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Abstract Size-dependent crystal plasticity of metal single crystals is investigated using finite-

element method based on a phenomenological crystal-plasticity model, incorporating both 

first-order and second-order effects. The first-order effect is independent of the nature of the 

loading state, and described by three phenomenological relationships based on experimental 

results. The second-order effect is considered in terms of storage of geometrically necessary 

dislocations, affected significantly by the loading state. The modelling approach is shown to 

capture the influence of loading conditions on the sample size effect observed in compression 

and bending experiments. A modelling study demonstrates the subtleness and importance of 

accounting for first-order and second-order effects in modelling crystalline materials in small 

length-scales.  

 

1 Introduction 

     It is well known that metallic single crystals at the micron and submicron scale exhibit 

different mechanical behaviour in comparison to its bulk counterpart. In almost all 

experimental studies, the phenomenon of ‘smaller is stronger’ has been observed (see e.g. 

(Greer and De Hosson, 2011). From a classical standpoint, the sample size effect is typically 
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described by a power-law relationship (similar to the Hall-Petch effect), 0

n

f Kd     or 

n

f Kd  , where f  is the measured flow stress, d  is the characteristic sample size,  and 

0 , K  and n  are experimentally fitting parameters (Hug et al., 2015). For different single 

crystals, experimental results obtained by micro-pillar compression show that n  is typically 

in the range of  0.6~1.0 for FCC metals and 0.5 or less for BCC metals (Tarleton et al., 2015). 

Experimental data for HCP metals indicate that n  is ~0.5 for prismatic slip in Ti (Sun et al., 

2011), 0.8 (Ye et al., 2011) or 0.4 (Byer and Ramesh, 2013) for basal slip and 0.2 for 

pyramidal slip in Mg (Byer and Ramesh, 2013). Apart from the size-dependent strengthening 

effect, a size-dependent softening was also reported when a reverse loading was applied on 

the cantilever-beam of single-crystal copper (Demir and Raabe, 2010). 

      Although the sample size effect of single crystal is experimentally described by the 

power-law relationship, the underlying physical mechanism driving size effects is still 

debated. Geers et al. (Geers et al., 2006) categorized the size effect in polycrystalline metals 

into (i) intrinsically first-order effect, which was considered to cover all effects resulting from 

the nature of microstructure and (ii) second-order effect
†
, which was considered to result 

from gradients of deformation (strain gradient, slip gradient, etc.). We adopt a similar 

classification in this paper for single-crystal metals. In a single-crystal sample, as there is no 

microstructural feature related to grain boundary and the heterogeneity of grains, the first-

order effect can be determined from several dislocation-mediated mechanisms, including 

source-limitation, dislocation starvation and source-truncation hardening mechanisms, 

amongst others (El-Awady, 2015; Kiener et al., 2006). The second-order effect mainly 

originates from inhomogeneous plastic deformation or slip gradient in a single-crystal sample 

(e.g. due to bending).  

                                                 
†
 Not to be confused with higher order (gradient) theories 
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      Due to the different underlying physical mechanisms, a quantitative difference may be 

observed for the sample size effect measured in different loading conditions. For example, 

when the power-law relationship is employed to characterize the sample size effect in a Cu 

single crystal, the measured n  is about 0.4 for micro-pillar compression (Kiener et al., 2006) 

and 0.8 for cantilever beam experiments (Motz et al., 2005). In Ti, the value of K  for 

prismatic slip is about 131 Pa-m from micro-pillar compression tests (Sun et al., 2011) but 

354 Pa-m from cantilever-beam experiments (Gong and Wilkinson, 2011), although the 

values of 0  and n  are comparable for the two loading conditions. These experimental data 

indicates that the sample size effect in bending, due to the coexistence of first-order and 

second-order effects (i.e. externally imposed stress/strain gradients), is more pronounced than 

that in uniaxial compression where first-order effect dominate. Here, the dependence of size 

effect on loading conditions cannot be depicted by the popular power-law relationship. 

