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Abstract 

Polymers are ubiquitous in modern manufactured products. The potential detrimental impacts of their end-of-life disposal have stimulated 
significant increases in recycling rates. Recyclate purity is paramount; however this must be achieved with a positive net energy balance. 
Existing technologies for identification and separation of polymers are often both expensive and energy intensive. This paper investigates 
Infrared (IR) imaging to extract information on thermal properties of various product polymers within a recycling line. An intelligent decision 
making support system is enabled using neural network based pattern recognition for automatic polymer identification and classification. 
Potential energy savings versus current technologies are discussed. 
© 2016 The Authors. Published by Elsevier B.V. 
Selection and peer-review under responsibility of the International Scientific Committee of “10th CIRP ICME Conference". 

 Keywords: Polymer; Pattern recognition; Recycling 

 
1. Introduction 

The use of plastics for the packaging of consumer goods 
has grown rapidly from their initial introduction, driven by the 
many functional and commercial benefits that these materials 
offer [1]. As a result, plastics packaging has now become 
ubiquitous in our modern society, particularly in the 
distribution and retail of food, beverage and other fast moving 
consumer products. One consequence of this is that plastics 
packaging now makes up a significant proportion of the 
Municipal Solid Waste in the UK; 22% by weight, which until 
recently was mainly disposed of in landfill [2]. However 
recent EU and UK government initiatives have targeted 
packaging waste in an attempt to reduce the amount going to 
landfill [3]. This has been approached from two directions – 
reducing the amount of waste being generated (material 
minimisation) and diverting material away from landfill 
through alternative waste management mechanisms (re-use, 
recovery and recycling [4]). Recycling is a major focus of the 
European Union’s (EU) environmental policy, specifically in 
its ‘Waste Framework Directive’ and principles of ‘Extended 
Producer Responsibility’, where each material group (plastics, 

glass etc.) has its own recycling and recovery targets, which 
are likely to increase from 22.5% to 60% by 2025[5].  

Meanwhile, driven by similar environmental and 
sustainability concerns the use of ‘renewable’ materials, such 
as bio-derived polymers, has also been promoted [6]. 
Conventional polymers are largely derived from fossil fuels, 
such as crude oil, which in addition to being a finite resource, 
is also widely considered to have reached maximum 
extraction levels, ‘Peak Oil’ [6]. Recent developments in bio-
polymers, developed in response to these needs, have seen a 
number of new materials commercially adopted within 
mainstream packaging applications, such as bottles, trays and 
bags [7]. Whilst some of these bio-polymers are equivalent to 
their conventional counterparts such as bio-PE and Bio-PET, 
others such as PLA and PHA have no conventional polymer 
equivalent [8]. These unconventional bio-polymers have 
created problems for recyclers in the separation process even 
in very small quantities. This is significant both from an 
environmental and a commercial standpoint as the purity of 
the recyclate has a direct impact on its reuse application 
(closed loop) and its market value (a high purity recyclate can 
has a higher market value than its ‘virgin’ equivalent).  
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1.1. Plastic recycling 

Recycling of municipal solid waste (MSW) generally 
involves two key stages: sorting and separation [9]. Sorting 
processes the waste into its different component parts and 
major material types without destroying the integrity of the 
original pack. The degree of sorting achieved depends on the 
sophistication of the technology used; however it is common 
for key packs/material groups to be generated, such as plastic 
bottles. Separation takes place after fragmentation and usually 
involves processing just one sorted group at a time i.e. plastic 
bottles. This will separate the fragmented plastics into 
individual polymer types, the purity of which will again 
depend on the sophistication of the technologies used [10]. 

Technologies used for plastics recycling (sorting and 
separation) fall largely into two key groups, physical and 
sensor based. Physical methods use a particular characteristic 
of the polymer or pack, such as its density, to separate or sort 
it from the other materials. Sensor based methods on the other 
hand firstly identify the polymer or pack and then use a 
computer controlled air jet to separate or sort them into 
individual waste streams [10]. Improvements in sorting will 
often lead directly to improvements in separation efficiency 
and with higher quality expectations [11]. 

