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This thesis describes the development of a measurement system for monitoring dy-

namic tests of civil engineering structures using long-exposure motion blurred images,

named LEMBI monitoring. Photogrammetry has in the past been used to monitor the

static properties of laboratory samples and full-scale structures using multiple image sen-

sors. Detecting vibrations during dynamic structural tests conventionally depends on

high-speed cameras, often resulting in lower image resolutions and reduced accuracy.

To overcome this limitation, the novel and radically different approach presented

in this thesis has been established to take measurements from blurred images in long-

exposure photos. The motion of the structure is captured in an individual motion-blurred

image, alleviating the dependence on imaging speed. A bespoke algorithm is devised to

determine the motion amplitude and direction of each measurement point.

Utilising photogrammetric techniques, a model structure’s motion with respect to

different excitations is captured and its vibration envelope recreated in 3D, using the

methodology developed in this thesis. The approach is tested and used to identify changes

in the model’s vibration response, which in turn can be related to the presence of damage

or any other structural modification. The approach is also demonstrated by recording

the vibration envelope of larger case studies in 2D, which includes a full-scale bridge

structure, confirming the relevance of the proposed measurement approach to real civil

engineering case studies.

This thesis then assesses the accuracy of the measurement approach in controlled

motion tests. Considerations in the design of a survey using the LEMBI approach are

discussed and limitations are described. The implications of the newly developed moni-

toring approach to structural testing are reviewed.
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Chapter 1

Introduction

Civil engineering structures are key components of modern infrastructure, and exist

throughout the world. Continual innovation in structures and engineered materials com-

bined with the need to minimise costs creates a desire to develop materials and methods

that can be used with greater efficiency. This requires detailed testing before construc-

tion and a need for more advanced and detailed monitoring strategies. Existing structures

may also be part of continuous health monitoring programmes to protect against failures

resulting from undetected deterioration.

Structural testing analysis techniques include those that examine static properties of

the structure, and those that analysis dynamic properties. In a static test, classically,

gradually increasing loads are applied to the structure under test whilst its performance is

monitored. Depending on this outcome, the structure is then deemed safe for its intended

function. However, this approach may be inconvenient as it requires test weights to be

manoeuvred on to the structure, which often requires that it be taken out of service.

Tests utilising dynamic techniques use much lower loads and can reveal more than static

techniques. Although the analysis of measured data remains complex, there is a distinct

trend to use dynamic testing in structural engineering (Kasinos et al., 2014).

Various sensors and instrumentation are available to the responsible engineer to aid

assessment. Photogrammetry has demonstrated its potential as a monitoring tool for

structural health monitoring, allowing simultaneous non-contact measurement of multiple

monitoring points. The approach can be comparatively cheap, using off-the-shelf equip-

ment, and is effective at both large and small scales. Normally, a conventional method is

1
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adopted where absolute coordinates are measured at discrete ‘epochs’, each captured at

an appropriate frame rate. The literature review carried out as part of this research has

identified key limitations of such an approach when it comes to higher sampling rates,

and how a compromise exists between the rate of image acquisition, necessary to detect

faster vibrations, and image resolution, necessary for accurate spatial measurement.

In this thesis, an alternative approach has been developed using the inherent advan-

tage of acquiring long exposure motion blurred images, in which the whole motion of

an object is captured in a single frame. The long exposure motion blurred image mea-

surement (“LEMBI” measurement) permits the use of higher image resolutions for more

accurate measurement of the vibration envelope. Significantly, it is frequency indepen-

dent, allowing vibration envelope measurement of fast vibration without dependence on

imaging speed.

1.1 Aim and Objectives

The overall aim of this research project is

To develop novel image processing approaches for monitoring testing of struc-

tural elements using dynamic techniques.

This aim is separated into five objectives:

Objective 1. Compose a literature review to assess current and particularly

image based methods used for measuring deformations in structural testing,

including both conventional and non-contact approaches.

To gain the understanding of existing monitoring systems in use for structural testing,

a thorough literature review has been carried out. This review covers contact and non-

contact sensors and evaluate both. The review includes established and well understood

approaches in addition to the most recent developments in modern instruments.

With the aim of developing a measurement method exploiting motion-blurred images,

an understanding of image processing techniques is required, including algorithms already

in use in photogrammetry as well as developments from computer science. A review of

the mathematical models already common in photogrammetry is also included.
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Objective 2. Develop algorithms for measuring blur in long-exposure images

captured during dynamic structural tests and design a method of incorporating

these into routine structural testing.

The long exposure imaging strategy differs from that currently in use, as it inevitably

creates images that cannot be processed automatically using existing photogrammetric

software. Bespoke image registration and measurement algorithms are therefore required.

These have been developed in the MathWorks Matlab software package. Not only should

the algorithms derive measurements describing deformation from long-exposure images,

but are incorporated into a workflow suitable for routine structural testing. Such an

algorithm would be designed initially to permit two dimensional planar monitoring in a

user selectable plane.

Objective 3. Test the accuracy of such an image based system against conven-

tional instrumentation.

As with any measurement system, an assessment of the accuracy is important to

understand the capabilities and limitations of the approach. An experiment has been

defined to determine the achievable accuracy of the approach by comparing image-based

measurements with those made using conventional instrumentation known to be more

accurate.

Objective 4. Investigate potential of measuring deformation in three spatial

dimensions using multiple camera locations and digital photogrammetry.

Having successfully achieved two dimensional monitoring in objective 2, the technique

is extended to include full 3D monitoring. How off-the-shelf photogrammetric algorithms

could be used directly, or how the solution required a bespoke algorithm has been con-

sidered, and bespoke algorithms were written where required. An appropriate workflow

has been designed also.

Objective 5. Assess the scalability of image-based monitoring techniques for

real structures using a series of case studies.
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To demonstrate the approach is practicable for monitoring of real-life civil engineering

structures, a case study on a larger structure outside the laboratory was sought. This

case study demonstrates the effectiveness of the approach at smaller scales and identified

practical considerations concerning monitoring of real structures.

1.2 Contribution to Knowledge

The “contribution to knowledge” of this research is to demonstrate and assess a new

approach for measurement of harmonic vibrations in civil engineering structures using

long-exposure motion blurred images. The demonstrated approach is radically different

to conventional photogrammetric techniques, producing data in a different format, em-

phasising the accurate measurement of the vibration envelope over absolute position-time

history. The limited measurable frequencies is alleviated with the frequency invariant ap-

proach.

A workflow has been designed from image capture to generating results. A new image

measurement algorithm was required to determine image coordinates and displacements,

and for the additional steps for coordinate matching for 3D measurement. The vibra-

tion measurement technique is demonstrated by monitoring deformation using several

case studies, providing information that is both cheaper and richer than is possible with

conventional contact sensors.

1.3 Thesis Structure

This thesis follows the logical progression of the measurement approach’s development,

testing and assessment, and comprises the following five chapters:

Literature review This chapter contains a review of existing literature in the field.

This reveals an opportunity to develop and assess the new approach for dynamic testing.

Methodology After initially discussing the instruments available to this research project,

this chapter details the development of the working long-exposure motion blurred image
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(LEMBI) measurement solution. A number of image measurement strategies are tri-

alled, before deciding on the solution considered most effective. Algorithm development

is detailed, and key algorithms are included in Appendix C. The accuracy of these mea-

surements are discussed here as part of the algorithm development.

Case studies This chapter demonstrates the applicability and scalability of the created

approach with three case studies: the laboratory shake table demonstration represents

a large scale test in a controlled environment; a larger vertical timber section demon-

strated increasing scale in 2D and 3D monitoring; and a full scale a suspension bridge

demonstrates a full small-scale structure. The results of these case studies are presented.

Discussion The results from the previous chapter are evaluated, and considerations

identified whilst carrying out monitoring of the case studies are discussed. These consid-

erations are expanded to describe the limitations of long exposure images for structural

monitoring, as well as advantages that exist over other methods. Comparisons with

other measurement approaches are made, and the implication to wider structural testing

discussed.

Conclusion The final chapter summarises the findings in this thesis, and assesses

whether the initial aim and objectives of this research project have been fulfilled. Recom-

mendations are made for potential future work, particularly focussing upon improvements

to the measurement approach. A range of potential other applications of the method are

identified also.





Chapter 2

Literature Review

The purpose of this literature review is to examine prior work conducted in the field of

structural testing and assess how image processing techniques can be applied. Knowl-

edge is pooled from structural testing of civil engineering structures, photogrammetry

and image deblurring. Current techniques for structural testing are introduced and a

distinction is made between static and dynamic test techniques. A range of monitoring

sensors will be examined and advantages of image processing methods for full-field mea-

surement highlighted. Deblurring techniques for measuring the apparent blur in images

of moving objects are then introduced. The review then examines in greater detail the

particular techniques and considerations of the approach and introduces some algorithms

used in the processing of digital images.

2.1 Structural testing

Structural testing is used to evaluate the performance of structural members, both in-

situ and in the laboratory environment. Structural testing may be carried out to test

the relation between analytical models and their structural behaviour. For example,

the development of new, more efficient building materials or those made from recycled

materials requires experimental verification. Typically, loads are applied to test specimens

of different sizes and their performance monitored as the load increases to a prescribed

limit (or in the case of destructive tests, their ultimate capacity). New materials may

respond differently, demanding more advanced monitoring systems to record complex

7
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deformation patterns.

The integrity of existing structures may wish to be tested also. During construction,

installed elements may be tested for proof of their performance. The structure may be

overloaded above its intended working load and based on its performance, deemed safe

for its intended use. The record of the test serves as evidence of the structural integrity.

Knowledge of the performance of installed structural elements could be used to influence

the design of other building elements (Moss and Matthews, 1995). A structure may also

be tested if, for example, a change of use of a building is desired, to verify its integrity

following a potentially damaging event, or to verify the quality of repair work.

2.1.1 Structural Health Monitoring

Structural health monitoring (SHM) is a growing area of research involving long-term

monitoring projects for existing structures. The destructive test methods used in a labo-

ratory are generally unsuitable for existing structures and non-destructive test techniques

are used instead. Existing structures may be tested to detect damage occurring due to

long-term material deterioration or a consequence of fatigue caused by cyclic loading.

Routine testing is used to achieve an early indication of structural degradation so that

improvements may be made in good time. Usually, permanent gauges are fitted and data

is either continuously collected or is collected at regular intervals. The measured data

are checked against calculated limits which, if exceeded, prompt further more-extensive

examination (Brownjohn, 2011).

2.1.2 Static testing techniques

It is common to monitor the displacement of a beam element using a gauge fitted at

the beam’s mid-span, at the point of maximum deflection. Where additional measure-

ments are required, possibly to assess the deformed shape of the beam, the number of

gauges will be increased and often arranged at equal spacing or positioned under load

locations. The real-time monitoring of displacement gives an indication of how the test

is progressing, and a graph of displacement against increasing load shows how the test

element performed.
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Strain gauges may be used to monitor the localised deformations of materials. In

the case of concrete, measuring crack widths and locations gives an indication of the

performance of the paste-aggregate bond or, where they are used, additives designed to

control crack formation (Benning et al., 2004). When monitoring strains in concrete,

strain gauges connected to a data-logger are frequently used to measure crack widths.

Strain gauges provide limited information, being able to measure in the one location

where they are fitted. Gauges could be concentrated in areas expected to fail, however,

while the formation of cracks is predictable in general, it is difficult to predict the exact

location where a crack will occur.

Static testing of real structures may be considered inconvenient if it is to be carried

out on a regular basis (Moss and Matthews, 1995). Applying increasing load to a real

structure may involve transporting numbers of heavy weights to site. For some appli-

cations, large tanks may be placed on a structure and have water pumped in or out to

more easily control the amount of load. It is usually necessary to take a structure out of

service for the test to take place.

2.1.3 Dynamic testing techniques

Dynamic testing usually involves a structure vibrating either naturally by wind or traf-

fic loading, or artificially by exciters. The ‘vibration response’ of the structure is then

recorded for analysis. In principle, dynamic testing can be extremely powerful as a mon-

itoring tool, as a structure’s natural frequencies measured at one point will be sensitive

to changes in any part of the structure.

Practical testing of in-service structures with dynamic techniques is usually less in-

vasive than testing using static techniques. Much lower loads are required and smaller

deformations are experienced, so testing may be carried out while the structure is in

service. Analysis of data collected during dynamic testing is, however, more complicated

than using static techniques so specialised expertise is required. Interpreting data is com-

plicated and it is particulartly challending to locate and quantify damage (Brownjohn,

2011).
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2.1.3.1 Natural frequencies

The vibration response of a structure, as measured in a discrete location, is the su-

perposition of harmonic functions tuned to the structure’s natural frequencies. Natural

frequencies of a structure can be found by applying the discrete Fourier transform to the

vibration response recorded in the time domain. The Fourier transform can establish the

amount of energy associated with the harmonic vibrations superimposed in the vibration

response. Natural frequencies are sensitive to mass and stiffness and a measured change

in a natural frequency would usually indicate a change in stiffness, probably due to some

structural change (Hassiotis and Jeong, 1993).

Modal shapes Natural frequencies alone can determine the existence of cracks or other

forms of damage but not the location where they have occurred (Pandey et al., 1991).

More advanced algorithms utilise modal shapes derived from the vibration response mea-

sured at several locations on the structures. Modal shapes measured at different time

intervals can be compared using the Modal Assurance Criterion (MAC) and Coordinate

Modal Assurance Criterion (COMAC) coefficients, that will indicate a structural change

if they vary from unity (Pandey et al., 1991). The response modal shapes may be com-

pared with finite element (FE) models of predicted situations to attempt to locate and

quantify damage. However, the accuracy of a FE model is dependent on the fine selection

of parameters, to which modal shapes are highly sensitive.

Since techniques utilising modal shapes require the vibration response of several sen-

sors at different points on a structure, a higher number of sensors provides the most ac-

curate results as larger interpolation is otherwise necessary (Carden and Fanning, 2004;

Dilena and Morassi, 2011). FE models attempt to replicate structural changes in sim-

ulated locations to identify the damage, but note the accuracy considerations of using

FE models suggested above. The more advanced ‘modal curvature technique’ introduced

by Pandey et al. (1991) uses relative changes to identify and locate cracks in a structure

rather than comparing to multiple FE models of possible situations. This method was

improved on by Al-Ghalib et al. (2011) who proposed the ‘curvature difference ratio’.

Fan and Qiao (2011) and Morassi et al. (2007) discuss determining natural frequencies

from known details about a structure as a ‘forward problem’. The usual aim of structural
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health monitoring is the reverse of this: to learn about the structure from its natural

frequencies. Fan and Qiao explain how the problem is ‘ill-posed’ and remark that cracks

in different locations with different severity can yield similar data. This ‘inverse’ problem

has a non-unique solution and for a solution to be found a certain amount of engineering

judgement is required (Morassi and Tonon, 2008).

Comparative studies of damage detection score techniques on their ability to identify

the presence of, the location of, and the extent of structural damage (Hassiotis and Jeong,

1993; Farrar and Jauregui, 1998; Abdel Wahab and Roeck, 1999; Alvandi and Cremona,

2006; Fan and Qiao, 2011). They usually report that, given different data sets, no one

technique can be applied universally. The most successful demonstrations have been

using simulated data from FE models rather than on real structures, where the level of

environmental load noise is a significant challenge (Brownjohn, 2011). Environmental

noise can change natural frequencies by between 5-10%, which inevitably hides frequency

shifts of less than 5% (Carden and Fanning, 2004). Newer techniques attempt to filter

out environmental effects and claim to allow detection of frequency shifts of 1% (De

Roeck et al., 2000), however, a prior lengthy study of environmental effects is required.

Reoccurring reports are that lower modes are less susceptible to minor structural changes

than higher modes but those higher modes in turn are more susceptible to identifying

false positives. For large structural changes, location is not predicted as closely, though

light damage is more difficult to detect at all (Hassiotis and Jeong, 1993).

2.1.3.2 Nyquist sampling theorem

Unlike in static testing, where the main sensor selection criteria is the measurement

accuracy, dynamic testing also requires the sensors sampling rate (or sensing frequency)

to be considered. Sensors designed for dynamic measurement, such as accelerometers,

have relatively very high sampling rates (the most advanced instrumentation reaching

in the order of megahertz; Polytech Ltd., 2014b) whereas the ‘alternative’ non-contact

sensors that offer other advantages have lower sampling rates in the order of tens of hertz.

The Nyquist sampling theorem dictates the possible vibration frequencies that are

detectable in relation to the sampling frequency of the sensor. It has applications within

radio telecommunications and signal processing as well as monitoring of structural vibra-
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tions. The Nyquist sampling criteria states that in order to detect frequencies of b Hz,

the data must be sampled at a rate of at least 2b Hz (Lovse et al., 1995; Morlier et al.,

2007). Roberts et al. (2004) found bridges in Switzerland had natural frequencies of up

to 50 Hz, though most exhibited frequencies of less than 10 Hz for highway bridges and

20 Hz for rail bridges. Nickitopoulou et al. (2006) considered typical natural frequencies

of existing major tower structures to be less than 0.5 Hz.

2.2 Sensors

When selecting sensors for monitoring schemes, the cost of the sensors is often a major

factor. Contact sensors typically measure at a single point only. Optical non-contact sen-

sors are more expensive but can monitor many points from a single instrument location.

If a long-term structural health monitoring scheme is planned for a structure, contact

sensors may be retrofitted after construction, though this will take time. Sensors may

also be embedded or cast in situ to a structure during construction, but engineers should

plan for some sensors to be possibly damaged.

Sensors may measure acceleration, velocity or displacement. Depending on how the

data will be used, records can usually be transferred between these domains by integration

and differentiation (though additional considerations when double integrating data from

accelerometers are discussed in section 2.2.1.3).

In the following, sensors that are currently available for a monitoring scheme are

introduced and their advantages when used for static and dynamic testing techniques are

identified.

2.2.1 Contact gauges

2.2.1.1 Contact displacement gauges

Dial gauges are a simple and traditional mechanical device that measure displacements in

one direction (see figure 2.1a). Dial gauges designed for structural testing are inexpensive,

with typical accuracies of ±0.01 mm (Lee and Shinozuka, 2006b; Ronnholm et al., 2009).

Electronic gauges linked to a digital data logging device are more widely used today (see
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figure 2.1b). These electronic gauges are convenient because they allow measurements to

be continuously recorded from all gauges, allowing displacement history to be analysed

later.

The gauge body is fixed in position such that a central plunger is in contact with

the structural element under investigation, and moves as the latter deflects. They can

be fixed in any orientation, though are typically limited to only measuring displacements

in one direction (Lee and Shinozuka, 2006b). They must be fastened to some stationary

reference such as a platform which usually has to be close to the structure. Where the

beam is highly elevated they can be located at ground level in contact with weights

suspended from the beam under test (Bungey et al., 2006). Gauges are available with

a variety of displacement ranges and a typical gauge has a deflection range of about 50-

100 mm. Although the gauge can be repositioned if deflections exceed its displacement

range, this is generally undesirable.

Bungey et al. (2006) states that traditional dial gauges remain of value as they pro-

vide the engineer with a quick indication of the rate of deflection and are often used in

combination with electronic displacement gauges. The engineer’s appreciation of the rate

of increase in deflection is important to assess how the test is progressing. For in situ

testing, it is important to monitor for any indication of plastic deformations as the test

progresses, which would require the test to be stopped and loads removed.

2.2.1.2 Foil strain gauge

Foil strain gauges are used to measure material strain, the dimensionless unit of defor-

mation per unit length. The gauges are made of a thin layer of foil onto which coils of

an electronic resister are fixed with adhesive (see figure 2.1c). The foil gauge is fixed

to the test element which, as it deforms, stretches the foil changing its resistivity which

is measured and from which strains can be derived. Strains up to 3% at a precision of

0.01% can typically be measured (Omega Engineering, 2011).

Foil strain gauges have a limited range and if exceeded, the gauge will almost certainly

be destroyed. When used for long-term monitoring, strain gauges can be susceptible to

changes in temperature, humidity and ageing (British Standards Institution, 1986). It is

not normally possible to reuse foil strain gauges.
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(a) Dial gauge (b) LVDT (c) Foil Strain Gauges

(d) Robotic Total Station (e) Accelerometer (f) Terrestrial Laser Scanner

(g) Laser Doppler Vibrome-
ter

(h) Laser Tracker Systems
(Leica Geosystems, 2015)

Figure 2.1: A selection of sensors used for monitoring structures
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2.2.1.3 Accelerometers

Accelerometers are widely used for dynamic testing and less expensive than some of the

more advanced instruments discussed later. They are small and relatively lightweight, so

add negligible loading to a structure once fitted (see figure 2.1e). However, they measure

at a single point only and require individual calibration, installation and associated ca-

bling infrastructure. Battista et al. (2011) noted how problems with cabling infrastructure

resulted in loss of power to the accelerometers, causing weeks of missing data.

Accelerometers produce an acceleration history at a point and can, in principal, be

transferred to the velocity and displacement domains by integration and double integra-

tion, respectively. However, this is an indirect measure of displacement and susceptible to

‘drift’, called accelerometer bias or zero offset (Roberts et al., 2004; Lee and Shinozuka,

2006b). The process is not completely automated as it requires filter selection, baseline

correction and use of judgement where anomalies exist (Chang and Xiao, 2010; Yi et al.,

2010a).

The output of the accelerometer is simply two electrical contacts. A separate data

logging system (usually comprising of a PC with specialised input hardware or signal

amplifier) is required to record the actual acceleration signal. Each accelerometer is

provided with a calibration certificate which relates the recorded accelerometer contact

voltage to the actual acceleration. The specific data logging hardware in use is significant

to the system’s accuracy.

2.2.2 Non-contact sensors

The methods described above are simple and direct, however, whilst being widely used

they require good access to the test element which is not always possible, for example,

when testing bridge or ceiling beams. Non-contact sensors offer measurement where

traditional sensors cannot. This may be because the measuring point itself is inaccessible,

or a stable reference needed to measure displacements cannot be installed.
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Figure 2.2: Screen display of instantaneous displacement of Tsing Ma Bridge (Yi et al.,
2010b).

2.2.2.1 GNSS

Global Navigation Satellite Systems (GNSS) make it possible to determine 3D coordinates

of remote location using satellite signals. They are particularly useful in remote locations

without a traditional surveying control framework. The space element of the American

Department of Defence GPS system consists of 24 satellites, each continuously transmits

the current time as well as its current position (Kijewski-Correa et al., 2006). The ‘errors’

between signal arrival times can be used to calculate the receiver’s position. For accurate

monitoring applications, two receivers are used; a stationary base station receiver located

at a known position off the structure, and a roving receiver at the measuring point.

GPS has been demonstrated for non-contact long-term monitoring of bridges (Naka-

mura, 2000; Roberts et al., 2006; Yi et al., 2010b) and demonstrated potential for mon-

itoring displacements where a close stable reference is not available. Processing of GPS

data can be highly automated, unlike accelerometers for which a certain amount of user

input is required. This makes it particularly suitable for integration in to an automated

structure monitoring system, as demonstrated by Yi et al. (2010b) (figure 2.2).

The GPS roving receiver does not require line of sight with the base station, though

it is dependent on a clear sky view. Single obstructions could make GPS positioning im-

possible (Meng et al., 2004). GPS derives absolute position estimates from which relative

displacements are determined(Chang and Xiao, 2010). Errors do not normally accumu-

late and data does not suffer the ‘drift’ in displacement found in the double integration
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of accelerometer data (section 2.2.1.3). This makes GPS suitable for measuring static

displacements and ‘quasi-static’ behaviour such as wind-induced or thermal movements

of a bridge (Lovse et al., 1995; Nakamura, 2000; Nickitopoulou et al., 2006).

An important consideration is the high cost of GPS systems, though the hardware

is reliable. Attainable accuracies are theoretically 5–10 mm horizontal and 10–20 mm

vertical, although accuracy varies as satellites come in and out of view (Lovse et al.,

1995; Nakamura, 2000; Meng et al., 2004; Roberts et al., 2004, 2006; Chan et al., 2006;

Kijewski-Correa et al., 2006; Nickitopoulou et al., 2006; Yi et al., 2010a,b; Moschas and

Stiros, 2011). It is suggested that using pseudolites—additional terrestrial transmitters

that transmit GPS-like signals—can improve accuracy (Meng et al., 2004).

There are many sources of error in the GPS system. Most of them are mitigated by

locating the base receiver close to the roving receiver (Lovse et al., 1995; Nickitopoulou

et al., 2006; Yi et al., 2010b) but multipath remains the greatest source of error. Chokering

ground-plate antennas are favourably used for their capability of minimising multipath

but despite hardware improvements, accuracy can be variable. Multipath error remains

greatest near reservoirs, metal piers and cables, and suspension bridges (Nickitopoulou

et al., 2006) which, unfortunately, are likely subjects for structural health monitoring.

GPS antennas have been combined with accelerometer to use the benefits of both

sensors (Roberts et al., 2004; Meng et al., 2007; Moschas and Stiros, 2011). The absolute

measure of displacement from the GPS sensor is used to correct for accelerometer bias,

while the highly sensitive accelerometer detects vibration too small to be detected by

GPS. The most recent systems also make use of more signals provided by the Russian

GLONASS system, and once complete the European GALILEO system (provision of

inital service in 2016, with completion due in 2020; European Commission, 2015).

2.2.2.2 Robotic Total Station

Total stations are well known measurement instruments capable of optically measuring

over long distances to visible accuracies. A Robotic Total Station (RTS) system aids

its operator in its usual operation by tracking the movements of a hand-held reflector

(figure 2.1d). Three dimensional coordinates of the moving reflector can be measured

from distances of up to 500 m with an accuracy of 3-5 mm. Only a single target can be



18 Monitoring 3D Vibrations in Structures using High Resolution Blurred Imagery

Figure 2.3: Robotic total station at Tamar Bridge (Battista et al., 2011).

measured at a time with a few seconds needed to systematically orientate the telescope

towards each target. Given the high cost of these instruments, consideration must be

given to how they will be kept secure and protected from poor weather. Figure 2.3 shows

how an instrument has been used as part of a monitoring system on the Tamar suspension

bridge (Battista et al., 2011).

Reviews of RTS for measuring dynamic vibration suggest some difficulties (Psimoulis

and Stiros, 2008; Chang and Qunge, 2009). In the few tests conducted first modal fre-

quencies are identified where they are less than 3-4 Hz and have amplitudes of at least

5 mm. However, remarks are made about the instruments ability to keep track of high

amplitude vibrations (> 3 cm) and although sampling rates of 20 Hz are claimed by the

manufacturer, only 6-7 Hz has been achieved in published tests (Psimoulis and Stiros,

2008). Chang and Qunge (2009) noted that the target moving during single measure-

ments may cause distance and angular measurement to not correspond exactly, as well

as inaccuracy in the distance measurement itself.

2.2.2.3 Terrestrial Laser Scanner

The Terrestrial Laser Scanner (TLS) combines reflectorless electronic distance measure-

ment with precise positioning motorised mirrors (figure 2.1f). The TLS systematically

scans a user-defined area and produces a massive number of three dimensional coordinates

in a ‘point cloud’ (the latest TLS hardware can record 1 million points per second; Leica

Geosystems, 2014). This instrument is not light dependent, no object targets, surface
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texture, insitu sensors, or cabling infrastructure are required and inaccessible surfaces can

be measured provided they are visible (Park et al., 2007). Monitoring can be conducted

from maximum distances of 350 m (Park et al., 2007) to 6000 m (3D Laser Mapping,

2011) depending on the instrument selected.

Although the accuracy of a single observation is only about 5–10 mm, when a surface

is fitted to a point cloud of a plane, higher accuracy can be achieved (Park et al., 2007;

González-Aguilera et al., 2008). González-Aguilera et al. (2008) notes a shortfall of

using the TLS is that although deformation can be found by comparing surfaces fitted

to the data, actual measurement points cannot be repeated exactly. However, a more

recent product by 3D Laser Mapping (3D Laser Mapping, 2011) which combines a laser

scanner with DSLR camera together with specialist software (figure 2.4) is designed for

monitoring slopes and rock walls from a permanent vantage point and claims repeatability

of the point grid as a key advantage. Problems may also occur measuring smooth shiny

or dark surfaces that do not reflect light diffusely. Data is processed automatically and

detection of a displacement activates an alarm.

When used to monitor displacements in static testing, measurement has been noted

to have taken a ‘surprisingly’ long time (Ronnholm et al., 2009), and would normally

be impractical for deformation monitoring. Although the instruments are capable of

higher speeds with lower accuracy, the time to measure a structure is currently too slow

to be used for monitoring structural dynamics in their typical configuration (Ronnholm

et al., 2009). Recent developments have, however, shown dynamic response information

to be acquired from wind turbine blade segments by utilising the scanner’s rapid distance

measurement (Grosse-Schwiep et al., 2014).

2.2.2.4 Laser Tracker Systems

Similarities exist between laser tracker systems (LTS) and total stations, in that both

comprise optical targeting and distance measuring systems upon two angle encoders. LTS

emphasises high positional measurement accuracy over measurement range. Measurement

accuracy is of the order of tens of microns, but this accuracy is only achieved with a

reasonably short target distance (2—3 m). Maximum measurement range is in the order

of 160 m when used in combination with the largest reflectors (Hexagon Metrology, 2014).
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Figure 2.4: 3D Laser Mapping VZ-400 Terrestrial Laser Scanner (3D Laser Mapping,
2011)

Like other optical measurement approaches, line-of-sight is necessary, and temporary

obstructions or poor weather will cause temporary loss of data. The use of a reflector

is necessary, and the device only monitors one reflector at a time. However, the very

high measurement accuracy could allow detection of higher modal shapes than other

less sensitive non-contact sensors. Unlike the LDV, the LTS also measures in three

dimensions, allowing detection of vibrations multiple directions.

2.2.2.5 Laser Doppler Vibrometer

The laser Doppler vibrometer (LDV) is commonly used in the vibration community for

dynamic testing (figure 2.1g) (Helfrick et al., 2011). A laser light source is directed

at any point on the surface of a test object. Vibration of the surface will cause the

reflected light to undergo a shift in frequency (a Doppler shift), that will correlate to the

surface velocity (Nassif et al., 2005). An interferometric technique is used to compare the

reflected wavelength with the original emitted laser wavelength to find velocity and the

measured velocity can be integrated or differentiated to find displacement or acceleration,

respectively. Lovse et al. (1995) stated that LDVs are typically capable of measuring at

2 kHz and 1 �m. The sampling rate of current hardware is 100 kHz, measuring to the

order of nanometres (Sunny Instruments Singapore, 2009; Metrolaser Inc., 2011; Direct

Industry, 2011). To measure multiple points the instrument must be set up repeatedly

unless one of the more advanced instruments introduced below is used.
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Scanning LDV The improved scanning LDV (SLDV) is an LDV with motorised di-

rection control that moves systematically between pre-programmed points. Measurement

is only made at one point at a time and the instrument takes time to traverse a whole

structure. For long duration measurements of multiple points, vibration must remain

constant (Lovse et al., 1995). Fast Scan SLDV (FS-SLDV) speeds up monitoring by opti-

mising the pause time at each point depending on the number of response cycles needed

to obtain a good measurement.

Continuous Scanning LDV The continuous scanning LDV (CS-LDV) is a more ad-

vanced machine that sweeps the measuring beam over the area of interest whilst simul-

taneously taking measurements (Stanbridge et al., 2004; Helfrick et al., 2011). These

machines allow full-field measurement of a surface with high accuracy and at a high sam-

pling frequency. The current CS-LDV hardware is confined to laboratory experiments and

Lee and Shinozuka (2006a) warn that the high laser intensity that would be required to

measure over the typical distances used in monitoring of real civil engineering structures

could be dangerous to the human eye.

2.2.2.6 Interferometry techniques

Interferometry uses interference patterns, often of either the visible or microwave part

of the spectrum, to measure relative movements of objects. Digital Speckle-Pattern

Interferometry (DSPI) techniques make use of optical laser systems containing CCD

arrays to carry out measurement using interferometry. Figure 2.5 shows the arrangement

of optical components in a measuring system.

An object displacement would result in a phase-shift in the back-scattered electromag-

netic waves (Stanbridge et al., 2004). The reflected light is superimposed with the source

light. Depending on the phase of the two light waves, they will either reinforce each

other, or cancel out (Hariharan, 2006). Interference fringes are produced and changes

in the fringe pattern may be perceived as an out-of-plane displacement of the surface

(Schmidt et al., 2003). Because interferometry is a full-field measurement technique,

rather than only measuring in discrete locations on an object, it allows visualisation of

strain gradients and identification of ‘hot spots’ (Schmidt et al., 2003).
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Figure 2.5: Two commonly used ESPI arrangements which are sensitive to out-of-plane
displacements (Rastogi, 2001).

Gentile (2009) demonstrates the use of microwave interferometry for remote mon-

itoring of reflectors fitted to suspension bridge stay cables. The technique has high

measurement accuracy with a high sampling frequency, potentially allowing many natu-

ral frequencies to be measured. The recorded data is only one dimensional, so although

simultaneous monitoring of more than one target is possible, each target’s response is

only distinguishable if they are separated in range.

Moiré photography is a similar technique whereby fringes are produced by two su-

perimposed patterns. A specific pattern must be applied to the test subject prior to

tests, which normally limits this type of monitoring to laboratory tests. To produce the

interference fringes, either one pattern recorded in an initial image is superimposed with

images for each later epoch, or the pattern is created in the camera itself (Kearney and

Forno, 1989). Tests by Forno (1988) demonstrated how the techniques could be applied

to full-scale structures, but covering a whole structure with a pattern presented practical

difficulties and was considered less convenient than individual targets.

2.2.2.7 Photogrammetry and Image Processing

Moss and Matthews (1995) introduce photogrammetry’s traditional use for aerial surveys
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and note its ability to measure 3D coordinates. Relief can be detected by small apparent

differences in images of the same area taken from different positions. A classical config-

uration is for ‘stereopairs’ to be acquired and measured, traditionally in a stereoplotter,

or today using computer software.

Terrestrial photogrammetry allows measurements of civil engineering structures to

be made by a camera located off the structure and no stable reference is needed. The

technique is scalable: that is, the same technique is applied to large-scale laboratory

experiments as well as to full-scale real structures. Photogrammetry has been frequently

judged suitable for monitoring structural tests by measuring a structure before loads are

applied and then comparing to subsequent measurement ‘epochs’ to find deformations

(Scott, 1978; Cooper and Robson, 1990; Moss and Matthews, 1995; Robins et al., 2001;

Whiteman et al., 2002; Albert et al., 2002; Yoneyama et al., 2005; Ronnholm et al., 2009;

Leitch, 2010).

Scott (1978) demonstrated how photogrammetry would allow a very high number of

measurement points to be recorded within a relatively short time. Digital image process-

ing nowadays allows these images to be processed within seconds. The high number of

targets makes possible recording of complex deformations that would otherwise require a

high number of ordinary sensors or other more expensive equipment. Cooper and Rob-

son (1990) did not consider this a truly non-contact technique for the need of having to

apply targets, however, it does offer the similar benefit of not requiring a stable reference

immediately adjacent.

As well as observing target positions, the photos of the structure themselves are of

archival value (Baldwin, 2011). They may be used later to extract additional data which,

at the time of acquisition had not been considered important. This attribute makes

photogrammetry particularly suitable when it is uncertain exactly what data is required

(Luhmann et al., 2006).

The hardware required for photogrammetry is less expensive than that used by GPS

monitoring systems or laser doppler vibrometer (Helfrick et al., 2011), though Moss and

Matthews (1995) remarks that a high level of expertise is required and specialist equip-

ment is preferred. Although acquisition time is relatively fast, a main disadvantage is

the time delay for processing images. Traditional sensors provide a desirable real-time
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reading. For image processing, an advanced system would be required for real-time mon-

itoring. Without such a system, results will not be available until the data is processed,

often after leaving the site.

While the most accurate measurement work still requires targets to be fixed to struc-

tures, digital image correlation (DIC) makes possible measurement of structures without

targets fitted, provided their surface has sufficient texture (section 2.3.4). Not needing

to place physical targets reduces the preparation and on-site time of monitoring and al-

lows very densely distributed measuring points that would be impractical if individually

targeted (Schmidt et al., 2003; Yoneyama et al., 2005; Warren et al., 2011).

This section has considered the range of available sensors for monitoring vibrations

in structures, including those that make direct contact with the test structure and those

non-contact sensors which monitor remotely. Differences were identified not only in the

measurement accuracy attainable for each sensor, but also in the measurement sampling

frequency, and the domain in which measurements are made. Table 2.1 summarises

the properties of the sensors identified in this section. In most cases, because sensors are

available in different configurations for specific tasks, the listed properties are an example

of the typical properties of a sensing system that could be employed for monitoring of

civil engineering structures.

2.3 Image Processing in Structural testing

A particular advantage of an image processing approach when used for structural testing

is that it is non-contact. This means that a stable reference immediately adjacent to

test subjects is not required. This was demonstrated in several of the tests cited above

where fitting displacement gauges would be difficult, or would otherwise require the use of

scaffolding to create a stable base. This section describes the ways that image processing

and photogrammetry have been combined and applied specifically for structural testing.

Photogrammetry offers three dimensional measurement where most other sensors mea-

sure in one dimension (Cooper and Robson, 1990; Moss and Matthews, 1995). Capturing

photographs is a relatively fast and simple, and a very large number of measurements are

possible within a single image, limited only by the resolution of the image and, if used,
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size of targets (Scott, 1978). This makes possible monitoring of complex deformations

without a very high number of traditional contact sensors.

Many demonstrations of the approach use the traditional approach of artificial targets

(see section 2.4.2.1). Other newer approaches make use of DIC. The latter method is

possible where the structure has sufficient texture, and fixing of targets is not necessary.

Image processing considerations of DIC are discussed further in section 2.3.4.

2.3.1 Displacement measurement

Target displacements can be found by calculating the difference between coordinates of

the same measuring point at different moments in time, and then scaled to an actual

measure of displacement.

Case studies have shown photogrammetric monitoring of example structures such

as beams, trusses, bridges and geotechnical samples. Typical tests have examined the

static response by monitoring the deflection of photogrammetric targets as increasing

load is applied to the sample. Demonstrations also give laboratory-scale examples of

monitoring complex deformation in beam load tests as well as measuring the width of

small scale hairline cracks in concrete (Albert et al., 2002; Ronnholm et al., 2009; Uhl

et al., 2011; Yilmazturk and Kulur, 2012; Valença et al., 2012; Tasci, 2013; Adhikari

et al., 2013). Maas and Hampel (2006) give examples of large scale monitoring of complex

structures such as buildings, bridges and reservoir dams. Most of these case studies have

utilised photogrammetric concepts used elsewhere and have demonstrated the strengths

of the approach, as well as documenting some of the operational difficulties that were

encountered. Some have also demonstrated successful 3D monitoring. Some case studies

appear less well founded on photogrammetric theory, but nevertheless show successful

monitoring at a decreased accuracy.

2.3.1.1 Omitting lens distortion for localised deformation monitoring

A lens model is normally required for accurate photogrammetric work in order to correct

for distortions created by the lens. This correction may be optional under the correct

conditions when only localised relative object deformations are required, rather than
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absolute position accuracy. For any given target, lens distortion will almost certainly be

present, but a small change in coordinate (as is usually the case for structural engineering

testing) is affected by almost the same distortion effect, as the ray path will pass though

the same part of the lens. For small localised deformations the lens distortion effect can

be safely ignored as the error will effectively cancel out.

This assumption may not hold true during 3D monitoring even though deformation

may as small. Lacking the necessary lens model may affect the target’s determined

coordinates which would subsequently effect how image-space coordinates are transformed

into object-space coordinates. If this were to be attempted, the theory would have to be

tested.

2.3.2 Strain measurement and automatic crack detection

By comparing the measured displacements, of neighbouring targets, it is possible to find

strain, the unitless measure of a material’s extension divided by the undeformed distance

between the measuring points. This has been demonstrated by Robins et al. (2001);

Benning et al. (2003, 2004); Lange and Benning (2006); Hampel and Maas (2009) and

Valença et al. (2012). The high number of possible monitoring points allows one sensor

to monitor the whole field of strains, and measurement of larger strains than traditional

gauges allow. Where targets are applied to a structure, a fixed gauge length between

pairs of marks or targets is used. Knowledge of achievable accuracies is then even more

important. Whilst displacements are typically in the order of millimetres, the relative

displacement of points in close vicinity is often much smaller, approaching the accuracy

limits of the measurement system.

