. Ag1, Ld1, Lso2. 

25.0 – 30.0  Dark brown-black gyttja with thin (1.0 mm) laminations evenly spaced (1.0 mm). Y2.5 2.5/1, strf 3, gradual lim. Ag2, Ld1, Lso1. 

30.0 – 34.5  Darker brown-black sediment. Faint, thin laminations, unevenly spaced. Y2.5 2.5/1, strf 1, gradual lim. Ag2, Ld2, Lso++. 

34.5 – 42.0 Brown-black gyttja with thick (> 1.0 mm), pulpy laminations (dirty yellow). Y2.5 3/1, strf 4, sharp lim. Ag2, Ld1, Lso1, but more 

33.0 – 38.0 Sediment deformed but traces of thin laminations. Y2.5 2.5/1, strf 3, gradual lim. Dg, Ld1, Lso1, Ag2, Ga+. 

38.0 – 39.0 Dark brown gyttja containing pulpy straight laminations 1.5 mm thick. Y2.5 2.5/1, strf 3, gradual lim. Dg, Ld1, Lso1, Ag2, Ga+. 

39.0 – 61.0  Dark brown gyttja containing straight laminations (dark yellow) < 1.0 mm thick, spaced < 1.0 mm – 2.0 cm apart. Y2.5 2.5/1, strf 4, 

gradual lim. Dg+, Ld1, Lso1, Ag2.  

61.0 – 69.0  Dark brown gyttja containing traces of laminations. Y2.5 2.5/1, strf 1, gradual lim. Dg+, Ld1, Lso1, Ag2, Ga+. 

69.0 – 74.0  Dark brown gyttja containing pulpy laminations 1.0 mm thick and unevenly spaced. Y2.5 2.5/1, strf 2, sharp lim. Ld1, Lso1, Ag2. 

74.0 – 87.0  Very dark brown-black gyttja containing pulpy laminations (brown-yellow) 1.0 mm thick and unevenly spaced. Y2.5 2.5/1, strf 2, sharp 

lim. Ld1, Lso1, Ag2. 

87.0 – 91.5  Dark brown gyttja containing pulpy laminations (dark brown-yellow) up to 7.0 mm thick in places. Y2.5 2.5/1, strf 3, sharp lim. Ld1, Lso1, 

Ag2. 

91.5 – 100.0 Dark brown gyttja containing very thin (< 1.0 mm) laminations unevenly spaced. Y2.5 2.5/1, strf 1, sharp lim. Ld1, Lso1, Ag2.  

Gaps/broken sediment at 27.0 – 28.0, 28.5 –  29.5 and 35.0 – 37.0 cm.  
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laminations than gyttja. 

42.0 – 53.5   Brown-black gyttja with faint laminations. Y2.5 2.5/1, strf 1, diffuse lim. Ag2, Ld2, Lso++. 

53.5 – 70.0  Black gyttja with very, very faint laminations. Y2.5 2.5/1, strf 1, diffuse lim. Ag2, Ld2, Lso++. 

70 – 87.0  Very black gyttja. Y2.5 2.5/1, strf 0, diffuse lim. Ag2, Ld2. 

 
 Gaps in sediment at 36.0 – 38.0, 39.0 – 40.0, 43.0 – 43.5 and 56.0 – 56.5 cm. 

 

Subdrive 2A  

Depth (cm) Description 

0.0 – 6.5  Oasis, top 6.5 cm sediment missing. 

6.5 – 18.0  Light brown gyttja with faint traces of laminations. Y2.5 3/2 (very dark greyish-brown), strf 1, gradual lim. Ag2, Ld2, Lso+, Dg+. 

18.0 – 21.0  Brown gyttja with pulpy laminations up to 5.0 mm in thickness. Y2.5 2.3/1 (very dark grey), strf 4, sharp lim. Ag2, Ld1, Lso1 (Ld 25 %, 

Lso 75 %). 

21.0 – 25.5  Dark brown gyttja with traces of laminations. Y2.5 3/1, strf 1, very gradual lim. Ag2, Ld2, Lso+. 

25.5 – 28.0  Dark brown gyttja with pulpy  laminations (brown-grey) up to 8.0 mm in thickness in places. Y2.5 3/1, strf 4, sharp lim. Ag2, Ld1, Lso1 

(Ld 75 %, Lso 25 %). 

28.0 – 34.5  Dark brown gyttja homogenous in colour and texture. Y2.5 3/1, strf 0, very diffuse lim. Ag2, Ld2. 

34.5 – 44.0  Black gyttja homogenous in colour and texture. Y2.5 2.5/1, strf 0, very gradual lim. Ag2, Ld2, Dg+. 

44.0 – 60.5  Black gyttja containing a matrix of pulpy laminations (grey). Y2.5 2.5/1, strf 2/3, gradual lim. Ag2, Ld1, Lso1 (Ld 75 %, Lso 25 %), 

Dg+. 

60.5 – 66.0  Black gyttja homogenous in colour and texture. Y2.5 2.5/1 (black), strf 0, diffuse lim. Ag2, Ld2. 

66.0 – 77.0  Black-brown gyttja homogenous in colour and texture. Y2.5 2.5/1, strf 0, gradual lim. Ag2, Ld2, Lso+. 

77.0 – 94.0  Black-brown gyttja with matrix of laminations. Y2.5 2.5/1, strf 2, very gradual lim. Ag2, Ld2, Lso1 (Ld 75 %, Lso 25 %). 

94.0 – 95.5  Black-brown gyttja.  Y2.5 2.5/1, strf 0, very gradual lim. Ag2, Ld2, Lso+. 

95.5 – 100.0  Black-brown gyttja containing a matrix of pulpy (grey) laminations. Y2.5 2.5/1, strf 4, very gradual lim. Ag2, Ld1, Lso1. 
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Subdrive 2B  

Depth (cm) Description 

0.0 – 11.5  Dark brown-green gyttja containing pulpy matrix of laminations (dirty brown-yellow). Y2.5 2.5/1 (black), gradual lim, strf 4. Ag2, Ld1, 

Lso1. 

11.5 – 15.0  Dark brown gyttja containing traces of pulpy laminations. Y2.5 2.5/1, gradual lim, strf 2. Ag2, Ld2, Lso++. 

15.0 – 19.0  Very dark brown gyttja with traces of thin laminations. Y2.5 2.5/1, gradual lim, strf 1. Ag2, Ld2, Lso+. 

19.0 – 21.5  Dark brown gyttja with traces of thin laminations. Y2.5 2.5/1, gradual lim, strf 2. Ag2, Ld2, Lso1 (Ld 75 %, Lso 25 %). 

21.5 – 24.0  Very dark brown gyttja homogenous in colour and texture. Y2.5 2.5/1, gradual lim, strf 1. Ag2, Ld2. 

24.0 – 26.0  Black gyttja containing traces of a pulpy lamination matrix. Y2.5 2.5/1, gradual lim, strf 2. Ag2, Ld2, Lso++. 

26.0 – 29.0  Dark brown gyttja containing traces of a pulpy lamination matrix. Y2.5 2.5/1, gradual lim, strf 2. Ag2, Ld2, Lso++. 

29.0 – 31.0   Dark brown gyttja containing very thick (1.5 cm) laminations (dark grey). Y2.5 2.5/1, strf 3, gradual lim. Ag2, Ld1, Lso1. 

31.0 – 32.5  Brown-black gyttja, homogenous in colour and texture. Y2.5 2.5/1, strf 0, gradual lim. Ag2, Ld2. 

32.5 – 34.0  Brown-black gyttja containing thin (< 1.0 mm), straight, evenly spaced laminations. Y2.5 2.5/1, strf 3, very gradual lim. Ag2, Ld1, Lso1. 

34.0 – 36.0  Brown-black gyttja, homogenous in colour and texture. Y2.5 2.5/1, strf 0, gradual lim. Ag2, Ld2. 

36.0 – 36.5  Brown-black gyttja containing thin (< 1.0 mm), straight, evenly spaced laminations. Y2.5 2.5/1, strf 3, very gradual lim. Ag2, Ld1, Lso1. 