However, sorting of waste often takes place further 
upstream in smaller, less specialized waste treatment plants. 
Plastic bottles are crushed into bales where they can be 
transported to centralized plastics processing plants. The 
quality of the bales significantly impacts the efficiencies of the 
plant with a high polymer mix requiring additional/repeated 
sorting/separation stages [9]. Also in less developed countries, 
improving the sorting of plastics, in mainly manual operations, 
could have additional safety and social benefits as well as 
improved environmental and commercial ones.  

PLA and PET are two polymers used in bottles for drinking 
water which have proved difficult to separate using current 
technologies, such as wet density separation [6]. Sensor based 
systems like Near Infra-Red (NIR) can be used with a greater 
success but are expensive and require significant investment 
and resources to manufacture and to run, putting it out of the 
reach of smaller recyclers and reducing the environmental and 
economic efficiency of larger plants [11]. 

1.2. Theoretical principles 

This research undertaken and presented in this paper 
investigates the application of thermal imaging as a low cost 
and low energy method for a polymer sensing system for use 
in the sorting of post-consumer plastics packaging waste; 
specifically PET and PLA bottles. These were chosen as they 
have similar densities making them harder to separate using 
current physical separation technology, as used by industry for 
separating PET from PE. Secondly, the bottles are very similar 
in appearance, as illustrated in Fig 1, making manual or 
automated visual sorting also problematic. This is increased 
when the bottles are crushed, contaminated and/or have labels 
removed. Thirdly, contamination of PET by even very small 
quantities of PLA can significantly effect is usability and 
resale value. 

Fig 1: Tested Specimens (Left to Right: PLA (26.2g), PET (25.3g), PET 
(14.6g) and PET (12.1g) 

PET and PLA however have very different thermal 
properties with significant differences in specific heat 
capacity and thermal conductivity as shown in Table 1.  

The aim of this research was to develop a low energy, low 
cost sensor based technology that exploited these differences 
in thermal properties.  

The experiments described in chapter 2 are based on the 
use of thermal imaging to detect differences in the cooling 
rates of 500ml plastic bottles made from a range of PET and 
PLA polymers.  

Using Newton’s Law of Cooling, it was initially calculated 
that PLA would cool at a slower rate than PET assuming 
equal starting temperatures and environmental conditions and 
it is asserted that this variation would be detectable in real 
time using a thermal imaging camera. 

Newton’s law of cooling is provided below: 

 

Where: 
Q is the thermal energy (J) 
h is the convective heat transfer coefficient (W/  
A is the surface area associated with the heat transfer (  

 refers to the transient thermal gradient between the 
object and ‘air’ temperature at a given time. 

This can be re-arranged to provide an equation in terms of 
heat flux ( ) (W/  

 

Where  refers to the fluid temperature, and object wall 
temperature is denoted by . 

This initial Lump System analysis used a solid cube of 
each material.  

Table 1: Comparison of polymer thermal properties 

Polymer Density 
(g/cm3) 

Specific Heat 
Capacity 
(J/Kg∙K) 

Thermal 
conductivity 
(W/(m·K) @23°C) 

Polyethylene 
terephthalate (PET) 1.38-1.56 1000-1350 0.15-0.4 

Polylactic acid (PLA) 1.25 1800 0.13 
High-density 
polyethylene (HDPE) 0.95-1.27 1300-2400 0.45-0.52 
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However the physical geometry of a plastic bottle is not 
aligned to that of a compact system and furthermore, in a 
practical situation the heat transfer coefficient itself will 
practically change with temperature, therefore employing a 
constant value in analysis limits the accuracy of any 
formulations derived. It was therefore decided to continue 
with the practical experimentation and subsequent results 
analysis before undertaking more in depth theoretical 
modelling. 