In concrete testing, samples marked with a regular grid of circular targets was devel-

oped by Benning et al. (2004) for tracing the line of individual cracks automatically. The

crack numbers, start locations and directions of propagation were measured to give an in-

dication of structural performance and allow an estimation of the concrete-reinforcement

interface quality to be made (Benning et al., 2004). Hampel and Maas (2009) noted that

for this approach, although crack width is measured precisely, the position of the crack

cannot be located exactly. Only the two targets between which the crack occurs are
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indicated and where multiple cracks occur between two targets, the technique will only

measure the accumulated crack widths. Other shortfalls of a targeted approach, such as

preparation time were noted also (Benning et al., 2003). Jahanshahi and Masri (2013)

propose an approach using image thresholding to identify and trace the path of cracks

before then using correlation on image patches either side of the crack to measure crack

widths. The approach is demonstrated on images of simulated cracks of known width.

The density and spacing of measurement points is, therefore, crucial. This use of

digital image correlation (section 2.3.4) is of relevance here, since a good speckle pat-

tern is suitable for many densely distributed measuring points, approaching ‘full-field’

deformation monitoring (Hampel and Maas, 2009; Jerabek et al., 2010; Orr et al., 2012).

2.3.3 Considerations

The scalability of image processing means measurements of large structures are possible

to sub-millimetre accuracy, while the accuracy of measuring small scale laboratory tests is

in the order of microns. Before prescribing photogrammetry as a monitoring method the

achievable accuracy in a particular experiment must be understood. The accuracy of a

system is dependent on a range of factors, including: camera focal length, object distance,

sensor resolution and target size as well as the specific algorithms using in processing.

3D measurements are possible using the photogrammetric techniques discussed in

section 2.4.4.1 and multiple cameras. If it is known a priori that only planar deformations

are expected, only a single camera is necessary. Although photogrammetry is frequently

used to create three dimensional models from multiple images, Cooper (1984) emphasises

the use of a single camera in obtaining higher-accuracy measurements in close-range

applications. However, in this arrangement, any out-of-plane displacements will result in

a scaling error (Jerabek et al., 2010). Requiring only one camera obviously reduces cost,

but also by not requiring the additional hardware for camera shutter synchronisation.

Minimal time to process the images also improves increasing the feasibility of real-time

monitoring.

The attainable accuracies in image processing are potentially higher than other non-

contact measurement techniques and given occasions on which image processing is used
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Figure 2.6: The 95% confidence point displacement ellipse and an (insignificant) displace-
ment vector dj (Cooper, 1987).

and the nature of the data, there is often not a ‘check’ available to confirm the image

processing measurements. Images captured of the same object that has not moved will

not always give an identical measurement due to random errors. An analysis of the

repeatability of target coordinates has been suggested as a method of assessing random

errors (Shortis et al., 2001; Jurjo et al., 2010). However, this type of assessment will not

be directly assessing accuracy as Luhmann et al. (2006) warns that to determine true

accuracy, errors can only be calculated by comparing these measurements with those

established by a more accurate method.

An understanding of the accuracy and precision of a monitoring system is important to

differentiate between these random errors and actual object deformations. Cooper (1987)

explains that before displacements can be confidently claimed, a statistical analysis of

the accuracy of the monitoring system must be carried out. The size of random errors are

best described by an error ellipse, which normally represents a 95% confidence interval,

and if a deformation pierces the edge of the ellipse, a significant deformation can be

claimed with 95% confidence (figure 2.6).

2.3.4 Digital Image Correlation

Measurement in images is not limited to discretely marked targets. Where objects in

images have sufficient texture, points can be tracked using feature-based matching, a

technique that has become commonly referred to as Digital Image Correlation (DIC). The
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image processing considerations are discussed later in section 2.4.2.6. Yoneyama et al.

(2005) compared the technique when using a speckle pattern and the unpainted concrete

face of the beam and found measurement of displacements, to the order of millimetres,

effective in both cases. Using DIC to measure unprepared surfaces and without fixing

targets may significantly reduce the on-site preparation time and effort.

The DIC technique has been used for dynamic monitoring of structures. Morlier et al.

(2007) used DIC to monitor a pedestrian footbridge and was able to estimate first and

second mode shapes despite a very low sensor resolution. Three natural frequencies were

found in another small lab test by Helfrick et al. (2011). As with other non-contact

techniques, data can be produced for a whole visible surface, which can be of more use

than a few discrete points.

DIC was used by an National Physical Laboratory team (Baldwin, 2011) to make

initial assessments of damage to the Hastings Pier caused by a fire in 2010. Rather than

using a single high resolution camera, many pictures were captured and collaged together

to create a single 1.4 gigapixel image. The identified application of this technique was a

quick and cheap way to identify areas of the structure that needed further investigation.

Apparent changes was found in the one part of the substructure noted to have been where

the fire was at its fiercest.

A disadvantage is the considerable computer processing required (Tao and Xia, 2005;

Helfrick et al., 2011). The limits of accuracy are also more complicated than a targeted

technique, since it is dependent on the quality of the localised texture. Initial subsets

can be selected based on texture quality to improve the accuracy of individual points,

but this could result in an uneven distribution of monitoring points (Jerabek et al.,

2010). Alternatively, later analysis may be simplified by specifying a regular grid of initial

subsets, so that every measurement point is regularly spaced, although the likelihood of

an incorrect measurement from a poorly-textured subset is increased.

A comparative study of sensors for remote monitoring of structures has been made by

Lee et al. (2006); Helfrick et al. (2011). Helfrick et al. (2011) commented that DIC could

be a practical approach for vibration monitoring, but that the frequency response may

not be high enough for some applications. It was also noted that the technique is better

suited to single frequency excitation. The techniques and computing processes involved
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are discussed further in section 2.4.1.3.

2.3.5 Dynamic Monitoring

As introduced in section 2.1.3, there is a current trend towards dynamic measurement

techniques. Many practical tests have been conducted and monitored using cameras, both

in the laboratory environment and of existing structures. Many tests used consumer

camcorders, while others used the more specialised machine-vision sensors. There are

several tests using only a single sensor to measure plane deformations. These appear

to be satisfactory when data is processed using the Fourier transform to find natural

frequencies (Lee et al., 2006; Chang, 2007; Choi et al., 2011). More recent publications

use multiple cameras and photogrammetric techniques for 3D measurement (Kalpoe et al.,

2011).

The principle of comparing images taken at different ‘epochs’ remains the same, but

the time between epochs is reduced by increasing the rate of image acquisition to many

image frames per second. Dynamic monitoring using image processing is limited by a

compromise between sensor resolution and the number of frames per second that can be

recorded (illustrated in figure 2.7). The choice of sensor is the most important decision

of all system parameters (Castellini and Tomasini, 2004), as the number of frames per

second will limit the frequency of vibrations that can be detected (section 2.1.3.2) and a

sensor resolution too low will fail to detect low amplitude vibration. Very high resolution

sensors can measure many targets over a whole structure, but often record at below 10

Hz. Other sensors can record at up to 1 MHz but small images sizes mean they can only

measure single, or a very limited number of targets within close proximity of each other

(Albert et al., 2002). Current hardware is capable of capturing 4 MP images at 500 Hz

(Intergrated Design Tools, 2015), which for a 1 m tall sample structure lab test could

allow measurement to 0.05 mm (at 0.1 px accuracy), but a change in object scale also

influences accuracy (to about 2.5 mm for a 50 m span bridge). Olaszek (1999) considered

that, for most civil engineering structures, the first natural frequency does not exceed

5 Hz, therefore considered a 25 Hz video rate to be sufficient. This would, however,

limit the higher natural frequencies that could be detected which, as discussed in section
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Figure 2.7: Sensor selection requires a compromise between image and temporal resolu-
tions

2.1.3.1, are more sensitive to structural changes.

Olaszek (1999) discusses how a low sampling frequency, although higher than the

Nyquist frequency, can create errors when linearly interpolating between momentary

measurements. A continuous and smooth character of bridge dynamic effects was assumed

and spline interpolation used to fit a continuous curve that passes through all measured

points (figure 2.8). Olaszek considered that using spline interpolation is this way could

reduce the dynamic error by a factor of approximately 10.

In most tests using video camcorders, which typically have a maximum resolution

of 1280 × 720 pixels, telephoto lenses which ‘zoom-in’ to the single point can be used

to obtain the necessary accuracy. However, the advantage of an image capturing many

monitoring points is then lost as just one relatively small area on the structure fills the

whole frame. This also prevents including control points in the image, used elsewhere

to provide a correction for any small camera movements or vibration, or defining an

external coordinate system. Tests have been successful demonstrated without control

points, but it is acknowledged that an ignored error could have occurred (Olaszek, 1999;

Wahbeh et al., 2003; Lee and Shinozuka, 2006b; Lee et al., 2006; Chang, 2007; Chang and
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Figure 2.8: Reducing dynamic error: (a) the damped sinusoidal transient graph and its
sampling part, (b) close up of area marked in (a) (Olaszek, 1999).

Xiao, 2010; Park et al., 2010; Choi et al., 2011) and that the error is probably significant

(Olaszek, 1999). Olaszek (1999) considers control points necessary and that the accuracy

of the system is highly dependent on their arrangement.

2.4 Image Processing Techniques

If image-based monitoring is available or prescribed as part of a structural monitoring

system, preparation is necessary to determine exactly how monitoring will be carried

out. The usability, accuracy and success of the system is dependent on the type of sensor

and how they and the targets are used, as well as the particular algorithms used for

processing. This section discusses the techniques and considerations of processing images

digitally are presented.

2.4.1 Hardware selection

2.4.1.1 Cameras

Although some improvements in sub-pixel measurement of images are possible using more

advanced processing algorithms, the choice of image sensor will have a significant influence

on accuracy. For 3D measurement a system for accurately synchronising the shutters of

the multiple cameras must be used. For real-time monitoring a system to transfer data

from the camera to the computer, process and analyse it in real-time is necessary also.
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Metric cameras, traditionally used for aerial surveys, were manufactured to low toler-

ances to minimise distortions and were specifically designed for photogrammetric work.

These cameras were embedded with fiducial marks, marks which are projected on to

the image border that would identify the principal point in the image and assist the

photogrammetrist in taking measurements by using the marks as an origin (Wolf and

Dewitt, 2000). Semi-metric cameras were not built to the same stringent specifications

as metric cameras but contained a reseau grid to detect and correct for film deformations.

These semi-metric cameras traditionally used in close-range photogrammetry have been

made obsolete by digital photography (Luhmann et al., 2006). Film deformation errors

are eliminated, and because the sensor has rigid and well-defined edges, a Cartesian co-

ordinate system is usually chosen with its origin in the upper left corner of the image

instead of the centre (Wolf and Dewitt, 2000).

Consumer-grade cameras provide significant cost savings and have demonstrated their

potential for photogrammetric work (Ogleby et al., 1999; Wackrow and Chandler, 2007).

Thomas and Cantré (2009) also consider that consumer-grade cameras can be used and

can give accuracies suitable for deformation measurement when used with the right soft-

ware. Basic compact cameras have been used for photogrammetric purposes where there

are sufficient known points in an image to carry out self-calibration (Chandler et al.,

2005). However, this method is supported by a large number of automatically selected

tie-points, something that cannot be relied upon when the subject in the image is moving

as would be expected in a structural test.

2.4.1.2 Lens Calibration

Lenses not designed for photogrammetric work may not be manufactured to the accuracy

necessary to avoid distortions. However, while distortions are often worse in cheap low-

quality lenses, they are normally predictable and can be modelled (Luhmann et al., 2006).

Radial distortion can typically reach greater than 100 �m at image edges (Luhmann

et al., 2006), but can be corrected using a polynomial function. Tangential distortion is

much smaller than radial distortion and needs to be corrected for more accurate pho-

togrammetric work. Another distortion found in digital cameras is affinity or shear dis-

tortion, occurring where pixels in the form of a parallelogram rather than square. The
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parameters needed to calculate corrections for these systematic errors are normally es-

tablished by camera calibration, after which accuracies of at least 1:5000 can normally

be achieved (Cronk and Fraser, 2006).

Calibration would traditionally be carried out by photographing a regular grid pat-

tern, but self-calibration techniques now allow this to be completed by taking multiple

photographs of the same object (Luhmann et al., 2006). Calibration would normally need

to be carried out after any change in the lens system (focal length or focus) (Shortis et al.,

2001). Fixed focal length lenses are often used for terrestrial photogrammetry work for

this reason. Software tools are now freely available to automate the calibration process,

such as the Matlab Calibration Toolbox (Bouguet, 2010).

Whilst correction for lens distortions are necessary to determine accurate absolute

positions, a simplified solution where lens correction is omitted may be used for localised

deformation monitoring under the right circumstances (section 2.3.1).

2.4.1.3 Computer processing time

High image resolution and number of frames per second can create a very large quantity

of data. It is also highly desirable for a sensor to monitor a structural test in real-time,

to keep the engineer informed of how the test is progressing. Real-time monitoring using

imagery is limited by the time delay in processing of images before quantitative results

can be generated (Scott, 1978; Cooper and Robson, 1990; Lee and Shinozuka, 2006b; Lee

et al., 2006; Choi et al., 2011). Current digital systems allow processing within seconds.

Though computer processing hardware improves rapidly towards real time measurement,

demands continuously become higher as researchers use sensors with higher resolution

and desire better measurement accuracy (Lee et al., 2006). It is currently possible to

monitor tests in real time but only at a reduced image resolution with an associated loss

in accuracy.

2.4.2 Image registration methods

A challenge in image processing is the development of algorithms to understand and

interpret real objects in images. The problems encountered in ‘computer vision’ or ‘vision
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metrology’ and the difficulties in object identification compared to humans are discussed

by Mikhail (2001). Usually in photogrammetric work, algorithms intend to distinguish,

identify and measure artificial targets from the background. However, it is likely that

any kind of object or shape can appear in an image in practical situations, unless very

carefully framed, and a computer algorithm can easily identify false positives.

Semi-automated approaches identify regions in an image matching set parameters,

with input from a human operator. It is necessary for an operator to confirm that the

automatically identified points are correct or modify the selection by adding or removing

points. Alternatively, the operator could manually tell the computer to focus in the

location of each point and then allow the computer algorithm to carry out the final

identification.

2.4.2.1 Artificial Targeting

Adding artificial targets to objects in images is advantageous because they provide identi-

fiable points, accuracy improvements and potential for fully automatic point identification

(Luhmann et al., 2006). From a detection point of view, El-Hakim (1996) prescribes re-

quirements for targets, to improve object detection later in the process. Targets should

be:

� well defined, so that there is a high probability of being identified;

� consistent in and compatible with all expected viewing angles;

� rare enough, so as to be recognisable against other shapes in an image (El-Hakim,

1996).

Plane circular targets are frequently used because of their symmetry, for being ro-

tation and scale invariant (Luhmann et al., 2006) and for ease of finding their centroid

mathematically (section 2.4.2.5). Their size is chosen based on image scale and a diam-

eter of at least 10 pixels is normally chosen (Shortis et al., 1995; Robins et al., 2001;

Mikhail, 2001; Shortis et al., 2003). In general, larger targets should improve accuracy

but there is little improvement when targets are so large that the centre of the target is

represented as a large cluster of constant intensity pixels (Shortis et al., 1994).
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Figure 2.9: A selection of coded targets (Luhmann et al., 2006)

2.4.2.2 Coded targets

The mathematical transformations that establish the camera’s exterior orientation in a

known object coordinate system (section 2.4.3) require control points within the image

to be matched to coordinates in the object space. After target coordinates are identified

from images they must be matched to their object space coordinates, either manually by

the operator or preferably automatically by the computer algorithm. Coded targets are

normally used for this purpose (Fraser, 1997).

The actual coordinate is identified by an ordinary circular target in the centre of the

target pattern. The target is then normally identified by either, one or more broken

concentric circles around the central point, or an arrangement of other standard targets

in the vicinity of the target, examples of which are shown in figure 2.9 (Fraser, 1997;

Luhmann et al., 2006; Li and Liu, 2010).

2.4.2.3 Target material

The material used to create targets should be the most suitable for their application with

consideration to orientation of cameras, lighting, target durability and method of fixing to

the object. Compared to traditional instrumentation, adhesive targets are very durable,

as they are normally only subject to surface dirt which can be wiped clean. Sufficient

contrast can often be achieved using paper targets providing they are a sensibly chosen

colour contrasting with the background, and the target is appropriately lit.

Retroreflective targets are frequently used for their exceptional visibility, although

they are more expensive. These targets are made from reflective sheeting that is either

covered with a black mask to provide the desired pattern, or cut out of the sheet material
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(Luhmann et al., 2006). Ring-flashes are often used around the lens to provide even

illumination to the targets. Retro-reflective targets in combination with high intensity

flashes can produce quasi-binary images whereby mostly only the desired targets are

recorded before any image processing is carried out (Qiqiang and Xin, 2009). Cooper

and Robson (1990) reported that using retro-reflective targets in combination with a ring

flash was particularly effective in producing high-contrast images when photographing

a bridge from distances of 5–10 m, but also noted the importance of dry targets to get

effective reflections. Fitting retro-reflective targets should be limited to when it is known

that they will be effectively lit, as Ronnholm et al. (2009) found that using these targets

without a circular flash resulted in poor contrast.

Wahbeh et al. (2003) used an arrangement of LEDs on a black backing to create a

high visibility target. This ‘active’ target was demonstrated on a full-scale structure that

was monitored from a distance of over 200 m. For their short demonstration the target

was battery powered, but for long-term monitoring a power supply would be needed.

2.4.2.4 Image segmentation

El-Hakim (1996) explains and compares methods of segmentation, whereby targets are

separated from the background. The simplest and most commonly used algorithm is

‘thresholding’, whereby grey values above a certain threshold are identified as target

objects. Where targets have grey values distinctly different to the background, a single

threshold value can be used which can be set manually or, for better automation, by

statistical considerations (Mikhail, 2001). A more advanced technique is to use local

thresholds in different areas of the image. In order to improve identification, the image

can be enhanced by methods including contrast and edge enhancement.

Edge detection algorithms identify distinct changes in pixel intensity in an image. A

square ‘window’ traverses the image and where a high gradient of grey values is found

within the window, that pixel in the image is marked as a potential edge pixel. There are

different algorithms that can be used to identify these edges; the simpler algorithms are

more susceptible to image noise, whilst the more complex algorithms often give better

results, although no one algorithm can be applied universally.

Region extraction methods divide the image into discrete areas and identify properties
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such as shape, centroid and brightness. Neighbouring pixels with similar grey values are

matched to each other to form regions. Region extraction algorithms can be highly

complex, even allowing targets that are very poorly defined in unoptimised images to be

identified. Targets are usually well-defined and a thresholding algorithm followed by a

simple region extraction algorithm is normally sufficient. Because every application is

different, parameters will still often need to be set on a trial-and-error basis (El-Hakim,

1996; Srinivasan and Shobha, 2008).

Once potential regions have been identified, targets can be distinguished from other

erroneous shapes in the image by their type and shape, a process known as ‘blob test-

ing’ (Shortis et al., 1994). The operator would manually set criteria such as target size,

obliqueness (a ratio of width to height) or circularity (by comparing its area to its perime-

ter). Regions within these set limits are then accepted as the desired targets.

2.4.2.5 Coordinate measurement

Once targets are located and the individual pixels representing the target identified, a

number of different algorithms can be used to calculate the actual centroid coordinate.

Centroiding algorithms are identified and compared by Shortis et al. (1994).

‘Binary centroid’ is a simple algorithm that calculates the target’s centre of gravity

but makes no use of pixel grey values (Shortis et al., 1995). Accuracy is significantly

improved by using a weighted centroid algorithm that makes use of pixel grey values.

An extension of this algorithm is to square the grey values, which has been shown to

slightly improve accuracy by giving more influence to the higher-intensity pixels of the

target than the low intensity pixels at its periphery (Shortis et al., 1995). An alternative

technique is to fit an ellipse to identified target edge pixels. Although circular targets

are very often used, they will appear elliptical in images because of perspective effects.

Centroiding and ellipse fitting techniques allows measurement to an accuracy of 0.1-0.03

pixels to be achieved (Luhmann, 2011).

The most accurate technique is to use least squares matching (LSM) to find the best

match of a circular target pattern to the image. LSM techniques can achieve a precision

of 0.05-0.01 pixels (Luhmann, 2011).
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2.4.2.6 Feature-based matching

As introduced in section 2.3.4, rather than measuring circular targets, it is possible to

measure the apparent movement of small ‘patches’ of an object’s image where the object

has sufficient texture. This can reduce set-up time since installation of individual targets

at each monitoring point are not necessary. Processing of images can also be highly

automated.

Monitoring ‘patches’ are selected in the first image, either in a regular grid defined

by the operator, or by focusing upon well defined patches that provide good texture

(Jerabek et al., 2010). Using only well-defined patches has the benefit of more confidence

in the accuracy of measured displacements. However, the irregular spacing of data points

could make later processing more difficult or require undesirable interpolation. Defining

a regular grid of monitoring patches resolves this difficulty, however, Morlier et al. (2007)

noted that in tests on a pedestrian footbridge, no motion could be detected in several

zones of the image taken, due to inadequate light resulting in poor contrast in some areas.

A ‘moving window’ technique is used to compare each of the selected patches in the

first image with possible positions in the subsequent images. A correlation statistic is

then calculated for each ‘window’ position and the location with the greatest correlation

statistic is accepted as the new position of that monitoring point. The normalised cross

correlation coefficient, given in equation 2.1 (Wolf and Dewitt, 2000), is often used;

c =

m∑
i=1

n∑
j=1

[
(Aij − Ā)(Bij − B̄)

]
√√√√[

m∑
i=1

n∑
j=1

(Aij − Ā)2

][
m∑
i=1

n∑
j=1

(Bij − B̄)2

] (2.1)

where Aij and Bij are the two image ‘windows’ to be compared, of size m×n. A and

B are the mean pixel intensity of the image windows A and B. This formula provides a

measure of how well the grey values match between patches of the first and subsequent

images.

While using DIC for monitoring strain in polymers, Jerabek et al. (2010) noted that

the most important parameter affecting accuracy is the spacing of the subsets, as this is

equivalent to a gauge length. The selection of subset size has to be based on operator’s
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experience and judgement.

2.4.3 Image Geometry - 2D

As introduced in section 2.3, if it is known a priori that deformations will be restricted to a

single plane, only a single camera is necessary. Where any out-of-plane deformations may

occur it is necessary to use multiple cameras for 3D measurements, as better discussed in

section 2.4.4. The methods used to calculate real-space coordinates from points measured

in a single image follow here.

2.4.3.1 Single planar measurement and transformations

The image registration methods discussed above allow measurement of coordinates in an

image. In order to calculate real coordinates of an object, a scale must be given to images

to transform measurements from the image plane, measured in pixels, to an object plane,

measured in units of length. Object scale is related to the object distance, camera focal

length and camera sensor dimensions.

In practice, a camera can rarely be arranged perfectly such that a simple scale factor

can be applied. Yoneyama et al. (2005) used a shift lens to optically distort an oblique

angle image to appear as if captured normal to the object. A more convenient method

may be to use mathematic models to transform coordinates measured in the image to

real-space object coordinates, taking into account the effect of perspective. These math-

ematical models relate the 2D pixel coordinate system (usually measured in pixels) to a

2D planar real-word measurements (often measured in millimetres). This is usually nec-

essary as the more tangible object space coordinate system usually provides the desired

measurements. Parameters defining the relationship between the camera’s orientation

and objects are necessary. Whilst this can be measured externally, it is usually more

convenient for the parameters to be established by arranging ‘control points’ to appear

within images and separately measuring their coordinates. Luhmann et al. (2006) pro-

vides further discussion on plane transformations.

Plane affine transformation Figure 2.10(a) shows how the affine transformation al-

lows a plane to rotate and translate. It also has an additional parameter for shearing
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and for scaling in both axes, which allows ‘stretch’ in the transformed coordinates. The

transformation equations show that six parameters must be determined:

X = a0 + a1x+ a2y

Y = b0 + b1x+ b2y (2.2)

where x and y are object coordinates (in object space units such as millimetres) and

X and Y are image coordinates (in pixels); a0...2 and b0...2 are the six transformation

parameters for translation, scaling and shearing in both axes.

Robins et al. (2001) used a simple affine transformation while measuring target dis-

placements in images of a concrete beam. However, this transformation is only suitable if

the optical axis can be perfectly aligned perpendicular to the object plane, otherwise this

transformation will yield incorrect results by insufficiently modelling perspective effects.

Projective transformation In the projective transformation, rays of light that pass

from one plane to another pass through a single point: the equivalent of the focal centre

of a camera (figure 2.10(b)). This transformation model is can be used for single images

as it correctly models perspective effects (Luhmann et al., 2006).

X =
a0 + a1x+ a2y

1 + c1c+ c2y

Y =
b0 + b1x+ b2y

1 + c1c+ c2y
(2.3)

where X and Y are image coordinates, and x and y are object space coordinates.

a0..2, b0..2, c and c1..2 are constant transformation parameters.

These equations may be solved when at least four control points are included in the

image to calculate the necessary parameters. Using more than four points create a more

robust measurement network by adding redundancy and may increase accuracy (Moss

and Matthews, 1995), but the simultaneous equations would then need to be solved by

adjustment (Luhmann et al., 2006).
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(a) (b)

Figure 2.10: Representation of the a) affine and b) projective transformations (Luhmann
et al., 2006).

The transformation parameters are found by relating the known real coordinates of

these control points with their image coordinates measured during image registration.

This is usually done using the coded targets described in section 2.4.2.2. The calculated

transformation parameters can then be used to relate coordinates measured in the image

space to real world coordinates.

2.4.4 Image Geometry - 3D

2.4.4.1 3D measurement using the collinearity equations

The collinearity equations (equation 2.4) are the fundamental equations used for pho-

togrammetric measurement. They are built from the assumption that light travels in a

perfectly straight line from an object point, through the perspective centre of the camera

and is projected on to the image plane.

These equations are used in least square adjustment to determine 3D positions for

observed objects:

x′ = x′
0 + z′

r11(X −X0) + r21(Y − Y0) + r31(Z − Z0)

r13(X −X0) + r23(Y − Y0) + r33(Z − Z0)
+ Δx′

y′ = y′0 + z′
r12(X −X0) + r22(Y − Y0) + r32(Z − Z0)

r13(X −X0) + r23(Y − Y0) + r33(Z − Z0)
+ Δy′ (2.4)

where x′ and y′ are the image coordinates corresponding to the point defined by the

object space coordinatesX, Y and Z; X0, Y0 and Z0 are the coordinates of the perspective
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centre, whilst z′ is the camera focal length and r is the matrix defining the rotational

parameters; x′
0 and y′0 represent the offset of the principle point; Δx′ and Δy′ are error

corrections where necessary.

A bundle adjustment will solve all variables where there is no unique solution, creating

a ‘best-fit’ by minimising residual errors and the method of least squares (Luhmann et al.,

2006).

2.4.4.2 Monocular 3D measurement

3D measurement using a single camera has been demonstrated by Chang and Xiao (2010).

A specific target patterns with several identifiable points was used and measured changes

in target size were interpreted as a change in object distance. In this experiment, cameras

were oblique to the target motion. These tests demonstrate proof-of-concept, but because

motion in the direction of the principal axis was not isolated from other motion, out-of-

plane measurement accuracy cannot be considered proven.

2.4.5 Motion blurred images

Sharp images are almost always desired for the most accurate photogrammetric work.

In some circumstances, images unavoidably become blurred by motion. The creation of

motion blurred images is a well studied topic in computer science, usually to attempt to

restore degraded images to a more usable appearance. Kraus (1993) provides a discussion

on sources of loss of sharpness in images and comments on the systems that cause these

effects. Image blur caused by motion can be described by equation 2.5 (Kraus, 1993).

In particular, Kraus discusses how changes in image motion are related to pixel intensity

distributions in the resultant image (figure 2.11).

uth =
103 · v · t
3.6 ·mb

(2.5)

where v is the velocity (km/h), u = image motion (mm), t is the exposure time (s) and

mb is the image-scale number. Kraus (1993) notes how ‘forward motion compensation’

in aerial cameras can compensate for uniform motion using this model.

A prevailing research area in image processing is the restoration of blurred images.
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Figure 2.11: Image change as a result of image motion (Kraus, 1993)

Although some image enhancement algorithms can improve the appearance of images

by sharpening blurred lines, image restoration is more advanced and uses knowledge of

the movements of the camera or object to describe the motion that blurred the image

(Banham and Katsaggelos, 1997). Image deblurring is popular because it is often desirable

to improve poorly captured images in amateur, professional and scientific photography

(Chen et al., 1996; Banham and Katsaggelos, 1997; Ben-Ezra and Nayar, 2004; Arashloo

and Ahmadyfard, 2007; Sorel and Flusser, 2008). Most of these approaches first involve

estimating the motion that caused the image to become blurred (section 2.4.5.2). Often

the success of the final deconvolution relies on the closeness of the estimated motion, and

so a reliable estimation of the motion that originally degraded the image is crucial.

Other algorithms for measuring moving objects examine localised image gradients to

identify blurred edges. One such example is measuring the movement of fast moving balls

in sport science (Boracchi et al., 2007; Dai and Wu, 2008; Caglioti and Giusti, 2009). It

has also been demonstrated for measuring other moving objects (Li et al., 2007; Wang

et al., 2007; Lin et al., 2008) and even for spacecraft navigation (Xiaojuan and Xinlong,

2011) (figure 2.12). These algorithms are typically designed for a specific purpose and

recognise only the circular or linear structures they are originally intended for.

2.4.5.1 The 2-D Discrete Fourier Transform

The 2-D Discrete Fourier transform (DFT) is one fast way of obtaining estimating blur in

images (Solomon and Brekon, 2011). In a similar manner to how the 1-D DFT represents
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(a) Moving sports balls
(Caglioti and Giusti, 2009)

(b) Vehicle speed detection
(Lin et al., 2008)

(c) Spacecraft navigation
(Xiaojuan and Xinlong,
2011)

Figure 2.12: Examples of other motion blur measurement applications

Figure 2.13: A combination of 2-D harmonic functions can synthesize an arbitrary spatial
function (Solomon and Brekon, 2011).

periodic 1-D signals as a combination of sine and cosine functions, the 2-D DFT finds

periodic functions that can be combined to synthesise the original image (figure 2.13)

(Solomon and Brekon, 2011). Brayer (1997) provides an introduction to frequency domain

images. Note that the definition of frequency differs here slightly from that used when

analysing time domain vibration response, explained in section 3.2.2.1.

Some image processing problems are simplified by applying the DFT to an image

and representing the image in the frequency domain. At first appearances, the frequency

domain image can appear unintelligible, but images can contain distinctive features. For

example, sharp edges or repeating patterns exhibit distinctive frequency in the frequency

domain image. For blurred images, the frequency domain image exhibits fringes that will

indicate the orientation and magnitude of the motion (Li et al., 2007; figure 2.14).
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Figure 2.14: Examples of blurred images in the frequency domain (Li et al., 2007).

Figure 2.15: Samples of generated point spread functions describing linear and other
non-linear motion. These figures were created using the procedure desribed by Fergus
et al. (2006) from motion blurred images taken in the lab.

2.4.5.2 The Point Spread Function and Image Deconvolution

The way in which an image has been blurred can be conveniently described in the point

spread function (PSF), examples of which are given in figure 2.15. Whilst the earlier

introduced equation 2.5 will estimate linear motion with a simple distance measurement,

the PSF can describe both simple and complicated blurs caused by motion and other

optical degradation. Equation 2.6 is frequently used to model image degradation with a

PSF (Fergus et al., 2006).

B = K ∗ L+N (2.6)

where L is the sharp input image which is transformed byK, the point spread function;

B is the output blurred image; N represents sensor noise at each pixel; ∗ is used to denote

discrete image convolution.

This model is adopted or adapted by many as the fundamental assumption for space-

invariant blur (Banham and Katsaggelos, 1997; Fergus et al., 2006; Li et al., 2007; Lin

et al., 2008; Dai and Wu, 2008; Sorel and Flusser, 2008). The PSF can be convolved

with an image to artificially degrade it. PSFs can contain simple linear blur, as well as

linear sinusoidal motion and the shape of more complicated non-linear motion. It can

be seen from the examples in figure 2.15 that, although not stored numerically, the PSF
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contains information which visibly describes the motion, which could be measured with

an appropriate algorithm. Any PSF, however, is discretised into pixels, so the potential

for sub-pixel measurement may be limited, and thus the precision of estimated motion

amplitudes may have a lower bound of one pixel. It can also be seen in the third example

of a resolved PSF that is imperfect, and the resolved motion path is discontinuous whilst

it can be assumed that motion of real objects is not.

To improve the appearance of motion blurred images, deblurring algorithms take a

blurred image together with its estimated PSF to produce an unblurred image. The

Weiner-Helstrom filter is one regularly used restoration algorithm (Solomon and Brekon,

2011) and the effectiveness of this and many other algorithms is mostly dependent on the

quality of the estimated PSF.

Many authors proposed competing algorithms for estimating PSFs of blurred images

(Chen et al., 1996; Banham and Katsaggelos, 1997; Ben-Ezra and Nayar, 2004; Li et al.,

2007; Dai and Wu, 2008; Sorel and Flusser, 2008; Dai and Wu, 2009; Chakrabarti et al.,

2010; Trouve and Champagnat, 2011; Hirsch et al., 2011; Xie et al., 2011; Paramanand

and Rajagopalan, 2012). The PSF can be estimated using other sharp images of an

object but of a lower resolution, or the more complex algorithms are capable of ‘blind

estimation’ without any additional images or sensors. These algorithms examine whole

images and look for particular blur features. Other sensors such as inertial sensors may

be used to estimate the PSF (Joshi et al., 2010). ‘Multi-channel’ deblurring refers to

using more than one blurred image that are blurred in different ways but in combination

may be restored (Sorel and Flusser, 2008). The most recent deblurring algorithms are

capable of estimating ‘space variant’ motion blur by modelling the movement of a camera

to account for different PSFs in different areas of an image (Sorel and Flusser, 2008).

2.4.5.3 Camera Response Functions

Differences found between motion blurred and simulated images during tests (section

3.2.2.3) were attributed to the camera’s non-linear response functions, which relates input

light intensity to recorded pixel value. Figure 2.16 gives an example of a camera response

for a Nikon D80. Chang and Reid (1996); Debevec and Malik (1997) and Kim et al. (2012)

describe how, in order to improve the appearance of images for viewing, the intensity of
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Figure 2.16: Example camera response function for a Nikon D80 camera, estimated from
images captured within the School (office environment) using the solution by Debevec
and Malik (1997).

colours in an image usually has a logarithmic relationship with the light energy that

entered the lens, not only in digital sensors but also in film chemistry. This function

has also been attributed to the ringing artefacts often seen in images restored by the

Richardson-Lucy and Weiner deconvolution algorithms (Kim et al., 2012). In particular,

Debevec and Malik (1997) proposed an elegant solution to finding the camera response

function from a sequence of images captured with different shutter speeds, and provided

their Matlab code in their paper.

2.4.5.4 Measuring the motion blur of circular targets and objects

The application of measuring speed and trajectory of sports balls, and measuring move-

ments of stars in astronomy, are similar in that they both involve examining circular

blurred objects. Blurred circles are typically measured by identifying points around the

blur edge or on other distinct parts of the blur path (figure 2.17; Boracchi et al., 2007).

These methods examine localised areas of images for particular patterns. Dai and Wu

(2008) show the difficulties in measuring particular points on the borders of blurs where

the edge appears as a gradient rather than a sharp edge. Some algorithms make as-

sumptions of constant velocity whereas newer algorithms can account for non-uniform

motion.
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Figure 2.17: Intensity profiles along directions approximately parallel to the blur direction
in the image have similar characteristics (Boracchi et al., 2007).

2.5 Summary

This literature review has pooled knowledge for three subject areas: structural testing of

civil engineering structures, photogrammetry, and image deblurring. Structural tests are

routinely carried out in a laboratory environment. Routine ‘structural health monitoring’

is also regularly carried out on civil engineering structures to assess their structural

integrity as well as to predict and plan for future structural work. There are distinct

differences between static testing and dynamic testing. Static testing involves slowly

applying loads to a test element and measuring its deformation. Dynamic testing is a

more complicated technique whereby vibrations of much lower load act on the structure

and its vibration response is measured. An analysis of the vibration response can identify

changes in a test element’s stiffness. As methods of carrying out dynamic testing improve

for civil engineering structures, this approach is emerging as a more convenient method

of carrying out regular testing.

Non-contact measuring instruments offer advantages over traditional contacting in-

strumentation such as remote monitoring of a very high number of measuring points.

Optical image-based methods for measuring discrete marked targets in static testing are

well documented, whilst image-based monitoring of dynamic tests and digital image cor-

relation are more recently developing areas. The selection of sensor is an important factor

in the accuracy of any image-based monitoring scheme. Current sensor hardware requires

a compromise between spatial and imaging speed to be made.

Image deblurring techniques allow photographs that are blurred by a moving cam-

era or of moving objects to be improved post-capture. The most effective methods first

estimate the camera or object’s motion before deblurring the image. The following chap-
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ter discusses a methodology for using localised image blur measurement techniques for

determining the vibration response in dynamic structural tests.





Chapter 3

Methodology

The existing methods for monitoring dynamic tests described in the literature review have

been effective within the constraints for which they are described. However, they suggest

that an alternative method is necessary in order to alleviate the inherent compromise that

exists when selecting sensors for monitoring of dynamic structures. Instead of capturing

vibrations using very high speed imaging, a high-resolution long-exposure photograph

could be used, in which the localised object image becomes motion blurred (figure 3.1). A

specialised image registration algorithm would be necessary to make measurements from

such a motion blurred image. This chapter discusses the development of an algorithm

for monitoring vibrations in structures using such long-exposure blurred imagery, some

of which is presented here.

The first section identifies and describes the attributes of the imaging hardware

and other monitoring instrumentation used in the course of this research project (sec-

tion 3.1.1). Following this, a number of currently existing algorithms for photogrammetry

measurement of sharp images, as well as some other algorithms applicable to blurred im-

ages are described, recreated and the effectiveness of each tested (section 3.2). After

evaluating a number of these image processing approaches, a combination of the most

effective was developed into a working solution for measuring vibration in blurred images

(section 3.3). This algorithm is described in detail, and the accuracy of the measurements

is verified.

After the development of the algorithm for processing of individual images, the ap-

proach was extended to include 3D monitoring capabilities. Technical challenges in addi-

53
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High speed imaging Long exposure image,
deliberately blurred

Figure 3.1: An illustration of the proposed LEMBI measurement approach

tion to those normally encountered in 3D photogrammetry are discussed, existing partly

because of individual targets having two coordinates in each image. A solution to these

additional challenges is presented.

3.1 Equipment and instrumentation

3.1.1 Camera hardware

The cameras used for this project included a pair of Nikon D80 cameras (Figure 3.2a) and

a Nikon D7000. The lenses available for these cameras included a pair of 24 mm fixed focal

length lenses. A range of other fixed focal length lenses between 24 mm and 85 mm were

available, as well as zoom lenses (although the zoom lenses are not favoured). All lenses

and cameras share the ‘Nikon F’ mount, and are all interchangeable. Key properties of

both cameras are given in table 3.1.

For simultaneous activation of the two camera’s shutters, a double external trigger that

connects to two cameras had been constructed by a lab technician (Figure 3.2b). Pressing

the button activates a relay that closes the trigger circuit for both cameras simultaneously.

For convenient activation of the double external trigger, it can also be activated by

an external signal from other lab equipment. This was convenient for tests using the

shaker table (introduced in section 3.1.3) where long sequences of images were taken

automatically, and the timing of the camera trigger synchronised with other data logging
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Table 3.1: DSLR camera properties

Nikon D80 Nikon D7000

Effective pixels 10.2 MP 16 MP

Image size 3872 x 2592 px 4928 x 3264 px

Sensor 23.6 x 15.8 mm 23.6 x 15.7 mm
CCD sensor CMOS sensor

(a) Nikon D80 camera (b) Double external trigger

Figure 3.2: The Nikon DSLR cameras and double external trigger

hardware. Switching the external trigger to ‘External Sync’ enables the internal relay to

be activated by an external power source through a 3.5 mm jack port. The consumer

grade cameras were supplied with automatic setting of most parameters activated by

default, several of which had to be manually controlled in the course of the following tests

to capture appropriate images and to maintain synchronisation (appendix E). During

monitoring, precautions were taken to ensure no camera movement (section 3.3).