36.5 – 42.0  Black gyttja homogenous in colour and texture. Y2.5 2.5/1, strf 1, gradual lim. Ag2, Ld2, Lso+. 

42.0 – 47.0  Dark brown gyttja containing a pulpy matrix of laminations (grey). Y2.5 2.5/1, strf 1, very gradual lim. Ag2, Ld1, Lso1.  

 

Subdrive 3A  

Depth (cm) Description 

0.0 – 16.5  Oasis, top 16.5 cm sediment missing. 

16.5 – 29 .0 Brown gyttja with subtle stratification- light brown and dark brown laminations, 1.0 mm in thickness, < 1.0 mm spacing. Y2.5 3/1 (very 

dark grey), strf 4, sharp lim. Ld2, Ag2. 

29.0 – 30.0  Brown gyttja containing a matrix of pulpy laminations (dark grey in colour). Y2.5 3/1, strf 3, sharp lim. Ag2, Ld2, Lso++. 

30.0 – 33.5  Brown gyttja homogenous in colour and texture. Y2.5 3/1, strf 0, very gradual lim. Ag2, Ld2, Dg+. 
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33.5 – 34.5  Brown gyttja containing a matrix of pulpy laminations (dark grey in colour). Y2.5 3/1, strf 4, diffuse lim. Ag2, Ld2, Lso++. 

34.5 – 55.0  Dark brown-black gyttja homogenous in colour and texture. Y2.5 2.5/1 (black), strf 0, diffuse lim. Ag2, Ld2. 

55.0 – 81.0  Black gyttja homogenous in colour and texture. Y2.5 2.5/1, strf 0, very gradual lim. Ag2, Ld2.  

81.0 – 83.0  Black gyttja containing traces of pulpy laminations (grey). Y2.5 2.5/1, strf 1-2, very gradual lim. Ag2, Ld2, Lso++. 

83.5 – 88.0  Black gyttja containing pulpy laminations (grey), unevenly distributed and disjointed. Y2.5 2.5/1, strf 4, very gradual lim. Ag2, Ld1, Lso1. 

88.0 – 92.5  Black gyttja homogenous in colour and texture. Y2.5 2.5/1, strf 0, very gradual lim. Ag2, Ld2. 

92.5 – 100.0  Black gyttja containing traces of laminations (grey). Most prominent laminations from 96.0 – 98.0 cm in a left-down to right-up position. 

Y2.5 2.5/1, strf 2, very gradual lim. Ag2, Ld1, Lso1.  

 

Subdrive 3B  

Depth (cm) Description 

0.0 – 8.0  Brown-grey gyttja with some thin laminations (black to light grey in colour). Y2.5 2.5/1 (black), strf 1, very sharp lim. Ag2, Ld2. 

8.0 – 16.0  Gap in sediment. 

16.0 – 24.0  Brown-black gyttja containing pulpy laminations (dirty-yellow in colour). Laminations are not uniform in width, spacing or directionality. 

Y2.5 2.5/1, strf 4, very gradual lim. Ag2, Ld1, Lso1. 

24.0 – 24.5  A thick (0.5 mm) pulpy lamination intermixed with black gyttja. Y2.5 2.5/1, strf 4, very sharp lim. Ag2, Ld1, Lso1 (Ld 33 %, Lso 66 %). 

24.5 – 33.5  Brown-black gyttja containing pulpy laminations (dirty yellow). Laminations are not uniform in width, spacing or directionality. The 

thickest lamination occurs at 31.0 cm (2.0 – 3.0 mm). Y2.5 2.5/1, strf 4, very gradual lim. Ag2, Ld1, Lso1. 

33.5 – 50.5  Black gyttja homogenous in colour and texture. A single, straight grey-brown lamination, 3.0 mm thick occurs at 49.5 cm. Y2.5 2.5/1, 

strf 1, very sharp lim. Ag2, Ld2, Lso+. 

 

Subdrive 4A  

Depth (cm) Description 

0.0 – 11.0   Oasis, top 11.0 cm sediment missing. 

11.0 – 19.0  Brown gyttja containing a pulpy matrix (dirty yellow). Y2.5 3/1 (very dark grey), strf 3, sharp lim. Ag2, Ld1, Lso1. 
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19.0 – 24.5  Dark brown gyttja containing very thin (< 1.0 mm), evenly spaced, light laminations. Y2.5 3/1, strf 4, sharp lim. Ag2, Ld1, Lso1. 

24.5 – 27.5  Dark brown gyttja with very pulpy laminations, up to 6.0 mm in thickness (dirty yellow). Y2.5 3/1, strf 4, sharp lim. Ag2, Ld1, Lso1. 

27.5 – 33.5  Dark brown gyttja containing very thin (<1.0 mm), unevenly spaced, light laminations. Y2.5 3/1, strf 3, very gradual lim. Ag2, Ld1, Lso1. 

33.5 – 36.5  Dark brown gyttja with very pulpy laminations, up to 1.0 cm in thickness (dirty yellow). Y2.5 3/1, strf 4, sharp lim. Ag2, Ld1, Lso1. 

36.5 – 49.0  Very dark brown-black gyttja containing traces of light laminations. Y2.5 2.5/1 (black), strf 1, diffuse lim. Ag2, Ld2, Lso+. 

49.0 – 64.0  Black gyttja, homogenous in colour and texture. Y2.5 2.5/1, strf 0, very gradual lim. Ag2, Ld2.  

64.0 – 81.0  Black gyttja containing an uneven, matrix of laminations (dirty white). Y2.5 2.5/1, strf 2, very gradual lim. Ag2, Ld1, Lso1. 

81.0 – 85.0  Black gyttja, homogenous in colour and texture. Y2.5 2.5/1, strf 0, diffuse lim. Ag2, Ld1, Lso+.  

85.0 – 100.0  Black-brown gyttja containing traces of a pulpy lamination matrix. Y2.5 2.5/1, strf 2, diffuse lim. Ag2, Ld1, Lso1 (Ld 66 %, Lso 33 %). 

 

Subdrive 4B  

Depth (cm) Description 

0.0 – 2.0  Dark brown gyttja. Y2.5 2.5/1 (black), strf 1, very gradual lim. Ag2, Ld2, Lso+. 

2.0 – 4.0  Brown-grey gyttja containing a pulpy lamination matrix (yellow-brown). Y2.5 2.5/1, strf 4, very gradual lim. Ag2, Ld1, Lso1. 

4.0 – 15.0  Brown-black gyttja containing traces of pulpy laminations. Y2.5 2.5/1, strf 1, diffuse lim. Ag2, Ld2, Lso++. 

15.0 – 21.5  Brown-grey gyttja containing a pulpy lamination matrix (yellow-brown). Y2.5 2.5/1, strf 3, very gradual lim. Ag2, Ld1, Lso1. 

21.5 – 27.5  Brown-black gyttja containing traces of pulpy laminations. Y2.5 2.5/1, strf 1, diffuse lim. Ag2, Ld2, Lso++. 

27.5 – 30.5  Brown-grey gyttja containing a pulpy lamination matrix (yellow-brown). Y2.5 2.5/1, strf 3, very gradual lim. Ag2, Ld1, Lso1. 

30.5 – 33.0  Brown-black gyttja containing traces of pulpy laminations. Y2.5 2.5/1, strf 1, very gradual lim. Ag2, Ld2, Lso+. 

33.0 – 44.0  Brown-grey gyttja containing a pulpy lamination matrix (yellow-brown). Y10 3/1 (very dark grey), strf 3, very gradual lim, Ag2, Ld1, 

Lso1. 

44.0 – 71.0  Light brown-grey gyttja containing traces of pulpy laminations. One distinct lamination at 57.0 cm, 3.0 mm thick. Y10 3/1, strf 1, 

diffuse lim. Ag2, Ld2, Lso+.  

71.0 – 90.0 Brown-grey gyttja containing unevenly spaced laminations (white-grey). Y10 3/1, strf 2, diffuse lim. Ag2, Ld2, Lso++.  
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Subdrive 5A  

Depth (cm) Description 

0.0 – 3.5  Oasis, top 3.5 cm missing. 