2. Materials and methods 

2.1. Experimental procedure 

An experimental campaign was carried out according to 
the methodology illustrated in Fig. 2. The first step consists in 
heating the bottle using a Carbolite fan assisted oven (see Fig. 
3) up to 50°C. The specimens were then removed and placed 
in an open sided box in order to isolate other sources of light 
and heat, and allowed to cool down. During this cooling 
phase, a series of infrared (IR) digital thermal images were 
acquired in order to measure the temperature during the 
cooling. The temperature data recorded were then processed 
using two different techniques illustrated in the next sections. 

An intelligent pattern recognition based decision making 
support system was set up with the aim of assessing the bottle 
types on the basis of their thermal properties. 

2.2. Samples tested 

Tests were carried out on a number of 500ml bottle variants 
that included different bottle weights and material options as 
shown in Table 2. In addition, for the lightest weight bottle, 3 
degrees of bottle compaction were evaluated to simulate the 
‘real life’ condition of packs entering a sorting plant. (It was 
hypothesized that vertical crushing of the bottle could 
potentially reduce the exposed surface and thus slow its rate of 
cooling). Table 3 provides the different condition codes for 
crushed bottle evaluation. 

2.3. Experimental setup and programme 

By combining the parameters related to bottle materials 
and bottle condition, and by repeating each experiment 5 
times, a total of 35 experimental tests were performed and 
summarised in Table 4. 

 

Fig. 2. Methodology flow chart 

Table 2. Test specimens 

Material 
Type Bottle Volume (ml) Uncapped 

Bottle Mass (g) 
Bottle Test 
Code 

PLA 500 26.2 A 
PET 500 25.3 B 
PET 500 14.6 C 
PET 500 12.1 B 

 

Table 3. Degrees of bottle compaction tested 

Condition Code Details 
W Whole Bottle 
25% Bottle Crushed to 25% of Original Shoulder Height 
50% Bottle Crushed to 50% of Original Shoulder  Height 
F Flattened Bottle 

 

 Fig. 3. Experimental setup scheme 

Table 4. Experimental programme 

Test ID  Material Bottle type Condition Rep. 
T1 PLA A W 1 
T2 PLA A W 2 
T3 PLA A W 3 
T4 PLA A W 4 
T5 PLA A W 5 
T6 PETTHICK B W 1 
T7 PETTHICK B W 2 
T8 PETTHICK B W 3 
T9 PETTHICK B W 4 
T10 PETTHICK B W 5 
T11 PETTHIN C W 1 
T12 PETTHIN C W 2 
T13 PETTHIN C W 3 
T14 PETTHIN C W 4 
T15 PETTHIN C W 5 
T16 PETTHIN C 25% 1 
T17 PETTHIN C 25% 2 
T18 PETTHIN C 25% 3 
T19 PETTHIN C 25% 4 
T20 PETTHIN C 25% 5 
T21 PETTHIN C 50% 1 
T22 PETTHIN C 50% 2 
T23 PETTHIN C 50% 3 
T24 PETTHIN C 50% 4 
T25 PETTHIN C 50% 5 
T26 PETTHIN C F 1 
T27 PETTHIN C F 2 
T28 PETTHIN C F 3 
T29 PETTHIN C F 4 
T30 PETTHIN C F 5 
T31 PETMEDIUM D W 1 
T32 PETMEDIUM D W 2 
T33 PETMEDIUM D W 3 
T34 PETMEDIUM D W 4 
T35 PETMEDIUM D W 5 

3. Image acquisition and processing 

Infrared temperature data acquisition was carried out using 
a Gobi-640-GigE thermal vision camera. 

IR images were recorded with a frame rate equal to 0.2 fps 
which corresponds to 1 image every 5 seconds. The 
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experimental tests duration was set to 1 minute, thus, a total of 
12 images were acquired during each experimental test. 