3.1.2 Camera calibration field

Calibration of camera lens systems is normally necessary for the most accurate pho-

togrammetric work. Except for in the cases of localised displacement measurement only

(section 2.3.1.1), the camera’s lens system must be modelled to account for systematic

errors caused by lens distortions (section 2.4.1.2). The cameras internal components,

including the sensor geometry, the focal length and parameters describing lens distortion
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and collectively described as the camera’s interior orientation (IO).

As discussed in the literature review (section 2.4.1.2) specialist cameras manufactured

to small tolerances can be used to reduce distortion by the lens system. Alternatively,

less expensive hardware can be used, provided that lens distortion is taken into account.

Since the distortions caused by these lenses are generally predictable and can be modelled

with a small number of parameters, this method can deliver significant cost savings whilst

still providing high accuracy.

The automated camera calibration provided by the PhotoModeler software package

(EOS Systems Inc., 2013) is a fast and convenient method for determining calibration

parameters from a series of images of sheets or coded targets, and this software has been

used in the research. The guidance from EOS Systems suggests laying calibration sheets

on the floor, and moving around them with the camera. However, this is an inflexible

solution as the range of suitable lenses and focal length is restricted. If a lens was desired

to be focused to infinity, then carrying out lens calibration on a 1.5 m tripod will likely

mean the calibration image sequence suffers from out-of-focus blur, and the calibration

process might not be accurate.

A camera calibration target field was designed and assembled on a wall in the labo-

ratories of the School of Civil and Building Engineering. This field was designed to be

suitable for calibrating cameras for a large range of applications. Images can be acquired

from a maximum object distance of 5 m, at which distance it was found that targets

remained in focus when lenses were focused at infinity. At this distance, the largest tar-

gets at 12 mm diameter are visible in the image, and with a 24 mm lens would represent

approximately 9.5 pixels in the image space, a suitable target size. When either a longer

focal length or shorter focus distance is desired, a smaller area of the calibration field will

be visible in images, and smaller targets will be then visible at these scales, the smallest

targets being 2 mm. Intermediate 6 mm targets were also included in the test field design.

The test field geometry was designed as shown in the diagram in figure 3.3.

The targets were printed on sheets of A3 paper which were used to decorate a 5.0 x

3.3 m wall with 190 coded targets. Rather than using PhotoModeler’s ‘Print Calibration

Sheets’ function, the standard ‘Create Coded Targets’ was chosen, because in this mode

the centres of the targets could be marked with small crosses. The sheets were then
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Figure 3.3: The design of the camera calibration field, showing three different sizes of
targets

arranged on a spare wall using wallpaper paste (figure 3.4).

Although not necessary for calibration, coordinates for the first and fifth target on

every large size sheet (approximately 22% of all the targets) of the targets were measured

using a total station, making observations from three locations. It was for this that the

centre of the coded targets needed to be marked. The readings were then put into an

adjustment in the StarNet software (MicroSurvey, 2011). This set of coordinates can

then be used to validate of the calibration results achieved in PhotoModeler.

Whilst this range is suitable for many applications, it does not provide targets suitable

for macro images at a very large scale. In these instances it is anticipated that calibration

targets could be printed on a single sheet of typical office-sized paper, so a dedicated

calibration field would be unessential for these tasks.

Whenever a lens calibration was required, a series of images of the calibration field

were taken using the sensor and lens combination. Images were arranged following Photo-

Modler’s recommended guidelines, which recommends 12 convergent images distributed

around four sides in different orientations. PhotoModler’s, multi-sheet automatic calibra-

tion was used and calibration parameters XP , YP , K1, K2, P1 and P2 were determined. If

PhotoModeler alerted about the focal length, the EXIF data approximation of focal length

was used, since the resultant focal length determined by Photomodeler’s self-calibration
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Figure 3.4: The completed camera calibration field

in this mode was closer to the specification focal length of the lens. The ‘Photomodeler’s

best estimate’ method resolved a focal length which was significantly less than the lens

specification, and the resultant other distortion parameters were significantly different

to those determined in combination with a near-specification focal length (although it is

possible that the different parameters is this model are still effective).

3.1.3 Shake table

Images exhibiting strictly controlled motion blur, created in laboratory conditions were

desired to examine the appearance of motion blurred images with varying amounts of

blur. Tests were devised using a structural dynamics shake table (figure 3.5), which

allowed exact control of motion in a fixed direction. The table can be programmed with

a certain motion, by creating an input waveform. The input signal relates to the force

applied to the moving armature, which is proportional to its acceleration. The moving

table bed is horizontal, and test models and targets were rigidly screwed to the table

surface. Cameras could then mounted on a tripod opposite the targets.

The shake table used is an APS 400 ‘Electro seis’ with the horizontal table kit (fig-
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ure 3.5). The APS 145 signal amplifier is used to provide the necessary power to the

table. The signal amplifier input is a single channel DC signal, provided through a NI

CompactDAQ system (figure 3.6). A custom Matlab script running on a PC controls

the output signal of the CompactDAQ. The table bed has dimensions of 356 x 356 mm,

provided with a 50 x 50 mm grid of threaded holes into which machine screws can be

inserted. The maximum stroke of the table is 157 mm. This instrument was of particu-

lar value because it could be used to generate known displacements to an object, which

could be compared to estimates derived from an image based solution. A range of other

monitoring equipment was available also.

3.1.4 Monitoring equipment

A range of monitoring instruments were available in the dynamic structures laboratory.

These included gauges to connect to the accelerometer and voltage signal input connec-

tors of the CompactDAQ system modules. Accelerometers were available for monitoring

the movement of test objects, including triaxial accelerometers (described in more detail

in section 2.2.1.3). A laser displacement gauge was also fitted to the table to monitor

the table’s actual position. Since the range of the table is beyond the maximum range

of the laser, an angle section fitted to the back of the table is inclined, so that the

output signal from the laser is linearly proportional to the table position. The table’s

displacements could also be found using an accelerometer and subsequently double inte-

grating the accelerometer data, but this approach is subject to drift as discussed further

in section 2.2.1.3. The laser displacement gauge provides more accurate absolute position

measurement, so is favoured when making comparisons. The amplifier’s output monitor

signal was also returned to the CompactDAQ’s voltage input to monitor the status of the

amplifier.

The accelerometers are individually calibrated by the manufacturer, and each has a

calibration constant in mm s−2 V−1, which must be assigned to the data input channel to

get the correct measurement. The laser gauge is not formally calibrated, since its output

depends on the exact inclination of the angled section at the rear of the table, but it

outputs a linearly increasing signal with respect to the table position. The increase in
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Figure 3.5: APS 400 shake table

Figure 3.6: Shake table control system (NI CompactDAQ and APS 125 signal amplifier)

output signal per distance travelled by the armature is determined and used to calculate

the table’s absolute position at any time.

These monitoring instruments were used to provide independent external reference

measurements for testing the proposed measurement system. The laser displacement

gauge was used to monitor a structure’s input force, and the accelerometers were used,

either to also measure the motion of the table or to measure the response anywhere on

the model structures.
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3.2 Current Target Measurement and Image Regis-

tration methods

The literature review identified some existing approaches to measuring or estimating

motion in motion-blurred images, some of which used artificial targets, and some of

which detection motion in natural scenes. To test the effectiveness of these approaches

and assess their suitability for monitoring of structural vibrations, experiments were

conducted using controlled motion-blurred images created with the shake table, with the

aim of selecting or devising an approach suitable for the application.

As well as making qualitative observations of each approach by comparing the appear-

ance of results on-screen, and comparing how reliable each measurement is, the accuracy

of measurements made with each method was assessed by comparing the image-derived

measurements with those recorded by the other sensors fitted to the shake table.

3.2.1 2D image geometry

To allow each comparison between image-derived measurements and reference sensors,

it was necessary to transform image-derived measurements into object-space in units

of millimetres. Where deformations are expected to be planar, relatively simple trans-

form calculations can be used to transfer image-space measurements in units of pixels

to the object-space in units of millimetres. A discussion of planar transforms is given

in section 2.4.3, and the projective transform was deemed most suitable, because of its

tolerance to the perspective effect of the imaging plane not being exactly coplanar with

the object plane. Two wooden stands were positioned on either side of the object, with

three ‘RAD’ coded control targets on each, which allow for automatic identification and

measurement by PhotoModeler (EOS Systems Inc., 2013). The wooden stands and con-

trol points should be arranged such that all points are coplanar. This was achieved by a

careful visual alignment of all control points, and ensuring that all monitoring points are

also aligned to the desired measuring plane. For convenient positioning when monitoring

larger model structures, a BSW 5/8” nut was fixed to the base of these stands, to allow

the stands to be mounted onto standard surveying instrument tripods.
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The projective transformation requires both image coordinates and object-space co-

ordinates for each control point to determine the transformation parameters. Although

a Matlab algorithm for the recognition and measurement of RAD coded targets was de-

veloped, the algorithm could not recreate the accuracy achieved by the PhotoModeler

software. Indeed, while the Matlab routine reliably recognised target codes, the target

measurement algorithm was based on a weighted centroid algorithm, rather than the least

squares matching approach used by PhotoModeler, which is known to be more accurate

(Luhmann, 2011). PhotoModeler Scanner was used to automatically determine the image

coordinates for coded targets, and the derived image coordinates were exported to a CSV

file.

Real-world object-space coordinates for each control point were determined by mea-

suring the control points with a Leica TCR405 total station (TS) in reflectorless mode.

Whole circle bearing (WCB), horizontal and vertical distances were noted down. Al-

though 3D coordinates were determined using these measurements, 2D planar coordinates

were required.

The vertical distances measured by the total station were used to represent the verti-

cal (y-axis) plane-space coordinates (with a simple constant added to bring the readings

within a convenient range of positive numbers). More calculations are necessary to de-

termine horizontal (x -axis) plane-space coordinates from the TS measurements. The

measured WCB and horizontal distances were entered into a spreadsheet and X and Y

horizontal coordinates calculated in an arbitrary coordinate system. On this occasion,

a MS Excel was used as it allowed measurements to be conveniently entered, contained

an easy-to-use regression function and provides a simple output which is easily passed to

other Matlab routines. The parameters of a straight regression line (slope and intercept)

fit to these coordinates was calculated using MS Excel’s ‘linest’ function. Regression

statistics are also displayed in the spreadsheet to check the fit, and a plot in the spread-

sheet provides a visual check. The plot also aides identification of any gross errors in

measurements.

Given the regression line parameters (slope and intercept), a local coordinate system

was then defined by rotating the object-space coordinate by the angle that the regression

line makes with the vertical axis. A 2D rotation matrix was used for this transforma-



3. Methodology 63

Figure 3.7: The spreadsheet used to calculate planar control coordinates from a total
station survey

tion (equation 3.1) and the x coordinate used to represent the place-space horizontal

coordinate.
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These object-plane space coordinates were stored as another CSV file. To determine

the parameters of the projective transformation, Matlab’s ‘cp2tform’ function was called

with a list of image-space coordinates with their corresponding plane-space object coor-

dinates. The output is the projective transformation parameters which were then used

to transform image coordinates into object-space coordinates using Matlab’s ‘tformfwd’

function. Both of these function are from the family of geometric transformation functions

in Matlab’s Image Processing Toolbox.

As discussed in section 2.4.1.2, a lens model can be safely excluded from the processing

chain when calculating localised deformation. The systematic errors incurred by not using

a camera model, whilst may be significant for absolute coordinate determination, will be

minimal when determining local differences.
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3.2.2 Natural texture approaches

There are many examples identified in the literature (Ben-Ezra and Nayar, 2004; Fergus

et al., 2006; Arashloo and Ahmadyfard, 2007; Dai and Wu, 2008; Sorel and Flusser,

2008) for determining the motion causing blur in images of ordinary scenes, typically

as a result of the camera moving during acquisition, or capturing fast moving objects

such as at sporting events. The images used are generally ordinary scenes rather than

structured images containing artificial targets, and their aim is mainly to improve the

aesthetics of poorly captured photographs. In particular, the problem is usually created

by a moving camera which blurs the whole image, instead of localised blur caused by a

moving object in part of the image. If a solution using natural texture approaches was

used, images would not require marked targets and a similar arrangement to DIC would

be possible. Not only would set-up time be reduced, but measurement would approach

full-field, provided the object has suitable surface texture.

The suitability of some of these earlier published measurement methods was tested

by recreating the methods described in their publications, which follows in this section.

Some of these approaches produce a point spread function (PSF), which can contain

information about motion direction, extent, distribution and even describe non-linear

motion (section 2.4.5.2).

3.2.2.1 Frequency domain

The possibility of transforming images from the spatial to frequency domain was intro-

duced in the literature review (2.4.5.1). The term ‘frequency’ is classically used to describe

the Fourier’s counterpart of time. In this subsection, the term is used to describe the

power spectrum of a spatial domain (pixels), rather than a time domain. Frequency is

usually defined as an inverse of time, but here it is an inverse of pixels.

Frequency domain analysis can simplify image processing problems, including that of

motion blur. By passing images through a 2D discrete Fourier transform (DFT), images

can be expressed as a series of periodic functions (section 2.4.5.1). Analysing frequency

domain images is suggested as an approach to determining the motion path causing

motion blur by Li et al. (2007). Li et al. show how the spectrum image exhibits dark
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Figure 3.8: This image of ‘Lena’ has become a standard test for image processing algo-
rithms

‘ripples’ perpendicular to the vibration direction, which can then be measured.

Fringe Detection The approach demonstrated by Li et al. was tested, by collecting

motion blurred images and examining the frequency-domain spectral intensity function

to detect fringes. Several sample images were captured, some of outdoor scenes taken

with a hand-held camera and others were of images of moving photogrammetric targets,

and also some sample images downloaded from the internet. Although the approach was

successful with a low resolution ‘Lena’ image (figure 3.8), it was mostly unsuccessful using

the images of sample targets, with the spectral intensity function appearing unintelligible.

This is possibly due to the increased noise in higher resolution images, or the remaining

high frequency components of ‘structured’ motion-blurred images rather than those of

scenes.

Function Division According to the convolution theorem (Solomon and Brekon, 2011),

the Fourier transform of images created in the spatial domain by the convolution of a

sharp image with a point spread function (PSF), is equal to the frequency-domain image

created by matrix multiplication of their transforms in the frequency domain, that is

(Solomon and Brekon, 2011):

F{f(x, y) ∗ h(x, y)} = F (kx, ky)H(kx, ky) (3.2)

where ∗ denotes discrete image convolution. Here, as explained in section 2.4.5.1, the

use of the term ‘frequency’ differs from that where frequency is the inverse of the time
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(a) (b)

Figure 3.9: (a) the simulation PSF, (b) the resultant PSF

domain.

If a blurred image is created this way in the frequency domain, the spatial domain

image can be retrieved via the inverse DFT. It was suggested that, given a sharp and

blurred image of the same scene, the PSF could be retrieved in the frequency domain.

A blurred image, B, was created with a sharp image, S, and a PSF (figure 3.9a). It was

hoped that the original PSF could be recovered with the equation:

PSF = F−1

(F(B)

F(S)

)
(3.3)

Although this approach provides a theoretical solution, tests revealed that it is imprac-

ticable. It would appear that this is a poorly conditioned problem, since the frequency

domain Fourier transform is not a unique solution, it is only a very close approximation.

Although the resultant PSF from dividing is technically correct, it does not resemble a

PSF which can be measured. In fact, convolving the resultant PSF with the sharp images

does produce an apparently similar motion-blurred image. A further practical limitation

is also that the Fourier transform slows down for larger images, and maybe unacceptably

slow for larger image patches.

3.2.2.2 Blind deconvolution algorithms

As identified in the literature review (section 2.4.5.2), in the field of computer science

there are competing algorithms for ‘blind deconvolution’ of blurred images: i.e. taking a

blurred image and restoring it without any other information. Published demonstrations
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used ordinary unstructured scenes that are ‘deblurred’. Since the problem is usually that

the camera is moving and the object is stationary, many algorithms estimate the motion

with a smaller patch of the main image and assume the motion is spatially invariant for

restoring the rest of the image. This assumption probably holds true when all objects

in the image are very far from, or approximately at the same distance from the camera.

Most algorithms use an iterative approach that takes a considerable time to process.

Notable examples of blind deconvolution include that by Fergus et al. (2006), who make

their Matlab routine available to use. Their routine was utilised, implemented and tested

on a range of motion blurred images.

Like the previous approach, because these images are of ordinary scenes, using these

algorithms to measure motion would not necessitate attaching targets to images with suf-

ficient texture. Monitoring could be made to a grid, approaching full-field measurement.

These blind deconvolution algorithms are also frequently capable of identifying PSFs for

non-linear motion.

Samples of PSFs recovered from sample images were provided in figure 2.15. Unfor-

tunately, these blind deconvolution algorithms were very slow and take several minutes

to compute PSFs for small patches within images. Poor estimates of PSFs, that are not

very representative of the motion that caused the blur are common, and where they occur

there is not a quality check to identify them. The capability for sub-pixel measurement

may also be limited. These limitations may be solvable when de-blurring poorly captured

scenes, for which this algorithm was intended, where it is possible to identify and limit

processing to the image patches most likely to be successful. For structural testing it is

necessary to prescribe the image patches relating the points of interest on the structure,

and the approach is less likely to succeed.

3.2.2.3 Image Correlation

Blind deconvolution algorithms discussed above are capable of identifing the PSF that

creates motion-blurred images without assuming a certain motion direction or shape.

When these published algorithms are tested the demonstrate that estimation of PSFs is

complex and difficult to achieve, particularly when there is no ‘a priori’ knowledge of the

motion.
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Figure 3.10: Samples of generated point spread functions describing harmonic motion.

The problem was simplified by restricting the motion direction, and so making a one-

dimensional problem. By assuming the vibration to be one-dimensional, sinusoidal and

(initially) in a fixed direction, the resultant PSFs become limited and the problem can

be reduced to solving one unknown (the motion amplitude). It was decided to develop

an algorithm that solves this more simple challenge initially, before adding the additional

complexity of orientation later.

Matlab has a function included in the Image Processing Toolbox for creating motion

blur PSFs, ‘fspecial’. This single function can create different filters such as edge de-

tection filters, but also a motion blur filter. The desired length and angle are input to

the function, and the output is a point spread function describing constant velocity mo-

tion. Unfortunately, motion caused by constant velocity is not always a valid assumption

(Kraus, 1993).

For a more accurate representation of a PSF for structural vibrations, which are gen-

eraly harmonic (section 2.1.3.1), a bespoke function was created for generating PSFs of

sinusoidal motion (figure 3.10). A 2D ordinary sinusoidal curve can be created, with a

period of half the motion distance, the function is limited to the range from one half of

to negative half of the desired distance, and is zero beyond this range. This continuous

function can then be discretised into a matrix (padded with zeros). The initial PSF gen-

erating function initially provided integer displacements of integer values, and was later

extended to create PSFs for subpixel displacements (figure 3.23). The PSF generation

algorithm is further developed in section 3.3.1.
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Figure 3.11: Image correlation results show a clear trend

Such an approach could theoretically work in images of natural texture. However,

to work successfully, the texture would have to have sufficient ‘boldness’ to not be so

severely degraded that it is lost when blurred, and ideally not have a repeating pattern.

For this reason, it was elected to restrict use to well defined targets (at least initially).

This approach could be used to validate the earlier blind deconvolution method, or to

improve its accuracy.

An iterative method using image correlation between as-taken motion-blurred images

and artifically created motion-blurred images was designed. After making a first esti-

mate of the motion direction and distance, a PSF would be generated that described

this motion. This PSF would be used to create an artificial motion-blurred image by

convolving the sharp image taken while the object was stationary with the PSF. A cor-

relation statistic was calculated to compare the artificial motion-blurred image with the

actual as-taken motion-blurred image. The motion parameters that were used to create

the PSF would be iterated until the motion parameters related to the highest simulated

image correlation statistic can be identified. After initial development and testing, this

approach appeared successful, and a trend in image correlation statistics clearly shows

an identifiable ‘peak’ (figure 3.11).

Unfortunately, the generated image with the highest correlation statistic was created

using slightly greater motion amplitude than was known to have actually caused the
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As−taken Simulated

Figure 3.12: Although very similar, pixel intensities with the gradient area were darker
in the simulated image.

motion blur. A systematic error appeared to exist. On closer inspection, although very

similar, pixel intensities within the gradient area were darker in the simulated image.

The highest correlation statistic was not where the image motion matched (figure 3.12)

and it was thought this is because where gradient areas appear darker, they produce a

higher correlation statistic when aligned with a gradient area nearer to a dark (or in the

figure, an ‘always occluded’) part of the image. It was recognised that since PSFs must

sum to unity, the overall intensity of the PSF could not be incorrect. The difference in

PSF was instead attributed to non-linear camera response functions.

Several assumptions were made in generating the simulated image: including that the

pixel intensities were assumed to be a value linearly proportional to the amount of time

that a picture occupies that image pixel. It was also assumed that the pixel intensity

is proportional to the light intensity at each sensor pixel in the real as-taken image,

however, other filters are applied before the final pixel value is recorded. On the D80

camera a physical filter exists on the sensor array, as well as any other filters attached

to the lens, and software filters are applied by the camera before an image is recorded.

This somewhat invalidates the assumption that a blurred image is the product of a sharp

unblurred image with an OTF, since the the final pixel value is not linearly related to

the time the object spent in that position.

A camera response function (CRF) describes how the intensity of light reaching a

sensor pixel is related to the final pixel value. To improve image aesthetics, the two are
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not proportional and are, in fact, related logarithmically (Grossberg and Nayar, 2004),

which more closely mimics human perception of varying light intensity (figure 2.16).

The CRF for the Nikon D80 with the appropriate exposure settings was determined

using the approach described by Debevec and Malik (1997) (figure 2.16). A look-up table

relating light intensities (on an arbitrary scale but assumed proportional to radiance)

to pixel values was essentially created. The look-up table was used to create a light-

intensity spectrum image, by replacing pixel values with their light intensity equivalent.

Image measurement using the iterative image correlation was repeated to see if the new

light intensity spectrum image improved the accuracy of the result. Unfortunately, only a

small increase in accuracy was observed. The anticipated improvement in accuracy may

not have been realised because of another systematic effect that created the error.

Whilst the presence of a systematic error caused by a non-linear CRF is supported by

literature (Grossberg and Nayar, 2004; Debevec and Malik, 1997), attempts to correct for

it were unsuccessful. Whilst the presence of the error is assumed, its affect on accuracy

remains untested and the main cause for the observed error in the correlation image

registration approach may be another unanticipated error.

One effect of the CRF which could be permanent is that if the function is applied

before the recorded higher-bit value of the pixel is reduced to within the 256 value range,

this would introduce an almost cyclic systematic effect. This could not be reversed by

inverting the CRF.

This systematic error was later solved in the proposed solution by comparing edge

features of artificial targets. Whilst the pixel intensity values of the gradient within the

motion blurred path is affected, the position of the edge features of artificial targets was

not (section 3.3).

Whilst consideration of these natural texture measurement approaches has demon-

strated and evaluated possible measurement algorithms, a number of measurement diffi-

culties were encountered. Investigation diverted to those approaches requiring artificial

targets, as it was anticipated that the greater control over the image would permit greater

accuracy and reliability.
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3.2.3 Artificial targeting approaches

The addition of artificial targets for object points is common in photogrammetry. Using

a target of known appearance allows object points to be more easily identified and coded

targets allow automatic labelling. Depending on the approach, natural features of interest

may need be identified manually in images. The centroiding accuracies of circular targets

also approach 0.01 px in ideal conditions (Luhmann, 2011). Natural features typically

do not have identifiable points, but must be ‘matched’ between images taken at differ-

ent epochs, or from different camera stations. Accuracies are lower, and the change of

appearance can cause lower accuracy in measurement which requires testing and further

examination.

To examine the appearance of motion-blurred images, targets were printed on paper

and stuck on to the shake table (section 3.1.3). Images of the targets were taken whilst

the table was in motion. With the aim of determining an approach for measuring motion

blur, different combinations of targets and corresponding target registration algorithms

were sampled. Although circular targets are common in photogrammetry, they will not

necessarily be the most suitable target for measurement of motion blur. Their apparent

effectiveness for creating predictable images was judged (figure 3.13). This section reports

on the judged effectiveness of each approach.

Figure 3.13: The selection of artificial targets tested on the shake table

3.2.3.1 Cross targets

Black cross targets on a white background were subjected to one-dimensional sinusoidal

motion to test how this target type appeared in motion blurred images. The resultant

motion-blurred image showed two faint crosses linked by a fainter smear. Luhmann et al.

(2006) noted how the ring operator can be used to mark the centre of cross targets.

An algorithm adapted from the ring operator for marking these cross targets was de-

veloped and could also successfully mark the two ends of the cross’ motion (figure 3.14).
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Figure 3.14: Centres of cross targets identified

This algorithm used a moving circle to traverse the image capturing a profiles of pixel

intensities on the circle’s circumference at each position. The circle would move progres-

sively from location to location whilst the algorithm attempted to identify four ‘peaks’ in

the pixel intensities. Once identified, alternate peaks could be joined by two intersecting

lines, their intersection marking the estimated centre of the apparent ‘cross’ image. The

algorithm was iterative, the circle moving closer to the centre of the cross target with

each iteration.

The lines of the cross were identified by only a small number of pixel intensity values.

For the larger blurs, the target became rapidly indistinguishable. To make the cross

bolder, crosses with broader strokes were used and these were identifiable more easily,

but the accuracy of marking the centre was reduced. Cross centres also became difficult

to distinguish when the motion was not sinusoidal.

Although each extent of the blur was measured at the centre of the cross, the measure-

ment approach does not associate pairs of measured points belonging to a single target

with each other. If more than one target existed in an image, it would be possible to

incorrectly link marked points. Although corresponding points are likely to be relatively

close to each other, relying on proximity alone could be unreliable (figure 3.15). This

test identified the need for a target recognition algorithm capable of measuring multiple

points of interest on a single physical target that are associated, rather than measuring

different points of interest on the target independently.
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Figure 3.15: Pairs of marks are not associated hence it is possible to incorrectly link
marks where targets are near each other.

3.2.3.2 Circular targets

Circular targets are regularly used in photogrammetric work for marking control points

and other object points of interest. Advantages include that they are easily identifiable,

rotation invariant and can be accurately measured. Circular targets were included on the

test sheet on the shake table and their appearance in images was also examined.

The appearance of motion-blurred circular targets was found to conform to two pat-

terns, depending on the amplitude of the vibration in relation to the target diameter

(figure 3.16). In the first case, where vibration amplitude is smaller than target diame-

ter, a region of the image is always occupied by the black target, and pixels in this region

take a value the same as the black of the un-blurred target. Two approximate crescent

regions are generated on either side of the central dark region, arising from exposure to

both the black target and the white target border during the time the shutter is open.

Pixels receive a value related approximately to the amount of time they exposed to white

or black, but as discussed later in section 3.2.2.3, post-processing steps are apparent

which make this relationship not linearly proportional.

The use of circular targets is also similar to past approaches for monitoring tests

using static (Benning et al., 2004; Albert et al., 2002; Valença et al., 2012; Yilmazturk

and Kulur, 2012; Thomas and Cantré, 2009; Maas, 1998) and dynamic (Choi et al.,

2011; Lee and Shinozuka, 2006a) techniques, and is familiar to photogrammetrists. The

arrangement of circular targets for monitoring would also be suitable for the deformation

monitoring approaches demonstrated in these papers.
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diameter = d                   vibration < d                        vibration > d

Figure 3.16: Motion blurred circular targets where motion is smaller and larger than
target diameter. The motion-blurred images correspond with figure 2.11(b) and (d) by
Kraus (1993).

3.2.3.3 Image correlation of circular targets

Whilst circular targets were tested extensively on the shake table, the effectiveness of the

earlier tested image correlation approach with circular targets were considered further. To

develop a procedure to estimate the displacements, simulated images of blurred circular

targets at different motion amplitudes were created and compared with the as-taken

motion-blurred image. Sinusoidal PSFs of different motion amplitude were defined as in

previous testing (section 3.2.2.3) and then convolved with an image captured with no

motion using Matlab’s ‘imfilter’ function.

It was noticed that the position of the table at rest was different to the centre of the

mid-point of the table’s motion. This factor had not been previously appreciated with

less structured images being considered. Rather than computing one correlation statistic

for each test motion amplitude, it was necessary to calculate cross-correlation coefficients

to locate where the mid-point of the table’s motion matched the sinusoidal image, and

the highest coefficient was accepted. The correlation coefficient for each tested amplitude

was, therefore, calculated using Matlab’s ‘normxcorr2’ cross correlation function, with

the maximum value accepted.

As shown in figure 3.17, the simulated and as-taken images are broadly similar. A

peak in the correlation statistics could be identified, and at first it was thought that

would represent the correctly identified motion, but as previously a similar systematic

error remained.

It is also noted that whilst images can be correlated and the highest correlation
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Figure 3.17: (a) As-taken and (b) simulated image of a motion blurred circular target

accepted, the correlation coefficient does not indicate the direction to improve the result

whilst iterating displacements. Many iterations are therefore necessary before a solution

is found. If the approach was extended to also consider direction, the number of iterations

would increase exponentially.

3.2.3.4 Edge Detection

Differences in absolute pixel intensities between as-taken and simulated images exist,

restricting the use of correlation methods alone. An alternative approach was required

and comparing detected edges was tested, as it was observed that although absolute pixel

values may differ, edges of gradients in blurred circular targets did coincide. Instead of

iterating to achieve the highest image correlation statistic, iterating to achieve the same

detected edges was proposed.

Circular targets were again used, although it is likely that if successful, it is possible

that this approach would be suitable for other targets. Chang and Xiao (2010) used edge

detection for measurement of a specific chequered target.

A range of edge detection algorithms are available, and each has its own set of ad-

vantages and disadvantages. None can be applied universally to all cases, so a range of

the default edge detection algorithms in Matlab’s build in ’edge’ function (’Sobel’, ’Pre-

witt’, ’Roberts’, ’Log’ and ’Canny’) were applied to images of blurred circular targets,

and outputs compared. Figure 3.18 shows that the Log operator appears to effectively

identify the edge at the extreme periphery of the blurred target subject to motion ap-

proximately equal to the targets diameter. However, when the target was subjected to a

smaller amount of motion the same edge is not identified (figure 3.19). The edge detection
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algorithms also showed changing effectiveness under different lighting conditions.

These images were then compared to simulated images of the same motion within the

same edge detection algorithm applied. Matching images were found to not be susceptible

to the systematic error encountered earlier (section 3.2.2.3). Although not suffering this

error, the approach alone can only achieve pixel level accuracy, since the detected edges

are restricted to pixel level resolution.

3.2.3.5 Pixel Intensity Profiles

Edge detection methods did not appear to introduce a systematic offset error, yet had

poor precision. Boracchi et al. (2007) discuss an image processing approach for measur-

ing the velocity of sports balls (which appear as motion-blurred circles) from its motion

blurred image. This approach was tested for this application. The approach establishes

a series of intensity profiles of pixels through a motion-blurred circle. Changes in gra-

dient are then identified as features within the blurred circle. Points are then marked

around certain features of motion-blurred circular targets, and finally, ellipses are fit to

compatible points for each end of the motion.

A simple thresholding filter was first applied to the image of the target so that the

target can be identified. Instead of using Otsu’s method to choose a threshold between

distinct pixel intensity differences (The MathWorks Inc., 2014a), a higher threshold is

selected to ensure that the whole target region is detected (figure 3.20). Some simple

measurements about the target geometry were made, such as the orientation and length

of the major and minor axes. This information provides a rough estimate of the size and

orientation of the motion, and the pixel intensity profile lines are then arranged, with the

appropriate length, orientation and spacing.

The intensity profiles are extracted in turn. The intensity profile line was sampled

using bilinear interpolation and represented by a vector. The line was sampled 200 times,

since this was adequate to pick up sufficient detail about the changes in gradient. Pixel

intensity profiles (PIP) took one of two forms, depending on whether the motion is less or

greater than the diameter of the target, and both cases are shown in figure 3.21. Changes

in gradient were identified in the PIP, and the respective coordinates of the gradient

changes in the image determined.
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Original image Sobel Prewitt

Roberts Log Canny

Figure 3.18: Various edge detection algorithms on a motion-blurred circular target (mo-
tion approximately equal to target diameter

Original image Sobel Prewitt

Roberts Log Canny

Figure 3.19: Various edge detection algorithms on a motion-blurred circular target (mo-
tion smaller than target diameter
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Figure 3.20: A threshold is used to identify the target, and some simple estimates about
its geometry are made. The red and blue lines represent the major and minor axes, and
the green lines repeat the profile lines.
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Figure 3.21: Pixel intensity profiles where target motion is (a) less or (b) greater than
target diameter. Changes in gradient are marked
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As the image coordinates at gradient edges are recorded, they were separated into

their respective edges depending on whether they precede or follow positive or negative

gradients. The collected coordinates were then used to establish two best fit ellipses. The

difference in coordinate between the two centres of this ellipse were then accepted as the

motion. A pair of image coordinates at either end of the motion path then existed in the

ellipse fit parameters, and a statistic of the quality of fit at points to the ellipse could

be calculated. From the difference in the pair of image coordinates, it was possible to

determine both the length and orientation of the image motion-blur.

From a series of tests, the algorithm demonstrated reliability in the various tests that

have been carried out, having shown to be capable of handling different lighting condi-

tions, and different blur sizes. The approach was faster than the correlation technique,

since iteration is not required, providing a distance and a direction in one step. Unfortu-

nately, the approach introduced another systematic error caused by a soft edge effect, with

motion blur distances being slightly overestimated. Even stationary targets produced a

small displacement with this approach. This is because soft edges are found at the edge of

the target caused by the imaging process, including: lens diffraction, chromatic aboration

and spectral mixing. A method was found to compensate for this challenge which was

developed into the proposed solution in this thesis. This solution will be now explained

in the following section.

3.3 Proposed Solution (LEMBI measurement)

The pixel intensity profiles (PIP) approach was identified as being the most effective,

although suffering from a systematic error. To account for the soft edge effect, a sharp

unblurred image needed to be captured in addition to the blurred image. In a testing

environment, this would be done before dynamic excitation is applied. An alternative

would be an ordinary short-exposure image with appropriate exposure settings. By ap-

plying the PIP algorithm to the sharp image, the overestimation made due to the soft

edge effect could be determined. Furthermore, testing revealed the benefits of combining

the PIP approach with an iterative scheme. This involved a similar procedure for the

image correlation approach introduced above substituting PIP measurements for image
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Figure 3.22: Flow chart of LEMBI measurement calculation steps.

correlation statistics. This combined solution was named long exposure motion-blurred

image monitoring (LEMBI monitoring). The key algorithms that make up the LEMBI

monitoring system are include in appendix C.

An initial estimate of the target’s position and geometry in the blurred image was

first made using a simple threshold filter. The threshold value needs to be nearer to

the value of the white target background, so that the identified region would include the

lighter pixels around the target periphery that are part of the motion smear. An ellipse

was fitted to the detected region using least squares, and the estimated major and minor

axis, and orientation allows arrangement of the profile lines for the next stage.

The PIP technique is then used to estimate the motion in the as-taken blurred image.

Using this estimated motion extent and direction, a sinusoidal PSF was artificially gen-

erated (using the algorithm described in section 3.3.1). A blurred image was simulated

by convolving the earlier taken short-exposure sharp image with the generated PSF.

After generating the artificially blurred image, it was compared to the as-taken blurred

image. The difference to the earlier approach is that, instead of making a comparison
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using a correlation statistic, the comparison was made using PIP. The result of the

PIP algorithm (motion extent and direction) was compared, and the parameters used to

generate the artificial image iterated until the PIP output of both artificially blurred and

as-taken blurred images match (to within a user defined tolerance). Conveniently, and

unlike the correlation approach, the difference in PIP outputs suggests which direction

to change the parameters for the next iteration, and suggests this for motion extent and

direction separately.

This approach had the precision of the PIP technique, whilst compensating for its

inherent systematic error by simulating the effect of the soft edge error has on target

measurement. The soft edge effect in the as-taken blurred image also existed in the

simulated blurred image, and cancels out in the comparison stage. Calculation steps are

summarised in figure 3.22.

LEMBI monitoring has the same requirements as the original PIP approach necessi-

tating circular targets to be applied (section 3.2.3.5). Only a few iterations in the final

stage was necessary since the discrepancy in PIP measurements closely indicated the

adjustment necessary. It was necessary, however, to implement a limit on the number

iterations so that the algorithm would not occasionally reach an infinite loop, in which

case an error would be recorded. Such a situation could occur if an image patch was

incorrectly loaded that did not contain the expected image structure.

The previously discussed correlation approach did not have a dependence on artificial

targeting, whereas circular targets are a requirement of this approach. Whilst this would

increase set-up time and could add practical difficulties for some test monitoring, it does

offer better reliability and precision.

The developed LEMBI monitoring system relies on a static camera position. This was

controlled by the camera being on a tripod, which was on a stable surface, and the camera

always being activated by remote or with a long self-timer to avoid shaking the camera

body. Whilst processing images, control targets were checked for consistent coordinates

(in case of between-capture motion) and motion-blurred appearance (in case of inter-

capture motion). Whilst some the case studies discussed in section 2.3.1 demonstrated

that compensation of camera movement is possible using control targets within the image,

the possibility of camera movement during the acquisition of a long-exposure image would
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be more disruptive to the image, and require a more advanced compensation algorithm.

A number of input parameter had to be defined, the values of which were initially

tuned during initial testing until a set of values that required no further adjustment

were found. Although they were available for adjustment, it was found that target mea-

surement would remain effective during future case studies. These parameters included

constants for positioning the geometry of the intensity profile lines in relation to the tar-

get’s estimated size and orientation after the initial estimate. In general, the results were

not effected by their precision positioning, so long as they extended a distance outside

the target edge so the edge of the target’s motion path is clear. Also included was a

sensitivity value for the detection of feature points in an individual PIP, expressed as a

proportion of the range of pixel values within an image patch to deal with images which

were darker or lighter than the test images.

3.3.1 Point spread function generation

Correct simulation of a blurred image was dependent upon the use of an appropriate

point spread function (PSF) that accurately describes the motion causing the blur. Kraus

(1993) discusses how the resultant blurred image differs as different forms of motion are

applied (section 2.4.5).

Initally, Matlab’s ‘fspecial’ function with the ‘motion’ option was used to generate

PSFs for a given motion. However, the resultant PSF was one which assumed constant

velocity motion, rather than sinusoidal motion, so an improved PSF function was written.

This function addressed motion magnitude and rotation separately so, appropriately, a

polar coordinate system was used where L is the distance and r is the rotation. This one

dimensional function for motion magnitude is defined by:

f(x) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0, x < L−1
2
;(

cos
2πx

L
+ 1

)
β + α, L−1

2
≤ x ≤ L+1

2
;

0, x > L+1
2
;

(3.4)

where L is the desired motion amplitude; α is a user defined constant and β = α− 1.
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Figure 3.23: Point spread function generation function

The one dimensional harmonic function is shown in figure 3.23a. The constant α was

initially introduced to tune the shape of the harmonic curve, but tests showed α = 0

produced the most effective results. The one dimensional function was padded to create

a matrix, giving a two dimensional PSF in a horizontal direction (figure 3.23b). This PSF

was then rotated by the necessary angle using Matlab’s ‘imrotate’ function (figure 3.23c).

Finally, the sum of all values in a PSF must sum to unity, otherwise the resultant

image will be darker or lighter than the original. This was achieved by dividing the by

the sum of all matrix elements.

3.3.2 Gradient Change Point Identification

Detailed testing revealed that the measurement result was influenced by the method

used to determine the gradient change points on the pixel intensity profiles lines. The

pixel intensity profiles though a blurred target are consistent. Each pixel intensity profile

requires four gradient change points to be identified. These feature points should be

identified in the same location in the as-taken and simulated blurred images (figure 3.21).
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Different gradient change detection algorithms were tested. The simplest used two

thresholds aligned slightly below the maximum pixel value and slightly above the mini-

mum pixel value (so as to avoid detecting sensor noise). Where the pixel intensity profile

crossed these thresholds, feature points were marked. This approach provided a simple

solution, particularly for the ‘internal’ blur case, but did not respond to the ‘external’

blur case or variations in image quality robustly.

A more advanced method was to differentiate the pixel intensity profile to identify

changes in gradient. Changes at the start and end of positive and negative gradients were

identified from peaks and troughs in the double integrated data. The resulting data was

noisy and needed filtering. The algorithm was effective for both cases of ‘internally’ and

‘externally’ blurred targets.