Moreover, the experimental results of Maass et al. (Maass et al., 2009) indicate that the 

power-law relationship based on flow stress could overestimate the true size effect due to the 

influences of boundary constraints on the measured hardening behaviour. Consequently, the 

simplified power-law relationship is incomplete (or incorrect) in describing size effect, 

especially when both first-order and second-order effects dominate.  

     To overcome the drawback of the power-law relationship approach, crystal-plasticity (CP) 

modelling was employed to help extract the nature of size effect in single-crystal metal (Gong 

and Wilkinson, 2011; Raabe et al., 2007). From a modelling perspective, the first-order effect 

is typically modelled using conventional CP based constitutive models, which suffer from 

several short comings. The second-order effect may be described by strain-gradient-based 

model (Geers et al., 2006). In a CP modelling framework, the second-order effect was general 

modelled as plastic strain gradient (Roters et al., 2010). The non-uniform plastic deformation 

was generally associated with the storage of geometrically necessary dislocations (GNDs) in 
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contrast to statistically stored dislocations (SSDs) that is considered independent of plastic 

strain gradient (Faghihi and Voyiadjis, 2012). Size-dependent work-hardening will become 

significant when the storage of GNDs is comparable to SSDs, leading to the second-order 

effect. Such a strain-gradient effect, associated with GNDs, has been introduced into CP 

model by two approaches. One is based on high-order CP theory that requires additional 

boundary conditions which are difficult to determine physically (Reuber et al., 2014). The 

other being a lower-order strain-gradient CP theory, where the storage of GNDs are 

introduced into the evolution of SSDs and calculation of slip-system resistance (Ma et al., 

2006).  

    Our primary goal is to characterize both the first-order and second-order effects in small-

scale single crystals using a CP theory. Three phenomenological relationships are proposed to 

describe the first-order effect based on micro-pillar compression experiments and discrete 

dislocation dynamics (DDD) simulation studies. A low-order strain-gradient CP approach is 

adopted to introduce the second-order effect in the current study. Contributions of the second-

order effect, in addition to the first-order one, are estimated from cantilever-beam 

experimental data. Numerical studies show that the proposed modelling framework is capable 

to characterise size effects under macroscopically homogeneous and in-homogeneous loading 

states.  

     The paper is organized as follows: in Section 2, a self-contained description of the 

governing relations of proposed size-dependent CP model is presented. Section 3 comprises a 

finite-element modelling strategy implemented in a general commercial finite element 

software package ABAQUS. In Section 4, results of the implementation are presented and 

discussed. The paper ends with some concluding remarks in Section 5.  
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2 Constitutive description of first-order and second-order effects 

In this section, a phenomenological size-dependent crystal plasticity (SDCP) model is 

proposed, which accounts for the first-order and second-order effects of crystalline metals. 

Standard notations are adopted here: scalars are in italics, vectors and tensors are represented 

with lower-case and upper-case bold letters. 

First, for completeness, the classical CP theory adopted in this study is reviewed. 

Deformation gradient F , can be decomposed into the elastic and plastic parts (Roters et al., 

2010), as, 

 
e p

F = F F ,  (1) 

where the subscripts ‘e’ and ‘p’ denote the elastic and plastic parameters, respectively. The 

multiplicative decomposition is non-unique. By applying the product rule of differentiation, 

one can obtain the rate of the total deformation gradient F : 

 e p e pF = F F + F F . (2) 

Therefore, the velocity gradient L  can be introduced following its definition 
-1

L = FF , as, 

 
-1 -1 -1

e e e p p e e pL = F F + F (F F )F = L + L . (3) 

It is assumed that the plastic velocity gradient, p
L , is induced by shearing on each slip 

system. Hence, p
L  is formulated as the sum of the shear rates on all slip systems, i.e. 

