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Abstract

We consider a quantum system whose unperturbed form consists of a self-adjoint −∆

operator on a 2-dimensional compact Riemannian manifold, which may or may not have

a boundary. Then as a perturbation, we add a delta potential / point scatterer at some

select point p. The perturbed self-adjoint operator is constructed rigorously by means

of self-adjoint extension theory. We also consider a corresponding classical dynamical

system on the cotangent/cosphere bundle, consisting of geodesic flow on the manifold,

with specular reflection if there is a boundary.

Chapter 2 describes the mathematics of the unperturbed and perturbed quantum

systems, as well as outlining the classical dynamical system. Included in the discussion

on the delta-perturbed quantum system is consideration concerning the strength of the

delta potential. It is reckoned that the delta potential effectively has negative infinitesimal

strength.

Chapter 3 continues on with investigations from [KMW10], concerned with perturbed

eigenfunctions that approximate to a linear combination of only two “surrounding”

unperturbed eigenfunctions. In Thm. 4.4 of [KMW10], conditions are derived under

which a sequence of perturbed eigenfunctions exhibits this behaviour in the limit. The

approximating pair linear combinations belong to a class of quasimodes constructed

within [KMW10]. The aim of Chapter 3 in this thesis is to improve on the result in

[KMW10].

In Chapter 3, preliminary results are first derived constituting a broad consideration

of the question of when a perturbed eigenfunction subsequence approaches linear

combinations of only two surrounding unperturbed eigenfunctions. Afterwards, the

central result of this Chapter, namely Thm. 3.4.1, is derived, which serves as an improved

version of Thm. 4.4 in [KMW10]. The conditions of this theorem are shown to be weaker

than those in [KMW10]. At the same time though, the conclusion does not require the

approximating pair linear combinations to be quasimodes contained in the domain of the

perturbed operator. Cor. 3.5.2 allows for a transparent comparison between the results

of this Chapter and [KMW10].
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Chapter 4 deals with the construction of non-singular rank-one perturbations for which

the eigenvalues and eigenfunctions approximate those of the delta-perturbed operator.

This is approached by means of direct analysis of the construction and formulae for

the rank-one-perturbed eigenvalues and eigenfunctions, by comparison that of the delta-

perturbed eigenvalues and eigenfunctions. Successful results are derived to this end, the

central result being Thm. 4.4.19. This provides conditions on a sequence of non-singular

rank-one perturbations, under which all eigenvalues and eigenbasis members within an

interval converge to those of the delta-perturbed operator.

Comparisons have also been drawn with previous literature such as [Zor80], [AK00]

and [GN12]. These deal with rank-one perturbations approaching the delta potential

within the setting of a whole Euclidean space Rn, for example by strong resolvent

convergence, and by limiting behaviour of generalised eigenfunctions associated with

energies at every E ∈ (0,∞). Furthermore in Chapter 4, the suggestion from Chapter 2

that the delta potential has negative infinitessimal strength is further supported, due to

the coefficients of the approximating rank-one perturbations being negative and tending

to zero. This phenomenon is also in agreement with formulae from [Zor80], [AK00] and

[GN12].

Chapter 5 first reviews the correspondence between certain classical dynamics and

equidistribution in position space of almost all unperturbed quantum eigenfunctions,

as demonstrated for example in [MR12]. Equidistribution in position space of almost

all perturbed eigenfunctions, in the case of the 2D rectangular flat torus, is also

reviewed. This result comes from [RU12], which is only stated in terms of the “new”

perturbed eigenfunctions, which would only be a subset of the full perturbed eigenbasis.

Nevertheless, in this Chapter it is explained how it follows that this position space

equidistribution result also applies to a full-density subsequence of the full perturbed

eigenbasis.

Finally three methods of approach are discussed for attempting to derive this position

space equidistribution result in the case of a more general delta-perturbed system whose

classical dynamics satisfies the particular key property.
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Chapter 1

Introduction

1.1 Introduction to semiclassical analysis and quantum

chaos

1.1.1 Classical mechanics

A physical particle, under classical mechanics, has a well-defined position at each moment

in time. Thus under classical mechanics, the laws of physics can be expressed through

equations governing the behaviour of the particle’s position as a function of time. One

such set of equations is Hamilton’s equations:

dxP
dt

= ∇pH,
dpP
dt

= −∇xH. (1.1)

Here xP is the (possibly generalised) position of the particle P , pP is its (possibly

generalised) momentum, t is time, and H is the Hamiltonian, which is the energy of the

particle as a real-valued function of position and momentum. Assume position here to be

defined on n-dimensional Euclidean space. The Hamiltonian H is then a function on 2n-

dimensional position-momentum phase space, with position coordinates x = (x1, . . . , xn)

and momentum coordinates p = (p1, . . . , pn), and ∇xH :=
(
∂H
∂x1
, . . . , ∂H

∂xn

)
, ∇pH :=(

∂H
∂p1
, . . . , ∂H

∂pn

)
.

Assume this system to be autonomous, meaning that the function (x, p) 7→ H(x, p)

does not vary with time. Given any (smooth enough) real function f on the phase

space (such is referred to as an observable), let fP be the value of f at the position and

momentum of P . It then follows that

dfP
dt

= ∇xf ·
dxP
dt

+∇pf ·
dpP
dt

= ∇xf · ∇pH −∇pf · ∇xH =: {f,H} . (1.2)
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It then follows in particular that the energy HP of the particle does not vary with time.

The binary operation {·, ·} here is referred to as the Poisson bracket, and is defined more

generally (assuming Euclidean space) as follows:

{f, g} := ∇x f · ∇p g −∇p f · ∇x g =
n∑
j=1

(
∂f

∂xj

∂g

∂pj
− ∂f

∂pj

∂g

∂xj

)
. (1.3)

As a basic example of a Hamiltonian system, consider the simple case of a non-

relativistic system involving a single particle P of mass m within a scalar potential V (x).

Here

pP = m
dxP
dt

,
dpP
dt

= −∇V (x), H =
||p||2

2m
+ V (x). (1.4)

It is easy to check that (1.4) is consistent with (1.1).

One can also study Hamiltonian systems in which the position of the particle is

confined to some subset of the Euclidean space. There would then be some rule as

to what happens when the particle hits a wall of this region that it is confined to (unless

H(x, p) is chosen in such a way that the particle cannot reach the boundary).

One may consider, for example, a system given by (1.4), with position confined to

some compact region, together with the additional rule that when the particle hits the

boundary, it reflects with specular reflection (like light off a mirror), with no discontinuous

change in the particle’s speed (magnitude of the velocity vector). In other words, all

components of the velocity vector tangential to the wall at that point do not change

discontinuously upon reflection, but the normal component switches sign, without a

discontinuous change in its magnitude. In this instance, when the particle hits the

boundary, the particle’s position as a function of time remains continuous, but there

is a discontinuity in the particle’s momentum. Such systems are commonly studied with

V (x) simply set to zero, so between bounces the particle simply moves in constant velocity

motion. The shape of the confining region is sufficient to provide interesting dynamics to

the system.

Systems like this, involving a confined particle bouncing between walls, are commonly

referred to as billiards.

For a Hamiltonian system involving such discontinuities in the particle’s trajectory in

phase space, such a discontinuity can in general result in a discontinuous change in the

value of an observable f along the particle’s trajectory, even if {f,H} = 0. However, the

value of the Hamiltonian along the particle’s trajectory must remain constant over time,

even when such a discontinuity in the trajectory occurs. Indeed, for a system satisfying

(1.4), together with specular reflection and no discontinuous change in speed when the

8



particle hits a wall, it is easy to see that there is no discontinuous change in the value of

the Hamiltonian when the particle reflects.

In a well-defined Hamiltonian system, for “almost every” possible initial state (that

is, the position and momentum of the particle at time t = 0), the resulting trajectory

of the particle is then fully determined, both forwards and backwards in time. Some

trajectories may “go wrong”, typically if

(i) the particle hits the wall at a corner point, i.e. point on the wall where there is no

well-defined tangent line/plane,

(ii) the particle hits the wall tangentially – especially an issue if the particle hits the

wall at e.g. an inflection point tangentially, unless one allows for the particle to glide

along the wall,

(iii) the particle ends up hitting the wall infinitely many times within a finite time period.

However, in a well-defined Hamiltonian system, only a “negligible” set of points in the

phase space would result in such “bad trajectories”.

The collection of all possible well-defined trajectories is then referred to as the flow

or dynamical system. More precisely, one can define the flow Φt as follows: Φt(x0, p0) =

(xP (t), pP (t)) if the initial state (xP (0), pP (0)) = (x0, p0).

Since the Hamiltonian is conserved under the flow (meaning that H is constant along

all trajectories), one can also study the flow on individual energy shells - an “energy

shell” meaning a (generically (2n − 1)-dimensional) surface in phase space consisting of

all points at which the Hamiltonian takes a particular specified value. In the simple case

of a Euclidean billiard (position confined to Ω ⊂ Rn) following (1.4) with V (x) = 0 and

specular reflection at the boundary, the energy shell EE with energy H = E > 0 is simply

given by:

EE = Ω×
√

2mE Sn−1
p , (1.5)

where
√

2mE Sn−1
p is the sphere of radius

√
2mE in momentum space. For such a system,

the dynamics on one energy shell is identical to that on any other energy shell, except

for some trivial linear rescalings.

The concepts of Hamiltonian mechanics, which have been described above for

Euclidean space, can then be generalised to Riemannian manifolds. In this case, with the

position space being a Riemannian manifold (with or without boundary), the phase space

is the corresponding cotangent bundle. In the generalisation of (1.4) to a Riemannian

manifold M, setting V (x) = 0, the motion of the particle is constant speed geodesic
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motion, and the equations

pP = m
dxP
dt

, H =
||p||2

2m
(1.6)

still hold, with pP ∈ T ∗xPM, except replacing dxP
dt

with the covector that is matched onto

the particle’s velocity vector by the Riemannian metric.

1.1.2 Quantum mechanics

In quantum mechanics, the physical state of a particle at a given moment in time is

typically specified by the particle’s wavefunction ψ, which is a normalised member of

some Hilbert space (assuming a single-particle system). Typically this Hilbert space

would be L2(Rn), or the L2 space of whatever region the particle is confined to, and

the wavefunction in general can be complex-valued. There would then be a probability

distribution for the particle’s position, given by |ψ(x)|2. If the position space is Euclidean,

there is also a probability distribution for the particle’s momentum, obtained via the

Fourier transform of the wavefunction.

In some cases, the wavefunction is not scalar-valued, but is given by a multi-entry

column vector referred to as a spinor. This would be used when accounting for a property

of quantum particles known as spin.

Whereas in classical mechanics, observables are given by scalar functions on position-

momentum phase space, in quantum mechanics, observables are specified by linear

operators acting within the quantum Hilbert space. For a given observable, there would

typically be a probability distribution for the value of the quantity represented by this

observable. Letting A be the linear operator representing an observable, the expectation

value of this observable is given by:

〈A〉 = 〈Aψ,ψ〉 , (1.7)

where 〈·, ·〉 is the inner product, linear in the left entry and conjugate-linear in the right

entry, and ψ again is the wavefunction.

There is also a correspondence between classical observables and quantum observables.

Very loosely speaking, assuming for the moment Euclidean space, and selecting an origin

about which to define position vectors, one would define the position operator x̂ and

momentum operator p̂ as follows:

(x̂ψ)(x) = xψ(x), p̂ψ = −i~∇ψ. (1.8)

Then for a classical observable f(x, p), the corresponding quantum observable would

be an operator formally expressible as f(x̂, p̂). Here ~ is the reduced Planck constant,
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a constant of nature with value ≈ 1.055 × 10−34 kg m2 s−1. This concept, namely the

quantisation of an observable, can be formulated rigorously, and it can also be extended

to quantum systems on Riemannian manifolds.

Note that although individual scalar quantities would have probability distributions

determined by the corresponding quantum operators and by the system’s wavefunction,

in general there would not necessarily exist a well-defined probability distribution for the

simultaneous values of several scalar quantities together. However, one can still consider

for example, a probability distribution for the particle’s position (despite being given by

the simultaneous values of the particle’s n coordinates), and in the case of Euclidean

space, one can likewise consider a probablility distribution for the particle’s momentum

(despite again being a vector specified by n scalar values).

A vital operator in a quantum system is the Hamiltonian operator. This is a self-

adjoint operator acting within the quantum Hilbert space, representing the energy of the

system. In general there would be a probability distribution for the energy of the system,

but the energy takes value E with full probability if and only if the wavefunction ψ is an

eigenfunction of the Hamiltonian operator H and the corresponding eigenvalue is E, i.e.

Hψ = Eψ.

In the quantum analogue of a classical system satisfying (1.4), the Hamiltonian

operator is given by:

Hψ = − ~2

2m
∆ψ + V ψ, (1.9)

where ∆ is the Laplacian derivative:

∆ψ :=
∂2ψ

∂x2
1

+ · · ·+ ∂2ψ

∂x2
n

. (1.10)

In the case where the particle is confined to a region with walls, there would then be

boundary conditions imposed - that is, a restriction on the domain of the Hamiltonian

operator to functions satisfying certain specified rules at the boundary (on top of the

general “well-behavedness” of the function required for an operator of the form (1.9) to

be able to act upon that function). The most commonly studied boundary conditions are

Dirichlet (loosely speaking, functions are zero at the boundary), and Neumann (loosely

speaking, the normal directional derivative at the boundary is zero).

The Laplacian derivative also has a generalisation to Riemannian manifolds, known

as the Laplace-Beltrami operator. Thus (1.9) can be extended to Riemannian manifolds.

The time-evolution of the wavefunction in a quantum system is given by the

Schrödinger equation:

Hψ = i~
∂ψ

∂t
. (1.11)
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As a result, there is also an equation for the time-derivative of the expectation of an

observable (analogous to (1.2)), given by Ehrenfest’s theorem. Letting A be the quantum

operator for some observable, assuming A is defined independently of time, the time-

derivative of its expectation is:

d

dt
〈A〉 =

1

i~
〈[A,H]〉 :=

1

i~
〈AHψ −HAψ, ψ〉 . (1.12)

Note that if the wavefunction at time t = 0 is an eigenfunction of the Hamiltonian

with eigenvalue E, then assuming the system is autonomous, the time-evolution of the

wavefunction is simply:

ψ(t) = e−
iEt
~ ψ(0). (1.13)

Multiplication of the wavefunction by a spatially constant phase factor makes no physical

difference to the system, and so eigenstates of the Hamiltonian operator are stationary.

In a Hamiltonian eigenstate there is no time-variation in any physical properties of the

system.

1.1.3 Interface between quantum and classical mechanics

Physical objects in the macroscopic world essentially follow classical mechanics, while

the behaviour of particles on subatomic scale has been found to be accurately described

by quantum mechanics. It is thus understood that the laws of physics are more

fundamentally described by quantum mechanics, but that in the macroscopic world,

these laws of physics amount to something extremely approximate to classical mechanics.

It is thus of significant interest to physicists to try and understand the interface between

quantum and classical mechanics. Unlike the interface between non-relativistic classical

mechanics and special relativity, which is very well understood, the interface between

classical and quantum mechanics is still an active area of research.

One particular “puzzle” is this: a well-established phenomenon occurring in many

dynamical systems governed by classical mechanics is chaos. Loosely speaking, this is

an effective long-term unpredictability of trajectories in deterministic systems due to

extreme sensitivity to initial conditions. However, time-evolution in quantum mechanics

is governed entirely by linear equations, which cannot produce chaotic dynamics. How

then can these chaotic systems arise in a universe governed by quantum mechanics?

There is also however, a strong interest in correlations between dynamical properties

of classical systems, and properties of stationary states in the corresponding quantum

systems. This thesis shall mainly be concerned with this area of study.
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One major technique in studying the interface between quantum and classical

mechanics is to take the semiclassical limit. Although in reality, ~ is a constant of

nature, the fact that we don’t observe quantum behaviour on the macroscopic scale can

be related to the fact that ~ is so small. Thus it is expected that if we take a quantum

system, and then theoretically send ~ to zero while keeping all other relevant quantities

fixed, this quantum system should then bear resemblence to the corresponding classical

system as ~ tends to zero. This limit as ~→ 0 is commonly referred to as the semiclassical

limit.

When for example, studying the behaviour of the spectrum of the quantum

Hamiltonian operator and corresponding eigenstates in the semiclassical limit, one could

while sending ~ → 0, fix a particular energy value E, and then study the behaviour

of the Hamiltonian spectrum in the “immediate vicinity” of this value E. One could

likewise study the corresponding eigenfunctions thereof. Alternatively, as ~ is varied,

one could consider each value of ~ for which there is a Hamiltonian eigenvalue precisely

coinciding with E, and consider the corresponding eigenfunction. One could then study

the sequence of eigenstates formed by doing this as ~ is decreased down to zero (see e.g.

[Ber85, Ber87, Non13]).

Quantum chaos, broadly speaking, is the study of how properties of a quantum

system, particularly in the high-energy or ~→ 0 semiclassical limit, relate to dynamical

properties of the corresponding classical system, particularly dynamics that relate in some

way to chaos or a lack of chaos. If for example, the quantum system is described by (1.9)

with Dirichlet conditions wherever there is a boundary, then the corresponding classical

system is described by (1.4), with the same region on which the particle is confined, the

same potential V (x), and specular reflection whenever the particle hits the boundary. The

study of quantum chaos has involved a mix of numerical findings, heuristic arguments,

rigorous proofs and also physical experiments.

Many studies in the area of quantum chaos have involved, rather than sending ~→ 0,

instead treating ~ as a constant and exploring behaviour of eigenstates and spectrum as

one goes further up the spectrum. This high-energy limit is another form of semiclassical

limit, alongside ~ → 0. It is this latter approach that shall be used in the main part of

the thesis. In this Introduction chapter though, both approaches shall be discussed.

Consider for example, a quantum system confined to a compact region with connected

interior, following (1.9) with V = 0 and Dirichlet or Neumann boundary conditions if the

region has a boundary (compact manifolds do not necessarily have a boundary, e.g. a

sphere or flat torus). In this case the Hamiltonian operator has a countable orthonormal
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eigenbasis (φn)n∈N with corresponding eigenvalues E1 < E2 ≤ E3 ≤ E4 ≤ E5 ≤ · · · → ∞
(all eigenvalues are real and non-negative). Now considering the plain −∆ operator,

keeping the same boundary conditions as the Hamiltonian if there is a boundary, and

considering its eigenvalue-eigenfunction equation:

−∆φj = λjφj, (1.14)

the jth eigenfunction of the Hamiltonian is then simply the same φj as in (1.14), and the

corresponding Hamiltonian eigenvalue is simply:

Ej =
~2

2m
λj. (1.15)

Hence in this case, taking a fixed energy value E ′ and examining the Hamiltonian

eigenstates in the vicinity E ≈ E ′, while sending ~ to zero, is equivalent to keeping ~
fixed and examining the Hamiltonian eigenstates in a corresponding vicinity of E ′ while

sending E ′ to infinity.

If however, a potential V (x) is then added, the eigenvalue-eigenfunction equation

Hψ = Eψ can then be written in the form:

−∆ψ +
2m

~2
V ψ = λψ, E =

~2

2m
λ. (1.16)

Thus varying ~ here would have the effect of varying the strength of the perturbation

being added to the −∆ operator, as well as rescaling the Hamiltonian eigenvalues. Note

though that if V is a constant potential of value V0 then the effect of varying ~ is just a

linear rescaling of the Hamiltonian eigenvalues, like (1.15), except this rescaling is centred

about V0 rather than 0.

Beside from Hamiltonian systems where the position space is some Euclidean domain

or Riemannian manifold and the classical phase space is the cotangent bundle, other

systems on which quantum chaos has been studied include quantum graphs (e.g. [Win03,

BKW04, BKS07]), and systems for which the “classical dynamical system” constitutes a

map on the flat torus (e.g. [HB80, BB96, ENW06]).

1.2 Preliminary facts and assumptions

Given a Hamiltonian system on an n-dimensional position spaceM (assume n ≥ 2), and

thus 2n-dimensional phase space T ∗M, the standard 2n-dimensional volume measure

µT ∗M is preserved under the flow Φt, i.e. for every measurable V ⊂ T ∗M (for which
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all points in V give rise to fully determined trajectories both forwards and backwards in

time):

µT ∗M(Φt(V )) = µT ∗M(V ) ∀t ∈ R. (1.17)

With the phase space being 2n-dimensional, each generic energy shell is (2n−1)-

dimensional (an example of an exception being the zero-energy shell in a system satisfying

(1.4) with V = 0, which is only n-dimensional). Letting σE be the standard (2n−1)-

dimensional volume measure on a generic energy shell EE, it can be derived from the

invariance of the standard measure on the phase space under the flow, combined with

the invariance of the Hamiltonian under the flow, that the following measure µ̃E on EE
is invariant under the flow:

dµ̃E =
dσE
||∇H||

. (1.18)

Here dµ̃E and dσE are the respective measures of an infinitesimal element at a point

on the energy shell, ∇H is the (phase space) gradient covector of H at this point (in

Euclidean space, ∇H :=
(
∂H
∂x1
, . . . , ∂H

∂xn
, ∂H
∂p1
, . . . , ∂H

∂pn

)
), and ||∇H|| is the norm of ∇H

under the standard metric on T ∗M. See e.g. §4.1.3 of [DT09] for justification of (1.18).

For the following two sections of this Introduction chapter, assume that for the

classical system, we are interested in the dynamics on some open set Ω := {(x, p) ∈
T ∗M : H(x, p) ∈ IΩ}, where IΩ is some open interval, which could be bounded or

unbounded. (If T ∗M has a boundary then an “open” subset of T ∗M may in this context

include boundary points). Assume H to be C∞-smooth on Ω, possibly except at some

“singular points” (but this singular set shouldn’t be “too bad”), and assume each energy

shell EE in Ω (E ∈ IΩ) satisfies some basic requirements, in particular:

(i) µT ∗M(ΩE) is strictly positive and finite, where ΩE := {(x, p) ∈ T ∗M : H(x, p) ≤ E},

(ii) EE is a (2n−1)-dimensional surface on which both σ and µ̃ are well-defined

(completed) Borel measures that are absolutely continuous with respect to each

other (meaning that they agree on which Borel sets have zero measure and which

have strictly positive measure),

(iii) µ̃E(EE) is strictly positive and finite,

(iv) the set of points on EE that fail to give rise to fully determined trajectories, if there

are any such points, has zero (complete) µ̃E-measure.

In this case, one can define on each energy shell, the normalised Liouville measure µE :=
µ̃E

µ̃E(EE)
, so µE(EE) = 1. In the particular case of a system satisfying (1.4) with V = 0 on
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a compact Euclidean position space M ⊂ Rn, the normalised Liouville measure on an

energy shell EE =M×
√

2mE Sn−1
p is simply the standard (2n− 1)-dimensional volume

measure normalised.

1.3 Achievements in quantum chaos: eigenvalue

statistics

As a general reference for this section, see e.g. [Ber87].

1.3.1 Basic theory of eigenvalue statistics

Taking some E ∈ IΩ, assuming ~ to be small, the quantum Hamiltonian eigenvalues in

close proximity to the value E form a discrete set of energy levels, with mean density:

〈ρ(E)〉 → 1

(2π~)n
d

dE
µT ∗M(ΩE) (1.19)

as ~→ 0. This result is an example of a so-called Weyl law.

One can then study statistical properties of the energy level spacings, in the immediate

vicinity of the value E, or perhaps over the whole range IΩ, as ~ → 0. In some cases,

one would instead work with a fixed ~, and study statistical properties of the discrete

energy levels of the Hamiltonian spectrum, where the role of decreasing ~ is replaced with

increasing energy.

For a system satisfying (1.9) with V = 0 on a compact position space with connected

interior (and appropriate boundary conditions if there is a boundary), again there is a

discrete set of eigenvalues E1 < E2 ≤ E3 ≤ E4 ≤ E5 ≤ · · · → ∞, and defining the

spectral counting function N (E) := #{j : Ej ≤ E}, there is then a Weyl law stating:

N (E) ∼ vol(M)vol(Bn
1 )m

n
2

2
n
2 (π~)n

E
n
2 (1.20)

as E →∞, where vol is volume (i.e. standard measure), Bn
1 is the unit ball in Rn (so for

example, vol(B2
1) = π, vol(B3

1) = 4π
3

), and “LHS ∼ RHS” in some limit means LHS
RHS
→ 1

in that limit (assuming RHS is nonzero everywhere sufficiently close to the limit).

When analysing spectral statistics (either with or without an interest in sending ~→
0), typically one would first rescale the energy levels so as to make the mean spacing

= 1 (sometimes this would involve a nonlinear rescaling). When defining the energy level

sequence on which to analyse the spacing statistics, in some cases one would simply take

this sequence to be the non-decreasing sequence of all (rescaled) energy levels (within the
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range of interest), with degenerate eigenvalues of multiplicity k appearing k consecutive

times in the sequence.

In some cases though, it would be appropriate to make further adjustments when

defining this sequence. For example, if there is a basic feature of the system that would

involve the eigenvalues having a certain degeneracy (e.g. the − ~2

2m
∆ operator on a flat

torus), then it may be appropriate to have distinct eigenvalues appearing only once in

the sequence, or if an eigenvalue has further degeneracy beyond this “basic degeneracy”,

then the eigenvalue would be repeated only a number of times in accordance with this

“further degeneracy”.

As another example, symmetries in the system could cause each eigenfunction (or

each member of the eigenbasis if the eigenbasis is so chosen) to belong to one out of a

finite number of symmetry classes (e.g. even and odd, about a line of symmetry). In

this case it could be appropriate to split the spectrum into subspectra corresponding to

each of these symmetry classes, and then consider statistical properties of each of these

subspectra.

Once one has a sequence of levels (rescaled appropriately) with which to study spacing

statistics, one common statistic to consider is the level spacings probability distribution

P (s). Loosely speaking, P (s) : [0,∞) → [0,∞), (if it exists) is a function (or

distribution) whereby the proportion of nearest neighbour spacings whose value belongs

to some interval I is given by
∫
I
P (s) ds. In the case where this sequence (xj)j∈N is

infinite, P (s) can be defined as follows [Mar01]:∫ ∞
0

P (s)φ(s) ds = lim
N→∞

∫ ∞
0

(
1

N

N∑
j=1

δ(s− xj+1 + xj)

)
φ(s) ds

= lim
N→∞

1

N

N∑
j=1

φ(xj+1 − xj) (1.21)

for all “sufficiently nice” test functions φ. Here δ is the Dirac delta function.

Notice that if P ∈ L1[0,∞), and if in place of φ, the characteristic function of some

interval I is inserted, i.e. χI(x) = {1 if x ∈ I; 0 if x /∈ I}, then (1.21) gives
∫
I
P (s) ds being

the density of the subsequence of the level spacings sequence (xj+1−xj)j∈N consisting of all

terms with value belonging to I. Given a sequence (aj)j∈N and subsequence (ajk)k∈N ((kj)

being a strictly increasing sequence of positive integers), the density of this subsequence

is defined to be limN→∞#{k : jk ≤ N}/N (# here denoting number of elements in a

set).

In the case where the limit ~ → 0 is considered, one can consider the corresponding

limiting P (s) distribution. P (s) can be understood to be a short-range statistic. An

17



example of a long-range statistic is is the spectral rigidity. See for example, [Ber85] for

a definition of spectral rigidity. A fundamental set of statistics by which the statistical

behaviour of these energy levels (rescaled to have mean spacing =1) may be defined is the

collection of N-point correlation functions, N ∈ N\{1} (the 1-point correlation function

is just the mean spacing).

For an infinite sequence of levels (xj)j∈N, the pair (2-point) correlation function R2(s)

is a distribution on R defined as follows [Mar01]:∫ ∞
−∞

R2(s)φ(s) ds = lim
N→∞

∫ ∞
−∞

(
1

N

N∑
j=1

N∑
k=1

δ(s− xj + xk)

)
φ(s) ds

= lim
N→∞

1

N

N∑
j=1

N∑
k=1

φ(xj − xk) (1.22)

for all “sufficiently nice” test functions φ. Notice that in this equation, the j = k terms

add up to φ(0) (for every N , and hence also in the limit N → ∞), thus corresponding

to a δ(s) part in the R2(s) distribution. Sometimes R2(s) is defined so as to exclude the

j = k terms.

The P (s) distribution is fully determined by the full collection of correlation functions

(provided all of these are indeed well-defined). Spectral rigidity can also be determined

from just the pair correlation function.

It has been found that the spectral statistics of many quantum systems display

universal features, which largely depend on some characteristic features of the

corresponding classical systems.

1.3.2 Integrable dynamics, WKB quantisation and Poissonian

statistics

One feature that the classical dynamical system may or may not possess is integrability

(more precisely, Liouville integrability). In this case, a mathematical technique known as

the WKB method (Wentzel-Kramers-Brillouin) yields an approximate determination of

the positioning (on the real line) of the corresponding quantum Hamiltonian eigenvalues

in the semiclassical limit [Per77, BT77]. The Berry-Tabor conjecture then asserts that

generically, if the classical system is integrable then the quantum eigenvalues behave

statistically like the output of a Poisson process [BT77].

The classical dynamics on the phase space region Ω (as defined in §1.2) is said to be

integrable (in the Liouville sense) if there exists a set of n real scalar functions f1, . . . , fn

on Ω (n being the dimension of the position space), which are C∞-smooth except possibly
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at some “singular points” (but this singular set shouldn’t be “too bad”), and satisfy the

following conditions:

(i) f1, . . . , fn are functionally independent - meaning that at each generic point on Ω

(i.e. every point except for those on some “singular set”), the gradients ∇f1, . . .∇fn
are linearly independent covectors in the 2n-dimensional cotangent space at that

point (one may perhaps be more generous here as to what kinds of singular set

are permissible with regards to independent gradients, compared to say, what kinds

of singular set are permissible for there to be a discontinuity in one or more of

these functions). This can equivalently be reformulated as follows (understanding

the phase space to be a smooth manifold): for each generic point on Ω there is a

coordinate chart on a neighbourhood of the point for which the values of f1, . . . , fn

form n of the 2n coordinates.

(ii) These functions are all constants of motion - meaning that the value of each of these

functions is constant along each (generic) trajectory. In particular, it must hold (by

equation (1.2)) that {fj, H} = 0 ∀j, but this is not necessarily sufficient by itself

in the case where there are discontinuous trajectories (e.g. specular reflection at a

boundary).

(iii) They are Poisson-commuting: {fj, fk} = 0 ∀j, k (equivalently {fj, fk} = {fk, fj}).

The Poisson bracket {·, ·} again is given by equation (1.3) in the case where the position

space is Euclidean, and has a generalisation to the case where the position space is a

Riemannian manifold (in fact it can even be defined independently of metric, provided it

is indeed the cotangent bundle, not the tangent bundle, being taken as the phase space).

For a general Hamiltonian system, a set of functions satisfying these above conditions

can be at most n in number, and the system is integrable if there exists a set of precisely

n such functions. In fact, in a general Hamiltonian system, at each generic point on

the phase space there will exist a neighbourhood of the point, on which there exists a

set of precisely n functions satisfying these conditions (in place of (ii), simply having

{fj, H} = 0 ∀j). Thus since Hamiltonian systems are always “locally integrable”, when

meaningfully defining integrability of a system, it is important that these n functions are

globally defined on the phase space, or on the invariant region of phase space that is of

interest (see e.g. Lec. 1 in [Dei96]), (invariant meaning that all trajectories that start in

the region remain in this region, both forwards and backwards in time).

Whereas in a general Hamiltonian system, each generic trajectory is confined to a

(2n− 1)-dimensional energy shell, in the case of an integrable Hamiltonian system, it is
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furthermore the case that each generic trajectory is confined to an n-dimensional region

of phase space where the values of f1, . . . , fn are all constant on this region. If the system

is integrable, there will always exist a selection of such functions f1, . . . , fn for which one

of these functions is the Hamiltonian itself.

Typically f1, . . . , fn are chosen in such a way that the Hamiltonian is at least

expressible as a smooth function of the values of f1, . . . , fn, so the Hamiltonian is constant

on every region for which the values of all these functions are constant. In particular, if

the inverse image of (f1, . . . , fn) : Ω→ Rn on some open X ⊂ Rn is open in Ω (call this

inverse image Y ), (again, an “open” set in Ω may contain boundary points of T ∗M), if Y

contains no points at which any of the functions f1, . . . , fn nor H fail to be smooth (thus

also f1, . . . , fn, H are pairwise Poisson-commuting at all points on Y ), nor any points

at which the gradient covectors ∇f1, . . .∇fn fail to be linearly independent, and if the

inverse image of (f1, . . . , fn) : Ω → Rn on each singleton {x} ⊂ X is non-empty and

connected, then the Hamiltonian on Y can also be expressed as a smooth function on X

in f -space (f -space being Rn used as a grid on which to represent the values of f1, . . . , fn).

Example (i). The rectangular billiard - Consider a system satisfying (1.4) with V = 0

on a 2D rectangular box (that is, the position space is this 2D rectangular box), and with

specular reflection at the boundary, so the particle moves in constant velocity straight

line motion between reflections, and maintains the same speed of motion when it reflects.

Assume the sides of the rectangle to be parallel to the coordinate axes. It is easy to see

then that p2
1 and p2

2 (p1, p2 being momentum coordinates) are both preserved along every

well-defined trajectory (an ill-defined trajectory would occur if the particle hits directly

at a corner point). Defining ∇ :=
(

∂
∂x1
, ∂
∂x2
, ∂
∂p1
, ∂
∂p2

)
, we have

∇H =
(

0, 0,
p1

m
,
p2

m

)
, ∇(p2

1) = (0, 0, 2p1, 0) , ∇(p2
2) = (0, 0, 0, 2p2) . (1.23)

It then follows that {p2
1, p

2
2} = {H, p2

1} = {H, p2
2} = 0, and that ∇H, ∇(p2

1) and ∇(p2
2)

are pairwise linearly dependent at each point where either p1 = 0 or p2 = 0, and pairwise

linearly independent at all other points (but the three gradients together are linearly

dependent everywhere).

The set of points where either p1 = 0 or p2 = 0 should not be deemed to be “too

bad” a singular set where linear independence of gradients fails, and on each positive

energy shell only a measure zero set of points would yield ill-defined trajectories. Hence

this system is an integrable system, where examples of a pair of functionally independent,

Poisson-commuting constants of motion include: (p2
1, p

2
2), (H, p2

1) and (H, p2
2). Notice that

since p2
1 and p2

2 are both conserved, each trajectory is therefore confined to a phase space
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region given by the Cartesian product of this 2D rectangular box with a set of at most

four individual points in momentum space.

Example (ii). The circle billiard - Consider now a system like the previous one except

this time the position space being a 2D disc. Assume the origin of the position coordinate

system to coincide with the centre of the disc. Define angular momentum L as follows:

L := x ·R⊥p = x1p2 − x2p1, (1.24)

where R⊥ is the π
2

rotation given by the matrix

(
0 1

−1 0

)
. In straight line constant

velocity motion, R⊥p is perpendicular to the line along which the particle moves, and

so x · R⊥p is constant over all x on this line. Thus angular momentum is conserved in

constant velocity motion (constant speed and direction of motion).

Then at a point of reflection, using subscripts − and + to represent states before and

after reflection respectively, and letting n be the unit outward normal vector to the wall

at the point of reflection, we have

p+ − p− = −2(p− · n)n, (1.25)

and so

L+ − L− = x ·R⊥(p+ − p−) = −2(p− · n)(x ·R⊥n), (1.26)

but since the boundary is a circle centred at the origin, it follows that x and n are parallel

at all points of the boundary, so x ·R⊥n = 0. Hence angular momentum is a constant of

motion for this circle billiard.

∇H =
(

0, 0,
p1

m
,
p2

m

)
, ∇L = (p2,−p1,−x2, x1) . (1.27)

{H,L} = 0 (consistent with the fact already stated that L is conserved in constant

velocity motion), and ∇H and ∇L are linearly dependent only at points where p1 = p2 =

0. At all points in phase space where the momentum vector is nonzero, ∇H and ∇L are

linearly independent. Hence this circle billiard is an integrable system.

Other examples of integrable systems include geodesic flow (generalisation of (1.4)

with V = 0 to Riemannian manifolds) on the 2-sphere (that is, the sphere in 3D Euclidean

space taken as a 2D manifold) and geodesic flow on the 2D rectangular flat torus. This

flat torus can be constructed by taking a 2D rectangular lattice L =

(
a 0

0 b

)
Z2,

then taking the quotient R2/L (that is, a partition on R2 where two points belong
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to the same equivalence class if the difference between their position vectors is an

element of L, and then R2/L is this set of equivalence classes), and then making R2/L
into a locally Euclidean, 2D compact Riemannian manifold without boundary, whereby

given a sufficiently small open neighbourhood X ⊂ R2 of any point x ∈ R2, defining

[X] := {[x] : x ∈ X} ⊂ R2/L, the map x 7→ [x] from X to [X] preserves the Riemannian

manifold structure (which in this case is Euclidean). The “flat torus” is topologically

equivalent to the “ring torus” (that is, the surface of a ring doughnut shape).

Note that on the sphere, the geodesics are simply the great circles, so every trajectory

is periodic. Geodesic flow on the sphere is an example of a so-called superintegrable

system.

Now in an integrable system there is a particular type of selection of n functionally

independent, Poisson-commuting constants of motion, in which these n functions are

referred to as actions (although singular sets may in some cases be worse here than

permissible when defining integrability in terms of existence of n functionally independent,

Poisson-commuting constants of motion). See e.g. Ch. 5 of [AKKN07] for details

concerning how these “actions” are defined.

Label these actions I1, . . . , In, and let I denote the collection of these, so I =

(I1, . . . , In). Assuming there is no feature of the system that would cause H (on Ω)

to fail to be expressible as a function of I (on the region of I-space relevant to Ω), one

could consider a square lattice aZn+b in I-space, and for each lattice point in the region

of I-space relevant to Ω, one could take the value of H at that point, and doing this over

all such lattice points, obtain a discrete set of energy values in IΩ. The WKB method

yields the result that in the semiclassical limit, the Hamiltonian eigenvalues approximately

coincide with the energy values obtained by considering an appropriate square lattice in

I-space, with lattice point spacing decreasing in direct proportion to ~ as ~ is decreased

down to zero [BT77].

Example. For the rectangle billiard, with the side parallel to the x1-axis having length

a and the side parallel to the x2-axis having length b, the quantum eigenvalues for the

Dirichlet Hamiltonian (1.9) with V = 0 are given by:

Ekl =
π2~2

2m

(
k2

a2
+
l2

b2

)
, (1.28)

where k, l ∈ N. For the classical flow, the actions are [LZS06]:

I1 =
a

π
|p1|, I2 =

b

π
|p2|. (1.29)
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Thus for each k, l ∈ N:

H(I = (k~, l~)) =
p2

1 + p2
2

2m
�I=(k~,l~) =

1

2m

((π
a
k~
)2

+
(π
b
l~
)2
)

=
π2~2

2m

(
k2

a2
+
l2

b2

)
= Ekl. (1.30)

Hence the Hamiltonian eigenvalues in this case are precisely the energies at the points on

the (quadrant) lattice ~N2 in I-space.

Another question of interest is then the statistical behaviour of eigenvalue spacings.

Even the simple formula (1.28) yields highly non-trivial statistics. Berry and Tabor

[BT77] argue that for a generic classically integrable system, the quantum eigenvalues

behave statistically like the output of a Poisson process (upon appropriate rescaling), at

least in the semiclassical limit. A Poisson process is a process that outputs a random

sequence of event times 0 < T1 < T2 < T3 < . . . → ∞, whereby given any T ′ > 0,

the probability distribution for {Tk − T ′ : k ∈ N, Tk > T ′} is equal to the probability

distribution for {Tj : j ∈ N}, and the random process {Tk − T ′ : k ∈ N, Tk > T ′} is

independent of the random process {Tj : j ∈ N, Tj ≤ T ′}. For a Poisson process with

unit mean spacing:

P (s) = e−s. (1.31)

The work in [BT77] involves both heuristic (non-rigorous) theoretical arguments and

numerical findings. Numerical support for this conjecture is also provided in [MK79],

looking at eigenvalues of the circle billiard corresponding to eigenfunctions with odd-

odd parity. There is furthermore heuristic discussion on spectral rigidity for classically

integrable systems in [Ber85], together with numerical discussion, with numerics coming

from [CCG85].

Note that this conjecture, namely the Berry-Tabor conjecture, applies to generic

classically integrable systems. It certainly is not true of all classically integrable systems.

Consider for example, the eigenvalues for the rectangle billiard given in (1.28). For a

generic side length ratio, Poissonian eigenvalue statistics are evident. If however, the ratio

b2/a2 is rational then it is easily shown that all eigenvalues are integer multiples of some

fixed value, which is not at all resemblant of the output of a (continuous time) Poisson

process. However, in [BT77] statistical behaviour analogous to Poissonian statistics is

postulated for this (effectively discrete time) case.

For the rectangle billiard, an eigenvalue E has multiplicity given by #{(k, l) ∈ N×N :

Ekl = E}. In particular, if b2/a2 is irrational then every eigenvalue is simple (multiplicity
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= 1). However, for a 2D rectangular flat torus for which the “periodic rectangle” has side

lengths a and b, the eigenvalues of the Hamiltonian given by (1.9) with V = 0 are:

Ekl =
2π2~2

m

(
k2

a2
+
l2

b2

)
, (1.32)

this time with k, l ∈ Z, so the multiplicity of an eigenvalue E is #{(k, l) ∈ Z × Z :

Ekl = E}. If b2/a2 is irrational then generic eigenvalues have multiplicity 4 (k2, l2 > 0),

and the others have multiplicity 2 (either k2 > 0, l2 = 0 or k2 = 0, l2 > 0), except the

zero eigenvalue which is simple. These multiplicities are certainly uncharacteristic of a

Poisson process, but if these multiplicities are “put aside”, then the eigenvalues may yield

Poissonian statistics for appropriate side length ratios.

Another counterexample to the Berry-Tabor conjecture is the harmonic oscillator -

position space is the whole of Rn, but there is a potential of the form V (x) = a1x
2
1 + . . .+

anx
2
n with a1, . . . , an > 0 (thus still confining each trajectory to a bounded region in phase

space). In [BT77] is contained theoretical discussion as to why the case of the harmonic

oscillator fails. Finally, a most stark counterexample to the Berry-Tabor conjecture is

the sphere. The self-adjoint −∆ operator on the 2-sphere of unit radius has eigenvalues

l(l + 1) with multiplicity 2l + 1 for l ∈ {0} ∪ N.

In the general statement of the Berry-Tabor conjecture, there is not currently

a mathematically precise definition of the term “generic”. However, the notion of

Poissonian statistics can be defined rigorously, by stating that the statistical behaviour

of the eigenvalue spacings is Poissonian if all correlation functions match those that the

event times of a Poisson process would have with full probability. The pair correlation

function for a Poisson process of unit mean spacing is [Mar01]:

R2(s) = δ(s) + 1, (1.33)

(or simply R2(s) = 1 if the j = k terms in (1.22) are excluded).

It has been proven rigorously that for various classically integrable systems, the pair

correlation function matches that of a Poisson process. Work towards this has been

carried out in [CLM94], [Sar97], [Mar03] and [EMM05], and also reviewed in [Mar01].

An example of such a system is the 2D rectangular flat torus whose square of side length

ratio is diophantine (this is, loosely speaking, a particular “strong version” of irrationality;

see [Mar01] for a definition).

1.3.3 Chaotic dynamics and random matrix statistics

On the opposite extreme of integrable dynamics would be chaotic dynamics. Again,

this is loosely speaking an effective long-term unpredictability of trajectories due to
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extreme sensitivity to initial conditions. It is conjectured that for generic classically

chaotic systems the eigenvalue spacing statistics of the corresponding quantum system

resembles eigenvalue spacings from certain ensembles in random matrix theory.

Now in general there has been more than one different way in which the term “chaos”,

in the context of the theory of dynamical systems, has been defined. For the case of this

conjecture, namely the BGS (Bohigas-Giannoni-Schmit) or random matrix conjecture,

concerning eigenvalue spacing statistics for classically chaotic systems, it is reasonable to

take “chaotic” systems more precisely to be K-systems, as is done in [BGS84b]. See for

example §3.9.5 of [Wim14] for a definition of a K-system.

A particular feature of K-systems is that they are always ergodic. The classical

dynamical system is ergodic on an energy shell EE if under the normalised Liouville

measure, every invariant measurable set has either zero measure or full measure, where

again a set is invariant if every trajectory that begins in that set remains in that set for

all time (both forwards and backwards). When focussing on a particular phase space

region Ω following the specifications given in §1.2, the system can be said to be ergodic

if the flow on each energy shell in Ω is ergodic under the normalised Liouville measure

(note though that this does not mean that the flow on Ω is ergodic in the sense of every

invariant measurable subset of Ω having either zero or full measure with respect to the

measure µT ∗M on Ω).

Ergodicity and integrability are mutually exclusive. To see this, suppose the system

is integrable. Then one can take two disjoint open sets A and B on some energy shell

EE, whose images under f2,n := (f2, . . . , fn) (as defined in §1.3.2; letting f1 = H) are

also disjoint open sets in Rn−1 (to help see this, it could be useful to have A and B

being subsets of some open X ⊂ Ω for which there is a coordinate chart with f1, . . . , fn

forming n of the 2n coordinates). Now A and B are positive measure sets under the

normalised Liouville measure, and so EE ∩ f −1
2,n f2,n(A) ⊃ A and EE ∩ f −1

2,n f2,n(B) ⊃ B

are also positive measure sets. But then EE ∩ f −1
2,n f2,n(A) and EE ∩ f −1

2,n f2,n(B) (possibly

wishing to exclude zero measure subsets that give rise to ill-defined trajectories) are also

invariant and disjoint. Hence the flow on EE is not ergodic.

Examples of 2D Euclidean billiards (consisting of constant velocity motion between

strikes upon the wall and specular reflection when striking the wall) that posess the

K-property are the Sinai billiard (a circle within a rectangle - the particle is confined

outside the circle but inside the rectangle) and the Bunimovich stadium billiard (shaped

like a stadium, with a rectangular part in the middle and a semicircular part on either

side). Another example of a K-system is geodesic flow on a negatively curved compact
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Riemannian manifold (see e.g. §1 of [AKN09]). This example satisfies a particularly

strong form of chaos known as the Anosov property (see e.g. §2.4.2 of [Non13] for a

definition).

Now there are three random matrix ensembles that are relevant to the theory

of quantum eigenvalue statistics for classically chaotic systems, namely the Gaussian

Orthogonal Ensemble (GOE), Gaussian Unitary Ensemble (GUE) and Gaussian

Symplectic Ensemble (GSE). However, the third of these (GSE) is only of relevance when

incorporating the quantum property known as spin.

For each N ∈ N, the N ×N Gaussian Orthogonal Ensemble consists of a probability

distribution on the space of N ×N real symmetric matrices (M = MT ). This probability

distribution can be constructed as follows:

(i) The 1
2
N(N + 1) entries in the upper triangle are independent random variables,

(ii) the probability distribution for each off-diagonal entry is the Gaussian normal

distribution with mean 0 and variance 1,

(iii) the probability distribution for each diagonal entry is the Gaussian normal

distribution with mean 0 and variance 2.

One particular feature of the Gaussian Orthogonal Ensemble is that it is invariant under

orthogonal conjugation, meaning that if M is an N ×N matrix-valued random variable

with the GOE probability distribution, and P is an N × N real orthogonal matrix

(P−1 = P T ), then the resulting random matrix PMP−1 also has the GOE probability

distribution. The N × N Gaussian Unitary Ensemble likewise consists of a probability

distribution on the space of N × N complex Hermitian matrices (M = MT ), which is

invariant under unitary (P−1 = P T ) conjugation.