A significant difference between the ‘internally’ and ‘externally’ blurred targets is the

ordering of marked gradient points with respect to the start or end of the motion blur

path. For the external blur, the two consecutive identified points correspond to one ellipse

at the end of the motion path (figure 3.21). For the internal blur case, the allocation of

identified points to each ellipse alternates.

Conveniently, for the differential gradient approach described above, the detected

gradient change points were automatically allocated to the correct ellipse. The gradient

change points for the first extremity of the target’s motion were identified at the start

of the first positive gradient and the start of the first negative gradient (figure 3.24).

The points of the other extremity of the target’s motion were identified at the end of

the last positive gradient and the end of the last negative gradient. The internal blur

PIP comprises only one positive gradient section and one negative gradient section, and

therefore the first and last sections of the positive and negative gradients are the same

sections. A significant distinguishing feature of the external blurred target PIP type is the

central ‘U’ part of the PIP, which encompasses additional positive and negative gradient

sections. The external blur PIP therefore has two positive and two negative gradient

sections, and the detected gradient change points automatically adapt.
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Figure 3.24: Identifying gradient change points in Pixel Intensity Profiles (PIPs)

3.4 Assessing the Accuracy of the System

As with any measurement system, an understanding of the accuracy of the system is im-

portant. Accuracy was assessed in another series of simplified tests. These tests were also

used to appraise the gradient change identifications methods during their development

(section 3.3.2), so that improved algorithms could be identified. Targets were mounted

directly to the table surface. Since the table motion could be accurately recorded by

the attached sensors (section 3.1.4), the results measured with LEMBI monitoring were

compared directly with the motion recorded by the laser displacement gauge.

Four black circular targets on a white background were mounted directly to the table

bed. The wooden stands introduced earlier (section 3.2.1) were used to provide control

points in the image, and where positioned on either side of the table, with the control

targets lying coplanar to the table-mounted targets. These were again measured by a

reflectorless total station and coordinates calculated using the spreadsheet described in

section 3.2.1.

The monitoring instruments described in section 3.1.4 were utilised. A Nikon D80

camera 3.1.1 was positioned on a tripod in front of the model structure so that its imaging

axis was approximately perpendicular to the axis of expected motion. It was not necessary
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to ensure the imaging plane is exactly coplanar to the object plane as the projective

transformation will appropriately calculate object-space coordinates, taking perspective

effects into account (section 2.4.3). The camera was set for manual exposure settings,

with aperture set to f/22, sensitivity set to ISO-100, and an exposure time of 1 second.

The camera was also attached to the double external trigger which was connected to

the shake table’s control computer (section 3.1.1) for convenient activation. An image

was taken before any motion took place, which is required for the LEMBI measurement

algorithms (section 3.3).

The shake table was programmed to carry out sinusoidal motion in a series of tests

with incrementally increasing amplitude. In each test, the table received an input signal

of the motion for 5 seconds, so that the table would reach steady-state motion. The shake

table controller would then send a signal to the camera external trigger for the image to

be taken. Once complete, the shake table controller saved the recorded sensor data to

a file, and then prepare for the next incrementally higher amplitude test. The highest

amplitude was 13.7 mm, which was reached in 30 increments.

Images were then processed using the LEMBI algorithm described in section 3.3. The

sharp image taken when the shake table is at rest was processed using the PhotoModeler

software package. PhotoModeler’s automated ‘RAD coded’ target recognition was used

for measurement of the control point targets and the coordinates were exported to a

CSV file. Image coordinates for control points had previously been measured in Matlab

using a weighted centroiding algorithm and identified with a target coded ring recognition

algorithm. In the later implementation, PhotoModeler’s own target recognition was used

and coordinates exported, since PhotoModeler used least squares matching for target

centroiding, which is often considered superior to the weighted centroid (Luhmann, 2011).

PhotoModeler was also used to manually identify the uncoded monitoring targets

using automatic target recognition of dot targets. A ‘target coordinates.csv’ file was cre-

ated from this to inform the algorithm the location of the targets. Whilst the LEMBI

measurement algorithm carried out accurate coordinate measurement, it must be told the

approximate location of the target because the motion-blurred targets are more challeng-

ing to distinguish, identify and locate in the image from other features. Other input files

included a list of target detection parameters which were identified when the algorithm
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was originally created, and a list of image files to process.

The output from the bespoke image processing algorithm was a CSV file for each image

containing the measured end coordinates (in image space coordinates, i.e. in pixels) for

each blurred target, named ‘[original image filename] points.csv’. Also saved in this file

were values from intermediate stages of the image processing that can be used as quality

estimates.

At this stage, the measured coordinates exist in image-space coordinates of pixels.

It was necessary to obtain object-space coordinates that can be compared with other

external independent measurements. To do this, the projective transformation was ap-

plied, making use of the earlier measured coordinates of the control points (section 2.4.3).

Matlab contains a library of function for spatial transformations. Pairs of coordinates of

control points for both domains are passed to the ‘cp2tform’ function, which generates

the parameters of the spatial transform. Coordinates in either domain could then be

transferred between the two using the ‘tformfwd’ and ‘tforminv’, depending on the direc-

tion required. Transformation parameters were determined using ‘cp2tform’ and object

space coordinates determined using the ‘tformfwd’ function from the coordinate pairs.

The object space LEMBI measured coordinates were directly compared with the dis-

placement recorded by laser displacement gauge. Results are given in figure 3.25. By

subtracting the displacement as measured by LEMBI from measurements by the laser

displacement gauge, the error in the measurement was calculated. A regression analysis

of these errors was made to evaluate the accuracy. The results of the regression analysis

are provided in table 3.2, with the full regression analysis results included in appendix D.

A standard deviation of±0.158 mm was observed, with a mean error of just−0.115 mm

for a camera-object distance of 1 m. Using a 95% confidence interval, the measured dis-

tances are considered accurate to within 0.38 mm. In the image space at this scale, this

represents 1.43 pixels at the 95% confidence level. Whilst the accuracy of the current

measurement algorithm when expressed in pixels is poorer than conventional target mea-

surement algorithms such as weighted centroid or ellipse fitting, images are obtained at

the sensor’s highest resolution without having to consider the imaging frequency limita-

tion.



3. Methodology 89

0

2

4

6

8

10

12

14

0 2 4 6 8 10 12 14

Table motion measured by laser (mm)

Bl
ur

re
d

im
ag

e
m

ea
su

ar
em

en
t(

m
m

)

Figure 3.25: Comparison of LEMBI measurements with independent reference measure-
ment (laser displacement gauge)

3.5 3D monitoring

The ability to extract data in 3D is a particular advantage of photogrammetry, and

the potential to monitoring 3D movement is particularly relevant to structures which

can experience both in-plane and out-of-plane deformations. LEMBI monitoring has

been implemented for 3D monitoring also by using two camera which can be triggered

simultaneously, creating a pair of motion blurred images. It was therefore important to

develop the method to resolve 3D motion vectors. The original algorithm remains of use

for determining target coordinates in the image, and further calculation steps (figure 3.26)

were added to determine 3D coordinates.

3.5.1 Camera orientation

To determine the position of the ray projected from the projective centre of the camera

to a point in the object space, the exterior orientation (EO) of the camera in that object

space must be determined. Rather than carefully controlling the camera’s position and
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Summary Output
Regression Statistics
Multiple R 0.999688
R Square 0.999376

Adjusted R Square 0.999370
Standard Error 0.095532
Observations 115

ANOVA
df SS MS F Significance F

Regression 1 1653 1653 181105 6.096E-183
Residual 113 1.0313 0.009127
Total 114 1653

Coefficients Standard Error t Stat P-value
Intercept -0.3369 0.0181 -18.600 3.501E-36
X Variable 1 1.035 0.002432396 425.6 6.0964E-183

Lower 95% Upper 95% Lower 95.0% Upper 95.0%
Intercept -0.3727 -0.3010 -0.3728 -0.3010
X Variable 1 1.030 1.040 1.030 1.040

Table 3.2: Accuracy regression analysis summary (full results in appendix D).

orientation, it is generally more convenient to arrange the camera so as to get a suitably

composed image, and then determine its orientation from coded control targets in the

image. As in the 2D case, control targets are arranged in the image, and their 3D object-

space coordinates recorded.

A reflectorless total station could be used to make observations to the centre of each

control target. Where used here, the whole circle bearing (WCB), vertical circle (VC)

and slope distance are recorded to each control target. These observations were input to

a spreadsheet that calculated the 3D X, Y & Z object-space coordinates for each target.

The coordinate list is converted from a CSV file to an ‘INI’ configuration file to be read

into PhotoModeler. The sharp images captured initially were loaded in to PhotoModeler,

which measures the targets in the images and, will automatically determine the EO

parameters (x, y, z, ω, φ, κ) for each individual image in the object-space coordinate

system. The coordinate system itself is arbitrary, but necessary to generate data in a

real work system where scale is defined (in millimetres) and the x and y axes aligned to

correspond with local gravity.
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The interior orientation of the camera was determined as before using the earlier

constructed camera calibration field (section 3.1.2) and the inner geometry of the D80

cameras assumed to be sufficiently stable for monitoring deformation of the structure.

3.5.2 Monitoring target marking

Whilst the sharp images are loaded in PhotoModeler, the un-coded monitoring targets

are also measured. These determined centroid coordinates were not used to measure

deformations, but were used to inform the blurred target measurement Matlab routine

where to locate blurred targets. PhotoModeler was used because it provides convenient

tools to locate and mark targets in images, although some manual intervention is neces-

sary to correctly identify monitoring targets from other apparently circular image patches

of other objects in the photo. PhotoModeler’s can also be used for target matching, since

it’s automatic routine is efficient and saves time later. These measured coordinates are

exported to PhotoModeler’s 2D point table.

All coordinates are originally exported into one table, and this coordinate list is later

separated in to one table per camera. Each camera’s coordinate list is input to the blurred

target registration algorithm along with the relevant as-taken blurred image. The motion-

blurred targets are then measured using the approach described in section 3.3 above, to

determine the extent and orientation (motion blur) of each target. These data are then

stored, one table for each image.

3.5.3 Point matching

Each target now has four image point coordinates (in each image pair). Image ‘target’ and

‘point’ measurements may often by synonymous in photogrammetry, since each target

usually has only one measurable point. With blurred imagery, however, each target is

represented by two points representing either end of the target’s motion. Although target

matching was carried out by PhotoModeler, point matching is incomplete. Figure 3.27

illustrates the difficulty in point matching when the two image points originate from

the same physical target. The problem is exacerbated since points originating from one

physical target cannot be uniquely coded in the picture.
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Point matching is not solved at this stage. Each possible combination of point mea-

surements in created, which in the case of two images is two combinations. The correct

combination of points will be identified later, and the additional combinations discarded

A point coordinate list is created, duplicating coordinates into the two combinations.

Individual observations are given the suffixes 1A, 1B, 2A and 2B, where 1 and 2 designate

the two points either end of a motion path, and A and B designate the two unknown

combinations.

This list is converted and stored in a ‘GAP’ format ‘pobs’ file (Chandler and Clark,

1992). GAP format files are used hereafter for compatibility with the GAP bundle ad-

justment programme and other software tools already available that work in this format.

GAP format files work in photo coordinates of microns, rather than image coordinates

of pixels. The list is first saved as a file names ‘pobsP’ which contains measurements in

units of pixels, and these are then converted in to the ‘pobs’ file by simply multiplying by

a scaling constant relating the image width (in pixels) and sensors width (in millimetres).

GAP format files are also created for the earlier determined camera interior orientation

(in a ‘cam’ file), exterior orientation (in a ‘phots’ file).

Having all this information, a bespoke intersection program is now used to compute

3D coordinates for each point. By knowing the exterior orientation of the two cameras and

applying the approximate correction for inner orientation (lens distortion) it is possible

to determine the 3D position of the points in both images. This uses a well established

approach known as space intersection (Luhmann et al., 2006). Basic code provided by

Chandler (2013) was adopted for this task.

3.5.4 Resolving the valid points

Recalling that image coordinates were duplicated earlier since the correct pairings were

not known, half of the coordinate combinations are correct, and half are not, but the

intersection program would create the object space coordinates in both cases. The two

combination cases were denoted A and B, and image coordinate residuals were computed

for each point in every combination by reprojecting points back on to the imaging plane

and finding coordinate differences. The separate X and Y residuals for each point were
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     combination 1
     combination 2
both combinations 
are valid, but only 
one is correct

(a) Since each target has two measured points in
close vicinity to each other, possible erroneous
point matching must be considered

(b) Three sensor can eliminate the ambiguity

Figure 3.27: 3D Point Matching Difficulties

combined by using the Pythagorean theorem, and the combination with the lowest com-

bined residual is accepted as the correct combination. The incorrect combination was

deleted.

Having identified the valid combination of coordinates, these, together with the cam-

era’s IO and EO determined earlier are input to a bundle adjustment using the ‘General

Adjustment Program’ (GAP) to derive final 3D coords to represent the two ends of the

measured blur (Chandler and Clark, 1992).

3.5.5 Laboratory Testing

To test the 3D monitoring approach during development, further tests where carried

out on the structural dynamics shake table. The two cameras used were D80 cameras

with 24 mm fixed focal-length lenses. Two remote camera triggers (although potentially

more could be used) had been wired together to allow cameras to be triggered simulta-

neously (section 3.1.1). Complete demonstrations of 3D monitoring on the shaker table

are included in section 4.4.
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3.5.5.1 Relative camera position problem

During tests it was observed that difficulties can arise if the deformation line in 3D space

is aligned to the epipolar plane. This happens particularly when the direction of the

target’s motion is the same as the direction of the cameras relative positions. In this

case it can become impossible to automatically determine the correct combination, since

both combinations are valid and produce small residuals. A third camera could be used to

resolve the ambiguity (figure 3.27b), although this would then create 23 = 8 combinations

of matched target measurements from which the one and only correct combination would

need to be identified. This would also add redundancy to the measurement system.

The correct combination could also sometimes be manually identified using engineering

judgement of the likely motion.

It was found that the problem could be avoided if the likely direction of the object’s

motion is known a priori, and the camera arrangement selected so that the problem would

not occur. In this case, motion direction was expected to be horizontal, so arranging the

cameras on tripods so that they were at different heights meant that the deformation

line differs from the epipolar plane, enabling the correct matching points to be easily

identified.

3.5.6 Data representation

3D displacement vectors for every measuring point were stored in a matrix. Whilst an

engineer might desire the full numerical displacement vectors for a few key locations in

different situations, it is easier to appreciate relative movements of the whole structure

graphically. A visualisation of the structure with displacement vectors overlaid could be

one effective way of showing this. In fact, showing the pair of images with their individual

2D displacements overlain together may be enough to visualise the 3D movement. This

approach would be suitable for printing results on paper, but would restrict the viewpoint.

In the demonstrated solution, Matlab’s ‘quiver3’ function created 3D arrows in a

rotatable viewport. Displacement vectors are typically small, and it is desirable to ‘scale

up’ the vectors to visualise movements. The current system generates two coordinates

to represent either end of the motion. The mean of the two coordinates is calculated,



96 Monitoring 3D Vibrations in Structures using High Resolution Blurred Imagery

Figure 3.28: Example graphics from Matlab’s quiver3 function. Two opposing vectors
are drawn (scaled up) through the pair of 3D coordinates

and subtracted from the coordinates to give individual displacement vectors. The arrows

produced by the ‘quiver3’ function are conveniently scaled to suit the display, otherwise

the displacement vectors are multiplied by a constant before being displayed (figure 3.28).

3.6 Summary

This chapter has examined a range of different strategies for measurement of vibrating

structures using blurred images. Different algorithms were tested for processing images,

along with the different surface targets and texture types. Algorithms with accompany-

ing target types were compared with algorithms suitable for any surface with sufficient

texture.

The artificial targeting approach was considered best suited for monitoring vibrat-

ing structures. The LEMBI measurement algorithm has been developed for measuring

coordinates from blurred images, making use of an additional sharp image to improve ac-

curacy by compensating for a systematic error. The additional calculation steps necessary

for determining 3D displacements have been discussed and a working solution described,

which resolved additional point match difficulties not encountered in usual photogram-

metric measurement using sharp images. This chosen approach will be demonstrated

further in this thesis and the next chapter demonstrates the monitoring approach in a

number of case studies.



Chapter 4

Results

The previous chapter derived the method developed for the monitoring of moving circular

targets and assessed its accuracy. This chapter describes the application of the approach

to four case studies.

In this section the terms large and small scale are used in the same sense as when

photogrammetry is used in the process of map making, in that small-scale tests are of

objects of large extent, which require the most scaling; and large-scale tests are of smaller

objects that can often be represented with more detail.

A small 770 mm tall model was excited with 1-D motion in the lab, to demonstrate how

the technique would be applied to a tall structure, and planar 2-D motion was observed

and recorded. The approach was repeated on two larger tests. A wooden model 2.4 m

tall was monitored outdoors, to challenge the approach with the uncontrolled lighting

conditions outdoors. The approach was then also applied to a pedestrian bridge in West

Bridgford, Nottingham, to demonstrate the application of the technique to a real and

large structure. Finally, this chapter returns to the smaller models on the shake table

which have been modified to exhibit 3-D motion, and 3-D monitoring is demonstrated.

Small modifications are then made to the model to induce changes in the model’s dynamic

response, which are detected using the image-based monitoring approach. Each of these

case studies is addressed in turn in this chapter.

97
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4.1 Shake-table 2D

Having conducted tests using individual targets on the shake table (section 3.4), fur-

ther tests were carried out to demonstrate how the approach would be applied to civil

engineering case studies. The results from this test were not collected only to assess mea-

surement accuracy, but also to demonstrate how a very high number of measurements can

be recorded and used to represent the motion distribution of the test subject graphically.

Models were assembled, subjected to vibrations on the shake table, and their vibration

response recorded. In this initial test, the model was symmetrical and only exhibited 2D

motion, with displacements being restricted to a single plane (section 3.2.1), so only 2D

monitoring was necessary.

A simple 5 storey model was assembled, using a K’Nex modelling kit. The model was

770 mm tall, and each of the 5 storeys had a height matching the model’s width. The

K’Nex modelling kit was particularly useful for modelling simple structures as the parts

‘snap’ together and could be assembled and modified quickly and easily. Conveniently,

the dimensions of the pieces corresponded with the spacing of threaded holes on the

table, so the model could be fixed directly to the table with machine screws. Diagonal

members could be added to provide bracing to any of the levels of the model, and they

were added to create a partially braced frame structure. Metal plates were added to

each level of the structure as a platform for sensors and accessories. Metal plates that

could be placed on each level were prepared, and to prevent them from moving whilst

the structure is vibrated they were fixed underneath with Blu-Tack. The metal plates

were drilled with holes so that metal weight accessories could be added as necessary. For

example, to induce a torsional movement with eccentric masses.

The monitoring instruments described in section 3.1.4 were utilised including, in par-

ticular, accelerometers and the laser displacement gauge (section 3.1.4).

The wooden stands introduced earlier (section 3.2.1) were used to provide control

points in the image. These were measured by a reflectorless total station and coordinates

calculated using the spreadsheet described in section 3.2.1. Plain black paper circular

targets on white backing were used, and stuck on to the vertical members of the model

using ‘Blu-Tack’, which held the paper firmly in place throughout tests.
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Figure 4.1: Arrangement of instruments and shaker table

The Nikon D80 10.2 MP camera was again used, and positioned on a tripod in front

of the test. Exposure settings were manually set to 1 second exposure time, a time which

was sufficient to capture a few vibration cycles (section 5.2.4). To get suitably exposed

images for this exposure time, 100 ISO and an aperture of f/22 were used. As previously,

the camera could be remotely triggered by the shake table control system, so that image

capture time is known with respect to the induced and recorded vibrations.

Once the test was prepared, but before dynamic force was applied, an image was

taken of the model at rest and the surrounding control targets. This sharp image was

used during the later image processing (section 3.3).

4.1.1 Determining natural frequencies

Before applying vibration, it was necessary for the model structure’s natural frequencies to

be established. These are the frequencies at which, when excited, the model will exhibit

their related vibration envelopes corresponding to the modes of vibration, known as

“modal shapes”, which are the properties particularly relevant to structural monitoring.

To do this, one of the accelerometers was fitted on to one of the structure’s horizontal

metal plates using wax. The shake table was programmed with a sine sweep signal, a

sinusoidal signal with constant increasing frequency, from 1 Hz up to 30 Hz (figure 4.2).

This vibration was applied to the base of the model, and the acceleration-time history

recorded by the accelerometer.

From the accelerometer’s acceleration-time history, localised peaks in vibration am-
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frequency Hz
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frequency Hz

first mode

third modesecond mode

Figure 4.2: Illustrative input sine-sweep function with accelerometer histories for a model
structure.

plitude can be identified. These were identified at 1.8, 3.0 & 8.1 Hz, which are accepted

as the model’s first three natural frequencies in this direction.

An alternative approach to identifying the natural frequencies of the model would have

been to apply broadband excitation to the model. The input signal would approximately

represent the superposition of many sinusoidal waveforms of different frequencies, which

would appear as noise, so that all the natural frequencies of the model would be excited.

The vibration response of the model, as recorded by an accelerometer, would be the

superposition of the model’s natural frequencies, and these natural frequencies could be

identified using a Fourier transform (Clough and Penzien, 1995).

The sine sweep approach was chosen so that additional filtering of the accelerometer

data and a Fourier transform was not necessary. The model’s natural frequencies would

be immediately apparent during the applications of motion, but for other applications

the broadband excitation approach may be more suitable.
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4.1.2 Model excitation

Having determined the natural frequencies of the model, image-based monitoring of the

test commenced, to capture results at each of the identified natural frequencies. Sinusoidal

base vibration was applied at each of the natural frequencies so that the model would

exhibit its corresponding vibration envelope.

For each frequency, the signal was created, and then the motion amplitude was ad-

justed appropriately. The acceleration of the shake table was directly controlled by the

input signal. Care needed to be exercised as the shake table was not equipped with a

system to prevent damage to the table itself from inappropriate input signals, perhaps

instructing the table bed to accelerate towards the end of its travel and causing it to

collide with the end of its track. Consequently, it was important to adjust the gain on

the signal amplifier when the frequency was changed, starting with a lower amplitude

and increasing gradually. Inputting a lower frequency signal produced sinusoidal motion

of greater amplitude, as the longer the frequency of vibrations, the larger the energy

required to sustain the motion.

Since the table’s rest position is not the same as the centre of its sinusoidal movement

whilst in motion, the table was programmed to move for 4 seconds before the camera

was triggered by a signal from the shake table’s control system, so that the table would

reach steady-state motion. When the camera’s exposure had ended, the shaker table was

programmed to stop.

After all images were captured, images were download from the camera, and the con-

trol target coordinates again measured by reflectorless total station; this was considered

good practice to identify any possible movement of the control points during testing. The

discrepancies between surveys were generally < 1 mm, within the expected accuracy of

the total station. Any discrepancies much greater than this would suggest that the survey

would need to be repeated.

4.1.3 Image processing

The image processing stages were carried out in the same procedure followed in section 3.4.

PhotoModeler was again used to measure control and monitoring target coordinates in
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the sharp image. The list of monitoring target coordinates, list of file names, and target

measurement parameters were passed to the LEMBI measurement algorithm. The images

were processing using the LEMBI algorithm (section 3.3), and results stored in a CSV

file.

At this stage, it was possible to plot the measured end coordinates directly and rapidly

on to the original image without using the control data. Since differences between pairs

of coordinates at each target are very small, it is necessary to visualise the motion using

a scaled vector. Matlab’s ‘quiver’ function plots arrows, given a start coordinate and

vector, so is convenient for this purpose. This type of visualisation may be sufficient for a

structural engineer to understand the distribution of relative vibration amplitudes, who

could then locate nodes and antinodes (locations of zero and locally maximal motion),

providing qualitative information on the dynamic behaviour of the structure.

To show the vibration envelope, instead of displaying individual vectors singly, the

ends of displacement vectors are linked (figure 4.3). This method outlines the vibration

envelope, and the orientation of the motion is shown by the chords.

It is likely that quantitative data would also be required to facilitate a more precise

analysis. At this stage, the measured displacements were in image-space coordinates

and had not yet been converted into an object space coordinate system (and units of

millimetres).

Parameters for the projective transformation were again determined from the con-

trol target image coordinates and planar object-space coordinates (as determined in sec-

tion 3.2.1). Matlab’s ‘cp2tform’ and ‘tformfwd’ functions were again used to obtain

object-space coordinates for the motion extremities.

Measured displacements and orientations in the object coordinate system then existed

for each target in every image frame. These results could be read either by image, where

the motion of every target during a single epoch is presented, or by target, where the

motion of one target at every epoch is presented. The data could then directly compared

to the shake table’s recorded data.
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Figure 4.3: Test model with measured first vibration envelope overlain (1.8 Hz). Images
on the right show target image detail.

4.1.4 Results

Graphical representations of the vibration envelope of the model as recorded by LEMBI

at different excitation frequencies using the developed method follow. The measured

vibration envelope is overlain onto the original image, and displacement vectors are scaled

to an appropriate range.

The first case is of the model’s first natural frequency at 1.8 Hz. Figure 4.3 shows the

vibration envelope of the model structure. The response is as might have been expected

by a structure of this type. Motion is chiefly horizontal and increases in magnitude with

increasing distance from the table bed. It is also clear how the presence of a bracing sys-

tem at the second and fifth levels prevents the inter-storey movement at those positions.

The target detail subfigures in figure 4.3 can be compared with general appearance

of one-dimensional motion blurred targets shown in figure 3.21. The first subfigure cor-

responds with the target image created when motion is greater than the target diameter,

whereas the second and third subfigures correspond to motion less than the target diam-

eter. Accuracy in this arrangement was previously validated by the test results shown in

figure 3.25.

The test continued, with vibration frequency being increased to 3.0 and 8.1 Hz. Re-
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Figure 4.4: Test model with measured second (3.0 Hz) and third (8.1 Hz) vibration
envelopes overlain

sults are shown in figure 4.4. As vibration frequency increased, amplitude decreased, so

the gain on the signal amplifier was increased to compensate.

In these results, the ability to measure the vibration at many locations distributed

across the structure is emphasised. This allows richer information than would otherwise

be measured with only a single accelerometer.

Visualising the vibration envelope in this way allows detection of nodes and antinodes,

and examination of the curvature of the vibration envelope. Analysis methods utilising

the location of these features can be more revealing than simple static deformation mea-

surements (section 2.1.3), and the photogrammetric approach can provide a far higher

number of measurements.

If the same high quantity of data were required with only accelerometers as sensors,

significantly more gauges would be required, and improved data acquisition hardware

with more input channels. A method of moving the single sensor systematically to each

monitoring point could be used, and since the test structure’s motion is carefully con-

trolled it would be possible, but the test would be very time consuming, and derived

data would not strictly be attained from exactly the same test. Although the sensors are

small and lightweight, the effect of the movement of the sensors and associated apparatus

about the structure is unknown. Photogrammetric targets add negligible load, and can



4. Results 105

remain permanently in-situ without affecting the structure.

4.2 Vertical Timber Section

A second test was designed to assess whether the approach could be applied in the outdoor

environment and on a larger test structure. A vertical slender structure was selected as it

may be representative of slender structures such as a wind turbine. This test would also

examine how effective the approach is in natural or outdoor lighting conditions, which

are not controllable in the same way as indoor lighting.

4.2.1 Test Method

An upright piece of timber 2.4 m in length was selected as the subject of the test, fixed

at the bottom to a wooden base. The selected timber for the upright piece had a 20 x 67

mm section of pine. The base was a large sheet of MDF, for which a clamp was made and

bolted to the centre of the sheet. The upright section could then be bolted in a vertical

orientation.

The targets used for this test were 30 mm black circular target printed on white

paper. This size target equated to approximately 47 pixels in the image space for the

scale and camera resolution selected. Although conventional photogrammetry would

have allowed smaller targets given the image scale, it has been discussed as part of the

methodology (section 3.1.1) how, when the vibration amplitude was much larger than the

target diameter, target detection became difficult because its image was heavily degraded

by the motion blur, or when it interfered with other background objects in the image.

The camera used was the same Nikon D80 camera used in the earlier experiment (spec-

ification in section 3.1.1). The camera was located 3.5 m in front of the timber upright

and was again approximately normal. 6 coded control targets on the same stands used

earlier were positioned on surveying tripods either side of the timber section. The mea-

surements of these targets were made using a reflectorless total station, and coordinates

calculated using the earlier spreadsheet (section 3.2.1). The data would be used to deter-

mine appropriate projective transformation parameters to transform image coordinates

to the real world system.
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Figure 4.5: The upright timber used to demonstrate suitability for outdoor monitoring
tasks.

Specialist excitation equipment was not available to apply controlled loads to this

model. Instead, the vertical member was excited by being manually pushed in the desired

direction and allowing it to spring back. The resulting motion is similar to what is

expected in service due to wind loading.

4.2.2 Results

For this test accelerometers were not available, since the available hardware did not allow

battery operation of the monitoring equipment (a challenge for traditional monitoring

systems also—section 2.2.1). Nevertheless, LEMBI data can provide quantitative results

and comparisons were made with the theoretical curvature of fixed-end column of constant

stiffness. The vibration envelope of the structures would be expected to be simple, since

the upright section has a constant cross section, and for homogeneous materials this would

mean constant stiffness and mass. The measured deflections are therefore compared to

the theoretical deflections.

Figure 4.6 provides a graphical representation of the motion of the timber upright

at each excitation. Although the manual excitation cannot remain exactly constant, the
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Figure 4.6: Timber upright sequential tests vibration amplitudes

curvature of the vibration envelope should remain the same, and this can be observed in

the results. Making use of the control points and procedure described in section 2.4.3, the

vibration amplitude of the timber upright could be quantified, but an accurate reference

measurement was not available for comparison.

An comparison of the curvature of the model with the theoretical curvature for a

slender section of constant stiffness can be made. Theoretical curvatures can be calculated

using the equation (Clough and Penzien, 1995):

φ(x) = A1

[
cos ax− cosh ax− (cos aL+ cosh aL)

(sin aL+ sinh aL)
(sin ax− sinh ax)

]
(4.1)

where aL is the value representing the frequency of vibration of the cantilever beam,

which in this case is a constant for the first mode of vibration.

In figure 4.7, the vibration amplitude in each image has been normalised for easier

comparison of the curvature, where the vibration amplitude does not remain constant in

each image. The black line in figure 4.7 gives the theoretical curvature for model this

model (Clough and Penzien, 1995).

Although the section was expected to be of constant stiffness, the measured vibration
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Figure 4.7: Normalised magnitude of vibration envelope of the wooden upright and the
theoretical curvature of constant stiffness section

amplitudes do not always follow the theoretical curve exactly. Discontinuities in the

curvature could be caused by localised variation in the stiffness of the section. As timber

is a natural material, so variations in the material may exist, as do features such as knots

in the wood.

Also, as a rather rudimentary method was used to excite the upright member, it is pos-

sible that modal frequencies other than the first mode were excited and the deformation

may not conform exactly to the first mode of vibration.

In the figure it can be noticed that there are a few measurements where the motion

amplitude is very small and has been recorded as zero (such as in ‘DSC 0048.JPG’),

typically located close to the base of the upright timber. This is discussed further in

section 5.2.2.1.

The weakness of this case study is that there is no external reference measurement to

provide an accuracy validation. But it did reveal survey design considerations for testing

outdoors, which became crucial influences in the design of the later Wilford bridge case

study.
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4.2.3 Additional problems encountered whilst monitoring out-

doors

The Nikon D80 cameras were set to manual mode, with the shutter speed set to 0.5 s and

the aperture at its smallest, f/22. The sensitivity was also set to its minimum, ISO100.

On a sunny day, images were becoming overexposed and the blurred target image

became disturbed. Specifically, pixels in the regions occupied by the white target bor-

der were saturated, as well as pixels at the edge of the blurred target smear which would

otherwise by used in measurement (section 5.2.5). It was not possible to reduce the sensi-

tivity or aperture further, as they were already at their minimum and maximum settings,

respectively. Instead, neutral density (ND) filters were attached to the screw thread on

the front of the lens, reducing the incoming light intensity to within an acceptable range

for the camera. ND 2, 4 & 8 filters were purchased which reduce the light intensity evenly

across all wavelengths by 1/2 , 3/4 & 7/8 respectively.

4.3 Wilford Bridge

Although the concept had been proven for test objects in a controlled situation it was

decided to test another larger case study of an actual structure. This would be to demon-

strate that the approach is scalable, a particular advantage of photogrammetry, and also

practical for read world applications. This test would further assess the approach outdoors

where the lighting condition are uncontrolled. It was not possible within the constraints

of this project to identify a structure that allowed testing of the approach in pre and

post-damage conditions, but a comparison of the quantitative measured displacements as

well as qualitative outputs is made. Ideally a structure which allowed for pre and post

damage deformation analysis would have been selected. However, the unpredictability

and unlikelihood of damage occurring to a local structure suitable as a case study meant

that only one state was analysed.
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4.3.1 Selecting a larger case study

Different structures were considered for a larger case study. Options included bridges and

wind turbines, and their size, location and material were considered.

A number of bridges within the East Midlands region were considered for suitability

for a case study. An initial desk study identified 16 local bridges as possible test subjects.

These bridges were visited and judged on their suitability for photogrammetric monitor-

ing. Selection criteria included their expected dynamic performance, as well as ease of

access, and likely vantage points for cameras and other sensors. The footfall of structures

were also a factor, as it was judged that the general public should not unduly be inconve-

nienced by the planned tests. Some structures that had suitable dynamic properties were

not chosen because of their crossing or close proximity to major dual carriageway roads.

Many bridges crossed watercourses and at the time of selecting a case study, access to

some was prevented by local flooding, so these bridges also had to be discounted. A table

of the candidate structures is included in appendix B.

The bridge finally chosen was the Wilford suspension footbridge in West Bridgford,

Nottingham. This suspension bridge was selected for its dynamic properties—its modal

frequencies could easily be excited by pedestrians—and the vibration amplitude was

also within the range suitable for the image based monitoring approach. The Wilford

suspension bridge has also been the subject of a related research project assessing GPS

as an alternative dynamic monitoring techniques by authors from Nottingham University

(Roberts et al., 2006; Meng et al., 2007), allowing some form of comparison to be made.

A second candidate site included a smaller pedestrian bridge in Leicester. This cable-

stayed bridge crossed a smaller river and was constructed of two box sections. The

shorter length of the bridge and larger box sections made the bridge more rigid; the

modal frequencies were higher and the vibration amplitude was lower. It was possible for

pedestrians to excite this bridge in its vertical and horizontal axes, with the amplitude

of horizontal vibrations being greater. A trial set up with camera and a few targets

produced measurable images, but the Wilford bridge was considered preferable.

Wind turbines were also considered for a larger case study as they may also be sub-

ject to structural health monitoring and are associate with their own set of measurement
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challenges. Nearby wind turbines were identified. Rather than artificially exciting the

structure using controlled loads, excitation would be natural wind loads upon the tur-

bine’s tower, nacelle at the top of the tower, and rotor blades. A horizontal axis wind

turbine on Loughborough University campus was identified as a possible case study. Al-

though a test was scheduled and attempted, the low wind speed on the day of the test

resulted in vibrations that were too small to be measured at the image scale required to

capture the structure’s whole height. As the LDV (section 2.2.2.5), which was to provide

the independent reference measurement, was only on loan for a limited time during the

Easter holiday, it was not possible to reschedule this test of a later date.

Another challenge would be locating suitable positions for control targets, which would

be more difficult on a wind turbine. An optimum configuration is for control targets to

be arranged around the periphery of the object so that measurements from monitoring

targets will be interpolated within the area defined by the control. For camera stations

located at ground level, control targets would therefore need to be highly elevated, which

would not only be difficult to establish, but the stability of the control targets on tall

structures themselves must also be ensured.

An alternative approach would be for the camera to be elevated, observing the wind

turbine from a higher perspective. Control targets could then be located at ground level,

avoiding some of the difficulties of highly elevated control. Although camera movement

would be possible (where it has previously been assumed to be stationary), this would

be detectable by blur measured at the control points.

An additional operational difficulty is the practical problem of fitting targets to the

wind turbine column itself, which would require careful planning, and probably the use

of a mobile elevating work platform. Because of these challenges and the advantages

presented by the Wilford bridge, it was decided to proceed with the Wilford bridge case

study only.

4.3.2 Description of the test subject

The Wilford bridge is 69 m in length and approximately 3.5 m wide, and runs approx-

imately east-west across the River Trent (figure 4.8). Two masonry bridge abutments
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Figure 4.8: Wilford Suspension Bridge

support two main cables, form which vertical suspender wires are spaced at approxi-

mately 2.2 m to the truss below the bridge deck. A timber deck spreads between the two

side walls. Water and gas mains are also carried beneath the bridge deck.

The river bank of the bridge is 6.5 m below the bridge deck, and a footpath runs

under the bridge in front of the abutment. This arrangement made possible observation

of the underside of the bridge deck using a laser Doppler vibrometer, which only measures

out-of-plane motion, and is discussed in the next section.

4.3.3 Test method

Experimental work described in past literature (Cooper and Robson, 1990; Albert et al.,

2002; Ronnholm et al., 2009; Tasci, 2013) usually locate cameras approximately normal

to the structure from an ideal monitoring point. For this structure it would not have

been possible to locate the camera normal to the bridge from the north, since the river

runs straight until the next bridge, 600 metres away. To the south, the river bends and

the river bank is accessible, but to observe normal to the bridge, the vantage point would

still have been at least 200 m from the bridge. With the maximum available focal length
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Figure 4.9: Arrangement of of sensors and target for Wilford Suspension Bridge case
study

lens being 200 mm, the image scale was too small at this distance.

Instead, the camera was located above the bridge’s west masonry abutment, oriented

to view down the bridge deck (figure 4.9). Targets were clipped to the inside of the bridge

side wall. In this way the maximum target-camera distance was 70 m, and enabled a

larger image scale than if the camera were normal to the structure. This configuration

also permitted comparisons of different imaging scales. This could create a problem

with image focus, since a very long depth of field would be required. However, the long

exposure necessary to capture the blur allows the use of a very small aperature (f/18),

so providing the necessary depth of field. All of the targets appeared to be sharply

captured and appeared unaffected by out-of-focus blur. The masonry abutment and

tripod provided a sturdy platform for the camera, which would not be affected by the

vibrations of the bridge deck.

The camera used for this test was a Nikon D7000 mounted on a tripod. A 85 mm fixed

focal length lens was used, fixed at its smallest aperture, f/16, and lowest sensitivity, 100

ISO. The shutter speed was selected as 0.5 s, which was considered suitable to capture the

expected natural frequencies of the structure. As experienced with the timber upright test

(section 4.2), it was necessary to use neutral density filters to reduce the light intensity

for image exposure to remain within acceptable limits.

Targets of sizes between 20 and 40 mm were used, with the largest targets being po-

sitioned the furthest distance from the camera. Target sizes were arranged depending on

the expected amplitudes (constraints between target size and expected motion amplitude
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Figure 4.10: Targets used on the Wilford Bridge case study

discussed in section 5.2.2.1) and image scale as a result differing target-camera distances.

The furthest targets were at least large enough to appear as circles occupying at least

10 pixels. Targets were constructed by printing black circles using a computer on to A4

acetate sheets. The acetate sheets were then glued on to white unexpanded polystyrene

sheets, which could easily be scored and cut. The result was durable, weather resistant

photogrammetric targets with the desired appearance (figure 4.10). To attach the targets

to the bridge, right-angled metal brackets were adhered to the reverse of the targets using

silicon sealant. The combined target and bracket was then fixed to the bridge parapet

using simple spring clips. This method firmly held the targets in place, and no movement

between the target and its fixing point could be observed.

Targets were clipped to the bridge at every second vertical member, approximately 4.4

m, with an additional target at the bridge’s mid-span. Two control targets were placed

at each end of the bridge, making four in total. The control targets were manufactured

in the same way as the monitoring targets, so this occasion were not coded, and were

instead manually located in the image during later image processing.

To provide an independent accurate reference measurement, a laser Doppler vibrom-

eter (LDV) was kindly loaned by Polytech Inc (figure 4.11). After discussions with the

instrument’s manufacturer sales representative following an introduction by Dr Palmeri,
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Figure 4.11: Laser Doppler vibrometer (courtesy of Polytech Inc.)

Polytech generously agreed to loan the instrument for free over the Easter holiday 2013.