3.5 – 8.0 Brown-grey gyttja containing traces of a pulpy lamination matrix. Y2.5 3/1 (very dark grey), strf 1, gradual lim. Ag2, Ld2, Lso++. 

8.0 – 8.5  Pulpy lamination (dirty yellow). Y2.5 3/1, strf 3, gradual lim. Ag2, Ld1, Lso1 (Ld 33 %, Lso 66 %). 

8.5 – 20.0  Brown-grey gyttja with some light laminations, unevenly spaces, < 1.0 mm thick. Y2.5 2.5/1 (black), strf 2, gradual lim. Ag2, Ld2, Lso++. 

20.0 – 20.5  Pulpy lamination (dirty yellow). Y2.5 3/1, strf 3, gradual lim. Ag2, Ld1, Lso1 (Ld 33 %, Lso 66 %). 

20.5 – 31.0  Brown-grey gyttja with some light laminations, unevenly spaces, < 1.0 mm thick. Y2.5 2.5/1 (black), strf 2, gradual lim. Ag2, Ld2, Lso++. 

31.0 – 31.5  Pulpy lamination (dirty yellow). Y2.5 3/1, strf 3, gradual lim. Ag2, Ld1, Lso1 (Ld 33 %, Lso 66 %). 

31.5 – 38.5  Brown gyttja, homogenous in colour and texture. Y2.5 2.5/1, strf 1. very gradual lim. Ag2, Ld2. 

38.5 – 39.0  Pulpy lamination (dirty yellow). Y2.5 3/1, strf 3, gradual lim. Ag2, Ld1, Lso1 (Ld 33 %, Lso 66 %). 

39.0 – 69.0   Brown-grey gyttja with some light laminations, unevenly spaces, < 1.0 mm thick. Y2.5 2.5/1 (black), strf 2, diffuse lim. Ag2, Ld2, Lso++. 

69.0 – 88.0  Brown-grey gyttja with some more pronounced light laminations than the previous section. Laminations are light in colour, spaced evenly 

(1.0 mm apart) and are < 1.0 mm in thickness. Also some pulpy laminations intermixed. Y2.5 3/1, strf 4, diffuse lim. Ag2, Ld1, Lso1.  

 

Subdrive 5B  

Depth (cm) Description 

0.0 – 9.0  Dark brown gyttja containing laminations. Laminations are faint in places, unevenly spaced and uneven in width (< 1.0 mm – 2.0 mm). 

Some laminations resemble the pulpy lamination matrix. Y10 3/1 (very dark grey), strf 3, very gradual lim. Ag2, Ld2, Lso++. 

9.0 – 20.0  Dark brown gyttja containing light coloured laminations (< 1.0 mm thick), fairly evenly spaced. Y10 3/1, strf 3, diffuse lim. Ag2, Ld2, Lso++. 

20.0 – 30.0  Dark brown gyttja containing laminations. Laminations are faint in places, unevenly spaced and uneven in width (< 1.0 mm – 2.0 mm). 

Some laminations resemble the pulpy lamination matrix. Y10 3/1 (very dark grey), strf 3, diffuse lim. Ag2, Ld2, Lso++. 

30.0 – 47.0  Dark brown gyttja with distinct, alternating light and black laminations, < 1.0 mm thick, fairly evenly spaced. Y10 3/1, strf 4, diffuse lim. 

Ag2, Ld1, Lso1. 

47.0 – 60.0  Dark brown gyttja containing laminations. Laminations are faint in places, unevenly spaced and uneven in width (< 1.0 mm – 2.0 mm). 
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Some laminations resemble the pulpy lamination matrix. Y10 3/1 (very dark grey), strf 3, very gradual lim. Ag2, Ld1, Lso1. 

60.0 – 64.0   Dark brown gyttja with distinct, alternating light and black laminations, < 1.0 mm thick, fairly evenly spaced. Y10 3/1, strf 4, diffuse lim. 

Ag2, Ld1, Lso1. 

64.0 – 67.0 Dark brown gyttja with faint light laminations, < 1.0 mm thick, fairly evenly spaced. Y10 3/1, strf 4, diffuse lim. Ag2, Ld1, Lso1. 

 

Drive 6  

Depth (cm) Description 

0.0 – 9.0 Oasis, top 9.0 cm missing. 

9.0 – 25.0   Black-brown gyttja, homogenous in colour and texture. Y2.5 2.5/1 (black), strf 0, gradual lim. Ag2, Ld2. 

25.0 – 31.0  Black-brown gyttja containing grana. Y2.5 2.5/1, strf 0, very gradual lim. Ag1, Ld2, Ga1. 

31.0 – 33.0  Black-brown gyttja with white laminations < 1.0 mm thick, spaced < 1.0 mm apart. Laminations are not continuous through the sediment 

section, but broken in places and faint in colour. Y2.5 3/1 (very dark grey), strf 3, gradual lim. Ag1, Ld1, Lso1, Ga1. 

33.0 – 38.5   Black-grey gyttja homogenous in colour and texture. Y2.5 3/1, strf 0, sharp lim. Ag2, Ld2. 

38.5 – 41.0  Black-grey gyttja with white laminations < 1.0 mm thick, spaced < 1.0 mm apart. Laminations are very distinct in the gyttja as well as 

continuous through the sediment section. Y2.5 3/1, strf 4, very sharp lim. Ag2, Ld1, Lso1. 

41.0 – 58.0   Brown-grey gyttja homogenous in colour and texture. Y2.5 3/1, strf 0, diffuse lim. Ag2, Ld2. 

58.0 – 91.5  Light brown-grey gyttja homogenous in colour and texture. Y2.5 4/1 (dark grey), strf 0, very gradual lim. Ag2, Ld2, Lso+. 

91.5 – 94.0  Grey gyttja homogenous in colour and texture. Y2.5 5/1 (grey), strf 0, very gradual lim. Ag2, Ld2. 

94.0 – 99.0  Light brown-grey gyttja homogenous in colour and texture. Y2.5 4/1 (dark grey), strf 0, very gradual lim. Ag2, Ld2, Lso+. 

 

Subdrive 7A 

Depth (cm) Description 

0.0 – 7.0  Oasis, top 7.0 cm missing. 

7.0 – 12.0  Dark brown-grey gyttja, homogenous in colour and texture. Y2.5 3/1 (very dark grey), strf 0, very gradual lim. Ld2, Ag2.  

12.0 – 15.0  Slightly lighter brown-grey gyttja homogenous in colour and texture. Y2.5 3/1, strf 0, very gradual lim. Ld2, Ag2. 
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15.0 – 16.0  Dark brown-grey gyttja, homogenous in colour and texture. Y2.5 3/1 (very dark grey), strf 0, very gradual lim. Ld2, Ag2.  

16.0 – 23.5  Marbled gyttja containing the dark brown-grey and slightly lighter brown-grey colours. Y2.5 3/1, strf 0, very gradual lim, Ld2, Ag2, Ga+.  

23.5 – 26.5  Grey gyttja containing traces of white laminations < 1.0 mm thick. Y2.5 3/1, strf 1, very gradual lim. Ld2, Ag2, Lc+, Ga+. 

26.5 – 36.0  Light grey-brown gyttja, homogenous in texture with some small patches of dark grey gyttja intermixed. Y2.5 4/1 (dark grey), strf 0, very 

gradual lim. Ld2, Ag2, Lc+, Ga+. 

36.0 – 40.0  Dark grey gyttja homogenous in colour and texture. Y2.5 3/1, strf 0, very gradual lim. Ld2, Ag2.  

40.0 – 42.0  Light grey-brown gyttja, homogenous in colour and texture. Y2.5 4/1, strf 0, gradual lim. Ld2, Ag2. 

42.0 – 49.0  Dark grey-brown gyttja homogenous in colour and texture. Y2.5 3/1, strf 0, diffuse lim. Ld2, Ag2. 

49.0 – 53.5  Black-grey gyttja homogenous in colour and texture. Y2.5 2.5/1 (black), strf 0, diffuse lim. Ld2, Ag2, Ga+. 