Remembering that real symmetric and complex Hermitian matrices always have real

eigenvalues, one can consider spacing statistics for the eigenvalues of a GOE or GUE

random matrix. Now in the same way that the output of a Poisson process would, with

almost-certainty (i.e. probability 1), have certain statistical properties (e.g. P (s) = e−s),

so likewise concerning the limiting behaviour ofN×N GOE and GUE eigenvalue statistics

as N → ∞. In particular, for both GOE and GUE eigenvalue statistics in the N → ∞
limit, the level spacings probability distribution is given by a well-defined P (s) function,

which is well approximated by for example, the P (s) function in the 2× 2 case (see e.g.

[Bog00]):

P 2×2
GOE(s) = π

2
se−

π
4
s2 , P 2×2

GUE(s) = 32
π2 s

2e−
4
π
s2 . (1.34)
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For both GOE and GUE, P (0) = 0 (so P (s) → 0 as s → 0+), indicating that for

“small” L, the proportion of consecutive eigenvalue spacings that are smaller than L is

“very small”. This is referred to as level repulsion, and clearly does not hold in the case

of a Poisson process. For large s, the decay of P (s) is approximately the decay of a

Gaussian function, and thus is faster than the decay of P (s) for a Poisson process.

Focussing on quantum systems without spin incorporated, it is conjectured that for a

generic classically chaotic system, if this classical system posesses time-reversal symmetry

then the eigenvalue statistics for the corresponding quantum system resembles GOE

eigenvalue statistics (in the N → ∞ limit), and if there is not time-reversal symmetry

then the eigenvalue statistics resembles GUE eigenvalue statistics.

Note that any classical system given by (1.4), with specular reflection if there is a

boundary, posesses time-reversal symmetry. Thus generically, if such a system system is

chaotic, the corresponding quantum system, given by (1.9) (taking complex scalar-valued

wavefunctions, as opposed to complex multi-entry column vector-valued wavefunctions),

with appropriate boundary conditions (e.g. Dirichlet) if there is a boundary, is conjectured

to have GOE eigenvalue statistics (this quantum system does not involve spin). Time-

reversal symmetry can be broken, for example by involving a magnetic field.

Early work involving heuristic arguments suggesting random matrix quantum

eigenvalue statistics for classically chaotic systems includes [ZF74] and [Zas77]. In fact,

this random matrix theory was originally developed (mainly by Wigner, Dyson and

Mehta) in order to describe proposed statistical behaviour of spectra of heavy nuclei

(see [Por65] and [Meh67]). Numerical findings supporting GOE eigenvalue statistics for

the stadium billiard can be found in [MK79], [CVG80] and [BGS84a], and for the Sinai

billiard, [BGS84b].

In [BR86] is contained both theoretical predictions and numerical findings in favour

of GUE eigenvalue statistics for planar chaotic Aharonov-Bohm billiards - billiards with

a single magnetic flux line whose magnetic vector potential is given by a delta function

with direction orthogonal to the plane of the billiard. Although “almost all” classical

trajectories avoid the point of magnetic flux, and so the classical flow is regarded to be

unaffected by it, it still affects the corresponding quantum system, and being a magnetic

field, it still results in GUE eigenvalue statistics as predicted for classically chaotic systems

without time-reversal symmetry (except at one particular special nonzero value for the

strength of this magnetic delta potential, for which it is GOE eigenvalue statistics that

is predicted).

Discussion, involving heuristic arguments, on random matrix eigenvalue statistics for
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classically chaotic systems (both with and without time-reversal symmetry), as reflected

specifically in spectral rigidity, can be found in [Ber85], as well as Poissonian spectral

rigidity in the case of classically integrable systems.

1.4 Achievements in quantum chaos: behaviour of

eigenfunctions

As a general reference for this section, see e.g. [Non13].

1.4.1 Quantisation of observables

Given a (well-behaved) function f(x, p) on classical phase space T ∗M, a corresponding

operator f̂~ acting on the quantum Hilbert space can be obtained through an appropriate

quantisation procedure, typically Weyl quantisation (in the Euclidean case). If M is

Euclidean, this operator can be expressed formally as f̂~ = f(x̂, p̂), where x̂ and p̂ are

given by (1.8). Note that the operator f̂~ is in general dependent on ~, when treating ~ as

a variable, with an interest in the limit ~→ 0. If however, f is dependent only on position

(i.e. f(x, p) = f(x, p′) ∀x ∈ M ∀p, p′ ∈ T ∗xM at which f has a well-defined value), then

f̂~ is just the operation of multiplication by f(x), and so in this case is independent of ~.

Again, for a given wavefunction ψ, the quantum expectation value of the observable

given classically by f(x, p) is 〈f〉 =
〈
f̂~ψ, ψ

〉
. Given the wavefunction ψ and a given

value of ~, there is a corresponding distribution Wψ,~ on T ∗M called the Wigner function,

satisfying the following: ∫
T ∗M

f(x, p)Wψ,~(x, p) dxdp =
〈
f̂~ψ, ψ

〉
(1.35)

for all “well-behaved” test functions f . The Wigner function can be interpreted as a

quasi-probability density on phase space under which the classical expectation of f is

equal to its quantum expectation, only the Wigner function can be negative in some

regions (but still must be real). For more details on quantisation of observables and

Wigner functions, see e.g. [ZFC05]. In the Euclidean case, an example of a non-negative

phase space density associated with the wavefunction is the Husimi function/measure

(see [Non13] for a definition).

A foundational result in semiclassical analysis and quantum chaos is one known as

quantum-classical correspondence, or Egorov’s theorem. This is a result that relates

quantum evolution with classical evolution. Note first that the time-evolution of the
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wavefunction solving (1.11) can be expressed in the following form:

ψ(t) = exp

(
−iHt

~

)
ψ(0), (1.36)

with exp (−iHt/~), for each t ∈ R, being a unitary operator in the quantum Hilbert

space.

Given some f ∈ C∞0 (T ∗M◦) (C∞0 being the space of C∞-smooth compactly supported

functions; assume if necessary that the classical Hamiltonian is C∞-smooth everywhere

on phase space, or that suppf is bounded away from all points where the Hamiltonian

fails to be smooth if there are any), defining ft := f ◦ Φt for each t ∈ R (Φt being the

classical flow), Egorov’s theorem (or one form of it) states that in the limit ~→ 0:

exp

(
iĤ~t

~

)
f̂~ exp

(
−iĤ~t

~

)
= f̂t,~ +O

(
eΓ|t|~

)
∀t ∈ R, (1.37)

where Ĥ~ is still the quantum Hamiltonian (just represented in such a way as to show

dependence on ~), Γ > 0 is some value that depends on the flow and on the observable

f but not on t, and the notation O
(
eΓ|t|~

)
is used to represent a “remainder” operator

which, for each t ∈ R, has operator norm ≤ CeΓ|t|~ for all sufficiently small ~, where C

is some t-independent positive constant.

Another significant result is the generalised Weyl law, which shall be stated here in the

case of a system satisfying (1.9) with V = 0 on a compact position space (with connected

interior), and with Dirichlet boundary conditions if there is a boundary. Let {k2
j}j∈N

be the eigenvalues of the self-adjoint −∆ operator (kj then being the positive square

root), so with H = − ~2

2m
∆ having eigenvalues {Ej}j∈N, it follows that Ej = ~2

2m
k2
j . Let

{ψj}j∈N be a corresponding orthonormal eigenbasis. Copying [Non13], allow quantities

to be expressible as dimensionless values (i.e. select units of quantities to set to 1), and

in particular set mass m = 1. For each j ∈ N with kj > 0, define ~j to be the value of

~ for which Ej = 1
2
, so ~j = 1/kj. Let E1/2 be the energy shell in phase space of energy

1
2
, and let µ1/2 be the normalised Liouville measure on this energy shell. The generalised

Weyl law then states:∑
j:0<kj≤K

〈
f̂~jψj, ψj

〉
∼ vol(M)vol(Bn

1 )

(2π)n
Kn

∫
E1/2

f dµ1/2 (1.38)

as K →∞, for all suitable phase space functions f .

Observe that if f = 1 is plugged into (1.38), so f̂~j is just the identity map for all j,

then we obtain:

#{j : 0 < kj ≤ K} ∼ vol(M)vol(Bn
1 )

(2π)n
Kn (1.39)
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as K →∞. This is consistent with (1.20). Then dividing (1.38) by (1.39) gives:

1

#{j : 0 < kj ≤ K}
∑

j:0<kj≤K

〈
f̂~jψj, ψj

〉
∼
∫
E1/2

f dµ1/2 (1.40)

as K →∞.

Often in quantum chaos studies for which ~ is treated as a constant, the formulation

of quantisation of observables is somewhat different. Typically an operator in the

quantum system would be a polyhomogeneous pseudodifferential operator, and at least

in the case where the position space is a region in Euclidean space, associated to this

pseudodifferential operator (abbreviated ΨDO) would be a corresponding function on the

phase space (cotangent bundle) known as its symbol (or at least this symbol would be

defined modulo symbols of order −∞, see §3.2 in Ch. I of [Shu01]). Furthermore, this

symbol (being polyhomogeneous) would have an asymptotic expansion, whose leading

term is referred to as the principal symbol. The principal symbol of a polyhomogeneous

ΨDO is also well-defined when the position space more generally is a manifold, due to

certain invariant behaviour under coordinate transformations (see e.g. §4 in Ch. I of

[Shu01]).

Like differential operators, one can speak of the order m of a pseudodifferential

operator (only now, m can take any real value; an order m ΨDO is also order m̃ for

each m̃ > m; furthermore an order m polyhomogeneous ΨDO is also order m + l

for each l ∈ N, with zero (m+l)-order principal symbol). The principal symbol of an

order m polyhomogeneous ΨDO, being a function on the cotangent bundle, is positively

homogeneous of order m in covector p, meaning that, if we call this principal symbol

am, we have am(x, rp) = rmam(x, p) ∀x ∈ M◦, p ∈ T ∗xM◦\{0}, r ∈ (0,∞). It obviously

follows then that in order to determine the function am on the whole cotangent bundle

T ∗M◦ (excluding points where the covector is zero), it is sufficient to specify am on the

unit cotangent bundle (also known as the cosphere bundle) S∗M◦ := {(x, p) ∈ T ∗M◦ :

||p|| = 1}.
Commonly, definitions and theorems relating quantum and classical observables would

be stated in terms of polyhomogeneous ΨDOs of certain order and their principal symbols

(see e.g. [ZZ96] or [Sch01]). In this case one would obviously not be working with

C∞0 (T ∗M◦) as the space of classical observables. When integration of a principal symbol

is involved, it would not be over the whole cotangent bundle, but over a more appropriate

surface within the cotangent bundle, typically the cosphere bundle, or the surface on

which the principal symbol of the quantum Hamiltonian is 1 (and these two would be

the same when the Hamiltonian operator is −∆).
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1.4.2 Quantum ergodicity

As stated in §1.3.3, the classical dynamical system is ergodic on an energy shell EE if

under the normalised Liouville measure, every invariant measurable set has either zero

measure or full measure, where again a set is invariant if every trajectory that begins in

that set remains in that set for all time (both forwards and backwards).

Birkhoff’s Ergodic Theorem: If the classical flow Φt on a shell EE is ergodic, then

for each f ∈ L1(EE) it holds that

lim
T→∞

1

T

∫ T

0

f ◦ Φt(x, p) dt =

∫
EE
f dµE (1.41)

for almost all (x, p) ∈ EE (where “almost all” means “for a full measure set”).

Since time-reversal does not affect whether a set is invariant, and thus does not affect

ergodicity, the above statement also hods true if in LHS(1.41),
∫ T

0
is replaced with

∫ 0

−T .

It also then follows that this statement holds true if in LHS(1.41), 1
T

∫ T
0

is replaced with
1

2T

∫ T
−T .

This ergodic theorem essentially equates temporal averages of observables with spatial

averages if the flow on the shell EE is ergodic. Observe also that for any measurable set

S ⊂ EE, taking f to be the characteristic function of S (i.e. f = 1 on S and 0 everywhere

else on EE), this ergodic theorem yields that for almost all starting points in EE, the

overall proportion of time that the trajectory spends within S is equal to the measure of

S (under the normalised Liouville measure).

Von Neumann’s Ergodic Theorem: If the classical flow Φt on a shell EE is ergodic,

then for each f ∈ L2(EE) it holds that

1

T

∫ T

0

f ◦ Φt dt
T→∞−−−→
L2

∫
EE
f dµE. (1.42)

Again, this also holds if
∫ T

0
is replaced with

∫ 0

−T , and likewise if 1
T

∫ T
0

is replaced with
1

2T

∫ T
−T .

The quantum ergodicity theorem gives us a certain limiting behaviour of quantum

eigenfunctions in the semiclassical or high-energy limit, namely equidistribution of a full-

density subsequence of eigenfunctions (in which case the system is said to posess quantum

ergodicity), when the corresponding classical dynamics is ergodic. Work towards this

theorem, under various settings, has been carried out in e.g. [Sni74], [Ver85], [Zel87],

[HMR87], [GL93] and [ZZ96].

To state the quantum ergodicity theorem in the case of a system whose quantum

Hamiltonian operator is a self-adjoint −∆ (with Dirichlet boundary conditions if there is
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a boundary), and whose classical flow on each energy shell (being a shell in the cotangent

bundle of constant ||p||) is geodesic flow (with specular reflection if there is a boundary),

working with zero-order ΨDOs and their principal symbols, and taking the high-energy

limit (see e.g. [Zel87] and [ZZ96]):

If the classical flow is ergodic then there exists a full-density subsequence (Ψjn)n∈N of

orthonormal eigenbasis (Ψj)j∈N such that for every zero-order polyhomogeneous ΨDO A

with compactly supported Schwartz kernel in M◦ ×M◦ (see §5.3 for a definition of the

Schwartz kernel), we have

〈AΨjn ,Ψjn〉
n→∞−−−→

∫
S∗M

σ0(A), (1.43)

where σ0(A) is the zero-order principal symbol of A.

This subsequence (Ψjn)n∈N is said to equidistribute in phase space. Equidistribution

in phase space is stronger than eqidistribution in position space, which can be defined

as follows: for every measurable subset X ⊂ M whose boundary has zero measure (d-

dimensional volume measure for M being d-dimensional) [MR12],

lim
n→∞

∫
X

|Ψjn(x)|2 dx =
vol(X)

vol(M)
. (1.44)

In essence, this says that in the high-energy limit, the probability of the particle in a

stationary state being found within X is equal to the measure of X as a fraction of the

total measure of M.

In [MR12], it is shown that for rational polygon billiards, though they are not ergodic

(rational polygon billiards are neither ergodic nor integrable except for rectangles and

certain specific triangles, which are integrable), they do still satisfy position space

equidistribution of a full-density subsequence of eigenfunctions. The key property of

the classical system here is that (1.42) (with 1
T

∫ T
0

is replaced with 1
2T

∫ T
−T ) holds for all

smooth f depending only on position (i.e. f(x, p) = f(x, p′) ∀ p, p′ ∈ T ∗xM). It is also

remarked in [MR12] that this result holds with Neumann as well as Dirichlet boundary

conditions, and furthermore holds for an arbitrary translation surface.

1.4.3 Integrability and microlocalised WKB quasimodes

Included in §1.3.2 is discussion on the principle that if the classical system is integrable,

then the energies of lattice points, for a certain ~-dependent square lattice in I-space,

approximate the quantum Hamiltonian eigenvalues as ~→ 0.

It is furthermore the case that associated with these lattice points in I-space are

corresponding quasimodes (approximate quantum eigenfunctions), which approximate
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the quantum Hamiltonian eigenfunctions as ~ → 0. Furthermore, these quasimodes are

microlocalised (loosely speaking, their Wigner functions become highly concentrated as

~ → 0 - focussing not on lattice points of fixed N× N specification while they approach

zero as ~→ 0, but rather, while ~ is being decreased down to zero, considering the lattice

points that intersect the vicinity of a fixed ~-independent point in I-space) on the region

of phase space of their corresponding I-value.

Taking then the example of the rectangular billiard discussed in §1.3.2, for a generic

fixed I-value, the corresponding region in phase space is the Cartesian product of the 2D

rectangle with a set of four points in momentum space (if one of the two I-coordinates is

zero then it is two points in momentum space; if both coordinates are zero then it is just

the origin in momentum space). As a result, in the semiclassical or high-energy limit,

quantum eigenfunctions of the rectangle billiard would have their momentum probability

distribution (obtained via the Fourier transform of the eigenfunction) concentrated on

four (or for some of them, two) points in momentum space. Observe that this resembles

the fact that all classical orbits are confined to four (or for some of them, two) points in

momentum space.

1.5 Addition of a Delta Scatterer

For a quantum system of sufficiently low dimension, one can consider perturbing the

system by placing a point scatterer / delta potential at some select point p ∈ M◦. The

perturbed Hamiltonian operator would then be a select operator from a family of self-

adjoint extensions of the restriction of the original unperturbed operator to functions

vanishing at p.

For eigenvalues and eigenfunctions, one would start with an orthonormal eigenbasis

of the unperturbed operator whereby for each distinct eigenvalue, at most one of the

corresponding eigenfunctions in the eigenbasis would be non-vanishing at p. One would

then delete the eigenfunctions that are nonvanishing at p. Next, one would insert the “new

eigenfunctions”, whereby the eigenvalues would be the solutions to a particular equation,

and then there would be a formula for the corresponding eigenfunctions in terms of these

eigenvalues and the unperturbed eigenbasis. The eigenvalues corresponding to these “new

eigenfunctions” form an interlacing between the unperturbed eigenvalues for which there

are functions in the corresponding eigenspace that do not vanish at p (interlacing meaning

one between each consecutive pair).

The eigenvalue interlacing given by any one of these self-adjoint extensions (other
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than the unperturbed operator itself) is sometimes referred to as the weak coupling limit.

There is also a modification of this interlacing that has been studied, referred to as the

strong coupling limit.

For an overview of some current conjectural theory and rigorous results concerning

eigenvalue and eigenfunction statistics in the case of a delta potential on a 2D and a 3D

flat torus, considering both the weak coupling and strong coupling regimes, see [Ueb14].

Work carried out so far on behaviour of eigenfunction subsequences (taking the high-

energy limit rather than sending ~ → 0) for systems with a delta potential includes

[KMW10], [RU12], [Yes13], [KU14], [Yes15] and [KU(Pr15)].

1.5.1 Localisation

In [KMW10], working with the addition of a delta potential to a self-adjoint −∆ operator

on a 2-dimensional compact Riemannian manifold with or without boundary, a class of

quasimodes for the delta-perturbed operator is constructed. Analysis is then performed

on how well these quasimodes can be used to approximate eigenfunctions of the delta-

perturbed operator.

Included in this work is a theorem, namely Thm. 4.4, of the following form, working

specifically with the “Hπ” self-adjoint extension: for a subsequence of the sequence of

new eigenfunctions, suppose the surrounding unperturbed eigenvalues and corresponding

eigenfunctions which do not vanish at p satisfy certain specified requirements. Then the

members of this subsequence approximate in the limit to quasimodes which are linear

combinations of just two unperturbed eigenfunctions non-vanishing at p. These two

eigenfunctions correspond to surrounding unperturbed eigenvalues.

This theorem is then applied (heuristically) to the case of the Dirichlet −∆ on a

rectangle billiard of generic side length ratio, perturbed with a delta potential placed

at the centre of the rectangle. This delta-perturbed billiard is known as the Šeba

billiard. It is argued that there is a subsequence of the sequence of new eigenfunctions for

which, for each eigenfunction high up in this subsequence, the momentum distribution is

concentrated around eight points. This is because the eigenfunction is approximately a

linear combination of just two unperturbed eigenfunctions, each having their momentum

distribution concentrated around four points. Numerical support for this can be found

in [BKW03].

One of the aims of the work carried out for this thesis is to weaken the conditions of

Thm. 4.4 in [KMW10]. This work is documented in Chapter 3.

More recent work has been carried out in [KU(Pr15)], working on a 2D delta-perturbed
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flat torus of diophantine square of side length ratio, demonstrating through rigorous

means the phenomenon of new eigenfunction subsequences localising around a set of four

points in momentum space. The strong coupling limit is also investigated. Furthermore,

discussion is included on how the work can be modified to the case of a delta-perturbed

Dirichlet rectangle.

1.5.2 Equidistribution

In [RU12] it is proved that for a 2-dimensional delta-perturbed flat torus, the sequence of

new eigenfunctions has a full-density subsequence that equidistributes in position space.

As discussed in §5.1.2 of this thesis, the classical flow on the flat torus satisfies the

dynamical property sufficient for the unperturbed quantum system to have a full-density

subsequence of eigenfunctions in the eigenbasis that equidistributes in position space.

Combining these two facts, it follows that the whole eigenbasis of the perturbed system

has a full-density subsequence that equidistributes in position space.

In Chapter 5 of this thesis, interest is then expressed in deriving a more general result,

namely that for a more general system given by a delta-perturbed −∆ on a compact

manifold (with Dirichlet boundary conditions if there is a boundary), if the classical

system satisfies the relevant dynamical property, then not only will the unperturbed

quantum system have a full-density subsequence of eigenfunctions that equidistributes in

position space, but so will the delta-perturbed system.

Further developments after [RU12], concerning position space and phase space

equidistribution for a delta-perturbed flat torus (both 2D and 3D), can be found in

[Yes13], [KU14] and [Yes15].

1.6 Overview of the Work in this Thesis

The setting within which the work in this thesis is carried out is the following: the

position space M is a two-dimensional compact Riemannian manifold, with connected

interior M◦, and either no boundary or piecewise smooth and Lipschitz boundary ∂M.

The quantum Hilbert space is then L2(M). The unperturbed quantum Hamiltonian

operator is the self-adjoint −∆ (minus Laplacian), with Dirichlet boundary conditions

if ∂M 6= ∅. The perturbed quantum Hamiltonian operator consists of the addition of a

delta potential, at a select point p ∈M◦. This is constructed rigorously via means of self-

adjoint extension theory. A substantial description of the system, including discussion of

the eigenvalues and eigenfunctions of the unperturbed and perturbed systems, is given
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in Chapter 2.

Again, §1.5.1 and 1.5.2 provide background from which Chapters 3 and 5 stem.

Theorem 4.4 in [KMW10] derives a set of conditions under which a subsequence of the

sequence of new perturbed eigenfunctions approaches linear combinations of only two

surrounding unperturbed eigenfunctions. More precisely, these pair linear combinations

belong to a class of quasimodes (i.e. approximate eigenfunctions) constructed within

[KMW10]. Again, this result was used to infer localisation of perturbed eigenfunction

subsequences around eight points in momentum space, due to composite unperturbed

eigenfunctions localising around four points.

In Chapter 3 of this thesis, firstly basic results are derived, giving broadened

consideration of the question of when a new perturbed eigenfunction subsequence

approaches linear combinations of the two surrounding unperturbed eigenfunctions. This

is particularly as opposed to focussing purely on the quasimodes given in [KMW10]. Later

on, results are derived which would serve as an improvement on Thm. 4.4 in [KMW10].

In particular, a weakening of the conditions stated in Thm. 4.4 of [KMW10] has been

demonstrated.

Chapter 5 of this thesis addresses the question of equidistribution in position space

of a full-density subsequence of eigenfunctions of the delta-perturbed operator. For the

unperturbed system, equidistribution in position space of a full-density subsequence of

eigenfunctions follows if the classical dynamics satisfies the condition that (1.42) (with
1
T

∫ T
0

is replaced with 1
2T

∫ T
−T ) holds for all smooth f depending only on position. This

again is demonstrated in [MR12], which deals with rational polygon billiards. It is then

of interest to extend this result to the delta-perturbed system.

This full-density position space equidistribution has already been proven in [RU12] for

the case of a 2D delta-perturbed rectangular flat torus. [RU12] only focusses explicitly

on the sequence of new perturbed eigenfunctions. However, within §5.1.2 in this thesis,

an explanation is given on how it follows, in the case of the flat torus, that this position

space equidistribution extends to a full-density subsequence of the full eigenbasis of the

delta-perturbed operator.

It is still of interest to derive a result that applies to more general delta-perturbed

systems. Successful arrival at such a result is not achieved within Chapter 5. Nevertheless,

in §5.4, three methods are discussed for approaching this task. Method 1 is to make use

of the formulae for the perturbed eigenvalues and eigenfunctions in terms of those of the

unperturbed operator. Method 2 is to consider a sequence of non-singular perturbations

that approach the delta potential. Standard results in semiclassical analysis leading to
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position space (and phase space) equidistribution should be applicable to the non-singular

perturbations, particularly given the results in [Sch01]. Method 3 is to develop or work

with a semiclassical theory which, at a more fundamental level, permits a certain extent of

singular behaviour. To this end, adaptation of the work in [JSSV15] may be a reasonable

way forward.

Regarding non-singular perturbations which approach the delta potential, this is

the subject of Chapter 4. More precisely, Chapter 4 deals with non-singular rank-one

perturbations of the self-adjoint −∆, approaching the delta potential. Examples of

literature dealing with this are [BF61], [Zor80], [AGHHE88], [AK00] and [GN12]. These

however deal mostly in the setting of a whole Euclidean space, whereas Chapter 4 here

works in the setting of the compact manifold M.

In Chapter 4, a construction is given for an orthonormal eigenbasis and corresponding

eigenvalues of a rank-one perturbation, which parallels that in the case of the delta

potential. Based on the analogous features in eigenvalues and eigenfunctions between

rank-one perturbations and the delta potential, conditions are then derived on a sequence

of rank-one perturbations under which (some of) their eigenvalues and eigenfunctions are

found to approach those of the delta potential.
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Chapter 2

Specification of the Quantum and

Classical Systems

We shall work on a 2-dimensional compact Riemannian manifold M, with connected

interior M◦, which may either be without boundary (i.e. M =M◦), or with Lipschitz,

piecewise C∞-smooth boundary ∂M. “Lipschitz” here would rule out corner points on

the boundary of zero or 2π angle.

We shall consider an unperturbed quantum system, a perturbed quantum system and

a corresponding classical system, describing a particle confined to M. The quantum

system is described by a self-adjoint operator, namely the Hamiltonian operator, on the

Hilbert space L2(M), and the classical system is described by a flow on the unit cotangent

bundle S∗M.

2.1 The Unperturbed Quantum System

2.1.1 The Hilbert Space and the Self-Adjoint minus-Laplacian

Operator

Given the 2D compact Riemannian manifold M, we have the associated Hilbert space

L2(M), endowed with the inner product:

〈f, g〉 =

∫
M
f(x)g(x) dx, (2.1)

and induced norm:

||f || =
√
〈f, f〉 =

√∫
M
|f(x)|2 dx. (2.2)
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L2(M) is a separable Hilbert space. One meaning of this is that it has a countable

orthonormal basis.

The state of a quantum particle confined withinM, at any moment in time, is specified

by a normalised member of L2(M) (ignoring spin), referred to as the wavefunction. If

ψ(x) is the wavefunction, then |ψ(x)|2 is the probability density for the particle’s position

on M.

For the unperturbed quantum system, the Hamiltonian operator H shall be taken to be

a self-adjoint −∆ operator. This means that H is a self-adjoint extension of the operator

−∆ : C∞0 (M◦) → C∞0 (M◦), where ∆ is the Laplacian derivative and C∞0 (M◦) is the

space of C∞-smooth complex-valued functions on M with compact support within M◦.

∆ = ∂2
x +∂2

y ifM is flat, but it also has a generalisation to Riemannian manifolds known

as the Laplace-Beltrami operator. Note that C∞0 (M◦) is dense in L2(M).

The Laplace-Beltrami operator in local coordinates, in n dimensions (so in our case

n = 2), is given by

∆φ =
1√

det(gµν)

n∑
i=1

n∑
j=1

∂

∂xi

(
gij
√

det(gµν)
∂φ

∂xj

)
, (2.3)

where (gµν)
n
µ,ν=1 is the covariant metric tensor and (gµν)nµ,ν=1 is the contravariant metric

tensor. Given any two tangent vectors X = (Xµ)nµ=1, Y = (Y ν)nν=1 ∈ TxM at a point

x ∈M, letting g(·, ·) be the Riemannian metric, one has

g(X, Y ) =
n∑
µ=1

n∑
ν=1

gµνX
µY ν . (2.4)

Given any two cotangent vectors ξ = (ξµ)nµ=1, ω = (ων)
n
ν=1 ∈ T ∗xM we have

g(ξ, ω) =
n∑
µ=1

n∑
ν=1

gµνξµων . (2.5)

The contravariant metric tensor is the inverse matrix of the covariant metric tensor.

By H being self-adjoint, this means that the operator H, which has dense domain in

L2(M), is equal to its adjoint operator H∗, whose graph is:{
(v, w) ∈ L2(M)× L2(M) : 〈Hu, v〉 = 〈u,w〉 ∀u ∈ Dom(H)

}
. (2.6)

Note that being a self-adjoint operator, H is in particular a symmetric/Hermitian

operator, that is:

〈Hu, v〉 = 〈u,Hv〉 ∀u, v ∈ Dom(H). (2.7)
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Now there is a particular class of linear functionals (forming a vector space) on

C∞0 (M◦) referred to as distributions. Let D′(M◦) denote the space of distributions on

M◦. D′(M◦) includes all functionals on C∞0 (M◦) of the form φ 7→
∫
M φ(x)u(x) dx =:

〈φ, u〉ll, where u ∈ L1
loc(M◦) ⊃ L2(M), and the subscript ll here means linearity in both

arguments, rather than conjugate-linearity in one of the two arguments. By identifying

each u ∈ L1
loc(M◦) with 〈·, u〉ll ∈ D′(M◦), L1

loc(M◦) can be considered to be a subspace

of D′(M◦). Note in particular that for any u, v ∈ L1
loc(M◦), if the functionals 〈·, u〉ll and

〈·, v〉ll are equal then u = v. For further discussion on the theory of distributions, see for

example §V of [RS80], §1 of [Sai91], §3.4 of [Tay96a] or [FJ98].

For each u ∈ D′(M◦) the distributional Laplacian ∆u ∈ D′(M◦) is defined as follows:

〈φ,∆u〉ll := 〈∆φ, u〉ll ∀φ ∈ C
∞
0 (M◦). (2.8)

Note that under this definition, the distributional Laplacian coincides with the usual

Laplacian derivative on C2(M◦). Furthermore, given any v, w ∈ L2(M), if −∆v = w

then

〈−∆u, v〉 = 〈−∆u, v〉ll =
〈
−∆u, v

〉
ll

= 〈−∆u, v〉ll = 〈u,w〉ll = 〈u,w〉ll
= 〈u,w〉 ∀u ∈ C∞0 (M◦), (2.9)

and so (−∆�C∞0 (M◦))
∗v = w. Conversely, if (−∆�C∞0 (M◦))

∗v = w then

〈−∆u, v〉ll = 〈−∆u, v〉 =
〈
−∆u, v

〉
= 〈−∆u, v〉 = 〈u,w〉 = 〈u,w〉

= 〈u,w〉ll
⇒ 〈∆u, v〉ll = 〈u,−w〉ll ∀u ∈ C

∞
0 (M◦), (2.10)

and so −∆v = w. Hence the adjoint of the operator −∆ : C∞0 (M◦) → C∞0 (M◦) is the

restriction of the distributional −∆ operator to all v ∈ L2(M) for which −∆v ∈ L2(M)

also.

Note also that for each v ∈ Dom(H),

〈−∆u, v〉 = 〈Hu, v〉 = 〈u,Hv〉 ∀u ∈ C∞0 (M◦), (2.11)

and so H is a restriction of the adjoint of −∆ : C∞0 (M◦) → C∞0 (M◦). Hence

Hv = −∆v ∀ v ∈ Dom(H) in the distributional sense. Likewise if H̃ is any self-adjoint

operator satisfying H̃v = −∆v ∀ v ∈ Dom(H̃) then it is a self-adjoint extension of

−∆ : C∞0 (M◦)→ C∞0 (M◦). This is because (−∆�C∞0 (M◦))
∗∗ is the closure of −∆�C∞0 (M◦),

with closure here meaning the operator formed by taking the closure of the graph in

L2(M) × L2(M), if indeed this does give the graph of an operator, which in this case
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it does (see Thm. VIII.1 in §VIII.1 of [RS80]). Thus for any restriction of the operator

(−∆�C∞0 (M◦))
∗ whose domain is dense, the graph of the adjoint of this restriction will

include all members of the graph of the closure of −∆�C∞0 (M◦). Hence if this restriction

is self-adjoint, then it is an extension of the closure of −∆�C∞0 (M◦).

The topology on L2(M)× L2(M) here is that induced by e.g. the norm

||(u, v)|| =
√
||u||2 + ||v||2. (2.12)

If M is without boundary, there is precisely one self-adjoint −∆ operator, whose

domain is all v ∈ L2(M) for which −∆v ∈ L2(M) also. This domain is the Sobolev space

H2(M) (the “H” here being different from H as in the Hamiltonian operator).

While for each k ∈ N (still assumingM is without boundary), Ck(M) is defined as the

space of k-times continuously differentiable functions on M , and C0(M) := C(M) would

be all continuous functions, the Sobolev space Hk(M) is the space of k-times “weakly

differentiable” functions, and H0(M) = L2(M). In fact, the set of Sobolev spaces can

be extended to having a space Hs(M) ⊂ D′(M) for every s ∈ R, with Hs(M) ⊂ H t(M)

whenever s ≥ t. We can therefore also define H−∞(M) :=
⋃
s∈RH

s(M) and H∞(M) :=⋂
s∈RH

s(M). For discussion of details on Sobolev spaces, see for example §IX.6 of [RS75],

§1.3 of [Sai91], §4 and 5 of [Tay96a] or §9.3 of [FJ98].

According to the Sobolev Embedding Theorem (applying it to the case of compact

manifolds without boundary; see Prop. 3.3 in §4.3 of [Tay96a]), ifM is an n-dimensional

compact manifold (here we’ll say without boundary) then for any s ∈ R and k ∈ N∪{0},

if s >
n

2
+ k then Hs(M) ⊂ Ck(M). (2.13)

In our case n = 2 and so the condition becomes s > k+1. In particular then, all functions

in the domain of the self-adjoint −∆ operator are continuous.

Now according to the end of §5.1 in [Tay96a], the operator −∆ + 1 (“1” here meaning

the identity map) maps Hk+1(M) bijectively to Hk−1(M) for each k ∈ N∪{0}, and more

generally, Hs+2(M)
bij.−→ Hs(M) for real s ≥ −1. It follows then that for each k ∈ N∪{0}

and u ∈ Hk+1(M) we have −∆u ∈ Hk−1(M), since u ∈ Hk+1(M)⇒ u ∈ Hk−1(M), and

(−∆+1)u ∈ Hk−1(M), so −∆u = (−∆+1)u−u ∈ Hk−1(M). Furthermore, according to

Prop. 1.6 in §5.1 of [Tay96a], if u ∈ H1(M) and −∆u ∈ Hk−1(M) for some k ∈ N∪ {0}
then u ∈ Hk+1(M). Thus, if it is known that u ∈ L2(M) and −∆u ∈ Hk−1(M) for some

k ∈ N then −∆u ∈ H0(M) = L2(M), and so u ∈ H2(M) ⊂ H1(M), so then by Prop.

1.6 in §5.1 of [Tay96a], u ∈ Hk+1(M). Hence for any u ∈ L2(M), given any k ∈ N we

have u ∈ Hk+1(M) if and only if −∆u ∈ Hk−1(M).
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So then, suppose u ∈ H2k(M) for some k ∈ N ∪ {0}. Then

u ∈ H2k(M)⇒ −∆u ∈ H2(k−1)(M)⇒ . . .⇒ (−∆)ku ∈ H0(M) = L2(M), (2.14)

and so in particular, u,−∆u, (−∆)2u, . . . , (−∆)ku ∈ L2(M). Conversely, suppose

u,−∆u, (−∆)2u, . . . , (−∆)ku ∈ L2(M). Then

(−∆)ku ∈ L2(M) = H0(M)⇒ (−∆)k−1u ∈ H2(M)⇒ . . . u ∈ H2k(M). (2.15)

Note in particular that if u ∈ C2k(M) then u,−∆u, (−∆)2u, . . . , (−∆)ku ∈ C(M) ⊂
L∞(M) ⊂ L2(M) since M is compact. Thus letting H−∆ denote the self-adjoint −∆

operator (so as to distinguish from H as in the symbol for Sobolev spaces), for each k ∈ N
we have

C2k(M) ⊂ H2k(M) = Dom(Hk
−∆) ⊂ C2(k−1)(M). (2.16)

It also follows then that

H∞(M) = C∞(M) =
⋂
k∈N

Dom(Hk
−∆). (2.17)

In the case where M is with boundary, there is a variety of self-adjoint extensions of

the operator −∆ : C∞0 (M◦) → C∞0 (M◦), which are distinguished from one another by

boundary conditions. Here we shall choose the operator H to satisfy Dirichlet boundary

conditions. Loosely speaking, this is the condition that functions in Dom(H) should be

zero at the boundary. Now the theory of Sobolev spaces also applies to the case whereM
is with boundary, and the precise domain of the self-adjoint Dirichlet −∆ can be specified

with reference to Sobolev spaces (see e.g. Ch. 5 of [Tay96a]). The Sobolev Embedding

Theorem likewise applies here, and again yields that Dom(H) ⊂ C(M◦), and also that

if u ∈ L2(M) and Hju ∈ L2(M) ∀ j ∈ N then u ∈ C∞(M◦).

2.1.2 Eigenvalues and Eigenfunctions of the Self-Adjoint minus-

Laplacian Operator

The operator H has a countable orthonormal basis for L2(M) consisting of eigenfunctions

{Ψj}j∈N ⊂ Dom(H) ∩ C∞(M◦), with corresponding non-negative real eigenvalues E1 <

E2 ≤ E3 ≤ · · · → ∞. Every f ∈ L2(M) can then be expanded into this orthonormal basis:

f =
∑∞

j=1 ajΨj. This summation converges to f in the L2-norm, and the coefficients are

uniquely given by aj = 〈f,Ψj〉. With {Ψj}j∈N being a countable orthonormal basis, the

Hilbert space L2(M) behaves with respect to {Ψj}j∈N like the Hilbert space l2 (consisting

of column vectors with countably infinitely many entries) behaves with respect to its

standard orthonormal basis, in that the following rules are satisfied:
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(i)
∑∞

j=1 ajΨj ∈ L2(M) iff
∑∞

j=1 |aj|2 converges,

(ii) With f =
∑∞

j=1 ajΨj and g =
∑∞

j=1 bjΨj, f + g =
∑∞

j=1(aj + bj)Ψj,

(iii) With f =
∑∞

j=1 ajΨj and c ∈ C, cf =
∑∞

j=1(caj)Ψj,

(iv) With f =
∑∞

j=1 ajΨj and g =
∑∞

j=1 bjΨj, 〈f, g〉 =
∑∞

j=1 ajbj.

The behaviour of H, when expanding functions into the eigenbasis {Ψj}j∈N, is

straightforwardly given by the following (even though H is not a continuous operator

under the L2-norm):

Lemma 2.1.1.
∑∞

j=1 ajΨj ∈ Dom(H) if and only if
∑∞

j=1 EjajΨj ∈ L2(M), in which

case,

H

(
∞∑
j=1

ajΨj

)
=
∞∑
j=1

EjajΨj. (2.18)

Proof. Firstly, given any f ∈ Dom(H), write f =
∑∞

j=1 〈f,Ψj〉Ψj. Then

Hf =
∞∑
j=1

〈Hf,Ψj〉Ψj =
∞∑
j=1

〈f,HΨj〉Ψj =
∞∑
j=1

〈f, EjΨj〉Ψj

=
∞∑
j=1

Ej 〈f,Ψj〉Ψj. (2.19)

This proves that if
∑∞

j=1 ajΨj ∈ Dom(H) then
∑∞

j=1 EjajΨj ∈ L2(M), with (2.18)

holding true.

Now write f =
∑∞

j=1 ajΨj, g =
∑∞

j=1 EjajΨj, and assume g ∈ L2(M). Then∑∞
j=1 E2

j |aj|2 converges, so
∑∞

j=1 |aj|2 converges, and hence f ∈ L2(M) also. Next, take

any u =
∑∞

j=1 bjΨj ∈ Dom(H). Then

〈Hu, f〉 =
∞∑
j=1

(Ejbj)aj =
∞∑
j=1

bj(Ejaj) = 〈u, g〉 . (2.20)

Hence f ∈ Dom(H∗) with H∗f = g, and thus by self-adjointness of H, f ∈ Dom(H) with

Hf = g.

Observe that if we combine Lemma 2.1.1 with (2.17), also applying point (i) above in

the description of the l2 behaviour of L2(M), we obtain the following:

Corollary 2.1.2. If M is without boundary then

C∞(M) =

{
∞∑
j=1

ajΨj :
∞∑
j=1

Enj |aj|2 <∞ ∀n ∈ N ∪ {0}

}
. (2.21)
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2.1.3 Resolvents of the Self-Adjoint minus-Laplacian Operator

Lemma 2.1.3. For each z ∈ C\{Ej}j∈N, the operator H − z : Dom(H) → L2(M) is

bijective and has a bounded inverse.

Proof.

(H − z)

(
∞∑
j=1

ajΨj

)
=
∞∑
j=1

(Ej − z)ajΨj. (2.22)

Clearly this operator is injective. Now take some f =
∑∞

j=1 ajΨj ∈ L2(M), so
∑∞

j=1 |aj|2

converges. It then follows that the following sum converges in R:

∞∑
j=1

∣∣∣∣ EjajEj − z

∣∣∣∣2 . (2.23)

Hence the following sum converges in L2(M):

∞∑
j=1

Ejaj
Ej − z

Ψj. (2.24)

Thus
∞∑
j=1

aj
Ej − z

Ψj ∈ Dom(H), (2.25)

and so

(H − z)

(
∞∑
j=1

aj
Ej − z

Ψj

)
=
∞∑
j=1

(Ej − z)aj
Ej − z

Ψj = f

∴ (H − z)−1f =
∞∑
j=1

aj
Ej − z

Ψj. (2.26)

This therefore proves bijectivity. Now the set {|1/(Ej − z)|2}j∈N is bounded, and so let

B := supj∈N{|1/(Ej − z)|2}. Then

∣∣∣∣(H − z)−1f
∣∣∣∣2 =

∞∑
j=1

∣∣∣∣ aj
Ej − z

∣∣∣∣2 ≤ ∞∑
j=1

B|aj|2 = B ||f ||2 . (2.27)

Hence the operator (H − z)−1 is bounded.

The operator (H−z)−1, for each z ∈ C\{Ej}j∈N, is referred to as a resolvent operator.

C\{Ej}j∈N is the resolvent set of H, and {Ej}j∈N is the spectrum of H, which shall be

denoted Spec(H).
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2.1.4 Further Mathematical Tools

Spectral Projection

Given any set S ⊂ R, define the spectral projection operator P(H)
S by

P(H)
S f :=

∑
j:Ej∈S

ajΨj =
∑
j:Ej∈S

〈f,Ψj〉Ψj for f =
∞∑
j=1

ajΨj. (2.28)

Lemma 2.1.4. Let {Ψ̃j}j∈N be another orthonormal eigenbasis of H. Then letting P̃(H)
S

be the spectral projection operator defined with reference to the eigenbasis {Ψ̃j}j∈N rather

than {Ψj}j∈N, it nevertheless holds that P̃(H)
S = P(H)

S .

Proof. Firstly, we shall prove that for each E ∈ Spec(H), P̃(H)
{E} = P(H)

{E} . Let Λ
(H)
E be the

E-eigenspace of H, let {ψ1, . . . , ψm} be the orthonormal basis of Λ
(H)
E contained within

{Ψj}j∈N, and let {ψ̃1, . . . , ψ̃m} be the orthonormal basis of Λ
(H)
E contained within {Ψ̃j}j∈N.

Then for any f ∈ L2(M) we have

P(H)
{E} f =

m∑
k=1

〈
P(H)
{E} f, ψ̃k

〉
ψ̃k =

m∑
k=1

〈
m∑
j=1

〈f, ψj〉ψj, ψ̃k

〉
ψ̃k ∈ Λ

(H)
E . (2.29)

But 〈
m∑
j=1

〈f, ψj〉ψj, ψ̃k

〉
=

m∑
j=1

〈f, ψj〉
〈
ψj, ψ̃k

〉
=

m∑
j=1

〈
f,
〈
ψ̃k, ψj

〉
ψj

〉
=

〈
f,

m∑
j=1

〈
ψ̃k, ψj

〉
ψj

〉
=
〈
f, ψ̃k

〉
. (2.30)

Hence

P(H)
{E} f =

m∑
k=1

〈
f, ψ̃k

〉
ψ̃k = P̃(H)

{E} f. (2.31)

This proves that P̃(H)
{E} = P(H)

{E} for each E ∈ Spec(H). But then for any S ⊂ R, it is easy

to see that

P(H)
S f =

∑
E∈S∩Spec(H)

P(H)
{E} f, P̃(H)

S f =
∑

E∈S∩Spec(H)

P̃(H)
{E} f. (2.32)

[If S ∩ Spec(H) is infinite, equivalently {j : Ej ∈ S} is infinite, then define these as limits

of partial sums of terms arranged in order of increasing index j as in (2.28) for LHS(2.32),

and increasing eigenvalue E for RHS(2.32), in which case the sequence of partial sums for

RHS(2.32) is a subsequence of that for LHS(2.32)].

Thus P̃(H)
S f = P(H)

S f .
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Order Relations

For two sequences (an) and (bn), define “an � bn as n→∞” to hold true if

∃M ∈ N, C > 0 s.t. |an| ≤ C|bn| ∀n ≥M. (2.33)

If bn is nonzero for all sufficiently large n, then this simply means that an/bn is bounded

for sufficiently large n.

Furthermore, for sequences (an) and (bn), define “an << bn as n → ∞” to hold true

if

∀ ε > 0 ∃N ∈ N s.t. |an| ≤ ε|bn| ∀n ≥ N. (2.34)

If bn is nonzero for all sufficiently large n, this means that an/bn → 0.

Given a sequence (bn), the notation O(bn) appearing within an equation shall be used

to stand for a sequence which is � bn, for example, “xn = yn + O(bn) as n→∞” would

mean the same as “xn − yn � bn as n → ∞”. Likewise the notation o(bn) appearing

within an equation shall be used to stand for a sequence which is << bn.

These notations can apply not only to sequences (i.e. functions on N), but also for

example, to functions of a real variable (say f(x)), where we could take x→∞, x→ −∞
or x→ a ∈ R (taking either the two-sided limit or a one-sided limit).

Spectral Counting Function and Weyl’s Law

We introduce the spectral counting function N : R→ R as follows:

N(E) := #{j : Ej ≤ E}, (2.35)

where # here is the notation we use for the number of elements in a set. For each x ∈M◦

there is also a corresponding variant of the spectral counting function:

Nx(E) :=
∑
j:Ej≤E

|Ψj(x)|2. (2.36)

For both N and Nx there is the following standard result, known as Weyl’s law:

Lemma 2.1.5 (Weyl’s law).

N(E) =
area(M)

4π
E + O(

√
E) as E →∞, (2.37)

Nx(E) =
E

4π
+ O(

√
E) as E →∞ ∀x ∈M◦. (2.38)
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(2.38) is sometimes referred to as a local Weyl law (later on, in Ch. 5, we introduce

another “local Weyl law” for pseudodifferential operators).

Corollary 2.1.6. For each x ∈M◦,

Nx(E) =
E

4π
+ o(E) as E →∞, (2.39)

equivalently
4πNx(E)

E
→ 1 as E →∞, (2.40)

equivalently

∀ ε > 0 ∃M ≥ 0 s.t. ∀E ≥M

(
1

4π
− ε
)
E ≤ Nx(E) ≤

(
1

4π
+ ε

)
E. (2.41)

These also hold for the spectral counting function N , only for each appearance of “4π”

in the denominator, “area(M)” would also need to be inserted into the numerator, and

likewise for the appearance of “4π” in the numerator, “area(M)” would also need to be

inserted into the denominator.