Polytech delivered the instrument to the University and provided training for its set-up,

and collected the instrument a few days later. The test on the Wilford Suspension Bridge

and the attempted wind turbine monitoring were therefore scheduled to take place this

week, despite the snowfall. This device measured frequency shifts in a reflected laser

beam due the Doppler effect (section 2.2.2.5). The LDV was positioned on the footpath

beside the bridge abutment below the bridge deck. The measuring laser was pointed

upwards at the underside of the bridge deck. The ideal arrangement would be for the

measuring laser beam to be normal to the underside of the bridge deck, but this was not

possible because of the river. The laser had an incident angle with the underside of the

bridge which resulted in a cosine error. This angle was calculated by measuring the basic

geometry of the bridge and LDV using the total station in reflectorless mode.

Accelerometers were taken to site, and connected to a Measurement Computing USB

Data Acquisition Module. This data logger was selected because it could be powered

through a laptop computer’s USB port, whereas the NI DAQ used earlier in the lab

could not be portably powered (section 3.1.3). Unfortunately, it was revealed later that,

although the sensitivity of the data logger was at its maximum, it was insufficient for

recording the accelerometer’s signal.

Excitation was created by two pedestrians who could jump up and down on the
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bridge’s mid-span. Pedestrians were used to apply excitation because they were easy to

arrange and available at a much lower cost than specialist dynamic excitation equipment.

Since all monitoring locations on the structure were measured simultaneously, it was not

necessary for excitation to remain constant, as is the case when sensors have to be moved

around the structure. Meng et al. (2007) combined accelerometer and GPS measurements

to determine three of the natural frequencies of the bridge as approximately 1.73, 2.30

and 2.93 Hz, when using accelerometer. The pedestrian exciters were instructed to jump

repeatedly on the bridge at these frequencies. To control the rate at which the pedestrians

were jumping, they listened to an music audio recording with its speed modified so that

the music tempo would match these natural frequencies.

In experiments by Meng et al. (2007), 30 pedestrians jumped at mid-span to excite this

bridge, and maximum deformations of 80 mm were observed. In the tests here, the two

pedestrians provided adequate dynamic excitation to measure the structure’s response,

similarly creating a maximum deformation of approximately 80 mm. The lesser loads

were easier to recruit and coordinate.

When the pedestrians started jumping, images were acquired using the DSLR camera.

The camera was set to interval mode, taking images in groups of five, 1 second apart.

The self-timer mode was also utilised, to minimise camera shake whilst images were being

captured by physically pressing the shutter button.

With separate monitoring systems in use: image-based and LDV, it was necessary to

synchronise the recorded data, for later comparison. Although both monitoring systems

record timestamps alongside their data, both systems only store timestamps to the single

second, which is not precise enough for the separate datasets to be correlated.

A better comparison was achieved by using a separate video camera which was set

up to record the test graphically. This camera was not used in any photogrammetic

processing, it only kept the DSLR camera in the foreground and the moving pedestrians

on the bridge in the background to allow their timings to be compared. A freeze frame

from the video is included in figure 4.12. The memory card access LED indicator on the

rear of the camera body was visible in the video, and activated at the end of each exposure

during data recording to the memory card. It was also possible to identify the moment

that pedestrians jumped in the LDV data, which could be matched with the jumping in
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Figure 4.12: Freeze frame from the video camera of the Wilford Suspension Bridge during
test

the video. The video was examined in slow motion, and the time of each event (camera

capture or pedestrian jump) noted. With the video camera recording at 30 frames per

second, meaning images are captured every 0.0333 seconds, the two datasets could be

aligned to this level of precision.

On return to the office, images were processed using the steps described earlier for

LEMBI measurement (section 3.3). The result are presented below. First, figure 4.14

provides the vibration envelope at the time each image was captured along longitudinal

bridge sections. Secondly, figure 4.13 provides a graphic representation of the deformation

for a single target at the mid-span.

4.3.4 Results

The laser vibrometer was located below the bridge deck, pointing at a location beneath

the walkway at the mid position of the bridge. The data recorded acceleration, so dou-

ble integration and filtering was necessary to generate displacement history to compare

with the image based deformation estimates, and the measurement must be corrected for

the incident angle of the measuring beam. Figure 4.13 compares the displacement time

history recorded by the LDV with the image-based measurements for the target at the
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Figure 4.13: Comparison of Wilford bridge mid-span deflections measured by LDV (black
line) and LEMBI measurement (blue rectangles)

bridge’s mid-span for the first set of results. Image based measurements are represented

on this graph by rectangles, where the height represents the magnitude of the measured

vibration derived from each image, and its position in the x axis corresponds to the time

the image was taken. The width of the rectangle corresponds to the time that the shut-

ter was open. In the figure it can be seen that there is good correlation between the

rectangles (representing LEMBI measurements) which outline the laser-measured motion

in most cases. These reassuring results showing correspondence between an independent

reference measurement and the LEMBI measurements demonstrate the effectiveness of

the LEMBI approach. Figure 4.13 showing correspondence between LEMBI and refer-

ence measurements is different to the earlier figure 3.25 because the controlled motion

was constant, allowing the statistical analysis of measurement differences. The true ben-

efit of LEMBI measurements are demonstrated later when many targets are monitored

simultaneously.

In some cases, the measurements don’t correlate exactly. Reasons may include that

the photogrammetric measurements were made along the northern wall of the bridge

whilst the LDV monitoring the underside of the bridge deck was directed at the southern

side. Although no torsional movements were apparent to the pedestrians on the bridge,

the possibly cannot be ignored and could remain a source for error.

A second set of results is presented in figure 4.14 which provide every target’s mea-
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sured vibration amplitude during the first 20 measurement epochs. Each line in this graph

represents the measurements obtained from an individual image and are hence each in-

dividual epochs (sequentially numbered and corresponding to those in figure 4.13). The

x axis represents the chainage along the bridge starting from the furthest end, and y axis

is motion amplitude. These results demonstrate how motion data from all the targets on

the bridge could be captured in single images.

Looking at the results to the left of the graph and the targets nearest to the camera,

the results show vibration amplitude increasing, but plateauing towards the mid-span of

the bridge. Between images the motion varies in amplitude, which can be expected given

the random nature of the excitation power provided by the jumping pedestrians. Whilst

the amplitude varies, the form the the bridge’s curvature is relatively consistent between

samples, as one would expect. Towards the left of the graph where target’s are greater

than 30 m away, the results are more random and are almost certainly demonstrating that

the measurement system is incapable of resolving motion accurately at these distances. At

the furthest end of the bridge approximately 70 m from the camera, an object distance

of 1 mm corresponds to 0.2 pixels in the image space, which has been shown in the

shake table tests to be below the accuracy of the current blurred target measurement

algorithm. For the targets are the far end of the bridge in particular, this arrangement

is poorly conditioned for the desired measurements.

The case study has certainly demonstrated how LEMBI monitoring can be applied

to real structures. The vibration envelope of the suspension bridge was captured using

the Nikon D7000 camera, at its maximum resolution of 16 MP. If monitoring using a

traditional high-speed imaging method, the sensor would capture at a maximum of only

6 frames per second at this resolution. Although being just within the constraints of the

Nyquist sampling frequency criterion for the structure’s natural frequencies, measurement

errors can still occur because of aliasing effects (see section 2.3.5). The D7000 camera is

capable of recording images in movie mode at 24 frames per second, but at this sampling

frequency, would be limited to an image resolution of 2.2 MP. The lower resolution means

that measurement accuracy would be less than that achievable using LEMBI.

This case study also demonstrated some of the constraints of using such an approach

on a real civil engineering structure. Carrying out the test demonstrated a possible
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Figure 4.14: Wilford Bridge vibration amplitudes (chainage measured from the face of
the south abutment on which the camera was located)

arrangement for a sensor and targets, and the use of neutral density filters for acceptable

image exposure (discussed further in section 5.2.5).

4.4 Shake-table 3D model

A key development of the basic LEMBI monitoring method involved extending the ap-

proach into three dimensions using multiple cameras (section 3.5). The shake table used

earlier (section 4.1) was used again using two cameras in a stereo configuration for 3D

measurement. As discussed in section 3.5, although 2D measurements can be useful for

monitoring plan deformations, 3D measurements would allow detection of more compli-

cated 3D motion, which could be particularly relevant to asymmetric structures, those

with complex 3D deformation, or those with unusual dynamic loads.

4.4.1 Method

The arrangement of the 3D shake table setup was broadly similar to that used in sec-

tion 4.1. The large-scale plastic model was again screwed to the moving bed of the

shake table. More coded control targets were added around the test structure, on the
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workbench and the shake table’s non-moving body, creating a volume within the control

targets. The additional control points provided redundancy in the measurements. 3D

object space coordinates were again established using the total station.

Two cameras were used for stereoscopic imaging, and fixed on tripods in front of the

model. Motion was expected to be broadly horizontal, so the tripods were set at different

heights, avoiding the situation described in section 3.5.5.1, whereby it is not possible

to automatically determine the correct point matching where the deformation line and

epipolar plane are coincident.

The testing procedure was carried out using the same approach described in sec-

tion 3.1.3. Sinusoidal base vibration was applied separately at each frequency and im-

ages captured from both cameras simultaneously after the table had been in motion for 5

seconds (steady-state motion). Image capture was controlled using the data acquisition

device described in section 3.1.4, which allowed carefully timed simultaneous activation

of both cameras. The simultaneous audible click of the cameras’ shutters confirmed their

synchronised operation, but a small difference would not have had a significant affect

since steady-state motion was reached.

The exterior orientation of the two cameras were determined using PhotoModeler,

since this software package contained convenient tools for automatic target recognition

and bundle adjustment. The pair of images captured before motion had started was

imported into PhotoModeler, together with the the control target’s object space coordi-

nates, and the interior orientation parameters determined using a camera calibration field

(section 3.5.1). The same image registration script employed for 2D motion measurement

was used to determine image coordinates. Instead of using the projective transformation

to determine object space coordinates, the collinearity equations were utilised, using the

space intersection technique described in section 3.5.3. Figure 4.15 shows the arrangement

of apparatus in the test.

4.4.2 Results

The first test involved simple 2D translation. The test was monitored using the full

3D monitoring system with stereo imagery, although only planar motion was expected.
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Figure 4.15: The model used for 3D monitoring

Figure 4.16(a) shows the result of a repeated test on the original model at 1.8 Hz. Un-

surprisingly, the results are the same as those provided earlier in figure 4.3 in section 4.1.

The vibration envelope is the same shape, with nodes (locations of no motion) apparent

in the same locations and a similar curvature to that shown in figure 4.3.

As previously, vibration frequency was increased to 3.0 and 8.1 Hz, and measure-

ment repeated. The 3D motion vectors for each frequency are given in figure 4.16(b)

and 4.16(c), and are again similar to those given during planar monoscopic measurement

(figure 4.4).

4.4.3 Modified Models

A particular emphasis of dynamic structural testing is the detection of structural changes,

such as a loss of stiffness, that require remedial intervention to prevent failure of the

structure. It is envisaged that the image based monitoring approach would be ideally

suited to this task. To demonstrate the suitability for detecting structural changes, a

series of modification were made to the model and measurements repeated. This test

intended to simulate how changes in the structure would be reflected in changes in the
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Figure 4.16: 3D measurements of the unmodified structure

measured vibration envelope, as part of the structural health monitoring scheme. Changes

in either the mass or stiffness of the structure would result in changes to the structure’s

dynamic properties.

Modifications were made to the structure, and monitoring was repeated to compare

the previous no-damage state with the post-damage state (figure 4.17). A detected change

would prompt further investigation to identify the cause.

First, 48.1 g of mass (a weight weighing 36.0 g, fixed with a 12.1 g bolt) was added to

the structure at the fourth level (figure 4.17). Monitoring was repeated, running through

the test procedure and processing images, producing results for the first three natural

frequencies. Figure 4.18a shows how the change in mass resulted in a change in the

measured vibration envelope of the modified structure. In the first mode, a node is not

apparent at the fourth storey where previously none were present. The location of nodes

in the later two modes has also changed.

The second modification introduced to the structure involved reducing the stiffness of

two of the vertical members by swapping them for some having part of the plastic section

cut away (figure 4.17). By reducing the cross-section of the member, the stiffness was

reduced. This is a similar effect to the failure of welds in a steel structure, which would

result in a localised loss of stiffness. This modification produced unbalanced and more
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Added mass

Standard member

Reduced stiffness member
(back of model)

Unmodified Modification 1        Modification 2

Figure 4.17: Modifications made to the model structure

interesting 3D motion. The test was repeated to see if the change was detectable and

results for the modified structure are given in figure 4.18b.

Changes in the vibration envelope due to the modified stiffness of the two members

can be seen. Since the model is no longer symmetrical, torsional motion can be observed.

Particular attention is drawn to how changes in the location of nodes on the structure

can be observed, in addition to changes in the orientation and relative magnitudes of the

displacement vectors.

This case study has demonstrated the application of the image measurement approach

to monitoring 3D motion, showing how an asymmetric model could be observed, including

the change to orientation and magnitude progressing through the structure from the base

to the top. This case study has also demonstrated how the approach could be used for

damage detection within a structure, by simulating structural changes in plastic model

structures resulting in modified vibration envelopes, that can be detected by the image

processing approach.
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Figure 4.18: Measurements repeated after each modification to the model structure

4.5 Vertical Timber Section 3D

With the 3D monitoring routine developed, the test on the upright timber carried out in

section 4.2 was repeated for 3D monitoring (figure 4.19). The goal of this case study was

to verify motion could be captured in three dimensions, even outdoors. As previously, the

upright timber was fixed vertically. The targets with diameters ranging from 20 to 40 mm

were manufactured in the same way as those used for the Wilford Bridge (section 4.3.3).

As previously, wooden stands held six coded targets to act as an external object-space

control. For 3D monitoring, it is not necessary for the control points and monitoring

points to be coplanar, so for this case study the control targets were not so carefully

arranged, but were nevertheless carefully surveyed using total station in reflectorless

mode.

Two Nikon D80 cameras were used, supported on tripods with identical settings pro-

grammed, and neutral density filters were again necessary. They were connected to the

same external double trigger allowing a pair of images to be taken simultaneously when
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Figure 4.19: The 3D demonstration of monitoring the upright timber, with control points.

the shutter was pressed.

4.5.1 Results

The upright section was again excited by being manually pushed and allowed to oscillate.

Results are presented in figure 4.21. As expected, the results appear similar to those

captured in section 4.2. Again, the curvature is compared to the theoretical curvature

that would be expected for the theoretical curvature of fixed end column of constant

stiffness.

The timber section was excited in both it’s major and minor axes (figure 4.20). As the

cross section is constant along its length length, changes in relative curvature would not

be expected, except if there was a change in stiffness. Figure 4.22 compares the vibration

amplitude results with a theoretical curve for a section of constant stiffness. In order to

represent this is 2D, the 3D data has been fit to a vertical 2D plane through the direction

of the motion of the highest target. As can be qualitatively observed, the curvature of

the upright’s motion corresponds with the theoretical curve.

It can be seen that the lowest target on the structure is often not detected despite

moving is the same way as the other targets. This is due to the minimum detectable
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Figure 4.21: Upright Timber 3D results (a) minor axis and (b) major axis.

motion amplitude, discussed further in section 5.2.2.1. Selecting a smaller target size

would result in better detection of this targets, but could cause problems if vibration

amplitude is subsequently substantially increased.

This test again demonstrates monitoring in 3D, and that it remains effective out-

of-doors. A comparison is made between with theoretical results, as well as noting the

similarities between results obtains here, and using the earlier 2D measurement approach.

4.6 Summary

In this chapter, the efficacy of the LEMBI monitoring has been demonstrated using a

series of case studies. These included large-scale models in the laboratory and smaller
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case studies on a wooden model, and on an actual steel suspension bridge.

Monitoring was demonstrated initially with one camera, restricting motion to planar

motion in two dimensions only. Further case studies then use the 3D monitoring extension

of the developed approach to record more complex motion that is not restricted to planar

displacements. Although proof of concept has been achieved in 3D, in a comparatively

simple two camera stereo configuration, it is readily accepted that a multiple camera

configuration would provide more robust results.

The tests on the smaller laboratory model was expanded to demonstrate how changes

in the vibration envelope of the structure, caused by introducing structural changes, can

be detected. This included adding accidental masses and swapping a member for those

of a different stiffness, which could indicate the presence of damage in a real structure.

The following chapter assesses the quality of the proposed LEMBI measurement sys-

tem. It also discusses the implications of these case studies in more detail, including

encountered considerations and the implications for wider structural testing when com-

pared with other existing monitoring approaches.



Chapter 5

Discussion

In this chapter, the results of the case studies encountered in chapter 4 are discussed in

more detail. The use and implications of long exposure motion blurred images (LEMBI)

for monitoring structural tests using dynamic techniques is discussed, and some of the

practical considerations encountered during fieldwork are identified and addressed. This

chapter then goes on to define the capabilities and identify the limitations of LEMBI

monitoring. Finally, a comparison is made of the use of LEMBI monitoring with other

dynamic monitoring sensors.

5.1 Data Quality

The accuracy of LEMBI measurements has been considered in section 3.4, and was shown

to improve as a more advanced measurement algorithm was developed. The current

working Matlab routine took several seconds to process images. There are some obvious

steps that could be taken to speed up processing. For example, the current Matlab routine

does not make use of parallel processing on a multiple core processor, but individual

targets could be processed in parallel without significant modification to the algorithm if

Matlab’s parallel processing toolbox was purchased. The task would be well within the

additional constraints of independent loop iteration provided by parallel processing (The

MathWorks Inc., 2014b).

Adjusting the number of iterations used for motion-blurred simulated images also

increased image processing time. The number of iterations was controlled the strictness

129
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level of the measurement acceptance criteria, and the effectiveness of the algorithm to

predict the parameters to use for the next iteration. Reducing the criteria speeds up image

processing as fewer iterations are required, but measurement accuracy will decrease.

The accuracy of the results were also influenced by the processing options used for

images and some of the exact parameters used. For example, increasing the number of

pixel intensity profiles measured at each target increases processing time since each profile

must be measured, and there were more points in the fitted ellipse. The dimensions of the

image patch also affected the speed at which simulated images in generated, as smaller

images are processed faster, but image patches must be large enough for the target in

order to the measured.

Matlab is renowned for creating solutions quickly using its many built in functions and

additional function libraries (‘toolboxes’). Matlab also provides many tools for processing

data and graphical output. However, unlike some other programming languages in which

the language is compiled into an executable file, Matlab routines are stored as source code

and compiled at run-time. This has the advantage of being easily edited on-the-fly and for

debugging, but could increase the time necessary for image processing. An alternative

would be to use a lower level language such as the C, C++ or python programming

environments, which might run faster. OpenCV is a freely available library of open source

functions for use in these environments with similar functionality to Matlab’s libraries,

and is also free (OpenCV, 2012).

5.1.1 Detecting structural changes

A demonstration of detecting structural changes was carried out after initial measurement

of the unmodified state in section 4.4.3. Structures were modified, and monitoring was

repeated.

If the LEMBI monitoring system were to be used as part of a structural health mon-

itoring scheme, it would be expected that monitoring would take place, initially at the

start of the scheme, and repeated at regular intervals. A change in the dynamic response

from one ‘epoch’ to the next would indicate the need for further investigation. As the

literature review discussed, this is not unlike current monitoring schemes, which aim to
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10 px

Figure 5.1: Examples of target measurement errors

detect the occurrence of a structural change.

5.1.2 Outlier measurements

Occasional outliers occured in the measurements. Outliers usually occur during mea-

surement of image coordinates when the Pixel Intensity Profiles (PIPs) were oriented

incorrectly, perpendicular to the target motion rather than parallel (figure 5.1). This

could happen when the threshold used in the first step for a rapid-approximate estimate

of the target’s geometry is incorrect. Where these outliers occur, they were typically a

result of an incorrect parameter and the error is evident in several targets in an image.

The solution in this case was to modify the threshold used for identifying the blurred

target smear, and repeating image processing.

Errors could also occur due to having too small a border around a physical target. If

the target’s motion caused it to intersect another dark area of the image, this interferes

with identifying features of the blurred target smear. When this happened measured

motion blur was unreliable, since the consistent target appearance that the algorithm

expects is disturbed. The identified points representing the target extremes may be

incorrect. The plain area around the target is therefore necessary to protect the centre

target from interference.

Outliers could be reliably identified by calculating the variance of the PIP identified

points from a fitted ellipse. The identified target edge points normally conform to an

ellipse and typically exhibit variances from 0–1. In both of the identified cases for typical

outliers, points are identified more randomly, and the variance values range from 2–30.

The variance values are stored with the measured coordinates and can be used to identify
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outlier measurements, which can then be removed easily.

5.1.3 Data Representation

Where the measured data must be assessed by a professional engineer, clear and concise

presentation of the results is important. With a single measurement point and a tradi-

tional gauge, a time-history graph may be presented. When image-based measurements

were compared with laser Doppler vibrometer, the image-based measurement is not con-

tinuous, rather in discrete intervals (section 4.3.4). In each interval, the total movement

of the measurement point during the time the shutter is open is stored. Figure 4.13

illustrates one way in which the data could be compared. As discussed in section 2.1.3.1,

richer information is available by comparing the relative motion amplitudes of measuring

points to visualise the vibration envelope. Presenting the shape of the vibration envelope

allows identification of the location of nodes and antinodes. Antinodes appear in the

location of greatest motion, and nodes in location of zero motion.

For 2D planar motion, displacement vectors could be simply overlain on the original

image, allowing visualisation of each displacement vector at its corresponding location

on the test structure. 3D motion vectors could be drawn in a 3D rotatable and panable

viewport on the computer, but it is difficult without a 3D model of the object in the

figure to understand how individual vectors correspond to locations on the test structure.

A simple way to present results would be to have the original stereopair images of the

object with displacement vectors corresponding to the images individually. An engineer

who is familiar with understanding 3D objects from multiple 2D orthographic projections

of the object may find this satisfactory and the processing steps required would be no

more than for planar monitoring. This type of representation would also be appropriate

for printed paper. The viewport would be restricted to that of the camera, and not allow

‘roaming’ around the model. For complex models monitored with multiview imagery this

method also becomes less efficient.

A 3D anaglyph image (an effect created by separating left and right eye images by

coloured filters) of displacement vectors would also be possible. Since 3D data exists,

it would be possible to render vectors in a 3D viewport, where the user would be able
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to rotate the view to ‘roam around’ the subject, although it may be harder to visualise

the correspondence between the displacement vectors and their location on a structure

without the image of the structure for reference. As a compromise, the outline of the

structure could be traced so that the displacement can be superimposed on a simple 3D

skeleton model.

A more advanced approach would be to use standard photogrammetric techniques to

create a 3D model of the test object, compromising of a point cloud or other textured sur-

faces making up the appearance of the test structure. This model could be manipulated in

the viewport and LEMBI measured displacement vectors overlain of measurement points.

Generating the point cloud for this approach would, however, increases the processing

stages required to generate the output.

Alternatively, a digital 3D model of a structure may already exist, where either a

Building Information Model has been created as part of a building design and manage-

ment, or a Finite Element Analysis model created as part of a previous analysis. Provided

the position and orientation of the model is correctly related to the measured deformation

data, displacement vectors could be overlain on this model. As a surveyed point cloud of

the actual structure is not used, geometric correlation between the actual structure and

manually created model must be assured.

A suitable method was found to be making a 3D ‘wireframe’ of the model, overlain

with the displacement vectors at measurement locations. The wireframe model was cre-

ated using the sharp images loaded into the PhotoModeler software. Although adding

manual steps to data processing, with the operator manually identifying image points at

relevant corners, the commercial software package contained the tools to make this easy.

A list of points describing the wireframe can be exported from PhotoModeler. These 3D

lines were then plotted in Matlab and displacement vectors overlain, to produce a model

to ‘roam’ around.

5.1.4 Number of Pixel Intensity Profiles

One of the factors affecting the accuracy of the measurement solution was the number

of profile lines used for the Pixel Intensity Profile measurement (PIP) (section 3.2.3.5).
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Generally, a higher number of profile lines would improve the measurement, but as the

number of profile lines increased, the time taken for images to be processed increased also.

Not only must the gradient change points be identified on every profile line in every itera-

tion, but the blurred target ellipse was then fit to a larger number of coordinates. During

tests, it was found that using 30 profile lines during measurement produced results that

were not significantly improved with a larger number of PIPs, yet allowed acceptable im-

age processing speed. Image processing was being carried out on a standard specification

office laptop, and notably, the currently available Matlab license did not permit paral-

lel processing (which would have been advantageous by allowing processing of different

targets simultaneously).

To test the most efficient approach, using different numbers of PIPs to measure targets

was tested. The number of PIPs for target measurement was increased to 100, and

the Matlab routine executed. As might be expected, the routine processing duration

increased. Using Matlab’s ’tic’ and ’toc’ functions, the recorded time for image processing

was 629.5 s. The measurement procedure was then repeated by reducing the number of

profile lines used in measurement in increments of 10 (reducing to 2 for the fewer profile

lines), and time for image processing was recorded again using the ‘tic’ and ‘toc’ functions.

The measured coordinate derived with LEMBI in each increment was compared with

those measured by the shake table laser displacement gauge. Figure 5.2 shows the increase

in standard deviation of errors for LEMBI measurements, as the number of profile lines

decreases. Figure 5.2 also shows how the Matlab routine processing duration reduces

as the number of profile lines decreases. From the graph, it can be interpreted that

increasing the number of profiles lines above 30 yields little improvement in coordinate

measurement, at least for the considered case studies, whilst computer processing time

continues to increase. 30 profile lines was selected as a suitable compromise between

measurement accuracy and image processing time.

The duration of image processing appears to slowly fall before 9 profile lines, before

steadily increasing afterwards. From reviewing the results in more detail, it was found

that more iterations of the PIP algorithm took place. The increase in iterations was as-

sociated with with the higher measurement standard deviations. The iteration increment

acceptance threshold 5.1 was not modified to correspond to the poorer measurement ac-
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Figure 5.2: The effect of modifing the number of profile lines on image processing time
and target measurement accuracy

curacy. Some further iterations were required because iteration adjustments, being based

on the PIP measurements, were poorer.

It is acknowledged that, whilst the computer was not running other user applica-

tions whilst processing images, tasks often work in the background on modern operating

systems and these may have been working, which could influence processing time.

It is suggested that a potential further improvement to the image processing routine

would be to initially use a lower number of profile lines if the first iteration, and to

increase the number of profile lines in the following iterations as the iteration estimate

would be expected to be closer to the true measurement. In the final iterations, the

highest number of PIPs would be used. By dynamically adjusting the number of PIPs

in this way, measurement improvements may be realised with less influence on image

processing speed. This is suggested as item for further investigation in the conclusion.

5.2 Survey Design Considerations

Despite the LEMBI monitoring approach having demonstrated its effectiveness, limi-

tations exist. Like all surveying instrumentation, an understanding of how to use the

instrument most effectively is important. Some notable survey design consideration and
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limitations are discussed in the following.

5.2.1 Suitable Scale

Whilst a level of accuracy has been demonstrated that makes possible detection of vi-

brations in a civil engineering structure using the LEMBI approach, this was less at the

demonstrated scales than could be achieved by other instruments specifically suited to

dynamic monitoring. Consideration of the accuracy that will be achieved, with a particu-

lar camera system and object distance, should be calculated before designing the survey.

Knowledge of the structure’s approximate likely deformation is therefore also important.

The approach may not be suitable for all structures. Particularly, it may not be suitable

to those structures with higher stiffness and relatively low vibration amplitudes, such as

reinforced concrete or masonry structures. The case studies were selected because they

demonstrated the strengths of such a monitoring approach. Other structures would not

provide as good results because their deformations would be too small, and these were

deliberately not chosen.

A similar consideration is also a requirement for other instrumentation before they are

installed, for correct sensor range selection and location. Accelerometers and associated

data recording equipment must be selected from a range with different sensitivities, and

when installed must be correctly orientated for their purpose.

5.2.2 Artificial Target Selection

Measurement is reliant on the application of circular targets with a background of con-

trasting colour that exceeds the expected deformation. Photogrammetric measurement

projects often make use of signalised points, but technology has developed such to use

untargeted features with adequate surface texture to significantly increase the density of

measurements, with perhaps only a few targets to orientate images (section 2.3.4).

Nevertheless, fully targeted approaches are still used for the most accurate work, as

target measurement algorithms are generally more accurate than marking of natural fea-

tures. Blur measurement methods for textured features exist (section 2.4.5), and were

tested (section 3.2.2), but was found to be unreliable with often irregular and incor-
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rect measurement, and lacked precision, so the targeted approach was considered most

workable. Not only does the use of targets improve accuracy, but allows some processing

stages to be semi-automated. When images are loaded in to PhotoModeler, the signalised

points are quickly recognised.

The addition of targets to the object increases set-up time and cost if these locations

are not easily accessible and special access arrangements are required. Thus, consider-

ation must be given to the location of targets, the accessibility of these location, the

method of making a secure fixing, and the time taken to install the number of targets

desired. A similar constraint already exists for contact gauges such as accelerometers,

as well as GPS, and monitoring using high-speed photogrammetric imaging techniques

with targets, but the hardware cost of photogrammetric targets is much less. Access

arrangements could also be more complicated if further cabling is necessary for the ac-

celerometers. Photogrammetric targets at a minimum are ‘passive’, not requiring cable

infrastructure. An image processing approach would, however, require the inclusion of

a remote observation location for the cameras, but allows a degree of flexibility in its

location, so long as a clear view of all necessary targets is maintained. The requirement

for installation of physical targets on the structure may mean the monitoring approach

may not be considered ‘truly’ non-contact (Cooper and Robson, 1990), yet it still of-

fers similar advantages as other non-contact approaches such as not requiring immediate

stable reference.

Literature has mentioned the use of actively illuminated targets, such as individual

LEDs, to permit monitoring during hours of darkness (section 2.4.2.3), where the struc-

ture’s surface would not be visible unless other illumination is provided, itself having

practical difficulties. In this case, the motion path of the light would be shown in light

pixels in the image, with the background appearing dark.

5.2.2.1 Target Size

The size of the target must be selected during test preparation. Not only does the di-

ameter of the circular target need to be defined, but also the dimensions of the target

surround, which must exceed the measurement point’s motion to avoid interference be-

tween the motion-blurred target and other background objects in the image. For the
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Figure 5.3: A 10 pixel diameter circular target, too small for LEMBI measurement

latter, increasing the dimensions more than necessary does not negatively impact mea-

surement, but too large a target could be impractical, and influence a structure’s wind

loading.

Some knowledge about the scale of the expected deformations as well as the image

scale is therefore necessary when selecting the diameter of the target. If vibration am-

plitude is less than approximately one tenth the target diameter, measurement becomes

unreliable, with motion direction estimates becoming unreliable, and incorrect direction

estimates which could result in an undesired amplitude estimate. When the motion

amplitude is approximately 3 times greater than target diameter distance measurement

becomes unreliable, as the range of pixel values in the blurred image patch is severely

reduced. Where the blurred image of the target has a range of pixel value of only 10-15

the edges of the burred target are poorly defined. Very large targets (diameters <40

pixels) are more resilient to motion amplitude that is too large.

These limits on target diameter relative to object motion impose limits on the smallest

and largest measurable motion amplitude. Subject to available object distances and lens

configurations, this limit of measurable motion can be controlled by using alternative

target sizes. The smallest measurable motion for a larger target is greater than for a

smaller target. Therefore, the selected target size should be smaller if smaller motion is

expected.

In the Wilford bridge results (section 4.3.4) is was apparent in figure 4.14 that the

target distance from the camera was too great for effective measurements. With a 20 mm

target at an object distance of 36.94 m, with an 85 mm focal length, the target diameter

was only 10 pixels in the image space (figure 5.3). Whilst targets this size are acceptable

for standard photogrammetric work, when subjected to motion, the target appearance
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was too severely degraded for LEMBI measurement. Effectively a target diameter of

approximately 15–20 of the expected motion is the minimum necessary, for motion up to

approximately two thirds of the target diameter. Whilst the selection of target size can

control the detectable motion amplitudes, the smallest measurable motion limit imposed

by the image scale requires an increase in focal length to be improved, possibly reducing

the object visible in field of vision.

5.2.3 Camera Location

The availability of camera locations requires consideration at an early stage of survey

design. The Wilford bridge case study demonstrated how camera locations can be re-

stricted. Locating a camera normal to the structure would have required a telephoto lens

with a long focal length to be located over 100 metres away. Such lenses are available, but

at greater cost. Additionally, any movement of the camera would be magnified. Whilst

it is possible (and for conventional photogrammety, routine) to compensate for camera

movement between captured images, compensating for camera motion during image ac-

quisition would be particularly testing. Having a longer viewing distance would also make

the instrumentation more susceptible to atmospheric conditions prevalent, such as fog,

and inadvertent occlusions may be more likely over a long distance.

In the demonstration, the maximum target distance was reduced by positioning the

camera so that the axis was oriented along the bridge. A 85 mm lens could then be

used. This created the problem that a very long depth of field (DOF) was necessary:

the furthest target being 70 m away from the camera and the nearest only 1 m away.

Depth of field is controlled by adjusting the aperture, with a large aperture creating a

short DOF (often a desired artistic effect), and small aperture a longer DOF, which a

long exposure image can often accommodate. Smaller apertures are usually desired for

photogrammetric work as more objects in the image can be in focus. Conveniently, the

minimum aperture is already selected for the lowest exposure, providing the maximum

depth of field.

During the Wilford bridge case study, significant degradation was not observed, when

the images were viewed. Although severe out-of-focus blur is likely to degrade measure-
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Figure 5.4: Demonstration of the effect of incomplete cycles (a) δt = T (b) δt = 3/4T
(c) δt = 5/4T (d) multiple cycles

ment accuracy, out-of-focus blur is automatically compensated by the LEMBI algorithm.

Further assessment of the resolving power of the camera with objects at a range of dis-

tances and a long DOF could be made using a Siemens star in a laboratory environment.

During the Wilford bridge case study, it was noted that the LDV (which was also

in use) only measures out-of-plane motion, whilst each camera sensor will only make in-

plane measurement, so the availability of observation locations will have influence on the

choice of sensor. During the Wilford bridge case study, the LDV could not be located in

its optimum configuration, perpendicular to the bridge underside, and since the bridge

spanned a river, the camera also could not be located directly parallel to the bridge

centreline, again due to the course of the river.

5.2.4 Shutter Speed vs Vibration Frequency

If imaging speed is slow with respect to the vibration frequency, whole vibration cycles

may not be captured. When only a partial cycle is captured, the PSF of the motion at

the object during the time the shutter is open may not conform to the assumed sinusoidal

pattern.

If the shutter speed is for example 3/4 or 5/4 of the motion period, integrating the
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motion path produces a different distribution. In particular, one side of the target may

appear bolder than the other and there is a discontinuity in the PSF. Figure 5.4 shows

four harmonic curves of a targets motion, each with a highlighted interval during which

an image would be captured. The second row shows the distribution of the objects

position during that interval, and the third is a descritised PSF. Figure 5.4(a) is of an

interval equal to the motion period, a whole interval is captured, and the PSF conforms

to the expected sinusoidal PSF. Figures 5.4(b, c & d) shows three PSFs of incomplete

periods captured. The PSFs for (b) and (c) do not conform with the sinusoidal PSF, with

one ‘end’ being bolder than the other and a discontinuity is created in the centre. The

difference is greater in (b) than (c). The harmonic patten emphasises the edges of the

motion-blurred smear so that they can be measured, but an incomplete period modifies

this.

Where the vibration frequency is much higher than the shutter speed, the affect of the

incomplete cycle is reduced, and so the PSF does not vary significantly from the uniform

sinusoidal PSF. In figure 5.4(d) the PSF appears sinusoidal again. During testing, where

the imaging speed is greater than 2 motion periods, motion blur measurements appeared

to remain successful.

Consideration must be given to the desired recording frequencies, so that appropriate

camera exposure parameters can be set. In the tests described in section 4.1, the exposure

time was set to at least twice the imposed or expected motion period, so that any ‘half’

cycle was not recorded. In practice for harmonic periodic motion, it was not necessary

to reduce exposure time for higher test frequencies, where several complete cycles were

captured.

With the exposure time fixed as specified, the camera’s other parameters must be set

appropriately so as to achieve suitable exposures images. Allowing too high an exposure

results in saturated pixels around the target background, and some pixels around the

target edge, which would otherwise form part of the target border are also saturated

(figure 5.5). Too low an exposure, and the opposite is the case. ISO and aperture were

set with trial and error to achieve suitable exposures. The images could be quickly review

on the Nikon D80’s display, and overexposured regions of the image are automatically

highlighted.
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(a) Suitably exposed target image (b) An over-exposed target image

Figure 5.5: When image exposure is too high, pixels which would otherwise form part of
the target border are saturated.

5.2.5 Filters

Whilst using a long shutter speed to capture motion, the camera’s aperture and sensi-

tivity had to be reduced to get suitably exposed images. Where a combination of the

smallest aperture and lowest sensitivity still results in images which had overexposed

regions, neutral density filters were added to the lens. This was often the case when

working outdoors. Whilst bringing image exposure into a suitable range should improve

measurement success and accuracy, the addition of optical elements has the potential to

introduce further lens diffraction and distortions. The camera calibration procedure was

repeated using the calibration field in the laboratory (section 3.1.2). The calibration was

used to model the combined consumer lens and filters as a single lens system. The three

ND filters available for use cost �7.50 together, so could be considered budget range filters

that cannot be expected to be manufactured to the same quality as professional lenses.

Distortion caused by the filter is expected, and can be modelled, so is unlikely to have

significantly reduced accuracy. The assumption that the lens distortion corrections are

not needed for small localised displacements because they will almost cancel out remains

valid, particularly for 2D measurements (section 2.4.3).

For different sensor hardware, such as machine vision cameras, it is possible that

sensitivity could be reduced further without the need for additional hardware filters.

These can provide the added advantage that sensitivity can be modified without manual

hardware changes as the brightness conditions change outdoors.
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5.3 Comparison with alternative monitoring technolo-

gies

This section compares the LEMBI monitoring approach developed here with other dy-

namic monitoring approaches introduced in the literature review. Each comparison com-

prises not only the level of measurement accuracy, but the practical considerations of

each method, such as monitoring orientation are appraised.

5.3.1 Accelerometer

Accelerometers are frequently used for dynamic monitoring. They provide a direct mea-

surement of motion of the sensor, which is securely fixed at the monitoring point on a

structure. Accelerometers are available in different sensitivities, depending on applica-

tion, For instance, the accelerometer set-up used for the lab experiments had a sensitivity

of 1.2 × 10−8 m/s2 and sampled at 1652 Hz. The actual sensitivity of an accelerometer

monitoring system is dependent on the particular type of sensor, the sensitivity of the

data logger and any signal amplifier that may be in use.

Installation is simple where direct access to the structure is possible, unlike optical

instruments which require a line of sight. Since there are no interruptions to a line of

sight by occlusions, or interruptions such as poor weather, so accelerometers have higher

reliability.

Significantly, an individual accelerometer will only provide measured data for the

location it is fitted. For determining modal shapes where multiple monitoring are neces-

sary, it is possible to use an accelerometer, but the sensor must be systematically moved

to each monitoring location, whilst the vibration remains constant. In these scenarios,

those instruments that monitor many locations simultaneously are advantageous. Each

additional accelerometer adds significant cost, as the gauge is an expensive specialised

gauge which is individually calibrated by the manufacturer.

The limitation of the accelerometer is that, being a contact sensor, it must be fitted

at the monitoring location and connected to the data logger to either store results locally

for downloading later, or relay them to a remote location. The difficulties of this were
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discussed by Battista et al. (2011) and identified that the cabling is necessary, both for

power and data transmission.

Accelerometers record data in the acceleration domain. If data in the displacement

domain is desired for determining vibration amplitude, the data must be filtered and

double integrated. Automated software packages exist, but manual selection of filters is

necessary. This is an unreliable method of determining displacement, since the data will

drift when integrated. If absolute displacements over a longer time period are desired,

for example to measure static displacements in conjunction with dynamic response, the

accelerometer must be supplemented by other sensors such as an LVDT (section 2.2.1.1),

which would also require stable support. The image based approach, however, allows

direct measurement of displacement with the same instrument arrangement as used for

LEMBI monitoring.

5.3.2 Laser Doppler Vibrometer

Non-contact vibration monitoring is also possible using the Laser Doppler vibrometer,

introduced in the literature review (section 2.2.2.5). The instrument that we have used

for the Wilford bridge case study has a velocity measurement resolution of 0.01 �m/s

(Polytech Ltd., 2014a), significantly higher than image monitoring approaches. This in-

strument has also no requirement for artificial targeting: a low-resolution camera built

in to the instrument allows careful targeting of the measuring beam. This allows moni-

toring of structures where access to the measuring location is impossible. Monitoring is

also possible over distances of 300 m.