Using Xeneth 2.5 software, temperature data was 
generated by defining a rectangular 60 x 40 pixels Region Of 
Interest (ROI) within the IR image (see Fig. 4). The ROI 
shape and size were selected in order to ensure a 
homogeneous portion of the bottle surface avoiding possible 
presence of paper or plastic labels. 

The temperature data recorded was a spatial average over 
the ROI, in order to minimise the data variability increasing 
the reliability of the data reading [12,13]. An example of 
temperature data for Test T01 is reported in Fig. 5. 

A fundamental parameter in infrared temperature data 
acquisition is the emissivity. It depends on a several factors 
such as environment temperature, materials and surface finish 
of the sample [14]. The thermography settings are reported in 
Table 5. 

The extraction of data characteristic features from sensing 
systems is of primary importance in many information 
processing fields such as pattern recognition, predictive 
modelling, industrial process fault diagnosis and control [15]. 

Fig. 4. IR image acquired for Test T21 (PET Thick) 

Fig. 5. Temperature data recorded for Test T01 

Table 5. IR thermography settings 

Tool camera distance 0.5 m 
Atmospheric temperature 17°C 
Reflected temperature 17°C 
Total emissivity coefficient 0.9 

In this paper two methodologies were adopted to extract 
features: Statistical features and Polynomial features. Both 
methodologies are described in the next sections. 

3.1. Statistical features 

Four statistical indicators were calculated from the 
temperature data of each experimental test: 
 Mean 
 Variance 
 Skewness 
 Kurtosis 

The four statistical features mentioned above were grouped 
(Table 6) into 4-element feature vectors [15] to be used as 
input to a neural network based decision making support 
system. 

3.2. Polynomial features 

This kind of features consists in computing the coefficients 
of the polynomial f(x) of degree 2 that fits the IR temperature 
data in a least squares sense. 

The result is 3-element feature vector [15] containing the 
polynomial coefficients in descending powers: 

 

Therefore a set of 3 features, i.e. the polynomial 
coefficients , was extracted from the segmented signal 
of each experimental test, as shown in Fig. 6 and partially 
reported in Table 7. 

Table 6. Statistical features vector 

ID Test Mean Variance Skewness Kurtosis 
T1 34.3345 12.4254 0.4728 2.0167 
T2 36.2723 28.3071 0.4907 1.9474 
… … … … … 
T35 24.4814 14.8275 0.5757 2.3187 

 

Fig. 6. 2nd degree polynomial fitting of temperature data  

Table 7. Polynomial features vector 

ID 
Test α β γ 

T1 0.0022 -0.3362 42.2648 
T2 0.0038 -0.5377 48.5545 
… … … … 
T35 0.0027 -0.3835 33.3073 
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4. Pattern recognition decision making 

Neural network (NN) pattern recognition based on 
temperature data features extracted through the methodologies 
described above was utilised for decision making on polymer 
categorisation under two classifying perspectives: single bottle 
type classification and PLA/PET bottle identification. The 
features vectors obtained with the two methodologies were 
used to construct feature vectors [15] to input to a neural 
network (NN) based pattern recognition procedure [15–18] for 
decision making on polymer categorisation. 

The two sets of feature vectors made up two different 
training sets for NN learning using diverse architectures for 
pattern recognition [19]. Data for classification problems are 
set up for a NN by organising the data into two matrices, the 
input matrix and the target matrix. The input matrix consists 
of a 3- or 4-element feature vectors (columns) and either 20 
test cases (rows) for the whole bottles dataset (W) or 35 rows 
for the full dataset which includes both whole and crushed 
bottles (W+ C). The feed-forward (FF) back-propagation (BP) 
NN is the most commonly used family of NN for pattern 
classification purposes  [20]. Its structure is made of three 
layers (input, hidden and output layer respectively. 

In this application the following NN architecture 
configurations were adopted: 

The number of input nodes was equal to the number of 
input features vector elements: 
 4 nodes for statistical features as the feature vector is 

made of 4 elements: Mean, Variance, Skewness and 
Kurtosis. 