Proof. According to Weyl’s law,

∃L ≥ 0, C > 0 s.t.

∣∣∣∣Nx(E)− E

4π

∣∣∣∣ ≤ CE1/2 ∀E ≥ L, (2.42)

but for each ε > 0 we have

CE1/2 << εE as E →∞, (2.43)

and thus

∃Mε > 0 s.t.

∣∣∣∣Nx(E)− E

4π

∣∣∣∣ ≤ εE ∀E ≥Mε. (2.44)

(2.44) here is a statement that Nx(E)− E
4π
<< E as E →∞, which is a rearrangement

of (2.39). (2.44) can also be re-expressed as∣∣∣∣4πNx(E)

E
− 1

∣∣∣∣ ≤ 4πε ∀E ≥Mε, (2.45)

which in turn is an expression of (2.40). Finally, (2.44) can be re-expressed as

− εE ≤ Nx(E)− E

4π
≤ εE ∀E ≥Mε, (2.46)

which in turn can be rearranged to give (2.41).

The same arguments work with N(E) as well, starting from (2.37).
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Corollary 2.1.6 is basically a weaker version of Weyl’s law, which can still be useful.

Now we shall also define N− and N−x as follows:

N−(E) := #{j : Ej < E}, (2.47)

N−x (E) :=
∑
j:Ej<E

|Ψj(x)|2. (2.48)

Thus N− and N−x are left-continuous functions at eigenvalues of H, while N and Nx are

right-continuous functions at eigenvalues of H. Lemma 2.1.5 and Corollary 2.1.6 then of

course apply to N− and N−x as well as N and Nx.

Sum to Integral Conversion

Lemma 2.1.7. Let a, b ∈ R with a < b, let f be a continuously differentiable function on

[a, b] and let x ∈M◦. Then∑
j:a≤Ej≤b

f(Ej)|Ψj(x)|2 = f(b)Nx(b)− f(a)N−x (a)−
∫ b

a

f ′(t)Nx(t)dt. (2.49)

Furthermore, let c ∈ R and let g be a continuously differentiable function on [c,∞). In

the following equation:∑
j:Ej≥c

g(Ej)|Ψj(x)|2 = lim
s→∞

g(s)Nx(s)− g(c)N−x (c)−
∫ ∞
c

g′(t)Nx(t)dt, (2.50)

if any two of the above three limits to infinity converge, then the third limit also converges

and the equation holds true.

These above statements also hold true if the appearances of “f(Ej)|Ψj(x)|2”,

“g(Ej)|Ψj(x)|2”, “Nx” and “N−x ” are replaced with “f(Ej)”, “g(Ej)”, “N” and “N−”

respectively.

Remark. In (2.50) we simply take
∫∞
c

to mean lims→∞
∫ s
c

, similarly with
∑
Ej≥c.

Proof. Converting the following sum into a Riemann-Stieltjes integral and then applying

integration by parts:∑
j:a<Ej≤b

f(Ej)|Ψj(x)|2 =

∫ b

a

f(t)dNx(t) = f(b)Nx(b)− f(a)Nx(a)−
∫ b

a

Nx(t)df(t)

= f(b)Nx(b)− f(a)Nx(a)−
∫ b

a

f ′(t)Nx(t)dt. (2.51)

[Note that in the left-hand side of the above equation, the sum is over a < Ej ≤ b, not

a ≤ Ej ≤ b]. If a does not coincide with any eigenvalue of H then the left-hand sides
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of equations (2.49) and (2.51) are equal, and so are the right-hand sides, thus proving

(2.49) in this case. If a does coincide with an eigenvalue Ek, then

∑
j:a≤Ej≤b

f(Ej)|Ψj(x)|2 = f(b)Nx(b)− f(a)Nx(a) + f(a)|Ψk(x)|2 −
∫ b

a

f ′(t)Nx(t)dt

= f(b)Nx(b)− f(a)N−x (a)−
∫ b

a

f ′(t)Nx(t)dt. (2.52)

This proves the first part of the lemma. The second part then follows by the algebra of

limits.

The last statement in this lemma follows by the same arguments as above, simply

replacing the role of “|Ψj(x)|2” with the number 1.

2.2 The Delta-Perturbed Quantum System

2.2.1 Introduction of the Delta Perturbation

We now perturb the quantum system by adding a point scatterer / delta potential at some

point p ∈M◦. The perturbed operator H ′ is introduced formally as

H ′ = −∆ + cδp, (2.53)

where δp is the Dirac delta function with spike at p.

Observe that for a function φ on M which is continuous at p, we can formally write

φδp = φ(p)δp =

(∫
M
φδp

)
δp = 〈φ, δp〉ll δp, (2.54)

and also

φδp = φ(p)δp =

(∫
M
φδp

)
δp =

(∫
M
φδp

)
δp = 〈φ, δp〉lc δp. (2.55)

The subscript ll here means linearity in both arguments as before, and subscript lc means

linearity in the first argument and conjugate-linearity in the second argument. Thus we

could also formally express the perturbed operator as

H ′ = −∆ + c 〈·, δp〉ll δp = −∆ + c 〈·, δp〉lc δp. (2.56)

Observe furthermore that by (2.54)/(2.55), if φ(p) = 0 then φδp = 0. Thus we can

expect that if φ ∈ Dom(H) ∩Dom(H ′) and φ(p) = 0 then H ′φ = Hφ.

For the rigorous construction of the perturbed operator H ′, the requirements we shall

specify are
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(i) H ′ is a self-adjoint operator acting within L2(M),

(ii) if φ ∈ Dom(H) and φ(p) = 0 then φ ∈ Dom(H ′) and H ′φ = Hφ.

Although in (2.53) there is the appearance of the parameter c, for the rigorous

construction, rather than giving a construction of the operator H ′ which is dependent on

the parameter c, instead we more loosely let the family of all operators satisfying (i) and

(ii) above be the rigorously defined family of operators we shall work with, in place of the

formally introduced family of operators given by (2.53), “defined” over all c ∈ R. We do

not have any a priori correspondence between the rigorously defined operators and the

parameter c, other than c = 0 corresponding to the original unperturbed operator H.

Let

Dp := {φ ∈ Dom(H) : φ(p) = 0}, (2.57)

and let Hp be the restriction of H to Dp. We are interested then in the family of self-

adjoint extensions of the operator Hp. Trivially H is itself one of these self-adjoint

extensions.

As it turns out, Dp is dense in L2(M), so Hp has a well-defined adjoint H∗p , and

since Hp is obviously a symmetric operator, it follows that H∗p is an extension of H.

Furthermore, Hp has both deficiency indices being 1, where the deficiency indices are

defined as the dimensions of the kernels of H∗p − i and H∗p + i. In other words then, i and

−i are both eigenvalues of H∗p with 1-dimensional corresponding eigenspaces. Ker(H∗p−i)
and Ker(H∗p + i) are referred to as deficiency subspaces of Hp.

The von Neumann theory of self-adjoint extensions (see §X.1 of [RS75]) then yields

the result that Hp has a family of self-adjoint extensions given by a single angle-like

parameter (angle-like in the sense that it is a real-valued parameter except adding 2π has

no effect).

Note that for any self-adjoint extension H ′ of Hp, since Hp ⊂ H ′ it follows that

H ′ = H ′∗ ⊂ H∗p , where ⊂ appearing between two operators means that the operator to

the left is a restriction of the operator to the right. Thus every self-adjoint extension of

Hp is also a self-adjoint restriction of H∗p . Conversely, if H̃ is a self-adjoint restriction

of H∗p then H∗∗p ⊂ H̃∗ = H̃, but H∗∗p is the closure of Hp (see Thm. VIII.1 in §VIII.1 of

[RS80]), and thus H̃ is also a self-adjoint extension of Hp. We also see here that every

self-adjoint extension of Hp, equivalently every self-adjoint restriction of H∗p , is also an

extension of the closure of Hp.

Now the graph of H is a linear subspace of L2(M)× L2(M), and the norm given by

(2.12) restricted to the graph of H induces a norm on Dom(H) via the linear isomorphism
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u ∈ Dom(H) 7→ (u,Hu), which shall be referred to as the graph norm of H. So then,

denoting this graph norm || · ||H ,

||u||H =
√
||u||2 + ||Hu||2 ∀u ∈ Dom(H). (2.58)

Given that Hp has dense domain in L2(M), and that Hp has self-adjoint extensions

beside H, the following must then hold:

Lemma 2.2.1. The linear functional φ 7→ φ(p) on Dom(H) is bounded with respect to

the graph norm of H.

Proof. Firstly, in order for Hp to have any self-adjoint extension beside H, we cannot

have the closure of Hp being H, since if it is, then any self-adjoint extension of Hp must

also be an extension of H, and at the same time a restriction of H∗p = H∗ = H (see Thm.

VIII.1 in §VIII.1 of [RS80]). Thus the only possible self-adjoint extension of Hp would

be H.

Now H, being a self-adjoint extension of Hp, must then be an extension of the closure

of Hp, and so in order for Hp to have any self-adjoint extension beside H, the closure of

Hp must be a proper restriction of H.

Considering now the linear functional (φ,Hφ) 7→ φ(p) on the graph of H, the graph

of Hp is then the kernel of this linear functional. Since this linear functional is nonzero,

so its kernel is not the whole of its domain, either

(i) this functional is bounded with respect to the norm given by (2.12) restricted to the

graph of H, in which case its kernel is a closed subset of its domain (i.e. the graph

of Hp is closed in the graph of H), or

(ii) this functional is unbounded, in which case its kernel is a dense subset of its domain

(i.e. the graph of Hp is dense in the graph of H).

See for example Thm. 1.7.15 and Prop. 1.7.16 in §1.7 of [Meg98] for justification of this.

However, if the graph of Hp is dense in the graph of H, this means that the closure

of Hp is H, which has been ruled out if Hp is to have any self-adjoint extension beside

H. The only option then is that the linear functional is bounded.

Finally, boundedness of the linear functional (φ,Hφ) 7→ φ(p) on the graph of H

with respect to the norm given by (2.12) restricted to the graph of H, is equivalent to

boundedness of the linear functional φ 7→ φ(p) on Dom(H) with respect to the norm

given by (2.58).
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The fact that Lemma 2.2.1 would follow from Hp having dense domain and self-adjoint

extensions beside H, is in agreement with statements made in §1.2.1 and 1.2.3 of [AK00].

Ch. 1 of [AK00] which deals with a more general theory of singular rank one perturbations

of self-adjoint operators.

Now one property of adjoint operators is that they are always closed operators (see

again Thm. VIII.1 in §VIII.1 of [RS80]), meaning that the graph is closed, and so in

particular, self-adjoint operators are always closed. So then, the graph of H is closed in

L2(M)×L2(M), but then the proof of Lemma 2.2.1 also reveals that the graph of Hp is

closed in the graph of H. Thus the graph of Hp is also closed in L2(M) × L2(M) (this

follows from basic topology / metric space theory), and so Hp is a closed operator. The

closure of Hp is therefore just Hp itself.

Corollary 2.2.2. If f =
∑∞

j=1 ajΨj ∈ Dom(H) then f(p) =
∑∞

j=1 ajΨj(p).

Proof. Let fn :=
∑n

j=1 ajΨj for each n ∈ N, so fn
n→∞−−−→ f . Then Hfn =

∑n
j=1 EjajΨj,

and furthermore, according to Lemma 2.1.1, Hf =
∑∞

j=1 EjajΨj. Thus Hfn
n→∞−−−→ Hf .

We therefore have ||fn − f ||
n→∞−−−→ 0 and ||H(fn − f)|| n→∞−−−→ 0, and so

||fn − f ||H =
√
||fn − f ||2 + ||H(fn − f)||2 n→∞−−−→ 0. (2.59)

Thus fn
n→∞−−−→ f under the graph norm of H, and so since the linear functional φ 7→ φ(p)

is bounded and therefore continuous on Dom(H) under this graph norm, it follows that

f(p) = lim
n→∞

fn(p) =
∞∑
j=1

ajΨj(p). (2.60)

Since then, we formally have

f(p) = 〈f, δp〉lc =
∞∑
j=1

ajΨj(p) ∀ f =
∞∑
j=1

ajΨj ∈ Dom(H) (2.61)

(see (2.55)), we can therefore formally write (given the formula for inner product in terms

of orthonormal basis expansion)

δp =
∞∑
j=1

Ψj(p)Ψj. (2.62)

This also makes sense given the formula for the coefficients in an orthonormal basis

expansion, since we have 〈δp,Ψj〉lc = 〈Ψj, δp〉lc = Ψj(p).

52



We can likewise then also define, given a set S ⊂ R,

P(H)
S δp :=

∑
j:Ej∈S

Ψj(p)Ψj. (2.63)

In general, this may or may not converge in L2(M), depending on the set S. However,

this will obviously be in L2(M), and also in Dom(H), if S is a bounded set, or more

generally if #{j : Ej ∈ S} is finite.

Lemma 2.2.3. Like P(H)
S f for f ∈ L2(M), P(H)

S δp is also independent of choice of

orthonormal eigenbasis of H.

This can be proved by similar method to the proof of Lemma 2.1.4.

Corollary 2.2.4. Letting {Ψj}j∈N and {Ψ̃j}j∈N be two orthonormal eigenbases of H, for

each E ∈ Spec(H) we have∑
j:Ej=E

|Ψj(p)|2 =
∑
j:Ej=E

|Ψ̃j(p)|2 = ||P(H)
{E} δp||

2. (2.64)

2.2.2 Green’s Functions

For each z ∈ C\{Ej}j∈N, we have from Lemma 2.1.3 that the operator (H − z)−1 :

L2(M)→ Dom(H) is a well-defined bounded operator. We can then consider the linear

functional σp,z : L2(M)→ C given by

σp,zf := (H − z)−1f(p) =
∞∑
j=1

aj
Ej − z

Ψj(p) ∀ f =
∞∑
j=1

ajΨj ∈ L2(M). (2.65)

So then, letting δ̂p be the linear functional φ ∈ Dom(H) 7→ φ(p), we have

σp,z = δ̂p ◦ (H − z)−1. (2.66)

Note that while (H − z)−1 is a bounded operator, δ̂p is an unbounded linear functional,

and so we can still consider the question of whether σp,z is a bounded or unbounded linear

functional.

Formally writing

σp,zf =

〈
f,

∞∑
j=1

Ψj(p)

Ej − z
Ψj

〉
, (2.67)

does the sum in the second part of the above formal inner product converge in L2(M)?
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Lemma 2.2.5. For every z ∈ C, if we take some c ∈ R for which z /∈ [c,∞) ∩ {Ej}j∈N
then ∑

j:Ej≥c

|Ψj(p)|2

|Ej − z|2
(2.68)

is a convergent sum.

Proof. Let z = r + is with r, s ∈ R. Then taking some c′ > max{c, r}, we have∑
j:Ej≥c

|Ψj(p)|2

|Ej − z|2
=

∑
j:Ej≥c

|Ψj(p)|2

(Ej − r)2 + s2

≤
∑

j:c≤Ej<c′

|Ψj(p)|2

(Ej − r)2 + s2
+
∑
j:Ej≥c′

|Ψj(p)|2

(Ej − r)2

=
∑

j:c≤Ej<c′

|Ψj(p)|2

(Ej − r)2 + s2
+ lim

t→∞

Np(t)

(t− r)2
−

N−p (c′)

(c′ − r)2

+ 2

∫ ∞
c′

Np(t)

(t− r)3
dt (2.69)

by Lemma 2.1.7. Wishing to show then that the two limits in the last part of the above

equation are convergent, taking some A > 1
4π

and applying Corollary 2.1.6, for sufficiently

large t we have

0 <
Np(t)

(t− r)2
≤ At

(t− r)2
=

A

t− r
+

Ar

(t− r)2

t→∞−−−→ 0. (2.70)

Furthermore, for sufficiently large M ,∫ ∞
M

Np(t)

(t− r)3
dt ≤ A

∫ ∞
M

t

(t− r)3
dt. (2.71)

Now for any a, b ∈ R with a < b and r /∈ [a, b], we have∫ b

a

t

(t− r)3
dt =

∫ b−r

a−r

(
1

τ 2
+

r

τ 3

)
dτ

= − 1

b− r
− r

2(b− r)2
+

1

a− r
+

r

2(a− r)2
. (2.72)

Thus ∫ ∞
M

t

(t− r)3
dt = lim

T→∞

(
− 1

T − r
− r

2(T − r)2
+

1

M − r
+

r

2(M − r)2

)
=

1

M − r
+

r

2(M − r)2
. (2.73)

It therefore follows that the two limits in the last part of (2.69) are indeed convergent,

and hence the sum in (2.68) is a convergent sum.
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We can thus conclude that the sum in the second part of the inner product in (2.67)

does indeed converge in L2(M). It also follows then that σp,z is a bounded linear

functional. Another approach one might consider for proving σp,z to be bounded is to

show that (H − z)−1 is a bounded operator from L2(M) under the usual L2-norm to

Dom(H) under the graph norm of H, and then use the boundedness of δ̂p on Dom(H)

under the graph norm to deduce that σp,z = δ̂p ◦ (H − z)−1 is a bounded functional. It

would then follow from the Riesz representation theorem that σp,z is expressible as an

operation taking inner product with some particular function in L2(M).

Now define gz ∈ L2(M) to be the complex conjugate of the function in the second

part of the inner product in (2.67), so

〈f, gz〉ll = σp,zf ∀ f ∈ L2(M). (2.74)

Then

gz =
∞∑
j=1

〈gz,Ψj〉Ψj =
∞∑
j=1

(σp,zΨj)Ψj =
∞∑
j=1

Ψj(p)

Ej − z
Ψj (2.75)

(noting that (H − z)Ψj = −∆Ψj − zΨj = −∆Ψj − zΨj = EjΨj − zΨj = (Ej − z)Ψj, so

(H − z)−1Ψj = (Ej − z)−1Ψj). Hence gz = gz.

This function gz is the function Gz(p, ·) = Gz(·, p), where Gz(·, ·) is the Green’s

function associated with the resolvent operator (H−z)−1. Both arguments of Gz(·, ·) are

positions on M.

Deriving some further properties of gz, observe that for every u ∈ Dom(H),

u(p) = 〈(H − z)u, gz〉ll = 〈Hu, gz〉ll − z 〈u, gz〉ll
⇒ 〈Hu, gz〉ll = 〈u, zgz〉ll + u(p) = 〈u, zgz + δp〉ll . (2.76)

Since H is an extension of the operator −∆ on C∞0 (M◦), it follows that in the

distributional sense, we have

−∆gz = zgz + δp. (2.77)

Furthermore, taking any s, z ∈ C\{Ej}j∈N,

〈Hu, gz − gs〉 = 〈Hu, gz〉ll − 〈Hu, gs〉ll = 〈u, zgz〉ll + u(p)− 〈u, sgs〉ll − u(p)

= 〈u, zgz − sgs〉 ∀u ∈ Dom(H). (2.78)

Thus by self-adjointness of H, gz − gs ∈ Dom(H) with

H(gz − gs) = zgz − sgs. (2.79)
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Now if we take any open X ⊂ M◦\{p}, and let g
(X)
z be the restriction of gz to X,

then we have ∫
X

(−∆u)g(X)
z =

∫
M

(Hu)gz =

∫
M
u(zgz) ∀u ∈ C∞0 (X), (2.80)

where u is extended to the whole ofM by simply having it be zero everywhere outside X.

Thus −∆g
(X)
z = zg

(X)
z in the distributional sense, also meaning then that (−∆)ng

(X)
z =

zng
(X)
z ∀n ∈ N. By the Sobolev embedding theorem it then follows that gz is C∞-smooth

on M◦\{p} with −∆gz = zgz.

Furthermore, in the case where M⊂ R2, letting

h(x) := − 1

2π
ln ||x− p|| ∀x ∈M◦\{p}, (2.81)

it is the case that h ∈ L2(M), and there is a standard result that

−∆h = δp. (2.82)

Thus gz − h ∈ L2(M) and

−∆(gz − h) = zgz + δp − δp = zgz ∈ L2(M). (2.83)

The Sobolev embedding theorem then yields that gz − h ∈ C(M◦), and so

gz(x) = − 1

2π
ln ||x− p||+ cp,z + o(1) as x→ p, (2.84)

where cp,z ∈ C is a constant (namely the value of gz − h at p). (2.84) also extends to the

case where M more generally is a 2D Riemannian manifold, only replacing “||x − p||”
with the geodesic distance between x and p.

Finally, another property is that gz satisfies the boundary conditions (Dirichlet) for

functions in Dom(H) if there is a boundary. In other words, if χ ∈ C∞0 (M◦) and χ = 1

on a neighbourhood of p then (1− χ)gz ∈ Dom(H).

2.2.3 Action of the Delta-Perturbed Operators

Stating the action of the adjoint H∗p of Hp, and of the self-adjoint extensions {HΘ : Θ ∈
[0, 2π)} of Hp (see e.g. [KMW10]),

Dom(H∗p ) = Dp ⊕ span{gi, g−i}, (2.85)

H∗p (ψ + a+gi + a−g−i) = Hpψ + a+igi − a−ig−i ∀ψ ∈ Dp, a+, a− ∈ C. (2.86)

HΘ is then the restriction of H∗p to

Dom(HΘ) = Dp ⊕ span{gi − eiΘg−i}. (2.87)
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Lemma 2.2.6. H0 = H.

Proof. Observe firstly from (2.79) that gi − g−i ∈ Dom(H), with

H(gi − g−i) = igi + ig−i = H∗p (gi − g−i). (2.88)

Thus given any ψ = ψp + a(gi − g−i) ∈ Dom(H0), with ψp ∈ Dp and a ∈ C,

H0ψ = Hpψp + ai(gi + g−i) = Hψp + aH(gi − g−i) = Hψ. (2.89)

This so far proves at least that H0 is a restriction of H.

Now

gi − g−i =
∞∑
j=1

(
Ψj(p)

Ej − i
− Ψj(p)

Ej + i

)
Ψj = 2i

∞∑
j=1

Ψj(p)

E2
j + 1

Ψj, (2.90)

and so by Corollary 2.2.2,

(gi − g−i)(p) = 2i
∞∑
j=1

|Ψj(p)|2

E2
j + 1

. (2.91)

Since it must hold that ∃ j ∈ N for which |Ψj(p)|2 6= 0 (otherwise Np(E) = 0 ∀E, which

would violate Weyl’s law), it follows then that (gi − g−i)(p) 6= 0.

Given any ψ ∈ Dom(H), letting

ψp := ψ − ψ(p)

(gi − g−i)(p)
(gi − g−i), (2.92)

it follows that ψp ∈ Dom(H) and ψp(p) = 0, so ψp ∈ Dp, and thus ψ ∈ Dom(H0). Hence

H and H0 have the same domain, and perform the same operation.

Note that the decomposition of any ψ ∈ Dom(H∗p ) into the form ψ = ψp+a+gi+a−g−i,

with ψp ∈ Dp, a+, a− ∈ C, is unique. In particular then, for any Θ1,Θ2 ∈ [0, 2π) with

Θ1 6= Θ2,

Dom(HΘ1) ∩Dom(HΘ2) = Dp. (2.93)

Observe that for each Θ ∈ (0, 2π) (so excluding Θ = 0), every member of

Dom(HΘ)\Dp has a logarithmic singularity at p, since by (2.84),

(gi − eiΘg−i)(x) =
eiΘ − 1

2π
ln dM(x, p) + cp,i − eiΘcp,−i + o(1) as x→ p, (2.94)

where dM(·, ·) denotes geodesic distance between two points on M. Observe that (2.94)

also holds for Θ = 0, yielding

cp,i − cp,−i = (gi − g−i)(p) = 2i
∞∑
j=1

|Ψj(p)|2

E2
j + 1

. (2.95)

With H0 being the unperturbed operator H, the delta perturbed operator H ′ can be

taken to be any HΘ with Θ ∈ (0, 2π).
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2.2.4 Observations on the Strength of the Delta Potential

In a 1-dimensional setting, the operators representing the delta potential can indeed be

expressed in the form − d2

dx2 + cδp, with well-defined c ∈ R (except one operator effectively

corresponding to c = ±∞). There are effectively boundary conditions at p, consisting of

continuity at p but a discontinuity in the derivative at p, whereby the ratio between the

value at p and the difference in left-sided and right-sided derivatives at p is determined

by the strength c.

Concerning the delta potential in the 2-dimensional setting that we are interested in,

observe that we have the following:

Proposition 2.2.7.

H∗pψ = −∆ψ +

(
lim
x→p

2πψ(x)

ln dM(x, p)

)
δp ∀ψ ∈ Dom(H∗p ). (2.96)

Proof. Given any ψ ∈ Dom(H∗p ), writing ψ = ψp+a+gi+a−g−i with ψp ∈ Dp, a+, a− ∈ C,

we have by (2.77),

−∆ψ = Hpψ + a+(igi + δp) + a−(−ig−i + δp), (2.97)

so

H∗pψ = −∆ψ − (a+ + a−)δp. (2.98)

But furthermore by (2.84),

ψ(x) = −a+ + a−
2π

ln dM(x, p) + a+cp,i + a−cp,−i + o(1) as x→ p, (2.99)

so dividing through by 1
2π

ln dM(x, p) and noting that limx→p
1

ln dM(x,p)
= 0,

lim
x→p

2πψ(x)

ln dM(x, p)
= −(a+ + a−). (2.100)

Combining (2.98) and (2.100) then gives (2.96).

In light of this, let Vp be a function onM for which on a neighbourhood of p, Vp(x) =
2π

ln dM(x,p)
. We can then formally express (2.96) as follows:

H∗pψ = −∆ψ + (ψVp)δp. (2.101)

Now note that Vp is continuous at p with Vp(p) = 0, and that Vp is negative on a

punctured neighbourhood of p. This would then mean that formally, Vpδp = 0, and so

ψ(Vpδp) = 0. Nevertheless, (ψVp)δp may be nonzero due to a logarithmic singularity

at p. Thus we effectively have a violation of the associative law, which is already a

recognised phenomenon with multiplication involving distributions (see e.g. [Raj82] or

§1.2 in [TK05]).
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Consideration of Quadratic Form Representation

One approach that could be attempted for associating the operators HΘ with values

for the strength of the delta potential is to consider the representation of self-adjoint

operators by quadratic forms (for general theory on this, see e.g. §VIII.6 in [RS80] and

Ch. X in [RS75] or Lec. 7 in [Del15]).

Consider the operator
√
H, which can be defined as follows:

√
H is the self-adjoint

operator with orthonormal eigenbasis {Ψj}j∈N and respective corresponding eigenvalues

{
√
Ej}j∈N. By the same arguments as in the proof of Lemma 2.1.1, we have

∞∑
j=1

ajΨj ∈ Dom(
√
H) iff

∞∑
j=1

√
EjajΨj ∈ L2(M), (2.102)

√
H

(
∞∑
j=1

ajΨj

)
=
∞∑
j=1

√
EjajΨj. (2.103)

The quadratic form (·, ·)H associated with the operator H is then given by the

following:

(φ, ψ)H =
〈√

Hφ,
√
Hψ
〉

=
∞∑
j=1

Ejajbj

∀φ =
∞∑
j=1

ajΨj, ψ =
∞∑
j=1

bjΨj ∈ Dom(
√
H). (2.104)

Dom(
√
H) here is referred to as the form domain of H. Observe that Dom(

√
H) ⊃

Dom(H) and that (·, ·)H is an extension of

φ, ψ ∈ Dom(H) 7→ 〈Hφ,ψ〉 . (2.105)

For each delta-perturbed operator HΘ there is likewise an associated quadratic form,

which is an extension of

φ, ψ ∈ Dom(HΘ) 7→ 〈HΘφ, ψ〉 . (2.106)

Now quadratic form representation of self-adjoint operators can be a useful tool in

the study of perturbations, particularly because a perturbation may leave the quadratic

form domain preserved, even when the ordinary domain is not preserved (see e.g. §1.2.3

in [AK00] along with §X.2 in [RS75]). We can then raise the question of whether or not

the delta perturbation in our situation preserves the form domain.

Lemma 2.2.8. For every z ∈ C, if we take some c ∈ R for which z /∈ [c,∞) ∩ {Ej}j∈N
then ∑

j:Ej≥c

|Ψj(p)|2

|Ej − z|
(2.107)
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is a divergent sum.

Proof. Let z = r + is with r, s ∈ R. Then taking some c′ > max{c, r} and d > c′, we

have ∑
j:c≤Ej≤d

|Ψj(p)|2

|Ej − z|
=

∑
j:c≤Ej≤d

|Ψj(p)|2√
(Ej − r)2 + s2

≥
∑

j:c≤Ej<c′

|Ψj(p)|2√
(Ej − r)2 + s2

+
∑

j:c′≤Ej≤d

|Ψj(p)|2

Ej − r + |s|

=
∑

j:c≤Ej<c′

|Ψj(p)|2√
(Ej − r)2 + s2

+
Np(d)

d− r + |s|
−

N−p (c′)

c′ − r + |s|

+

∫ d

c′

Np(t)

(t− r + |s|)2
dt. (2.108)

Now for any ε ∈ (0, 1
4π

), by Corollary 2.1.6 we can take some M ≥ c′ for which we

have Np(t) ≥ ( 1
4π
− ε)t ∀ t ≥M . Interested then in sending d to infinity:∫ d

M

t

(t− r + |s|)2
dt =

∫ d

M

(
1

t− r + |s|
+

r − |s|
(t− r + |s|)2

)
dt

= ln(d− r + |s|) +
|s| − r

d− r + |s|

− ln(M − r + |s|)− |s| − r
M − r + |s|

d→∞−−−→∞. (2.109)

It thus follows that LHS(2.108) tends to infinity as d→∞.

Corollary 2.2.9. For each z ∈ C\{Ej}j∈N,

∞∑
j=1

Ej|Ψj(p)|2

|Ej − z|2
(2.110)

is a divergent sum, and thus gz /∈ Dom(
√
H).

Corollary 2.2.10. For each Θ ∈ (0, 2π), the form domain of HΘ is not equal to the form

domain of H.

Conclusion of Negative Infinitesimal Strength

The way in which (2.101) could be interpreted intuitively, remembering that the delta-

perturbed operators are restrictions of H∗p , is that the “delta potential” we work with has

negative infinitesimal strength. This claim is further supported by work done in Ch. 4.

It is perhaps then a partial misnomer that this perturbation is referred to as

a “delta potential”. Perhaps it would be better referred to as a “quasi-delta
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potential/perturbation”, or to copy terminology from e.g. [LSS05] or [Poh13], it could be

referred to as a “regularised delta potential” (by contrast with a “bare delta potential”).

In [LSS05], it is even stated that the “regularised” delta potential well in 2D and 3D has

infinitesimally small strength (and the use of the word “well” would suggest a negative

potential).

2.2.5 Eigenvalues and Eigenfunctions of the Delta-Perturbed

Operators

From this point onwards, we work specifically with a choice of orthonormal eigenbasis

{Ψj}j∈N for which the following requirement is satisfied: Each distinct eigenvalue has

at most one corresponding eigenfunction in the eigenbasis whose value at the point p

is nonzero. It is always possible to select an orthonormal eigenbasis that satisfies

this requirement. Now define {Φj}j∈N ⊆ {Ψk}k∈N to consist of all those members of

the eigenbasis whose values at p are nonzero, and let {Ej}j∈N be the corresponding

eigenvalues. Note that we now have, with strict inequalities, E1 < E2 < E3 < · · · → ∞.

Deletion of eigenfunctions from the eigenbasis that vanish at p will always still leave

infinitely many eigenfunctions left.

Fixing Θ ∈ (0, 2π), the solutions λ ∈ R\{Ej}j∈N to the following equation are

eigenvalues of HΘ:

∞∑
j=1

(
1

Ej − λ
− Ej

1 + E2
j

)
|Φj(p)|2 = − cot

(
Θ

2

) ∞∑
j=1

|Φj(p)|2

1 + E2
j

. (2.111)

The corresponding eigenfunctions (unnormalised) are then:

φ =
∞∑
j=1

Φj(p)

Ej − λ
Φj. (2.112)

Now equation (2.111) has one solution within each interval (Ej, Ej+1), and one solution

below E1. Define λj to be the solution lying within the interval (Ej, Ej+1), with λ0 being

the solution below E1. If we allow Θ to vary, then as Θ increases from 0 to 2π, λj

increases from Ej to Ej+1, with λ0 increasing from −∞ to E1. [In conjunction with this,

see Lemma 4.3.3].

Define φj to be the eigenfunction given by (2.112), corresponding to eigenvalue λj.

Define the normalised eigenfunction φ̂j := φj/ ||φj||.
Observe now that it is also the case that every eigenfunction of H which takes

value zero at p is clearly also an eigenfunction of the perturbed operator HΘ, with the
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same corresponding eigenvalue. We have, as a complete orthonormal eigenbasis of the

perturbed operator HΘ:

{φ̂j}j∈{0}∪N ∪ ({Ψk}k∈N\{Φl}l∈N) . (2.113)

2.3 The Classical System

2.3.1 The Unperturbed Classical System

This is a continuous-time dynamical system for the motion of a particle confined within

M. An acceptable trajectory for the particle within M is one satisfying the following

rules:

• The particle’s position on M as a function of time is continuous.

• The particle is at ∂M for at most finitely many points in time within any finite

time period.

• While the particle is on M◦, it moves along a geodesic at constant speed.

• When the particle strikes the boundary, it strikes non-tangentially at a point on the

smooth part of the boundary. The out-going velocity vector (a vector on the tangent

space) is then the reflection of the incoming velocity vector about the tangent line

to ∂M at the point at which the particle strikes (essentially the same rule as for

light reflecting off a mirror).

This system is a dynamical system on position-velocity phase space.

Associated to each point x ∈ M is a 2D Euclidean vector space referred to as the

tangent space at x, denoted TxM. The velocity of a particle at x is then a vector in this

tangent space. The space of linear functionals on this tangent space (the dual space)

is referred to as the cotangent space, denoted T ∗xM. The tangent space has a scalar

product on it, referred to as the Riemannian metric. Each tangent vector can therefore

be identified isomorphically with a cotangent vector, where this cotangent vector is the

linear functional induced by the tangent vector under the scalar product.

We then define the tangent bundle TM := {(x, ξ) : x ∈ M, ξ ∈ TxM}. Likewise

define the cotangent bundle T ∗M := {(x, ξ) : x ∈ M, ξ ∈ T ∗xM}. Either of these could

potentially serve as the phase space.

However, since the speed of the particle is always constant over time, and altering

the initial speed while keeping the same initial direction will not change the trajectory

62



(besides from a time rescaling), it is convenient just to take speed = 1, and have the

phase space consist of just position and direction of motion. The phase space we shall

work with is the unit cotangent bundle S∗M := {(x, ξ) : x ∈ M, ξ ∈ T ∗xM, ||ξ|| = 1}, as

is done for example in [ZZ96].

The phase space S∗M then has a natural 3D volume measure on it, which shall be

normalised so as to have the total measure of S∗M being 1. Assume henceforth (if it

does not already follow from the conditions stated for M) that the manifold M is such

that, for almost all (i.e. full measure set of) points (x, ξ) ∈ S∗M, if the initial state is

(x, ξ), then under the rules stated for an acceptable trajectory, this will give rise to a

fully determined trajectory over all time, past and future.

On the set of points in S∗M that give rise to fully determined trajectories, define the

flow Φt, where Φt(x, ξ) is the state in S∗M at time t ∈ R if the initial state (time t = 0)

is (x, ξ), taking speed of motion = 1. This flow is measure preserving, meaning that for

any measurable set V ⊂ S∗M for which all points in V give rise to fully determined

trajectories, we have

µ(V ) = µ(Φt(V )) ∀ t ∈ R, (2.114)

where µ is the measure on S∗M.

2.3.2 The Perturbed Classical System

We assume that for as long as the particle confined within M does not hit the point p,

its motion follows the same rules as for the unperturbed classical system. Now only a

measure zero set of points in S∗M would belong to trajectories that ever hit the point

p. Since the difference then is only for a measure zero set, the perturbed classical system

is considered to be essentially the same dynamical system as the unperturbed classical

system.
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Chapter 3

Approximation of Some Perturbed

Eigenfunctions by a Combination of

the Two Surrounding Unperturbed

Eigenfunctions

3.1 Overview

In the study of quantum chaos, a common interest is in limiting behaviour of subsequences

of an orthonormal eigenbasis of the quantum Hamiltonian, with the functions in the

eigenbasis being arranged in order of non-decreasing eigenvalue. In the case where we

deal with a delta-perturbed quantum system, it could then be of interest to determine

whether knowledge of limiting behaviour of some unperturbed eigenbasis subsequences

can be used to infer limiting behaviour of some perturbed eigenbasis subsequences.

As such, one could be interested in a perturbed eigenfunctions subsequence (φjn)n∈N ⊂
(φj)j∈N in which for large eigenvalue, the eigenfunctions approximate to a linear

combination of only the two surrounding unperturbed eigenfunctions Φjn and Φjn+1.

This may enable limiting properties of (φjn)n∈N to be inferred from limiting properties of

(Φjn)n∈N and (Φjn+1)n∈N. Such approximation of perturbed eigenfunction subsequences

to the two surrounding unperturbed eigenfunctions is the subject of this Chapter.

Now of course, as seen in §2.2.5, unperturbed eigenfunctions that vanish at p remain

functions of the perturbed operator HΘ. However, the studies in this Chapter will focus

only on the “new” perturbed eigenfunctions {φj}.
In [KMW10], a class of quasimodes, i.e. “approximate eigenfunctions”, for the
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delta-perturbed operator is constructed, and analysis is performed on how well these

quasimodes can be used to approximate true eigenfunctions of the delta-perturbed

operator. Each quasimode is within the domain of the delta-perturbed operator, and

associated with each quasimode is a real-valued quasieigenvalue. Just as in Chapter

2 here, the setting within [KMW10] is that of a self-adjoint −∆ on a 2D compact

Riemannian manifold, with or without boundary, perturbed by a delta potential.

Particular focus within [KMW10] is placed on a set of quasimodes {ψ0,Ij}j∈N of the

perturbed operator HΘ, where Ij is the interval [Ej, Ej+1] and ψ0,Ij ∈ span{Φj,Φj+1}.
Associated with the quasimode ψ0,Ij is a quasieigenvalue µj ∈ (Ej, Ej+1). Again, as

defined in §2.2.5, each Φj is a member of the eigenbasis of H with Φj(p) 6= 0, and Ej

is the corresponding eigenvalue. Recall also that the eigenbasis of H has been chosen

such that for each distinct eigenvalue, only at most one corresponding member of the

eigenbasis may be nonzero at p. Thus with strict inequality, Ej < Ej+1.

As well as the quasimode ψ0,Ij with quasieigenvalue µj ∈ (Ej, Ej+1), there is of course

also the true eigenfunction φj of HΘ with eigenvalue λj ∈ (Ej, Ej+1). Theorem 4.4 in

[KMW10] then gives a pair of conditions under which, for an eigenfunction subsequence

(φjn)n∈N ⊂ (φj)j∈N, it holds that as n→∞, ψ0,Ijn
and φjn approach each other under the

L2 norm, when normalised. Thus for large n, the eigenfunction φjn of HΘ approximates

to a linear combination of only two unperturbed eigenfunctions, namely Φjn and Φjn+1.

This theorem is only stated though for the self-adjoint extension Hπ.

In §V of [KMW10], implications of this are then studied in the case of the original

Šeba billiard, which is a rectangle billiard perturbed with a delta potential. The

unperturbed Hamiltonian operator is taken to be the self-adjoint −∆ with Dirichlet

boundary conditions. The position p of the point scatterer is taken to be the centre of

the rectangle. It is demonstrated that for the unperturbed rectangle billiard, for large

eigenvalues most of the eigenfunctions become localised in momentum space around only

four points. These four points in general are different for different eigenfunctions. With

M⊂ R2, the momentum distribution of a wavefunction ψ ∈ L2(M) is given by |F{ψ}|2

(normalised), where F is the Fourier transform.

It is inferred in §V of [KMW10] that there would be a perturbed eigenfunction

subsequence (φjn)n∈N ⊂ (φj)j∈N in which these eigenfunctions become localised around

eight points in momentum space. This is because they approximate to a linear

combination of two unperturbed eigenfunctions, each localising around four points in

momentum space. Supporting numerical simulations are presented in [BKW03].

Outlining the structure of this Chapter, §3.2 gives a review of Theorem 4.4 in
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[KMW10]. This theorem is restated in Prop. 3.2.1. Immediate observations can be made,

strengthening the statement of this theorem. This stronger statement of the theorem is

given in Cor. 3.2.2.

In §3.3 results are derived which would form a basis for a broadened study of the

question of whether a “new” perturbed eigenfunction subsequence approaches linear

combinations of only the two surrounding unperturbed eigenfunctions. Distinction here

is drawn as to whether or not each approximating linear combination of these two

eigenfunctions is demanded to be contained within the domain of the perturbed operator.

Cor. 3.3.2 states conditions under which this approximation holds, demanding that the

approximating linear combination be contained within the domain of the perturbed

operator. Prop. 3.3.3 does the same, but without this demand.

Now Thm. 4.4 in [KMW10] effectively deals with conditions for this approximation,

with this demand, since the quasimodes dealt with there are contained in the perturbed

domain. However, in this Chapter, the case is considered in which this demand is dropped.

In §3.4, the conditions of Prop. 3.3.3 are processed, so as to derive the central result of

this Chapter, namely Thereom 3.4.1. From this, Prop. 3.5.1 and Cor. 3.5.2 are then

derived. Cor. 3.5.2 permits a transparent comparison with Thm. 4.4 in [KMW10].

Throughout this Chapter, work is carried out within the setting specified in Chapter

2, along with the notation given in Chapter 2.

3.2 Review of Work by Keating, Marklof and Winn

Before defining and discussing quasimodes, first making a basic mathematical observation:

given any Hilbert space H, for any two normalised members φ, ψ ∈ H,∣∣∣∣φ− eiχψ∣∣∣∣2 =
〈
φ− eiχψ, φ− eiχψ

〉
= 1− e−iχ 〈φ, ψ〉 − eiχ 〈ψ, φ〉+ 1

= 2− 2Re
(
eiχ 〈ψ, φ〉

)
∀χ ∈ [0, 2π). (3.1)

Now let χ0 := −arg (〈ψ, φ〉), so 〈ψ, φ〉 = |〈ψ, φ〉| e−iχ0 . Then

min
χ∈[0,2π)

∣∣∣∣φ− eiχψ∣∣∣∣2 =
∣∣∣∣φ− eiχ0ψ

∣∣∣∣2 = 2 (1− |〈ψ, φ〉|) . (3.2)

3.2.1 Quasimodes

Let T be a self-adjoint operator in a separable Hilbert space H, having a countable

orthonormal eigenbasis {uj}, whose spectrum is purely the set of corresponding

eigenvalues {Λj} ⊆ R, having #{j : Λj ∈ S} < ∞ for every bounded set S ⊂ R. A
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member ψ ∈ Dom(T ) is said to be a quasimode of T with quasieigenvalue µ ∈ R and

discrepancy d ≥ 0 if

||(T − µ)ψ|| ≤ d ||ψ|| . (3.3)

Given such a quasimode, as stated in [KMW10], the interval [µ−d, µ+d] will contain

at least one true eigenvalue of T . Furthermore, it holds that for any M > 0,∑
j:Λj /∈[µ−M,µ+M ]

|〈ψ, uj〉|2 = ||ψ||2 −
∑

j:Λj∈[µ−M,µ+M ]

|〈ψ, uj〉|2 ≤
d2

M2
||ψ||2 . (3.4)

Rearranging this gives: ∑
j:Λj∈[µ−M,µ+M ]

|〈ψ, uj〉|2 ≥
(

1− d2

M2

)
||ψ||2 (3.5)

Now suppose that ψ is normalised, and that there is only one eigenvector/eigenfunction

uj non-orthogonal to ψ with corresponding eigenvalue Λj ∈ [µ −M,µ + M ]. Let χ0 :=

−arg (〈ψ, uj〉). Applying (3.2) followed by (3.4) then gives:

∣∣∣∣uj − eiχ0ψ
∣∣∣∣2 = 2 (1− |〈ψ, uj〉|) ≤ 2

(
1− |〈ψ, uj〉|2

)
≤ 2d2

M2
. (3.6)

Thus ∣∣∣∣uj − eiχ0ψ
∣∣∣∣ ≤ √2d

M
. (3.7)

3.2.2 Approximation of Perturbed Eigenfunctions by Two-

Component Quasimodes

Within the family of quasimodes considered in [KMW10], particular attention is paid to

quasimodes of the following form: for each interval Ij := [Ej, Ej+1] we have an associated

quasimode

ψ0,Ij =
Φj(p)

Ej − µj
Φj +

Φj+1(p)

Ej+1 − µj
Φj+1

=
|Φj(p)|2 + |Φj+1(p)|2

Ej+1 − Ej

(
−1

Φj(p)
Φj +

1

Φj+1(p)
Φj+1

)
, (3.8)

where

µj =
|Φj(p)|2Ej+1 + |Φj+1(p)|2Ej
|Φj(p)|2 + |Φj+1(p)|2

∈ (Ej, Ej+1). (3.9)

ψ0,Ij is shown in [KMW10] to be a quasimode of the delta-perturbed operator HΘ with

quasieigenvalue µj and discrepancy d ≤ 1
2
(Ej+1 − Ej). Let ψ̂0,Ij := ψ0,Ij/||ψ0,Ij ||.
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In Thm. 4.4 of [KMW10], sufficient conditions are derived in the case where Θ =

π, for which a subsequence (φ̂jn)n∈N of the perturbed eigenfunction sequence (φ̂j)j∈N

approximates to the corresponding sequence of quasimodes (ψ̂0,Ijn
)n∈N in the L2 norm.

More precisely, this theorem states:

Proposition 3.2.1. Working with the perturbed operator Hπ, given a strictly increasing

sequence (jn)n∈N ⊂ N, it holds that

||φ̂jn − eiθnψ̂0,Ijn
|| n→∞−−−→ 0 (3.10)

for some phases (eiθn)n∈N, if the following conditions are satisfied:

(i) ∃ q ∈ (0, 1
2
), ρ ∈ (1, 2(1 − q)) and sequence (εn)n∈N ⊂ (0,∞) with εn

n→∞−−−→ 0 such

that

Ejn+2 � ε−ρn , (3.11)

Ejn+1 − Ejn � εn, (3.12)

Ejn − Ejn−1 � εqn, (3.13)

Ejn+2 − Ejn+1 � εqn (3.14)

as n→∞, where � is again the order relation O(·), defined in (2.33),

(ii) ∃ c0 > 0 s.t. |Φjn| ≥ c0 and |Φjn+1| ≥ c0 ∀n ∈ N.

Remarks. (a) Observe that condition (i) in Prop. 3.2.1 is stronger than the following:

Ejn+1 − Ejn
n→∞−−−→ 0,

Ejn+1 − Ejn
Ejn − Ejn−1

n→∞−−−→ 0,
Ejn+1 − Ejn
Ejn+2 − Ejn+1

n→∞−−−→ 0. (3.15)

(b) It is remarked in [KMW10] that condition (ii) can in fact be relaxed slightly, by

replacing the “≥ c0” requirement with � ε
r/2
n for some r ∈ (0, 1− q − ρ

2
).

(c) Given a strictly increasing sequence (jn)n∈N ⊂ N and a sequence (εn)n∈N ⊂ (0,∞)

with εn
n→∞−−−→ 0, suppose (3.11) - (3.14) hold for some q, ρ ∈ R. Then given any

q′, ρ′ ∈ R with q′ ≥ q and ρ′ ≥ ρ, (3.11) - (3.14) also hold with q′ and ρ′ in place of

q and ρ. This is easy to see since for sufficiently large n, 0 < εn < 1 and so εq
′
n ≤ εqn

and ε−ρ
′

n ≥ ε−ρn . This may allow for an automatic weakening of the conditions on q

and ρ in Thm. 4.4 of [KMW10].