Monitoring is limited to a single location, where the laser is targeted and if monitor-

ing at several location was necessary (for modal analysis), the vibration should remain

constant whilst the measuring beam is systematically moved from one monitoring point

to another. A contrasting difference between the LDV and image-based measurements

is that the LDV measures out-of-plane motion, and no in-plane motion is detectable.

If motion is not wholly parallel to the measuring beam, measured displacements will

either be subjected to a scaling error, or displacements in two directions could become

confusingly combined. Where the orientation of the measuring beam limited by the avail-
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able locations for the instrument, the direction of the measurable vibration is limited in

turn. Image-based techniques permit only in-plane measurement (although some tech-

niques have measured out-of-plane motion by observing changes in scale of specific targets

(Chang and Xiao, 2010), but this method is less rigorous), so an image-based approach

also has monitoring direction constraints.

Photogrammetric techniques also permit 3D measurement with stereo or multiview

imagery. It is possible to measure in 3D using multiple LDVs, but for many applications

this could be prohibitively expensive given the instrument’s very high cost, the Poly-

tech RSV-150 costing �67,000. A stereo imaging system is far cheaper and within the

possibilities of many projects (section 5.4).

The LDV’s interferometric measuring beam measures in the velocity domain, rather

than acceleration or displacement. For applications when acceleration time history is

required, differentiation of the velocity data provides the necessary acceleration data.

Absolute displacements can be determined, but only by integration of the velocity data,

which, like the accelerometer, requires filtering and will exhibit drift.

5.3.3 High Speed Imaging

Monitoring vibrations by measuring instantaneous position in a rapid sequence of short-

exposure images is the traditional approach used to measure vibration using photogram-

metry. The approach relies on well-developed techniques, and achieves accuracies similar

to traditional photogrammetric measurement (Olaszek, 1999; Wahbeh et al., 2003; Hel-

frick et al., 2011). The approach is critically dependent on the camera hardware’s ability

to rapidly capture a sequence of images, and is successful provided suitable hardware is

available.

More often, the hardware’s capabilities imposes some restriction. Generally, a com-

promise exists between the image resolution and imaging frequency of the camera, owing

to the amount of data created and the speed at which it can be stored (section 2.3.5).

Many cameras have a ‘burst’ mode to acquire a short rapid sequence of images and

may be able to capture images in a burst mode at a higher frequency than in a continuous

mode. Whilst this temporarily improves the hardware capabilities, the image capture
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rate cannot be sustained for more than a short period. The length of this short period of

rapid image acquisition is dependent on the size of the camera’s buffer which stores images

before writing to memory and once the camera’s buffer is full, imaging frequency must

reduce to the speed that images can be stored to the memory card. The data transfer rate

of a ‘UHS Speed Class 3’ SD card, the current fastest performance standard, is 30 MB/s

(SD Association, 2015; although some manufacturers indicate a maximum speed which

is not defined by SD standards), and JPEG images from the Nikon D80 is about 3.5 MB

(file size varies), so if the camera were capable of writing to the SD card at a maximum

speed, less then 9 images could be captured per second, but technology advances rapidly.

At the limit of the hardware’s capability, imaging frequency can become unpredictable.

The imaging speed is limited by the rate at which images are written to the memory card,

but since file sizes vary after JPEG compression (and the larger images files will take more

time to write than the smaller) the result is unpredictable imaging frequency. Other

factors affecting data storage include amplification and file fragmentation will affect the

rate that data can be stored to the memory card (SD Association, 2015).

This limitation is alleviated with LEMBI measurement, which has much lower image

acquisition rate, well within the capability of the SD card data transfer rate. Maximum

resolution images can be stored without filling the camera’s buffer.

Instead, additional time is required for the image to be processed on-board the camera

before it is ready to be stored, as evidenced by the time taken for the image to be ready

for display on the screen. The implication is that subsequent images cannot be captured

immediately after the previous, even if space is available in the camera’s buffer. Previous

(Wilford bridge) results show intervals between each image capture without measurement

(figure 4.13). This factor does not reduce the capability of motion measurement, since

the complete motion has been captured when the shutter closes, a second image is not

necessary. It does require a pause before subsequent sampling. For example, during shake

table monitoring, the signal remains constant for each image to be captured, including

waiting for the image to be processed and stored.
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5.4 Off-the-shelf components

A notable advantage of the photogrammetric based LEMBI measurement system devel-

oped in this thesis, is that it uses off-the-shelf consumer hardware. None of the other

non-photogrammetric measurement systems identified in the literature review make use of

consumer hardware, as they are all dependent on specialist instrumentation constructed

for commercial projects. Photographic equipment costs less than advanced specialist in-

struments that would usually be required for monitoring of structural dynamics. Cost

savings have already been recognised when image based measurements have been used

(Wahbeh et al., 2003). In many instances, cost is a significant factor in projects, gov-

erning the quantity of data that can be captured. The higher availability of off-the-shelf

hardware also reduces lead times for the delivery of dedicated equipment, and reduces

the risk of hardware failures as sensors can be rapidly replaced.

The sensors used for image based monitoring schemes are, in general, adaptable to a

variety of different applications. For example, the same hardware has been used through-

out this project for case studies of different scales.

The only bespoke system hardware used for this project was the camera remote control

shutter device that was adapted to trigger two cameras simultaneously (figure 3.2). This

device was manufactured in-house by the department’s lab technician. The relatively

simple circuit’s primary components consist of two ordinary single remote control cables,

a relay and battery. It is likely that a similar device could be quickly recreated by any

competent electrical engineer.

5.5 Implication to Structural Testing

The developed monitoring approach clearly provides an additional method for recording

the vibration response of structures. LEMBI monitoring chiefly alleviates the dependence

of imaging speed from vibration monitoring, allowing higher resolution sensors to be used.

The implications of this are described here.

A notable strength of the approach is the number of possible measurement points

measurable with only the few imaging sensors. The photogrammetric measurement ap-



148 Monitoring 3D Vibrations in Structures using High Resolution Blurred Imagery

proach can, therefore, be employed in scenarios requiring non-contract monitoring of a

very high number of monitoring points (section 2.3).

This approach is particularly relevant to dynamic testing, where the reduced inter-

polation between monitoring points allows more accurate determination of the vibration

envelope. The shake table case studies revealed how the vibration envelope can be recov-

ered. Alternative strategies for determining these shapes could be a series of accelerome-

ters. Several would be necessary, with simultaneous data logging. The advanced scanning

LDV would be more convenient and allow monitoring with a single non-contact image.

A significant limitation of the instrument would be the very high cost, even to hire the

instrument.

It may also have been possible to determine the vibration envelope with fewer sensors,

but not without increasing interpolation between monitoring points. Nodes can be located

to between targets, and so the closer the spacing, the more precisely the location of the

node can be determined. More subtle spatial variations can clearly only be identified by

a system which reduce the need for interpolation.

5.6 Discussion on investigations into developing LEMBI

monitoring further

The proposed monitoring system provides an approach to monitoring vibrations that

is radically different to the monitoring systems currently in use. Further developments

to LEMBI monitoring were investigated, but were not developed far enough to be in-

corporated into the proposed solution. The additional challenges encountered whilst

attempting to extend the monitoring system are recorded here.

5.6.1 RAW image file format

Errors in the image correlation approach described in section 3.2.2.3 were attributed to

a non-linear camera response function, and attempts were made to correct for this effect

during image post-processing. An alternative would be to bypass the camera’s internal

processing and use the RAW image data directly. RAW image formats usually allow
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Figure 5.6: The result of the mosaic Bayer filter is clearly visible in a RAW image.

a photographer to make improvements to images because they record all of the data

collected by the camera sensor without any post-processing. Manual processing of these

RAW format images would allow the manufacturer’s undesirable post-processing steps to

be bypassed.

Depending on the hardware used, recording in RAW format may also allow higher

bit-depth imagery, which would be more sensitive to the detail of gradients. This could

provide better accuracy to blurred target measurement.

RAW format image files are very large since their data is not compressed, and this

could delay getting results from images, so any improvements in the use of RAW images

must be compared to the negative practical consequences.

Although bypassing the camera’s post-processing provides the most direct measure-

ment, interpretation of light intensities in more difficult since some post-processing steps

are necessary and must be recreated. The RAW image data shown in figure 5.6 shows

how a mosaic pattern exists on the image. A Bayer filter covers each pixel with a coloured

filter (Russ, 2011). By knowing which pixels are coved with which coloured filter, full

colour images can be reconstructed by interpolating data with neighbouring pixels of

different colours, a process known as demosaicing.

5.6.1.1 Simple demosaicing

There is no single optimum algorithm for demosaicing, and many algorithms are devel-

oped for aesthetic reasons, rather than scientific accuracy. Since only greyscale images

are necessary, it was attempted to create a simple demosaicing filter that assumed that,

for an approximately grayscale image (such as an image patch of a blurred target) a

simple factor can be applied for each colour channel. Eddins (2011) describes the steps
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necessary to import the Nikon RAW images into Matlab. The Nikon NEF format is first

converted in to DNG format using ’Adobe DNG Converter’ (Adobe Systems Incorpo-

rated). All of the image data can then be read from the DNG file using TIFF commands.

Unfortunately, demosaicing an image in this simplified way proved unsuccessful, and the

mosaic pattern remained visible in the images.

5.6.1.2 Demosaicing with Adobe Photoshop

Another approach to glean the higher bit depth images was to load the RAW format

images in Adobe Photoshop and allow demosaicing to be transparently carried out by

the software and export the image as a 16-bit TIFF file. Although this does not allow

control of the camera response function, it would preserve the higher bit-depth image.

Testing this approach was time consuming, as images had to be individually loaded in

to and exported from the Photoshop software package, where the files are saved in a 48

bit-depth TIFF format.

These higher bit-depth TIFF images were loaded into Matlab. By examining a his-

togram of pixel intensities (using Matlab’s ‘imhist’ function) it was evident that the data

was not ‘true’ 12-bit or even 10-bit data, but was descretised in to 683 intervals. There

was, therefore, not substantially more detail than the 8-bit images that have been pre-

viously analysed. Additionally it was observed that the Nikon ‘NEF’ RAW format files

contain a ’linearisation curve’: a look-up table relating image pixel values (which have

maximum value of 768) to 12-bit values (Eddins, 2011), rather than storing each pixel

value in ‘true’ 12-bit precision. Although use of RAW imagery could improve precision

of the algorithm, it was judged too problematic to create a working system, particu-

larly it if was to be developed into a 3D solution. The potential of RAW image data

to improve measurement is an area suggested for further investigation in the conclusion

chapter (section 6.2).

5.6.2 Estimating velocity

It was suggested that the approach could be used to estimate the velocity of a moving

object by measuring the distance travelled by the object and dividing by the duration
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that the shutter was open. This could possibly be extended to estimate the frequency

of the vibration. A similar approach has been used by Caglioti and Giusti (2009), who

determine the distance travelled of a sports ball, and include a monoscopic 3D measure-

ment approach by measuring an apparent change in the ball image’s diameter. Lin et al.

(2008) also measure motion-blur of cars and apply a similar method. These methods do

not determine an instantaneous speed, rather an average velocity over the interval the

shutter is open. Where the velocity is relatively constant, such as for a vehicle or ball in

free flight, the approach has been successful (Lin et al., 2008).

For the motion of structures moving at their natural frequencies, additional problems

exist because the sinusoidal motion has other characteristics, that the velocity is not

constant and changes direction. This complexity raises other challenges that the LEMBI

approach can begin to address once a deeper understanding of changing velocity and

direction are appreciated.

Changing velocity The velocity of the object, its speed in a given direction, is con-

stantly changing as it vibrates sinusoidally. This illustrated in figure 5.7, where several

intervals of the motion capture different motion amplitude. Each imaging interval is the

same, but a different distance is measured in each. Calculating velocities by dividing

these measured distances, Δu, by the time the shutter was open, t, would indeed give the

average velocity during the time the shutter was open, but unless the phase of the wave

is known, this cannot be extrapolated to find the frequency. Although the velocity is

measured, it may not help with the civil engineer’s analysis if the measurements cannot

be transferred into a domain that can be compared.

Reversing Motion Direction Difficulties also arise where the velocity of the motion

reverses, as it moves back and forth. In the first capture in figure 5.8, the average velocity

during the interval, where the object start and end in the same position is zero, but this

cannot be known from the image alone. Identifying the change in motion direction from

the distribution of the PSF would also be insufficient, since both captures in figure 5.8

would have a similar distribution even though the measurable distance is different. To

understand the motion during this interval again requires knowledge of the phase. LEMBI
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Figure 5.7: Result of different distances measured during different intervals

could be used to determine certain geometries during an initial test, followed by a more

advanced test which could determine this information.

5.6.3 Measuring Different Waveforms

The vibration of civil engineering structures principally comprises of harmonic functions.

During the frequency selective case studies demonstrated in this thesis, only one natural

frequency is excited at a time, and so the motion is simply harmonic. If more than one

natural frequency is excited, the resulting motion is the superposition of the response

of the individual excited frequencies. If LEMBI measurement was extended to include

motion that was not a simple harmonic function it could be applied in more scenarios,

such as where frequency selective excitation is not possible. Some laboratory initial tests

were conducted to test the suitability of LEMBI for monitoring motion in waveforms

other than sinusoidal motion.

Square and sawtooth waves were tested (figure 5.9). Although these waveforms may

not be measured successfully by the current LEMBI measurement algorithm, the appear-

ance of the images and the difference between these and images generated by sinusoidal

motion, is of interest.

Some further tests were conducted to examine the effects of differing waveforms. Tar-
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gets were again fixed to the shake table, which was programmed with the new waveforms.

This was intended as an initial test to investigate the appearance of the images, which

simply comprised of targets on the shaker table with a tripod mounted camera, and with-

out control points. The table executed motion at the increasing programmed amplitudes,

and images were captured.

On examination, the captured images did not appear significantly different to those of

sinusoidal motion. On further investigation and examination of the shaker table’s laser’s

recorded signal, although the input signal was modified to one of the above waveforms,

the actual motion did not change significantly. This was because of the shaker table

armature’s inertia causes the shaker table to not change direction instantaneously. The

input signal is proportional to the force applied to the table bed, but to reverse the

direction of the table whilst it is in motion, the table must first decelerate to zero velocity

before accelerating in the opposite direction.

Whilst these other waveforms are unlikely to be representative of the motion experi-

enced by civil engineering structures, the capability of measuring other waveforms may

be beneficial for monitoring broadband vibrations, where instead of frequency-selective

vibration, the structure moves with more than one of its natural frequencies and the

vibration of each is superimposed. Further investigation into the potential for measuring

alternative waveforms using LEMBI for different applications is suggested as a subject

for further investigation.

5.7 Summary

This chapter has discussed the findings made during the case studies described in chap-

ter 4. First the factors affecting the accuracy of LEMBI measurement and the time taken

for image processing were discussed. The accuracy of image measurements is dependent

on some adjustable parameters, which when modified to improve accuracy, will increase

the time for images to be processed. Other programming improvements that could reduce

image processing were identified, but which have not been carried out within this project.

The presence of outlier measurements was then discussed, and a strategy for removing

outliers using the variance of coordinates fitted to an ellipse explained.
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Strategies for presenting measured data as a qualitative graphic were illustrated, in-

cluding approaches for 2D planar measurements and full 3D measurements.

The limitations of LEMBI monitoring were evaluated. Limitations include that the

spatial measurement accuracy is less than commercial sensor systems, but this is offset by

additional capabilities over other sensors, such as multiple monitoring of many monitoring

points. The use of artificial targets was discussed, as this could be a practical limitation,

but it permits higher accuracy than without. Suitable object scales were discussed.

The impact of low imaging speed with respect to the vibration interval was identified,

including possible image processing problems as a result of incomplete sinusoidal periods

that cause a PSF that does not conform to the sinusodial PSF that is assumed.

A comparison with other monitoring systems in then made: the accelerometer and

laser Doppler vibrometer. A comparison with photogrammetric approaches using high

speed imaging is made, which shares some of the same advantages, but crucial differ-

ences between the stored data are identified. The implications for structural testing are

then evaluated. Finally, the potential for further LEMBI monitoring developments are

discussed in regard to estimating the velocity or frequency of motion

Summarising, LEMBI monitoring for structural monitoring has capabilities for vibra-

tion measurement. Measurement of the vibration envelope has the potential for detecting

changes to structure, as demonstrated in case study. The following concluding chapter

will summarise the finding of this research project in to LEMBI monitoring and finally

make recommendations for future development of the approach.





Chapter 6

Conclusion

This research project has investigated the potential for monitoring vibrations in structures

using long exposure motion blurred images (“LEMBI”) for dynamic structural health

monitoring (SHM). The new method allows higher image resolutions than possible with

existing image-based techniques, combined with higher spatial measurement accuracy and

frequency invariance. The LEMBI measurement method was developed using off-the-shelf

consumer hardware and bespoke image processing and space intersection algorithms. This

chapter recites the objectives of this research project and demonstrates their completion.

Objective 1. Compose a literature review to assess current and particularly

image based methods used for measuring deformations in structural testing,

including both conventional and non-contact approaches.

First, a literature review examined the existing techniques available for dynamic mon-

itoring of structures; the motives for structural testing and the analysis techniques used

were reviewed. Monitoring of structural dynamics is considered more convenient than

statics by engineers for SHM. Dynamic techniques include identification of changes to a

structure’s modal frequencies as a result of structural changes, but the more advanced

modal shape methods allow estimation of the location of changes. For this, a higher

number of monitoring points is desirable to reduce interpolation, which inevitably causes

loss of accuracy.

Available sensors include contact and non-contact sensors, and those that are specially

intended for dynamic monitoring and those that are an extension of sensors usually used

157
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for monitoring static properties. Most sensors are capable of monitoring in only one

location at a time, i.e. the location they are fitted at, or for the laser Doppler vibrometer,

the single location it is targeted at. Table 2.1 listed the properties of various sensors, and

differentiated photogrammetry from other sensors in that it allows monitoring of many

measurement points with sub-millimetre accuracy. Image-based monitoring techniques

exist already, by measuring a structure at discrete ‘epochs’ and identifying deflections as

a coordinate change from one epoch to the next. However, hardware capabilities limit

the spatial measurement accuracy of this approach or the detectable frequencies, since a

compromise exists between image resolutions and imaging speed. High resolution sensors

are available at up to 50 MP (Feb, 2015), but at this resolution can capture at only

5 frames per second at the highest quality (Digital Photography Review, 2015). Video

camcorders may record at 60 frames per second, but typically at only 2.07 MP (‘HD’

resolution). Specialist sensors that capture at even higher speeds are available, at a much

greater cost.

For monitoring of static structural properties, this limitation is not significant, since

the application of the deformation is generally much slower and the sensor’s temporal limit

is not reached. For dynamic monitoring, where the imaging speed has a direct influence

on the frequency of measurable vibrations, the potential imaging speed is critical, and

hence a compromise exists between measurable frequencies and measurement accuracy.

The remainder of the literature review examined image processing techniques cur-

rently in used in photogrammetry, and those used elsewhere in computer science for

analysis and measurement of blurred images, both using artificial targets and natural

features. Finally, the mathematical models for image geometry that allow determination

of real-object coordinates in 2D and 3D from 2D images were reviewed.

Objective 2. Develop algorithms for measuring blur in long-exposure images

captured during dynamic structural tests and design a method of incorporating

these into routine structural testing.

The methodology chapter initially introduced the hardware that would be used in this

project, together with its specifications. This equipment was used to generate sample

motion blurred images. An appraisal of different image processing strategies followed,
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some making use of existing methods from literature, whilst others involve developing

new developed Matlab algorithms. A distinction was made between natural feature-

based image registration methods and those requiring artificial circular targets, with the

latter favoured for better reliability and accuracy.

The proposed algorithms steps for measuring blurred circular targets are explained

in full (section 3.3). First, some simple estimates about the geometry of the blur ‘smear’

are identified. Then, using these geometry estimates, parallel pixel intensity profile (PIP)

lines are extracted, which are used to measure the motion blurred target. The third stage

simulates an artificially motion-blurred image using a sharp “no-motion” image and the

initial estimated motion. PIP measurements are repeated and compared to the mea-

surement from the as-taken blurred image. Discrepancies may exist due to systematic

differences between artificial and actually captured images, which are solved by iterating

the estimated motion until the PIP measurement for both images (as-taken and simu-

lated) are reduced to less than a user defined threshold.

Objective 3. Test the accuracy of such an image based system against conven-

tional instrumentation.

The raw accuracy of the approach is demonstrated by comparing photogrammetric

LEMBI measurements with the shake table’s laser displacement gauge (section 3.4). The

accuracy of the system is fully assessed (section 4.1, 4.2, 4.3) by comparing results against

conventional instruments. A mean error of just ±0.115 mm was observed for a camera-

object distance of 1 m. Using a 95% confidence interval, the measured distances were

considered accurate to within 0.38 mm. In the image space at this scale, this represented

1.43 pixels at the 95% confidence level.

Objective 4. Investigate potential of measuring deformation in three spatial

dimensions using multiple camera locations and digital photogrammetry.

The LEMBI method was successful extended into full 3D measurement using two

cameras (section 3.5). The PhotoModeler software package is used to determine the

camera’s exterior and interior orientations. A bespoke intersection algorithm was then

used to determine the 3D coordinates. Difficulties with point matching were discussed,
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where point matching is ambiguous because each target produces two coordinates in each

image, at each end of its motion path, but by anticipating likely deformation directions

during test set-up, the situation can be easily avoided.

Objective 5. Assess the scalability of image-based monitoring techniques for

real structures using a series of case studies.

The first case study was of a simple plastic laboratory model mounted on the shake

table (section 4.1). This model was initially monitored in planar-only 2D measurements

at its first three modal frequencies. At each frequency, using the cameras, the vibra-

tion envelope was recoded. Later, monitoring was expanded to 3D monitoring, and the

monitoring was repeated for the first three modal frequencies.

An upright wooden section of timber was used to demonstrate the approach for a

longer object and outdoors (section 4.2). Monitoring was carried out in 2D, and then

repeated in 3D about the timber section’s major and minor axes. A comparison was made

with the theoretical curvature for a section of constant stiffness. A full-scale case study

was made of the Wilford Suspension bridge, West Bridgford, Nottingham (section 4.3),

where measurements were compared with a laser Doppler vibrometer. This case study

also demonstrated the approach on an actual civil engineering structure, and overcame

obstacles for outdoor monitoring.

A study of particular relevance to SHM was the detection of modifications to the

smaller shaker table using LEMBI monitoring. The vibration envelopes for the first

three vibration modes were captured. The modifications consisted of adding mass to the

structure, and modifying the stiffness of columns. In each case, changes to the vibration

envelope were observed.

The considerations and discoveries whilst carrying out these case studies are discussed

within this thesis. The quality of the data is affected by factors and parameters in the

image processing, which are identified and discussed. An understanding of the limitations

of LEMBI monitoring was gained through practical applications and later analysis of

results, which are articulated.

A comparison is made with a range of other sensors. Conventional contact sensors

are found the be more accurate, but none offer the same benefits of LEMBI monitoring.
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Image-based methods permit many monitoring points and LEMBI is frequency invariant.

6.1 Achievements

This project has demonstrated a new approach for measurement of sinusoidal vibrations

in civil engineering structures using long-exposure motion blurred images and it doing so

has made a meaningful contribution to scientific knowledge.

The proposed method is novel, in that it uses a radically different approach to motion

measurement, and the method could have wider applications than those tested here.

The different approach produced data in a different format to that generally used, which

emphasises a different aspect of dynamic testing which has upcoming potential for SHM

(Kasinos et al., 2014).

A workflow has been designed to record results using the LEMBI approach, which

included the use of a new image measurement algorithm, which may be applied to other

vibration measurement situations. The LEMBI technique is demonstrated by monitoring

deformation using several case studies, providing information that is both cheaper and

richer than is possible with conventional contact sensors.

6.2 Recommendations and possible future work

Further demonstrations of the LEMBI monitoring will serve to increase awareness of the

approach and promote further developments. The three case studies used, whilst designed

to be diverse, are relatively small in number, and further demonstrations will improve

the understanding of the approach.

An ideal case study would be a structure that could be monitored prior to and follow-

ing structural modifications or damage, most likely to be a structure that is scheduled

for demolition. Farrar and Jauregui (1998) monitored a bridge as progressively severe

damage was created by cutting into the bridge’s supporting steel girders.

This thesis has focussed on the application of LEMBI for monitoring of civil engi-

neering structures. The technique may have applications in other industries also; for

example industrial metrology. Wang et al. (2007) identified vibration monitoring of com-
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puter circuits as an application for image-based monitoring where difficulties exist with

conventional sensors. The application of LEMBI monitoring elsewhere is encouraged.

Further investigation into the measurement of different waveform motion blurred images

may also be more applicable to other applications.

Improved accuracy is a constant aim when developing any monitoring system. This

may be possible with a different implementation of the image measurement algorithm.

Improvements could also be achieved through the use of higher bit-depth imagery, possibly

gained through RAW image formats. Some work for this was made during this research

project, but was not incorporated into the demonstrated measurement system, partly

due to file type limitations (section 5.6.1). Improvements to the algorithms could also

improve processing speed, such as by using parallel processing to dynamically adjusting

the number of PIPs. Further investigation in this area or the use of different sensors

could improve the measurement accuracy.

Some initial tests were conducted to test the feasibility of estimating vibration speed

and frequency from single motion-blurred images. Initial testing and the included discus-

sion identified a number of challenges for this measurement, which were not overcome in

this project. Further investigations may solve this, further expanding the possibilities of

LEMBI monitoring for civil engineering structures and wider applications.

This research was successful overall as answers were provided to the original objectives.



Chapter 7

References

3D Laser Mapping, 2011. Site Monitor: Measuring and Monitoring a Changing
World [Brochure].

Abdel Wahab, M. and Roeck, G. D., 1999. Damage Detection in Bridges Using
Modal Curvatures: Application To a Real Damage Scenario. Journal of Sound and
Vibration, 226(2), 217–235.

Adhikari, R., Moselhi, O., and Bagchi, a., 2013. Image-based retrieval of concrete
crack properties for bridge inspection. Automation in Construction, 39, 180–194.

Adobe Systems Incorporated, . Adobe DNG Converter 8.4. [online]. Available at:
<http://www.adobe.com/support/downloads/detail.jsp?ftpID=5739> [Accessed 14
Sept 2014].

Al-Ghalib, A. a., Mohammad, F. a., Rahman, M., and Chilton, J., 2011.
Damage Identification in a Concrete Beam Using Curvature Difference Ratio. In: 9th
International Conference on Damage Assessment of Structures (DAMAS 2011),
volume 305, Oxford: IOP Publishing.

Albert, J., Maas, H.-g., Schade, A., and Schwarz, W., 2002. Pilot studies on
photogrammetric bridge deformation measurement. In: Kahmen, H., Niemeier,

W., and Retscher, G., (eds.) Proceedings of the 2nd symposium on geodesy for
geotechnical and structural engineering, 133–140, Berlin.

Alvandi, a. and Cremona, C., 2006. Assessment of vibration-based damage
identification techniques. Journal of Sound and Vibration, 292(1-2), 179–202.

Arashloo, S. and Ahmadyfard, A., 2007. Fine Estimation of Blur Parmeters for
Image Restoration. In: 15th International Conference on Digital Signal Processing,
427–430, IEEE.

Baldwin, L., 2011. Reconstructing an original look for damaged pier. The Structural
Engineer, 89(9), 8.

Banham, M. and Katsaggelos, A. K., 1997. Digital image restoration. Signal
Processing Magazine, (March).

163



164 Monitoring 3D Vibrations in Structures using High Resolution Blurred Imagery

Battista, N. D., Westgate, R., and Koo, K., 2011. Wireless monitoring of the
longitudinal displacement of the Tamar Suspension Bridge deck under changing
environmental conditions. In: Tomizuka, M., (ed.) Sensors and Smart Structures
Technologies for Civil, Mechanical, and Aerospace Systems, volume 7981, 79811O–15,
Proceedings of the SPIE.

Ben-Ezra, M. and Nayar, S. K., 2004. Motion-based motion deblurring. IEEE
transactions on pattern analysis and machine intelligence, 26(6), 689–98.

Benning, W., Gortz, S., Lange, J., Schwermann, R., and Rostislav, C., 2003.
An algorithm for automatic analysis of deformation of reinforced concrete structures
using photogrammetry. In: International Symposium on Non-Destructive Testing in
Civil Engineering (NDT-CE 2003), Berlin, Germany: DGfZP.

Benning, W., Lange, J., Schwermann, R., Effkemann, and Gortz, S., 2004.
Monitoring crack origin and evolution at concrete elements using photogrammetry.
In: XXth congress of ISPRS (International Society for Photogrammetry and Remote
Sensing), volume 12, 23.

Boracchi, G., Caglioti, V., and Giusti, A., 2007. Ball position and motion
reconstruction from blur in a single perspective image. In: Image Analysis and
Processing, 2007. ICIAP 2007. 14th International Conference on, Iciap, Modena:
IEEE Comput. Soc.

Bouguet, J.-Y., 2010. Camera Calibration Toolbox for Matlab. [online]. Available at:
<http://www.vision.caltech.edu/bouguetj/calib doc/> [Accessed 5 Apr 2011].

Brayer, J. M., 1997. Introduction to Fourier Transforms for Image Processing.
[online]. Available at: <http://www.cs.unm.edu/∼brayer/vision/fourier.html>.

British Standards Institution, 1986. Testing concrete — Part 206:
Recommendations for determination of strain in concrete.

Brownjohn, P. J. M. W., 2011. Structural health monitoring: Examples and
benefits to structure stakeholders. The Structural Engineer, 89(9), 24–26.

Bungey, J., Millard, S., and Grantham, M., 2006. Testing of Concrete in
Structures. 4th edition, London: Taylor & Francis.

Caglioti, V. and Giusti, A., 2009. Recovering ball motion from a single
motion-blurred image. Computer Vision and Image Understanding, 113(5), 590–597.

Carden, E. P. and Fanning, P., 2004. Vibration Based Condition Monitoring: A
Review. Structural Health Monitoring, 3(4), 355–377.

Castellini, P. and Tomasini, E. P., 2004. Image-based tracking laser Doppler
vibrometer. Review of Scientific Instruments, 75(1), 222.

Chakrabarti, A., Zickler, T., and Freeman, W., 2010. Analyzing
spatially-varying blur. In: Computer Vision and Pattern Recognition (CVPR),
2512–2519, San Fransisco: IEEE.



7. References 165

Chan, W.-S., Xu, Y.-L., Ding, X.-L., Xiong, Y.-L., and Dai, W.-J., 2006.
Assessment of Dynamic Measurement Accuracy of GPS in Three Directions. Journal
of Surveying Engineering, 132(3), 108–117.

Chandler, J. and Clark, J., 1992. The archival photogrammetric technique: further
application and development. Photogrammetric Record, 14(80), 241–247.

Chandler, J. H., 2013. [Personal Communication].

Chandler, J. H., Fryer, J., and Jack, A., 2005. Metric capabilities of low-cost
digital cameras for close range surface measurement. The Photogrammetric Record,
20(109), 12–26.

Chang, C. C., 2007. From photogrammetry, computer vision to structural response
measurement. In: Tomizuka, M., Yun, C.-B., and Giurgiutiu, V., (eds.)
Sensors and Smart Structures Technologies for Civil, Mechanical and Aerospace
Systems, volume 6529, 652903–652903–15, Proceedings of the SPIE.

Chang, C. C. and Xiao, X. H., 2010. Three-Dimensional Structural Translation and
Rotation Measurement Using Monocular Videogrammetry. Journal of Engineering
Mechanics, 136, 840–848.

Chang, X. and Qunge, H., 2009. Dynamic structural monitoring using the kinematic
positioning of a robotic total station. In: Jianping, C., (ed.) 9th International
Conference on Electronic Measurement & Instruments (ICEMI’2009), 2–69, Beijing:
IEEE.

Chang, Y. and Reid, J., 1996. RGB calibration for color image analysis in machine
vision. IEEE Transactions on Image Processing, 5(10), 1414–1422.

Chen, W. G., Nandhakumar, N., and Martin, W. N., 1996. Image motion
estimation from motion smear—a new computational model. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 18(4), 412–425.

Choi, H.-S., Cheung, J.-H., Kim, S.-H., and Ahn, J.-H., 2011. Structural Dynamic
Displacement Vision System using Digital Image Processing. NDT & E International,
44(7), 597–608.

Clough, R. and Penzien, J., 1995. Dynamics of structures. 2nd (revis edition,
California, USA: Computers and Structures, Inc.. Available at:
<http://trid.trb.org/view.aspx?id=50306>.

Cooper, M., 1984. Deformation measurement by photogrammetry. The
Photogrammetric Record, 11(63), 291–301.

Cooper, M., 1987. Control Surveys in Civil Engineering. London: Collins.

Cooper, M. and Robson, S., 1990. High precision photogrammetric monitoring of
the deformation of a steel bridge. Photogrammetric Record, 13(76), 505–510.



166 Monitoring 3D Vibrations in Structures using High Resolution Blurred Imagery

Cronk, S. and Fraser, C., 2006. Automated metric calibration of colour digital
cameras. The Photogrammetric Record, 21(116), 355–372.

Dai, S. and Wu, Y., 2008. Motion from blur. In: 26th IEEE Conference on Computer
Vision and Pattern Recognition, 1, 1–8, IEEE.

Dai, S. and Wu, Y., 2009. Removing partial blur in a single image. In: Computer
Vision and Pattern Recognition, Miami.

De Roeck, G., Peeters, B., and Marck, J., 2000. Dynamic Monitoring of Civil
Engineering Structures. In: Papadrakakis, M., Smartin, A., and Onate, E.,
(eds.) Computational Methods for Shell and Spatial Structures IASS-IACM 2000,
1–24, Athens, Greece: ISASR-NUTA.

Debevec, P. and Malik, J., 1997. Recovering high dynamic range radiance maps
from photographs. In: Owen, G., Whitted, T., and Mones-Hattal, B., (eds.)
Proceedings of the 24th annual conference on Computer graphics and interactive
techniques, Los Angeles, CA, USA: ACM Press.

Digital Photography Review, 2015. Canon EOS 5DS: Specs. [online]. Available
at: <http://www.dpreview.com/products/canon/slrs/canon eos5ds/specifications>
[Accessed 21 Feb 2015].

Dilena, M. and Morassi, A., 2011. Dynamic testing of a damaged bridge.
Mechanical Systems and Signal Processing, 25(5), 1485–1507.
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Abstract. Photogrammetric techniques have demonstrated their suitability for monitoring static 
structural tests. Advantages include scalability, reduced cost, and three dimensional monitoring of 
very high numbers of points without direct contact with the test element. Commercial measuring 
instruments now exist which use this approach.

Dynamic testing is becoming a convenient approach for long-term structural health monitoring. 
If image based methods could be applied to the dynamic case, then the above advantages could 
prove beneficial. Past work has been successful where the vibration has either large amplitude or 
low frequency, as even specialist imaging sensors are limited by an inherent compromise between 
image resolution and imaging frequency. Judgement in sensor selection is therefore critical. 
Monitoring of structures in real-time is possible only at a reduced resolution, and although imaging 
and computer processing hardware continuously improves, so the accuracy demands of researchers 
and engineers increase.

A new approach to measuring the vibration envelope is introduced here, whereby a long-exposure 
photograph is used to capture a blurred image of the vibrating structure. The high resolution blurred 
image showing the whole vibration interval is measured with no need for high-speed imaging. Results 
are presented for a series of small-scale laboratory models, as well as a larger scale test, which 
demonstrate the flexibility of the proposed technique. Different image processing strategies are 
presented and compared, as well as the effects of exposure, aperture and sensitivity selection. Image 
processing time appears much faster, increasing suitability for real-time monitoring.

Introduction
Image-based monitoring using photogrammetric techniques has been demonstrated for structural 

testing. The approach allows non-contact monitoring of a high number of points with one (for 2D 
monitoring) or two or more (for 3D deformations) imaging sensors. The approach is scalable, and 
for the amount of data collected, relatively inexpensive.

The approach has been demonstrated for monitoring dynamic structural tests, but monitoring is 
limited by a compromise between sensor resolution and sampling frequency. Real-time monitoring 
is possible but only at a reduced resolution because of the huge amount of data produced by high 
speed imaging sensors. To improve measurement accuracy, telephoto lenses have been used to 
‘zoom-in’ on a single target [1], but the advantage of many monitoring points is lost.

A new approach is introduced in this paper where a long-exposure image is used to capture the 
whole vibration.  The vibration interval is recorded within the single image and an algorithm for its 
measurement demonstrated. The camera sensor can be of higher resolution than those previously 
used as there is no requirement for high speed imaging, allowing more accurate spatial 
measurement.

Structural Testing
Structural testing is used to evaluate the performance of structural members, both of in situ 

structures and in the laboratory environment. Structural testing may be carried out to test correlation 



with analytical models of structural behaviour. Typically, loads are applied to test structural 
elements, and their performance monitored as the load increases to the target limit. Some tests may 
demand more advanced monitoring systems to record complex deformation patterns 

The integrity of existing structures may also wish to be tested. The structure may be overloaded 
above its intended working load and based on its performance, deemed safe for its intended use. 
The record of the test serves as evidence of the structure's integrity. A structure may also be tested 
if, for example, a change of use is desired, to verify its integrity following a potentially damaging 
event, or if the quality of repair work needs to be verified. Structural health monitoring programs 
for monitoring the long-term status of structures are becoming more common.

Dynamic structural testing. Dynamic testing techniques, whereby the structural vibration is 
recorded, are a prevailing approach for structural health monitoring. The testing approach can be 
considered convenient for long-term monitoring, as light structural changes can be detected without 
the associated inconvenience of static testing. Interpreting the vibration response data could be,
however, more complicated and specialised expertise is required to quantify damage.

Typically, changes in natural frequencies would be detected, which would indicate some change 
in stiffness. The more advanced algorithms use discontinuities in mode shapes to predict location 
and estimate severity [2]. Structural mode shapes are found by monitoring at several locations on a 
structure. For these methods, a higher number of sensors provides the most accurate results [3,4].

Accelerometers, commonly used for structural testing, are relatively inexpensive and simple to 
use. However, installing a number of them on to a structure becomes expensive, with associated 
cabling infrastructure for power and data and/or additional wireless equipment. Data from standard 
accelerometers may also not measure very low frequency vibrations [5].

Imagery-based monitoring of structures
Image-based monitoring has proven its application in the past to monitoring structural tests [5-8].

A structure is measured using photogrammetric techniques and data compared at different time 
intervals to calculate displacements. Advantages include: measurement can be made without contact 
with the structure, making it suitable for difficult measuring tasks where there is no stable support
for displacement gauges. A very high number of points can be measured by a single camera sensor, 
limited only by sensor resolution, allowing monitoring of complex deformation patterns. Multiple 
camera sensors can monitor deformation in three dimensions.

While the most accurate measurement work still requires targets to be fixed to structures, digital 
image correlation (DIC) makes possible measurement of structures without targets fitted, provided 
their surface has sufficient natural texture [5]. Not needing to measure individually fitted targets 
allows very densely distributed measuring points and ‘full-field’ measurement. This allows
visualisation of, for example, strain gradients, without long preparation and time on-site.

The scalability of image processing means measurements of large structures are possible to sub-
millimetre accuracy while the accuracy of measuring small scale laboratory tests can be in the order 
of microns. Demonstrations give laboratory-scale examples of monitoring complex deformation in 
beam load tests as well as measuring the width of small scale hairline cracks in concrete [6-8]. Mass
and Hampel [8] also give examples of large scale monitoring of complex structures such as 
buildings, bridges and reservoir dams.

GPS has also been proposed as an approach for monitoring static and dynamic structural testing
[9]. Although requiring a base station receiver near the structure in addition to the receiver on the 
structure, line-of-sight between the two is not required. The instruments necessary for a usable 
accuracy are expensive and specialised and additional monitoring points radically increase costs.

Proposed Vibration Measurement Methodology
The advantages of photogrammetric image processing for monitoring structural testing can be 

taken advantage of in the dynamic case also. In dynamic testing, the principle remains the same, but 
the rate of image acquisition is increased to many pictures per second. This has been demonstrated 



[10-12] but current hardware is limited by a compromise between sensor resolution and the number 
of frames per second that can be recorded. The choice of sensor is important, as the number of 
frames per second will limit the frequency of vibrations that can be recorded and an inadequate
sensor resolution will fail to detect low amplitude vibration. The Nyquist sampling theorem states 
that in order to measure a vibration, the sampling frequency must be at least two times the vibration 
frequency. Very high resolution sensors can measure many targets over a whole structure, but need 
to record at below 10 Hz. Other sensors can record at up to 1000 kHz, but can only measure a very 
limited number of targets within close proximity.