53.5 – 58.0  Medium grey-brown gyttja with slight marbling of colour, homogenous in texture. Y2.5 3/1, strf 0, gradual lim. Ld2, Ag2. 

58.0 – 59.5  Light grey-brown gyttja homogenous in colour and texture. Y2.5 4/1, strf 0, gradual lim. Ld2, Ag2, Ga+. 

59.5 – 60.5  Medium grey-brown gyttja, homogenous in colour and texture. Y2.5 3/1, strf 0, gradual lim. Ld2, Ag2. 

60.5 – 62.0  Light grey-brown gyttja homogenous in colour and texture. Y2.5 4/1, strf 0, gradual lim. Ld2, Ag2, Ga+. 

62.0 – 71.5  Medium to dark grey-brown gyttja with slight marbling of colour, homogenous in texture. Y2.5 3/1, strf 0, diffuse lim. Ld2, Ag2.  

71.5 – 76.0  Grey gyttja homogenous in colour and texture. Y2.5 4/1, strf 0, very gradual lim. Ld2, Ag2. 

76.0 – 78.0  Light grey gyttja homogenous in colour and texture. Y2.5 5/2 (greyish brown), strf 0, very gradual lim. Ld2, Ag2, Ga+. 

78.0 – 79.5  Grey gyttja homogenous in colour and texture. Y2.5 4/1, strf 0, very gradual lim. Ld2, Ag2. 

79.5 – 82.5  Light grey gyttja homogenous in colour and texture. Y2.5 5/2, strf 0, very gradual lim. Ld2, Ag2. 

82.5 – 85.0  Medium to dark grey-brown gyttja, homogenous in colour and texture. Y2.5 3/1, strf 0, very gradual lim. Ld2, Ag2, Ga+. 

85.0 – 92.0  Light grey gyttja homogenous in colour and texture. Y2.5 5/2, strf 0, very gradual lim. Ld2, Ag2. 

92.0 – 93.0  Slightly darker grey gyttja homogenous in texture. Y2.5 3/1, strf 0, gradual lim. Ld2, Ag2. 

93.0 – 94.0  Black-grey gyttja with slight marbling of colour. Y2.5 2.5/1, strf 0, sharp lim. Ld2, Ag2. 

94.0 – 96.0  Brown- grey gyttja homogenous in colour and texture. Y2.5 3/1, strf 0, sharp lim. Ld2, Ag2.  

96.0 – 100.0  Light grey gyttja homogenous in colour and texture. Y2.5 5/2, strf 0, very gradual lim. Ld2, Ag2. 
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Subdrive 7B  

Depth (cm) Description 

41.0 – 48.5  Dark grey gyttja homogenous in colour and texture. Y2.5 3.1 (very dark grey), strf 0, gradual lim. Ag2, Ld2. 

48.5 – 50.0   Medium-grey gyttja homogenous in colour and texture. Y2.5 4/1, strf 0, gradual lim. Ag2, Ld2. 

50.0 – 61.0  Black-grey gyttja homogenous in colour and texture. Y2.5 3/1, strf 1, very gradual lim. Ag2, Ld2, Lc+. 

61.0 – 74.5  Black-grey gyttja homogenous in colour and texture. Y2.5 3/1, strf 0, sharp lim. Ag2, Ld2. 

74.5 – 75.5  Grey gyttja. Y2.5 4/1, strf 1, gradual lim. Ag2, Ld2, Lc++. 

75.5 – 77.5  Black-grey gyttja homogenous in colour and texture. Y2.5 3/1, strf 0, diffuse lim. Ag2, Ld2. 

77.5 – 81.5  Light grey gyttja. Y2.5 5/1 (grey), strf 1, diffuse lim. Ag2, Ld2, Lc++. 

 

Subdrive 8A  

Depth (cm) Description 

0.0 – 10.5  Oasis, top 10.5 cm missing. 

10.5 – 16.5  Black-grey gyttja homogenous in colour and texture. Y2.5 3/1 (very dark grey), strf 0, very gradual lim. Ag2, Ld2. 

16.5 – 21.0  Grey gyttja containing traces of limus calcareous laminations. The most distinct lamination occurs at 17.4 cm, is 1.0 mm thick and 

fairly straight. Y2.5 4/1 (dark grey), strf 1, diffuse lim. Ag2, Ld2, Lc++. 

21.0 – 25.5  Light grey gyttja containing traces of limus calcareous. Y2.5 5/1 (grey), strf 0, very gradual lim. Ag2, Ld2, Lc+. 

25.5 – 26.0  Dark grey gyttja homogenous in colour and texture. Y2.5 3.1, strf 0, gradual lim. Ag2, Ld2. 

26.0 – 32.0  Dark grey gyttja containing white limus calcareous. The limus is not in regular laminations but irregular in spacing and varying in 

distinctiveness. Y2.5 3/1, strf 2, gradual lim. Ag2, Ld1, Lc1. 

 

Subdrive 8B 

Depth (cm) Description 

0.0 – 3.0   Grey gyttja. Y2.5 3/1 (very dark grey), strf 0, very gradual lim. Ag2, Ld2. 
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3.0 – 8.5  Grey gyttja intermixed with mustard coloured grana. Y2.5 5/4 (light olive brown), strf 0, gradual lim. Ag2, Ld1, Gs1. 

8.5 – 20.0  Grey-brown gyttja homogenous in colour and texture. Y2.5 3/1, strf 0, diffuse lim. Ag2, Ld2. 

20.0 – 23.0  Grey-brown gyttja containing traces of mustard coloured grana. Y2.5 3.1, strf 0, diffuse lim. Ag2, Ld2, Gs+. 

23.0 – 58.5  Grey-brown gyttja homogenous in colour and texture. Y2.5 3/1, strf 0, gradual lim. Ag2, Ld2. 

58.5 – 83.0  Black, sticky clay. Y2.5 2.5/1 (black), strf 0, gradual lim. Ld2, As2, Ga+. 

Core deformed (slumped) in the middle section, 23.0 – 52.0 cm. 

 

Drive 9  

Depth (cm) Description 

0.0 – 25.5  Black clay homogenous in colour and texture. Y2.5 2.5/1 (black), strf 0, sharp lim. Ld2, As2. 

25.5 – 27.5  Black, crumbly clay with a clear break in the sediment sequence, separating it from the next section. Y2.5 2.5/1, strf 0, sharp lim. Ld2, 

As2, Ga++. 

27.5 – 32.5  Black, crumbly clay. Y2.5 2.5/1, strf 0, very gradual lim. Ld2, As2. 

32.5 – 44.0  Black clay homogenous in colour and texture. Y2.5 2.5/1, strf 0, very gradual lim. Ld2, As2. 

44.0 – 47.0  Black clay homogenous in colour and texture, containing small gravel. Y2.5 2.5/1, strf 0, very gradual lim. Ld1, As2, Lg1. 
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Appendix 2 

Photographs of Sediment Cores. 

 

Subdrive 1A, 95.5 cm long, 89.0 – 184.5 cm depth. 

 

Subdrive1B, 87.0 cm long, 184.5 – 271.5 cm depth. 
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Subdrive 2A, 93.5 cm long, 247.5 – 341.0 cm depth. 

Subdrive 2B, 47.0 cm long, 341.0 – 388.0 cm depth. 

 

Subdrive 3A, 83.5 cm long, 236.5 – 320.0 cm depth. 
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Subdrive 3B, 50.5 cm long, 320.0 – 370.5 cm depth. 

Subdrive 4A, 89.0 cm long, 226.5 – 315.5 cm depth. 

 

Subdrive 4B, 90.0 cm long, 315.5 – 405.5 cm depth. 
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Subdrive 5A, 84.5 cm long, 369.0 – 453.5 cm depth. 

Subdrive 5B, 67.0 cm long, 453.5 – 520.5 cm depth.   

 

Drive 6, 90.0 cm long, 522.5 – 612.5 cm depth. 
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Subdrive 7A, 93.0 cm long, 572.5 – 665.5 cm depth. 

 

Subdrive 7B, 81.5 cm long, 665.5 – 747.0 cm depth. 