(d) Again given a strictly increasing sequence (jn)n∈N ⊂ N and a sequence (εn)n∈N ⊂
(0,∞) with εn

n→∞−−−→ 0, suppose (3.11) - (3.14) hold for some q, ρ ∈ R. It must then

follow that ρ > 0 since Ejn+2
n→∞−−−→ ∞, and that q ≥ −ρ since Ejn − Ejn−1 < Ejn+2

and Ejn+2 − Ejn+1 < Ejn+2.
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(e) The appearance of phases eiθn in (3.10) can be eliminated. This is because〈
ψ̂0,Ijn

, φ̂jn

〉
=

1

||ψ0,Ijn
|| ||φjn||

(
|Φjn(p)|2

(Ejn − µjn)(Ejn − λjn)

+
|Φjn+1(p)|2

(Ejn+1 − µjn)(Ejn+1 − λjn)

)
> 0, (3.16)

so arg
(〈
ψ̂0,Ijn

, φ̂jn

〉)
= 0, and thus from (3.2) it follows that

||φ̂jn − ψ̂0,Ijn
|| ≤ ||φ̂jn − eiθnψ̂0,Ijn

||. (3.17)

Hence

∃ (θn)n∈N ⊂ R s.t. ||φ̂jn − eiθnψ̂0,Ijn
|| n→∞−−−→ 0 (3.18)

if and only if

||φ̂jn − ψ̂0,Ijn
|| n→∞−−−→ 0. (3.19)

In light of remarks (c), (d) and (e), the following corollary may thus be derived:

Corollary 3.2.2. Working with the perturbed operator Hπ, given a strictly increasing

sequence (jn)n∈N ⊂ N, it holds that

||φ̂jn − ψ̂0,Ijn
|| n→∞−−−→ 0 (3.20)

if conditions (i) and (ii) from Prop. 3.2.1 hold, only now weakening the specification for

q and ρ in condition (i) to the following:

− 2 < q <
1

2
,

0 < ρ < 2(1− q) if 0 ≤ q < 1
2

−q ≤ ρ < 2 if − 2 < q < 0.
(3.21)

In what follows, we shall rename ψ0,Ij as ψ◦j . We also shall not restrict to the case of

Θ = π henceforth. It would be useful to make the following observation:

Lemma 3.2.3. For given j ∈ N, for any u ∈ span{Φj,Φj+1}, it holds that u ∈ Dom(HΘ)

iff u ∈ Dp iff u = sψ◦j for some scalar s ∈ C.

Proof. Clearly u ∈ Dom(H). Since Dom(H) ∩ Dom(HΘ) = Dp, it follows that u ∈
Dom(HΘ) iff u ∈ Dp. Writing u = bΦj + cΦj+1, u(p) = 0 iff c = −bΦj(p)/Φj+1(p).

Comparing with the right-hand side of (3.8), this clearly holds iff u is a scalar multiple

of ψ◦j .

Again, in [KMW10], interest is expressed in a perturbed eigenfunction subsequence

(φ̂jn)n∈N for which, as n → ∞, φ̂jn approximates to a linear combination of Φjn and

Φjn+1. However, only the case where this linear combination is contained within the

domain of the perturbed operator is considered. It would seem reasonable to broaden the

investigation by also considering the case where this restriction is dropped.
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3.3 Further Work: Initial Observations on Conditions

for Approximation

Proposition 3.3.1. Given a sequence {jn} ⊆ N with jn →∞ as n→∞, and sequence

{ujn} ⊆ L2(M) with ujn = bjnΦjn + cjnΦjn+1 6= 0, consider the following statement:

∃ {sjn}, {zjn} ⊆ C such that

(i) ||sjnφjn − zjnujn|| → 0 as n→∞,

(ii) @ subsequence {kn} ⊆ {jn} such that both ||sknφkn||, ||zknukn|| → 0.

The above statement holds true iff∣∣∣∣∣∣φ̂jn − eiχjn ûjn∣∣∣∣∣∣→ 0, (3.22)

equivalently ∣∣∣〈ûjn , φ̂jn〉∣∣∣→ 1, (3.23)

where ûjn := ujn/ ||ujn|| and χjn := −arg
(〈
ûjn , φ̂jn

〉)
. Here

∣∣∣∣∣∣φ̂jn − eiχjn ûjn∣∣∣∣∣∣2 = 2
(

1−
∣∣∣〈ûjn , φ̂jn〉∣∣∣) , (3.24)

∣∣∣〈ûjn , φ̂jn〉∣∣∣ =

∣∣∣ bjnΦjn (p)

Ejn−λjn
+

cjnΦjn+1(p)

Ejn+1−λjn

∣∣∣√
|bjn|

2 + |cjn|
2
√∑∞

k=1
|Φk(p)|2

(Ek−λjn )2

. (3.25)

Proof. Trivially, if (3.22) holds true then the statement in question holds true, as (3.22)

would serve as an example.

Now suppose the statement in question holds true. We wish then to prove (3.22).

For each jn, let wjn be the larger out of sjnφjn and zjnujn , and let vjn be the smaller,

where “larger” (“smaller”) means having larger (smaller) norm. From (ii), it follows that

∃M > 0, N1 ∈ N s.t. ||wjn|| ≥M ∀n ≥ N1. (3.26)

Now take some L ∈ (0,M), ε ∈ (0,M − L) and (by (i)) N2 ≥ N1 such that

||sjnφjn − zjnujn|| = ||wjn − vjn|| < ε ∀n ≥ N2. Then for each n ≥ N2:

M ≤ ||wjn|| ≤ ||wjn − vjn||+ ||vjn|| < ε+ ||vjn|| (3.27)

∴ ||vjn|| > M − ε > L. (3.28)
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Hence it follows that

||sjnφjn|| , ||zjnujn|| > L ∀n ≥ N2. (3.29)

From now on, assume n ≥ N2. Define

ũjn :=
zjnujn

sjn ||φjn||
. (3.30)

Then ∣∣∣∣∣∣φ̂jn − ũjn∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣sjnφjn − zjnujnsjn ||φjn||

∣∣∣∣∣∣∣∣ ≤ ||sjnφjn − zjnujn||L
. (3.31)

Hence by (i), ∣∣∣∣∣∣φ̂jn − ũjn∣∣∣∣∣∣→ 0 as n→∞. (3.32)

Now define újn := ũjn/ ||ũjn||, so újn is normalised. Then∣∣∣∣∣∣φ̂jn − újn∣∣∣∣∣∣ ≤ ∣∣∣∣∣∣φ̂jn − ũjn∣∣∣∣∣∣+ ||ũjn − újn|| =
∣∣∣∣∣∣φ̂jn − ũjn∣∣∣∣∣∣+

∣∣∣∣∣∣∣∣ũjn (1− 1

||ũjn||

)∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣φ̂jn − ũjn∣∣∣∣∣∣+ |(||ũjn|| − 1)|

=
∣∣∣∣∣∣φ̂jn − ũjn∣∣∣∣∣∣+

∣∣∣(||ũjn|| − ∣∣∣∣∣∣φ̂jn∣∣∣∣∣∣)∣∣∣ ≤ 2
∣∣∣∣∣∣φ̂jn − ũjn∣∣∣∣∣∣ . (3.33)

Hence ∣∣∣∣∣∣φ̂jn − újn∣∣∣∣∣∣→ 0 as n→∞. (3.34)

Finally by (3.2), ∣∣∣∣∣∣φ̂jn − eiχjn ûjn∣∣∣∣∣∣ ≤ ∣∣∣∣∣∣φ̂jn − újn∣∣∣∣∣∣ . (3.35)

Thus (3.22) holds true.

The rest then follows from (3.2), (2.112) and basic Hilbert space formulae.

Corollary 3.3.2. Given a sequence {jn} ⊆ N with jn → ∞ as n → ∞, consider

the following statement: ∃ {sjn} ⊆ C, {vjn} ⊆ L2(M) with vjn = xjnΦjn + yjnΦjn+1 ∈
Dom(HΘ), such that

(i) ||sjnφjn − vjn|| → 0 as n→∞,

(ii) @ subsequence {kn} ⊆ {jn} such that both ||sknφkn||, ||vkn|| → 0.

The above statement holds true iff ∣∣∣∣∣∣φ̂jn − ψ̂◦jn∣∣∣∣∣∣→ 0, (3.36)

equivalently 〈
ψ̂◦jn , φ̂jn

〉
→ 1. (3.37)
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Here ∣∣∣∣∣∣φ̂jn − ψ̂◦jn∣∣∣∣∣∣2 = 2
(

1−
〈
ψ̂◦jn , φ̂jn

〉)
, (3.38)〈

ψ̂◦jn , φ̂jn

〉
=

(Ejn+1 − Ejn) |Φjn(p)Φjn+1(p)|

(Ejn+1 − λjn)(λjn − Ejn)
√
|Φjn(p)|2 + |Φjn+1(p)|2

√∑∞
k=1

|Φk(p)|2
(Ek−λjn )2

.

(3.39)

Proof. Given Lemma 3.2.3, the statement in question here is equivalent to the statement

in question in Proposition 3.3.1, with ujn = ψ◦jn . Thus the Corollary follows from

Proposition 3.3.1, using the formula (3.8) for ψ◦j . Observe from (3.39) (or from (3.16))

that
〈
ψ̂◦jn , φ̂jn

〉
> 0, and so

∣∣∣〈ψ̂◦jn , φ̂jn〉∣∣∣ =
〈
ψ̂◦jn , φ̂jn

〉
, arg

(〈
ψ̂◦jn , φ̂jn

〉)
= 0.

Now for given j ∈ N, define

ψ+
j := P[Ej ,Ej+1]φj =

Φj(p)

Ej − λj
Φj +

Φj+1(p)

Ej+1 − λj
Φj+1. (3.40)

Define ψ̂+
j := ψ+

j /
∣∣∣∣ψ+

j

∣∣∣∣.
Proposition 3.3.3. Given a sequence {jn} ⊆ N with jn → ∞ as n → ∞, consider the

following statement: ∃ {sjn} ⊆ C, {vjn} ⊆ L2(M) with vjn = xjnΦjn + yjnΦjn+1, such

that

(i) ||sjnφjn − vjn|| → 0 as n→∞,

(ii) @ subsequence {kn} ⊆ {jn} such that both ||sknφkn||, ||vkn|| → 0.

The above statement holds true iff ∣∣∣∣∣∣φ̂jn − ψ̂+
jn

∣∣∣∣∣∣→ 0, (3.41)

equivalently 〈
ψ̂+
jn
, φ̂jn

〉
→ 1. (3.42)

Here ∣∣∣∣∣∣φ̂jn − ψ̂+
jn

∣∣∣∣∣∣2 = 2
(

1−
〈
ψ̂+
jn
, φ̂jn

〉)
, (3.43)

〈
ψ̂+
jn
, φ̂jn

〉
=

√√√√ |Φjn (p)|2
(Ejn−λjn )2 +

|Φjn+1(p)|2
(Ejn+1−λjn )2∑∞

k=1
|Φk(p)|2

(Ek−λjn )2

. (3.44)

Given (3.44), this condition can equivalently be written down as:

jn−1∑
k=1

|Φk(p)|2

(Ek − λjn)2
+

∞∑
k=jn+2

|Φk(p)|2

(Ek − λjn)2
<<

|Φjn(p)|2

(Ejn − λjn)2
+
|Φjn+1(p)|2

(Ejn+1 − λjn)2
as n→∞.

(3.45)
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Remark. The key difference between the statement at the start of Prop. 3.3.3 and that

of Cor. 3.3.2 is that in Cor. 3.3.2, it is demanded that vjn ∈ Dom(HΘ). This is not

demanded in Prop. 3.3.3.

Proof. (3.43), (3.44) and the equivalence of (3.41) and (3.42) follow easily from (3.2),

(2.112), (3.40) and basic Hilbert space formulae. The equivalence of (3.42) and (3.45)

follows easily by placing (3.44) into (3.42) and rearranging. Trivially, if (3.41) holds true

then the statement in question holds true, as (3.41) would serve as an example. It remains

to show that (3.41) follows from the statement in question.

Assume the statement in question holds true. Note that (i) and (ii) together rule out

the possibility of a subsequence {kn} ⊆ {jn} for which vkn = 0, and thus vjn is nonzero

for all sufficiently large n. Applying Proposition 3.3.1 then gives:∣∣∣∣∣∣φ̂jn − eiχjn v̂jn∣∣∣∣∣∣→ 0. (3.46)

Write

φ̂jn =
∞∑
k=1

a
(k)
jn

Φk, (3.47)

eiχjn v̂jn = bjnΦjn + cjnΦjn+1. (3.48)

Observe that by (3.43), (3.44) and (2.112):

∣∣∣∣∣∣φ̂jn − ψ̂+
jn

∣∣∣∣∣∣2 = 2

(
1−

√∣∣∣a(jn)
jn

∣∣∣2 +
∣∣∣a(jn+1)
jn

∣∣∣2) . (3.49)

Also ∣∣∣∣∣∣φ̂jn∣∣∣∣∣∣2 =
∞∑
k=1

∣∣∣a(k)
jn

∣∣∣2 = 1, (3.50)

∣∣∣∣∣∣φ̂jn − eiχjn v̂jn∣∣∣∣∣∣2 =

jn−1∑
k=1

∣∣∣a(k)
jn

∣∣∣2 +
∣∣∣a(jn)
jn
− bjn

∣∣∣2 +
∣∣∣a(jn+1)
jn

− cjn
∣∣∣2 +

∞∑
k=jn+2

∣∣∣a(k)
jn

∣∣∣2 . (3.51)

Thus∣∣∣∣∣∣φ̂jn − ψ̂+
jn

∣∣∣∣∣∣2 = 2

(
1−

√∣∣∣a(jn)
jn

∣∣∣2 +
∣∣∣a(jn+1)
jn

∣∣∣2) ≤ 2

(
1−

∣∣∣a(jn)
jn

∣∣∣2 − ∣∣∣a(jn+1)
jn

∣∣∣2)

= 2

(
jn−1∑
k=1

∣∣∣a(k)
jn

∣∣∣2 +
∞∑

k=jn+2

∣∣∣a(k)
jn

∣∣∣2) ≤ 2
∣∣∣∣∣∣φ̂jn − eiχjn v̂jn∣∣∣∣∣∣2 . (3.52)

Hence (3.41) holds true.
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3.4 Derived Results

Theorem 3.4.1. Given a sequence {jn} ⊆ N with jn → ∞ as n → ∞, sufficient for∣∣∣∣∣∣φ̂jn − ψ̂+
jn

∣∣∣∣∣∣→ 0 is the following:

Ejn+1 − Ejn
Ejn − Ejn−1

<<

√
|Φjn(p)|2 + |Φjn+1(p)|2

Ejn−1

, (3.53)

Ejn+1 − Ejn
Ejn+2 − Ejn+1

<<

√
|Φjn(p)|2 + |Φjn+1(p)|2

Ejn+2

(3.54)

as n→∞, where << is again the order relation o(·), defined in (2.34).

Proof. Firstly, (3.45) is a necessary and sufficient condition for
∣∣∣∣∣∣φ̂jn − ψ̂+

jn

∣∣∣∣∣∣ → 0. Now

observe that sufficient for (3.45) is the following:

jn−1∑
k=1

|Φk(p)|2

(Ek − Ejn)2
+

∞∑
k=jn+2

|Φk(p)|2

(Ek − Ejn+1)2
<<
|Φjn(p)|2 + |Φjn+1(p)|2

(Ejn+1 − Ejn)2
, (3.55)

since LHS(3.55)>LHS(3.45) and RHS(3.55)<RHS(3.45). Here we have removed the

explicit appearence of λjn . Note that the second term in LHS(3.55) is convergent by

Lemma 2.2.5.

Now if we fix some M ∈ R\{Ej}j∈N independent of n, then for each sufficiently large

n we have, by Lemma 2.1.7,

jn−1∑
k=1

|Φk(p)|2

(Ek − Ejn)2
=

∑
k:Ek<M

|Φk(p)|2

(Ek − Ejn)2
+

Np(Ejn−1)

(Ejn−1 − Ejn)2
− Np(M)

(M − Ejn)2

+ 2

∫ Ejn−1

M

Np(t)

(t− Ejn)3
dt. (3.56)

Likewise

∞∑
k=jn+2

|Φk(p)|2

(Ek − Ejn+1)2
= − Np(Ejn+1)

(Ejn+2 − Ejn+1)2
+ 2

∫ ∞
Ejn+2

Np(t)

(t− Ejn+1)3
dt, (3.57)

noting that if we fix any A > 1
4π

, then for sufficiently large t we have by Corollary 2.1.6

(weaker form of Weyl’s law),

0 <
Np(t)

(t− Ejn+1)2
≤ At

(t− Ejn+1)2
=

A

t− Ejn+1

+
AEjn+1

(t− Ejn+1)2

t→∞−−−→ 0, (3.58)

and also noting obviously that N−p (Ejn+2) = Np(Ejn+1).
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We can now use Weyl’s law to derive upper bounds on the expressions given in (3.56)

and (3.57). With the stronger form of Weyl’s law (Lemma 2.1.5), provided M is set to

be sufficiently large, ∃C > 0 for which we have

E

4π
− C
√
E ≤ Np(E) ≤ E

4π
+ C
√
E ∀E ≥M. (3.59)

Thus

jn−1∑
k=1

|Φk(p)|2

(Ek − Ejn)2
≤

∑
k:Ek<M

|Φk(p)|2

(Ek − Ejn)2
+

Ejn−1

4π
+ C

√
Ejn−1

(Ejn−1 − Ejn)2
−

M
4π
− C
√
M

(M − Ejn)2

+ 2

∫ Ejn−1

M

t
4π
− C
√
t

(t− Ejn)3
dt

=
∑

k:Ek≤M

|Φk(p)|2

(Ek − Ejn)2

+
1

4π

(
Ejn−1

(Ejn−1 − Ejn)2
− M

(M − Ejn)2
+ 2

∫ Ejn−1

M

t

(t− Ejn)3
dt

)
+C

( √
Ejn−1

(Ejn−1 − Ejn)2
+

√
M

(M − Ejn)2
− 2

∫ Ejn−1

M

√
t

(t− Ejn)3
dt

)
.

(3.60)

Likewise

∞∑
k=jn+2

|Φk(p)|2

(Ek − Ejn+1)2
≤ −

Ejn+2

4π
− C

√
Ejn+2

(Ejn+2 − Ejn+1)2
+ 2

∫ ∞
Ejn+2

t
4π

+ C
√
t

(t− Ejn+1)3
dt

=
1

4π

(
− Ejn+2

(Ejn+2 − Ejn+1)2
+ 2

∫ ∞
Ejn+2

t

(t− Ejn+1)3
dt

)

+C

( √
Ejn+2

(Ejn+2 − Ejn+1)2
+ 2

∫ ∞
Ejn+2

√
t

(t− Ejn+1)3
dt

)
.

(3.61)

Note that for any Ej we have Np(Ej) = Np(E) ∀E ∈ [Ej, Ej+1), and so provided Ej

is sufficiently large,

E

4π
− C
√
E ≤ Np(Ej) ≤

E

4π
+ C
√
E ∀E ∈ [Ej, Ej+1] (3.62)

(obviously Ej+1 can be included in the interval by continuity). Wherever in (3.60) and

(3.61) estimates for some Np(Ej) have been involved, the choice of E ∈ [Ej, Ej+1] has

been made so as to optimise the tightness of these upper bounds for the two parts of

LHS(3.55). This would probably in general only make a fairly minor difference though,

if any.
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Now
∫ √

t/(t − Ej)
3 dt may be rather difficult to compute and then analyse.

Considering then upper bounds obtained via the weaker form of Weyl’s law (Corollary

2.1.6), given any ε > 0 and sufficiently large M ≥ 0 (where “sufficiently large” M would

depend on the choice of ε) we have

jn−1∑
k=1

|Φk(p)|2

(Ek − Ejn)2
≤

∑
k:Ek<M

|Φk(p)|2

(Ek − Ejn)2

+
1

4π

(
Ejn−1

(Ejn−1 − Ejn)2
− M

(M − Ejn)2
+ 2

∫ Ejn−1

M

t

(t− Ejn)3
dt

)
+ ε

(
Ejn−1

(Ejn−1 − Ejn)2
+

M

(M − Ejn)2
− 2

∫ Ejn−1

M

t

(t− Ejn)3
dt

)
,

(3.63)

∞∑
k=jn+2

|Φk(p)|2

(Ek − Ejn+1)2
≤ 1

4π

(
− Ejn+2

(Ejn+2 − Ejn+1)2
+ 2

∫ ∞
Ejn+2

t

(t− Ejn+1)3
dt

)

+ ε

(
Ejn+2

(Ejn+2 − Ejn+1)2
+ 2

∫ ∞
Ejn+2

t

(t− Ejn+1)3
dt

)
.

(3.64)

Abbreviate (3.60), (3.61), (3.63) and (3.64) respectively as follows:

jn−1∑
k=1

|Φk(p)|2

(Ek − Ejn)2
≤ An +

1

4π
Bn + CCn, (3.65)

∞∑
k=jn+2

|Φk(p)|2

(Ek − Ejn+1)2
≤ 1

4π
Fn + CGn, (3.66)

jn−1∑
k=1

|Φk(p)|2

(Ek − Ejn)2
≤ An +

1

4π
Bn + εC ′n, (3.67)

∞∑
k=jn+2

|Φk(p)|2

(Ek − Ejn+1)2
≤ 1

4π
Fn + εG ′n (3.68)

(noting that for fixed C and ε, we can choose a common value of M for both the strong

Weyl and weak Weyl estimates). It is easy to see already that An, Cn,Gn, C ′n,G ′n > 0.

Now ∫ Ejn−1

M

t

(t− Ejn)3
dt = − 1

Ejn−1 − Ejn
− Ejn

2(Ejn−1 − Ejn)2

+
1

M − Ejn
+

Ejn
2(M − Ejn)2

, (3.69)
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(see (2.72)), and so

Bn =
1

Ejn − Ejn−1

− 1

Ejn −M
=

Ejn−1 −M
(Ejn − Ejn−1)(Ejn −M)

> 0. (3.70)

Note also that

C ′n = −Bn +
2Ejn−1

(Ejn−1 − Ejn)2
. (3.71)

Likewise ∫ ∞
Ejn+2

t

(t− Ejn+1)3
dt =

1

Ejn+2 − Ejn+1

+
Ejn+1

2(Ejn+2 − Ejn+1)2
(3.72)

(see (2.73)), and so

Fn =
1

Ejn+2 − Ejn+1

> 0, (3.73)

G ′n = Fn +
2Ejn+2

(Ejn+2 − Ejn+1)2
. (3.74)

It can now be stated that RHS(3.65) << RHS(3.55) as n → ∞ if and only if

An,Bn, Cn << RHS(3.55), and likewise with RHS(3.66), RHS(3.67) and RHS(3.68) (for

each of these equations, taking whichever members of {An,Bn, Cn,Fn,Gn, C ′n,G ′n} appear

in the equation).

Settling with the weaker Weyl estimates, observe firstly that a particular necessary

condition for RHS(3.67) << RHS(3.55) is

Bn + C ′n
2

=
Ejn−1

(Ejn − Ejn−1)2
<<
|Φjn(p)|2 + |Φjn+1(p)|2

(Ejn+1 − Ejn)2
. (3.75)

This can be rearranged to obtain the following:

Ejn+1 − Ejn
Ejn − Ejn−1

<<

√
|Φjn(p)|2 + |Φjn+1(p)|2

Ejn−1

. (3.76)

Now let

B̃n :=
Ejn−1

Ejn(Ejn − Ejn−1)
, (3.77)

so
B̃n
Bn

=
Ejn−1

Ejn−1 −M
· Ejn −M

Ejn
→ 1, (3.78)

and so Bn << RHS(3.55) if and only if B̃n << RHS(3.55), i.e.

Ejn−1

Ejn(Ejn − Ejn−1)
<<
|Φjn(p)|2 + |Φjn+1(p)|2

(Ejn+1 − Ejn)2
. (3.79)

Dividing both sides by Ejn −Ejn−1, rearranging and then taking square roots, we obtain

Ejn+1 − Ejn
Ejn − Ejn−1

<<

√
|Φjn(p)|2 + |Φjn+1(p)|2

Ejn−1

·

√
Ejn

Ejn − Ejn−1

. (3.80)
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Clearly if (3.76) is satisfied then (3.80) is automatically satisfied. Thus (3.76) is a sufficient

condition for both Bn << RHS(3.55) and C ′n << RHS(3.55).

Now if {k : Ek < M} 6= ∅ then An << RHS(3.55) if and only if for each k with

Ek < M ,
|Φk(p)|2

(Ek − Ejn)2
<<
|Φjn(p)|2 + |Φjn+1(p)|2

(Ejn+1 − Ejn)2
, (3.81)

which simplifies to
1

E 2
jn

<<
|Φjn(p)|2 + |Φjn+1(p)|2

(Ejn+1 − Ejn)2
, (3.82)

which then rearranges to

Ejn+1 − Ejn << Ejn

√
|Φjn(p)|2 + |Φjn+1(p)|2. (3.83)

Observe that (3.80) can be re-written as

Ejn+1 − Ejn <<
√
Ejn(|Φjn(p)|2 + |Φjn+1(p)|2) ·

√
Ejn − Ejn−1

Ejn−1

. (3.84)

Since
√

Ejn−Ejn−1

Ejn−1
<
√
Ejn for sufficiently large n, it follows that if (3.80)/(3.84) is

satisfied then (3.83) is automatically satisfied.

We can now conclude that (3.76) is both a necessary and sufficient condition for

RHS(3.67) << RHS(3.55).

Moving on now to conditions for RHS(3.68) << RHS(3.55), we have the following

necessary condition:

G ′n −Fn
2

=
Ejn+2

(Ejn+2 − Ejn+1)2
<<
|Φjn(p)|2 + |Φjn+1(p)|2

(Ejn+1 − Ejn)2
. (3.85)

This rearranges to

Ejn+1 − Ejn
Ejn+2 − Ejn+1

<<

√
|Φjn(p)|2 + |Φjn+1(p)|2

Ejn+2

. (3.86)

This is also a sufficient condition for RHS(3.68) << RHS(3.55), because

G ′n −Fn
2

=
Ejn+2

(Ejn+2 − Ejn+1)2
=

1

Ejn+2 − Ejn+1

· Ejn+2

Ejn+2 − Ejn+1

>
1

Ejn+2 − Ejn+1

= Fn, (3.87)

and so if (3.85)/(3.86) is satisfied, then it follows automatically that Fn << RHS(3.55). It

then follows from (3.85)/(3.86) combined with Fn << RHS(3.55) that G ′n << RHS(3.55).
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Observe that if for this {jn} sequence, |Φjn(p)|2 + |Φjn+1(p)|2 has a strictly positive

lower bound (equivalently max{|Φjn(p)| , |Φjn+1(p)|} has a strictly positive lower bound),

then sufficient for (3.53), (3.54) is:

Ejn+1 − Ejn
Ejn − Ejn−1

<<
1√
Ejn−1

, (3.88)

Ejn+1 − Ejn
Ejn+2 − Ejn+1

<<
1√
Ejn+2

. (3.89)

If |Φjn(p)|2 + |Φjn+1(p)|2 is bounded above (equivalently max{|Φjn(p)| , |Φjn+1(p)|} is

bounded above), then (3.88), (3.89) are necessary for (3.53), (3.54). Note that

max{|Φjn(p)| , |Φjn+1(p)|} here simply means the larger of the two values for each n,

rather than the maximum over the whole sequence.

3.5 Analysis of Results: Comparison with Result by

Keating, Marklof and Winn

On the basis of having derived Thm. 3.4.1, subsequent results may be derived which are

analogous to Thm. 4.4 in [KMW10], which again is stated here as Prop. 3.2.1. This will

allow for clearer comparison with Thm. 4.4 in [KMW10].

Proposition 3.5.1. Given a sequence {jn} ⊆ N with jn → ∞ as n → ∞, sufficient for∣∣∣∣∣∣φ̂jn − ψ̂+
jn

∣∣∣∣∣∣→ 0 is the following:

(i) ∃ q, ρ ∈ R and sequence (εn)n∈N ⊂ (0,∞) such that

Ejn+2 � ε−ρn , (3.90)

Ejn+1 − Ejn � εn, (3.91)

Ejn − Ejn−1 � εqn, (3.92)

Ejn+2 − Ejn+1 � εqn, (3.93)

ε1−q−ρ/2
n → 0 (3.94)

as n→∞,

(ii) ∃ c0 > 0 s.t. max{|Φjn(p)| , |Φjn+1(p)|} ≥ c0 ∀n ∈ N.
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Proof. Assume (3.90) - (3.93) hold true for some q, ρ ∈ R and sequence (εn)n∈N ⊂ (0,∞),

and also assume condition (ii) holds. So then, for sufficiently large n, ∃ constants

A,C,B1, B2 > 0 such that

Ejn+2 ≤ Aε−ρn , (3.95)

Ejn+1 − Ejn ≤ Cεn, (3.96)

Ejn − Ejn−1 ≥ B1ε
q
n, (3.97)

Ejn+2 − Ejn+1 ≥ B2ε
q
n. (3.98)

It then follows that

(Ejn+1 − Ejn)
√
Ejn−1

Ejn − Ejn−1

≤
√
AC

B1

ε1−q−ρ/2
n , (3.99)

(Ejn+1 − Ejn)
√
Ejn+2

Ejn+2 − Ejn+1

≤
√
AC

B2

ε1−q−ρ/2
n . (3.100)

Hence if ε
1−q−ρ/2
n

n→∞−−−→ 0 then (3.88) and (3.89) are satisfied, and thus with condition (ii)

also holding true, it follows that (3.53) and (3.54) are satisfied.

Observe that in condition (i), if it furthermore holds that εn → 0 then from (3.90) -

(3.93) it must follow that ρ > 0 and q ≥ −ρ, since Ejn+2 →∞, Ejn −Ejn−1 < Ejn+2 and

Ejn+2−Ejn+1 < Ejn+2. Then from (3.94) it would follow that 1− q− ρ
2
> 0. Conversely,

if in place of condition (i) we specify that (εn)n∈N ⊂ (0,∞) satisfies εn → 0, q, ρ ∈ R
satisfy

ρ > 0, q ≥ −ρ, 1− q − ρ

2
> 0, (3.101)

and (3.90) - (3.93) are satisfied, then it will follow that (3.94) is also satisfied. Thus

together with condition (ii), it will follow that
∣∣∣∣∣∣φ̂jn − ψ̂+

jn

∣∣∣∣∣∣ → 0. [In fact, for (3.101) it

would be sufficient simply to state 1 − q − ρ
2
> 0, since ρ > 0 and q ≥ −ρ would again

follow automatically from (3.90) - (3.93)].

Finally, reworking (3.101) into a form more easily comparable with the inequalities

on q and ρ stated in [KMW10], (3.101) can firstly be rewritten as follows:

ρ > 0, −q ≤ ρ < 2(1− q). (3.102)

This obviously requires −q < 2(1−q), equivalently q < 2. This also requires 2(1−q) > 0,

equivalently q < 1. (3.102) can then be rewritten as follows:

q < 1,

0 < ρ < 2(1− q) if 0 ≤ q < 1

−q ≤ ρ < 2(1− q) if q < 0.
(3.103)

Hence:
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Corollary 3.5.2. Given a sequence {jn} ⊆ N with jn → ∞ as n → ∞, sufficient for∣∣∣∣∣∣φ̂jn − ψ̂+
jn

∣∣∣∣∣∣→ 0 is the following:

(i) ∃ q, ρ ∈ R satisfying

q < 1,

0 < ρ < 2(1− q) if 0 ≤ q < 1

−q ≤ ρ < 2(1− q) if q < 0,
(3.104)

and sequence (εn)n∈N ⊂ (0,∞) with εn
n→∞−−−→ 0, such that

Ejn+2 � ε−ρn , (3.105)

Ejn+1 − Ejn � εn, (3.106)

Ejn − Ejn−1 � εqn, (3.107)

Ejn+2 − Ejn+1 � εqn (3.108)

as n→∞,

(ii) ∃ c0 > 0 s.t. max{|Φjn(p)| , |Φjn+1(p)|} ≥ c0 ∀n ∈ N.

Comparing then Cor. 3.5.2 here with Thm. 4.4 of [KMW10] (here Prop. 3.2.1) and Cor.

3.2.2, the inequalities on q and ρ stated in [KMW10] are:

0 < q <
1

2
, 1 < ρ < 2(1− q), (3.109)

and those stated in Cor. 3.2.2 are:

− 2 < q <
1

2
,

0 < ρ < 2(1− q) if 0 ≤ q < 1
2

−q ≤ ρ < 2 if − 2 < q < 0.
(3.110)

(3.104) is weaker than both (3.109) and (3.110).

Hence condition (i) in Cor. 3.5.2 is weaker than condition (i) in Thm. 4.4 of [KMW10].

Likewise, condition (ii) in Cor. 3.5.2 is clearly weaker than condition (ii) in Thm. 4.4 of

[KMW10]. Observe also, from the above derivations of Prop. 3.5.1 and Cor. 3.5.2, that

conditions (i) and (ii) together from Cor. 3.5.2 imply (3.53) and (3.54) from Thm. 3.4.1.

Hence (3.53) and (3.54) together from Thm. 3.4.1 are weaker than conditions (i) and (ii)

together from Thm. 4.4 of [KMW10].

Obviously, weakening the conditions of a proposition will strengthen the proposition,

as will strengthening the conclusion of the proposition. Now from Thm. 4.4 of [KMW10]

to Thm. 3.4.1, Prop. 3.5.1 or Cor. 3.5.2, there is a weakening of conditions, as has been
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demonstrated. However, it follows from Prop. 3.3.3 that the
∣∣∣∣∣∣φ̂jn − ψ̂+

jn

∣∣∣∣∣∣→ 0 conclusion

in Thm. 3.4.1, Prop. 3.5.1 and Cor. 3.5.2 is also weaker than the
∣∣∣∣∣∣φ̂jn − eiθnψ̂◦jn∣∣∣∣∣∣ → 0

conclusion in Thm. 4.4 of [KMW10].

Finally, remember again that in Thm. 4.4 of [KMW10], a statement is made only for

the case where Θ = π. However, all of the results in §3.3, 3.4 and 3.5 here apply for any

perturbed operator HΘ with Θ ∈ (0, 2π).
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Chapter 4

Approximation of the Delta

Potential by Non-Singular Rank-One

Perturbations

4.1 Overview

The delta potential is not a smooth potential, but rather a singular potential, being

concentrated at the point p ∈ M◦. However, one can address the task of constructing

a sequence of self-adjoint operators, constituting non-singular perturbations of the self-

adjoint −∆ operator H, which nevertheless approach the delta-perturbed operator HΘ.

This shall be the subject of this Chapter.

By analogy with (2.53), one could consider perturbing H by a multiplication operator

which approaches the delta potential. In other words, letting (HN)N∈N be the sequence

of self-adjoint operators involving non-singular perturbations of H,

HNψ = Hψ + νNVNψ, (4.1)

with νN ∈ R, VN ∈ C∞(M◦,R) ∩ L∞(M) and VN → δp. Alternatively, by analogy with

(2.56), one could consider perturbing H by a rank-one operator which approaches the

delta potential. In other words,

HNψ = Hψ + νN 〈ψ, YN〉YN , (4.2)

with νN ∈ R, YN ∈ C∞(M◦) ∩ L2(M) and YN → δp.

The latter approach, involving rank-one perturbations, shall be taken within the

investigations in this Chapter.
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Studies which have already been carried out in the problem of approximating delta

potentials by non-singular potentials can be found for example in [BF61], [Zor80],

[AGHHE88], [AK00] and [GN12]. These however, work mainly within the setting of

a whole Euclidean space Rn, rather than a compact manifold. Approach of a sequence

of self-adjoint operators towards the delta potential has been studied within these works,

particularly by considering strong resolvent convergence, norm resolvent convergence, and

behaviour of spectrum and corresponding “generalised eigenfunctions”.

For the investigations in this Chapter, convergence of eigenvalues and eigenfunctions

of HN towards those of HΘ shall be examined. This shall be via means of direct analysis

of the constructions of these eigenvalues and eigenfunctions, paying attention to the

formulae involved.

Within the study of semiclassical analysis involving high-energy limits, there are

a variety of results which can be applied quite generally to self-adjoint quantum

Hamiltonian operators of appropriate form. See for example [Sch01]. It could happen

then that such results may apply for non-singular perturbations of H approaching HΘ.

One could then be interested in deriving results in the high-energy limit for the delta-

perturbed operator HΘ, on the basis of these non-singular approximations of the delta

potential.

To such an end, it may be of interest to examine how the eigenvalues and

eigenfunctions of the approximating operators approach those of the delta-perturbed

operator. In particular, it may be of interest to examine their rate of convergence,

especially because there are two limits involved here, namely the high-energy limit, and

the approach towards the delta potential. It would be of interest to be able to swap the

order of these two limits, and for this, rate of convergence is relevant. See for example,

Lemmas 4.4.8 and 4.4.9, and Cor. 4.4.10, later on in this Chapter.

The results stated in this Chapter give statements about convergence of eigenvalues

and eigenfunctions, but not statements about their rate of convergence. Nevertheless,

due to this method involving direct analysis of the constructions and formulae, analysing

the means of development of these results may be a helpful starting point if one does

wish to analyse rate of convergence.

Outlining the structure of this Chapter, in §4.2 is a review of work already done,

particularly [Zor80], followed by discussion of suggestions for adaptation from the whole

Euclidean space R2 to the two-dimensional compact manifoldM. Basic features of rank-

one perturbations are also stated and proved within §4.2. In §4.3, a construction is

derived for an orthonormal eigenbasis of a rank-one perturbation of H, together with
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the corresponding eigenvalues. The construction of the eigenbasis and eigenvalues of

HΘ is also restated in such a way as to demonstrate clear resemblence. Based on

this resemblence, in §4.4, results are derived regarding convergence of eigenvalues and

eigenfunctions of rank-one-perturbed operators to those of the delta-perturbed operator.

The central result of this Chapter is Theorem 4.4.19 in §4.4.4. This theorem specifies

conditions for a sequence of rank-one-perturbed operators (HN)N∈N and an interval

[EK , EL] under which all eigenvalues of HN in [EK , EL] and corresponding eigenbasis

members converge to those of the delta-perturbed operator HΘ.

Leading up to this, §4.4.1 deals with convergence of “old” eigenfunctions for each

“old” eigenvalue, §4.4.2 deals with convergence of “new” eigenvalues and §4.4.3 deals

with convergence of “new” eigenfunctions. In §4.4.1 only a basic condition is assumed

on the limiting behaviour of the coefficients in the H-eigenbasis expansion of YN . The

mathematical analysis involved in §4.4.1 largely corresponds simply to analysis on a finite-

dimensional Hilbert space. In §4.4.2 and 4.4.3 it is found that further conditions on (YN)

and (νN) are needed. Some significant results within §4.4.2 and 4.4.3 are Propositions

4.4.6, 4.4.12, 4.4.16 and 4.4.18. Lemmas 4.4.8 and 4.4.9, and Cor. 4.4.10, dealing with the

question of when the order of two nested limits can be swapped, prove to be particularly

useful mathematical tools in §4.4.2 and 4.4.3.

Regarding attainability of the conditions in Theorem 4.4.19, relevant results are

Lemma 4.4.14, Prop. 4.4.20 and Cor. 4.4.22.

4.2 Introducing Rank-One Perturbations and their

Use as Approximations

4.2.1 Review of Work by Zorbas on Whole Euclidean Space

In [Zor80], methods of constructing operators formally expressed in the form

−∆ + V (x) +
N∑
j=1

νjδ(x− aj), (4.3)

on Euclidean spaces R1 and R3, are discussed. The failure of these methods in dimension

≥ 4 is also discussed. Some of this paper focusses specifically on the case of a single delta

spike at the origin:

−∆ + V (x) + νδ(x). (4.4)

Here we shall review the relevant work in [Zor80], focussing only on the rigorous

formulations of (4.4) with V = 0, since the addition of any potential beside that of a
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single delta-scatterer will not be of particular relevance for our consideration.

Such delta-perturbed operators are constructed first of all by means of self-adjoint

extension theory, and the construction is very much akin to that described in §2.2.3. Let

H◦ be the unperturbed self-adjoint −∆ acting within L2(Rn), where n = 1 or 3, and

let D := {φ ∈ Dom(H◦) : φ(0) = 0}. For each θ ∈ [0, 2π) there is then a perturbed

self-adjoint operator Kθ whose domain consists of all functions ψ of the form

ψ = φ+ c
(
G(·, 0; i) + eiθG(·, 0;−i)

)
, (4.5)

with φ ∈ D and c ∈ C. Here G(·, 0; i) is the equivalent of gi in Rn and G(·, 0;−i) is the

equivalent of g−i in Rn. The operation of Kθ on ψ is then

Kθψ = H◦φ+ c
(
iG(·, 0; i)− ieiθG(·, 0;−i)

)
. (4.6)

By comparison with Lemma 2.2.6, it is evident that Kπ coincides with the unperturbed

operator H◦.

Now in §VIII of [Zor80], a sequence of operators is constructed which converges to

the operator Kθ in the strong resolvent sense. This strong resolvent convergence forms

another method of rigorous construction of self-adjoint operators associated with the

formal expression (4.4).

Definition. Given a sequence of self-adjoint opertors (TN)N∈N acting within a Hilbert

space H, and another self-adjoint operator T acting within H, it is said that TN
N→∞−−−→ T

in the strong resolvent sense if

(λ− TN)−1v
N→∞−−−→ (λ− T )−1v ∀ v ∈ H, λ ∈ C\R. (4.7)

The operators (λ − TN)−1 and (λ − T )−1 here will always be well-defined bounded

linear operators on H when λ ∈ C\R. For discussion on strong resolvent (and also norm

resolvent) convergence, see §VIII.7 of [RS80].

From Thm. 8.1 in §VIII of [Zor80], we have the following:

Proposition 4.2.1. For each N ∈ N define an operator HN acting within L2(Rn) by the

following:

F{HNψ}(ξ) = F{H◦ψ}(ξ) +
1

(2π)n
νNχN(ξ)

∫
Rn
χN(ω)ψ̂(ω)dω, (4.8)

where F{f}(ξ) or f̂(ξ) is the Fourier transform of f evaluated at ξ, (νN)N∈N ⊂ R and

(χN)N∈N ⊂ C∞0 (Rn, [0, 1]), with

χN(ξ) :=

1 if ||ξ|| ≤ N

0 if ||ξ|| ≥ N + 1.
(4.9)
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If n = 1, then given any θ ∈ [0, 2π)\{3π
2
}, HN converges to Kθ in the strong resolvent

sense if

νN = −
2 cos

(
θ
2

)
cos
(
θ
2
− π

4

) ∀N ∈ N. (4.10)

If n = 3, then given any θ ∈ [0, 2π)\{π}, HN converges to Kθ in the strong resolvent

sense if

νN = − 8π3

4πN − 2π2β + γN
(4.11)

∀ suff. large N ∈ N, where

β = −
sin
(
θ
2
− π

4

)
cos
(
θ
2

) , (4.12)

γN =
1

1 + eiθ

{∫
N≤||q||≤N+1

(χN(q))2

||q||2 − i
dq + eiθ

∫
N≤||q||≤N+1

(χN(q))2

||q||2 + i
dq

}
. (4.13)

This is proved in [Zor80] via means of proving that Kθ is the strong graph limit of

HN (see again §VIII.7 of [RS80]). This in turn is proved by showing that for every

ψ ∈ Dom(Kθ) there exists ψN ∈ Dom(HN) such that ψN → ψ and HNψN → Kθψ. A

formula for ψN is given in [Zor80] based on the decomposition of ψ given by (4.5).

Remarks. (a) It is not explicitly stated in [Zor80] that the image of χN (within N <

||ξ|| < N + 1) is to be restricted to [0, 1]. However, in light of the analysis in the

following subsection, it is reasonable to assume χN to be real-valued in order to

ensure self-adjointness. It is also reasonable to assume (χN)N∈N to be uniformly

bounded in order to ensure the δ-like limiting behaviour of F−1{χN} which shall be

demonstrated. Such conditions on χN may therefore have been assumed in [Zor80],

despite not being stated plainly. As such, having the image of χN be restricted to

[0, 1] seems to be a reasonable “safety assumption”.

(b) With n = 1 we see a well-defined strength ν of delta potential associated with each

operator Kθ, except for K3π/2, which evidently corresponds to ν = ±∞. Observe

also that associated with Kπ is ν = 0. However, with n = 3, as shall be shown in

the following subsection, for every Kθ other than Kπ, the strength νN is negative

real-valued for sufficiently large N and tends to zero.

(c) The original statement of this theorem in [Zor80] allows for the addition of a potential

V beside the delta potential, provided V belongs to an appropriate class of functions,

as specified in [Zor80]. However, for our purposes here, it will suffice to have V = 0.
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4.2.2 Further Analysis of Result by Zorbas

There is more than one convention for the precise definition of the Fourier transform, but

in general it would take the form:

F{f}(ξ) := A

∫
Rn
f(x)e−iBξ·xdx (4.14)

for f ∈ L1(Rn), where A and B are real constants (usually both positive). There is also a

standard extension of the Fourier transform to the space of tempered distributions S ′(Rn).

Tempered distributions are distributions for which the space of test functions (that is,

the domain of these distributions as linear functionals) is not C∞0 (Rn) but a larger space

known as Schwartz space S(Rn) (also known as the space of rapidly decreasing functions).

Schwartz space is the space of functions u ∈ C∞(Rn) for which xα1
1 . . . xαnn ∂β1

x1
. . . ∂βnxnu

is a bounded function for every choice of α1, . . . , αn, β1, . . . , βn ∈ {0} ∪ N. For each

p ∈ [1,∞) ∪ {∞},

C∞0 (Rn) ⊂ S(Rn) ⊂ Lp(Rn) ⊂ S ′(Rn) ⊂ D′(Rn). (4.15)

The Fourier transform maps S(Rn)→ S(Rn), S ′(Rn)→ S ′(Rn) and L2(Rn)→ L2(Rn)

bijectively. It also maps L1(Rn) → C(Rn) ∩ L∞(Rn) injectively but not surjectively.

Furthermore, the Fourier transform of every compactly supported distribution is C∞-

smooth and even analytic (see §10.2, 11.1 of [FJ98]).

With A = B = 1, the inverse Fourier transform is given by:

F−1{f̂}(x) := f(x) =
1

(2π)n

∫
Rn
f̂(ξ)eiξ·xdξ, (4.16)

where ̂ represents the Fourier transform, so then for general A,B > 0:

F−1{f̂}(x) := f(x) =
1

(2π)n

∫
Rn

1

A
f̂

(
1

B
ξ

)
eiξ·xdξ =

1

A

(
B

2π

)n ∫
Rn
f̂(k)eiBk·xdk.

(4.17)

Furthermore, with A = 1 and B = 2π, the Fourier transform as a bijective operator from

L2(Rn) to L2(Rn) is unitary, meaning that the L2 inner product is preserved under the

Fourier transform: ∫
Rn
f̂(ξ)ĝ(ξ)dξ =

∫
Rn
f(x)g(x)dx. (4.18)

Thus for general A,B > 0: ∫
Rn
f̂(ξ)ĝ(ξ)dξ =

(
2π

B

)n ∫
Rn
f̂

(
2π

B
k

)
ĝ

(
2π

B
k

)
dk

= A2

(
2π

B

)n ∫
Rn

1

A
f̂

(
2π

B
k

)
1

A
ĝ

(
2π

B
k

)
dk = A2

(
2π

B

)n ∫
Rn
f(x)g(x)dx. (4.19)
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Equation (4.19) also has a distributional extension whereby, if the g function is in S,

then the f function can be any member of S ′ (see e.g. §1.1, 1.2 of [Sai91] or §3.3, 3.4 of

[Tay96a]). In particular, if g ∈ S then the equation works for any f ∈ Lp∩F−1(Lq), p, q ∈
[1,∞].