 3 nodes for polynomial features as the features vector 
elements are the polynomial coefficients α, β, and γ. 

The number of hidden layer nodes was set to 24. 
The output layer contained either 4 nodes, yielding a coded 

value associated with the bottle type, or only 1 node, in case of 
PLA / PET bottle identification. In this work, the algorithm for 
FF BP NN learning is the Levenberg-Marquardt algorithm 
which is considered one of the fastest methods for learning 
moderate-sized FF BP NN [21,22]. Data division for NN 
learning was carried out randomly with the following 
percentages: 70% for training; 15% for validation; 15% for 
testing. 

4.1. Single bottle type classification 

In the case of single bottle type classification, the bottles 
were clustered into four classes: A, B, C and D as reported in 
Table 2. Each row of the target matrix has four elements, 
consisting of three zeros and a one in the location of the 
associated bottle type. 

4.2. PLA / PET identification 

In the case of PLA/PET identification, the bottles were 
grouped into two clusters, according to the material type: 
 PLA Cluster, Class A 
 PET Cluster, Classes B, C and D 

The NN target vector, in this case, contains zeros for the PLA 
and ones for the PET. 

5. Results and discussions 

Tables 8 and 9 report the NN pattern recognition success 
rate (SR), i.e. the ratio of correct classifications over total 
training cases, for single bottle type classification and PLA / 
PET bottle type identification using statistical and polynomial 
feature vectors.  

The NN SR values are always higher than 90%, confirming 
the capability of both methodologies in extracting valuable 
data features for bottle material separation monitoring.  

The single bottle type classification results (Table 8 and 
Fig. 7) show a constant SR when using the W dataset (95%) 
regardless the feature extraction methodology. When 
considering the W+C dataset, instead, the statistical features 
lead to a higher SR (98.3%) compared to the polynomial 
features (91.4%). 

Table 8. Single bottle type classification SRs 

Single bottle type Dataset 
W W + C 

Features Statistical 95% 94.30% 
Polynomial 95% 91.40% 

Table 9. PLA / PET identification SRs 

PLA / PET Dataset 
W W + C 

Features Statistical 95% 97.10% 
Polynomial 95% 94.30% 

 

Fig. 7. Single bottle type classification success rates 

Fig. 8. PLA / PET identification success rates 
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The PLA/PET identification results (Table 9 and Fig. 8) 
show again a constant SR for the W dataset (95%) and for 
both the feature extraction methodologies. The W+C dataset 
results show a better performance of statistical features 
(97.1%) and a lower SR for polynomial features (94.3%). 

The different success rates for the two assessment purposes 
can be explained by the fact that a four-class recognition task 
(the four bottle types) is inherently more complex than a two-
class discrimination task (PLA/PET). In general, using a 
larger dataset, statistical features yielded higher SRs than 
polynomial features. 

6. Conclusions 

The sustainable recycling of plastics from MSW requires 
efficient and effective sorting and separation processes. 
Improved sorting can have a direct benefit on the efficiency 
and effectiveness of the subsequent separation process and the 
final quality and commercial viability of the recyclate. 

Current sorting and separation technologies are effective 
for some waste polymer combinations where sufficient density 
variation provides an effective means of segregation, however 
for others, such as PLA with PET, alternatives to density 
separation are required.  

Thermal imaging can provide an effective mechanism for 
polymers classification in controlled conditions where 
variations in thermal properties are sufficient to allow 
detectable cooling or warming differences. For use in the 
sorting of plastic bottles from MSW, the thermal imaging data 
requires additional processing due to the effect of variable 
bottle weights, crushing and contamination.  

The sensitivity of this detection and variation can be further 
improved through the subsequent analysis of a larger data sets 
and shorter time lapse for image acquisition.  Further testing is 
required across a wider range of material and bottle types and 
with larger sample sizes before the potential of this method 
can be confirmed. 
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