 

Subdrive 8A, 21.5 cm, 723.5 – 745.0 cm depth.  
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Subdrive 8B, 77.0 cm, 745.0 – 828.0 cm depth. 

Drive 9, 47.0 cm, 773.0 – 820.0 cm long. 
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Appendix 3. 

Taxonomic Authorities for Diatom Taxa Identified. 

 

Code Name Used in Thesis Other Name Authority Year 

AC047A Achnanthes lemmermannii Achnanthes lemmermannii Hustedt 1933 

AC9964 Achnanthes minutissima var. scotica Achnanthes minutissima var. scotica (Carter) Lange-Bertalot 1989 

AC9999 Achnanthes sp. Achnanthes sp.   

AC184A Achnanthes ziegleri Achnanthes ziegleri Lange-Bertalot 1991 

XXC987 Achnanthidium affine  Achnanthes minutissima var. affinis (Grunow) Lange-Bertalot in Lange-Bertalot & 
Krammer 

1989 

AC008A Achnanthidium exiguum  Achnanthes exigua Grunow 1880 

AC065A Achnanthidium exilis  Achnanthes exilis Kützing 1833 

AC149A Achnanthidium kranzii  Achnanthes kranzii Lange-Bertalot & Krammer 1989 

AC013A Achnanthidium minutissimum Achnanthes minutissima Kützing 1833 

AC037A Achnanthidium pyrenaicum  Achnanthes biasolettiana Kützing (Grunow) 1880 

AM011A Amphora copulata Amphora libyca Ehrenberg 1844 

AM065A Amphora holsatica Amphora holsatica Hustedt 1930 

AM013A Amphora inariensis Amphora inariensis Krammer 1980 

AM084A Amphora montana Amphora montana Krasske 1932 

AM001A Amphora ovalis Amphora ovalis Kützing 1844 

AM012A Amphora pediculus Amphora pediculus (Kützing) Grunow ex A. Schmidt 1875 

AM9999 Amphora sp. Amphora sp.   

AM008A Amphora thumensis Amphora thumensis (Mayer) Krieger 1929 

AM004A Amphora veneta Amphora veneta Kützing 1844 

AN9999 Anomoeoneis sp. Anomoeoneis sp.   

AN009A Anomoeoneis sphaerophora Anomoeoneis sphaerophora (Kützing) Pfitzer 1871 

AU002A Aulacoseira ambigua Aulacoseira ambigua (Grunow in Van Heurck) Simonsen 1979 

AU003D Aulacoseira granulata var. angustissima Aulacoseira granulata var. angustissima (O. Müller) Simonsen 1979 

BA001A Bacillaria paradoxa Bacillaria paradoxa Gmelin in Linnaeus 1788 
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CA002A Caloneis bacillum Caloneis bacillum (Grunow) Cleve 1894 

HAYQ01 Caloneis branderii Caloneis branderii (Hustedt) Krammer  1985 

CA035A Caloneis lauta Caloneis lauta Carter & Bailey-Watts  1981 

CA048A Caloneis molaris Caloneis molaris (Grunow) Krammer 1985 

CP007A Campylodiscus bicostatus Campylodiscus bicostatus W. Smith in Roper 1854 

CP9999 Campylodiscus sp. Campylodiscus sp.   

CO010A Cocconeis disculus Cocconeis disculus (Schumman) Cleve 1896 

CO006A Cocconeis neodiminuta Cocconeis neodiminuta Pantocsek 1902 

CO001B Cocconeis placentula var. euglypta Cocconeis placentula var. euglypta (Ehrenberg) Grunow 1884 

CO001D Cocconeis placentula var. klinoraphis Cocconeis placentula var. klinoraphis Geitler 1927 

CO001C Cocconeis placentula var. lineata Cocconeis placentula var. lineata (Ehrenberg) Van Heurck 1885 

CO001A Cocconeis placentula var. placentula Cocconeis placentula var. placentula Ehrenberg 1838 

CO001E Cocconeis pseudolineata Cocconeis placentula var. 
pseudolineata 

Geitler 1927 

CO9999 Cocconeis sp. Cocconeis sp.   

NA056A Craticula cuspidata Navicula cuspidata (Kützing) Kützing 1844 

NA022A Craticula halophila Navicula halophila (Grunow ex Van Heurck) Cleve 1894 

NA752A Craticula riparia Navicula riparia Hustedt 1942 

CC002A Cyclostephanos invisitatus Cyclostephanos invisitatus Theriot, Stoermer & Hakansson 1987 

CC003A Cyclostephanos tholiformis Cyclostephanos tholiformis Stoermer, Hakansson & Theriot 1987 

CY010A Cyclotella comensis Cyclotella comensis Grunow in Van Heurck 1882 

CY059A Cyclotella cyclopuncta Cyclotella cyclopuncta Hakansson & Carter 1990 

CY003A Cyclotella meneghiniana Cyclotella meneghiniana Kützing 1844 

CY009A Cyclotella ocellata Cyclotella ocellata Pantocsek 1902 

CY055A Cyclotella schummani Cyclotella schummani (Grunow) Hakansson 1990 

CY9999 Cyclotella sp. Cyclotella sp.   

CM022A Cymbella affinis Cymbella affinis Kützing 1844 

CM006A Cymbella cistula Cymbella cistula (Ehrenbergin Hempr. & Ehrenberg) Kirchner 1878 

CM007A Cymbella cymbiformis Cymbella cymbiformis Agardh 1830 

CM018A Cymbella gracilis Cymbella gracilis (Rabenhorst) Cleve 1894 

HAYQ03 Cymbella hungarcia Cymbella hungarcia Grunow  
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CM086A Cymbella leptoceros Cymbella leptoceros (Ehrenberg) Kützing 1844 

CM023A Cymbella pusilla Cymbella pusilla Grunow ex A. Schmidt 1875 

HAYQ04 Cymbella socialis Cymbella socialis   

CM9999 Cymbella sp. Cymbella sp.   

HAYQ05 Cymbella subalpina Cymbella subalpina Hustedt 1942 

CM109A Cymbella tumidula Cymbella tumidula Grunow 1875 

CM002A Cymbella turgida f. angulata Cymbella turgida f. angulata Gregory 1856 

CM002A Cymbella turgidula Cymbella turgidula Grunow 1875 

CM001B Cymbella ventricosa Cymbella ventricosa Kützing 1844 

DP009A Diploneis elliptica Diploneis elliptica (Kützing) Cleve 1894 

DP067A Diploneis modica Diploneis modica Hustedt 1945 

DP005A Diploneis smithii Diploneis smithii (Brébisson ex W. Smith) Cleve 1894 

DP9999 Diploneis sp. Diploneis sp.   

CY004A Discostella stelligera Cyclotella stelligera (Cleve & Grunow in Cleve) Van Heurck 1882 

EL001A Ellerbeckia arenaria Ellerbeckia arenaria (Moore ex Ralfs) R.M. Crawford 1988 

CM024A Encyonema muelleri Cymbella muelleri Hustedt 1937 

CM010A Encyonema perpusillum Cymbella perpusilla A. Cleve 1895 

CM045A Encyonema prostrata Cymbella prostrata Berkeley 1880 

CM103A Encyonema silesiacum  Cymbella silesiaca Bleisch ex Rabenhorst 1864 

CM049A Encyonopsis falaisensis Cymbella falaisensis (Grunow) Krammer & Lange-Bertalot 1985 

CM004A Encyonopsis microcephala Cymbella microcephala Grunow in Van Heurck 1880 

EP007A Epithemia adnata Epithemia adnata (Kützing) Rabenhorst 1853 

EP021A Epithemia smithii Epithemia smithii Carruthers 1864 

EP001A Epithemia sorex Epithemia sorex Kützing 1844 

EP9999 Epithemia sp. Epithemia sp.   

EP004A Epithemia turgida Epithemia turgida (Ehrenberg) Kützing 1844 

EU009A Eunotia exigua Eunotia exigua (Brébisson ex Kützing) Rabenhorst 1864 

EU110A Eunotia minor Eunotia minor (Kützing) Grunow in Van Heurck 1881 

EU111A Eunotia soleirolii Eunotia soleirolii (Kützing) Rabenhorst 1864 

EU9999 Eunotia sp. Eunotia sp.   