 
( ) ( ) ( )

1

N
  






 pL s m , (4) 

where, 
( )  is the shear slip rate on the slip system  , N  is the total number of slip systems, 

and unit vectors ( )
s  and 

( )
m  define the slip direction and the normal to the slip plane in the 

deformed configuration, respectively. Furthermore, the velocity gradient can be expressed in 

terms of a symmetric rate of stretching D  and an antisymmetric rate of spin W , as, 

 e e p p
L = D+ W = (D + W ) +(D + W ) . (5) 
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Using Eq. (3) and (4), it can be deduced  

 
( ) ( ) ( )

1

,
N

  






  -1

e e e e p pD + W F F D + W s m . (6) 

Following the work of Huang (Huang, 1991), the constitutive law is expressed as the 

relationship between the elastic part of the symmetric rate of stretching, e
D , and the Jaumann 

rate of Cauchy stress, 


σ , i.e.  

 


e p
σ+σ(I :D ) = C: (D-D ) , (7) 

where, I  is the second-order unit tensor, C  is the fourth order, possibly anisotropic, elastic 

stiffness tensor. The Jaumann stress rate is expressed as  

 


e eσ = σ -Wσ+σW . (8) 

On each slip system, the resolved shear stress, ( ) , is expressed by Schmid law,  

 
( ) ( ) ( )( ) :    s m σ . (9) 

The relationship between the shear rate, 
( ) , and the resolved shear stress, ( ) , on the slip 

system, α, is expressed by the power law proposed by Hutchinson (Hutchinson, 1976): 

 

( )
( ) ( )

0 ( )
sgn( )

n

g


 




    (10) 

where, 0  is the reference shear rate, 
( )g 

 is the slip resistance and n  is the rate sensitivity 

parameter. Next, the model is developed to account for the first-order and second-order 

effects, which are introduced into the calculation of 
( )g 

. 

2.1 First-order effect 

      In the absence of strain gradient, it is generally accepted that 
( )g 

 is determined by the 

content of statistically stored dislocations (SSDs) in the component. For a single crystal at 

macro-scale, nucleation of dislocations is relatively easy (El-Awady, 2015) due to the 
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geographic abundance of nucleation sites. Thus, slip resistance in the macro-scale can be 

described by the empirical Taylor model (El-Awady, 2015). However, at smaller length 

scales, a higher nucleation stress is required following source-limitation strengthening 

mechanism (Kiener et al., 2006; Tarleton et al., 2015). Besides, the existence of single-arm 

sources also results in a difficulty of operating dislocation sources based on dislocation-

truncation mechanism (Parthasarathy et al., 2007). Consequently, these strengthening 

mechanisms will lead to higher initial yield stress, which has been verified by the Laue 

diffraction analysis (Maass et al., 2009). To capture this effect phenomenologically, a size-

dependent term is introduced into the expression of  
( )g 

, similar to the work of Gong et al. 

(Gong and Wilkinson, 2011),  

 

( )

0
( ) 1

0

,

,

D S

D SSD S

g

D
b

d







 

    

 

 
   , (11) 

where, D  is the slip strength contribution from dislocation interactions and S  accounts for 

the increase in the nucleation stress caused by source-limitation strengthening and 

dislocation-truncation mechanisms. The hardening coefficient is presented by  , and   and 

b  are the shear modulus and Burgers vector, respectively. The characteristic size of a single 

crystal sample is introduced by d ; 0  is the initial slip resistance independent of sample size. 

0

1D  is the reference sample size, and the nucleation stress increases significantly when 

sample size decreases to the magnitude of  0

1D . The initial slip resistance ( )

0g   can therefore 

be expressed as 

 

0
( ) 1
0 0 0

0
( ) ( ) 1

0 ,0 ,0

1 ,

,

S

SSD S SSD

D
g

d

D
b b

d



 

 

  

     

 
    

 

 
   

 
 

 . (12) 
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Here, the initial dislocation density 
( )

,0SSD

  can be calculated by 0 . Thus, the size-dependent 

term, S , only contributes to the magnitude of the initial yield stress. 

  As mentioned earlier, the source-limitation, dislocation-starvation and source-

truncation hardening mechanisms were widely adopted to account for intrinsically first-order 

effect (El-Awady, 2015; Kiener et al., 2006). The source-limitation and source-truncation 

hardening mechanisms lead to the increase of dislocation nucleation stress (Kiener et al., 

2006; Parthasarathy et al., 2007; Tarleton et al., 2015). In the meantime, the dislocation-

starvation and source-truncation mechanism have an effect on dislocation multiplication 

(Parthasarathy et al., 2007; Tang et al., 2007). According to the dislocation-starvation 

hardening mechanism, due to limited mobile dislocations in a small-scaled single-crystal 

component, an increase in the flow stress is expected (Parthasarathy et al., 2007).  