It is not explicitly stated precisely what convention for the Fourier transform is used

in [Zor80], but assuming it takes the form given in (4.14) with A,B > 0, and letting ZN

be the inverse Fourier transform of χN , it follows from (4.19) that∫
Rn
ψ̂(ω)χN(ω)dω = A2

(
2π

B

)n ∫
Rn
ψ(y)ZN(y)dy. (4.20)

Thus taking the inverse Fourier transform of both sides of (4.8), we have:

HNψ(x) = H◦ψ(x) +
A2

Bn
νNZN(x)

∫
Rn
ψ(y)ZN(y)dy

= H◦ψ(x) +
A2

Bn
νN 〈ψ,ZN〉ZN(x). (4.21)

Establishing then the self-adjointness of HN , we have the following two lemmas:

Lemma 4.2.2. On a Hilbert space H, a linear operator T : H → H is bounded, self-

adjoint and rank-one if and only if ∃ v ∈ H\{0}, α ∈ R\{0} such that

Tu = α 〈u, v〉 v ∀u ∈ H. (4.22)

Proof. Clearly T is a bounded rank-one operator if and only if ∃ v ∈ H\{0} and a nonzero

bounded linear functional σ : H → R such that T = σv. Then by the Riesz representation

theorem, ∃w ∈ H\{0} such that σ = 〈·, w〉. Likewise every operator of the form 〈·, w〉
with w 6= 0 is a nonzero bounded linear functional.

So then, T is a bounded rank-one operator if and only if it can be expressed in the

form T = 〈·, w〉 v, with v, w 6= 0. Suppose then we do have T = 〈·, w〉 v with v, w 6= 0.

Let S := 〈·, v〉w. Then

〈Tφ, ψ〉 = 〈〈φ,w〉 v, ψ〉 = 〈φ,w〉 〈v, ψ〉 = 〈φ, 〈ψ, v〉w〉 = 〈φ, Sψ〉 ∀φ, ψ ∈ H, (4.23)

so T ∗ = S. If then T is self-adjoint, i.e. S = T , then

Sv = 〈v, v〉w = Tv = 〈v, w〉 v 〈v,v〉6=0
====⇒ w =

〈v, w〉
〈v, v〉

v =: αv, α 6= 0. (4.24)

Note also that

〈w, v〉 = 〈αv, v〉 = α 〈v, v〉 =
〈v, w〉
〈v, v〉

〈v, v〉 = 〈v, w〉 ⇒ 〈v, w〉 ∈ R 〈v,v〉∈R
====⇒ α ∈ R. (4.25)
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Thus

Tu = 〈u,w〉 v = 〈u, αv〉 v = α 〈u, v〉 v. (4.26)

Conversely, suppose we are given an operator T of the form T = α 〈·, v〉 v with v ∈ H\{0},
α ∈ R\{0}. Then T = 〈·, v〉 (αv) so

T ∗ = 〈·, αv〉 v = α 〈·, v〉 v = α 〈·, v〉 v = T, (4.27)

so T is self-adjoint.

Lemma 4.2.3. On a Hilbert space H, if T : Dom(T ) ⊂ H → H, with Dom(T ) being

dense in H, is a self-adjoint operator, and B : H → H is a bounded self-adjoint operator,

then T +B : Dom(T )→ H is a self-adjoint operator.

Proof. Firstly given any v ∈ Dom(T ), we have

〈(T +B)u, v〉 = 〈Tu, v〉+ 〈Bu, v〉 = 〈u, Tv〉+ 〈u,Bv〉

= 〈u, (T +B)v〉 ∀u ∈ Dom(T ), (4.28)

so Dom((T +B)∗) ⊃ Dom(T ) with (T +B)∗v = (T +B)v ∀v ∈ Dom(T ).

Next, given any v ∈ Dom((T +B)∗), we have

〈u, (T +B)∗v〉 = 〈(T +B)u, v〉 = 〈Tu, v〉+ 〈Bu, v〉 = 〈Tu, v〉+ 〈u,Bv〉

⇒ 〈Tu, v〉 = 〈u, (T +B)∗v〉 − 〈u,Bv〉 = 〈u, ((T +B)∗ −B)v〉 ∀u ∈ Dom(T ), (4.29)

so v ∈ Dom(T ∗) = Dom(T) (with Tv = T ∗v = ((T+B)∗−B)v ⇒ (T+B)∗v = (T+B)v).

Thus Dom((T +B)∗) ⊂ Dom(T ), and hence Dom ((T +B)∗) = Dom(T ).

Hence HN is indeed self-adjoint.

Approach Towards the Delta Function

Observe that χN loosely speaking approaches the constant function 1 as N → ∞, and

that F
{

1
A
δ
}

= 1, suggesting therefore that ZN loosely speaking approaches 1
A
δ. This

then suggests that we have the following:

A2

Bn
ZN(x)

∫
Rn
ψ(y)ZN(y)dy

N→∞−−−→ 1

Bn
δ(x)

∫
Rn
ψ(y)δ(y)dy

=
1

Bn
δ(x)

∫
Rn
ψ(y)δ(y)dy =

1

Bn
ψ(0)δ(x) =

1

Bn
δ(x)ψ(x). (4.30)

So then, for large N we have:

HN ≈ H◦ +
1

Bn
νN 〈·, δ〉 δ = H◦ +

1

Bn
νNδ. (4.31)
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It seems likely then that in [Zor80] a convention for the Fourier transform is assumed in

which B = 1.

More rigorously, observe firstly that ZN ∈ S(Rn) and∫
Rn
ZN(x)dx =

1

A
F{ZN}(0) =

1

A
χN(0) =

1

A
. (4.32)

Secondly, recall that χN(ξ) ∈ [0, 1] ∀ ξ ∈ Rn ∀N ∈ N, so in particular then,

|1− χN(ξ)| ≤ 1 ∀ ξ ∈ Rn ∀N ∈ N. Let B(n)
N := {ξ ∈ Rn : ||ξ|| < N}, so

1− χN(ξ) = 0 ∀ ξ ∈ B(n)
N . Take some ψ ∈ F(L1(Rn)), noting that

S(Rn) ⊂ F(L1(Rn)) = F−1(L1(Rn)) ⊂ C(Rn) ∩ L∞(Rn) ⊂ S ′(Rn). (4.33)

Then ∣∣∣∣ 1

A
ψ(0)−

∫
Rn
ψZN

∣∣∣∣ =

∣∣∣∣ 1

A
F−1{ψ̂}(0)−

∫
Rn
ψZN

∣∣∣∣
=

∣∣∣∣ 1

A2

(
B

2π

)n ∫
Rn
ψ̂ − 1

A2

(
B

2π

)n ∫
Rn
ψ̂F

{
ZN
}∣∣∣∣

=
1

A2

(
B

2π

)n ∣∣∣∣∫
Rn
ψ̂(ξ) (1− χN(−ξ)) dξ

∣∣∣∣
≤ 1

A2

(
B

2π

)n ∫
Rn\B(n)

N

∣∣∣ψ̂(ξ) (1− χN(−ξ))
∣∣∣ dξ

≤ 1

A2

(
B

2π

)n ∫
Rn\B(n)

N

∣∣∣ψ̂∣∣∣ N→∞−−−→ 0, (4.34)

so ∫
Rn
ψ(x)ZN(x)dx

N→∞−−−→ 1

A
ψ(0). (4.35)

It then follows that as members of S ′(Rn):

ZN
N→∞−−−→
weak∗

1

A
δ, (4.36)

meaning that if we consider the representation of ZN and 1
A
δ as linear functionals on

S(Rn), we have

〈u, ZN〉ll
N→∞−−−→

〈
u,

1

A
δ

〉
ll

∀u ∈ S(Rn) (4.37)

(see §3.4 of [Tay96a]). Again the subscript ll means linearity in both arguments, rather

than conjugate-linearity in one of the arguments. Note also that if in (4.34), the

appearance of ZN is replaced with ZN , then the only effect this will have is to change the

appearance of χN(−ξ) to χN(ξ), and thus∫
Rn
ψ(x)ZN(x)dx

N→∞−−−→ 1

A
ψ(0) ∀ψ ∈ F(L1(Rn)). (4.38)
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Strength of the Rank-One Perturbation

Now regarding the behaviour of νN , in dimension 1 it is clear from (4.10) that νN is an

N -independent real value for each θ ∈ [0, 2π)\{3π
2
}. For dimension 3, we shall verify that

νN , as given by (4.11), (4.12) and (4.13), is indeed real-valued for each θ ∈ [0, 2π)\{π}
and sufficiently large N . We shall also determine its basic limiting behaviour as N →∞.

To this end, note firstly that

1

1 + eiθ
=

1 + e−iθ

2(1 + cos θ)
,

eiθ

1 + eiθ
=

1 + eiθ

2(1 + cos θ)
. (4.39)

Thus from (4.13),

γN =

∫
N≤||q||≤N+1

(χN(q))2

{
1

(1 + eiθ)(||q||2 − i)
+

eiθ

(1 + eiθ)(||q||2 + i)

}
dq

=

∫
N≤||q||≤N+1

(χN(q))2

{
1 + e−iθ

2(1 + cos θ)(||q||2 − i)
+

1 + eiθ

2(1 + cos θ)(||q||2 + i)

}
dq.

(4.40)

The two terms within the curly brackets here are complex conjugates of each other, and

so their sum is real-valued. χN again is also real-valued. Hence γN is real-valued. It then

follows that νN is indeed real-valued, provided the denominator in (4.11) does not come

to zero.

Now to compute a bound on γN ,

|γN | ≤
∫
N≤||q||≤N+1

|χN(q)|2
{∣∣∣∣ 1

(1 + eiθ)(||q||2 − i)

∣∣∣∣+

∣∣∣∣ eiθ

(1 + eiθ)(||q||2 + i)

∣∣∣∣} dq

=

∫
N≤||q||≤N+1

|χN(q)|2
 2√

2(1 + cos θ)(||q||4 + 1)

 dq

≤
√

2

1 + cos θ

∫
N≤||q||≤N+1

1

||q||2
dq

=

√
2

1 + cos θ
4π

∫
N≤r≤N+1

1

r2
r2 dr =

√
32π2

1 + cos θ
. (4.41)

Hence for fixed θ ∈ [0, 2π)\{π}, (γN) is a bounded sequence in N . It then follows from

(4.11) that νN is negative for all sufficiently large N , and that νN → 0 as N →∞.

Removal of the Appearance of Constants A and B

It is very common, when defining the Fourier transform, to follow the convention

in which A and B, as appearing in (4.14), are both 1. If in [Zor80], the Fourier
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transform is to be understood with this convention, then obviously the appearances of

multiplication/division by (powers of) A and B in the above analysis can be removed.

However, without assuming this to be so, but only assuming A,B > 0, let

Z̃N := AZN , ν̃N :=
νN
Bn

. (4.42)

In this case, (4.21) becomes

HNψ(x) = H◦ψ(x) + ν̃N Z̃N(x)

∫
Rn
ψ(y)Z̃N(y)dy

= H◦ψ(x) + ν̃N

〈
ψ, Z̃N

〉
Z̃N(x). (4.43)

Likewise (4.35) and (4.38) become∫
Rn
ψ(x)Z̃N(x)dx

N→∞−−−→ ψ(0), (4.44)∫
Rn
ψ(x)Z̃N(x)dx

N→∞−−−→ ψ(0) ∀ψ ∈ F(L1(Rn)). (4.45)

4.2.3 Overview of Other Work on Operators Approaching the

Delta Potential in Whole Euclidean Space

Norm Resolvent Convergence

Within the book [AGHHE88] is included the construction of self-adjoint operators

approaching the self-adjoint delta-perturbed −∆ in the norm resolvent sense. This is

discussed in the settings of R1, R2 and R3.

Definition. Given a sequence of self-adjoint opertors (TN)N∈N acting within a Hilbert

space H, and another self-adjoint operator T acting within H, it is said that TN
N→∞−−−→ T

in the norm resolvent sense if

(λ− TN)−1 N→∞−−−→ (λ− T )−1 ∀λ ∈ C\R. (4.46)

This convergence is with respect to the standard operator norm on the space of bounded

linear operators from H to H.

Note that norm resolvent convergence is stronger than strong resolvent convergence.

Again, see §VIII.7 of [RS80] for further discussion on strong and norm resolvent

convergence.

[AGHHE88] is divided into three Parts. Part I deals with the addition of a delta

potential concentrated on a single point in Rn (and also a δ′ potential in R1). Part II
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deals with the addition of finitely many such point-perturbations. Part III deals with

the addition of infinitely many such perturbations. In Parts I and II, the Hilbert space

is L2(Rn). However, included within Part III is discussion on the case of a periodic

potential throughout Rn, so the point-perturbations would be positioned according to

some periodic pattern. In this case, letting Λ be the periodic lattice, this system is

studied using the Hilbert space L2(Rn/Λ). This could then be seen as a study on a flat

compact manifold rather than the whole Euclidean space.

§1.5.1 of the book [AK00] also gives a construction of self-adjoint operators

approaching the delta-perturbed −∆, in the setting of R3. It refers to the convergence

here as “strong resolvent” convergence, yet the definition of strong resolvent convergence

in [AK00] is equivalent to the definition of norm resolvent convergence in [RS80].

These approximating operators are rank-one perturbations of the self-adjoint −∆,

following essentially the same construction as described above in §4.2.1 and 4.2.2, which

again review Thm. 8.1 in [Zor80]. However:

(i) The cutoff functions χN (see (4.9)) are now sharp cutoff functions rather than

smooth ones:

χN(ξ) :=

 1
(2π)3/2 if ||ξ|| < N

0 if ||ξ|| > N.
(4.47)

Observe that in this case, F−1{χN} /∈ S(R3), but rather F−1{χN} ∈ C∞(R3) ∩
L2(R3)\L1(R3).

(ii) A valid example formula for the sequence of perturbation strengths (νN) stated in

[AK00] is

νN =
α

1− αN
2π2

. (4.48)

[AK00] does not give a specification for νN which explicitly references the self-adjoint

extension index parameter θ, as [Zor80] does. It is evident though that there would

be a correlation between θ and α ∈ R. Observe that for α 6= 0, (4.48) yields the

result that again, νN < 0 for all sufficiently large N and νN
N→∞−−−→ 0.

In [AK00], the value representing the strength of a rank-one perturbation (here νN) is

referred to as the coupling constant. This variation of νN with N here, so as to achieve

approximation to the delta potential, is referred to as renormalisation of the coupling

constant.

Having sharp rather than smooth cutoff functions χN , letting ZN := F−1{χN}, (4.35)

and (4.38) still hold for all ψ ∈ F(L1(R3)) ∩ L2(R3) (give-or-take multiplication by an

appropriate constant, dependent on the convention for defining the Fourier transform).
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Spectrum and Generalised Eigenfunctions

In the setting of a whole Euclidean space Rn, the self-adjoint −∆ operator does not have

a discrete spectrum and corresponding countable orthonormal eigenbasis. In particular,

given any ψ ∈ L2(Rn), let ψ̂ be the Fourier transform of ψ (with A = B = 1 in (4.14)),

so ψ̂ ∈ L2(Rn) also. Then

F{−∆ψ}(ξ) = ||ξ||2 ψ̂(ξ). (4.49)

Now it is of course impossible for any nonzero Lp function on Rn, under the Lebesgue

measure, to have its support confined within a zero measure set such as an (n−1)-sphere

of any radius. Hence if ψ 6= 0 then @E ∈ R such that ||ξ||2 ψ̂(ξ) = Eψ̂(ξ), and thus

@E ∈ R such that −∆ψ = Eψ. The self-adjoint −∆ acting within L2(Rn) therefore has

no eigenvalues.

Nevertheless, the spectrum of the self-adjoint −∆ is [0,∞). Furthermore, although

the self-adjoint −∆ has no eigenfunctions in L2(Rn), one can still consider “generalised

eigenfunctions” outside L2(Rn) corresponding to the points in its spectrum. In particular,

for any k ∈ Rn,

−∆ eik.x = ||k||2 eik.x. (4.50)

eik.x may then serve as a generalised eigenfunction of the self-adjoint −∆, with generalised

eigenvalue ||k||2. One can also consider expansion of a function into these generalised

eigenfunctions {eik.x}k∈Rn , which would be given by the Fourier transform of the function.

The study of self-adjoint operators approaching the delta-perturbed −∆ in whole

Euclidean space has also been carried out by examination of spectrum and (generalised)

eigenfunctions. Such study can be found in [BF61], [AGHHE88] and [GN12]. [BF61]

deals specifically in three dimensions and [GN12] deals specifically in two dimensions.

Briefly describing the work in [GN12], associated with theN th operator in the sequence

of self-adjoint operators approaching the delta-perturbed operator, is a set of classical

scattering eigenfunctions {ψ+
N(k, ·) : k ∈ R2\{0}} and a set of Faddeev eigenfunctions

{ψN(k, ·) : k ∈ C2\R2}. For each of these eigenfunctions the corresponding energy (i.e.

generalised eigenvalue) is E = ||k||2. These eigenfunctions are then shown to approach

certain limiting functions as N → ∞, which would correspond to the delta-perturbed

operator. Explicit formulae are given for these eigenfunctions of the approximating

operators and of the delta-perturbed operator.

These approximating operators are again rank-one perturbations of the self-adjoint

−∆ operator following essentially the same construction as in [Zor80] and [AK00]. Again,
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the cutoff functions involved are sharp:

χN(ξ) :=

1 if ||ξ|| ≤ N

0 if ||ξ|| > N.
(4.51)

It follows again that letting ZN := F−1{χN}, (4.35) and (4.38) still hold for all ψ ∈
F(L1(R2)) ∩ L2(R2). The formula for the sequence of perturbation strengths (νN) given

in [GN12] is

νN =
α

1− α
2π

lnN
. (4.52)

Again, if α 6= 0 then νN < 0 for all sufficiently large N and νN
N→∞−−−→ 0.

4.2.4 Rank-One Perturbations on the Compact Manifold

In R2, consider a sequence of self-adjoint operators

HN = −∆ + νN 〈·, ZN〉ZN , (4.53)

where (νN) ⊂ R, (ZN) ⊂ C∞(R2) ∩ L2(R2) and∫
R2

ψ(x)ZN(x)dx
N→∞−−−→ ψ(0), (4.54)∫

R2

ψ(x)ZN(x)dx
N→∞−−−→ ψ(0) ∀ψ ∈ C∞0 (Rn). (4.55)

Suppose this sequence of operators has been shown to approach the self-adjoint delta-

perturbed −∆ in R2, in some appropriate sense. One may then be interested in adapting

this from the whole Euclidean space R2 to the case of the δp-perturbation of H on the

two-dimensional compact manifold M, introduced in Chapter 2.

In attempting this, here is a reasonable trial construction for the sequence of

approximating self-adjoint operators:

For each operator HN acting in L2(R2) given by (4.53), consider a corresponding

operator HN
(M,p) acting in L2(M) of the form

HN
(M,p)ψ = Hψ + νN 〈ψ, YN〉YN ∀ψ ∈ Dom(H), (4.56)

where each YN ∈ C∞0 (M◦) ⊂ L2(M) is constructed as follows:

(i) Take a normal coordinate chart about the point p on some open ball BR(p) ⊂ M◦

(that is, an open ball of radius R about p, defined in terms of geodesic distance),

with the metric tensor gij at p being δij. So then, this chart has the following

properties:
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(a) BR(p) is mapped homeomorphically onto BR(0) ⊂ R2, with p being mapped to

0.

(b) On the tangent space at p, the coordinate basis {(1, 0), (0, 1)} under this chart

is orthonormal under the metric.

(c) Letting σ denote the map from BR(p) ⊂ M◦ to BR(0) ⊂ R2 which defines

this chart, for every line segment Γ lying within BR(0) which passes through 0,

σ−1(Γ) is a geodesic segment within BR(p) passing through p.

(d) For any point x ∈ BR(p), the geodesic distance between p and x is equal to the

Euclidean distance between 0 and σ(x), i.e. ||σ(x)||.

(ii) Take some Q ∈ C∞0 (BR(p)) with Q = 1 on a neighbourhood of p.

(iii) Define

YN(x) :=

Q(x)ZN(σ(x)) if x ∈ BR(p)

0 if x ∈M\BR(p).
(4.57)

Now given any φ : M → C which is C∞-smooth on a neighbourhood of suppQ, define

ψ ∈ C∞0 (R2) as follows:

ψ(x) :=

φ(σ−1(x))Q(σ−1(x))gσ(σ−1(x)) if x ∈ BR(0)

0 if x ∈ R2\BR(0),
(4.58)

where g is a chart-dependent, C∞-smooth positive real-valued function called the

Riemannian density. The Riemannian density is defined in such a way that for an open

region Ω ⊂M and a chart ω : Ω→ ω(Ω) ⊂ R2, letting gω be the Riemannian density on

Ω under ω, we have: ∫
Ω

f(x)dx =

∫
ω(Ω)

f(ω−1(y))gω(ω−1(y))dy. (4.59)

The formula for the Riemannian density is

g(x) =
√

det(gij)2
i,j=1. (4.60)

Note then that

φ(p) = ψ(0), (4.61)∫
M
φ(x)YN(x)dx =

∫
BR(p)

φ(x)Q(x)ZN(σ(x))dx

=

∫
BR(0)

φ(σ−1(y))Q(σ−1(y))ZN(y)gσ(σ−1(y))dy =

∫
R2

ψ(y)ZN(y)dy. (4.62)
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Thus given (4.54), it follows that∫
M
φ(x)YN(x) dx

N→∞−−−→ φ(p). (4.63)

Furthermore, in case Q may take non-real values at some points on M, define ψ̃ ∈
C∞0 (R2) similarly to ψ in (4.58), only replacing Q with Q. Then in (4.61) and (4.62), by

replacing ψ, YN , Q and ZN with ψ̃, YN , Q and ZN respectively, it follows from (4.55)

that ∫
M
φ(x)YN(x) dx

N→∞−−−→ φ(p). (4.64)

In particular then, writing

YN =
∞∑
j=1

yNj Ψj, (4.65)

so

yNj = 〈YN ,Ψj〉 , (4.66)

and since for each j ∈ N, Ψj ∈ C∞(M◦), it follows that

yNj =

∫
M

Ψj(x)YN(x)dx
N→∞−−−→ Ψj(p). (4.67)

4.2.5 Consideration of Eigenvalues and Eigenfunctions

When interested in a sequence of rank-one perturbations of H approaching the delta-

perturbed operator HΘ, it may be of particular interest to consider this in relation to

eigenvalues and eigenfunctions of the rank-one perturbations approaching those of the

delta-perturbed operator.

Definition. Consider a Hilbert space H and a closed linear operator T : Dom(T ) → H
with Dom(T ) ⊂ H being dense in H. If λ−T : Dom(T )→ H is bijective for some λ ∈ C,

and (λ − T )−1 is a bounded operator on H, then (λ − T )−1 is referred to as a resolvent

of T , and λ is said to be in the resolvent set of T . The complement of the resolvent set

of T within C is referred to as the spectrum of T , which shall be denoted Spec(T ).

Again, T being closed means that the graph of T is a closed subset of H × H. In

particular, if T is self-adjoint then it is indeed closed and has dense domain. Furthermore,

the spectrum of a self-adjoint operator is always contained within R.

Observe that every eigenvalue of T is contained within its spectrum, because λ ∈ C
is an eigenvalue of T if and only if λ− T : Dom(T )→ H fails to be injective. The set of

eigenvalues of T is referred to as the point spectrum of T .
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A variety of different classifications for points in the spectrum of an operator have been

developed, such as the aforementioned point spectrum. Other examples are continuous

spectrum, residual spectrum, discrete spectrum and essential spectrum. Sometimes there

is even more than one different convention for defining such terms. Below we shall define

discrete and essential spectrum in the case of a self-adjoint operator, in accordance with

the convention found in e.g. §VII.3 and VIII.3 of [RS80] and §4.1 of [Dav95].

Definition. Consider a self-adjoint operator T acting within a Hilbert space H. Given

any λ ∈ Spec(T ), λ is said to belong to the discrete spectrum of T if λ is an eigenvalue of

T whose corresponding eigenspace is finite-dimensional, and (λ−ε, λ+ε)∩Spec(T ) = {λ}
for some ε > 0. Otherwise, λ is said to belong to the essential spectrum of T .

A more general definition of discrete and essential spectrum, beyond the case of T

being self-adjoint, nevertheless coinciding with the above when T is self-adjoint, can be

found in [RS78].

Definition. In a Hilbert space H, a linear operator B : H → H is said to be compact if

the image of every bounded set in H under B is precompact. Equivalently, B is compact

iff for every bounded sequence (vn)∞n=1 ⊂ H, (Bvn)∞n=1 has a convergent subsequence in

H.

Note that a compact linear operator is always bounded. Furthermore, a bounded

linear operator of finite rank (i.e. finite dimensional image) is always compact.

The above definition of a compact operator also applies more generally to a linear

operator from a Banach space to another Banach space.

Proposition 4.2.4. Given some Y ∈ L2(M) and ν ∈ R, define the operator

H ′ := H + ν 〈·, Y 〉Y, (4.68)

with Dom(H ′) = Dom(H). Then there exists an orthonormal basis (ψj)
∞
j=1 of L2(M)

consisting of eigenfunctions of H ′, with respective corresponding eigenvalues µ1 ≤ µ2 ≤
µ3 ≤ . . .→∞, and Spec(H ′) = {µj}∞j=1.

Proof. Firstly, the spectrum of H is purely the set of eigenvalues {Ej}∞j=1, since as shown

in Lemma 2.1.3, H − z : Dom(H)→ L2(M) is a bijective operator with bounded inverse

for every z ∈ C\{Ej}∞j=1. Furthermore, every eigenvalue of H clearly belongs to the

discrete spectrum, and so the essential spectrum of H is empty.

Now according to Example 3 in §XIII.4 of [RS78], perturbing a self-adjoint operator by

adding a compact operator leaves the essential spectrum unchanged. Thus since ν 〈·, Y 〉Y
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has rank being at most 1, and so is a compact operator, it follows that H ′ also has empty

essential spectrum. Furthermore, by Lemmas 4.2.2, 4.2.3 and the self-adjointness of H,

H ′ is also self-adjoint. With the Hilbert space L2(M) being infinite-dimensional but

separable, it then follows that according to Thm. 4.1.5 in §4.1 of [Dav95], H ′ has an

orthonormal eigenbasis (ψj)
∞
j=1 and corresponding eigenvalues (µj)

∞
j=1 with |µj| → ∞ as

j →∞.

Next, it shall be shown that the set of eigenvalues of H ′ must have a finite lower

bound. Given any φ =
∑∞

j=1 ajΨj ∈ Dom(H), it follows from Lemma 2.1.1 and the

formula for the inner product in terms of orthonormal basis expansion that

〈Hφ, φ〉 =
∞∑
j=1

Ej|aj|2 ≥
∞∑
j=1

E1|aj|2 = E1||φ||2. (4.69)

Furthermore, letting B := ν 〈·, Y 〉Y ,

〈Bφ, φ〉 = 〈ν 〈φ, Y 〉Y, φ〉 = ν 〈φ, Y 〉 〈Y, φ〉 = ν |〈φ, Y 〉|2

≥ min{0, ν||Y ||2} ||φ||2 =: C||φ||2. (4.70)

Hence

〈H ′φ, φ〉 = 〈Hφ, φ〉+ 〈Bφ, φ〉 ≥ (E1 + C) ||φ||2 . (4.71)

Now letting µ ∈ R be an eigenvalue of H ′ and ψ ∈ Dom(H)\{0} be a corresponding

eigenfunction,

〈H ′ψ, ψ〉 = µ ||ψ||2 ≥ (E1 + C) ||ψ||2 , (4.72)

and so µ ≥ E1 + C. Thus E1 + C is a lower bound for the set of all eigenvalues of H ′.

It may now be concluded that the orthonormal eigenbasis of H ′ can be arranged in

a sequence (ψj)
∞
j=1 with which the corresponding eigenvalues (µj)

∞
j=1 satisfy µ1 ≤ µ2 ≤

µ3 ≤ . . . → ∞. H ′ may have no other eigenvalues beside {µj}∞j=1, since if it did, the

corresponding eigenfunctions would be orthogonal to all members of {ψj}∞j=1, and thus

could not be expanded into {ψj}∞j=1 as all coefficiets would be zero. Furthermore, the

spectrum of H ′ may have no other points beside {µj}∞j=1, since as already stated, the

essential spectrum is empty. Thus the spectrum is purely discrete, and all points in the

discrete spectrum are eigenvalues.

Suppose one has obtained a sequence of rank-one-perturbed operators (HN)

approaching the delta-perturbed operator HΘ in either the strong or norm resolvent sense.

This may then enable analysis of the limiting behaviour of eigenvalues and eigenfunctions

of HN in relation to the eigenvalues and eigenfunctions of H. Theorems VIII.23 and

VIII.24 in [RS80] would then be of use in this pursuit.
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However, in the approach that shall be taken in the following sections of Chapter,

the limiting behaviour of the eigenvalues and eigenfunctions of HN , in relation to those

of HΘ, shall be studied via direct analysis of their formulae. This approach shall begin

by assuming only that (4.67) holds. Further conditions would then be added as the

investigation progresses.

4.3 Eigenvalues and Eigenfunctions of the Rank-One

Perturbed Operators

4.3.1 Construction of Eigenvalues and Eigenfunctions

In §3 of [RU12], there is a discussion on the eigenvalues and eigenfunctions of a rank-one

perturbation of a self-adjoint operator on a finite-dimensional Hilbert space, observing

that the delta potential can be formally represented in a form akin to that of a rank-one

perturbation. Now we wish to derive the complete set of eigenvalues and eigenfunctions

for rank-one perturbations of the operator H on the Hilbert space L2(M). Then we seek

to approximate the eigenvalues and eigenfunctions of the rigorously constructed delta

potential by those of rank-one perturbations of H.

So then, given some Y ∈ L2(M)\{0} and ν ∈ R\{0}, we wish to obtain an

orthonormal eigenbasis and corresponding eigenvalues of the self-adjoint operator

H ′ := H + ν 〈·, Y 〉Y. (4.73)

To this end, take some ψ ∈ Dom(H) (noting that Dom(H ′) = Dom(H)) and E ∈ R,

for which we wish to determine whether or not H ′ψ = Eψ. Expanding ψ and Y into the

orthonormal eigenbasis of H:

ψ =
∞∑
j=1

ajΨj, Y =
∞∑
j=1

yjΨj, (4.74)

it follows that

H ′ψ = Eψ iff Hψ + ν 〈ψ, Y 〉Y = Eψ iff (E −H)ψ = ν 〈ψ, Y 〉Y

iff (E − Ej)aj = ν 〈ψ, Y 〉 yj ∀ j ∈ N. (4.75)

Now split the situation into three possible cases, namely:

(i) 〈ψ, Y 〉 = 0;
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(ii) 〈ψ, Y 〉 6= 0 and E /∈ Spec(H);

(iii) 〈ψ, Y 〉 6= 0 and E ∈ Spec(H).

Again, “Spec” means spectrum, so Spec(H) = {Ej}j∈N.

In case (i), H ′ψ = Hψ, and thus H ′ψ = Eψ if and only if Hψ = Eψ.

So then, for each eigenspace of H, calling the eigenvalue E , if P(H)
{E}Y :=

∑
j:Ej=E yjΨj =

0 then E is an eigenvalue of H ′ also, with the E-eigenspace Λ
(H)
E of H being a subspace

of the E-eigenspace Λ
(H′)
E of H ′. If P(H)

{E}Y 6= 0 and the dimension of Λ
(H)
E is ≥ 2 then E is

an eigenspace of H ′ also, with the orthogonal complement of span{P(H)
{E}Y } in Λ

(H)
E being

a subspace of Λ
(H′)
E . This covers all eigenfunctions of H ′ that are orthogonal to Y .

In case (ii), noting that the operator E −H : Dom(H)→ L2(M) is then bijective, it

follows from (4.75) that

H ′ψ = Eψ iff ψ = ν 〈ψ, Y 〉 (E −H)−1Y. (4.76)

Let

ψE := (E −H)−1Y =
∞∑
j=1

yj
E − Ej

Ψj ∈ Dom(H)\{0}. (4.77)

So then, if H ′ψ = Eψ then ψ ∈ span{ψE}\{0}, and writing ψ = αψE, we have

ψ = ν 〈ψ, Y 〉ψE = ν 〈αψE, Y 〉ψE = αψE ⇒ ν 〈αψE, Y 〉 = α

⇒ 〈ψE, Y 〉 =
∞∑
j=1

|yj|2

E − Ej
=

1

ν
. (4.78)

Conversely (now without even assuming beforehand that 〈ψ, Y 〉 6= 0, but still

assuming E /∈ Spec(H)), suppose ψ ∈ span{ψE}\{0} and
∑∞

j=1
|yj |2
E−Ej = 1

ν
. Then writing

ψ = αψE, we have

〈ψ, Y 〉 = α 〈ψE, Y 〉 = α

∞∑
j=1

|yj|2

E − Ej
=
α

ν
6= 0

⇒ α = ν 〈ψ, Y 〉 ⇒ ψ = αψE = ν 〈ψ, Y 〉ψE
(4.76)
===⇒ H ′ψ = Eψ. (4.79)

In case (iii), defining

ψE :=
∑
j:Ej 6=E

yj
E − Ej

Ψj ∈ Dom(H), (4.80)
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it then follows from (4.75) that

H ′ψ = Eψ iff

yj = 0 for Ej = E

aj = ν 〈ψ, Y 〉 yj
E−Ej for Ej 6= E

iff

P
(H)
{E}Y = 0

P(H)
R\{E}ψ = ν 〈ψ, Y 〉ψE

iff

P
(H)
{E}Y = 0

P(H)
R\{E}ψ = ν

〈
P(H)

R\{E}ψ, Y
〉
ψE.

(4.81)

So then, if H ′ψ = Eψ then P(H)
{E}Y = 0, so P(H)

R\{E}Y 6= 0, and so ψE 6= 0.

Furthermore,
〈
P(H)

R\{E}ψ, Y
〉

= 〈ψ, Y 〉 6= 0, so P(H)
R\{E}ψ ∈ span{ψE}\{0}, equivalently

ψ ∈ (span{ψE}\{0}) + Λ
(H)
E . Then following the same argument as in (4.78), only

replacing ψ with P(H)
R\{E}ψ, we have

〈ψE, Y 〉 =
∑
j:Ej 6=E

|yj|2

E − Ej
=
∑
j:yj 6=0

|yj|2

E − Ej
=

1

ν
. (4.82)

Conversely (again without assuming beforehand that 〈ψ, Y 〉 6= 0, but still assuming

E ∈ Spec(H)), suppose P(H)
{E}Y = 0 (so P(H)

R\{E}Y 6= 0⇒ ψE 6= 0), ψ ∈ (span{ψE}\{0}) +

Λ
(H)
E (so P(H)

R\{E}ψ ∈ span{ψE}\{0}) and
∑

j:yj 6=0
|yj |2
E−Ej = 1

ν
(so

∑
j:Ej 6=E

|yj |2
E−Ej = 1

ν
). Note

then that again, 〈ψ, Y 〉 =
〈
P(H)

R\{E}ψ, Y
〉

. Now following the same argument as in (4.79),

only replacing ψ with P(H)
R\{E}ψ and applying (4.81) instead of (4.76), it follows that

〈ψ, Y 〉 =
〈
P(H)

R\{E}ψ, Y
〉
6= 0 and H ′ψ = Eψ. Observe finally that ψE is clearly orthogonal

to all members of Λ
(H)
E .

Given all of this, we can now construct all eigenvalues of H ′, and an orthonormal basis

of each corresponding eigenspace. Note, either from the above analysis or from Prop.

4.2.4, that every eigenspace is finite-dimensional. By Prop. 4.2.4, H ′ has a complete

countable orthonormal eigenbasis. It then follows in particular that if we take any

orthonormal basis of each eigenspace, and then take the union over all eigenspaces, this

will give such a complete orthonormal eigenbasis.

Now stating the construction of an orthonormal eigenbasis of H ′:

(i) Start off with an orthonormal eigenbasis of H, whereby for each eigenspace Λ
(H)
E

with P(H)
{E}Y 6= 0, the basis for this eigenspace is chosen in such a way that one of

the members is in span{P(H)
{E}Y }. Note that P(H)

{E}Y = 0 if and only if yj = 0 ∀ j with

Ej = E.

(ii) Then for each eigenvalue E of H with P(H)
{E}Y 6= 0, delete the member of

span{P(H)
{E}Y }.
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(iii) Find all E ∈ R\{E ∈ Spec(H) : P(H)
{E}Y 6= 0} that solve the equation∑

j:yj 6=0

|yj|2

E − Ej
=

1

ν
, (4.83)

noting that this sum here does indeed converge for each E ∈ R\{E ∈ Spec(H) :

P(H)
{E}Y 6= 0}, since

∑∞
j=1 |yj|2 converges to ||Y ||2 <∞.

(iv) For each E that solves (4.83), insert the function

ψ̂E :=
ψE
||ψE||

, (4.84)

where

ψE :=
∑
j:yj 6=0

yj
E − Ej

Ψj ∈ Dom(H). (4.85)

For each eigenfunction that we have after step (ii), the corresponding eigenvalue is the

same as the corresponding eigenvalue of H. For each eigenfunction ψ̂E introduced in step

(iv), the corresponding eigenvalue is E.

Note that in LHS(4.83) and LHS(4.85), the reason for having
∑

j:yj 6=0 rather than∑∞
j=1 is so as to allow for the possibility of E coinciding with an eigenvalue E of H

with P(H)
{E}Y = 0 (i.e. yj = 0 ∀ j with Ej = E), without having terms in the sum where

the denominator is zero. With E ∈ R\{E ∈ Spec(H) : P(H)
{E}Y 6= 0}, LHS(4.83) and

LHS(4.85) can equivalently be written with
∑

j:Ej 6=E, and if E /∈ Spec(H) then obviously

this is just equivalent to
∑∞

j=1.

Let R(E) denote the LHS of (4.83). We wish to describe qualitatively the behaviour

of this function R : R\{E ∈ Spec(H) : P(H)
{E}Y 6= 0} → R. Observe first of all that each

term in the sum in the LHS of (4.83) is a strictly decreasing function of E on (−∞, Ej)
and on (Ej,∞), with a singularity at Ej, tending to −∞ from the left and +∞ from the

right.

Given any M ∈ N, define

R(M)(E) :=
∑

j∈{1,...,M}:yj 6=0

|yj|2

E − Ej
. (4.86)

Then (provided M is large enough that {j ∈ {1, . . . ,M} : yj 6= 0} 6= ∅) R(M) has a

singularity at each Ej with j ∈ {1, . . . ,M} and yj 6= 0, tending to −∞ from the left and

+∞ from the right, and is continuous and strictly decreasing on every interval which

does not intersect one of the singularities.

We now verify that these basic behaviours of the finite sum R(M) also extend to the

potentially infinite sum R.
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Lemma 4.3.1. R : R\{E ∈ Spec(H) : P(H)
{E}Y 6= 0} → R has the following properties:

(i) It is strictly decreasing on every interval whose intersection with {E ∈ Spec(H) :

P(H)
{E}Y 6= 0} is empty.

(ii) For each E ∈ Spec(H) with P(H)
{E}Y 6= 0, limE→E− R(E) = −∞ and limE→E+ R(E) =

+∞.

(iii) It is Lipschitz continuous on every compact interval whose intersection with {E ∈
Spec(H) : P(H)

{E}Y 6= 0} is empty.

Proof. (i) Take some a, b ∈ R with a < b and [a, b] ∩ {E ∈ Spec(H) : P(H)
{E}Y 6= 0} = ∅.

Then given any M ∈ N with {j ∈ {1, . . . ,M} : yj 6= 0} 6= ∅,

R(M+1)(a)−R(M+1)(b) = R(M)(a)−R(M)(b) +

(
|yM+1|2

a− EM+1

− |yM+1|2

b− EM+1

)
≥ R(M)(a)−R(M)(b) > 0. (4.87)

Then by induction, if M1,M2 ∈ N∩[M,∞) and M1 < M2 then R(M1)(a)−R(M1)(b) ≤
R(M2)(a)−R(M2)(b). Hence

R(a)−R(b) = lim
K→∞

(R(K)(a)−R(K)(b)) ≥ R(M)(a)−R(M)(b) > 0. (4.88)

(ii) Given any k ∈ N with yk 6= 0, take some M ∈ N ∩ [k,∞) and some a < Ek with

[a, Ek) ∩ {E ∈ Spec(H) : P(H)
{E}Y 6= 0} = ∅. Then with variable E ∈ (a, Ek), we have,

by applying (4.88) together with limE→E−k
R(M)(E) = −∞,

R(a)−R(E) ≥ R(M)(a)−R(M)(E)
E→E−k−−−−→∞ ⇒ R(E)

E→E−k−−−−→ −∞. (4.89)

Next, still keeping the same k an M , take some b > Ek with (Ek, b]∩{E ∈ Spec(H) :

P(H)
{E}Y 6= 0} = ∅, and take variable E ∈ (Ek, b). Then

R(E)−R(b) ≥ R(M)(E)−R(M)(b)
E→E+

k−−−−→∞ ⇒ R(E)
E→E+

k−−−−→∞. (4.90)

(iii) Define

TY (E) :=
∑
j:yj 6=0

|yj|2

(E − Ej)2
, T

(M)
Y (E) :=

∑
j∈{1,...,M}:yj 6=0

|yj|2

(E − Ej)2
. (4.91)

Observe that TY (E) is a convergent sum for each E ∈ R\{E ∈ Spec(H) : P(H)
{E}Y 6=

0}, converging to ||ψE||2, with ψE defined in (4.85). Observe also that

d

dE
R(M)(E) = −T (M)

Y (E). (4.92)
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Fix a compact interval [a, b] of positive length (i.e. b > a) with [a, b]∩{E ∈ Spec(H) :

P(H)
{E}Y 6= 0} = ∅. Then taking any x, z ∈ [a, b] with x < z, and applying the mean

value theorem,

0 < R(x)−R(z) = lim
K→∞

(R(K)(x)−R(K)(z)) = lim
K→∞

T
(K)
Y (σK)(z − x) (4.93)

for some (σK)K∈N ⊂ (x, z). For each E ∈ (x, z) and j ∈ N with yj 6= 0, if Ej > b

then
|yj |2

(E−Ej)2 <
|yj |2

(b−Ej)2 , and if Ej < a then
|yj |2

(E−Ej)2 <
|yj |2

(a−Ej)2 . In either case,
|yj |2

(E−Ej)2 <
|yj |2

(a−Ej)2 +
|yj |2

(b−Ej)2 . Hence

T
(K)
Y (σK)(z − x) ≤ (T

(K)
Y (a) + T

(K)
Y (b))(z − x)

K→∞
===⇒ 0 < R(x)−R(z) ≤ (TY (a) + TY (b))(z − x). (4.94)

Corollary 4.3.2. Write {E ∈ Spec(H) : P(H)
{E}Y 6= 0} =: (E

(Y )
k )Mmax

k=1 , with E
(Y )
1 < E

(Y )
2 <

E
(Y )
3 < . . ., where Mmax could be finite or infinite. Equation (4.83) then has precisely one

solution in each interval (E
(Y )
k , E

(Y )
k+1), at most one solution below E

(Y )
1 , and if Mmax is

finite then at most one solution above E
(Y )
Mmax

.

Since the spectrum of H ′ is purely discrete, it follows that for every value E ∈ C
outside the set of eigenvalues of H ′ derived above, the resolvent operator (E − H ′)−1

is well-defined. In §A.1 of the Appendix, explicit formulae are derived for the resolvent

operators of H ′.

4.3.2 Comparison with Eigenvalues and Eigenfunctions of the

Delta Potential

Now comparing the eigenvalues and eigenfunctions of the rank-one-perturbation operator

H ′ with those of the delta potential operator HΘ, an orthonormal eigenbasis for HΘ can

be constructed in a similar way to that described above for H ′, as follows:

(i) Start off with the orthonormal eigenbasis {Ψj}∞j=1 of H. Note here that with this

choice of eigenbasis, for each eigenspace Λ
(H)
E with P(H)

{E}δp :=
∑

j:Ej=E Ψj(p)Ψj 6= 0,

the basis {Ψj : Ej = E} for this eigenspace has one member in span{P(H)
{E}δp},

namely the only one whose value at p is nonzero. Obviously if P(H)
{E}δp = 0 then

Ψj(p) = 0 ∀ j with Ej = E.

(ii) Then for each eigenvalue E of H with P(H)
{E}δp 6= 0, delete the corresponding

eigenfunction whose value at p is nonzero.
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(iii) Find all E ∈ R\{E ∈ Spec(H) : P(H)
{E} δp 6= 0} that solve the equation

S(E) :=
∑

j:Ψj(p)6=0

(
|Ψj(p)|2

E − Ej
+
|Ψj(p)|2Ej

1 + E2
j

)
= F (Θ), (4.95)

where F (Θ):=-RHS(2.111), noting that here S(E)=-LHS(2.111) (interchanging “E”

and “λ”).

(iv) For each E that solves (4.95), insert the function

ψ̂δE :=
ψδE
||ψδE||

, (4.96)

where

ψδE :=
∑

j:Ψj(p)6=0

Ψj(p)

E − Ej
Ψj ∈ L2(M). (4.97)

Note that here, ψδE = −gE as given by (2.75) (in the case where E /∈ Spec(H)).

Again, for each eigenfunction that we have after step (ii), the corresponding eigenvalue

is the same as the corresponding eigenvalue of H. For each eigenfunction ψ̂δE introduced

in step (iv), the corresponding eigenvalue is E.

By analogy with Lemma 4.3.1, we have

Lemma 4.3.3. S : R\{E ∈ Spec(H) : P(H)
{E} δp 6= 0} → R has the following properties:

(i) It is strictly decreasing on every interval whose intersection with {E ∈ Spec(H) :

P(H)
{E} δp 6= 0} is empty.

(ii) For each E ∈ Spec(H) with P(H)
{E} δp 6= 0, limE→E− S(E) = −∞ and limE→E+ S(E) =

+∞.

(iii) It is Lipschitz continuous on every compact interval whose intersection with {E ∈
Spec(H) : P(H)

{E} δp 6= 0} is empty.

Proof. Let

S(M)(E) :=
∑

j∈{1,...,M}:Ψj(p) 6=0

(
|Ψj(p)|2

E − Ej
+
|Ψj(p)|2Ej

1 + E2
j

)
, (4.98)

S̃(M)(E) :=
∑

j∈{1,...,M}:Ψj(p)6=0

|Ψj(p)|2

E − Ej
, (4.99)

for each finite M ∈ N. Note then that

S(M)(a)− S(M)(b) = S̃(M)(a)− S̃(M)(b) (4.100)
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∀ a, b ∈ R\{Ej : j ∈ {1, . . . ,M},Ψj(p) 6= 0}, and so

S(a)− S(b) = lim
M→∞

(S(M)(a)− S(M)(b)) = lim
M→∞

(S̃(M)(a)− S̃(M)(b)) (4.101)

∀ a, b ∈ R\{E ∈ Spec(H) : P(H)
{E} δp 6= 0}.

Similar to R(M), S̃(M) has a singularity at each Ej with j ∈ {1, . . . ,M} and Ψj(p) 6= 0,

tending to −∞ from the left and +∞ from the right, and is smooth and strictly decreasing

on every interval which does not intersect one of the singularities (assuming M is large

enough that {j ∈ {1, . . . ,M} : Ψj(p) 6= 0} 6= ∅). The same is true for S(M), since S(M)

and S̃(M) differ only by a constant function.