EU021A Eunotia sudetica Eunotia sudetica O. Müller 1898 
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NA452A Fallacia insociabilis  Navicula insociabilis Krasske 1932 

NA010A Fallacia pygmaea Navicula pygmaea Kützing 1849 

NA676A Fallacia tenera Navicula tenera Hustedt 1937 

NA617A Fistulifera saprophila Navicula saprophila Lange-Bertalot & Bonik 1976 

FR026A Fragilaria bidens Fragilaria bidens Heiberg 1863 

FR009A Fragilaria capucina Fragilaria capucina Desmazières 1825 

FR009L Fragilaria capucina var. amphicephala Fragilaria capucina var. amphicephala (Grunow) Lange-Bertalot 1991 

HAYQ06 Fragilaria fonticola Fragilaria fonticola Hustedt 1995 

SY014A Fragilaria goulardii Fragilaria goulardii (Brébisson ex Grunow) Lange-Bertalot 1880 

FR045A Fragilaria parasitica Fragilaria parasitica (W. Smith) Grunow in Van Heurck 1881 

FR059A Fragilaria radians Fragilaria radians (Kützing) Williams & Round 1987 

FR9999 Fragilaria sp. Fragilaria sp.   

SY016A Fragilaria vaucheriae Fragilaria capucina var. vaucheriae (Kützing) Lange-Bertalot 1980 

NA317A Geissleria decussis Navicula decussis Østrup 1910 

HAYQ16 Geissleria dolomitica Navicula dolomitica W. Bock 1970 

NA433C Geissleria paludosa  Navicula ignota var. palustris (Hustedt) J.W.G. Lund 1946 

NA128A Geissleria schoenfeldii Navicula schoenfeldii Hustedt 1930 

GO001A Gomphoneis olivaceum Gomphonema olivaceum (Hornemann) Brébisson 1838 

GO003A Gomphonem angustatum Gomphonem angustatum (Kützing) Rabenhorst 1864 

GO006A Gomphonema acuminatum Gomphonema acuminatum Ehrenberg 1832 

GO020A Gomphonema affine Gomphonema affine Kützing 1844 

HAYQ09 Gomphonema amoenum Gomphonema amoenum Lange-Bertalot  1985 

GO073A Gomphonema angustum Gomphonema angustum Agardh 1831 

HAYQ10 Gomphonema anjae Gomphonema anjae Ludwig & Schnittler  1996 

HAYQ11 Gomphonema aquaemineralis Gomphonema aquaemineralis Ludwig & Schnittler  1997 

GO019A Gomphonema augur Gomphonema augur Ehrenberg 1840 

HAYQ08 Gomphonema augur var. turris Gomphonema augur var. turris Lange-Bertalot in Krammer & Lange-Bertalot 1985 

GO029A Gomphonema clavatum Gomphonema clavatum Reichardt 1999 

GO024A Gomphonema clevei Gomphonema clevei Fricke in A. Schmidt 1902 

HAYQ12 Gomphonema contraturris Gomphonema contraturris Lange-Bertalot & Reichardt in Lange-Bertalot  1993 

HAYQ13 Gomphonema exigua Gomphonema exigua Kützing  1844 

http://www.algaebase.org/search/bibliography/detail/?biblio_id=Ka816917e51a671ab
http://www.algaebase.org/search/bibliography/detail/?biblio_id=Ka816917e51a671ab
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GO004A Gomphonema gracile Gomphonema gracile Ehrenberg 1838 

GO074A Gomphonema hebridense Gomphonema hebridense Gregory 1854 

GO043A Gomphonema insigne Gomphonema insigne Gregory 1856 

GO050A Gomphonema minutum Gomphonema minutum (Agardh) Agardh 1831 

HAYQ15 Gomphonema parallelistriatum Gomphonema parallelistriatum Lange-Bertalot & Reichardt 1993 

GO013A Gomphonema parvulum Gomphonema parvulum Lange-Bertalot & Reichardt 1993 

GO013C Gomphonema parvulum var. 
exilissimum 

Gomphonema parvulum var. 
exilissimum 

Grunow in Van Heurck 1880 

GO055A Gomphonema pseudoaugur Gomphonema pseudoaugur Lange-Bertalot 1979 

GO080A Gomphonema pumilum Gomphonema pumilum (Grunow) Reichardt & Lange-Bertalot 1991 

GO058A Gomphonema rhombicum Gomphonema rhombicum Fricke in A. Schmidt 1904 

GO9999 Gomphonema sp. Gomphonema sp.   

GO011A Gomphonema subclavatum Gomphonema subclavatum (Grunow in Schneider) Grunow in Van Heurck 1880 

GO023A Gomphonema truncatum Gomphonema truncatum Ehrenberg 1832 

GOM0118A Gomphonema utae Gomphonema utae Lange-Bertalot & Reichardt in Reichardt 1999 

GO025H Gomphonema vibrio Gomphonema vibrio Ehrenberg 1843 

GY9999 Gyrosigma sp. Gyrosigma sp.   

HA001B Hantzschia amphioxys Hantzschia amphioxys (Ehrenberg) Grunow 1877 

AC018A Karayevia laterostrata  Achnanthes laterostrata Hustedt 1933 

AC032A Lemnicola hungarica Achnanthes hungarcia (Grunow) Grunow in Cleve & Grunow 1880 

NA025A Luticola mutica Navicula mutica Kützing 1844 

NA529A Luticola nivalis Navicula nivalis Ehrenberg 1853 

NA025J Luticola ventricosa Navicula mutica var. ventricosa (Kützing) Cleve & Grunow 1880 

MA009A Mastogloia baltica Mastogloia baltica Grunow in van Heurck 1880 

NA084A Mayamaea atomus Navicula atomus (Kützing) Grunow 1860 

NA037A Navicula angusta Navicula angusta Grunow 1860 

NA745A Navicula capitatoradiata Navicula capitatoradiata Germain 1981 

NA051A Navicula cari Navicula cari Ehrenberg 1836 

NA171A Navicula constrans Navicula constrans Hustedt in Lange-Bertalot 1980 

NA007A Navicula cryptocephala Navicula cryptocephala Kützing 1844 

NA003A Navicula cryptotenella Navicula radiosa Kützing 1844 



371 

 

NA751A Navicula cryptotonella Navicula cryptotonella Lange-Bertalot 1985 

NA060A Navicula digitoradiata Navicula digitoradiata Gregory 1861 

NA415A Navicula harderi Navicula harderi Hustedt in Brendemuhl 1948 

NA004A Navicula hungarcia Navicula hungarcia Grunow 1860 

NA757A Navicula libonensis Navicula libonensis Schoeman 1970 

NA748A Navicula lucinensis Navicula lucinensis Hustedt 1950 

NA030A Navicula menisculus Navicula menisculus Schumman 1867 

NA042A Navicula minima Navicula minima Grunow in Van Heurck 1880 

NA123A Navicula modica Navicula modica Hustedt 1945 

NA024A Navicula oblonga Navicula oblonga (Kützing) Kützing 1844 

NA555A Navicula paramutica Navicula paramutica Bock 1963 

NA562E Navicula peregrina Navicula peregrina (Ehrenberg) Kützing 1844 

NA589A Navicula pseudotuscula Navicula pseudotuscula Hustedt 1943 

NA590A Navicula pseudoventralis Navicula pseudoventralis Hustedt 1953 

XXC957 Navicula pupula var. nyassenis Navicula pupula var. nyassenis (O. Müller) Lange-Bertalot  

NA008A Navicula rhynchocephala Navicula rhynchocephala Kützing 1844 

NA090A Navicula rotunda Navicula rotunda Hustedt 1945 

NA035A Navicula salinarum Navicula salinarum (Grunow in Van Heurck) Cleve 1896 

NA110A Navicula schadei Navicula schadei Krasske 1929 

NA764A Navicula schroterii Navicula schroterii Meister 1932 

NA9999 Navicula sp. Navicula sp.   