Additionally, DDD simulations show that the existence of single-arm sources induce a 

smaller number of long dislocation segments and junctions at smaller scales (Tang et al., 

2007). Micropillar compression studies in Cu showed that the hardening rate increased with 

smaller sample size (Kiener et al., 2011). Therefore, it can be inferred that the hardening 

behaviour will be affected by limited mobile dislocations and initial single-arm sources in the 

component. To describe the increasing hardening rate with decreasing size, we assume the 

hardening coefficient   in Eq.(11) and (12) to be size-dependent, as, 

 
0

1
0 1

D

d
 

 
  

 
, (13) 

where 0  is the hardening coefficient at macro-scale. Equation (13) implies that for a fixed 

magnitude of dislocation density the generation and multiplication of dislocations require 

higher stress level for a smaller sized single crystal sample. Note that 0  is independent of 
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size, and hence, the initial density of SSDs decreases with decreasing size, which is similar to 

the phenomenological model proposed in the work of El-Awady (El-Awady, 2015).  

DDD simulations also demonstrate that there is a limit to the amount of dislocations, 

which can be physically sustained in small sized crystalline components (Deshpande et al., 

2005; Kiener et al., 2011). That is, the dislocation content in components will saturate to a 

value, which is observed to depend on sample size. The evolution of SSDs is described using 

a classical phenomenological equation as follows, 

 
( ) ( ) ( ) ( )

1 2SSD SSD SSDk k   



   
 

   
 

 , (14) 

where 1k  and 2k  are the material parameters, representing the generation and annihilation of 

dislocations, respectively. When the balance between generation and annihilation is achieved 

(i.e. ( ) 0SSD

  , the dislocation densities, 
( )

,SSD sat

 , will saturate. It can be deduced that this is 

proportional to  2

1 2( )k k  when ( ) 0SSD

  . In the macro-scale, 
( )

,SSD sat

  is fixed; however, for 

sample sizes in the micron and submicron scale, dislocations have an increase propensity to 

escape from a free surface (this is expected to increase with a decrease in the sample size). 

Therefore, 
( )

,SSD sat

  will decrease as the sample size decreases, as verified by DDD 

simulations (Deshpande et al., 2005; Kiener et al., 2011). In other words, the parameter 2k , 

representing the annihilation of dislocation, should be size-dependent to reflect dislocations 

loss from the free surface. This is expressed as 

 
0

0 2
2 2 1

D
k k

d

  
   

   

, (15) 

 where 0

2k  is the annihilation coefficient of dislocations at macro-scale. The reference sample 

size, representing dislocations escape from a free surface, is defined as 0

2D , and   is 

dependent on sample geometry. The equation implies that, with sample sizes comparable to 
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0

2D , the magnitude of saturated dislocation density becomes size dependent. When the 

sample size decreases to the magnitude of 0

2D , the crystal contains a relatively high number 

of dislocation sources producing a high mobile dislocation density at yield. Therefore, 0

2D  

should be larger than 0

1D  that defines the scale of the crystal with limited source or mobile 

dislocations. A similar conclusion was also drawn in the literature (El-Awady, 2015). From 

Eq. (14), it can be inferred that 
( )

,SSD sat

  is proportional to 2

1 2( )k k .  We assume that 
( )

,SSD sat

  

decreases with the volume of a single-crystal sample, V , i.e. 

 

2

( ) 1
,

2

SSD sat

k
V

k


 

  
 

 (16) 

In general, V  is proportional to ~ 2d  for a sample with large aspect ratio and ~ 3d  for 

components with a small aspect ratio. Therefore, Eq. (16) indicates that the value of   

should be in the range of 1.0~1.5 for a typical sample geometry.  