The proposed approach. Our approach involves capturing a long-exposure blurred image of 
circular targets marked on the structure. High-speed imaging is not necessary as a ‘smear’ of the 
whole blur interval is captured in the single image. The vibration amplitude at a high number of 
points on the structure is measured and this information can be subsequently related to the expected 
performance of the structural system under the test load. Our implementation involves capturing a 
sharp image through a fast exposure as well as the blurred, which are processed in combination.

Measuring blur in computer science. A keen research area in computer science is that of ‘image 
deblurring’. Algorithms exist that take a single blurred image and impressively ‘de-blur’ it. Rather 
than simply sharpening edges in images, these de-blurring algorithms first estimate the motion that 
caused the blur before applying a correction based on the estimated blur shape and size [13]. Artificial 
markings are not always required, but there is dependence on sufficient object texture.

The first stage of estimating the motion causing the blur is key to a successful ‘deblur’, and there
are many advanced algorithms published. After estimating motion, other algorithms exist that 
estimate the spatial movement such as the speed of moving balls in sports [14]. The size and shape 
of the estimated motion is conveniently described by the point spread function (PSF) and measuring 
the estimated PSF provides the extent of motion at that point in an image. The PSF also contains 
data about the amount of time the moving object spent in each position. This approach, while 
alleviating the need for object targets, is computationally intensive, requiring several minutes to 
iteratively estimate the motion at a single point; this long processing time precludes real-time
monitoring. Incorrect results are also common where surface texture is poor, yet it is difficult to 
identify these incorrect motion estimations.

Matlab Implementation. Our Matlab implementation processes images containing circular 
targets in three stages with increasing accuracy (but decreasing speed).

First: Estimate with threshold. First, a threshold filter is used to quickly identify the centre of 
the blurred target and estimate of the size and shape of the blur (Fig. 1a). This step also determines 
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Figure 1: Estimate for blur dimensions using pixel intensity profiles. (a) First shape estimate, (b) Produced profile lines, (c) 
Individual intensity profile with identified blur edges, (d) Measured blur dimensions.



whether the blur is an ‘internal’ blur, where the vibration amplitude is less than the diameter of the 
circular target, or an ‘external’ blur, where the vibration amplitude is greater. In the first case, part 
of the image is always occupied by the circular target and a patch of low intensity pixels will exist,
in the second case there is a smaller range of pixel values. For internal blurs, an ellipse fit to this 
low intensity patch will have a major axis roughly perpendicular to the blur orientation (Fig. 1a).

Second: Pixel intensity profiles. We then use the approach proposed by Boracchi et al. [15] for 
estimating the motion of sports balls. The algorithm is initialised by using a simple threshold filter 
with a higher threshold to better estimate the size and orientation of the blur (Fig. 1b). A number of 
intensity profiles are made within the blur. Four points of interest are picked from the profile: at the 
start and end of the positive gradient, and the start and end of the negative gradient (Fig. 1c). The 
algorithm that picks these points is the same for both internal and external blur cases. An ellipse is 
fit to each set of points for each edge of the blur and the difference between the centres of the two 
ellipses identifies the amplitude of the vibration.

Although the shape of intensity profiles are consistent, the current implementation is susceptible 
to some image noise, resulting in some outliers. A quality check is important so that these outliers 
can be detected and corrected or removed.

Third: Simulated blur smears. To improve upon the previous analysis, the third proposed stage 
reverses deblurring algorithms by iteratively simulating different blur dimensions of the sharp image 
and correlating with the observed blurred image (Fig. 2). This builds on the assumption that a blurred 
image can be represented as an un-blurred image filtered by some motion filter. This provides sub-
pixel (and depending on scale, sub-millimetre) accuracy as well as a measure of quality.

Initial Experiments

To test the algorithm, simulations were carried out on a small (30 30 cm) shake table at 
Loughborough University (Fig. 3). Small plastic models were built, and targets adhered on to them. 
A single Nikon D80 DSLR camera was set up on a tripod to monitor the model. The vibration of the 
structure was measured by accelerometers, and the table bed position was also monitored by a laser
sensor.

Blurred observation image

Sharp filtered images

Correlation coefficients

Blur size

Correlation 
coefficient

Figure 2: Blur measurement by simulation for sub-pixel precision and validation



The two wooden stands either side of the shake table support control points, stationary targets 
used to provide scale. In this instance, only planar movements were recorded, as all targets lay in a 
single plane. Displacements measured in the image space were transformed to real word coordinates 
in millimetres using the projective transformation. The control targets were measured using a Leica 
TCR400 reflectorless total station.

To assess the accuracy of the measured blurs, the shake table was programmed to vibrate with 
simple harmonic motion of varying amplitudes. Using the displacement laser and double integrating
the accelerometer data, the vibration amplitude measured by the image processing approach is 
compared in Fig 4. Accuracies of 0.25mm are achieved (using a 95% confidence interval), which is 
further discussed in the following section. It is worth noting that we are interested in the envelope of 
the dynamic response of the sample structure, independently of the frequency of vibration.

Discussion
The spatial accuracy of photogrammetric measurements is dependent upon the scale of the test, 

so accuracy in pixels can be used to compare to other photogrammetric work. At the scale used, an 
accuracy of 0.25 mm (using a 95% confidence interval) is about 0.64 pixels in the image space 
which is unimpressive when compared with that of traditional photogrammetry using sharp images
[16], but because recording dynamic tests with high-speed cameras necessitates lower image 
resolutions, even with specialist imaging sensors, the actual real-space measurement accuracy is 
higher than that previous achieved. It was noted that the accuracy of the largest vibration amplitudes
had the highest measurement error, probably due to low range of pixel intensity values in the fainter 
image and lower signal-to-noise ratio.

The output is also frequency-independent, as the measureable vibration is not dictated by the 
Nyquist criterion, and aliasing, whereby a peak of vibration is missed, does not occur.

= 0.094mm
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model structure

table bed control points

measurement pointsaccelerometerSignal amplifier

Figure 3: Shake table experiments at Loughborough University (a) table control equipment (b) sample image

Figure 4: Results (at present scale, 1 mm 3 pixels)



Demonstrations here use only a few targets, but the number of possible targets is limited only by 
practical considerations of attaching them to the structure, allowing many more. Increasing the 
number of targets would allow more accurate measurement of mode shapes with less interpolation. 
Increasing targets further, especially in a laboratory environment, approaches full-field 
measurement. If accelerometers or GPS were used, additional hardware would be necessary for 
each monitoring point, and this solution is much less expensive that the multiple-point-monitoring 
scanning laser Doppler vibrometer alternative.

Low frequency vibrations (<1Hz) are measured in the same way by using a longer shutter speed. 
Shutter speeds of several seconds cause images to become overexposed, but this is mitigated with 
lens filters. The same setup is also suitable for monitoring of static properties of the bridge using 
well-known photogrammetric techniques. These properties when measured with an accelerometer 
are susceptible to inaccuracies due to ‘drift’ in the accelerometer data [1].

Practical considerations. The imaging hardware used is a consumer grade DSLR camera, and 
processing is carried out with an average specification PC. Such an approach allows a flexible 
monitoring scheme using off-the-shelf components. The current setup requires fixing targets in 
visible positions on the structure and control targets around the outside, which are then measured by 
total station. However, a simple scale constraint could be the only control required, provided by a 
simple scale ruler. Time to set up is comparable to other non-contact optical monitoring techniques 
which do not require the cabling infrastructure of many individual sensors.

The approach is, however, limited in its requirement of a suitable imaging station. The fixed 
control is also necessary to monitor for any camera movement in between measurement epochs.
The requirement for control on a stable reference may be restrictive in outdoor applications, as a 
stable reference near tall structures may not be available. The targets demonstrated here would only 
be visible during daylight hours, although ‘active’ targets containing LEDs have been proposed and 
evaluated by others [1].

Image processing considerations. Processing time is a matter of seconds on an average 
specification computer. While not producing immediate real-time results to the user, it does produce 
results rapidly.

The current implementation requires the user must manually specify the initial region of interest 
and a small number of parameters. After this, processing of a number of similar images is 
automated, even where there is a high number of measuring points within the image. It is 
anticipated that the few manual parameters which relate to, for example, the lighting and colour of 
target against the background, could also be set automatically.

Camera exposure and response function. Particular care has to be given to selecting the 
correct exposure setting of the camera. Saturated areas of the image, whereby some pixels are over-
exposed, are not unlikely to occur when using long exposure images, and the overexposed area 
contains no gradient information. The solution is to reduce the exposure, but this can only be 
realised after the first image has been taken. In the anticipated real-time processing solution, 
saturation will be automatically realised after the first image is taken and the exposure time can be 
quickly corrected. 

Borracchi et al. [15] suggested that most cameras do not apply a linear relationship between the 
amount of light at each pixel on the sensor and final pixel value recorded. This was particularly 
apparent when comparing the blurred observation image with the sharp filtered image. Although the 
two images were very similar (Fig. 2), containing similar edges, gradients and artefacts, the overall 
intensity of the ‘smear’ differed. Borracchi et al. [15] suggest that modelling the camera’s transfer 
function for pixel intensity values will correct for this.

The blur distance measured by pixel intensity profiles, as was proposed by Boracchii et al. [15],
regularly overestimates the actual vibration interval. This is because, although most of the gradient 
from target to background is caused by the motion ‘smear’, some gradient with a width of about 
1-2 pixels is normally present around ordinary images of photogrammetric targets. This is evident
when using the same algorithm on stationary targets, were movement is estimated of about the 
width of the target fringe. This systematic error may have been insignificant in Boracchii et al.’s 



work which used images of a different scale, but for our work it should be anticipated and 
corrected. In our solution, the iterative simulation method used for sub-pixel measurement has the 
further advantage that it does not contain this systematic error.

Future applications
The scalability of the approach allows image processing to be carried out by the same algorithm on 
small as well as larger-scale structures. The approach will now be tested on larger full-scale structures.

Feasibility test for larger structures. The accuracy for small-scale tests shown above was 
approximately 0.2 mm for a 0.5 m tall model observed at about 2 m. In the image space, this is an 
accuracy of 0.6 pixels. A larger structure, for example with a height of 5 m, could be observed with 
the same lens hardware and an accuracy of less than a millimetre would be expected.

A likely additional challenge would be the lack of control over lighting conditions, although it is 
anticipated that adjusting camera exposure settings will account for this. Sample images of simple 
outdoor structures (Fig. 5) indicate that image processing is successful, with careful selection of 
exposure settings. 

In comparison to GPS monitoring of structures, the measurement of vibration amplitude would 
be expected to be more accurate. Like photogrammetry, GPS is also suitable for static and semi-
static monitoring approaches, but it is only sensitive to vibration with amplitudes above about 
5-10 mm. While GPS data does contain frequency information, the proposed image processing 
approach would allow measurement of structures with lower vibration amplitudes.

Estimating the frequency of the dominant mode. Current exposure times for the current 
demonstrations have been large enough to capture the whole vibration interval. If the exposure time 
is reduced, and a structure’s vibration remains constant, the image will record only part of the 
structure’s vibration. It is suggested that there is potential for estimating the frequency of a 
dominant mode of a structure by measuring how much of a structure’s whole vibration interval is 
occupied within the time the shutter is open.

Conclusion
An approach to estimating the vibration envelope using long-exposure single images has been 

proposed. Previous image monitoring systems have been limited by a compromise between spatial 
resolution and imaging frequency, even when using specialist sensors. This frequency-independent 
approach avoids this limitation and has been demonstrated using consumer-grade imaging 
hardware. An algorithm for correlating the observed image with simulated images has demonstrated 
the efficacy of the approach.

When used with frequency-selective narrowband excitation, the approach provides spatial 
measurement of vibration amplitudes more accurately than previous high-speed imaging solutions.
The high number of possible measurement points with image-based techniques is highlighted as of 
potential benefit to determining mode shapes as it reduces the distance between measurement points 
that otherwise requires interpolation.

Figure 5: Demonstration capturing a motion-blurred image outdoors
(a) the tested column (b) the measured vibration envelope (scaled x20)

(a) (b)

Scaled x20



Consideration should be given to the relatively low cost of the instruments used and the 
scalability of the approach. Because measurement is frequency-independent, hardware is not limited 
to certain frequency ranges. Initial tests on small-scale models have shown the approach can 
measure with 0.25 mm accuracy, which is scalable to structures of other sizes. The feasibility of 
monitoring larger full-scale structures has been tested and accuracy estimated. Finally, further work 
to assess the potential for frequency measurement has been introduced.
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ABSTRACT:

Structural health monitoring uses non-destructive testing programmes to detect long-term degradation phenomena in civil 
engineering structures. Structural testing may also be carried out to assess a structure’s integrity following a potentially damaging 
event. Such investigations are increasingly carried out with vibration techniques, in which the structural response to artificial or 
natural excitations is recorded and analysed from a number of monitoring locations. Photogrammetry is of particular interest here 
since a very high number of monitoring locations can be measured using just a few images. To achieve the necessary imaging 
frequency to capture the vibration, it has been necessary to reduce the image resolution at the cost of spatial measurement accuracy. 
Even specialist sensors are limited by a compromise between sensor resolution and imaging frequency.

To alleviate this compromise, a different approach has been developed and is described in this paper. Instead of using high-speed 
imaging to capture the instantaneous position at each epoch, long-exposure images are instead used, in which the localised image of 
the object becomes blurred. The approach has been extended to create 3D displacement vectors for each target point via multiple 
camera locations, which allows the simultaneous detection of transverse and torsional mode shapes. The proposed approach is 
frequency invariant allowing monitoring of higher modal frequencies irrespective of a sampling frequency. Since there is no 
requirement for imaging frequency, a higher image resolution is possible for the most accurate spatial measurement. The results of a 
small scale laboratory test using off-the-shelf consumer cameras are demonstrated. A larger experiment also demonstrates the 
scalability of the approach.

1. INTRODUCTION

In civil engineering, it is often necessary to detect long-term 
degradation phenomena in existing structures using structural 
health monitoring programmes. Structural testing may also be 
required to assess integrity due to a change of use or following a 
potentially damaging event. The development of new materials 
also demand advanced monitoring instrumentation to more fully 
understand the processes involved. 

The benefits of photogrammetric monitoring can be realised for 
structural testing. The approach allows non-contact monitoring 
of displacements at many monitoring locations distributed 
across the structure. For monitoring of vibrations the same 
approach has been used, but the potential is limited by the 
capabilities of imaging hardware. This paper describes the use 
of an alternative approach using longer exposures to capture the 
motion within motion-blurred images, which are processed with 
a bespoke algorithm. The approach has now been extended in to 
three dimensions. Two case studies are contained in this paper, 
demonstrating the approach for monitoring vibrations in model
structures in 3D. Visualisations of the 3D motion vectors 
demonstrate the captured detail.

2. DYNAMIC STRUCTURAL TESTING

2.1 Monitoring structures

When testing civil engineering structures, non-destructive test 
techniques are usually utilised for most existing structures.

Dynamic test techniques are of particular interest, since the 
vibration response is sensitive to more subtle structural
properties. The vibration response to artificial or natural 
excitation is recorded and analysed using specialised 
approaches. For instance, a reduction in modal frequencies 
would possibly indicate a concentrated loss of stiffness due to 
the presence of damage, but this information alone cannot 
determine the location or severity of damage and would require 
further investigation. Richer information comes from the 
analysis of the modal shapes, as changes in the curvature of the 
modal shape or in the position of nodes and antinodes may 
allow estimates of the location and severity of the structural 
damage (Pandey et al., 1991).

In order to detect these modal shapes, a number of sensors are
distributed on a structure. A higher number of monitoring 
locations is desirable since interpolation is necessary between 
data points. Past studies also show that the best results are 
found with a higher number of sensors (Carden & Fanning, 
2004). Contact accelerometer gauges are conventionally used, 
but practical limitations exist as each additional accelerometer 
adds hardware cost and requires cabling and data collection 
infrastructure. The highly specialised laser Doppler vibrometer 
(an optical instrument that measures vibration by detecting 
frequency shifts in a reflected laser beam) can be used, but 
remains expensive and takes time for the measuring laser beam 
to be moved systematically to each monitoring location.
Photogrammetry is of interest here since a high number of 
monitoring locations can be measured using just a few imaging 
sensors.
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3. PHOTOGRAMMETRIC MONITORING OF 
STRUCTURAL DYNAMICS

Photogrammetry has proven capabilities for accurate spatial 
measurement. Advantages include that it is non-contact, 
relatively inexpensive for the amount of data collected, and the 
capability of measuring many locations simultaneously.
Photogrammetry has been used for monitoring static 
deformations in structural testing by making repeated 
measurements, and calculating the change in measurements 
between subsequent measurement epochs. (Maas & Hampel,
2006; Yoneyama et al., 2007; Ronnholm et al., 2009).

Since monitoring of dynamic structural properties is emerging 
as a tool for structural assessment, it is natural progression to 
apply photogrammetric monitoring to the dynamic monitoring 
case. Studies have already applied photogrammetric monitoring 
to tests utilising dynamic techniques (Olaszek, 1999; Jurjo et 
al., 2010; Choi et al., 2011). The principle has remained the 
same, but imaging frequency is increased to many frames per 
second in order to capture vibrations. The Nyquist criterion 
states that, to be able to detect vibrations of a given frequency, 
it is necessary to sample the data at double the vibration 
frequency or more (Morlier et al, 2007). Where 
photogrammetric monitoring has been applied using sensors 
capable of higher imaging frequencies, structural properties 
have been successfully identified, however, it is often necessary 
to reduce the image resolution at a cost of spatial measurement 
accuracy due to hardware limitations.

Consumer-grade DSLR cameras are capable of very high image 
resolutions, including up to 30MP, but at this resolution they 
are limited to recording only a few continuous image frames per 
second (fps), insufficient for monitoring most vibrations. 
Consumer grade video cameras, which record at up to 60 fps
and are more suitable to monitoring vibrations, but these 
sensors tend to be limited to 2MP (‘HD’ 1080p resolution). 
Even specialist sensors are limited by a compromise between 
sensor resolution and imaging frequency.

Some authors have improved measurement accuracy by 
‘zooming-in’ to individual measurement points. Whilst 
providing sufficiently accurate measurement at these locations, 
the advantage of simultaneous monitoring of multiple points, a 
particular advantage of photogrammetric monitoring, is lost. 
The literature review noted how for structural assessment using 
dynamic techniques, ‘modal-shapes’ are most accurately 
determined  where interpolation is reduced with a higher 
number of monitoring points.

4. METHODOLOGY

To alleviate this compromise, a different approach has been 
developed. Instead of using high-speed imaging to capture the 
instantaneous position at each epoch, long-exposure images are 
used in which the localised image of the object becomes blurred
(McCarthy, 2013). This paper describes tests where the 
approach has been further developed to demonstrating 3D.
Ordinary circular targets are used since their motion-blurred 
appearance is predictable. A bespoke Matlab routine using 
Matlab’s image processing toolbox determines two image 
coordinates at each target (Figure 1). 3D displacement vectors 
can be determined with multiple camera locations, which is of 
interest since simultaneous detection of transverse and torsional 
mode shapes is then possible.

Figure 1. Motion-blurred target measurement algorithm

4.1 Experimental approach

Model structures were built in a laboratory and testing 
methodology developed. Ordinary circular targets were placed 
on the model in the conventional way. These targets were not 
coded, since the broken ring of a motion-blurred coded target 
disturbs the appearance and measurement of the centre circle.
Other coded control targets are arranged around the test subject
for independent reference in the conventional way. In our 
implementation, an unblurred image is also captured which is 
used by the target measurement algorithm to improve accuracy.
This sharp image may be taken before dynamic excitation is 
applied or, in the case of natural excitation, simply a short 
exposure image with appropriately adjusted exposure settings.

Two or more cameras are arranged on tripods to achieve a 
suitable base-to-distance ratio as is normally desired in
photogrammetric measurement. The control targets located in 
images remain stationary and unblurred, and are read into the 
PhotoModeler Motion software package (EOS Systems, 2014) 
for determining the cameras exterior orientation. Interior 
orientation is also determined using PhotoModeler’s automated
camera calibration and a camera calibration field.

Registration of the motion-blurred images is done using the 
Matlab script. After determining 2D image coordinates, a space 
intersection algorithm then determines 3D coordinates at either 
end of each target’s motion path. From this pair of 3D 
coordinates, the motion distance and direction are determined 
and plotted on to a figure.

Difficulty referencing measurements between images was
encountered, since at each target in each image where there 
would normally be only a single measurement, two 
measurements exist at either end of the motion path (figure 2).
This was further complicated by the fact that there is no 
possibility for unique coding, since they originate from the one 
same physical target. Figure 3 shows the results produced by 
both combinations and how it produces motion vectors in 
different directions. It is possible in some cases to determine the 
correct combination by engineering judgement, but a more 
reliable approach was to select the combination that produced 
the smallest image residuals.
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Care had to be taken arranging cameras when only two are in 
use, since if the relative positions of two cameras are in the 
same direction as the test subject’s motion, the image residuals 
of both combinations will be similarly small. In these case 
studies the motion was expected to be broadly horizontal, so the 
cameras were arranged at different levels on different height 
tripods.

Figure 2. Ambiguity exists in matching motion ‘ends’ which 
exist from the same target.

Figure 3. Unresolved measurement matching produced two 
possible motion vectors.

5. CASE STUDIES

5.1 Small scale shaker table models

A 780 mm tall 2D plastic model was fitted on to a structural 
dynamics shaker table, to observe its response to different 
vibrations (figure 4). The shaker table used was a 1 dimensional 
APS400 shaker table. The table can induce vibration of varying 
frequencies, amplitudes and waveforms to model structures 
fitted to its surface. The movement of the table is controlled by 
a laptop and a Matlab routine. Different types of accelerometer 
are available in the structural dynamics laboratory and the 
motion of the table is accurately monitored by a laser 
displacement gauge. 

The cameras used were two Nikon D80 10.2 megapixel cameras 
with 24 mm fixed focal length lenses. Both cameras were 
connected to the same remote shutter so that they are both 
triggered simultaneously. Black circular 8 mm targets with a 
white background were distributed over the model structure, as 
well as on the table surface itself. A number of coded control 
targets were supported on stands around the model, and their 
positions measured using a total station in reflectorless mode.

The natural frequencies of the model were determined using an 
accelerometer. Vibration was applied at these frequencies and 
images were captured recording the structure’s response to each 
motion. Images were then processed using the process described 
above to determine image coordinates, and 3D object-space 
coordinates were determined using the space intersection 
algorithm.

The shaker table can apply only 1D excitation, but 3D motion 
can be created with an appropriately asymmetric physical 
structure.  Figure 5 shows three vibration envelopes exhibited 
by the model structure when vibrated at different frequencies on 
the shaker table. Figures 5a and 5b both show lateral motion of 
the model, and 5b shows the detail of the model’s curvature. 
Figure 5c, shows how the top of the model is exhibiting 3D 
torsional motion.

Figure 4. Rotated model fitted to the shaker table

Figure 5. Captured vibration envelopes of the model structure.

The model was repositioned on the shaker table so that the table 
motion was diagonally across the model (figure 4). Figure 6
shows further vibration envelopes that were captured. In 
particular, Figure 6a shows how the torsional curvature of the 

Direction 
of table 
motion

Control 
points

Model 
structure

Monitoring 
points

0.2 0.3 0.4 0.5 0.6 0.7

-0.0500.05

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

x

z

y

0.2
0.4

0.6

0.2

0.4

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

xy

z

0.2
0.4

0.6

0.2

0.4

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.2
0.4

0.60.2

0.4

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

xy

z

(a) (b)

(c)

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XL-5, 2014
ISPRS Technical Commission V Symposium, 23 – 25 June 2014, Riva del Garda, Italy

This contribution has been peer-reviewed.
doi:10.5194/isprsarchives-XL-5-407-2014 409



modal, which starts in the direction of the applied diagonal 
motion at the base of the structure, and ends at the top of the 
structure where the motion is across the model’s axis. 

Figure 6. Captured vibration envelopes of the rotated model 
structure.

5.2 Vertical timber section

A larger model was constructed to demonstrate how the 
approach is scalable and how the test remains effective in 
outdoor conditions. This larger model was a 2.4 m tall vertical 
timber section which was fixed to another flat piece of wood. 
As before, D80 cameras were used, coded control targets were 
placed either side of the test subject and their coordinates were 
measured using total station in reflectorless mode. Larger 
monitoring targets were used to reflect the changed image scale
(figure 7).

Figure 7. Timber upright outdoor model.

The timber upright was excited manually in the X and Y axis. 
The objective here was to examine the curvature of the vibration
envelope rather than identify nodes. Figure 8 gives the motion 
vectors for motion in the X and Y directions. Since the stiffness 
of the section in the minor axis is greater than the major axis, it 
would be expected that the vibration amplitude is more in this 
direction with a similar excitation.

It was found that whilst working outside, images would be 
overexposed by the brighter sunlight, even on the camera’s 
lowest sensitivity settings. Neutral density filters were used to 
bring sensor exposure into an acceptable range.

Figure 8. Captured vibration envelopes of the vertical timber as 
a result of excitation in the (a) X and (b) Y axis.

6. DISCUSSION

These experiments have demonstrated how long exposure 
imagery can be used for monitoring dynamic tests of vibrating
structures. The approach overcomes inherent limitations in the 
high frequency imaging for monitoring vibrations which is 
limited to lower image resolutions.

The 3D experiments demonstrate the advantage of the 
photogrammetric technique over traditional sensors such as 
accelerometers. The approach is frequency independent, and 
frequencies up to 12 Hz have been recorded successfully, 
beyond the Nyquist frequency of 1.5 Hz (considering the 3 fps 
the Nikon D80 camera is capable of). The cameras used were 
off-the-shelf DSLR cameras, making the cost of the system 
considerably less than the highly specialised laser Doppler 
vibrometer, or using many accelerometers.

Accelerometers are contact sensors, so many are required to 
record the varying vibration throughout a structure.
Alternatively, it is possible to systematically move an 
accelerometer to each monitoring location if vibration can 
remain constant. If multiple sensors are used, each additional 
monitoring location requires additional hardware, and requires
cabling infrastructure and data logging hardware, increasing 
cost and set up time. Each additional monitoring point in this 
case requires only the addition of adhesive paper targets, so 
increased cost and set-up time is very low. The simplest 
accelerometer is one-dimensional, although three-dimensional 
accelerometers are available at additional cost. The laser 
Doppler vibrometer overcomes some of the limitations of 
accelerometers by making optical measurements from a remote 
observation point, but this instrument is limited to measuring 
out-of-plane movement only, and remains expensive.

All the motion vectors presented in the paper are represented by 
double-ended arrows. This is because it is not possible to 
determine the direction of the motion at the time the image is 
captured. Although the traditional high speed imaging approach 
allows instantaneous motion direction to be discerned between 
successive images, but it has not prevented the vibration 
envelope from being visualised with this approach.

The motion-blurred target measurement algorithm is less 
accurate than methods used for measurement of ordinary sharp 
images. However, alleviating the need for high speed imaging 
allows different hardware to be used, and images can be of a
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higher resolution than would otherwise be possible. The image 
resolution of consumer level DSLR cameras is much higher 
than that used by camcorders that have previously been used for 
their higher imaging frequency. Unfortunately, the bespoke 
algorithm for measuring motion-blurred targets also has a longer 
duration than conventional sharp circular target measurement 
algorithms. However, the whole motion is captured within a 
single image so only the one image needs to be processed, 
rather than a long sequence of images. This also has advantages 
in terms of data storage and transmission, since the total file 
size for a long sequence of images would be very large.

Having fewer image files is also advantageous to real-time 
monitoring, which requires images to be downloaded to a computer 
and processed at the same rate at which they are acquired. Real time 
monitoring using the conventional approach has only been 
demonstrated possible at a reduced image resolution. The 
arrangement of artificial monitoring and control targets, and 
camera observation positions, is almost the same to that 
previously used for the monitoring of static deformation (Lange 
& Benning 2006; Ronnholm et al. 2009). In this way, the 
monitoring scheme can be used to monitor any static 
deformations also.

An additional constraint in camera positioning existed due to 
the difficulty in matching measured target ‘ends’. As noted in 
figure 2, only one combination is correct, and this combination 
can usually be identified by selecting the case that produced the 
smallest image residual measurements. However, if only two 
cameras are used, and the cameras were arranged so that their 
relative positions are in the same direction as the motion of the 
test subject, both combinations produce similarly small 
coordinate residuals. This situation can be avoided by using 
more than two cameras, or by having ‘a-priori’ knowledge of 
expected vibration directions and suitably arranging the cameras.

The determined data is different to the traditional monitoring 
approach which determines natural frequencies by analysing 
acceleration history with a discrete Fourier transform, rather 
emphasising measurement of the vibration envelope. This 
approach could accompany traditional acceleration gauges for 
more detailed data, or used with frequency-selective excitation, 
where tests make use of artificial exciters. In this way it is not a 
complete replacement for traditional specialist dynamic 
monitoring instruments, indeed the approach currently does not 
provide the same level of accuracy, but aims to provide more 
detailed information.

7. CONCLUSIONS

This paper has presented two case studies of photogrammetric 
monitoring of vibrating structures using localised motion-
blurred image patches. The case studies have shown how the 
measurement approach provides richer 3D detail for visualising 
the vibration envelope, using consumer grade imaging 
hardware. The scalability of the approach is demonstrated.
The frequency invariance means that monitoring of higher 
frequency vibrations, where photogrammetric monitoring has in 
been limited to lower image resolutions in the past, is possible 
with higher image resolutions, and hence better spatial 
measurement accuracy. They approach has been effectively used
to record vibrations of up to 12 Hz.

Additional measurement matching complications not normally
found in photogrammetric monitoring were identified, and how 
they can normally be resolved discussed. Although each target 

itself can be easily matched between images, the ‘end’ of each 
target’s motion path cannot be uniquely coded, and selecting 
the combination with the smallest target residuals was effective 
in most cases. Another complication was the outdoor brightness 
level which caused images to be overexposed, which was 
overcome by using Neutral Density filters.
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Abstract 

Photogrammetry has been used in the past to monitor the 
laboratory testing of civil engineering structures using multiple image 
based sensors. This has been successful, but detecting vibrations during 
dynamic structural tests has proved more challenging. Detecting 
vibrations during dynamic structural tests usually depend on high speed 
cameras, but these sensors often result in lower image resolutions and 
reduced accuracy. 

To overcome this limitation, a novel approach described in this 
paper has been devised to take measurements from blurred images in 
long-exposure photos. The motion of the structure is captured in 
individual motion-blurred image, without dependence on imaging speed. 
A bespoke algorithm then determines each measurement point’s motion. 
Using photogrammetric techniques, a model structure’s motion with 
respect to different excitation frequencies is captured and its vibration 
envelope recreated in 3D. The approach is tested and used to identify 
changes in the model’s vibration response.  

KEYWORDS: Vibration, Deformation, Motion-blur, Engineering, 
Structural Health Monitoring, Close Range Photogrammetry 

INTRODUCTION 

CIVIL engineering structures often need to be tested to verify their 
performance and integrity. This requires meticulous planning, so that sufficient 
data is collected with the sufficient number of carefully positioned sensors. 
Contact transducers are often used, though they have some limitations, particularly 
if access to the structure is difficult. In the case of structural testing using dynamic 
test techniques, advanced sensors allow more detailed measurement. This 
approach is particularly convenient, as the presence of damage tends to result in a 
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localised change in the stiffness within the structure, which can then affect the 
vibration response elsewhere. 

The advantages of photogrammetry can be realised when applied to structural 
testing, as a very high number of points can be recorded with few sensors, without 
any contact with the structure. This is of primary relevance when measuring 
dynamic mode shapes, since interpolation is necessary between each measuring 
point. Current hardware, however, limits the potential for this type of dynamic 
monitoring, which necessitates much higher imaging speeds. 

In this paper, a novel approach is developed to directly measure the blur 
created by a deliberately long exposure. This is explained and tested after the 
importance and prior work is reviewed. The approach has built on previous 
developments (McCarthy et al., 2013, 2014) and the results of enhanced case 
studies are included here. 

STRUCTURAL TESTING 

ASSESSMENTS of structural integrity are often necessary for a variety of 
reasons. New materials under development in the laboratory environment may 
demand complex monitoring schemes to understand deformation patterns. Testing 
may also be prescribed during construction as verification of some critical 
elements. Testing of existing structures may be needed for evaluation prior to a 
change of use, or following a potentially damaging event. Long term structural 
health monitoring schemes are necessary on some structures to detect any 
potential deterioration. 

Conventional structural tests apply increasing load to a structure while its 
performance is monitored by gauges. Subject to acceptable results, the structure is 
then deemed suitable for its working loads. The load would be applied with, for 
example, test weights on a slab or large vehicles on a bridge. This testing of 
‘static’ structural properties may be considered inconvenient since the test would 
necessitate taking the structure out of service, in addition to the logistical 
problems of transporting and moving loads. Care must also be taken to not 
increase load above the structure’s elastic limit, otherwise damage may occur from 
the test itself. 

Dynamic structural monitoring is now emerging as a viable and effective 
approach for assessing structural performance (Brownjohn, 2011). Data collection 
is considered more convenient since much lower loading is necessary and 
monitoring can take place without taking the structure out of service. However, 
data analysis can be complicated and specialist expertise is necessary to interpret 
the vibration response. Several approaches exist to identify structural changes 
from the measured vibration response (Kasinos et al., 2014) and comparative 
studies score these approaches on their ability to identify, locate and quantify 
damage (Carden & Fanning, 2004). Generally, those approaches which take 
advantage of a higher number of monitoring points produce the most reliable 
results (Carden & Fanning, 2004). 
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MONITORING OF STRUCTURAL TESTS 

ENGINEERS must select and distribute sensors appropriately to collect 
sufficient data to understand forces and deformations within a structure. 
Traditional contact sensors measure displacements or strains. For example, linear 
variable displacement transducer (LVDT) sensors can be used to measure 
displacement at various points of the structure, usually at a beam’s mid-span or 
other equally spaced locations. Foil strain gauges measure strain in the material, 
the dimensionless measure of extension in a given direction.  

Traditional contact gauges are reliable, well understood and often prescribed 
by engineers, but in many cases their effectiveness is limited by the fact that they 
only record the structure’s performance in a single location, at the position where 
they are fitted. The possibility of individual gauges being affected by local 
variations in the material, or local strain concentrations should be recognised. 
Strain gauges are also susceptible to daily and seasonal environmental changes, 
being a significant limiting factor in long term structural health monitoring. 
Furthermore, each additional sensor costs money, takes time to fit and requires 
cabling infrastructure, and many sensors only measure in one dimension unless the 
more expensive multidimensional counterparts are used. Harvey (2008) noted the 
importance of carefully locating sensors, as a poorly sited sensor may not measure 
anything useful. 

More advanced non-contact sensors can be used, including a total station or 
terrestrial laser scanner. These sensors can collect optical measurements from 
several monitoring points, but the latter is unable to measure true instantaneous  
point deformation. In addition, they take time to traverse the whole structure, 
making them suitable for testing of static properties only (Psimoulis and Stiros, 
2008; Ronnholm et al., 2009). Differential GPS can monitor deformation without 
line of sight, but each individual monitoring point adds considerable cost (Roberts, 
2004). The laser Doppler vibrometer (LDV) is a specialised optical dynamic 
sensor for monitoring vibrations. Changes in the wavelength of a reflected laser 
beam are related to the velocity of a moving surface. The instrument is very 
precise, but measures only at the location it is targeted at. 

Photogrammetry has demonstrated its potential for monitoring structural tests 
in the past (Cooper, 1990; Maas, 1998; Benning, 2006). In particular, it allows 
instantaneous measurement of a very high number of monitoring points with a 
single arrangement of image sensors. These points may be monitored in 3D if 
using stereo or multiview imagery, whereas many contact gauges are one 
dimensional, or have more expensive 3D variants. Other advantages include that it 
is non-contact, meaning that the monitoring instruments do not add load to the test 
subject, and a stable reference on which to support contact gauges is not required. 
In particular, the photogrammetric approach is scalable, and suitable for a wide 
range of applications from small-scale laboratory tests (Thomas & Cantré, 2009) 
to full-size structures. 

Photogrammetry has also been shown suitable for monitoring dynamic tests. 
Since all monitoring points within an image are measured simultaneously, 
additional points can be added, and the distance between each monitoring point 
reduced, with little additional cost. Vibrations can be captured by increasing 
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imaging speed to many frames per second (fps). The Nyquist sampling theorem 
dictates that, in order for certain frequencies to be detected, data must be sampled 
at least twice the desired frequency range. Olaszek (1999) notes that an even 
higher sampling frequency may be desirable, since even if the Nyquist theorem is 
satisfied, aliasing effects can cause the peak amplitude in the frequency domain to 
be missed. 

Structural engineers always desire measurements that are as accurate as 
possible. Clearly the use of the highest resolution cameras is desirable to achieve 
the highest precision measurement but, as noted above, high imaging speed is 
normally necessary to capture and hence measure vibration at the required 
frequencies. When selecting camera hardware for monitoring tests of static 
properties (which take place over several minutes or a few hours), potential speed 
of continuous imaging may not need to be considered. In contrast, for dynamic 
tests with relatively fast variations in the deformed state of the structure, 
consideration must be given to both the image resolution and the potential 
continuous imaging speed of the camera. 

When selecting a camera, current sensor hardware requires a compromise to 
be made between the image resolution and temporal resolution of the sensor. 
Digital single lens reflex (DSLR) cameras are available with image resolutions 
over 30 MP and consumer camcorders typically record at up to 60 frames per 
second. However, a DSLR camera at its highest resolution setting can only sustain 
at most a few images per second. Consumer camcorders acquire images at higher 
frequencies, but only capture at much lower image resolutions, typically 2.1 MP 
(‘HD’ resolution). Specialist machine vision camera sensors exist in a wide variety 
of configurations, but even these sensors are limited by a trade-off between spatial 
resolution and imaging frequency, and are expensive. Although the capabilities of 
image sensors are continually improving, so too do the demands of engineering 
researchers. 

Real-time monitoring is very often desired for monitoring structural tests, 
since the engineer can appreciate the structure’s performance as the tests takes 
place. When high speed imaging is used for monitoring, the images must be 
processed at the same rate that they are acquired, otherwise the real-time 
detectable vibration frequencies are limited by the processing speed. Real-time 
monitoring at acceptable speeds is possible, but only at a reduced image resolution 
and hence reduced spatial accuracy or by reducing the number of points 
(Jurjo, 2010), increasing undesirable interpolation. 

Capturing a very high number of high resolution images also has practical 
difficulties. A considerable amount of data is generated and bottlenecks exist 
when images are stored to an internal memory card or uploaded to external file 
storage, or another computer for processing. If images are post-processed, or are 
to remain as documentary evidence, a large amount of data storage space is 
required. 
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PROPOSED MEASUREMENT APPROACH 

AIMED at alleviating this penalising compromise between image resolution 
and imaging frequency, a radically new approach is presented in his paper, in 
which the structural vibration is captured within long-exposure images. Indeed, 
the motion of the vibrating structure causes localised blur within the image, and 
this can be measured using automated image processing methods. 

Motion blurred imagery has been examined in Computer Science literature, 
and many algorithms have been published for extracting data from these 
seemingly poor quality images (Yitzhaky & Boshusha, 2000; Wang et al., 2007). 
It is often assumed that a motion blurred image is created from an ordinary sharp 
scene which is degraded my some blurring function. This blurring can be 
expressed using (Banham & Katsaggelos, 1997): 

 (1) 

where, F(k,l) is an ordinary m x n sharp image; H(i,j;k,l) is the point spread 
function; Y(i,j) is the resultant blurred image; and N(i,j) represents noise. 

The point spread function, H, contains information about the motion that 
caused the blur, including its extent, direction, and distribution. Some algorithms 
are capable of ‘blind deconvolution’ i.e. recovering the point spread function 
without prior knowledge of the motion that caused the blur. 