Define

Tδ(E) :=
∑

j:Ψj(p) 6=0

|Ψj(p)|2

(E − Ej)2
= ||ψδE||2, T

(M)
δ (E) :=

∑
j∈{1,...,M}:Ψj(p)6=0

|Ψj(p)|2

(E − Ej)2
, (4.102)

and note that
d

dE
S(M)(E) =

d

dE
S̃(M)(E) = −T (M)

δ (E). (4.103)

Lemma 4.3.3 can then be proven by directly adapting the proof of Lemma 4.3.1,

replacing e.g. R, R(M), TY and T
(M)
Y with S, S̃(M), Tδ and T

(M)
δ respectively.

Observe that Corollary 4.3.2, with {E ∈ Spec(H) : P(H)
{E}Y 6= 0} = (E

(Y )
k )Mmax

k=1 replaced

with {E ∈ Spec(H) : P(H)
{E} δp 6= 0} = (Ek)

∞
k=1 and the reference to equation (4.83) replaced

with equation (4.95), then follows.

On the basis of these analogous features between the eigenvalues and eigenfunctions

of the rank-one perturbed operator H ′ and those of the delta-perturbed operator HΘ,

there are some interesting further analogies that can be drawn. In §A.2 a particular

method of constructing the family of operators {H + ν 〈·, Y 〉Y : ν ∈ R\{0}}, for some

fixed Y ∈ L2(M)\{0}, is given. It is then pointed out that the family of operators

{HΘ : Θ ∈ (0, 2π)} can be constructed in a similar manner, which in essence merely

involves replacing Y in the construction of {H + ν 〈·, Y 〉Y : ν ∈ R\{0}} with δp.

4.4 Approximation of Eigenvalues and Eigenfunctions

to those of the Delta Potential

We are now interested in a sequence of operators

HN := H + νN 〈·, YN〉YN , (4.104)
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with (YN)∞N=1 ⊂ C∞0 (M◦)\{0}, (νN)∞N=1 ⊂ R\{0}, whose eigenvalues and eigenfunctions

would approach those of the delta potential operator HΘ as N →∞. To begin with, we

shall impose the following requirement: writing YN =
∑∞

j=1 y
N
j Ψj, so yNj = 〈YN ,Ψj〉, we

have

yNj → Ψj(p) as N →∞ ∀ j ∈ N. (4.105)

Lemma 4.4.1. ∃ (YN)∞N=1 ⊂ C∞0 (M◦)\{0} such that (4.105) holds.

Proof. Take some (ỸN)∞N=1 ⊂ L2(M) satisfying ỹNj → Ψj(p) as N → ∞ ∀ j ∈ N, e.g.

ỸN =
∑N

j=1 Ψj(p)Ψj. Since C∞0 (M◦) is dense in L2(M), and so C∞0 (M◦)\{0} is dense

in L2(M), take a sequence (εN)∞N=1 ⊂ (0,∞) with εN → 0, and a sequence (YN)∞N=1 ⊂
C∞0 (M◦)\{0} with ||YN − ỸN || ≤ εN ∀N ∈ N. Then for each N ∈ N,

∞∑
j=1

|yNj − ỹNj |2 ≤ ε2N ⇒ |yNj − ỹNj |2 ≤ ε2N ∀ j ∈ N ⇒ |yNj − ỹNj | ≤ εN ∀ j ∈ N.

(4.106)

Thus

|yNj −Ψj(p)| ≤ |yNj − ỹNj |+ |ỹNj −Ψj(p)|
N→∞−−−→ 0 ∀ j ∈ N. (4.107)

Note that an example of such (YN)∞N=1 ⊂ C∞0 (M◦) with (4.105) holding is given in

(4.57), taking ZN := AF−1{χN} with χN given by (4.9). (4.105) in this case is then a

reiteration of (4.67). Regarding the YN 6= 0 requirement, (4.105) is itself clearly sufficient

for YN 6= 0 for all sufficiently large N , since it must hold that Ψj(p) 6= 0 for some j ∈ N.

As an aside, the result that with this example, YN 6= 0 ∀N ∈ N, can also be obtained by

observing that ZN 6= 0 is an analytic function, being the inverse Fourier transform of a

nonzero compactly supported function. It then follows that ZN is everywhere supported.

However, for the sake of what is to follow, it would still be useful to have a proof of

Lemma 4.4.1 like the one given directly above, rather than just referencing (4.57) with

(4.9) as an example.

4.4.1 Approximation of Eigenfunctions in common with the

Unperturbed Operator

Here we shall consider whether the eigenfunctions output upon Steps (i) and (ii) of

the construction of an eigenbasis of HN , as described in §4.3.1, can be made to approach

those for HΘ (construction of eigenbasis described in §4.3.2). Note that all eigenfunctions
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relevant here are also eigenfunctions of the unperturbed operator H, with the same

eigenvalue.

Consider an eigenvalue E of H with multiplicity m ≥ 2 and P(H)
{E} δp 6= 0, so we can write

E = Ek, Φk = Ψl. Then since yNl → Φk(p) as N → ∞, it follows that for all sufficiently

large N , yNl 6= 0 and so P(H)
{E}YN 6= 0. Thus for HΘ and also for HN with sufficiently large

N , E is an eigenvalue with multiplicity m− 1, and the eigenspaces Λ
(HΘ)
{E} and Λ

(HN )
{E} are

subspaces of Λ
(H)
{E} orthogonal to P(H)

{E} δp (equivalently Φk) and P(H)
{E}YN respectively. It is

then of interest to select an orthonormal basis of Λ
(HN )
{E} for each sufficiently large N , such

that the basis members approach the orthonormal basis {Ψj : Ej = E , j 6= l} of Λ
(HΘ)
{E} .

To begin with, we shall state that given any finite-dimensional complex Hilbert space

H of dimension m ≥ 2, and given any u, v ∈ H with ||u|| = ||v|| = 1, the following results

hold:

Lemma 4.4.2.

min
θ∈[0,2π)

||eiθv − u|| =
√

2(1− |〈u, v〉|), (4.108)

with the minimum occurring at

eiθ =
〈u, v〉
|〈u, v〉|

(4.109)

for 〈u, v〉 6= 0. ||eiθv − u|| =
√

2 ∀ θ when 〈u, v〉 = 0.

Proof.

||eiθv − u||2 =
〈
eiθv, eiθv

〉
−
〈
eiθv, u

〉
−
〈
u, eiθv

〉
+ 〈u, u〉

= 2(1− Re(eiθ 〈v, u〉)) = 2(1− Re(〈v, u〉) cos θ + Im(〈v, u〉) sin θ)

= 2(1 + |〈v, u〉| sin(θ + α)) ∀ θ ∈ R, (4.110)

where

sinα = −Re(〈v, u〉)
|〈v, u〉|

, cosα =
Im(〈v, u〉)
|〈v, u〉|

, (4.111)

provided 〈v, u〉 6= 0. If 〈v, u〉 = 0 then clearly ||eiθv − u||2 = 2 ∀ θ ∈ R.

Thus

min
θ∈R
||eiθv − u||2 = 2(1− |〈v, u〉|), (4.112)

and if 〈v, u〉 6= 0 this minimum occurs at

θmin = −
(
α +

π

2

)
mod 2π. (4.113)

So then,

cos θmin = − sinα =
Re(〈v, u〉)
|〈v, u〉|

, sin θmin = − cosα = −Im(〈v, u〉)
|〈v, u〉|

, (4.114)
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and so

eiθmin =
Re(〈v, u〉)− iIm(〈v, u〉)

|〈v, u〉|
=
〈u, v〉
|〈u, v〉|

. (4.115)

Double-checking:

||eiθminv − u||2 =
〈
eiθminv, eiθminv

〉
−
〈
eiθminv, u

〉
−
〈
u, eiθminv

〉
+ 〈u, u〉

= 1− 〈u, v〉
|〈u, v〉|

〈v, u〉 − 〈v, u〉
|〈u, v〉|

〈u, v〉+ 1 = 1− |〈u, v〉|
2

|〈u, v〉|
− |〈u, v〉|

2

|〈u, v〉|
+ 1

= 2(1− |〈u, v〉|). (4.116)

Lemma 4.4.3. There exists a unitary operator U : H → H such that

Uu = v, (4.117)

||U − I|| = ||v − u|| =
√

2(1− Re(〈u, v〉)), (4.118)

where I is the identity map and the notation || · || is being used to represent operator norm

as well as Hilbert space norm.

Proof. Take an orthonormal basis {w1, . . . , wm} of H with

w1 = u, w2 =
v − 〈v, u〉u
||v − 〈v, u〉u||

if v /∈ span{u}. (4.119)

Note that if v ∈ span{u} then writing v = eiθu, we have 〈v, u〉u =
〈
eiθu, u

〉
u =

eiθ 〈u, u〉u = eiθu = v. If v /∈ span{u} then clearly 〈v, u〉u 6= v. In either case we

have

||v − 〈v, u〉u||2 = 〈v, v〉 − 〈v, 〈v, u〉u〉 − 〈〈v, u〉u, v〉+ 〈〈v, u〉u, 〈v, u〉u〉

= 1− |〈v, u〉|2 − |〈v, u〉|2 + |〈v, u〉|2 = 1− |〈v, u〉|2 . (4.120)

With v /∈ span{u}, clearly w1 and w2 as given in (4.119) are normalised. Verifying that

they are orthogonal:

〈w1, w2〉 =
〈u, v − 〈v, u〉u〉
||v − 〈v, u〉u||

=
〈u, v〉 − 〈u, v〉 〈u, u〉
||v − 〈v, u〉u||

= 0. (4.121)

Rearranging the formula for w2 in (4.119) gives

v = 〈v, u〉u+ ||v − 〈v, u〉u||w2 = 〈v, u〉w1 +

√
1− |〈v, u〉|2w2. (4.122)

Observe that (4.122) also holds in the case where v ∈ span{u}. In this case, v = 〈v, u〉u =

〈v, u〉w1 and ||v − 〈v, u〉u|| =
√

1− |〈v, u〉|2 = 0 (here we still specify that w1 = u, but

allow w2 to be an arbitrary normalised vector orthogonal to u).
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Now representing vectors in H as column vectors in Cm through their expansion into

the basis {w1, . . . , wm}, let U be the operator represented by pre-multiplication by the

m×m matrix

Um×m =


〈v, u〉 −

√
1− |〈v, u〉|2√

1− |〈v, u〉|2 〈u, v〉
02×(m−2)

0(m−2)×2 I(m−2)×(m−2)

 . (4.123)

This is a unitary matrix, since the columns are clearly orthogonal and normalised (likewise

the rows), from which it follows that U is a unitary operator (furthermore detUm×m = 1).

Noting that u is represented by the vector (1 0 . . . 0)T , it follows from comparison

between the first column of Um×m and the expression for v in (4.122) that Uu = v.

Since Um×m is unitary, we have

U−1
m×m = U∗m×m =


〈u, v〉

√
1− |〈v, u〉|2

−
√

1− |〈v, u〉|2 〈v, u〉
02×(m−2)

0(m−2)×2 I(m−2)×(m−2)

 , (4.124)

where ∗ here means complex conjugate of the transpose.

The operator norm of U − I can then be calculated by finding the square root of the

largest eigenvalue of the matrix

(Um×m − I)∗(Um×m − I) = U∗m×mUm×m − U∗m×m − Um×m + I = 2I − Um×m − U∗m×m

=


2(1− Re(〈v, u〉)) 0

0 2(1− Re(〈v, u〉))
02×(m−2)

0(m−2)×2 0(m−2)×(m−2)

 . (4.125)

Clearly the eigenvalues of this matrix are 2(1−Re(〈v, u〉)), with corresponding eigenspace

span{w1, w2}, and 0, with corresponding eigenspace span{w3, . . . , wm} (or just 2(1 −
Re(〈v, u〉)) with eigenspace H if either m = 2 or 2(1 − Re(〈v, u〉)) = 0). Note that

|Re(〈v, u〉)| ≤ |〈v, u〉| ≤ ||v|| ||u|| = 1, and so 2(1− Re(〈v, u〉)) ≥ 0. Hence

||U − I|| =
√

2(1− Re(〈v, u〉)). (4.126)

Now

||(U − I)u|| = ||v − u|| =
√
〈v, v〉 − 〈v, u〉 − 〈u, v〉+ 〈u, u〉

=
√

2(1− Re(〈v, u〉)) (4.127)

also. Hence U satisfies (4.117) and (4.118).
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Corollary 4.4.4. Let

Uvu := {unitary U on H : Uu ∈ span{v}}. (4.128)

Then

min{||U − I|| : U ∈ Uvu} =
√

2(1− |〈u, v〉|). (4.129)

Proof. For each U ∈ Uvu , since U is unitary, so ||Uu|| = ||u|| = 1, and since Uu ∈ span{v},
we can write Uu = eiθUv for some θU ∈ [0, 2π). So then, applying Lemma 4.4.2,

||U − I|| ≥ ||(U − I)u|| = ||eiθUv − u|| ≥ ||eiθminv − u|| =
√

2(1− |〈u, v〉|), (4.130)

where eiθmin = 〈u,v〉
|〈u,v〉| (or if 〈u, v〉 = 0 then eiθmin may take any value on the unit circle in

the complex plane). Then by Lemma 4.4.3 (applying Lemma 4.4.3 with eiθminv in place

of v), there exists a unitary operator Umin : H → H such that

Uminu = eiθminv (so Umin ∈ Uvu), (4.131)

||Umin − I|| = ||eiθminv − u|| =
√

2(1− |〈u, v〉|). (4.132)

This proves (4.129).

We now return to the issue of selecting an orthonormal basis of Λ
(HN )
{E} for each

sufficiently largeN , where E is an eigenvalue ofH with multiplicitym ≥ 2 and P(H)
{E} δp 6= 0.

Write therefore E = Ek, Φk = Ψl. We shall take “sufficiently large N” to be N ≥ N0,

where N0 ∈ N is a value for which it holds that P(H)
{E}YN 6= 0 ∀N ∈ N ∩ [N0,∞). Letting

UNk := {unitary U on Λ
(H)
{E} : UΦk ∈ span{P(H)

{E}YN}}, (4.133)

the collection of all possible choices of orthonormal basis of Λ
(HN )
{E} is

{{UΨj : Ej = E , j 6= l} : U ∈ UNk }. (4.134)

Then applying here the existence of a unitary operator satisfying (4.131) and (4.132) in

the proof of Corollary 4.4.4, we can select UN
k ∈ UNk such that

UN
k Φk =

yNl P
(H)
{E}YN∣∣∣∣∣∣yNl P(H)
{E}YN

∣∣∣∣∣∣ if yNl 6= 0, (4.135)

and

||UN
k − I|| = ||(UN

k − I)Φk|| =

√√√√2

(
1− |yNl |
||P(H)
{E}YN ||

)
. (4.136)
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If yNl = 0 then just having UN
k Φk ∈ span{P(H)

{E}YN} in place of (4.135) will do.

[We could require N0 to be sufficiently large that yNl 6= 0 ∀N ∈ N∩[N0,∞) rather than

just P(H)
{E}YN 6= 0 ∀N ∈ N ∩ [N0,∞). However, this kind of discrepancy may in principle

make a non-trivial difference when considering behaviour not just for each individual

eigenvalue E satisfying certain specifications, but for infinitely many such eigenvalues

simultaneously.]

It then follows that for each j ∈ N with Ej = E , j 6= l, we have

||(UN
k − I)Ψj|| ≤ ||(UN

k − I)Φk|| =

√√√√2

(
1− |yNl |
||P(H)
{E}YN ||

)
. (4.137)

Note also that

||UN
k − I|| = min{||U − I|| : U ∈ UNk }. (4.138)

Since yNj
N→∞−−−→ Ψj(p) for each j with Ej = E , and Ψl(p) 6= 0 while Ψj(p) = 0 for each

j with Ej = E other than l, it follows that

|yNl |
||P(H)
{E}YN ||

=
|yNl |√∑
j:Ej=E |y

N
j |2

N→∞−−−→ |Ψl(p)|√
|Ψl(p)|2

= 1, (4.139)

and so

||UN
k − I|| = ||(UN

k − I)Φk||
N→∞−−−→ 0. (4.140)

Observe also that P(H)
{E}YN

N→∞−−−→ P(H)
{E} δp = Φk(p)Φk, and so

UN
k Φk =

yNl P
(H)
{E}YN∣∣∣∣∣∣yNl P(H)
{E}YN

∣∣∣∣∣∣ N→∞−−−→ Φk(p)Φk(p)Φk

||Φk(p)Φk(p)Φk||
= Φk, (4.141)

again proving that ||(UN
k − I)Φk||

N→∞−−−→ 0.

Hence by (4.134), (4.137) and (4.140), if for each N ∈ N ∩ [N0,∞), we take the

orthonormal basis {UN
k Ψj : Ej = E , j 6= l} of Λ

(HN )
{E} , these orthonormal bases will then

approach the orthonormal basis {Ψj : Ej = E , j 6= l} of Λ
(HΘ)
{E} .

As for the case of an eigenvalue E of H with P(H)
{E} δp = 0, in which case Λ

(H)
{E} ⊂ Λ

(HΘ)
{E} ,

normally Λ
(HΘ)
{E} = Λ

(H)
{E} (the exception being when E happens to be a solution of (4.95)),

here we do not necessarily have P(H)
{E}YN = 0 for all sufficiently large N .

In the case where it does hold that P(H)
{E}YN = 0 for all sufficiently large N , in which

case Λ
(H)
{E} ⊂ Λ

(HN )
{E} for each such N , we can choose the orthonormal eigenbases of both

HΘ and HN to include {Ψj : Ej = E}. In the case where this does not hold, there exists

a strictly increasing sequence (Nn)∞n=1 ⊂ N such that P(H)
{E}YNn 6= 0 ∀n ∈ N. For each n,
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the number of eigenfunctions of HNn with eigenvalue E output upon Steps (i) and (ii) is

one fewer than those for HΘ.

Thus the approximation of eigenfunctions of HN from Steps (i) and (ii) to those of

HΘ does not fully work for eigenvalues E that satisfy P(H)
{E} δp = 0 but not P(H)

{E}YN = 0 ∀
suff. large N , as it does for eigenvalues E satisfying both P(H)

{E} δp = 0 and P(H)
{E}YN = 0

∀ suff. large N , and also for degenerate (multiplicity ≥ 2) eigenvalues E of H satisfying

P(H)
{E} δp 6= 0.

One could still though consider the possibility of partial success in the approximation

of eigenfunctions of HN from Steps (i) and (ii) to those of HΘ, in the case where E satisfies

P(H)
{E} δp = 0 but not P(H)

{E}YN = 0 ∀ suff. large N . For example, with E being degenerate,

letting (Nn)∞n=1 ⊂ N be the strictly increasing sequence consisting of all N ∈ N with

P(H)
{E}YN 6= 0, we can address this question: does there exist (θn)∞n=1 ⊂ [0, 2π) such that

eiθn
P(H)
{E}YNn

||P(H)
{E}YNn||

(4.142)

converges in Λ
(H)
{E} ⊂ L2(M) as n→∞? If so, call the limit Φ̃E , and take an orthonormal

basis {Ψ̃j : Ej = E} of Λ
(H)
{E} with one of the members being Φ̃E (= Ψ̃l). Although in Step (i)

of the eigenbasis construction for HΘ, it was specified that we take the original eigenbasis

{Ψj}∞j=1 of H, it would be reasonable here to modify the specification by allowing the

orthonormal basis of Λ
(H)
{E} within our chosen eigenbasis of H to be {Ψ̃j : Ej = E} rather

than {Ψj : Ej = E}.
So then, since Λ

(H)
{E} ⊂ Λ

(HΘ)
{E} and Λ

(H)
{E} ⊂ Λ

(HN )
{E} for each N with P(H)

{E}YN = 0, let the

chosen eigenbases of HΘ and of each such HN include {Ψ̃j : Ej = E}. As for each HNn ,

since Λ
(HNn )
{E} is the orthogonal complement of span{P(H)

{E}YNn} in Λ
(H)
{E} , let the orthonormal

basis of Λ
(HNn )
{E} within the chosen eigenbasis of HNn be {ŨNn

E Ψ̃j : Ej = E , j 6= l}, where

ŨNn
E Φ̃E = eiθ

n
min

P(H)
{E}YNn

||P(H)
{E}YNn||

, (4.143)

with

eiθ
n
min =

〈
Φ̃E , YNn

〉
∣∣∣〈Φ̃E , YNn

〉∣∣∣ if
〈

Φ̃E , YNn

〉
6= 0, (4.144)

and

||ŨNn
E − I|| = ||(Ũ

Nn
E − I)Φ̃E || (4.145)

(by analogy with (4.135) and (4.136)). We then have, for each j with Ej = E ,

||(ŨNn
E − I)Ψ̃j|| ≤ ||(ŨNn

E − I)Φ̃E || ≤

∣∣∣∣∣
∣∣∣∣∣eiθn P

(H)
{E}YNn

||P(H)
{E}YNn||

− Φ̃E

∣∣∣∣∣
∣∣∣∣∣ n→∞−−−→ 0. (4.146)
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For each N ∈ N with P(H)
{E}YN = 0, let ŨN

E = I.

What we end up with is this: for each j with Ej = E , ŨN
E Ψ̃j → Ψ̃j as N → ∞.

Now every Ψ̃j with Ej = E belongs to the orthonormal basis of Λ
(HΘ)
{E} within the chosen

eigenbasis of HΘ. However, while each ŨN
E Ψ̃j with Ej = E other than ŨN

E Φ̃E belongs to

the orthonormal basis of Λ
(HN )
{E} for all N ∈ N, ŨN

E Φ̃E only belongs to the orthonormal

basis of Λ
(HN )
{E} when P(H)

{E}YN = 0.

4.4.2 Approximation of New Eigenvalues

Given the definitions of functions R, TY , S, and Tδ in LHS(4.83), (4.91), (4.95) and

(4.102) respectively, define RN , TN , S and Tδ here in exactly the same way respectively,

where we now have HN for each N ∈ N in place of H ′. As before, we may also add a

superscript (M) for some M ∈ N to represent a partial sum (as in e.g. (4.86)).

Lemma 4.4.5. For each E ∈ R\Spec(H), and also for each E ∈ Spec(H) with P(H)
{E}YN =

0 for all sufficiently large N ,

RN(E) :=
∑

j:yNj 6=0

|yNj |2

E − Ej
→ −∞ as N →∞. (4.147)

Proof. Note firstly that by Lemma 2.2.8,

S̃(M)(E) :=
∑

j∈{1,...,M}:Ψj(p) 6=0

|Ψj(p)|2

E − Ej
→ −∞ as M →∞. (4.148)

If E /∈ Spec(H) then clearly S̃(M)(E) is well-defined. If E ∈ Spec(H) with P(H)
{E}YN = 0

for all sufficiently large N , then it also follows that P(H)
{E}δp = 0 so again S̃(M)(E) is well-

defined. Given any L ∈ R, take some ML ∈ N with EML
> E and S̃(ML)(E) ≤ L− 1. It

is also the case then that

R
(ML)
N (E)→ S̃(ML)(E) as N →∞, (4.149)

so take some NL ∈ N for which |R(ML)
N (E)− S̃(ML)(E)| ≤ 1 ∀N ∈ N ∩ [NL,∞). Then

RN(E) ≤ R
(ML)
N (E) ≤ L ∀N ∈ N ∩ [NL,∞). (4.150)

Now define

MΘ := {E ∈ (E1,∞)\{Ej}j∈N :

S(E) = F (Θ), ∃N0 ∈ N s.t. ∀N ∈ N ∩ [N0,∞) P(H)
{E}YN = 0}, (4.151)
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so MΘ is the set of all eigenvalues of HΘ above E1 that solve equation (4.95), except those

that coincide with an eigenvalue E of H for which we fail to have P(H)
{E}YN = 0 for all

sufficiently large N (and of course, for any E ∈ R\Spec(H) and f ∈ L2(M) + span{δp}
we necessarily have P(H)

{E}f = 0). Note that fixing p but varying Θ, only for at most

countably many values of Θ ∈ (0, 2π) will there be a solution of (4.95) that coincides

with an eigenvalue of H. Thus for almost all values of Θ, MΘ will simply be the set of

solutions of (4.95) above E1.

Given some µ ∈ MΘ, let E− and E+ be the two consecutive values in {Ej}j∈N = {E ∈
Spec(H) : P(H)

{E} δp 6= 0} for which µ ∈ (E−, E+). Then choosing some N0 ∈ N for which it

holds that P(H)

{E−}YN 6= 0, P(H)
{µ} YN = 0 and P(H)

{E+}YN 6= 0 ∀N ∈ N ∩ [N0,∞), let EN− and

EN+ for each N ∈ N∩ [N0,∞) be the two consecutive values in {E ∈ Spec(H) : P(H)
{E}YN 6=

0} for which µ ∈ (EN−, EN+). Finally, for each N ∈ N ∩ [N0,∞), let µN be the solution

of (4.83) (i.e. RN(µN) = 1
νN

) lying in the interval (EN−, EN+), so µN is an eigenvalue of

HN . Observe that E− ≤ EN− < EN+ ≤ E+.

Now suppose we can vary the parameter νN ∈ R\{0} for each N , while keeping the

function YN ∈ C∞0 (M◦)\{0} fixed for each N , and also keeping the parameter Θ ∈ (0, 2π)

fixed. If we wish to have µN → µ as N → ∞ for this particular µ ∈ MΘ, this can be

easily achieved by setting νN = 1
RN (µ)

for all sufficiently large N , in which case µN = µ

for sufficiently large N . However, it is obviously in our interest to have µN → µ for more

than just one single µ ∈ MΘ.

Proposition 4.4.6. Given any µ ∈ MΘ, defining E−, E+, EN−, EN+ and µN exactly as

above, it holds that if
1

νN
−RN(µ)→ 0 as N →∞ (4.152)

then µN → µ as N →∞.

Proof. Let M− := max{j ∈ N : Ej < µ} and M+ := min{j ∈ N : Ej > µ}. Take

some (aN)∞N=N0
, (bN)∞N=N0

⊂ (EM− , EM+) with aN < bN for each N . Take also some

c ∈ (EM− ,∞) and N ′0 ∈ N ∩ [N0,∞) for which it holds that bN ≤ c ∀N ∈ N ∩ [N ′0,∞).

Applying the mean value theorem (exactly as done in (4.93)), and remembering that RN

is a stricly decreasing function on every interval where it does not have a singularity,

0 < RN(aN)−RN(bN) = lim
K→∞

(R
(K)
N (aN)−R(K)

N (bN)) = lim
K→∞

T
(K)
N (σKN )(bN − aN)

∀N ∈ N ∩ [N0,∞), (4.153)

where σKN ∈ (aN , bN). Noting that all terms in the sum TN are ≥ 0, and that T
(M−)
N is a

strictly decreasing function on (EM− ,∞), for each N ∈ N∩ [N ′0,∞) and K ∈ N∩ [M−,∞)
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we have

T
(K)
N (σKN ) ≥ T

(M−)
N (σKN ) > T

(M−)
N (c), (4.154)

and thus in the limit as K →∞,

RN(aN)−RN(bN) ≥ T
(M−)
N (c)(bN − aN) ∀N ∈ N ∩ [N ′0,∞). (4.155)

Now T
(M−)
N (c)

N→∞−−−→ T (M−)(c) > 0, so take some L ∈ (0, T (M−)(c)) and N ′′0 ∈ N∩ [N ′0,∞)

for which T
(M−)
N (c) ≥ L ∀N ∈ N ∩ [N ′′0 ,∞). Then

RN(aN)−RN(bN) ≥ L(bN − aN) ∀N ∈ N ∩ [N ′′0 ,∞). (4.156)

So now, suppose it is the case that (4.152) holds. Take some L′ ∈ (0, T (M−)(µ)) and

some (εN)∞N=N0
⊂ (0,min{µ− EM− , EM+ − µ}) with εN

N→∞−−−→ 0 and

εN ≥

∣∣∣ 1
νN
−RN(µ)

∣∣∣
L′

(4.157)

for all sufficiently large N .

With this, first of all take

aN = µ− εN , bN = c = µ, L = L′. (4.158)

Then by (4.156) combined with (4.157),

RN(µ− εN)−RN(µ) ≥ L′εN ≥
1

νN
−RN(µ) ⇒ RN(µ− εN) ≥ 1

νN
(4.159)

for all sufficiently large N .

Next, take

aN = µ, bN = µ+ εN , c ∈ (µ, (T (M−) �(E−,∞))
−1(L′)), L = L′, (4.160)

noting that T (M−) is a strictly decreasing function on the interval (E−,∞), whose image

on this interval is (0,∞). Then, again by (4.156) combined with (4.157),

RN(µ)−RN(µ+ εN) ≥ L′εN ≥ RN(µ)− 1

νN
⇒ RN(µ+ εN) ≤ 1

νN
(4.161)

for all sufficiently large N .

In conclusion, for all sufficiently large N ,

RN(µ− εN) ≥ 1

νN
= RN(µN) ≥ RN(µ+ εN) ⇒ µ− εN ≤ µN ≤ µ+ εN . (4.162)
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Corollary 4.4.7. Keeping (YN)N∈N ⊂ C∞0 (M◦)\{0} and Θ ∈ (0, 2π) fixed, suppose we

can vary (νN)N∈N ⊂ R\{0}. Taking any non-empty set X ⊂ MΘ, it holds that if

RN(µ)−RN(µ′)
N→∞−−−→ 0 ∀µ, µ′ ∈ X (4.163)

then (νN)N∈N can be chosen in such a way that µN
N→∞−−−→ µ ∀µ ∈ X, namely by selecting

any µ ∈ X and imposing (4.152) for that µ.

Proof. Suppose (4.163) holds. Select some µ ∈ X, and set (νN)N∈N in such a way that

(4.152) holds for this particular µ (e.g. νN = 1
RN (µ)

∀ suff. large N). Then given any

µ′ ∈ X, ∣∣∣∣ 1

νN
−RN(µ′)

∣∣∣∣ ≤ ∣∣∣∣ 1

νN
−RN(µ)

∣∣∣∣+ |RN(µ)−RN(µ′)| N→∞−−−→ 0, (4.164)

and so by Proposition 4.4.6, µ′N
N→∞−−−→ µ′.

Now observe that for any µ, µ′ ∈ MΘ, we have S(µ) = S(µ′). Thus

S(µ)− S(µ′) = lim
M→∞

(S̃(M)(µ)− S̃(M)(µ′)) = lim
M→∞

lim
N→∞

(R
(M)
N (µ)−R(M)

N (µ′))

= 0. (4.165)

By comparison, the condition expressed in (4.163) (only now fixing µ, µ′ ∈ MΘ) can be

re-expressed as follows:

lim
N→∞

(RN(µ)−RN(µ′)) = lim
N→∞

lim
M→∞

(R
(M)
N (µ)−R(M)

N (µ′)) = 0. (4.166)

Since (4.165) necessarily holds, we can then arrive at (4.166) if the order of the limits

limM→∞ and limN→∞ in (4.165) can validly be swapped round.

Lemma 4.4.8. Given an N× N array (xmn)m,n∈N ⊂ C with

xmn
n→∞−−−→ ym ∈ C ∀m, xmn

m→∞−−−→ zn ∈ C ∀n, (4.167)

for any a ∈ C the following are equivalent:

(i) limm,n→∞ xmn = a, meaning that ∀ ε > 0 ∃Mε, Nε ∈ N s.t. ∀m ∈ N ∩ [Mε,∞), n ∈
N ∩ [Nε,∞) |xmn − a| ≤ ε,

(ii) ∀ (mk)k∈N, (nk)k∈N ⊂ N with mk
k→∞−−−→∞ and nk

k→∞−−−→∞ it holds that xmknk
k→∞−−−→

a,

(iii) limn→∞ limm→∞ xmn = a and xmn
n→∞−−−→ ym uniformly over m,

119



(iv) limm→∞ limn→∞ xmn = a and xmn
n→∞−−−→ ym uniformly over m,

(v) limm→∞ limn→∞ xmn = a and xmn
m→∞−−−→ zn uniformly over n,

(vi) limn→∞ limm→∞ xmn = a and xmn
m→∞−−−→ zn uniformly over n.

Proof. (i) ⇒ (ii): If (i) holds true, then given any (mk)k∈N, (nk)k∈N ⊂ N with mk
k→∞−−−→∞

and nk
k→∞−−−→∞, for each ε > 0 there exist Mε, Nε, Kε ∈ N such that

(a) ∀m ∈ N ∩ [Mε,∞), n ∈ N ∩ [Nε,∞) |xmn − a| ≤ ε,

(b) ∀ k ∈ N ∩ [Kε,∞) mk ≥Mε and nk ≥ Nε,

and thus |xmknk − a| ≤ ε ∀ k ∈ N ∩ [Kε,∞).

¬(i) ⇒ ¬(ii): Suppose (i) is not true. Then ∃ ε0 > 0 s.t. ∀M,N ∈ N ∃mMN ∈ N ∩
[M,∞), nMN ∈ N ∩ [N,∞) s.t. |xm

MN
n
MN
− a| > ε0. So considering then the

sequence (xm
kk
n
kk

)k∈N, since |xm
kk
n
kk
−a| > ε0 ∀ k ∈ N it follows that xm

kk
n
kk
6k→∞−−−→

a, while mkk ≥ k
k→∞−−−→∞ and nkk ≥ k

k→∞−−−→∞.

(i) ⇒ (iii): Suppose (i) holds true. Then given any ε > 0, for each n ∈ N ∩ [Nε,∞)

it holds that |xmn − a| ≤ ε ∀m ∈ N ∩ [Mε,∞), and thus |zn − a| ≤ ε. Hence

limn→∞ limm→∞ xmn = limn→∞ zn = a. Now note also that for each m ∈ N ∩
[Mε/2,∞) it holds that |xmn−a| ≤ ε

2
∀n ∈ N∩ [Nε/2,∞), and so |ym−a| ≤ ε

2
. Thus

for each m ∈ N∩ [Mε/2,∞), n ∈ N∩ [Nε/2,∞) |xmn−ym| ≤ |xmn−a|+ |a−ym| ≤ ε.

Then for each m ∈ {1, . . . ,Mε/2−1} define N
(m)
ε ∈ N such that |xmn−ym| ≤ ε ∀n ∈

N∩ [N
(m)
ε ,∞), and then take Ñε := max{N (1)

ε , . . . , N
(Mε/2−1)
ε , Nε/2}. It follows then

that |xmn − ym| ≤ ε ∀m ∈ N, n ∈ N∩ [Ñε,∞). Hence xmn
n→∞−−−→ ym uniformly over

m ∈ N.

(iii) ⇒ (iv): Suppose (iii) holds true. Then for each ε > 0 take some N (ε/3) ∈ N for

which |xmN(ε/3) − ym| ≤ ε
3
∀m ∈ N and also |zN(ε/3) − a| ≤ ε

3
. Take also some

M (ε/3) ∈ N for which |xmN(ε/3) − zN(ε/3)| ≤ ε
3
∀m ∈ N ∩ [M (ε/3),∞). Then for each

m ∈ N∩ [M (ε/3),∞), |ym−a| ≤ |ym−xmN(ε/3)|+ |xmN(ε/3)−zN(ε/3)|+ |zN(ε/3)−a| ≤ ε.

Hence limm→∞ limn→∞ xmn = limm→∞ ym = a.

(iv) ⇒ (i): Suppose (iv) holds true. Then for each ε > 0, take some M(ε/2) ∈ N for which

|ym − a| ≤ ε
2
∀m ∈ N ∩ [M(ε/2),∞), and some N(ε/2) ∈ N for which |xmn − ym| ≤

ε
2
∀m ∈ N, n ∈ N ∩ [N(ε/2),∞). Then |xmn − a| ≤ |xmn − ym|+ |ym − a| ≤ ε ∀m ∈

N ∩ [M(ε/2),∞), n ∈ N ∩ [N(ε/2),∞). Hence limm,n→∞ xmn = a.
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(i) ⇒ (v) ⇒ (vi) ⇒ (i) can then be proved in exactly the same way as (i)⇒ (iii)⇒ (iv)

⇒ (i), only swapping round the roles of m and n (but still keeping xmn as xmn

rather than replacing it with xnm).

Lemma 4.4.9. Again, given an N× N array (xmn)m,n∈N ⊂ C with

xmn
n→∞−−−→ ym ∈ C ∀m, xmn

m→∞−−−→ zn ∈ C ∀n, (4.168)

suppose it furthermore holds that

(i) Either |xmn− ym| is non-increasing in n for each m or |xmn− zn| is non-increasing

in m for each n,

(ii) limm→∞ limn→∞ xmn = limn→∞ limm→∞ xmn = a.

Then limm,n→∞ xmn = a.

Proof. Suppose |xmn − ym| is non-increasing in n for each m and limm→∞ limn→∞ xmn =

limn→∞ limm→∞ xmn = a. Then given any ε > 0 take some N (ε/4) ∈ N for which |zN(ε/4) −
a| ≤ ε

4
, and some M (ε/4) ∈ N for which |xmN(ε/4) − zN(ε/4)| ≤ ε

4
∀m ∈ N ∩ [M (ε/4),∞)

and also |ym − a| ≤ ε
4
∀m ∈ N ∩ [M (ε/4),∞). Then for each m ∈ N ∩ [M (ε/4),∞), n ∈

N ∩ [N (ε/4),∞)

|xmn − a| ≤ |xmn − ym|+ |ym − a| ≤ |xmN(ε/4) − ym|+ |ym − a|

≤ |xmN(ε/4) − zN(ε/4)|+ |zN(ε/4) − a|+ 2|ym − a| ≤ ε. (4.169)

Hence limm,n→∞ xmn = a. In order to prove this starting from |xmn − zn| being non-

increasing in m for each n (and again limm→∞ limn→∞ xmn = limn→∞ limm→∞ xmn = a),

simply swap round the roles of m and n.

Corollary 4.4.10. Given (xmn)m,n∈N ⊂ C with (4.167), suppose it is known that

limm→∞ limn→∞ xmn converges or that limn→∞ limm→∞ xmn converges. Then a sufficient

condition for being able to swap round the order of the two limits without changing the

resulting value is that either the convergence of xmn as n → ∞ is uniform over m or

the convergence as m → ∞ is uniform over n. In this case it would also result that this

uniform convergence holds in both of these two directions.

Now suppose it is known not only that limm→∞ limn→∞ xmn converges or that

limn→∞ limm→∞ xmn converges, but it is also known that |xmn − ym| is non-increasing

in n for each m or that |xmn− zn| is non-increasing in m for each n. Then this sufficient
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condition for being able to swap round the order of these limits is also a necessary

condition for this. In fact, for each of the two possible directions of uniform convergence,

uniform convergence in that direction is both sufficient and necessary.

Proof. The first claim follows straightforwardly from the equivalence of (iii) - (vi) in

Lemma 4.4.8. Then for the second claim, where we suppose it is known that

(i) Either |xmn − ym| is non-increasing in n for each m or |xmn − zn| is non-increasing

in m for each n,

(ii) limm→∞ limn→∞ xmn converges or limn→∞ limm→∞ xmn converges,

let a be the value of the limit in (ii) here which we know to be convergent. Anything that

must result from (i) and (ii) in Lemma 4.4.9 would clearly be a necessary condition here

for being able to swap the order of the limits. Thus by Lemma 4.4.9, limm,n→∞ xmn = a

is a necessary condition here, and then by Lemma 4.4.8, uniform convergence of xmn over

m as n → ∞ is a necessary condition. Likewise uniform convergence of xmn over n as

m→∞ is also a necessary condition.

Remark. Regarding the condition that either |xmn − ym| is non-increasing in n for each

m or |xmn − zn| is non-increasing in m for each n, a simple example of this would be the

case where xmn ∈ R and either xmn is non-increasing/non-decreasing in n for each m or

xmn is non-increasing/non-decreasing in m for each n.

So then, taking some µ, µ′ ∈ MΘ with µ < µ′, choose N0 ∈ N so as to satisfy the

specification for N0 given earlier, for both µ and µ′. MΘ again is defined in (4.151). Let

M0 := min{j ∈ N : Ej > µ′}. Then

(i) R
(M)
N (µ)−R(M)

N (µ′)
M→∞−−−−→ RN(µ)−RN(µ′) ∀N ∈ N ∩ [N0,∞),

(ii) R
(M+1)
N (µ)−R(M+1)

N (µ′) = R
(M)
N (µ)−R(M)

N (µ′) +
|yNM+1|

2

µ−EM+1
− |yNM+1|

2

µ′−EM+1

≥ R
(M)
N (µ)−R(M)

N (µ′) ∀M ∈ N ∩ [M0,∞), N ∈ N ∩ [N0,∞),

(iii) R
(M)
N (µ)−R(M)

N (µ′)
N→∞−−−→ S(M)(µ)− S(M)(µ′) ∀M ∈ N,

(iv) limM→∞ limN→∞(R
(M)
N (µ)−R(M)

N (µ′)) = 0.

Hence by Corollary 4.4.10 (with M = M0 and N = N0 in place of m = 1 and n = 1), the

following are equivalent:

(a) limN→∞ limM→∞(R
(M)
N (µ) − R

(M)
N (µ′)) = limN→∞(RN(µ) − RN(µ′)) = 0 (swapping

the order of limits in (iv) above),
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(b) the convergence in (i) above is uniform,

(c) the convergence in (iii) above is uniform.

Proposition 4.4.11. The following are equivalent, provided MΘ contains at least two

elements:

(i) ∃µ, µ′ ∈ MΘ with µ 6= µ′ such that RN(µ)−RN(µ′)
N→∞−−−→ 0,

(ii) RN(µ)−RN(µ′)
N→∞−−−→ 0 ∀µ, µ′ ∈ MΘ,

(iii) ∃E ∈ R s.t.
∑∞

j=M

|yNj |2

(E−Ej)2

M→∞−−−−→ 0 uniformly over N ∈ N,

(iv) ∀E ∈ R
∑∞

j=M

|yNj |2

(E−Ej)2

M→∞−−−−→ 0 uniformly over N ∈ N,

(v) ∃E ∈ R with P(H)
{E}YN = 0 ∀ suff. large N ∈ N s.t. TN(E)

N→∞−−−→ Tδ(E),

(vi) TN(E)
N→∞−−−→ Tδ(E) ∀E ∈ R with P(H)

{E}YN = 0 ∀ suff. large N ∈ N.

Proof. Proving first the equivalence of (i) - (iv), given any µ, µ′ ∈ MΘ with µ 6= µ′,

supposing w.l.o.g. that µ < µ′, RN(µ)−RN(µ′)
N→∞−−−→ 0 if and only if

(RN(µ)−RN(µ′))− (R
(M)
N (µ)−R(M)

N (µ′))
M→∞−−−−→ 0 (4.170)

uniformly over N ∈ N∩ [N0,∞) (N0 being defined as above, given our chosen µ, µ′). For

each M ∈ N ∩ [M0,∞), N ∈ N ∩ [N0,∞),

(RN(µ)−RN(µ′))− (R
(M)
N (µ)−R(M)

N (µ′)) =
∞∑

j=M+1

|yNj |2

µ− Ej
−

∞∑
j=M+1

|yNj |2

µ′ − Ej

= lim
M ′→∞

(µ′ − µ)
M ′∑

j=M+1

|yNj |2

(σMM ′
N − Ej)2

, (4.171)

where σMM ′
N ∈ (µ, µ′). Note also that

M ′∑
j=M+1

|yNj |2

(µ− Ej)2
≤

M ′∑
j=M+1

|yNj |2

(σMM ′
N − Ej)2

≤
M ′∑

j=M+1

|yNj |2

(µ′ − Ej)2
(4.172)

∀M ′ ∈ N ∩ [M + 1,∞), so

(µ′ − µ)
∞∑

j=M+1

|yNj |2

(µ− Ej)2
≤

∞∑
j=M+1

|yNj |2

µ− Ej
−

∞∑
j=M+1

|yNj |2

µ′ − Ej

≤ (µ′ − µ)
∞∑

j=M+1

|yNj |2

(µ′ − Ej)2
. (4.173)
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Thus if (µ′ − µ)
∑∞

j=M+1

|yNj |2

(µ′−Ej)2

M→∞−−−−→ 0 uniformly over N ∈ N ∩ [N0,∞) then so does∑∞
j=M+1

|yNj |2

µ−Ej −
∑∞

j=M+1

|yNj |2

µ′−Ej , and if
∑∞

j=M+1

|yNj |2

µ−Ej −
∑∞

j=M+1

|yNj |2

µ′−Ej
M→∞−−−−→ 0 uniformly

over N ∈ N ∩ [N0,∞) then so does (µ′ − µ)
∑∞

j=M+1

|yNj |2

(µ−Ej)2 .

Note that the statement “(µ′ − µ)
∑∞

j=M+1

|yNj |2

(µ−Ej)2

M→∞−−−−→ 0 uniformly over N ∈

N ∩ [N0,∞)” is equivalent to the simpler statement “
∑∞

j=M

|yNj |2

(µ−Ej)2

M→∞−−−−→ 0 uniformly

over N ∈ N”, and likewise with µ′ in place of µ in “
|yNj |2

(µ−Ej)2 ”. Recall also that∑∞
j=M+1

|yNj |2

µ−Ej −
∑∞

j=M+1

|yNj |2

µ′−Ej
M→∞−−−−→ 0 uniformly over N ∈ N ∩ [N0,∞) if and only

if RN(µ)−RN(µ′)
N→∞−−−→ 0.

Now given any E ∈ R, suppose
∑∞

j=M

|yNj |2

(E−Ej)2

M→∞−−−−→ 0 uniformly over N ∈ N. Then

given any E ′ ∈ R,
(E−Ej)2

(E′−Ej)2 =
(

1 + E−E′
E′−Ej

)2 j→∞−−−→ 1, so taking some C > 1 and MC ∈ N

for which EMC
> max{E,E ′} and

(E−Ej)2

(E′−Ej)2 ≤ C ∀ j ∈ N ∩ [MC ,∞), it holds that

∞∑
j=M

|yNj |2

(E ′ − Ej)2
=

∞∑
j=M

|yNj |2

(E − Ej)2

(E − Ej)2

(E ′ − Ej)2
≤ C

∞∑
j=M

|yNj |2

(E − Ej)2
(4.174)

∀M ∈ N ∩ [MC ,∞), N ∈ N. Thus
∑∞

j=M

|yNj |2

(E′−Ej)2

M→∞−−−−→ 0 uniformly over N ∈ N also.

This proves the equivalence of (iii) and (iv).

So now going back to our µ, µ′ ∈ MΘ, it holds that RN(µ) − RN(µ′)
N→∞−−−→ 0 if

and only if (iii), or equivalently (iv), holds. This likewise holds for any other choice of

µ, µ′ ∈ MΘ with µ 6= µ′. Hence (i) - (iv) are all equivalent, assuming MΘ contains at least

two elements (note though that the proof that (iii) and (iv) are equivalent clearly does

not have any requirement on MΘ).

Now moving on to prove the equivalence of (iii) - (vi), take some E ∈ R for which,

for some N
(E)
0 ∈ N we have P(H)

{E}YN = 0 ∀N ∈ N ∩ [N
(E)
0 ,∞), and so P(H)

{E}δp = 0 also

(note of course that if E /∈ Spec(H) then trivially P(H)
{E}YN = 0 ∀N ∈ N and P(H)

{E}δp = 0).

Then

(a) T
(M)
N (E)

M→∞−−−−→ TN(E) ∀N ∈ N ∩ [N
(E)
0 ,∞),

(b) T
(M)
N (E) is non-decreasing in M for each N ∈ N ∩ [N

(E)
0 ,∞),

(c) T
(M)
N (E)

N→∞−−−→ T
(M)
δ (E) ∀M ∈ N,

(d) limM→∞ limN→∞ T
(M)
N (E) = limM→∞ T

(M)
δ (E) = Tδ(E).