2.2 Second-order effect 

 During component deformation, strain gradients are generated in the material volume, 

which manifest as GNDs. Thus, the contribution of GNDs to slip resistance and the evolution 

of SSDs should be considered (van Beers et al., 2015). Consequently, the net scalar GND 

density, ( )

GND

 , is introduced into Eq. (11) and (14), as 

 
,1( ) ( ) ( )

0( )
ref

SSD GND

D
g b

d

  



       and (17) 

 ( ) ( ) ( ) ( ) ( )

1 2( )SSD SSD GND SSDk k    



    
 

    
 

 . (18) 

 Here, the GND density is defined as vector ‘density’ following the work of Ma et al. (Ma et 

al., 2006). The rate of GND density evolution, (α)

GND
ρ ,  is represented as 
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  ( ) ( )1
(

b

  (α) T

GND Pρ F m . (19) 

The net scalar GND density is defined as 
( )

GND

  (α)

GNDρ . As per the typical interpretation 

of GND density, an increase in the gradient of plastic deformation leads to an increase of 

GND density. Here, we make a crucial point that there is a threshold to the dislocation 

density, which can be sustained in a component. In other words, there is a physical limit to 

the saturated GND density under deformations. Experimental results of Huang et al. (Huang 

et al., 2006) support the fact that GND density ultimately attains a saturated value, max

GND , 

which can be used to redefine Eq. (19) as  

 

( ) ( ) ( ) max1
( ( ), if

, otherwise

GND GND
b

    


  
 



(α) T

(α) GND P

GND

ρ F m
ρ

0

 (20) 

3 Finite-element model 

The phenomenological SDCP model proposed in Section 2 was implemented in the 

commercial finite-element (FE) code ABAQUS/Standard by employing the user subroutine 

UMAT. The aim is to demonstrate effectiveness of the model in capturing the first-order and 

second-order effects in copper single crystal based on a micro-pillar compression experiment 

of Kiener et al. (Kiener et al., 2009) and a cantilever-beam experiment of Motz et al. (Motz et 

al., 2005). 

The calculation of a strain gradient is realized with the use of a C3D8 element in 

ABAQUS, similar to the method outlined in (Ma et al., 2006). The shear modulus and 

Burgers vector are 48.5GPa and 0.256 nm, respectively. The initial GND density was set as 

zero (since GNDs are typically associated with internal strain gradients that are absent in an 

unloaded sample), while the initial SSD density is calculated based on the size-independent 

initial slip resistance 0 . Other model parameters are listed in Table 1 for single crystal 

copper. In our studies, the characteristic sample size was chosen as the edge length of a 
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square cross-section for micro-pillar compression sample, and the sample thickness for a 

cantilever beam. 

Figure 1 shows a schematic of the FE models used to describe the micro-pillar and 

cantilever beam experiment, in which the crystal orientation and sample geometry is imposed 

following these experiments (Motz et al., 2005). A cross-section of the micro-pillar is 

assumed to be square and constant along its height. For the cantilever-beam, its effective 

width, thickness and length are denoted by W , H  and L , respectively (Fig. 1(b)). Loading 

of cantilever beam was realized with a spherical indenter as in the experiment. The indenter’s 

radius was 2.0μm for all simulations (our simulations show that the perceived 

indenter/reaction load is independent of the indenter radius).  

The micro-pillar compression experiment (Kiener et al., 2009) referred in this paper   

considers a sample with a constant cross-sectional area and length-width aspect ratio of ~2.0. 

We note that instability in the deformation during micro-pillar compression can be restrained 

since friction is present in experiments (Raabe et al., 2007). Consequently, for micro-pillar 

compression, the displacement boundary conditions prescribed are shown in Fig. 1(a); they 

are 

 
1 2 3

0, 0, 0X Y ZB B B
u u u   , (21) 

where, 1B , 2B  and 3B  are the bottom, left and back face of the pillar as per the schematic in 

Fig. 1. The applied displacement on the top surface, YU , is determined by the applied strain,  