NA134A Navicula subminiscula Navicula subminuscula Manguin 1942 

NA114A Navicula subrotundata Navicula subrotundata Hustedt 1945 

NA743A Navicula subrynchocephala Navicula subrynchocephala Hustedt 1935 

NA063A Navicula trivialis Navicula trivalis Lange-Bertalot 1980 

NA144A Navicula utermoehlii Navicula utermoehlii Hustedt 1943 

NA054A Navicula veneta Navicula veneta Kützing 1844 

NA027E Navicula viridulacalcis Navicula viridula var. linearis Hustedt 1937 

NA168A Navicula vitabunda Navicula vitabunda Hustedt 1930 

NE036A Neidium ampliatum Neidium ampliatum (Ehrenberg) Krammer in Krammer & Lange-
Bertalot 

1985 
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NE007A Neidium dubium Neidium dubium (Ehrenberg) Cleve 1894 

NE002A Neidium productum Neidium productum (W.Smith) Cleve  1894 

NE9999 Neidium sp. Neidium sp.   

AF_3904 Nitzschia adapta Nitzschia adapta Stoermer, Kreis & Andresen  1999 

NI014A Nitzschia amphibia var. amphibia Nitzschia amphibia var. amphibia Grunow 1862 

HAYQ17 Nitzschia amphibia var. frauenfeldii Nitzschia amphibia var. frauenfeldii O. Müller 1895 

NI210A Nitzschia bacilliformis Nitzschia bacilliformis Hustedt 1922 

NI073A Nitzschia brevissima Nitzschia brevissima Grunow in Van Heurck 1881 

NI010A Nitzschia communis Nitzschia communis Rabenhorst 1860 

NI082A Nitzschia confinis Nitzschia confinis Hustedt 1949 

HAYQ18 Nitzschia consummata Nitzschia consummata Hustedt  

AF_4053 Nitzschia elliptica Nitzschia elliptica Hustedt  

AF_3918 Nitzschia epiphytica Nitzschia epiphytica O. Müller 1905 

AF_3919 Nitzschia epiphyticoides Nitzschia epiphyticoides Hustedt 1949 

NI002A Nitzschia fonticola Nitzschia fonticola Grunow in Van Heurck 1881 

NI212A Nitzschia fossilis Nitzschia fossilis (Grunow) Grunow in Van Heurck 1881 

NI008A Nitzschia frustulum Nitzschia frustulum (Kützing) Grunow in Cleve & Grunow 1880 

AF_3936 Nitzschia goetzeana Nitzschia goetzeana Hustedt 1921 

NI209A Nitzschia incognita Nitzschia incognita Legler & Krasske 1940 

NI043A Nitzschia inconspicua Nitzschia inconspicua Grunow 1862 

NI044A Nitzschia intermedia Nitzschia intermedia Hantzsch ex Cleve & Grunow 1880 

NI121A Nitzschia kützingingioides Nitzschia Kützingingioides Hustedt 1959 

HAYQ19 Nitzschia lanceolata Nitzschia lanceolata W. Smith 1853 

NI221A Nitzschia lancettula Nitzschia lancettula O. Müller 1905 

NI031A Nitzschia linearis Nitzschia linearis W. Smith 1853 

AF_4045 Nitzschia nyassensis Nitzschia nyassensis O. Müller 1905 

NI009A Nitzschia palea Nitzschia palea (Kützing) W. Smith 1856 

NI033A Nitzschia paleacea Nitzschia paleacea (Grunow in Cleve & Grunow) Grunow in Van 
Heurck 

1881 

NI005A Nitzschia perminuta Nitzschia perminuta (Grunow) M. Peragallo  1903 

NI004A Nitzschia punctata Nitzschia punctata (W. Smith) Grunow 1878 
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NI152A Nitzschia pusilla Nitzschia pusilla Grunow 1862 

NI025A Nitzschia recta Nitzschia recta Hantzsch 1861 

HAYQ20 Nitzschia rostellata Nitzschia rostellata Hustedt 1923 

NI164B Nitzschia sinuata var. delognei Nitzschia sinuata var. delognei (Grunow in Van Heurck) Lange-Bertalot 1980 

NI166A Nitzschia sociabilis Nitzschia sociabilis Hustedt 1957 

NI206A Nitzschia solita Nitzschia solita Hustedt 1953 

NI9999 Nitzschia sp. Nitzschia sp.   

AF_4027 Nitzschia spiculum Nitzschia spiculum Hustedt  

NI205A Nitzschia stompsii Nitzschia stompsii Cholnoky 1963 

AF_4030 Nitzschia subcommunis Nitzschia subcommunis Hustedt 1949 

HAYQ21 Nitzschia subrostrata Nitzschia subrostrata Hustedt 1942 

NI183A Nitzschia thermalis Nitzschia thermalis Hilse in Rabenhorst 1862 

NI047A Nitzschia tropica Nitzschia tropica Hustedt 1949 

NI186A Nitzschia valdecostata Nitzschia valdecostata Lange-Bertalot & Simonsen 1978 

NI038A Nitzschia valdestriata Nitzschia valdestriata Aleem & Hustedt 1951 

HAYQ23 Nitzschia vanoyei Nitzschia vanoyei Cholnoky  

NA067A Parlibellus crucicula Navicula crucicula (W. Smith) Donkin  1871 

PI012A Pinnularia borealis Pinnularia borealis Ehrenberg 1843 

PI012D Pinnularia borealis var. rectangularis Pinnularia borealis var. rectangularis Carlson 1913 

PI011A Pinnularia microstauron Pinnularia microstauron (Ehrenberg) Cleve 1891 

PI011G Pinnularia microstauron var. brebissonii Pinnularia microstauron var. brebissonii (Kützing) Ant. Mayer 1913 

PI161A Pinnularia subrostrata Pinnularia subrostrata (A. Cleve) Cleve-Euler  1955 

HAYQ24 Pinnularia superdivergentissima Pinnularia superdivergentissima Chaumont & Germain  1976 

NA050A Placoneis clementis Navicula clementis Grunow 1882 

NA057A Placoneis elginensis Navicula elginensis Gregory 1861 

NA065A Placoneis gastrum Navicula gastrum (Ehrenberg) Kützing 1844 

AC016A Planothidium delicatulum Achnanthes delicatula Kützing (Grunow) 1880 

AC158A Planothidium granum Achnanthes grana Hohn & Hellerman 1963 

AC001A Planothidium lanceolatum  Achnanthes lanceolatata (Brébisson) Grunow in Cleve & Grunow 1880 

NI083A Psammodictyon constrictum Nitzschia constricta (Gregory) Grunow  1880 

AC163A Psammothidium helveticum  Achnanthes helvetica (Hustedt) Lange-Bertalot in Lange-Bertalot & 1989 
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Krammer 

AC044A Psammothidium levanderi Achnanthes levanderi Hustedt 1933 

AC119A Psammothidium sacculum Achnanthes saccula J.R. Carter in J.R. Carter & Watts 1981 

AC161A Psammothidium ventralis Achnanthes ventralis (Krasske) Lange-Bertalot 1989 

FR006A Pseudostaurosira brevistriata Fragilaria brevistrata Grunow in Van Heurck 1885 

RC002A Rhoicosphenia abbreviata Rhoicosphenia abbreviata (C.Agardh) Lange-Bertalot  1980 

RH010A Rhopalodia acuminata Rhopalodia acuminata Krammer 1987 

RH009A Rhopalodia brebissonii Rhopalodia brebissonii Krammer 1987 

RH001A Rhopalodia gibba Rhopalodia gibba (Ehrenberg) O. Müller 1895 

RH9999 Rhopalodia sp. Rhopalodia sp.   

AF_4614 Rhopalodia vermicularis Rhopalodia vermicularis O. Müller 1895 

AC105A Rossithidium petersennii  Achnanthes petersenii Hustedt 1937 

AC035A Rossithidium pusillum  Achnanthes pusilla Grunow in Cleve & Grunow 1880 

NA429A Sellaphora hustedtii Navicula Hustedtii Krasske 1923 

NA014A Sellaphora pupula Navicula pupula var. pupula Kützing 1844 

NA014D Sellaphora pupula var. mutata Navicula pupula var. mutata (Krasske) Hustedt 1930 

NA005A Sellaphora seminulum Navicula seminulum Grunow 1860 

FR064A Stauroforma exiguiformis Fragilaria exigua Grunow in Cleve & Moller 1878 

SA001A Stauroneis anceps Stauroneis anceps Ehrenberg 1843 

SA9999 Stauroneis sp. Stauroneis sp.   