So then by Corollary 4.4.10, limN→∞ limM→∞ T
(M)
N (E) = limN→∞ TN(E) = Tδ(E) if and
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only if T
(M)
N (E)

M→∞−−−−→ TN(E) uniformly over N ∈ N ∩ [N
(E)
0 ,∞), equivalently

TN(E)− T (M)
N (E) =

∞∑
j=M+1

|yNj |2

(E − Ej)2

M→∞−−−−→ 0 (4.175)

uniformly over N ∈ N ∩ [N
(E)
0 ,∞), or more simply

∑∞
j=M

|yNj |2

(E−Ej)2

M→∞−−−−→ 0 uniformly

over N ∈ N. This is then equivalent to (iii)/(iv). Since this likewise holds for any other

choice of E ∈ R with P(H)
{E}YN = 0 ∀ suff. large N ∈ N, it follows that (iii) - (vi) are all

equivalent.

Remark. The equivalence of (iii) - (vi) in Prop. 4.4.11 does not require MΘ to contain

at least two elements.

Proposition 4.4.12. Suppose (YN)∞N=1 ⊂ C∞0 (M◦)\{0} satisfies

(i) yNj
N→∞−−−→ Ψj(p) ∀ j ∈ N,

(ii)
∑∞

j=M

|yNj |2

E2
j

M→∞−−−−→ 0 uniformly over N ∈ N.

Then fixing Θ ∈ (0, 2π), if MΘ 6= ∅ and (νN)∞N=1 ⊂ R\{0} is chosen in such a way that

∃µ ∈ MΘ s.t.
1

νN
−RN(µ)

N→∞−−−→ 0, (4.176)

then (4.176) holds ∀µ ∈ MΘ and µN
N→∞−−−→ µ ∀µ ∈ MΘ. If on the other hand, @µ ∈ MΘ

s.t. (4.176) holds, then @µ ∈ MΘ s.t. µN
N→∞−−−→ µ.

Proof. Clearly requirement (ii) for (YN)∞N=1 here implies statement (iii) in Proposition

4.4.11, thus giving statement (ii) in Prop. 4.4.11 (note that (ii) in Prop. 4.4.11 is

automatic if #MΘ ≤ 1). Hence if ∃µ ∈ MΘ s.t. (4.176) holds then (4.176) holds

∀µ ∈ MΘ, and thus by Proposition 4.4.6, µN
N→∞−−−→ µ ∀µ ∈ MΘ.

Next, suppose (YN)∞N=1 satisfies (i) and (ii) here, and suppose ∃µ ∈ MΘ s.t. µN
N→∞−−−→

µ. Then ∃ (εN)∞N=N0
⊂ (0,∞) with εN

N→∞−−−→ 0 s.t. µN ∈ [µ−εN , µ+εN ] ∀N ∈ N∩[N0,∞),

and so for sufficiently large N ,

RN(µ− εN) ≥ RN(µN) =
1

νN
≥ RN(µ+ εN). (4.177)

Now take some ε > 0 for which [µ − ε, µ + ε] ∩ Spec(H)\{µ} = ∅, take some C >

Tδ (µ− ε) + Tδ (µ+ ε), and then given (iii) ⇒ (vi) in Prop. 4.4.11, take some N ′0 ∈
N∩ [N0,∞) for which εN ≤ ε ∀N ∈ N∩ [N ′0,∞) and TN (µ− ε) + TN (µ+ ε) ≤ C ∀N ∈
N ∩ [N ′0,∞). Then applying (4.94),

RN(µ− εN)−RN(µ+ εN) ≤ 2εN(TN (µ− ε) + TN (µ+ ε))

≤ 2CεN ∀N ∈ N ∩ [N ′0,∞). (4.178)
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Hence ∣∣∣∣ 1

νN
−RN(µ)

∣∣∣∣ ≤ RN(µ− εN)−RN(µ+ εN)
N→∞−−−→ 0. (4.179)

From this it is concluded that if @µ ∈ MΘ s.t. (4.176) holds then @µ ∈ MΘ s.t. µN
N→∞−−−→

µ.

Observe that in light of Lemma 4.4.5, if the sequence (νN) satisfies (4.176) then νN < 0

for all suff. large N and νN → 0. This matches earlier observations on νN in (4.11), (4.48)

and (4.52), when reviewing [Zor80], [AK00] and [GN12] respectively. Again, the setting

in (4.11) and (4.48) is R3, and the setting in (4.48) is R2. The setting here however is

the two-dimensional compact manifold M. This observation also further supports the

suggestion in §2.2.4 that the delta potential intuitively speaking has negative infinitesimal

strength.

Lemma 4.4.13.

|x+ y|2 ≤ 2(|x|2 + |y|2) ∀x, y ∈ C. (4.180)

Proof.

|x+ y|2 ≤ (|x|+ |y|)2 ≤ (|x|+ |y|)2 + (|x| − |y|)2

= |x|2 + 2|x||y|+ |y|2 + |x|2 − 2|x||y|+ |y|2 = 2(|x|2 + |y|2). (4.181)

Lemma 4.4.14. ∃ (YN)∞N=1 ⊂ C∞0 (M◦)\{0} such that both (i) and (ii) in Proposition

4.4.12 hold.

Proof. Proving firstly that ∃ (ỸN)∞N=1 ⊂ L2(M) such that both (i) and (ii) hold, take the

example ỸN =
∑N

j=1 Ψj(p)Ψj, just like in the proof of Lemma 4.4.1. This clearly satisfies

(i). To show that it also satisfies (ii), note that clearly |ỹNj |2 ≤ |Ψj(p)|2 ∀ j,N ∈ N, and

so for every N ∈ N,
∞∑
j=M

|ỹNj |2

E2
j

≤
∞∑
j=M

|Ψj(p)|2

E2
j

M→∞−−−−→ 0, (4.182)

since
∑∞

j=M
|Ψj(p)|2
E2
j

is a convergent sum for any M ∈ N with EM > 0. This proves that

(ii) is also satisfied.

Now given any (ỸN)∞N=1 ⊂ L2(M) for which both (i) and (ii) hold, we can then take

some (YN)∞N=1 ⊂ C∞0 (M◦)\{0} for which ||YN − ỸN ||
N→∞−−−→ 0, in which case (YN)∞N=1
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also satisfies (i), as demonstrated in the proof of Lemma 4.4.1. It remains then to show

that (YN)∞N=1 also satisfies (ii).

Let Y ′N := YN − ỸN . Then yNj = ỹNj + y′Nj for each j,N ∈ N, and so by Lemma 4.4.13,

|yNj |2 ≤ 2|ỹNj |2 + 2|y′Nj |2. Thus

∞∑
j=M

|yNj |2

E2
j

≤ 2
∞∑
j=M

|ỹNj |2

E2
j

+ 2
∞∑
j=M

|y′Nj |2

E2
j

(4.183)

for each N ∈ N and M ∈ N with EM > 0. For each ε > 0 we can take some M̃ε/4 ∈ N for

which
∞∑

j=M̃ε/4

|ỹNj |2

E2
j

≤ ε

4
∀N ∈ N. (4.184)

We can also take some N ′ε/4 ∈ N for which ||Y ′N ||2 ≤ ε
4
∀N ∈ N ∩ [N ′ε/4,∞). It then

follows that for each N ∈ N ∩ [N ′ε/4,∞) and M ∈ N with EM ≥ 1,

∞∑
j=M

|y′Nj |2

E2
j

≤
∞∑
j=M

|y′Nj |2 ≤ ||Y ′N ||2 ≤
ε

4
. (4.185)

If N ′ε/4 ≥ 2 then for each N ∈ {1, . . . , N ′ε/4 − 1} we can take some M ′(N)
ε/4 ∈ N for which∑∞

j=M ′
(N)
ε/4

|y′Nj |2

E2
j
≤ ε

4
. Then taking some M ′

ε/4 ∈ N with M ′
ε/4 ≥ maxN∈{1,...,N ′

ε/4
−1}M

′(N)
ε/4 if

N ′ε/4 ≥ 2 and EM ′
ε/4
≥ 1, it follows that

∞∑
j=M ′

ε/4

|y′Nj |2

E2
j

≤ ε

4
∀N ∈ N. (4.186)

Finally, letting Mε := max{M̃ε/4,M
′
ε/4}, it follows from (4.183), (4.184) and (4.186) that

∞∑
j=Mε

|yNj |2

E2
j

≤ ε ∀N ∈ N. (4.187)

Hence (ii) is satisfied by (YN)∞N=1.

Now we may wish to bring into this discussion consideration of the following condition

on (YN)∞N=1:

〈φ, YN〉
N→∞−−−→ φ(p) ∀φ ∈ Dom(H). (4.188)

Note that this is clearly stronger than the condition yNj
N→∞−−−→ Ψj(p) ∀ j ∈ N, since

yNj = 〈Ψj, YN〉.

Lemma 4.4.15. If (YN)∞N=1 ⊂ C∞0 (M◦)\{0} satisfies both (i) and (ii) in Proposition

4.4.12 then (4.188) is also satisfied.
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Proof. Let φ =
∑∞

j=1 ajΨj ∈ Dom(H). Then

〈φ, YN〉 = lim
M→∞

M∑
j=1

ajyNj , (4.189)

and by Corollary 2.2.2,

φ(p) = lim
M→∞

M∑
j=1

ajΨj(p) = lim
M→∞

lim
N→∞

M∑
j=1

ajyNj . (4.190)

Thus we wish to obtain

lim
N→∞

lim
M→∞

M∑
j=1

ajyNj = lim
M→∞

lim
N→∞

M∑
j=1

ajyNj , (4.191)

which by Corollary 4.4.10, will hold if

∞∑
j=M

ajyNj
M→∞−−−−→
unif.

0. (4.192)

Now observe that by the Cauchy-Schwartz inequality, together with Lemma 2.1.1,∣∣∣∣∣
∞∑
j=M

ajyNj

∣∣∣∣∣ =

∣∣∣∣∣
∞∑
j=M

(Ejaj)

(
yNj
Ej

)∣∣∣∣∣ ≤
√√√√( ∞∑

j=M

E2
j |aj|2

)(
∞∑

k=M

|yNk |2
E2
k

)
<∞. (4.193)

With
∑∞

k=M

|yNk |
2

E2
k

M→∞−−−−→ 0 uniformly over N , it follows that RHS(4.193)
M→∞−−−−→ 0

uniformly over N , and hence (4.192) holds.

4.4.3 Approximation of New Eigenfunctions

Throughout §4.4.3 it shall be assumed that (YN)∞N=1 ⊂ C∞0 (M◦)\{0} satisfies conditions

(i) and (ii) in Proposition 4.4.12, MΘ 6= ∅ and ∃µ ∈ MΘ for which (4.176) holds, in which

case (4.176) holds ∀µ ∈ MΘ and µN
N→∞−−−→ µ ∀µ ∈ MΘ.

For each µ ∈ MΘ, with µ being an eigenvalue of HΘ, it has an associated eigenfunction

ψδµ :=
∑
j:Ej 6=µ

Ψj(p)

µ− Ej
Ψj. (4.194)

Likewise µN is an eigenvalue of HN for each N ∈ N ∩ [N0,∞), with corresponding

eigenfunction

ψNµN :=
∑

j:Ej 6=µN

yNj
µN − Ej

Ψj. (4.195)
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Let ψ̂δµ and ψ̂NµN be the respective normalisations of these eigenfunctions.

Note that since µN
N→∞−−−→ µ, we can take some N ′0 ∈ N ∩ [N0,∞) for which ∀N ∈

N ∩ [N ′0,∞) we have [µN , µ) ∩ Spec(H) = ∅ if µN < µ, (µ, µN ] ∩ Spec(H) = ∅ if µN > µ.

Note also then that for N ∈ N ∩ [N ′0,∞), we can replace the appearance of “
∑

j:Ej 6=µN”

in (4.195) with “
∑

j:Ej 6=µ”, since every Ej 6= µ is also not equal to µN , and for any j with

Ej = µ we have yNj = 0.

Proposition 4.4.16. For each µ ∈ MΘ,

||ψNµN − ψ
δ
µ||

N→∞−−−→ 0. (4.196)

Proof. Let

UMN :=
∑

j∈{1,...,M}:Ej 6=µ

∣∣∣∣∣ yNj
µN − Ej

− Ψj(p)

µ− Ej

∣∣∣∣∣
2

∀M ∈ N, N ∈ N ∩ [N ′0,∞). (4.197)

Then

(i) UMN
M→∞−−−−→ ||ψNµN − ψ

δ
µ||2 ∀N ∈ N ∩ [N ′0,∞),

(ii) UMN is non-decreasing in M for each N ∈ N ∩ [N ′0,∞),

(iii) UMN
N→∞−−−→ 0 ∀M ∈ N,

(iv) so then limM→∞ limN→∞ UMN = 0.

Hence by Corollary 4.4.10, ||ψNµN − ψ
δ
µ||2

N→∞−−−→ 0 if and only if UMN
M→∞−−−−→ ||ψNµN − ψ

δ
µ||2

uniformly over N ∈ N ∩ [N ′0,∞), equivalently

∞∑
j=M

∣∣∣∣∣ yNj
µN − Ej

− Ψj(p)

µ− Ej

∣∣∣∣∣
2

M→∞−−−−→ 0 (4.198)

uniformly over N ∈ N ∩ [N ′0,∞).

Now take some ε > 0 for which [µ − ε, µ + ε] ∩ Spec(H)\{µ} = ∅, and some Nε ∈
N ∩ [N ′0,∞) for which |µN − µ| ≤ ε ∀N ∈ N ∩ [Nε,∞). Then for each N ∈ N ∩ [Nε,∞)

and j ∈ N with Ej > µ we have by Lemma 4.4.13,∣∣∣∣∣ yNj
µN − Ej

− Ψj(p)

µ− Ej

∣∣∣∣∣
2

≤ 2

∣∣∣∣∣ yNj
µ− Ej

− Ψj(p)

µ− Ej

∣∣∣∣∣
2

+ 2

∣∣∣∣∣ yNj
µN − Ej

−
yNj

µ− Ej

∣∣∣∣∣
2

≤ 4
|yNj |2

(µ− Ej)2
+ 4
|Ψj(p)|2

(µ− Ej)2
+ 2|yNj |2

∣∣∣∣ 1

µN − Ej
− 1

µ− Ej

∣∣∣∣2 . (4.199)

129



Furthermore by the mean value theorem,∣∣∣∣ 1

µN − Ej
− 1

µ− Ej

∣∣∣∣2 =

∣∣∣∣− µN − µ
(σNj − Ej)2

∣∣∣∣2 =
|µN − µ|2

(σNj − Ej)4
≤ ε2

(µ+ ε− Ej)4
. (4.200)

Hence for each N ∈ N ∩ [Nε,∞) and M ∈ N with EM > µ,

∞∑
j=M

∣∣∣∣∣ yNj
µN − Ej

− Ψj(p)

µ− Ej

∣∣∣∣∣
2

≤ 4
∞∑
j=M

|yNj |2

(µ− Ej)2
+ 4

∞∑
j=M

|Ψj(p)|2

(µ− Ej)2

+2ε2
∞∑
j=M

|yNj |2

(µ+ ε− Ej)4
. (4.201)

In RHS(4.201), the first term converges to zero as M → ∞ uniformly over N ∈ N ∩
[Nε,∞), by (iii) ⇒ (iv) in Proposition 4.4.11. The second term is independent of N ,

and so being a convergent sum for each M , it follows trivially that it converges to zero

as M → ∞ uniformly over N ∈ N ∩ [Nε,∞). The third term also converges to zero as

M → ∞ uniformly over N ∈ N ∩ [Nε,∞), because
∑∞

j=M

|yNj |2

(µ+ε−Ej)4 ≤
∑∞

j=M

|yNj |2

(µ+ε−Ej)2

when EM ≥ µ + ε + 1, and
∑∞

j=M

|yNj |2

(µ+ε−Ej)2

M→∞−−−−→ 0 uniformly over N by (iii) ⇒ (iv) in

Proposition 4.4.11.

Hence LHS(4.201) converges to zero as M →∞ uniformly over N ∈ N∩ [Nε,∞), from

which it follows immediately that LHS(4.201) converges to zero as M → ∞ uniformly

also over N ∈ N ∩ [N ′0,∞). Thus ||ψNµN − ψ
δ
µ||

N→∞−−−→ 0.

Lemma 4.4.17. For each µ ∈ MΘ,

TN(µN)
N→∞−−−→ Tδ(µ). (4.202)

Proof. Firstly, TN(µ)−Tδ(µ)
N→∞−−−→ 0 by (iii)⇒ (vi) in Proposition 4.4.11. We then wish

to show that TN(µN)− TN(µ)
N→∞−−−→ 0.

By the mean value theorem,

|TN(µN)− TN(µ)| =

∣∣∣∣∣∣ lim
M→∞

 ∑
j∈{1,...,M}:Ej 6=µ

|yNj |2

(µN − Ej)2
−

∑
j∈{1,...,M}:Ej 6=µ

|yNj |2

(µ− Ej)2

∣∣∣∣∣∣
=

∣∣∣∣∣∣−2(µN − µ) lim
M→∞

∑
j∈{1,...,M}:Ej 6=µ

|yNj |2

(σ
(M)
N − Ej)3

∣∣∣∣∣∣
= 2|µN − µ| lim

M→∞

∣∣∣∣∣∣
∑

j∈{1,...,M}:Ej 6=µ

|yNj |2

(σ
(M)
N − Ej)3

∣∣∣∣∣∣
∀N ∈ N ∩ [N ′0,∞). (4.203)
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Let

WN(E) :=
∑

j:yNj 6=0

|yNj |2

(E − Ej)3
, W

(M)
N (E) :=

∑
j∈{1,...,M}:yNj 6=0

|yNj |2

(E − Ej)3
. (4.204)

Like RN and TN , WN(E) is a convergent sum for each E ∈ R\{E ∈ Spec(H) : P(H)
{E}YN 6=

0}.
Given any compact interval I with I ∩ {E ∈ Spec(H) : P(H)

{E}YN 6= 0} = ∅, with M

being sufficiently large that {j ∈ {1, . . . ,M} : yNj 6= 0} 6= ∅, W (M)
N is a smooth, strictly

decreasing function on I. Thus |W (M)
N | is either everywhere decreasing on I, everywhere

increasing on I or decreasing to the left of some c ∈ I◦ and increasing to the right of c.

In all three of these cases, the maximum of |W (M)
N | on I is clearly at an end-point of I.

More precisely, letting a be the left end-point and b be the right end-point, |W (M)
N |

has a maximum on I only at a if W
(M)
N (a) +W

(M)
N (b) > 0, at both a and b if W

(M)
N (a) +

W
(M)
N (b) = 0, and only at b if W

(M)
N (a) + W

(M)
N (b) < 0. To see this, remembering that

W
(M)
N (a) > W

(M)
N (b), if W

(M)
N (a) + W

(M)
N (b) > 0 then W

(M)
N (a) > −W (M)

N (b) as well

as W
(M)
N (a) > W

(M)
N (b), so |W (M)

N (a)| > |W (M)
N (b)|. If W

(M)
N (a) + W

(M)
N (b) = 0 then

W
(M)
N (a) = −W (M)

N (b), so |W (M)
N (a)| = |W (M)

N (b)|. If W
(M)
N (a) + W

(M)
N (b) < 0 then

W
(M)
N (b) < −W (M)

N (a) as well as W
(M)
N (b) < W

(M)
N (a), so |W (M)

N (b)| > |W (M)
N (a)|.

As M increases, when EM > b, W
(M)
N (a) + W

(M)
N (b) is non-increasing, and converges

to WN(a) +WN(b). Thus if WN(a) +WN(b) ≥ 0 then |W (M)
N | has a maximum on I at a

for all sufficiently large M , and if WN(a) + WN(b) < 0 then |W (M)
N | has a maximum on

I at b for all sufficiently large M .

Now as before, take some ε > 0 for which [µ− ε, µ+ ε]∩ Spec(H)\{µ} = ∅, and some

Nε ∈ N∩[N ′0,∞) for which |µN−µ| ≤ ε ∀N ∈ N∩[Nε,∞). Then for each N ∈ N∩[Nε,∞),

taking ηN = 1 if WN(µ− ε) +WN(µ+ ε) < 0 and ηN = −1 if WN(µ− ε) +WN(µ+ ε) ≥ 0,

|W (M)
N (σ

(M)
N )| ≤ |W (M)

N (µ+ ηNε)| ∀ s.l. M ∈ N
M→∞
===⇒
(4.203)

|TN(µN)− TN(µ)| ≤ 2|µN − µ||WN(µ+ ηNε)|. (4.205)

Now for each E ∈ R and N ∈ N we have

−
|yNj |2

(E − Ej)2
≤

|yNj |2

(E − Ej)3
≤ 0 ∀ j ∈ N with Ej ≥ E + 1 ⇒∣∣∣∣∣

∞∑
j=M

|yNj |2

(E − Ej)3

∣∣∣∣∣ =
∞∑
j=M

|yNj |2

|E − Ej|3
≤

∞∑
j=M

|yNj |2

(E − Ej)2
∀M ∈ N with EM ≥ E + 1. (4.206)

It thus follows from the uniform convergence over N of
∑∞

j=M

|yNj |2

(E−Ej)2 to zero as M →∞

that
∑∞

j=M

|yNj |2

(E−Ej)3 likewise converges to zero as M → ∞ uniformly over N . Note that
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(4.206) also holds if |yNj |2 is replaced with |Ψj(p)|2, and thus

Wδ(E) :=
∑

j:Ψj(p)6=0

|Ψj(p)|2

(E − Ej)3
(4.207)

is a convergent sum for each E ∈ R\{Ej}∞j=1. Then, by the same argument as the proof

of (iv) ⇒ (vi) in Prop. 4.4.11, it follows that WN(E)
N→∞−−−→ Wδ(E) ∀E ∈ R with

P(H)
{E}YN = 0 ∀ suff. large N .

So now taking some C > max{|Wδ(µ− ε)|, |Wδ(µ + ε)|}, it follows from (4.205) that

for sufficiently large N ,

|TN(µN)− TN(µ)| ≤ 2C|µN − µ| N→∞−−−→ 0. (4.208)

Finally then,

|TN(µN)− Tδ(µ)| ≤ |TN(µN)− TN(µ)|+ |TN(µ)− Tδ(µ)| N→∞−−−→ 0. (4.209)

Proposition 4.4.18. For each µ ∈ MΘ,

||ψ̂NµN − ψ̂
δ
µ||

N→∞−−−→ 0. (4.210)

Proof. For each N ∈ N ∩ [N ′0,∞),

||ψ̂NµN − ψ̂
δ
µ||2 =

∑
j:Ej 6=µ

∣∣∣∣∣∣
(

yNj
µN−Ej

)
√
TN(µN)

−

(
Ψj(p)

µ−Ej

)
√
Tδ(µ)

∣∣∣∣∣∣
2

. (4.211)

For each j with Ej 6= µ, by Lemma 4.4.13,∣∣∣∣∣∣
(

yNj
µN−Ej

)
√
TN(µN)

−

(
Ψj(p)

µ−Ej

)
√
Tδ(µ)

∣∣∣∣∣∣
2

≤ 2

∣∣∣∣∣∣
(

yNj
µN−Ej

)
√
Tδ(µ)

−

(
Ψj(p)

µ−Ej

)
√
Tδ(µ)

∣∣∣∣∣∣
2

+ 2

∣∣∣∣∣∣
(

yNj
µN−Ej

)
√
TN(µN)

−

(
yNj

µN−Ej

)
√
Tδ(µ)

∣∣∣∣∣∣
2

=
2

Tδ(µ)

∣∣∣∣∣ yNj
µN − Ej

− Ψj(p)

µ− Ej

∣∣∣∣∣
2

+ 2
|yNj |2

(µN − Ej)2

∣∣∣∣∣ 1√
TN(µN)

− 1√
Tδ(µ)

∣∣∣∣∣
2

. (4.212)

Then summing over all j with Ej 6= µ,

||ψ̂NµN − ψ̂
δ
µ||2 ≤

2

Tδ(µ)
||ψNµN − ψ

δ
µ||2 + 2

∣∣∣∣∣1−
√
TN(µN)

Tδ(µ)

∣∣∣∣∣
2

. (4.213)

In RHS(4.213), as N → ∞ the first term tends to zero by Proposition 4.4.16 and the

second term tends to zero by Lemma 4.4.17.
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4.4.4 Convergence of All Eigenvalues within an Interval and

Corresponding Eigenfunctions

Theorem 4.4.19. Given the operator HΘ for some Θ ∈ (0, 2π), take a sequence of

operators HN = H+νN 〈·, YN〉YN , with (YN)∞N=1 ⊂ C∞0 (M◦)\{0} and (νN)∞N=1 ⊂ R\{0},
for which the following are satisfied:

(i) yNj := 〈YN ,Ψj〉
N→∞−−−→ Ψj(p) ∀ j ∈ N,

(ii)
∑∞

j=M

|yNj |2

E2
j

M→∞−−−−→ 0 uniformly over N ∈ N,

(iii) MΘ 6= ∅ and ∃µ ∈ MΘ s.t. 1
νN
−RN(µ)

N→∞−−−→ 0.

Then there exists an orthonormal eigenbasis of HΘ and of each HN such that for any

K,L ∈ N with K ≤ L satisfying

(∗) ∀ E ∈ Spec(H) ∩ [EK , EL] if P(H)
{E} δp = 0 then P(H)

{E}YN = 0 for all suff. large N ,

we obtain the following:

Labelling the functions in the HΘ eigenbasis with eigenvalue in [EK , EL] as

{φδ1, . . . , φδn}, and labelling the corresponding eigenvalues {λδ1, . . . , λδn} ⊂ [EK , EL],

the same can then be done with HN for each suff. large N , having eigenfunctions

{φN1 , . . . , φNn } and eigenvalues {λN1 , . . . , λNn } ⊂ [EK , EL], in such a way that

λNk
N→∞−−−→ λδk, φNk

N→∞−−−→
L2

φδk ∀ k ∈ {1, . . . , n}. (4.214)

Proof. Assuming (i) - (iii) here are satisfied, for the eigenbasis of HΘ follow the

construction given in §4.3.2, and for the eigenbasis of HN follow the construction given

in §4.3.1, only in the case of HN , add the following requirements into Step (i) of the

construction:

(a) For each E ∈ Spec(H) with both P(H)
{E}YN 6= 0 and P(H)

{E} δp 6= 0, take the orthonormal

basis of Λ
(H)
E to be {UN

E Ψj : Ej = E}, where UN
E is some chosen unitary operator on

Λ
(H)
E satisfying

UN
E Ψl ∈ span{P(H)

{E}YN}, ||UN
E − I|| =

√√√√2

(
1− |yNl |
||P(H)
{E}YN ||

)
, (4.215)

with Ψl being the member of the original basis of Λ
(H)
E for which Ψl(p) 6= 0. Such a

unitary operator exists according to the arguments given in §4.4.1.
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(b) For each E ∈ Spec(H) with P(H)
{E}YN = 0, take the orthonormal basis of Λ

(H)
E to be

the original one, namely {Ψj : Ej = E}.

Observe that since yNj
N→∞−−−→ Ψj(p) ∀ j ∈ N, it therefore follows that for each E ∈ Spec(H)

for which P(H)
{E} δp 6= 0, it also holds that P(H)

{E}YN 6= 0 for all suff. large N . Now take an

interval [EK , EL] for which it also holds that for each E ∈ Spec(H) ∩ [EK , EL] with

P(H)
{E} δp = 0 we have P(H)

{E}YN = 0 for all suff. large N . Then we can take some N0 ∈ N
for which, for each E ∈ Spec(H) ∩ [EK , EL], we have either P(H)

{E} δp 6= 0 and P(H)
{E}YN 6=

0 ∀N ∈ N ∩ [N0,∞), or P(H)
{E} δp = 0 and P(H)

{E}YN = 0 ∀N ∈ N ∩ [N0,∞).

Now partitioning the interval [EK , EL] into the following sets - {EK}, {EK+1},
. . . , {EL}, (EK , EK+1), (EK+1, EK+2), . . . , (EL−1, EL) - for each Ek ∈ [EK , EL] the

multiplicity of Ek as an eigenvalue of HΘ is one less than its multiplicity as an eigenvalue

of H, and the same holds with Ek as an eigenvalue of HN for each N ∈ N ∩ [N0,∞).

As discussed in §4.4.1, provided Ek is indeed an eigenvalue of HΘ (which will be so if

and only if Ek as an eigenvalue of H is not simple), ||UN
Ek
− I|| N→∞−−−→ 0, and so the HN

eigenbasis members in Λ
(HN )
Ek

will converge to the HΘ eigenbasis members in Λ
(HΘ)
Ek

as

N →∞.

For each (Ek, Ek+1) ⊂ [EK , EL], every Ψj with Ej ∈ (Ek, Ek+1) will be in the eigenbasis

of HΘ and of HN for each N ∈ N ∩ [N0,∞), with eigenvalue Ej. On top of this, HΘ will

have one more eigenbasis member with eigenvalue in (Ek, Ek+1). This eigenvalue (call it

µ) will be in MΘ, and the eigenfunction will be ψ̂δµ (the normalisation of ψδµ as defined in

(4.97) and (4.194)). Likewise HN will have one more eigenbasis member (namely ψ̂NµN )

with eigenvalue (namely µN) in (Ek, Ek+1) for each N ∈ N ∩ [N0,∞). By Proposition

4.4.12, µN
N→∞−−−→ µ, and by Proposition 4.4.18, ψ̂NµN

N→∞−−−→
L2

ψ̂δµ.

Remarks. (a) Again, MΘ is a subset of the set of eigenvalues of HΘ, defined in (4.151).

(b) The set of eigenfunctions {φδ1, . . . , φδn} of HΘ with eigenvalue in [EK , EL] will be

non-empty unless EK = EL and EK is a simple eigenvalue of H.

(c) It is not required that the eigenvalues {λN1 , . . . , λNn } ⊂ [EK , EL] of HN necessarily be

numbered in increasing order.

(d) Recall from Lemma 4.4.15 that with (YN) satisfying (i) and (ii) here, it follows that

〈φ, YN〉
N→∞−−−→ φ(p) ∀φ ∈ Dom(H). (4.216)

This parallels (4.45) in the review of [Zor80].
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(e) Recall that with (νN) satisfying (iii) here, it follows from Lemma 4.4.5 that νN < 0

for all suff. large N and νN → 0. Again this matches earlier observations on νN in

(4.11), (4.48) and (4.52), when reviewing [Zor80], [AK00] and [GN12] respectively,

with (4.11) and (4.48) set in R3 and (4.48) set in R2.

If wishing to apply the above theorem in the study of high-energy limits, it may then

be useful to address the question of whether ∃ (YN)∞N=1 ⊂ C∞0 (M◦)\{0} which as well as

satisfying conditions (i) and (ii) in the statement of the above theorem, also satisfies the

following:

∃ J ∈ N s.t. ∀ E ∈ Spec(H) ∩ (EJ ,∞)\{Ej}∞j=J ∃N
(E)
0 ∈ N s.t.

∀N ∈ N ∩ [N
(E)
0 ,∞) P(H)

E YN = 0. (4.217)

If this is satisfied then all solutions of the equation S(E) = F (Θ) above EJ are contained

in MΘ, so MΘ 6= ∅, and thus (νN)∞N=1 can be chosen so as to satisfy condition (iii) in

the statement of Thm. 4.4.19. Furthermore, for every choice of K,L ∈ N ∩ [J,∞) with

K ≤ L the condition within Thm. 4.4.19 that “∀ E ∈ Spec(H) ∩ [EK , EL] if P(H)
{E} δp = 0

then P(H)
{E}YN = 0 for all suff. large N” will be satisfied.

It could be even more useful though if the following stronger condition is satisfied:

∃ J ∈ N s.t. ∀ E ∈ {Ej}∞j=J ∀N ∈ N P(H)
{E}YN 6= 0, (4.218)

∀ E ∈ Spec(H) ∩ (EJ ,∞)\{Ej}∞j=J ∀N ∈ N P(H)
{E}YN = 0. (4.219)

Proposition 4.4.20. If M is without boundary then ∃ (YN)∞N=1 ⊂ C∞0 (M◦)\{0} =

C∞(M)\{0} such that the following are satisfied:

(i) yNj
N→∞−−−→ Ψj(p) ∀ j ∈ N,

(ii)
∑∞

j=M

|yNj |2

E2
j

M→∞−−−−→ 0 uniformly over N ∈ N,

(iii) ∀ j,N ∈ N it holds that yNj = 0 if and only if Ψj(p) = 0.

Proof. Try

YN =
N∑
j=1

Ψj(p)Ψj +
∞∑

j=N+1

e−EjΨj(p)Ψj. (4.220)

Firstly by Corollary 2.1.2, we have YN ∈ C∞(M) if

∞∑
j=1

Enj e−2Ej |Ψj(p)|2 <∞ ∀n ∈ N ∪ {0}. (4.221)
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By Lemma 2.1.7, sufficient for (4.221) to hold is that for every n ∈ N∪{0}, the following

converge:

lim
s→∞

sne−2sNp(s),

∫ ∞
0

(ntn−1 − 2tn)e−2tNp(t) dt. (4.222)

Via Weyl’s law (Lemma 2.1.5 or Corollary 2.1.6), it can then be shown from standard

mathematics that these indeed converge, and thus YN ∈ C∞(M) for every N ∈ N (and

clearly YN 6= 0).

Next, it is clear that statements (i) and (iii) are satisfied. Observe also that for every

N ∈ N,
∞∑
j=M

|yNj |2

E2
j

≤
∞∑
j=M

|Ψj(p)|2

E2
j

M→∞−−−−→ 0 (4.223)

by Lemma 2.2.5, and thus statement (ii) is also satisfied.

Observe that statement (iii) within the statement of the above proposition is stronger

than (4.218), (4.219).

We shall now suppose for the small remainder of this Chapter that we are at liberty

to vary the positioning onM◦ of the point p at which the delta potential is concentrated.

By allowing p ∈M◦ to vary, this obviously will not affect Spec(H) = {Ej}∞j=1, but it may

nevertheless affect {Ej}∞j=1 = {E ∈ Spec(H) : P(H)
{E} δp :=

∑
j:Ej=E Ψj(p)Ψj 6= 0}.

In either case of M being with or without boundary, we have the following:

Lemma 4.4.21. Given any eigenfunction u of H, the nodal set Nu of u on M◦, defined

as Nu := {x ∈M◦ : u(x) = 0}, has zero (2D area) measure.

Proof. According to [DF90], the nodal set of a real eigenfunction is the union of a 1-

dimensional manifold with a finite set of “singular” points, and this 1D manifold has

finite 1D measure. It obviously follows then that the 2D measure of this nodal set is zero.

Now if u is an eigenfunction of H then so is u, having the same eigenvalue, and thus so

are the real and imaginary parts of u. Since NRe(u) and NIm(u) are zero measure sets, it

follows that Nu = NRe(u) ∩NIm(u) is a zero measure set.

Corollary 4.4.22. Concerning the selection of the point p ∈ M◦ at which to place the

point scatterer, there is a full measure subset of M◦ for which, if p is taken to lie in this

subset, then P(H)
{E} δp 6= 0 ∀ E ∈ Spec(H), or in other words, Spec(H) = {Ej}j∈N.

Proof. For each E ∈ Spec(H), take an eigenfunction uE ∈ Λ
(H)
E \{0}. Let N :=⋃

E∈SpecNuE ⊂ M◦. Then by countable additivity of measure, N is a zero measure set,

and soM◦\N is a full measure set inM. If p is then selected to be contained inM◦\N ,

it follows that uE(p) 6= 0 ∀ E ∈ Spec(H), and thus P(H)
E δp 6= 0 ∀ E ∈ Spec(H).

136



With P(H)
{E} δp 6= 0 ∀ E ∈ Spec(H), (4.217) is automatically satisfied.
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Chapter 5

Equidistribution in Position Space

5.1 Systems where Work has Already Been Done

5.1.1 Classical Behaviour Leading to Position Space

Equidistribution in the Unperturbed System

Concerning the unperturbed system, the Quantum Ergodicity Theorem states that if

the classical dynamical system is ergodic, then the quantum system is quantum ergodic

(proved in [Sni74], [Ver85] and [Zel87] for the boundaryless case; [GL93] and [ZZ96] for

the case with boundary).

A set V ⊂ S∗M (for which we’ll say every point in V , if taken as an initial state,

gives rise to a fully determined trajectory) is invariant under the classical flow if for every

(x, ξ) ∈ V , the whole trajectory stemming from (x, ξ) as an initial state is contained

within V , i.e. Φt(x, ξ) ∈ V ∀ t ∈ R, equivalently Φt(V ) = V ∀ t ∈ R (noting that

with the dynamical system being autonomous, if every trajectory which is in V at time

t = 0 remains in V for all time, then every trajectory which is in V at any moment in

time remains in V for all time). The classical system is then ergodic if every invariant

measurable subset of S∗M has either zero measure or full measure.

The quantum system is quantum ergodic for a given choice of orthonormal eigenbasis

of H (arranging the eigenbasis members in order of non-decreasing eigenvalue), if this

eigenbasis sequence has a density-one subsequence which equidistributes (in phase space).

Equidistribution (that is, phase space equidistribution) is a certain type of limiting

behaviour (see for example, the Theorem in [ZZ96]), which in particular implies position

space equidistribution. A subsequence {Ψjn}∞n=1 equidistributes in position space if, for

138



every measurable subset A ⊂M whose boundary has (2D area) measure zero [MR12],

lim
n→∞

∫
A

|Ψjn(x)|2 dx =
area(A)

area(M)
. (5.1)

A subsequence (xjn)∞n=1 of a sequence (xj)
∞
j=1 is said to have density d ∈ [0, 1] if

lim
N→∞

#{n : jn ≤ N}
N

= d. (5.2)

Note that in general, it is possible for some choices of orthonormal eigenbasis to give

quantum ergodicity while others do not. For an example of this, see [Zel92], in which it

is proved that for the −∆ operator on the 2-sphere, “almost all” choices of orthonormal

eigenbasis posess quantum ergodicity, even though the usual basis consisting of spherical

harmonics does not. However, if the classical system is ergodic then the quantum system

will be quantum ergodic regardless of what orthonormal eigenbasis is chosen.

In [MR12], it is proved that if M is a rational polygon then in the quantum system,

any orthonormal eigenbasis of H (arranged in order of non-decreasing eigenvalue) will

have a density-one subsequence that equidistributes in position space. The classical flow

is not ergodic, but it can be broken down into what is referred to in [MR12] as directional

flows, and almost all of these directional flows are ergodic (in fact, uniquely ergodic), as

proved in [KMS86]. The key property of the classical flow, from which this behaviour in

the quantum system is derived, is:

lim
T→∞

∫
S∗M

∣∣aT (x, ξ)− 〈a〉
∣∣2 dµ(x, ξ) = 0 ∀ a ∈ C∞(M), (5.3)

where

aT (x, ξ) :=
1

2T

∫ T

−T
(π∗a) ◦ Φt(x, ξ) dt, (5.4)

〈a〉 :=
1

area(M)

∫
M
a(x) dx =

∫
S∗M

(π∗a)(x, ξ) dµ(x, ξ), (5.5)

(π∗a)(x, ξ) := a(x), and µ is the standard normalised measure on S∗M. Describing this

in words, 〈a〉 is the spatial average of a over M and aT (x, ξ) is the temporal average of

a over time interval [−T, T ] for a trajectory passing through x with unit velocity in the

direction of ξ at time 0. (5.3) then tells us that the mean square deviation over phase

space of this temporal average aT from this spatial average 〈a〉 tends to zero as T →∞.

Observe that in (5.3), a is dependent on position only. One can also consider a stronger

version of (5.3) where a is a general smooth (or more generally L2) function on the phase

space S∗M. According to von Neumann’s Ergodic Theorem, this stronger “phase space

version” of (5.3) is satisfied if the system is ergodic. Thus (5.3) can be seen as a kind of

“position space version” of ergodicity.
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It can already be established (by e.g. extending the arguments in §3 of [MR12] beyond

just rational polygons and similar systems) that in general, if the classical system satisfies

(5.3) then the unperturbed quantum system has a density-one subsequence of functions in

the eigenbasis that equidistributes in position space, i.e. satisfies (5.1). It is now in our

interest to extend this result to the delta-perturbed quantum system (remembering that

the classical system is considered to be unafftected by this perturbation).

5.1.2 The Unperturbed and Delta-Perturbed Flat Torus

Work on position space equidistribution when a delta potential is added has already

been carried out for the case of the rectangular flat torus in [RU12]. It is proved that

the sequence of new eigenfunctions (i.e. (φ̂j)
∞
j=0 as defined in §2.2.5) has a density-one

subsequence that equidistributes in position space.

Now like the rational polygon, the flow (on S∗M) in the case of the flat torusM = T2

can be broken down into directional flows (where in this case, each directional flow is

simply the restriction of the flow to a surface in S∗T2 ' T2 × S1 of constant covector

ξ, representing direction of motion), and again almost all of these directional flows are

ergodic (and uniquely ergodic). This follows from e.g. Thm. 1 in [Mao88], part of which

states that for a flow on a 1 × 1 flat torus (this flow here being defined just on the 2D

torus itself, not the (co)tangent or (co)sphere bundle), given by a C1 velocity vector field

that is everywhere non-zero, if the flow has no periodic orbits then it is uniquely ergodic.

Unique ergodicity here means that there is a unique Borel measure, with total measure

1, under which the flow is measure-preserving, in which case the flow is also ergodic with

respect to this measure.

Each directional flow for the 1 × 1 flat torus would then be represented by a

constant velocity vector field, with the norm of the vector being 1. If this vector v

is in RZ2 :=

{(
sk

sl

)
: s ∈ R, k, l ∈ Z

}
then all trajectories are periodic with period

min{t > 0 : vt ∈ Z2}, and if v /∈ RZ2 then no trajectory is periodic. Now Z2 is

countable, and so S1 ∩ RZ2 is only a countable subset of S1. Thus almost all directional

flows have no periodic orbits, and hence are uniquely ergodic. Furthermore, all of these

directional flows clearly preserve the Lebesgue measure, and so the uniquely ergodic

directional flows are ergodic with respect to the Lebesge measure. Finally, for a general

a × b flat torus, this torus can be matched to the 1 × 1 torus by the simple coordinate

trasformations x̃ = x
a
, ỹ = y

b
. This will then match the directional flows in such a way

that, although speed rescalings and angle distortions would in general be involved, it
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would nevertheless still hold that only countably many directional flows are periodic, and

the rest are uniquely ergodic and ergodic under the (normalised) Lebesgue measure (note

that this transformation will preserve the normalised Lebesgue measure).

It thus follows that geodesic flow for the flat torus (taking the whole flow on S∗T2)

satisfies (5.3), by the same arguments that unique ergodicity of almost all directional

flows on a rational polygon leads to its whole flow satisfying (5.3). In short, this can be

obtained firstly by deriving, from unique ergodicity of almost all directional flows, that

aT (x, ξ)
T→∞−−−→ 〈a〉 for almost all (x, ξ) ∈ S∗M (noting that 〈a〉 is also the average of

a on the domain of each directional flow), so limT→∞ |aT (x, ξ) − 〈a〉 |2 = 0 for almost

all (x, ξ) ∈ S∗M, and then applying the dominated convergence theorem to obtain

limT→∞
∫
S∗M |a

T − 〈a〉 |2 dµ = 0.

It also follows then that for the flat torus, the unperturbed quantum system has a

density-one subsequence of functions in the eigenbasis that equidistributes in position

space (regardless of choice of orthonormal eigenbasis). Indeed, it is remarked in [MR12]

that the position space equidistribution result presented applies not only to rational

billiards with a Dirichlet −∆, but also to those with a Neumann −∆, and furthermore

to the −∆ operator on any translation surface (which would include the flat torus; see

e.g. Ch. 1, 17 and 18 of [Sch11] for discussion on what translation surfaces are and

their properties). [Since in general, we only state this position space equidistribution on

the torus to hold for a density-one subsequence, one can also consider the possibility of

other limiting behaviours in position space of eigenfunction subsequences, and these are

investigated in [Jak97]].

For the flat torus then, combining the position space equidistribution of almost all (i.e.

full density subsequence of) eigenbasis functions in the unperturbed system (regardless of

choice of orthonormal eigenbasis), with the position space equidistribution of almost all

“new eigenfunctions” in the perturbed system, it follows that, taking the full eigenbasis

in the perturbed system, almost all eigenbasis functions equidistribute in position space,

whichever orthonormal eigenbasis is chosen.

To see this, note firstly that one particular choice of unperturbed eigenbasis consists

purely of functions whose modulus is spatially constant, and only the argument/phase

varies (see [RU12]). Hence every eigenspace includes functions that are non-vanishing at p,

and so using our own notation from §2.2.5, Spec(H) = {Ej}∞j=1 and Spec(H)∩{λj}∞j=0 =

∅. Thus an arbitrary orthonormal eigenbasis for the perturbed system can be constructed

as follows: firstly take an orthonormal eigenbasis {Ψ̃j}j∈N for which the first member in

each eigenspace is nonzero at p and the rest are zero at p, and then replace the first
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member in each eigenspace Λ
(H)
Ej

with eiθj−1φ̂j−1, where each θj ∈ [0, 2π) is arbitary. Note

that every unperturbed eigenvalue, except the lowest (zero), has multiplicity ≥ 2 in the

unperturbed system, and therefore survives as an eigenvalue of the perturbed system,

with 1 less multiplicity.

Now taking a full density subsequence of {Ψ̃j}∞j=1 which equidistributes in position

space, and a full density subsequence of {φ̂j}∞j=0, or equivalently {eiθj φ̂j}∞j=0, which

equidistributes in position space (multiplication by a phase factor does not affect position

space equidistribution), the exceptional members (members of the full sequence that are

outside the full density subsequence) in each case form a zero density subset. Thus the

exceptional members of {Ψ̃j}∞j=1 which survive into the eigenbasis of the perturbed system

form a zero density subset of this perturbed eigenbasis, and likewise the exceptional

members of {φ̂j}∞j=0, and so the union of these two zero density subsets of the perturbed

eigenbasis is zero density. Thus the complement of this union is a full density subsequence,

and is itself the union of two position space equidistributing subsequences, therefore itself

being a position space equidistributing subsequence.

5.1.3 Methods of Arriving at Position Space Equidistribution

The method used in [RU12] to prove position space equidistribution of almost all new

eigenfunctions in the perturbed system makes use of the behaviour of eigenvalues and

eigenfunctions specific to the flat torus. However, the method in [MR12] makes use

of more general laws, in particular, a local Weyl law (relating quantum averages with

classical averages; also known as the Szegö limit theorem), and Egorov’s theorem (about

quantisation of observables composed with time evolution under the classical flow). Both

of these involve the theory of pseudodifferential operators.

There is much literature discussing the theory of pseudodifferential operators, such

as [Hör85a], [Sai91], [Tay96b] and [Shu01]. For the sake of ease, here we shall introduce

pseudodifferential operators (abbreviated ΨDOs) using a relatively neat construction of

ΨDOs on Rn, found in e.g. [Sai91]. A more sophisticated construction of ΨDOs can be

found for example in Ch. 1 of [Shu01].
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5.2 Pseudodifferential Operators on Rn

5.2.1 Associating ΨDOs with Symbols

Given a multi-index α = (α1, . . . , αn) ∈ ({0} ∪ N)n, define |α| := α1 + . . . + αn, define

the differential operator ∂ α := ∂ α1
x1
. . . ∂ αnxn , and define the polynomial xα := xα1

1 . . . xαnn

for x = (x1, . . . , xn) ∈ Rn. Define again the Schwartz space S ⊂ C∞(Rn) to be the

space of all C∞-smooth functions u on Rn satisfying the following rule: xα∂βu(x) is a

bounded function on Rn for every α, β ∈ ({0} ∪ N)n. Note that S ⊂ Lp(Rn) for every

p ∈ [1,∞) ∪ {∞}.
For each u ∈ L1(Rn), define its Fourier transform û ∈ L∞(Rn) by

û(ξ) :=

∫
Rn
u(x)e−ix.ξ dx. (5.6)

On the Schwartz space, the Fourier transform is a linear isomorphism from the Schwartz

space to itself, with

u(x) =
1

(2π)n

∫
Rn
û(ξ)eix.ξ dξ ∀u ∈ S, x ∈ Rn. (5.7)

For each m ∈ R, define the class of symbols of order m, denoted Sm ⊂ C∞(Rn × Rn), to

consist of all C∞-smooth functions a on Rn × Rn, satisfying the following rule: for each

α, β ∈ ({0} ∪ N)n there exists Cαβ ≥ 0 such that

|∂αx∂
β
ξ a(x, ξ)| ≤ Cαβ(1 + ||ξ||2)(m−|β|)/2 ∀ (x, ξ) ∈ Rn × Rn. (5.8)

Note that if l ≤ m then Sl ⊂ Sm. Thus we also define S∞ :=
⋃
m∈R S

m and S−∞ :=⋂
m∈R S

m.