Y , as 

 Y H YU L  , (22) 

where HL  is the height of the micro-pillar. Displacement boundary conditions for the 

cantilever beam experiment are shown in Fig. 1(b), which are 

 
1

0Xu

            (23) 
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2 2

0, 0Y Zu u
 
     ,     (24) 

where, 
1  and 2  are the left and bottom face as per the schematic in Fig. 1(b). To facilitate 

a quantitative estimation of sample size effect in bending, the effective flow stress of 

cantilever beam ,B f  was calculated following the definition as in the experiment (Gong and 

Wilkinson, 2011; Motz et al., 2005),  

 max
, 2

4
B f

F L

WH
  , (25) 

where maxF  represents the maximum load in bending of the cantilever beam. In the numerical 

study, about 25,000 elements were used to mesh the cantilever beam, after an exhaustive 

mesh-convergence study. 

 

Fig. 1 Schematic of FE models for micro-pillar compression (a) and cantilever beam (b) 

 

Table 1 Model parameters of single crystal copper  

Parameter Definition Value Unit 

0  Reference shear rate 0.001 s
-1 

n  Rate-sensitivity parameter 50 - 

0  Size-independent initial slip resistance 16.0 MPa 
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0  Macro-scale hardening coefficient 0.25 - 

0

1D  Reference sample size of limited source 8.5 μm 

1k  SSD generation coefficient 130.0 μm
-1 

0

2k  
Macro-scale SSD annihilation 

coefficient  
13.3 - 

0

2D  
Reference sample size of mobile 

dislocation escaping  
20.0 μm 

  Adjustable parameter  1.2 - 

max

GND  Saturated GND density 15 μm
-2

 

4 Results and discussions 

4.1 Size-independent response of macro-size samples 

First, experimental data for the macro-size copper single crystal are employed to calibrate 

the developed SDCP model. Compression of a copper single crystal in [011] orientation was 

reported by Kalidindi and Anand (Kalidindi and Anand, 1993) with diameter of 12.7 mm, and 

in [111] orientation with diameter of 25.0 mm by Takeuchi (Takeuchi, 1975). Numerical 

results show an excellent match with these experimental data for the specific orientations (Fig. 

2). As expected, the SDCP model reduces to a conventional crystal plasticity (CCP) model 

describing the size-independent behaviour of a macro-scale copper single crystal. 
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Fig. 2 Comparison of experimental data and simulation results under compression of 

copper single crystal at macro-scale 

4.2 Size effect in compression 

In the SDCP model, three parameters are used to characterize the first-order effect. For 

this, the experimental data from compression studies of a square micro-pillar with a constant 

cross-sectional area of 4.82μm×4.82μm (Kiener et al., 2009) was employed. The nature of 

deformation implies that external strain-gradient effect can be eliminated in the compression-

test analysis (in the limit of small-deformations).  

Here, we demonstrate the importance of (i) accounting for a size-dependent hardening 

rate, and, (ii) size-dependence over and above that in CCP models. In Fig. 3, the simulation 

results obtained with the CCP model (which is size independent) shows a significant 

difference with experimental data. Such a difference demonstrates the influence of the first-

order effect on small-scale plasticity, which can be summarized as the following features 

observed with a decrease in the sample size: (1) an increase of the initial yield stress, (2) 

decrease of flow stress relative to the initial yield stress (weakening of hardening behaviour) 
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and (3) an increase in the hardening rate. These observations are based on the micro-pillar 

compression experiments in single crystal copper (Kiener et al., 2011; Maass et al., 2009). 

Numerical results from the SDCP model, considering the proposed size-dependent hardening 

(as in Eq. (13)) and the standard hardening rate (i.e., 𝜒 = 𝜒0), are also presented in Fig. 3. 

The results show that when the standard hardening rate is considered, the hardening modulus 

is underestimated in the small-strain range but overestimated in the large-strain range when 

compared to the experimental results. The proposed SDCP model provides a better match 

with the experimental data. The comparison of the simulation results and the experimental 

data indicates that the SDCP model is more effective in small-scale plasticity than the widely 

adopted CCP model. The size-dependent initial yield stress and strain hardening behaviour 

can be better differentiated by combining the SDCP model and in-situ Laue diffraction 

analysis as described in the work of Maass et al. (Maass et al., 2009). 