FR002A Staurosira construens Fragilaria construens f. construens (Ehrenberg) Grunow 1862 

FR002C Staurosira construens var. venter Fragilaria construens f. venter (Ehrenberg) Grunow in Van Heurck 1881 

FR018A Staurosira elliptica Fragilaria elliptica Schumman 1867 

FR011A Staurosirella lapponica Fragilaria lapponica Grunow in Van Heurck 1881 

FR014A Staurosirella leptostauron Fragilaria leptostauron (Ehrenberg) Hustedt 1931 

FR001A Staurosirella pinnata Fragilaria pinnata var. pinnata Ehrenberg 1843 

ST014A Stephanodiscus medius Stephanodiscus medius Hakansson 1986 

ST010A Stephanodiscus parvus Stephanodiscus parvus Stoermer & Hakansson 1984 

ST019A Stephanodiscus rotula Stephanodiscus rotula (Kützing) Hendey 1964 

ST9999 Stephanodiscus sp. Stephanodiscus sp.   

ST001A Stephanodiscus tenuis Stephanodiscus hantzschii Grunow in Cleve & Grunow 1880 
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SU001A Surirella angusta Surirella angusta Kützing 1844 

SU024B Surirella capronii Surirella capronii Brébisson ex Kitton 1869 

SU9999 Surirella sp. Surirella sp.     

FR057A Tabularia fasciculata Fragilaria fasciculata (Agardh) Lange-Bertalot sensu lato 1980 

NI200A Tryblionella compressa Nitzschia compressa (Bailey) Boyer 1916 

NI017A Tryblionella gracilis Nitzschia gracilis Hantzsch 1860 

SY003A Ulnaria acus Fragilaria acus Kützing 1844 

SY011A Ulnaria delicatissima Fragilaria delicatissima W. Smith 1853 

SY001F Ulnaria ulna var. aequalis Fragilaria ulna var. aequalis (Kützing) Pankow, Haendel & Richter 1991 

SY001H Ulnaria ulna var. biceps Fragilaria ulna var. biceps (Kützing) Compère 1991 

HAYQ07 Ulnaria ulna var. claviceps Fragilaria ulna var. claviceps Hustedt 1937 

SY001A Ulnaria ulna var. ulna Fragilaria ulna var. ulna (Nitzsch) Ehrenberg 1836 
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Plate I. 

 

1. Aulacoseira granulata var. angustissima (1A 30.5 cm, absolute depth 119.5 cm). 

 

2.  Aulacoseira granulata var. angustissima (1A 30.5 cm, absolute depth 119.5 cm). 

The separation spine is indicated. 

 

3.  Aulacoseira granulata var. angustissima (4A 69.0 cm, absolute depth 295.5 cm). 

 

4. Aulacoseira granulata var. angustissima (4B 168.0 cm, absolute depth 394.5 

cm). The separation spine is indicated. 

 

5. Aulacoseira granulata var. angustissima (4B 168.0 cm, absolute depth 394.5 

cm). 

 

6. Aulacoseira granulata var. angustissima (5B 140.5 cm, absolute depth 509.5 

cm). 
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Plate I. 

 

 
1 2 

3 

6 

4 

5 



378 

 

Plate II. 

Cyclotella species dissolution at Lake Hayq. 

 

Valve dissolution was assessed during counting using a binary system with valves 

marked as either ‘0’ for visibly dissolved or ‘1’ being non-dissolved or ‘pristine’. 

However, significant differences in the degree of dissolution can be observed in the 

photographs. 

 

1. Cyclotella cyclopuncta (1B 110.5 cm, absolute depth 199.5 cm). Pristine 

valve. 

 

2. Cyclotella cyclopuncta (7B 145.0 cm, absolute depth 716.5 cm). Near pristine 

valve. 

 

3. Cyclotella ocellata (7B 163.0 cm, absolute depth 734.5 cm). Extremely 

degraded valve. 

 

4. Cyclotella ocellata (7B 148.0 cm, absolute depth 719.5 cm). Extremely 

degraded valve. 

 

5. Cyclotella ocellata (7B 145.0 cm, absolute depth 716.5 cm). Extremely 

degraded valve. 

 

6. Cyclotella ocellata (7B 163.0 cm, absolute depth 734.5 cm). Extremely 

degraded valve. 

 

7. Stephanodiscus parvus (6 3.0 cm, absolute depth 524.5 cm). Degraded valve. 

No pristine valves were found during counting. 

 

8. Stephanodiscus parvus (6 5.0 cm, absolute depth 526.5 cm). Extremely 

degraded valve. 
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9. Two Stephanodiscus parvus valves (6 5.0 cm, absolute depth 526.5 cm). 

Extremely degraded valves. 
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Plate II. 

 

 

 

  

2 1 3 

4 5 6 

9 8 7 



381 

 

Plate III.  

 

1. Ulnaria acus (1B 127.5 cm, absolute depth 216.5 cm). 

 

2. Ulnaria acus (1B 127.5 cm, absolute depth 216.5 cm). 

 

3. Fragilaria radians (4A 53.5 cm, absolute depth 280.0 cm). 

 

4. Fragilaria radians (4A 53.5 cm, absolute depth 280.0 cm). 

 

5. Fragilaria radians (4A 53.5 cm, absolute depth 280.0 cm). 
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Plate III. 
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Plate IV.  

 

1. Ulnaria delicatissima (1B 117.5 cm, absolute depth 206.5 cm). 

 

2. Central area of Ulnaria delicatissima (1B 117.5 cm, absolute depth 206.5 cm). 

 

3. Ulnaria var. ulna (1A 74.5 cm, absolute depth 163.5 cm). The rimoportula is 

indicated. 

 

4. Central area of Ulnaria var. ulna (1A 90.5 cm, absolute depth 179.5 cm). 

 

5. Ulnaria var. ulna (1B 167.5 cm, absolute depth 256.5 cm). The rimoportula is 

indicated. 
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Plate IV. 
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Plate V. 

 

1. Pseudostaurosira brevistriata (6 15.0 cm, absolute depth 536.5 cm). 

 

2. Staurosirella pinnata (6 9.0 cm, absolute depth 530.5 cm). 

 

3. Gomphonema parvulum (4A 69.0 cm, absolute depth 295.5 cm). 

 

4. Gomphonema affine (4A 19.0 cm, absolute depth 245.5 cm). 

 

5. Amphora copulata (6 15.0 cm, absolute depth 536.5 cm).. 

 

6. Nitzschia fonticola (6 7.0 cm, absolute depth 528.5 cm). 

 

7. Gomphonema pumilum (4A 43.0 cm, absolute depth 269.5 cm). 

 

8. Cymbella muelleri (1B 110.5 cm, absolute depth 199.5 cm). 

 

9. Amphora pediculus (6 7.0 cm, absolute depth 528.5 cm). 

 

10. Fragilaria vaucheriae (1B 145.5 cm, absolute depth 234.5 cm). 
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Plate V. 
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Plate VI. 

 

1. Sellaphora pupula (4A 19.0 cm, absolute depth 245.5 cm). 

 

2. Nitzschia lancettula (6 7.75 cm, absolute depth 529.25 cm).  

 

3. Nitzschia epiphytica (6 15.0 cm, absolute depth 536.5 cm).  

 

4. Navicula cryptotenella (1B 140.5 cm, absolute depth 229.5 cm). A 

microsphere is indicated.  

 

5. Nitzschia subcommunis (5B 112.5 cm, absolute depth 481.5 cm). 

 

6. Nitzschia amphibia var. amphibia (1B 110.5 cm, absolute depth 199.5 cm). 

 

7. Hantzschia amphioxys (6 7.75 cm, absolute depth 529.25 cm).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Plate VI. 
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