Now given some a ∈ S∞, let A be the pseudodifferential operator with symbol a. Then

for every u ∈ S, it holds that Au ∈ S, where

(Au)(x) :=
1

(2π)n

∫
Rn
a(x, ξ)û(ξ)eix.ξ dξ ∀x ∈ Rn. (5.9)

The domain of the operator A can then be extended, by techniques of distribution theory,

to the space of tempered distributions S ′, and again Lp(Rn) ⊂ S ′ for every p ∈ [1,∞) ∪
{∞}. If a ∈ Sm then A is a pseudodifferential operator of order m, and we write A ∈ Ψm.

Furthermore, given any ΨDO A ∈ Ψ∞, its symbol a can be recovered: for each ξ ∈ Rn

we have

a(x, ξ) = e−ix.ξ(Aei·.ξ)(x) ∀x ∈ Rn, (5.10)

where ei·.ξ refers to the function x 7→ eix.ξ.
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5.2.2 Differential Operators and Polyhomogeneous ΨDOs

Now for each α ∈ ({0} ∪N)n, define the differential operator Dα := −i|α|∂α. Given some

m ∈ {0} ∪ N, suppose we have a ∈ C∞(Rn × Rn) of the form:

a(x, ξ) =
∑
|α|≤m

aα(x)ξα, (5.11)

where each α ∈ ({0}∪N)n, and each aα ∈ C∞(Rn) with ∂βaα ∈ L∞(Rn) ∀ β ∈ ({0}∪N)n.

Then a ∈ Sm and the ΨDO with symbol a is the differential operator

A =
∑
|α|≤m

aα(x)Dα ∈ Ψm. (5.12)

A is then said to have principal symbol∑
|α|=m

aα(x)ξα. (5.13)

(For each integer l > m it then also holds that A ∈ Ψl with zero principal symbol).

This notion then has a generalisation to what is referred to as polyhomogeneous

symbols. For each m ∈ R, Sm has a particular subclass Smphg ⊂ Sm, the class of

polyhomogeneous symbols of order m. These are symbols a for which there exists a

so-called asymptotic expansion of the form:

a ∼
∞∑
j=0

am−j, (5.14)

where each am−j ∈ C∞(Rn × (Rn\{0})) is positively homogeneous of order m − j in ξ,

meaning

am−j(x, rξ) = rm−jam−j(x, ξ) ∀ (x, ξ) ∈ Rn × (Rn\{0}), r ∈ (0,∞). (5.15)

If A ∈ Ψm
phg is the ΨDO of symbol a, then its principal symbol is then am.

5.3 Weyl’s Law, Egorov’s Theorem, Quantum Variance

and Position Space Equidistribution

The theory of pseudodifferential operators can be applied to the compact manifold/region

M (orM◦), with every polyhomogeneous ΨDO of any certain order having a well-defined

principal symbol, with this principal symbol being a function on the cotangent bundle.

Another property that every ΨDO has (and this in fact goes beyond just ΨDOs) is the
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Schwartz kernel. If A is a ΨDO onM◦ then the Schwartz kernel KA is a distribution on

M◦ ×M◦ satisfying

〈Au, v〉M
◦

ll = 〈KA, (π
∗
2u)(π∗1v)〉M

◦×M◦
ll ∀u, v ∈ C∞0 (M◦), (5.16)

where π∗2u is the function (x, y) 7→ u(y), likewise π∗1v is the function (x, y) 7→ v(x) and

again the subscript ll means linearity in both arguments. Formally then, we can write

Au =

∫
M◦

KA(·, y)u(y) dy. (5.17)

Now when stating the local Weyl law and Egorov’s theorem, we shall involve zero-order

polyhomogeneous ΨDOs, taken as bounded linear operators on L2(M), with principal

symbols being functions on the cosphere bundle S∗M (noting that as functions on the

cotangent bundle T ∗M, they are dependent only on position on M and on direction of

the non-zero covector, but not on magnitude of the covector).

Lemma 5.3.1 (Local Weyl Law / Szegö Limit Theorem, see e.g. Lemma 4 in [ZZ96],

Thm. 2.2.18 in [Sch01], §3 in [MR12]). Let A ∈ Ψ0
phg(M), with Schwartz kernel compactly

supported in M◦ ×M◦. Let σ0(A) denote the zero-order principal symbol of A. Then

lim
E→∞

1

#{j : Ej ≤ E}
∑
j:Ej≤E

〈AΨj,Ψj〉 =

∫
S∗M

σ0(A) dµ. (5.18)

[In fact it is remarked in [ZZ96] that the requirement of the Schwartz kernel being

supported away from the boundary can be eliminated with further (heat equation)

techniques beyond what is provided in that paper]. Interpreting 〈AΨj,Ψj〉 to be the

expectation value of the quantum observable A under the quantum state Ψj, this law

says that when we take the average of these expectation values over the first N states in

the eigenbasis, as N tends to infinity this average tends to the average of the classical

observable σ0(A) over the phase space S∗M.

Next, before stating Egorov’s theorem, we define the operators
√
H and eit

√
H for

every t ∈ R as follows:

(i)
√
H, as before, is the self-adjoint operator with orthonormal eigenbasis {Ψj}j∈N and

respective corresponding eigenvalues {
√
Ej}j∈N. By the same arguments as in the

proof of Lemma 2.1.1, we have

∞∑
j=1

ajΨj ∈ Dom(
√
H) iff

∞∑
j=1

√
EjajΨj ∈ L2(M), (5.19)

√
H

(
∞∑
j=1

ajΨj

)
=
∞∑
j=1

√
EjajΨj. (5.20)
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(ii) Dom(eit
√
H) is the whole Hilbert space L2(M) for every t ∈ R, with

eit
√
H

(
∞∑
j=1

ajΨj

)
=
∞∑
j=1

eit
√
EjajΨj. (5.21)

Observe then that eit
√
H : L2(M) → L2(M) is a bijective operator with inverse

e−it
√
H . Furthermore, with f =

∑∞
j=1 ajΨj, g =

∑∞
j=1 bjΨj ∈ L2(M),

〈
eit
√
Hf, eit

√
Hg
〉

=
∞∑
j=1

eit
√
Ejaj e

−it
√
Ejbj =

∞∑
j=1

ajbj = 〈f, g〉 , (5.22)

and so eit
√
H is a unitary operator, with e−it

√
H being its adjoint as well as its inverse.

Lemma 5.3.2 (Egorov’s Theorem). Taking the case where M is without boundary, let

A ∈ Ψ0
phg(M) and let σ0(B) denote the zero-order principal symbol of any B ∈ Ψ0

phg(M).

Then for every t ∈ R,

eit
√
HAe−it

√
H ∈ Ψ0

phg(M), (5.23)

σ0(eit
√
HAe−it

√
H) = σ0(A) ◦ Φt. (5.24)

On Egorov’s Theorem, see for example [Far81], §4 of [Zel86], §1 of [Zel87], Lemma 5 in

[ZZ96], or §2.2.5 in [Sch01]. For simplicity, here it is only stated for the case whereM is

without boundary.

A statement of Egorov’s theorem in the case whereM is with boundary can be found

for example in Lemma 5 of [ZZ96]. In Lemma 5 of [ZZ96], further technicalities are

involved, including such concerning the issue of “bad trajectories”. When considering a

time interval (−T, T ), the flow Φt is restricted to an open full-measure set XT ⊂ S∗M
(where an “open” set here can include boundary points on S∗M) for which Φt(x, ξ) is

well-defined for all (x, ξ) ∈ XT , t ∈ [−T, T ]. In accordance with this restriction of the

flow to XT , there is also a restriction on suitable ΨDOs A.

Now note that the differential operator −∆, being a 2nd-order linear differential

operator, is also then a 2nd-order polyhomogeneous ΨDO, with principal symbol

(x, ξ) ∈ T ∗M 7→ ||ξ||2. Indeed, if we consider the representation of −∆ in local

coordinates (see (2.3)), the sum of the leading-order terms is

n∑
i=1

n∑
j=1

gijDxiDxj , (5.25)
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where n is the dimension (so in our case n = 2), and again Dxl := −i ∂
∂xl

. Thus the

principal symbol is
n∑
i=1

n∑
j=1

gijξiξj = ||ξ||2. (5.26)

(Note that when taking principal symbol in local coordinates on a manifold, it is the

cotangent bundle, not the tangent bundle, that we work with, see e.g. §I.4 of [Shu01]).

Then applying Thm. 2.2.13 in [Sch01] (at least for the case whereM is without boundary),

it holds that for every m ∈ (0,∞), the operator Hm is an order 2m polyhomogeneous

ΨDO with principal symbol ||ξ||2m. Thus in particular,
√
H has principal symbol ||ξ||.

Given a real scalar function G on the cotangent bundle, one can consider the

Hamiltonian flow generated by G, which in local coordinates is given by

dxj
dt

=
∂G

∂ξj
,

dξj
dt

= − ∂G
∂xj

. (5.27)

Lemma 5.3.3. Given any C∞-smooth function f : I → R, where I ⊂ (0,∞) is an open

interval (bounded or unbounded), the Hamiltonian flow Φt
f on {(x, ξ) ∈ T ∗M : ||ξ|| ∈ I}

generated by f(||ξ||) satisfies the following:

Each surface of constant ||ξ|| is invariant under the flow Φt
f , possibly excluding

points giving rise to bad trajectories. Furthermore, on each surface of constant ||ξ||,
say ||ξ|| = ρ ∈ I, let Φt

f,ρ be the restriction of Φt
f to this surface, and let Φt

(ρ) be the flow

on this surface given by Φt
(ρ) := ιρ ◦Φt ◦ ι1/ρ, where ιr(x, ξ) := (x, rξ) and Φt is our usual

flow on S∗M. We then have

Φt
f,ρ = Φ

f ′(ρ)t
(ρ) . (5.28)

In other words, if f ′(ρ) 6= 0 then the flow Φt
f,ρ consists of geodesic motion in position

space with speed |f ′(ρ)|, and with direction of motion being the direction of the covector

if f ′(ρ) > 0; opposite direction if f ′(ρ) < 0. If f ′(ρ) = 0 then the flow Φt
f,ρ is static.

If M is with boundary, then define Φt
f in such a way that when a particle in the flow

hits the boundary, the normal component of the covector to the boundary is reversed while

the tangential component is unchanged. It then follows that as usual, we have specular

reflection at the boundary, and (5.28) still holds.

This is proved by performing appropriate mathematical manipulations in local

coordinates. This in particular would make use of the standard coordinate representations

of vector and covector lengths and of geodesics, as well as making use of the coordinate

representation of generated Hamiltonian flows, given by (5.27).

In particular then, the flow generated by ||ξ||2 is geodesic flow (with specular reflection

at the boundary if there is one) with speed 2||ξ||, and the flow generated by ||ξ|| is geodesic
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flow with speed 1. It is evident from e.g. §7.8 in [Tay96b] and §2.2.5 in [Sch01] that this

is how the appearance of the flow Φt in (5.24) is connected with the appearance of the

operator
√
H within the exponents in (5.24).

Now another concept in the study of quantum observables is quantum variance. Given

some A ∈ Ψ0
phg(M), the quantum variance V (A,E) for A relative to the basis {Ψj}j∈N

is given by the following:

V (A,E) :=
1

#{j : Ej ≤ E}
∑
j:Ej≤E

|〈AΨj,Ψj〉 − 〈σ0(A)〉|2 , (5.29)

where 〈σ0(A)〉 :=
∫
S∗M σ0(A) dµ.

With the local Weyl law being a law relating quantum averages with classical averages,

there is also the following law relating quantum variance with a certain dynamical variance

property in the classical system, derived via both the local Weyl law and Egorov’s theorem

(see §3 of [MR12]):

Lemma 5.3.4. Given any A ∈ Ψ0
phg(M) with Schwartz kernel compactly supported in

M◦ ×M◦, letting a be the principal symbol,

lim sup
E→∞

V (A,E) ≤
∫
S∗M

∣∣aT − 〈a〉∣∣2 dµ ∀T > 0. (5.30)

Here aT is again as defined in (5.4), only now for a being more generally a function

on S∗M rather than just a function on M, and so the appearance of “π∗” in (5.4) can

now be removed.

Now a simple kind of example of A ∈ Ψ0
phg(M) with Schwartz kernel compactly

supported in M◦ ×M◦ is A being a multiplication operator by some a ∈ C∞0 (M◦), in

which case σ0(A) = a. It is easy to show that such a multiplication operator is indeed a

bounded linear operator:

Lemma 5.3.5. Given any a ∈ L∞(M), letting â be the multiplication operator by a, i.e.

(âf)(x) = a(x)f(x), â is then a bounded linear operator on L2(M) whose operator norm

is ||a||∞.

Proof. Letting µM be the standard area measure on M, we have µM(Im−1
|a| (L,∞)) = 0

for L ≥ ||a||∞, where Im−1
|a| means inverse image under |a|, and µM(Im−1

|a| (L,∞)) > 0 for

L < ||a||∞. In particular then, |a(x)| ≤ ||a||∞ for almost all x ∈ M. Given then any

f ∈ L2(M), we have ∫
M
|a(x)f(x)|2 dx ≤ ||a||2∞

∫
M
|f(x)|2 dx, (5.31)
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and so âf = af ∈ L2(M), with

||âf ||22 ≤ ||a||2∞||f ||22
if f 6=0
===⇒ ||âf ||2

||f ||2
≤ ||a||∞. (5.32)

Hence â is a bounded operator on L2(M) with ||â||2 ≤ ||a||∞ (where we allow || · ||2 to

denote operator norm under L2 as well as L2-norm).

Next, to show that ||â||2 = ||a||∞, first note that this holds trivially when a = 0. So

then for a 6= 0 (in which case ||a||∞ > 0), taking any L ∈ (0, ||a||∞), let fa,L be the

characteristic function of Im−1
|a| (L,∞) on M, i.e.

fa,L(x) := χIm−1
|a| (L,∞) =

1 for |a(x)| > L,

0 for |a(x)| ≤ L.
(5.33)

It thus follows that fa,L ∈ L2(M) with

||fa,L||22 = µM(Im−1
|a| (L,∞)) > 0, (5.34)

and furthermore,

||âfa,L||22 =

∫
M
|a(x)|2χIm−1

|a| (L,∞)(x) dx > L2µM(Im−1
|a| (L,∞)) = L2||fa,L||22. (5.35)

Hence
||âfa,L||2
||fa,L||2

> L ∀L ∈ (0, ||a||∞), (5.36)

and so ||â||2 = ||a||∞.

Applying then Lemma 5.3.4 to multiplication operators, we have the following:

Corollary 5.3.6. If the classical dynamical system satisfies (5.3) then

lim
E→∞

V (â, E) = lim
E→∞

1

#{j : Ej ≤ E}
∑
j:Ej≤E

∣∣∣∣∫
M
a(x)|Ψj(x)|2 dx− 〈a〉

∣∣∣∣2 = 0 (5.37)

∀ a ∈ C∞0 (M◦).

From this the following is then derived (see §3 of [MR12], aided with Thm. 1.20 in

§1.7 of [Wal82] and §3 of [ZZ96]):

Lemma 5.3.7. If the classical dynamical system satisfies (5.3) then the quantum

eigenbasis (Ψj)j∈N, as a sequence, has a density-one subsequence (Ψjn)n∈N for which

lim
n→∞

∫
M
a(x)|Ψjn(x)|2 dx = 〈a〉 ∀ a ∈ C∞0 (M◦). (5.38)

Note in particular that this is a common density-one subsequence for all a ∈ C∞0 (M◦),

in other words (jn)n∈N is independent of a.
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It can then be shown that with (Ψjn)n∈N satisfying (5.38), it follows that (Ψjn)n∈N

equidistributes in position space, as defined in (5.1). Observe that (5.1) is effectively

(5.38) but with a ∈ C∞0 (M◦) replaced with the characteristic function χA of a measurable

set A ⊂M with measure zero boundary.

5.4 Potential Methods of Approach for the Delta-

Perturbed System

Again, we are interested in attempting to prove that if the classical dynamical system

satisfies (5.3) then not only does the unperturbed quantum system have a full-density

subsequence of eigenbasis functions that equidistributes in position space (already

established), but so does the delta-perturbed quantum system. This has already been

achieved for the specific case of the flat torus, but we now wish to consider methods of

proving this to hold more generally.

5.4.1 Method 1: Computations using Formulae for Perturbed

Eigenfunctions

If the classical system satisfies (5.3), then working with the starting point that for every

a ∈ C∞0 (M◦) we have

lim
E→∞

1

#{j : Ej ≤ E}
∑
j:Ej≤E

〈âΨj,Ψj〉 = 〈a〉 , (5.39)

lim
E→∞

1

#{j : Ej ≤ E}
∑
j:Ej≤E

|〈âΨj,Ψj〉 − 〈a〉|2 = 0, (5.40)

we could then attempt to determine whether (5.39) and (5.40) still hold if the

unperturbed eigenbasis {Ψj}j∈N and corresponding eigenvalues {Ej}j∈N are replaced with

an orthonormal eigenbasis and corresponding eigenvalues for the delta-perturbed system,

given the formulae we have for perturbed eigenvalues and eigenfunctions in terms of

unperturbed eigenvalues and eigenfunctions.

If employing this method, it would be useful to be able to represent bounded linear

operators as N× N matrices. This is enabled by the following:

Lemma 5.4.1. Given a bounded linear operator A : L2(M) → L2(M) and function

f ∈ L2(M), writing f =
∑∞

j=1 ajΨj, it holds that

Af =
∞∑
n=1

(
an

∞∑
m=1

〈AΨn,Ψm〉Ψm

)
=

∞∑
m=1

(
∞∑
n=1

an 〈AΨn,Ψm〉

)
Ψm. (5.41)
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In the middle part of this equation, both the m-sum and n-sum converge in L2, and in

the right-most part of this equation, the n-sum converges in C and the m-sum converges

in L2.

Proof. Firstly, applying continuity of A followed by the orthonormal basis expansion

formula,

Af = A

(
lim
N→∞

N∑
n=1

anΨn

)
= lim

N→∞
A

N∑
n=1

anΨn = lim
N→∞

N∑
n=1

anAΨn

= lim
N→∞

N∑
n=1

(
an

∞∑
m=1

〈AΨn,Ψm〉Ψm

)

=
∞∑
n=1

(
an

∞∑
m=1

〈AΨn,Ψm〉Ψm

)
, (5.42)

thus proving the middle part of (5.41).

Continuing on now,

lim
N→∞

N∑
n=1

(
an

∞∑
m=1

〈AΨn,Ψm〉Ψm

)
= lim

N→∞

∞∑
m=1

(
N∑
n=1

an 〈AΨn,Ψm〉

)
Ψm

=:
∞∑
m=1

cmΨm, (5.43)

so

lim
N→∞

∞∑
m=1

(
cm −

N∑
n=1

an 〈AΨn,Ψm〉

)
Ψm = 0

⇒ lim
N→∞

∞∑
m=1

∣∣∣∣∣cm −
N∑
n=1

an 〈AΨn,Ψm〉

∣∣∣∣∣
2

= 0

⇒ lim
N→∞

∣∣∣∣∣cm −
N∑
n=1

an 〈AΨn,Ψm〉

∣∣∣∣∣
2

= 0 ∀m ∈ N, (5.44)

and thus

cm = lim
N→∞

N∑
n=1

an 〈AΨn,Ψm〉 =
∞∑
n=1

an 〈AΨn,Ψm〉 ∀m ∈ N. (5.45)

This proves the right-most part of (5.41).

It therefore follows that just as functions in L2(M) can be represented by l2 column

vectors through orthonormal basis expansion, a bounded linear operator A : L2(M) →
L2(M) can similarly be represented by an N×N matrix, with the (m,n)th element being

Amn = 〈AΨn,Ψm〉 . (5.46)

151



(Note of course that Lemma 5.4.1 works not only with the eigenbasis {Ψj}j∈N but with

any arbitrary orthonormal basis of L2(M)).

When considering then, 〈âφ, φ〉 for some eigenfunction φ of the perturbed operator

HΘ, one could derive an expression for 〈âφ, φ〉 using this matrix representation of â

with respect to the unperturbed eigenbasis, combined with the expansion of φ into the

unperturbed eigenbasis.

5.4.2 Method 2: Approximation by Non-Singular Perturbations

So far, we have stated Weyl’s law (for ΨDOs) and Egorov’s theorem specifically in the

context where the quantum Hamiltonian operator is a −∆ operator. However, these laws

do have more general forms.

Thm. 2.2.18 in §2.2.4 of [Sch01] gives a statement of Weyl’s law (referred to there

as the Szegö limit theorem), in the case where M is without boundary, for which

the operator playing the role of the quantum Hamiltonian operator can be any self-

adjoint polyhomogeneous ΨDO of positive order with strictly positive principal symbol

on {(x, ξ) ∈ T ∗M : ||ξ|| 6= 0} (replacing the appearance of S∗M within the statement of

Weyl’s law with the set of all points in {(x, ξ) ∈ T ∗M : ||ξ|| 6= 0} at which the principal

symbol of the “Hamiltonian” operator is 1). Furthermore, in [ZZ96], although Weyl’s

law (Lemma 4) is stated for the self-adjoint −∆ operator, the proof largely references

propositions/theorems in Ch. 29 of [Hör85b], and there again it deals with more general

symmetric/self-adjoint ΨDOs (still with certain conditions).

Similarly, Thm. 2.2.20 in §2.2.5 of [Sch01] gives a statement of Egorov’s theorem in

which the role of e−it
√
H in (5.23) and (5.24) here is taken by a general Fourier integral

operator (FIO) (satisfying certain specified conditions), and the role of Φt is taken by the

canonical transformation generated by the FIO’s phase function. Further on in §2.2.5 of

[Sch01], operators of the form e−itH, where H is a first-order elliptic self-adjoint ΨDO

(elliptic meaning that the principal symbol is nonzero at all points in the cotangent

bundle with a nonzero covector), are stated to be examples of FIOs, with the canonical

transformation generated by the phase function being the Hamiltonian flow generated by

the principal symbol of H (self-adjointness results in the principal symbol being real).

Thm. 8.1 in §8 of Ch. 7 in [Tay96b] also gives a statement of Egorov’s theorem for which

the role of
√
H in Lemma 5.3.2 here is taken by a more general 1st-order polyhomogeneous

ΨDO, and the flow involved is the Hamiltonian flow generated by the principal symbol.

[Note though that §8 of Ch. 7 in [Tay96b] works on Euclidean space Rn, and in §2.2.5 of

[Sch01], some of the discussion is on Rn and some of it is on a manifold].
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In light of this, it seems likely then that if we perturb the operator H =

−∆ ∈ Ψ2
phg(M◦) in such a way as to keep it being an appropriate ΨDO with principal

symbol ||ξ||2, and also if necessary, add a positive multiple of the identity map to keep the

operator non-negative so that we can still take its square root (this certainly shouldn’t

cause a problem, since −∆+cI is still a “well-behaved” second-order differential operator

with principal symbol ||ξ||2), then Weyl’s law and Egorov’s theorem, as stated in Lemmas

5.3.1 and 5.3.2 here (or appropriate modification of Lemma 5.3.2 ifM is with boundary),

would still apply.

In turn, it should follow that if the unperturbed classical system satisfies (5.3) then

the quantum system should still satisfy (5.39) and (5.40) under this perturbation. Note

that we could also then “undo” the addition of a multiple of the identity map, and (5.39)

and (5.40) would be left unaffected, since the only effect would be a constant shift in the

eigenvalues, and the corresponding eigenspaces would remain the same. Position space

equidistribution of a full-density subsequence of eigenbasis functions would then follow.

It would seem likely that all of this should still work even when M is with boundary.

We could then consider approximating the delta potential by such perturbations. So

then, whereas in Method 1, we consider deriving (5.39) and (5.40) for the delta potential

only from the starting point that they hold for the unperturbed system, now we could

consider deriving these for the delta potential with the aid of them holding not only for

the unperturbed system but also for these perturbations (or we could consider directly

deriving the position space equidistribution result, either in the form of Lemma 5.3.7 or

(5.1), for the delta potential, given this holding for these perturbations).

Consideration of Rank-One Perturbations

Now in Chapter 4 is discussion on rank-one perturbations of H, and how these could be

used to approximate the delta potential. These perturbed operators are specified to take

the following form:

H ′ = H + ν 〈·, Y 〉Y, (5.47)

where Y ∈ C∞0 (M◦)\{0} and ν ∈ R\{0}.
Let us then address this question: If Y, Z ∈ C∞0 (M◦) then is the operator W :=

〈·, Z〉Y a pseudodifferential operator, and if so, of what order is it?
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Firstly, for every φ, ψ ∈ C∞0 (M◦) we have

〈Wφ,ψ〉ll =
〈〈
φ, Z

〉
ll
Y, ψ

〉
ll

=
〈
Z, φ

〉
ll
〈Y, ψ〉ll

=

(∫
M
Z(y)φ(y) dy

)(∫
M
Y (x)ψ(x) dx

)
=

∫
M

∫
M
Z(y)φ(y)Y (x)ψ(x) dy dx

=
〈
(π∗1Y )(π∗2Z), (π∗2φ)(π∗1ψ)

〉M×M
ll

. (5.48)

Thus W (or at least W restricted to C∞0 (M◦)), has Schwartz kernel KW ∈ C∞0 (M◦×M◦)

given by

KW (x, y) = Y (x)Z(y). (5.49)

Obviously the image of W is span{Y } ⊂ C∞0 (M◦) (or {0} if Z = 0), and so KW can be

said to be the Schwartz kernel of W : C∞0 (M◦) → C∞0 (M◦). W : L2(M) → L2(M) is

then simply the continuous extension of W : C∞0 (M◦)→ C∞0 (M◦) under the L2-norm.

Considering the case whereM⊂ R2, according to Exercise 2.4 in §2 in Ch. I of [Shu01],

a linear operator from C∞0 (M◦) to C∞(M◦) with C∞-smooth kernel on M◦ ×M◦ is a

ΨDO of order −∞ under the ΨDO theory constructed in that chapter of [Shu01], which

therefore makes this so of W .

Furthermore, if we extend functions on M to functions on R2 by having these

extensions be zero everywhere outsideM (in which case functions in C∞0 (M◦) obviously

become functions in C∞0 (R2)), then considering the extension of W to Schwartz space

S(R2), still given by W = 〈·, Z〉Y (only this time 〈·, ·〉 is the L2 inner product on R2),

we have

Wu(x) = Y (x)

∫
R2

u(y)Z(y) dy =
1

4π2
Y (x)

∫
R2

û(ξ)Ẑ(ξ) dξ

=
1

4π2

∫
R2

(
Y (x)Ẑ(ξ)e−ix.ξ

)
û(ξ)eix.ξ dξ ∀x ∈ R2 ∀u ∈ S(R2) (5.50)

(see Parseval’s formula in e.g. Thm. 1.8 in §1.2 of [Sai91] for justification of
∫
uZ =

1
4π2

∫
ûẐ, and note that Ẑ ∈ S(R2)). Let then

w(x, ξ) := Y (x)Ẑ(ξ)e−ix.ξ ∀ (x, ξ) ∈ R2 × R2. (5.51)

Given any expression w̃(x, ξ) of the form

w̃(x, ξ) =
M∑
k=1

bk x
γk ξηk ∂ρkx Y (x) ∂σkξ Ẑ(ξ) e−ix.ξ ∀ (x, ξ) ∈ R2 × R2, (5.52)

where bk ∈ C and γk, ηk, ρk, σk ∈ ({0} ∪ N)2 are multi-indices, it is easy to check that

for j ∈ {1, 2}, ∂xj w̃(x, ξ) maintains the same form, as does ∂ξj w̃(x, ξ). Since w(x, ξ) itself
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takes this form (with M = 1, bk = 1 and γk = ηk = ρk = σk = (0, 0)), it follows by

induction then that ∂αx∂
β
ξ w(x, ξ) takes this form for all multi-indices α, β ∈ ({0} ∪ N)2.

Now for each l ∈ {0} ∪ N,

(1 + ||ξ||2)l|w̃(x, ξ)| ≤
M∑
k=1

∣∣∣bk xγk (1 + ||ξ||2)lξηk ∂ρkx Y (x) ∂σkξ Ẑ(ξ)
∣∣∣

≤
M∑
k=1

|bk| ||sγk∂ρks Y (s)||∞ ||(1 + ||ζ||2)lζηk∂σkζ Ẑ(ζ)||∞ =: C̃l <∞

∀ (x, ξ) ∈ R2 × R2. (5.53)

So then, given any m ∈ R and α, β ∈ ({0} ∪N)2, since ∂αx∂
β
ξ w(x, ξ) takes the form given

in (5.52), taking any l ∈ {0} ∪ N for which −l ≤ m−|β|
2

, we have

|∂αx∂
β
ξ w(x, ξ)| ≤ C̃

(α,β)
l (1 + ||ξ||2)−l ≤ C̃

(α,β)
l (1 + ||ξ||2)(m−|β|)/2 ∀ (x, ξ) ∈ R2×R2. (5.54)

Thus comparing (5.50) and (5.54) with (5.8) and (5.9), it follows that W : S(R2)→ S(R2)

is a ΨDO of order −∞ under the construction given in §5.2.1.

5.4.3 Method 3: Theory Permitting Singular Behaviour

Whereas with Methods 1 and 2, the approach is to start with the principles relating

quantum and classical behaviour for only non-singular systems, and then by employing

other techniques, derive desired results for the case of the delta-perturbed system, another

approach is to develop or work with a theory for the relationship between quantum and

classical behaviour which, at a more fundamental level, accommodates certain permissible

singular behaviour.

In [JSSV15], compact manifolds with a metric that is discontinuous on a co-dimension

1 hypersurface are studied. In this case, there is not a straight-forward classical flow,

because a trajectory that strikes the wall of discontinuous metric could result in both a

reflected and a refracted trajectory. Nevertheless, a dynamical system is developed to

describe the classical behaviour, together with a notion of ergodicity, and a quantum

ergodicity theorem is proved.

One could then consider adapting the arguments in [JSSV15] to the case of the delta

potential, where the singular behaviour is only at a point.
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Appendix A

Further Material on Rank-One

Perturbations

A.1 Construction of Resolvents

In §4.3.1 an orthonormal eigenbasis was constructed for the operator

H ′ := H + ν 〈·, Y 〉Y, (A.1)

along with the corresponding eigenvalues. Here Y ∈ L2(M)\{0}, ν ∈ R\{0} and H

is the self-adjoint −∆ operator on M, with Dirichlet boundary conditions if there is a

boundary.

By Prop. 4.2.4, the spectrum of H ′ (denoted Spec(H ′)) is purely the set of eigenvalues

of H ′. Since the full set of eigenvalues of H ′ has been derived, it follows that associated

with every complex value E outside this set of eigenvalues, there is a well-defined resolvent

operator (E−H ′)−1. Here we shall further demonstrate this to be true, by deriving explicit

formulae for the resolvent operators of H ′.

Wishing therefore to obtain the resolvent operator (E − H ′)−1 for every E ∈
C\Spec(H ′), we shall split the situation into two cases:

(i) E ∈ C\(Spec(H ′) ∪ Spec(H)),

(ii) E ∈ Spec(H)\Spec(H ′), which is the case if and only if E is a simple eigenvalue of

H (i.e. the eigenspace is 1-dimensional) with P(H)
{E}Y 6= 0.

Before dealing with these two cases separately, first we shall state that for any E ∈ C,
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ψ =
∑∞

j=1 ajΨj ∈ Dom(H) = Dom(H ′) and φ =
∑∞

j=1 bjΨj ∈ L2(M), we have

(E −H ′)ψ = φ iff (E −H)ψ = ν 〈ψ, Y 〉Y + φ

iff (E − Ej)aj = ν 〈ψ, Y 〉 yj + bj ∀ j ∈ N. (A.2)

Now tackling case (i), note firstly that since E /∈ Spec(H), (E − H)−1 : L2(M) →
Dom(H) is a well-defined bounded operator. The adjoint of (E − H)−1 is (E − H)−1,

since given any f, g ∈ L2(M) we have〈
(E −H)−1f, g

〉
=
〈
(E −H)−1f, (E −H)(E −H)−1g

〉
=
〈
(E −H)−1f, E(E −H)−1g

〉
−
〈
(E −H)−1f,H(E −H)−1g

〉
=
〈
E(E −H)−1f, (E −H)−1g

〉
−
〈
H(E −H)−1f, (E −H)−1g

〉
=
〈
(E −H)(E −H)−1f, (E −H)−1g

〉
=
〈
f, (E −H)−1g

〉
. (A.3)

Furthermore, since E /∈ Spec(H ′), letting ψE := (E−H)−1Y , it must hold that 〈ψE, Y 〉 6=
1
ν
, so far at least in the case where E ∈ R. For general E ∈ C\Spec(H), we have

〈ψE, Y 〉 =
∞∑
j=1

|yj|2

E − Ej
=
∞∑
j=1

|yj|2(E − Ej)
|E − Ej|2

=
∞∑
j=1

|yj|2(Re(E)− Ej)
|E − Ej|2

− iIm(E)
∞∑
j=1

|yj|2

|E − Ej|2
, (A.4)

and so if E ∈ C\R then 〈ψE, Y 〉 ∈ C\R 63 1
ν
.

So then, given some ψ ∈ Dom(H) and φ ∈ L2(M), suppose (E − H ′)ψ = φ. For

shorthand notation, let φE := (E −H)−1φ. Then

ψ = ν 〈ψ, Y 〉ψE + φE ⇒ 〈ψ, Y 〉 = ν 〈ψ, Y 〉 〈ψE, Y 〉+ 〈φE, Y 〉

⇒ 〈ψ, Y 〉 (1− ν 〈ψE, Y 〉) = 〈φE, Y 〉 ⇒ 〈ψ, Y 〉 =

〈
φE

1− ν 〈ψE, Y 〉
, Y

〉
⇒ ψ =

φE
1− ν 〈ψE, Y 〉

+ ψ⊥, (A.5)

where 〈ψ⊥, Y 〉 = 0. So then

(E −H)ψ =
φ

1− ν 〈ψE, Y 〉
+ (E −H)ψ⊥ = ν 〈ψ, Y 〉Y + φ = ν

〈φE, Y 〉
1− ν 〈ψE, Y 〉

Y + φ

⇒ (E −H)ψ⊥ =
ν 〈φE, Y 〉

1− ν 〈ψE, Y 〉
Y +

(
1− 1

1− ν 〈ψE, Y 〉

)
φ

⇒ ψ⊥ =
ν 〈φE, Y 〉

1− ν 〈ψE, Y 〉
ψE −

ν 〈ψE, Y 〉
1− ν 〈ψE, Y 〉

φE

⇒ ψ = φE +
1

1
ν
− 〈ψE, Y 〉

〈φE, Y 〉ψE = (E −H)−1φ+
1

1
ν
− 〈ψE, Y 〉

〈φ, ψE〉ψE. (A.6)
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Conversely, given some φ ∈ L2(M), let

ψ = (E −H)−1φ+
1

1
ν
− 〈ψE, Y 〉

〈φ, ψE〉ψE, (A.7)

in which case ψ ∈ Dom(H). Then

(E −H)ψ = φ+
1

1
ν
− 〈ψE, Y 〉

〈φ, ψE〉Y, (A.8)

ν 〈ψ, Y 〉Y + φ = ν

(
〈φE, Y 〉+

1
1
ν
− 〈ψE, Y 〉

〈φ, ψE〉 〈ψE, Y 〉
)
Y + φ

= ν

(
〈φ, ψE〉+

1
1
ν
− 〈ψE, Y 〉

〈φ, ψE〉 〈ψE, Y 〉
)
Y + φ

= ν

(
1 +

〈ψE, Y 〉
1
ν
− 〈ψE, Y 〉

)
〈φ, ψE〉Y + φ =

1
1
ν
− 〈ψE, Y 〉

〈φ, ψE〉Y + φ, (A.9)

so the equation (E −H)ψ = ν 〈ψ, Y 〉Y + φ is satisfied, and thus (E −H ′)ψ = φ.

It is thus concluded that for each E ∈ C\(Spec(H ′) ∪ Spec(H)),

(E −H ′)−1 = (E −H)−1 +
1

1
ν
− 〈ψE, Y 〉

〈·, ψE〉ψE. (A.10)

This formula for the resolvent operator (E −H ′)−1 agrees with Theorem 1.1.1 in [AK00]

for E ∈ C\R.

Moving on to case (ii), although (E −H)−1 is this time not a well-defined operator,

we can nevertheless define the following operator:

(E −H)−̃1 := P(H)
R\{E} ◦ (E −H)−1 ◦ P(H)

R\{E} : L2(M)→ Dom(H). (A.11)

This is a well-defined bounded linear operator – well-defined in that ∀ f ∈ L2(M) ∃ g ∈
Dom(H) s.t. (E − H)g = P(H)

R\{E}f , and furthermore ∀ g, h ∈ Dom(H) satisfying (E −
H)g = (E − H)h = P(H)

R\{E}f it holds that P(H)
R\{E}g = P(H)

R\{E}h =: (E − H)−̃1f . Letting

E = Ek, for any f =
∑∞

j=1 cjΨj ∈ L2(M),

(E −H)−̃1f =
∑
j:j 6=k

cj
E − Ej

Ψj. (A.12)

Observe furthermore that

(E−H)−̃1f =
∑
j:j 6=k

cj
E − Ej

Ψj ⇒ (E−H)(E−H)−̃1f =
∑
j:j 6=k

cjΨj = P(H)
R\{E}f. (A.13)

Likewise with g =
∑∞

j=1 djΨj ∈ Dom(H),

(E −H)g =
∞∑
j=1

(E −Ej)djΨj ⇒ (E −H)−̃1(E −H)g =
∑
j:j 6=k

djΨj = P(H)
R\{E}g. (A.14)
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Finally, (E−H)−̃1 is self-adjoint, since for any f =
∑∞

j=1 cjΨj, g =
∑∞

j=1 djΨj ∈ L2(M),〈
(E −H)−̃1f, g

〉
=
∑
j:j 6=k

cjdj
E − Ej

=
〈
f, (E −H)−̃1g

〉
. (A.15)

So now, given some ψ =
∑∞

j=1 ajΨj ∈ Dom(H) and φ =
∑∞

j=1 bjΨj ∈ L2(M), suppose

(E −H ′)ψ = φ. Then by (A.2),aj =
ν〈ψ,Y 〉yj+bj

E−Ej for j 6= k

ν 〈ψ, Y 〉 yk + bk = 0
⇒

aj =
− bk
yk
yj+bj

E−Ej for j 6= k

〈ψ, Y 〉 =
∑∞

l=1 alyl = − bk
νyk

⇒

aj =
− bk
yk
yj+bj

E−Ej for j 6= k

ak = − bk
ν|yk|2

− 1
yk

∑
l:l 6=k alyl.

(A.16)

Thus, letting ψE := (E −H)−̃1Y , we have

P(H)
R\{E}ψ = − 1

yk
〈φ,Ψk〉ψE + (E −H)−̃1φ, (A.17)

P(H)
{E}ψ =

(
− 1

ν|yk|2
〈φ,Ψk〉 −

1

yk

〈
P(H)

R\{E}ψ, Y
〉)

Ψk

=

(
− 1

ν|yk|2
〈φ,Ψk〉+

1

|yk|2
〈φ,Ψk〉 〈ψE, Y 〉 −

1

yk
〈φ, ψE〉

)
Ψk

=

〈
φ,
〈ψE, Y 〉 − 1

ν

|yk|2
Ψk −

1

yk
ψE

〉
Ψk. (A.18)

Hence

ψ = (E −H)−̃1φ− 1

yk
〈φ,Ψk〉ψE +

〈
φ,− 1

yk
ψE +

〈ψE, Y 〉 − 1
ν

|yk|2
Ψk

〉
Ψk. (A.19)

Conversely, given some φ ∈ L2(M), let ψ be defined as given by (A.19), in which case

ψ ∈ Dom(H). Then

(E −H)ψ = P(H)
R\{E}φ−

1

yk
〈φ,Ψk〉 P(H)

R\{E}Y, (A.20)

ν 〈ψ, Y 〉Y + φ

= ν

(
〈φ, ψE〉 −

1

yk
〈φ,Ψk〉 〈ψE, Y 〉 − 〈φ, ψE〉+

〈ψE, Y 〉 − 1
ν

yk
〈φ,Ψk〉

)
Y + φ

= − 1

yk
〈φ,Ψk〉Y + φ = − 1

yk
〈φ,Ψk〉 P(H)

R\{E}Y + P(H)
R\{E}φ−

1

yk
〈φ,Ψk〉 ykΨk + 〈φ,Ψk〉Ψk

= − 1

yk
〈φ,Ψk〉 P(H)

R\{E}Y + P(H)
R\{E}φ, (A.21)
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so again the equation (E −H)ψ = ν 〈ψ, Y 〉Y + φ is satisfied, and thus (E −H ′)ψ = φ.

It is thus concluded that for each E ∈ Spec(H)\Spec(H ′), writing E = Ek, noting

that E is a simple eigenvalue of H and that yk 6= 0, we have

(E −H ′)−1 = (E −H)−̃1 − 1

yk
〈·,Ψk〉ψE +

〈
·,− 1

yk
ψE +

〈ψE, Y 〉 − 1
ν

|yk|2
Ψk

〉
Ψk. (A.22)

In conclusion, we have now obtained explicit formulae for all resolvents {(E−H ′)−1 :

E ∈ C\Spec(H ′)} of H ′.

A.2 Further Observation of the Analogy between the

Delta Potential and Rank-One Perturbations

In §4.3.1 a construction is given for the eigenvalues and eigenfunctions of a rank-one

perturbation of H. In §4.3.2 the construction for the eigenvalues and eigenfunctions

of the delta-perturbed operator, originally stated in §2.2.5, is restated so as to enable

comparison with the rank-one perturbation. On the basis of the similarities in these

constructions, further observations can be drawn on the analogous features between the

rank-one perturbations and the delta perturbations.

Observe that for fixed Y ∈ L2(M)\{0}, the family of operators {H + ν 〈·, Y 〉Y : ν ∈
R\{0}} can be constructed as follows:

Partition R\{E ∈ Spec(H) : P(H)
{E}Y 6= 0} into equivalence classes, defined by the

equivalence relation ∼
Y

, where λ ∼
Y
µ if and only if

lim
L→∞

(〈
P(H)

(−∞,L]\{λ}(λ−H)−1Y, Y
〉
−
〈
P(H)

(−∞,L]\{µ}(µ−H)−1Y, Y
〉)

= 0. (A.23)

This is a particular way of formulating the equation LHS(4.83)E=λ = LHS(4.83)E=µ

which will be useful here when comparing with the delta potential. For all but one

of these equivalence classes (or all if Y coincides with an eigenfunction of H) there is a

corresponding self-adjoint operator satisfying the following:

(a) Performing steps (i) and (ii) of the earlier described construction of the orthonormal

eigenbasis of H ′, each function remaining after step (ii) is an eigenfunction of this

self-adjoint operator, with the same corresponding eigenvalue as for H.

(b) For each value E in the specified equivalence class under ∼
Y

, P(H)
R\{E}(E −H)−1Y is

an eigenfunction of this self-adjoint operator with corresponding eigenvalue E.

(c) The eigenfunctions stated in point (a) here, together with the normalisation of those

stated in (b), form an orthonormal basis of the Hilbert space L2(M).
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This eigenbasis of the self-adjoint operator is countable, and can be arranged into

a sequence for which the corresponding eigenvalue is non-decreasing and tending to

infinity. Lemma 2.1.1 then applies to this self-adjoint operator with its eigenbasis and

corresponding eigenvalues, just as it applies to the unperturbed operator H, and thus

(a), (b) and (c) above are sufficient to determine fully this self-adjoint operator.

Note that this construction fails for the equivalence class corresponding to

LHS(4.83)=0 (i.e. ν = ±∞), because all eigenfunctions produced under this construction

would in this case be orthogonal to Y , and thus could not form an orthonormal basis

of the Hilbert space. If however, Y coincides with an eigenfunction of H, the equation

LHS(4.83)=0 will then have no solution.

We now have a family of self-adjoint operators associated with the family of

equivalence classes under ∼
Y

. This family of self-adjoint operators is the family

{H + ν 〈·, Y 〉Y : ν ∈ R\{0}}.
The family of operators {HΘ : Θ ∈ (0, 2π)} corresponding to the delta potential can

then be constructed with precisely the same construction, replacing Y with δp (where

〈f, δp〉 := f(p) ∀ f ∈ C(M◦)), and noting that just as we have:〈
f,P(H)

{E}Y
〉

=
〈
P(H)
{E} f, Y

〉
∀ f ∈ L2(M) ∀ E ∈ Spec(H), (A.24)

〈
f,P(H)

S\{E}(E −H)−1Y
〉

=
〈
P(H)
S\{E}(E −H)−1P(H)

R\{E}f, Y
〉

∀ f ∈ L2(M) ∀E ∈ R\{E ∈ Spec(H) : P(H)
{E}Y 6= 0} ∀S ⊂ R, (A.25)

P(H)
{E} δp, P

(H)
S\{E}(E −H)−1δp ∈ L2(M) can be defined through the following equations:〈

f,P(H)
{E} δp

〉
=
〈
P(H)
{E} f, δp

〉
∀ f ∈ L2(M) ∀ E ∈ Spec(H), (A.26)

〈
f,P(H)

S\{E}(E −H)−1δp

〉
=
〈
P(H)
S\{E}(E −H)−1P(H)

R\{E}f, δp

〉
∀ f ∈ L2(M) ∀E ∈ R\{E ∈ Spec(H) : P(H)

{E} δp 6= 0} ∀S ⊂ R. (A.27)

All equivalence classes in the partition of R\{E ∈ Spec(H) : P(H)
{E} δp 6= 0} under ∼

δ

give a well-defined self-adjoint operator under this construction. The relation ∼
δ

here

is defined by (A.23) but replacing Y with δp - now a reformulation of LHS(4.95)E=λ =

LHS(4.95)E=µ, making use also of (4.101).

A significant difference now between the rank-one perturbations and the delta

potential operators is as follows:
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For each ν ∈ R\{0}, define

Xν :=

{
E ∈ R : P(H)

{E}Y = 0,
〈
P(H)

R\{E}(E −H)−1Y, Y
〉

=
1

ν

}
. (A.28)

Likewise define X±∞ similarly to Xν but replacing 1
ν

with 0. The family {Xν : ν ∈
(R\{0})∪{±∞}} is then the family of equivalence classes under ∼

Y
, with a corresponding

self-adjoint operator being well-defined for each Xν with ν finite. On the other hand, with

the delta potential we have〈
P(H)

(−∞,L]\{E}(E −H)−1δp, δp

〉
L→∞−−−→ −∞ (A.29)

∀E ∈ R\{E ∈ Spec(H) : P(H)
{E} δp 6= 0}. This further hints at the claim (along

with discussion in §2.2.4) that the 2D delta potential, as constructed by means of

the self-adjoint extension theory, is intuitively speaking a negative “delta” potential of

infinitesimal strength.
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