 

Fig. 3 Comparisons between experimental data and simulation results during compression of 

copper micro-pillar with square cross-section of 4.82 μm×4.82 μm and loading direction 

along [111] 
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Numerical predictions of stress-strain curves for different pillar sizes are shown in Fig. 4. 

The loading direction is along [111] for all the cases. The importance of accounting for the 

first-order size-effect can be appreciated when comparing the stress-strain response of a bulk 

sizes specimen in Fig. 4. Apart from the initial yield stress, the flow stress, f , defined as the 

stress at 10% overall strain (Kiener et al., 2009), increases with the decreasing sample size. 

However, the hardening behaviour becomes less significant in a smaller scale. As shown in 

Fig. 5, the SDCP model accurately captures the first-order effect for single crystal copper 

micro-pillars with the edge length in the range of 0.8-8.0 μm. The first-order effect becomes 

prominent for the edge length smaller than 5.0μm. The experimental data for flow stress 

measured with cantilever bending experiments are also presented in Fig. 5, demonstrating 

that the size effect in bending is more significant than that in compression due to the second-

order effect, which will be studied in the following section. 

 

Fig. 4 First-order effect shown by compressive stress-strain curves of single crystal copper 

with loading direction along [111] ( D  is the side length of the square cross-section) 
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Fig. 5 First-order effect for single crystal copper obtained by micro-pillar compression and 

micro-cantilever bending: experimental data and simulation results 

4.3 Size effect in bending 

The second-order effect is quantified with the aid of beam bending experiments. In the 

SDCP model, the saturated GND density was calibrated according to the measured load-

displacement curves of the cantilever beam with dimensions of 5.0μm×5.0μm×20.0μm (Motz 

et al., 2005) as shown in Fig. 6. It is obvious that the magnitude of max

GND  affects the hardening 

behaviour during bending. The load level increases significantly with an increase in max

GND . 

From our initial numerical study, max 215GND m    provides a reasonable match with the 

macroscopic load-displacement response from the experiments (Fig. 6). In comparison, the 

load calculated for max 220GND m    is much larger after displacement of 500nm, indicating 
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that GND accumulation is restricted when the strain gradient is relatively large, similar to the 

conclusion drawn by Huang et al. (Huang et al., 2006). 

 

Fig. 6 Effect of GNDs on load-displacement curves of cantilever beam with dimensions 

of 5.0 μm × 5.0 μm × 20.0 μm
 

Figure 7(a) shows the comparison of simulation results and experiment data for a 

cantilever beam with dimensions of 5.0 μm × 2.5 μm × 16.3 μm (Motz et al., 2005). The 

results demonstrate the influence of first-order and second-order effects on bending 

behaviour. The peak-load value obtained with the CCP model is only 15% of the 

experimentally measured load value, showing a poor match. Incorporating the first-order 

effect (i.e. the SDCP model with only the first-order effect) improves predictions when 

compared to those of the CCP model. However, the peak-load value is ~50% of the 

experimentally measured value when the second-order effect is not accounted for. 

Introducing both first-order and second-order effects as in the full SDCP model shows an 

excellent correlation with the experimental data. Figure 7(b) shows the distribution of slip 

resistance on the slip system [-111]<101> corresponding to the loading states ① and ② 
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in Figure 7(a). The field plots show that the accumulation of GNDs (as in ① when 

compared to ②) leads to the significant increase in slip resistance. Thus, the second-

order effect is crucial for small-scale plasticity, especially when modelling loading states, 

which induce macroscopic strain gradient.    
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Fig. 7 (a) Comparison of experimental data and simulation results for cantilever beam 

with dimensions of 5.0 μm × 2.5 μm × 16.3μm; (b) slip resistance on slip system [-

111]<101>  corresponding to  ① and ② in Fig. 7(a). 
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Fig. 8 Effect of geometry on estimation of effective flow stress of cantilever beam 

To study the sample-size effect in bending, the effective flow stress (as defined by Eq. 

(25)) is typically related to the sample size (Gong and Wilkinson, 2011; Motz et al., 2005). 

The definition of flow stress in Eq. (25) is based on the Euler beam theory, which is 

dependent on the length-thickness ratio ( /L H ) of the beam. The range of values of /L H  

for the beams in the experimental study was limited (Motz et al., 2005). However, our studies 

indicate that the influence of /L H is substantial and needs to be considered before 

quantitative estimation of the sample-size effect is carried out. Without loss of the generality, 

two types of cantilever beams with different cross-sectional geometry are employed to 

investigate the influence of /L H  on the effective flow stress for the specific cross-sectional 

beams. The numerical results in Fig. 8 show that the effective flow stress decreases with the 

increasing length-thickness ratio for the two types of cantilever beams. The variation of the 

effective flowing is large when / 6.0L H  . The influence of /L H  on the calculated flow 

stress  is consistent with the experimental results of Motz et al. (Motz et al., 2005) for the 
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cantilever beam with cross-section of 5.0 μm × 5.0 μm. Note that all the material parameters 

are fixed in the parametric study in Fig. 8, and, hence, the influence of /L H is due to the 

peculiarity of Eq. (25) based on the Euler beam theory. Other experimental studies (Maaß et 

al., 2015) verify that samples with lower aspect ratios exhibit a more pronounced size effect. 

Our studies, as shown in Fig. 8, indicate that such a conclusion should be assessed carefully 

to avoid a spurious determination of phenomena not related to physics of the deformation 

process. 

A comparison of the effective flow stress between the simulation results and the 

experimental data (Motz et al., 2005) for cantilever beams with different sample sizes is 

shown in Figure 9. The table (see inset Fig. 9) lists the effective geometrical parameters of 

cantilever beams used in experiments of  Motz et al. (Motz et al., 2005). The simulation 

results correlate well with the experimental data when the geometrical parameters of the 

numerical samples are same as the experimental ones. It indicates that the present SDCP 

model indeed capture the first-order and second-order effects accurately, and the existence of 

second-order effect determines a more significant sample size effect in bending than that in 

compression. As indicated by Fig. 8, the effective flow stress of the cantilever beam is 

estimated incorrectly for a small ratio /L H  due to the inaccuracy of Eq. (25). It means that 

different values of /L H  may show different sample size effects. To eliminate such an 

influence, the simulation results obtained for beams with relatively large and constant 

/ 8.0L H   are also presented in Fig. 9. Also, the widely adopted relationship, 

0

n

f Kd    , is used to fit the simulation results obtained for both variable and constant 

values of /L H , respectively. Here 0  is taken as 135MPa, corresponding to the stress at 10% 

strain along [110] as shown in Fig. 2. It is clear that there is a difference between the two 

strategies for quantitative estimation of sample size effect; for example, the exponent 1.0n   

for the variable /L H  while 1.3n   for the constant /L H . Thus, estimation of the sample 
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size effect in bending is more challenging, since it is determined not only by both first-order 

and second-order effects but also specific features of the sample’s geometry. 

 

Fig. 9 Sample size effect of Cu single crystal obtained with cantilever beam: experimental 

data and simulation results. The table lists the effective geometrical parameters of cantilever 

beams used in the experiments of  Motz et al. (Motz et al., 2005).  

 

5 Concluding Remarks 

The sample size effect of small-scale specimen of single crystal copper is investigated 

using the phenomenological SDCP model, in which the contributions from first-order and 

second-order effects are considered. In particular, the model is capable to capture size effect 

in both compression and bending deformation regimes. 
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The proposed model is a practical extension of a strain-gradient crystal-plasticity 

formulation, which requires no additional parameters over and above those demanded by the 

underlying strain-gradient model. The essential factor for modelling accuracy is availability 

of uniaxial test data capturing the first-order effects and experimental data for the loading 

states incorporating macroscopically inhomogeneous deformation (such as bending) 

incorporating influence of both first-order and second-order effects. We are currently 

exploring the applicability of the modelling framework in capturing size effect in Ti-64 with 

an HCP crystalline structure.  
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