In our implementation, an algorithm measures the motion blur exhibited by 
ordinary circular targets (McCarthy et al., 2014). Both the amplitude of the motion 
causing the motion blur and direction of the motion path are measured. A 
sinusoidal motion is assumed, as is expected during frequency selective dynamic 
structural testing (e.g. Chopra, 2007; Clough & Penzien, 2010; Palmeri & 
Lombardo, 2011). Black circular targets with a white background are arranged at 
necessary monitoring points on the test subject in the conventional way. Our 
implementation also requires a single sharp image of the test structure from the 
same cameras. This may be before dynamic excitation is applied, or in the case of 
a structure with environmental loading which vibrates continuously, simply an 
image taken with an appropriately fast shutter speed. 

When the test structure vibrates, either artificially by manually applying 
force, or naturally under environmental loads such as wind, a single long exposure 
image is taken. As a result, the whole vibration of the structure during the time 
that the shutter is open is captured within the single image. The motion amplitude 
and direction at each monitoring point can then be measured by processing these 
long exposure images with a bespoke algorithm, implemented in MATLAB.  

A set of preliminary tests were carried out on circular targets, which have 
demonstrated that their blurred images take a consistent form, exhibiting the same 
edges, shapes and gradients. Interestingly, two cases exist whereby the motion 
amplitude is either less or greater than the diameter of the circular target 
(Figure 1). In the former case, a small region of the image is occupied by the 
target throughout the exposure, and the pixels in this region remain the same 
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intensity as the black sharp target exhibiting no motion. Other image pixels which 
are occupied by the target for only part of the whole exposure, generate a pixel 
value with a value between the black target and the white border, proportional to 
the amount of time occupied by the target. In the latter case, every region of the 
image is exposed to the white target border for at least some of the time that the 
shutter is open, so the pixel value measured by every pixel within the blurred 
target image is in between the black of the target and white of the target background. 

 

 
Figure 1: Appearance of motion blurred circular targets 

IMAGE PROCESSING PROCEDURE 

THE KEY steps in the bespoke image processing algorithm are summarised in 
Figure 2. The proposed procedure uses MATLAB’s image processing toolbox. 
Three measurements are estimated using different techniques, each achieving 
increasing accuracy, but at decreasing speed.  
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diameter = d                              vibration < d                                   vibration > d 

Figure 2: Blur measurement calculation flowchart 
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The blur measurement algorithm assumes the approximate location of each 
target is already known, since blurred targets in an image are more difficult to 
locate than a sharply defined target. This is achieved by detecting targets in the 
additional sharp image, in which circular targets are easily identified, and a list of 
coordinates passed to the blur measurement algorithm. 

After locating the image patch of the blurred target, a rapid approximate 
estimate about the geometry of the image is determined with a simple thresholding 
algorithm. The chosen threshold needs to be nearer in value to the white of the 
target background, so that the detected region includes the grey regions at the edge 
of the blurred target. An ellipse is fitted to the detected region using least squares, 
and the estimated major and minor axis, and orientation allows arrangement of the 
profile lines for the next stage (Figure 3).  

 
Figure 3: Major and minor axis (red and blue) of the target with arranged pixel 

intensity profile lines (green) 

Secondly, parallel Pixel Intensity Profiles (PIPs) are extracted from the image 
through the major axis of the blur. The PIP process is adapted from an approach 
proposed by Boracchi et al. (2007). The number of profiles can be adjusted, but 20 
was found to be a suitable balance between measurement accuracy and processing 
time. An example pixel intensity profile appears as in Figure 4b (The signal is 
inverted so that target pixels result in a peak), and points can be identified at 
abrupt changes in the gradient of the intensity profile which relate to features on 
the blur smear (Figure 4a). The algorithm identifies these features twice 
differentiating the intensity profile and locating peaks in the resulting function. 
These features are allocated to two groups (shown in red and blue in the figure), 
depending on where they follow or precede positive or negative gradients, and 
ellipses are fitted to each group of points (Figure 4c). The distance and angle 
between the centre coordinates of these ellipses is taken as the estimated motion 
occurring at that monitoring point on the structure. Tests demonstrated that this 
method provides pixel level accuracy of the motion amplitude. 

The pixel intensity profile algorithm is effective in both cases, where motion 
amplitude is both smaller and larger than the target diameter (Figure 1); the 
algorithm identifies changes in gradient rather than changes in absolute pixel 
value. The type of blurred target is automatically identified by the presence of the 
dark centre region, since this has an effect on the allocation of feature points in the 
pixel intensity profiles into the two ellipses. 

In tests, the pixel intensity profiles method alone regularly over-estimated the 
exhibited motion and did not provide adequate accuracy due to a specific 
systematic effect. Motion was overestimated because at the edge of targets there is 
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a gradient in pixel values, caused by chromatic aberration and lens diffraction. 
This was evident when an image of a stationary target exhibited an apparent 
displacement of approximately 1 pixel. A subsequent step was included therefore 
to improve accuracy.  

 

 
To achieve superior accuracy an iterative procedure was introduced. Here, a 

simulated blurred image patch is generated using the blur function (equation 1), 
using a sinusoidal point spread function of the first estimated motion and the 
earlier taken sharp image. The equation used to describe the point spread function, 
H, is defined by: 

  (2) 

where, L is the estimated motion amplitude. This function is discretised into 
units of a pixel by applying the trapezium rule over pixel intervals. The result of 
this function is spatially rotated by the estimated motion angle using MATLAB’s 
imrotate function set to use bilinear interpolation. Finally, the matrix is divided by 
the sum of its elements, so that the elements of the final H sum to unity. 

Pixel intensity profiles of this simulated image are measured and compared 
with the as-taken blurred image. If the initial measurement was correct, the as-
taken and simulated image would correspond closely. If a discrepancy between the 
two remains, the amplitude and angle parameters of the point spread function are 
iteratively adjusted by the measurement discrepancy until the difference between 
the measured motion in both the original and simulated image patches is less than 
a user set threshold (Fig 5). The motion amplitude and angle used to create a 
simulated image that matched the as-taken image, is then accepted as the vector 
describing the distance and direction of the motion at that point on the test subject. 

Figure 4: Resultant Blur Measurement 

0 

255 

(a) (b) 
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TRANSFORMATION INTO OBJECT SPACE 

Having measured image coordinates in units of pixels, the distance and 
direction can be immediately represented graphically by superimposing 
displacement vectors on to the original images. By also superimposing the 
envelope of the motion, the output is similar to that produced by finite element 
software packages that might be used to predict forces and deformations in the 
structure. By showing displacement vectors together with an image of the 
structure, the engineer can appreciate which parts of the structure have the greatest 
motion, as well as observing the distribution, and possibly spot any anomaly. 

 

 

 

2D Planar Measurement 

It is also likely that an engineer would desire these measurements 
transformed into an appropriate object-space system (in millimetres) for more 
precise comparisons and analysis. With only a single camera, it is possible to 
provide 2D measurements, so long as it is known that any movement is planar and 
the focal plane of the camera is aligned approximately to the same plane. In this 
scenario, the perspective transformation (Luhmann et al., 2006) can be used to 
transform coordinates from image space to object space. However, if any out-of-
plane movement were to occur, this could cause a scaling error in the measured 
results. It is recognised that radial and tangential distortion cause a displacement 
of a projected object point in the image plane. However, if individual monitored 
points are displaced relative to a fixed camera, then computed object 
displacements are almost identical, whether a lens model is explicitly incorporated 
or not. However, the effects of lens distortion can be easily corrected following 

Figure 5: Iteratively improving accuracy using both the original 
blurred and simulated image patches. 
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camera calibration (eg. Luhmann et al., 2006) and a correction for this simple 
systematic effect should be incorporated. 

Coded control targets can simply be arranged around the test object (coplanar 
to the monitoring targets) and their object-space coordinates measured using a 
reflectorless Total Station. Coordinates in an arbitrary 3D object space are 
calculated. For calculating planar deformations, plane space coordinates for each 
control point are determined (Fig 6). The plane is defined by the object-space X 
and Y coordinates, to which linear regression is used to define an object space plan 
gradient and intercept. The distance from the intercept to the nearest point along 
the regression line of each control point is taken as its plane-space x coordinate. 
The earlier determined object-space Z coordinates become corresponding plane-
space vertical y coordinate. Projective transformation parameters are determined 
with the paired plane-space and image-space control target coordinates, which are 
used to apply the projective transform to the earlier measured image-space 
monitoring point coordinates. 

 
Figure 6: Definition of planar coordinates from 3D control point coordinates 

Measurement in 3D 

3D measurement has been highlighted in the past as a strength of 
photogrammetric measurement for monitoring of structures. The monitoring 
approach was expanded to fully 3D measurement that also allows non-planar 
motion to be recorded (McCarthy et al., 2014). For a moving target, two 3D object 
points will be created on any image, representing the target at each end of its 
motion. A 3D approach requires the use of two or more sensors and their shutters 
must be interconnected so that they capture images simultaneously. Additional 
calculation steps for finding 3D coordinates are shown in figure 7.  

The exterior orientation (EO) of the cameras needs to be known and was 
achieved using the PhotoModeler software package (version 2013.0.3.113 64-bit, 
July 2013; EOS Systems Inc., Vancouver, Canada). This software is convenient 
because it automatically recognises coded control targets in images, and object 
space coordinates for the control points can be loaded using a PhotoModeler 
coded coordinate file. PhotoModeler’s automated camera calibration was also 
used to determine appropriate interior orientation (IO) parameters, including 
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deriving an appropriate lens model, allowing accurate coordinates for the 
monitoring points to be determined. These object points allow approximate image 
coordinates to be computed, which are then used by the blur measurement 
algorithm to assist locating targets in images. Target matching can also be carried 
out by PhotoModeler. 

Image coordinates for the motion blurred targets are measured as before 
using the image processing algorithm described above and stored in a CSV file. 
As mentioned above, a new challenge at the point matching stage occurs, since 
each target, which would normally have a single measurement in each image, 
instead has two coordinates measured, at either end of its motion path. Unlike 
traditional photogrammetry, the image coordinates relating to a 3D point cannot 
be uniquely matched with coded targets since they originate from one physical 
target which changes position. Figure 8 shows how two image coordinates exist 
for each target, and how different pairs of candidate object points can be created.  

To solve this ambiguity for all objects/camera configurations, two candidate 
combinations of the pairs of coordinates for each target should be considered, 
since it is not yet known which combination is correct. 3D coordinates are 
therefore calculated for both combinations using a bespoke space intersection 
program, using Photomodeler’s earlier derived EO and IO, which explicitly 
corrects for lens distortion. Residual image coordinates for the incorrect 
combination are usually significantly higher, depending on the exact arrangement 
(although, where the direction of target motion approaches the epipolar plane, they 
become similar, as discussed below). Residual coordinates are then calculated 
through reprojection of the 3D point onto the image, using the known camera 
orientations. In tests, it was found that selecting the combination of image 
coordinates which produces the smallest residual measurements overall, usually 
identified the correctly matched pair.  

 

Start

Create all image 
coordinate 
candidate 

combinations

Calculate 3D 
coordinates

Image 
coordinates from 

measured 
blurred images

Camera IO & EO

Identify correct 
target combinations 

(and delete 
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Bundle adjustment End
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Calculate image 
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Although this method has proven successful, in a particular case the correct 
combination cannot be automatically determined; where the orientation of the both 
measured points lie on the same epipolar plane. It may be possible to determine 
the most likely combination using engineering judgement, but if “a priori” 

Figure 7: 3D calculation flow chart 
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knowledge of the likely motion is available, then the two cameras can be arranged 
obliquely, such that this situation does not occur. It is therefore helpful to consider 
likely target movement direction when selecting camera positions. This ambiguity 
could also be solved by adding a third camera to the system, although there would 
then be 23 = 8 combination of coordinates to consider for a single target. 

Once 3D coordinates are determined, all of this data were then input to a 
bundle adjustment (‘General Adjustment Program’ (GAP), Chander & Clarke, 
1992) to calculate final 3D coordinates in the object space.  

  

  
Figure 8: Point matching difficulties for a single target 

PRACTICAL TESTS AND RESULTS 

A ONE dimensional shaker table was used to test and demonstrate the 
proposed approach. The APS ‘Electro-Seis’ 400 is a long-stroke shaker capable of 
carrying out programmed one-dimensional motions up to 150 mm described in 
McCarthy et al. (2013, 2014). In its normal use, models are fitted to the 455 x 
455 mm table bed which is programmed with vibrations of varying frequencies 
and amplitudes. As the model is subjected to base vibration, data would be 
recorded about the model’s dynamic response using accelerometers and a laser 
displacement gauge. 

Two Nikon D80 DSLR cameras were available for image capture, each 
camera equipped with 24 mm fixed focal length lenses and focus fixed at the 
appropriate distance (Figure 9a). The cameras have a sensor resolution of 
10.2 MP. The shutter speed was fixed at 1 second in order to capture the whole 
vibration cycle, and the aperture and sensitivity were set to F32 and ISO 100 to 
provide clear images with appropriate contrast. The external shutter release for 
each camera was connected to the shaker table’s control system (Figure 9c) so that 
the exact time they are triggered is recorded alongside the sensor data so that a 
direct comparison can be made. 

Simple plastic model structures with a height of 760 mm were rigidly fixed 
with bolts to the shaker table (Figure 9b). The columns on the structure were 
marked with circular targets. Black 8 mm circles were printed on white paper 
backing with sufficient white space around the target so that the white space was 
sure to exceed the expected motion amplitude. Conventional coded targets were 
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arranged around the shake table to provide control points, and their positions were 
measured by total station in reflectorless mode. For 2D monitoring, these must be 
in the same plane as the monitoring targets, whilst for 3D tests these define a 
volume occupied by the model structure. 

Testing 2D monitoring 

For the first test, 2D measurements were made with a single camera positioned in 
front of the structure. The model structure was subjected to one dimensional 

model structure 

moving 
table 

control points 

measurement 
points 

accelerometer 

signal amplifier 

input/output 
controller 

(a) 

(b) 

(c) 

Figure 9: (a) experimental set up, (b) detail of vibration test subject, (c) detail of 
shaker table control system. 
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motion of varying frequencies. In particular, the model was excited with 
sinusoidal vibration at its natural frequencies (established separately using an 
accelerometer with a ‘sine sweep’ input table motion) so that the model would 
exhibit its vibration envelope for these modal frequencies. These are of interest for 
looking at the curvature of the vibration envelope, and locating nodes and 
antinodes (Abdel Wahab, 1999). Figure 10 shows recorded images overlain with 
the 2D measurements established using the image processing routine described in 
the previous section (“2D Planar Measurement”). 

The shape of the first vibration mode at 5 Hz may be expected for a structure 
of this type. The higher vibration mode shapes are less predictable since they are 
more sensitive to local variations in the structural properties. These higher modes 
are therefore also more likely to be able to indicate any changes in stiffness caused 
by damage or degradation of a structure.  

Testing 3D Monitoring 

Taking advantage of appropriate photogrammetric procedures and processes, 
further tests were carried out of the same model to demonstrate the 3D 
deformation measurement system developed. The second camera was introduced, 
and cameras rearranged to achieve appropriately convergent images. Both 
camera’s external triggers were connected to the shaker table’s control system, so 
that they would both be triggered simultaneously. The same motion was reapplied 
to the model. Following data capture, the images were processed as before using 
the blur measurement algorithm. The steps described in the previous section 
“Measurement in 3D” for determining the camera’s orientations were followed, 
and 3D coordinates generated. Figure 11a shows the results from the repeated test 

1st mode (5 Hz)  2nd mode (8 Hz) 3rd mode (12 Hz) 

Figure 10: Measured vibration envelopes (horiz. scale enlarged by factor of 20) 
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which are similar in form to those measured in the first test (Figure 10).  

Detecting structural changes 

To assess the potential for detecting structural changes using the measured 
image data, a further test was designed using the same model structure. As shown 
in Figure 12, the structure was modified by adding mass to the structure on the 4th 
level. The test was repeated with the first three mode shapes being captured. 
Figure 11b shows the change in the dynamic response of the modified structure 
can be appreciated by a change in the measured vibration envelope. In particular, 
more significant three-dimensional changes are observed at the higher modes. 
The second modification involved substituting two vertical members with 
replacements that had part of their cross section cut away (figure 12). By reducing 
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Figure 11: Measured change in vibration envelope from structural modifications. 
Blue/green vectors represent individual target displacements, whilst red triangles 

represent control points. 
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the cross-sectional area of the member, the stiffness was reduced. This is a similar 
affect to the failure of welds in a steel structure, which would result in a loss of 
stiffness. Changes can be observed in the locations of nodes and anti-nodes, the 
positions where the amplitude is smallest and largest. In a practical setting, 
identifying a change in the vibration envelope when one was not expected would 
prompt further investigation as to the underlying cause, possibly prompting repair 
work (Kasinos et al., 2014). 

Testing was repeated again and results are presented in Figure 11c. It is 
interesting to note how the analysis of the unmodified model (Figure 11a) reveals 
a motion which is essentially planar in all the three modes of vibration; while the 
two modifications (Figures 11b and 11c) induces some significant torsional 
effects. Such changes in orientation of the vibration envelope may not ordinarily 
be detectable with conventional single axis accelerometers.  
 

 
Figure 12: Modifications made to model structure 

DISCUSSION 

THIS paper demonstrates the potential for using controlled blurred images to 
monitor structural tests using off-the-shelf low cost equipment and digital 
photogrammetry. It may be used for a wide range of applications where imaging 

 

Added mass 

Standard member 

Reduced stiffness member 
(back of model) 

  Unmodified      Modification 1         Modification 2 
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hardware provides sufficient image and temporal resolution. The proposed 
solution further extends the capabilities of photogrammetric monitoring by 
allowing vibration patterns to be identified without the requirement of high 
imaging speed sensors, which are expensive.  

Assessing the accuracy of the system 

An important question is always the accuracy, and this was assessed in 
another series of simplified tests. Individual targets were mounted directly to the 
table surface. Since the table motion could be accurately recorded by laser 
displacement gauge and accelerometers, these can be directly compared with the 
recorded motion. Various different amplitudes and target sizes were tested, along 
with different sized circular targets. 

Results for errors between laser displacement gauge measurement and the 
image-based distance measurement are given in figure 13. A standard deviation of 
±0.158 mm was observed, with a mean error of just -0.115 mm for a camera-
object distance of 1 m. Using a 95% confidence interval, the measured distances 
are considered accurate to within 0.38 mm. In the image space at this scale, this 
represents 1.43 pixels at the 95% confidence level. Whilst the accuracy of the 
current measurement algorithm when expressed in pixels is poorer than 
conventional target measurement algorithms such as weighted centroid or ellipse 
fitting, images are obtained at the sensor’s highest resolution without having to 
consider the imaging frequency limitation. 

 

 
The D80 cameras have a sensor resolution of 10.2 MP, at which resolution 

they were found to have a maximum continuous rate of 3 fps. These sensors 
would be limited to recording vibrations of less than 1.5 Hz at their maximum 
resolution due to the Nyquist sampling theorem. Utilising the proposed method, 
these sensors demonstrated the ability to measure the amplitude and shape of the 
dynamic response of structures at a frequency of 12 Hz. This approach also allows 
this to be achieved very efficiently, using a minimum number of images and 
sensors. 

Figure 13: Results of accuracy assessment 
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Tests have demonstrated how the approach may be used to identify the 
changes in the vibration envelope of structures, which in turn may be used to 
identify structural changes, e.g. the presence of localised damage. 

The photogrammetric arrangement makes possible monitoring of 
displacements to assess static properties of the structure as well as dynamic. 
Although it is possible to calculate absolute displacements from acceleration 
measurements by double integration, the result usually exhibits a drift, and 
alternative sensors are normally necessary for monitoring of static structural 
properties. The arrangement of image sensors and targets makes possible 
recording of overall displacements of a structure, for assessment of the structure’s 
static properties. 

Imaging sensors have been used for monitoring vibrations in the conventional 
way by recording displacement-time history, from which frequency information 
can be identified using the discrete Fourier transform (Choi et al., 2011; Helfrick 
et al., 2011; Warren et al., 2011). This monitoring requires cameras with higher 
speeds at the cost of lower image resolutions. It is possible to improve 
measurement accuracy by ‘zooming-in’ on a single target, but the advantage of 
multiple monitoring points would be lost. The advantage of a very high number of 
monitoring points is of particular interest in the dynamic case. Maintaining a 
larger image scale allows the higher number of monitoring points, reducing 
undesirable interpolation. 

Control of the image acquisition time and knowledge of the anticipated 
motion frequency is necessary to ensure that an appropriate shutter speed is 
selected. A shutter speed too short results in recorded motion that does not 
confirm to the sinusoidal pattern. In practice, relatively fast motion can be easily 
measured as the camera speed can be adjusted and the image exposure will remain 
acceptable. The shutter speed can be extended for slower vibration, but this may 
result in images being unacceptable overexposed. In case studies, neutral density 
filters have been used to reduce image exposure, allowing shutter speeds in the 
order of seconds to be used. Vibrations with a period of a second have been 
recorded successfully, but possible frequencies are limited by the imaging system.  

While many techniques for interpreting dynamic response make use of 
frequency information, the proposed approach is frequency independent, rather 
emphasising spatial measurement of the vibration envelope. The acceleration time 
history from accelerometer data would usually be used for the identification of 
multiple frequencies in broadband excitation. When used with frequency-selective 
excitation, direct spatial measurement of the vibration envelope exhibits nodes, 
antinodes and shape curvature that can be used for dynamic assessment (Abdel 
Wahab & De Roeck, 1999). Although only a sinusoidal function has been used in 
this study to simulate the blur of the target, other functions could be used, 
depending on the particular regime of motion expected for the structure under 
observation. 

For measurement in 3D, it was recognised that difficulties in target matching 
exist and how they were overcome has been described. In many static structural 
testing scenarios, the deformation shape of structure is relatively easy to predict, 
since the structure usually deforms in the direction of the applied load, and the use 
of one-dimensional gauges is often suitable. Out-of-plane movement is more 
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likely to be encountered during dynamic testing, since excited vibration modes 
could be longitudinal, transverse or torsional. Therefore, 3D monitoring, such as 
that presented here, may be desirable in more dynamic testing cases. Triaxial 
variants of accelerometers are also available, but each sensor is upgraded at added 
cost and more data-acquisition channels are needed, whilst each individual 
photogrammetric target is relatively inexpensive. 

Accelerometers are more sensitive than the proposed image-based approach. 
Their high sensitivity and frequency information allows detection of vibrations of 
very low amplitude and high frequency. When photogrammetry is used for 
monitoring structural tests it is often commented that traditional contact gauges 
are known to be more accurate, and are usually used to assess the accuracy of the 
photogrammetric measurement system (Yoneyama et al., 2005; Ronnholm et al., 
2009). However, the cost of an individual accelerometer is high, and extensive 
cable infrastructure and data monitoring hardware is required. Since individual 
accelerometers add significant cost to a monitoring system, as well as time to 
install, fewer sensors are usually possible than the image based approach used 
here. When determining modal shapes it is desirable to reduce the interpolation 
necessary between monitoring points by increasing their number (Carden & 
Fanning, 2004).  

If employed for monitoring outdoors, the approach could clearly be affected 
by factors such as poor weather. Active targets built from high-intensity L.E.D.s 
have been discussed by Wahbeh et al. (2003) to allow improved monitoring 
during night hours and in dull weather. The image processing algorithm used is 
likely to be successful on this kind of similar images, and this may be an area for 
future investigation. Other sensors that do not rely on line-of-sight are not without 
their own difficulties, and Battista (2011) commented on experiencing missing 
data due to cable infrastructure problems.  

CONCLUSION 

THIS paper has presented a novel approach to identifying vibration patterns in 
civil engineering structures using long-exposure images, in which the targets 
appear blurred because of the motion of the structure. Photogrammetry has already 
demonstrated its use for monitoring of structural tests where hardware has 
sufficient imaging speed. The proposed approach aims to directly record the 
envelope of sinusoidal vibration, rather than instantaneous deformed shapes. This 
allows sensors with higher image resolutions to be used and at smaller scale in the 
field environment. Laboratory tests demonstrate the high quantity of 
measurements that can be achieved with only a few sensors, and the accuracy of 
the measurements has been assessed. 

The data collected using the blurred-image approach has been compared with 
the traditional dynamic monitoring instruments. It has also been demonstrated 
how the approach can be used to detect structural changes in a series of model 
structures. The new frequency independent approach expands the capabilities of 
existing sensors which have otherwise had their applications restricted by their 
imaging frequency. 



MCCARTHY et al. Monitoring 3D Vibrations in Structures Using High Resolution Blurred Imagery 
 

20 Photogrammetric Record, 17(9#), 200# 

REFERENCES 
ABDEL WAHAB, M.M. & DE ROECK, G., 1999. Damage Detection in Bridges Using Modal Curvatures: 

Application To a Real Damage Scenario. Journal of Sound and Vibration, 226(2): 217–235. 
BANHAM, M. & KATSAGGELOS, A.K., 1997. Digital image restoration. Signal Processing Magazine, 

(March): 24–41. 
BATTISTA, N. DE, WESTGATE, R. & KOO, K., 2011. Wireless monitoring of the longitudinal 

displacement of the Tamar Suspension Bridge deck under changing environmental conditions. In: 
M. TOMIZUKA, ed. Sensors and Smart Structures Technologies for Civil, Mechanical, and 
Aerospace Systems Proceedings of the SPIE: 79811O–15. 

BORACCHI, G., CAGLIOTI, V. & GIUSTI, A., 2007. Ball position and motion reconstruction from blur in 
a single perspective image. In: 14th International Conference on Image Analysis and Processing. 
Modena: IEEE Comput. Soc. 

BROWNJOHN, P.J.M.W., 2011. Structural health monitoring: Examples and benefits to structure 
stakeholders. The Structural Engineer, 89(9): 24–26. 

CARDEN, E.P. & FANNING, P., 2004. Vibration Based Condition Monitoring: A Review. Structural 
Health Monitoring, 3(4): 355–377. 

CHOI, H.-S., CHEUNG, J.-H., KIM, S.-H. & AHN, J.-H., 2011. Structural Dynamic Displacement Vision 
System using Digital Image Processing. NDT & E International, 44(7): 597–608. 

CHOPRA, A., 2007. Dynamics of Structures, 3nd Edition, Prentice Hall: Upper Saddle River, NJ (USA). 
CLOUGH, R. & PENZIEN, J. 2010. Dynamics of Structures, 2nd Edition (Revised), Computers and 

Structures: Berkeley, CA (USA). 
CROSS, E.J., KOO, K.Y., BROWNJOHN, J.M.W., & WORDEN, K., 2013. Long-term monitoring and data 

analysis of the Tamar Bridge. Mechanical Systems and Signal Processing, 35(1-2): 16–34.  
HARVEY, B., 2008. Testing and monitoring of structures: traps for the unwary. Structural Engineer, 

(October): 22–24. 
HELFRICK, M.N., NIEZRECKI, C., AVITABILE, P. & SCHMIDT, T., 2011. 3D digital image correlation 

methods for full-field vibration measurement. Mechanical Systems and Signal Processing, 25(3): 
917–927. 

KASINOS, S., PALMERI, A. & LOMBARDO, M., 2015. Using the vibration envelope as damage-sensitive 
feature in composite beam structures, Structures, 1:67-75. 

LANGE, J. & BENNING, W., 2006. Crack detection at concrete construction units from photogrammetric 
data using image processing procedures. In: N. KERLE & A. SKIDMORE, eds. Proceedings of the 
ISPRS Commission VII Symposium “Remote Sensing: From Pixels to Processes”. Enschede, The 
Netherlands. 

LUHMANN, T., 2011. 3D Imaging - How to Achieve Highest Accuracy. In: F. REMONDINO & M. R. 
SHORTIS, eds. Proc. of SPIE: Videometrics, Range Imaging, and Applications XI. Munich, 
Germany, 808502–1–11. 

LUHMANN, T., ROBSON, S., KYLE, S., HARLEY, I. 2006. Close range photogrammetry: principles, 
techniques and applications, Dunbeath: Whittles. 

MCCARTHY, D.M.J., CHANDLER, J.H. & PALMERI, A., 2013. Monitoring Dynamic Structural Tests 
Using Image Deblurring Techniques. In: B. BASU, ed. Key Engineering Materials. Dublin, 
Ireland: Trans Tech Publications, 569–570:932–939.  

MCCARTHY, D.M.J., CHANDLER, J.H. & PALMERI, A., 2014. 3D Case Studies of Monitoring Dynamic 
Structural Tests using Long Exposure Imagery. International Archives of  Photogrammetry, 
Remote Sensing and Spatial Information Sciences, XL-5, 23–25 June 2014, Riva del Garda, Italy, 
pp. 407–411. 

OLASZEK, P., 1999. Investigation of the dynamic characteristic of bridge structures using a computer 
vision method. Measurement, 25(3): 227–236. 

PALMERI, A. & LOMBARDO, M., 2011. A new modal correction method for linear structures subjected 
to deterministic and random loadings, Computers and Structures, 89(11-12):844-854. 

PSIMOULIS, P. A. & STIROS, S.C., 2008. Experimental Assessment of the Accuracy of GPS and RTS for 
the Determination of the Parameters of Oscillation of Major Structures. Computer-Aided Civil and 
Infrastructure Engineering, 23(5): 389–403. 

ROBERTS, G.W., MENG, X. & DODSON, A.H., 2004. Integrating a Global Positioning System and 
Accelerometers to Monitor the Deflection of Bridges. Journal of Surveying Engineering, 130(2): 
65–72. 



MCCARTHY et al. Monitoring 3D Vibrations in Structures Using High Resolution Blurred Imagery 
 

Photogrammetric Record, 17(9#), 200# 21 

RONNHOLM, P., NUIKKA, M., SUOMINEN, A., SALO, P., HYYPPA, H. & PONTINEN, P., 2009. Comparison 
of measurement techniques and static theory applied to concrete beam deformation. The 
Photogrammetric Record, 24(128): 351–371. 

THOMAS, H. & CANTRÉ, S., 2009. Applications of low budget photogrammetry in the geotechnical 
laboratory. The Photogrammetric Record, 24(December): 332–350.  

WAHBEH, A.M., CAFFREY, J.P. & MASRI, S.F., 2003. A vision-based approach for the direct 
measurement of displacements in vibrating systems. Smart materials and structures, 12: 785–794. 

WANG, S., GUAN, B., WANG, G, LI, Q., 2007. Measurement of sinusoidal vibration from motion blurred 
images. Pattern Recognition Letters, 28(9):1029–1040.  

WARREN, C., NIEZRECKI, C., AVITABILE, P., PINGLE, P., 2011. Comparison of FRF measurements and 
mode shapes determined using optically image based, laser, and accelerometer measurements. 
Mechanical Systems and Signal Processing, 25(6): 2191–2202. 

YITZHAKY, Y. & BOSHUSHA, G., 2000. Restoration of an image degraded by vibrations using only a 
single frame. Optical Engineering, 39(8):2083-2091. 

YONEYAMA, S., KITAGWA, A., KITAMURA, K., KIKUTA, H., 2005. Deflection distribution measurement 
of steel structure using digital image correlation. In: L. M. Hanssen & P. V. Farrell, eds. Optical 
Diagnostics, 58800G 1–8. 

 
 

Résumé 

 

Zusammenfassung 

 





Appendix B

Larger case study candidate
structures

The following page lists the structures which were considered whilst selection a case
study for this project. The bridges were either visited on site or, for those further afield,
considered remotely using sources such as Google Earth.

After reducing the shortlist, two preferred candidate structures were identified, in
Nottingham and Leicester. The Wilford Suspension Bridge in Nottingham was selected.
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1 Wilford Suspension Bridge, Welbeck Road, Nottingham 
Good candidate 

2 Kensington Avenue, Loughborough – steel truss footbridge 
Maybe – short span – high frequency but fairly low amplitude, local 

3 Sandringham Drive, Loughborough - footbridge 
Maybe – short span – high frequency but fairly low amplitude, local 

4 Thurcaston Road, Leicester. Near abbey lane intersection 
Red Hill way 
2 span pedestrian bridge 
Nick’s suggestion – Dave Twigg looked at before? 

5 http://www.foxysislandwalks.co.uk/Leicester-Canal-Arm.html 
canal footbridge 14 
REJECT: In Northamptonshire 

6 footbridge over the River Wreake between Brooksby and Hoby. 
http://www.leics.gov.uk/index/highways/road_pathway_maintenance/commercial_services/ri
ghts_of_way_services.htm 
 

7 http://www.pwpeics.se/england_l.htm Leicester: Holden Street footbridge, Belgrave. Steel 
suspension bridge 
http://www.foxysislandwalks.co.uk/GUJC-Leicester.html pictures at end 
Mill Hill, Leicester 
Reason for rejection: Too rigid – wider than others 

8 http://www.pwpeics.se/england_l.htm Leicester: Footbridge across Hamilton Way 
 

9 Waterside Inn, Sileby Road, Mountsorrel, go east, footbridge under A6. 
Reason for rejection: Flooded on visit 

10 Waterside Inn, Sileby Road, Mountsorrel, go east, bridge over weir 
Reason for rejection: Flooded on visit 

11 Sileby Mill boatyard 
Reason for rejection: Flooded on visit 

12 Castle Gardens, The Newark, Leicester. Suspension bridge 
http://www.foxysislandwalks.co.uk/GUJC-Leicester.html 
Leicester, Footbridge No.111A - River Soar 
http://www.pwpeics.se/england_l.htm Leicester: Footbridge at Castle Garden across Grand 
Union Canal 
by ‘Colorworks’ bar and restaurant 
steel suspension bridge 
Good candidate, more lateral vibration than vertical 

13 Waterside Inn, Sileby Road, Mountsorrel, go west 0.4mi 
Reason for rejection: Flooded on visit 

14 http://www.foxysislandwalks.co.uk/GUJC-Leicester.html 
Swan’s Nest bridge 10 
Mill Hill, Leicester, then 0.2mi south 
Reason for rejection: Flooded on visit 

15 Footbridge over A6 at Quorn 
Reason for rejection: too rigid, access difficult. 

16 Footbridge over Trent at Burton-on-Trent 
Wetmoor Lane 
Suggested by Nick 

 



Appendix C

Key Matlab algorithms

This appendix lists and describes the function of the key Matlab algorithms for LEMBI
monitoring.

routine This is the main function, in which variables are defined, images loaded from
disk and the other main functions are called.

scanlines estimate This algorithm carries out PIP measurement, and returns the PIP
measurement result.

refine with simulation3 Is provided with the motion initially estimated by the scan-
lines estimate function, and manages iterations of the verify with simulation function
as the more accurate blurred target measurement is found.

verify with simulation Takes a blurred and unblurred image, artificially blurs the
sharp image using the provided motion estimate. This algorithm initially calculated a
correlation statistic, but was then modified to call the scanlines estimate function.

sinusoidal blur kernel5 This function generates the point spread function used to
generate artificially motion blurred images. Its output is illustrated in figure 3.23.
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C.1 ‘routine’

1 % c l e a r a l l
2 c l o s e a l l
3 % UserLoopFinished = f a l s e ;
4 PointSelect ionMode = ’ auto ’ ;
5 window size = [80 , 1 4 0 ] ;
6 % window size = [50 , 4 0 ] ;
7 c l e a r c r op r e c t ang l e s e l e c t i o n x s e l e c t i o n y % Clear prev ious t a r g e t
8 f a i l e d t a r g e t s = ze ro s (1 , 2 ) ;
9 AutoResponse = 3 ; % 3 to accept

10 AutoAcceptParameters = true ;
11 acknowledge each new image = f a l s e ;
12 s t r i c t t a r g e t c o o r d s I b l u r r e d = f a l s e ;
13 % s t r i c t t a r g e t c o o r d s I s h a r p = true ;
14 c o o r d i n a t e f o r s h a r p t a r g e t = ’ as b lur r ed ’ ; % ’ search ’ ’ coord inate ’ ’ as

b lurred ’ ’ s ha rp t a r g e t c oo rd i na t e s ’
15

16 PathName = ’C:\ Users \cvdm7\Persona l Documents − Not Backed Up\Upright
13 . 2 . 1 3 ’ ;

17 SharpFileName = ’DSC 0035 .JPG ’ ;
18

19 % Load image names
20 imagenames f id = fopen ( f u l l f i l e (PathName , ’ image names . txt ’ ) ) ;
21 FileNameCell = text scan ( imagenames f id , ’%s ’ ) ;
22 FileName = FileNameCell {1} ’ ;
23 f c l o s e ( imagenames f id ) ;
24 % load ( f u l l f i l e (PathName , ’ folder ImageNames ’ ) )
25

26 i f ∼e x i s t ( ’ s h a r p t a r g e t c o o r d i n a t e s ’ , ’ var ’ )
27 s h a r p t a r g e t c o o r d i n a t e s = csvread ( f u l l f i l e (PathName , ’

t a r g e t c o o r d i n a t e s . csv ’ ) ) ;
28 end
29 % save ( f u l l f i l e (PathName , ’ folder ImageNames ’ ) , ’ FileName ’ )
30 % FileName{1} = ’ARL 5289 .JPG ’ ;
31

32 i f ∼e x i s t ( ’ FileName ’ , ’ var ’ )
33 [ FileName , PathName ] = u i g e t f i l e ({ ’ � . jpg ; � . t i f ; � . png ; � . g i f ’ , ’ A l l Image

F i l e s ’ } , . . .
34 ’ S e l e c t the BLURRED image ’ , ’ \\ s t a f f−f s \cv−s t a f f−home\cvdm7\Shaker t ab l e

19 . 11 . 12 ’ ) ;
35 end
36 i f ∼e x i s t ( ’ SharpFileName ’ , ’ var ’ )
37 [ SharpFileName , PathName ] = u i g e t f i l e ({ ’ � . jpg ; � . t i f ; � . png ; � . g i f ’ , ’ A l l

Image F i l e s ’ } , . . .
38 ’ S e l e c t the SHARP image f o r v e r i f i c a t i o n ’ , ’ \\ s t a f f−f s \cv−s t a f f−home\

cvdm7\Shaker t ab l e 19 . 11 . 12 ’ ) ;
39 end
40 %% Create task l i s t
41 image nos to l oop = 1 : l ength ( FileName ) ;
42 t a r g e t n o s t o l o o p = 1 : 5 ;
43

44 i f ∼e x i s t ( ’ t a s k l i s t ’ , ’ var ’ )
45 number o f tasks = length ( image nos to l oop ) � l ength ( t a r g e t n o s t o l o o p ) ;
46 t a s k l i s t = c e l l ( number of tasks , 1 ) ;
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47 f o r i i = 1 : l ength ( image nos to l oop )
48 f o r p = 1 : l ength ( t a r g e t n o s t o l o o p )
49 t a s k l i s t {p+( i i −1)� l ength ( t a r g e t n o s t o l o o p ) ,1} = . . .
50 s t r u c t ( ’ image number ’ , image nos to l oop ( i i ) , . . .
51 ’ target number ’ , t a r g e t n o s t o l o o p (p) , . . .
52 ’ t a s k s t a t u s ’ , ’ queued ’ , . . .
53 ’ FileName ’ , FileName{ image nos to l oop ( i i ) }) ;
54 end
55 end
56 end
57

58

59 %% Main task loop
60 % image nos to l oop = 1 : l ength ( FileName ) ;
61 % ta r g e t n o s t o l o o p = 8 : 1 7 ;
62

63 waitbarHandle = waitbar (0 , ’ S t a r t i ng . . . ’ , ’Name ’ , ’ Routine081112 prog r e s s ’ ) ;
64

65 f o r task no = 1 : number o f tasks
66 switch t a s k l i s t { task no } . t a s k s t a t u s
67 case ’ completed ’
68 di sp ( [ ’ Task number ’ num2str ( task no ) ’ has s t a tu s completed ’ ] )
69 cont inue
70 case ’ e r r o r ’
71 di sp ( [ ’ Task number ’ num2str ( task no ) ’ has s t a tu s e r r o r ’ ] )
72 cont inue
73 case ’ queued ’
74 di sp ( [ ’ Task number ’ num2str ( task no ) ’ s t a r t i n g ’ ] )
75 otherw i s e
76 di sp ( [ ’ Task number ’ num2str ( task no ) ’ has unrecogn i sed s t a tu s

’ ] )
77 cont inue
78 end
79

80 %% Sing l e po int loop
81 t ry
82 i f e x i s t ( f u l l f i l e (PathName , s t r c a t ( t a s k l i s t { task no } . FileName ( 1 : 8 ) , ’

t a r g e t c o o r d i n a t e s . csv ’ ) ) , ’ f i l e ’ )
83 di sp ( ’New array o f t a r g e t coo rd ina t e s f o r t h i s image ’ )
84 t a r g e t c o o r d i n a t e s = csvread ( f u l l f i l e (PathName , s t r c a t ( t a s k l i s t {

task no } . FileName ( 1 : 8 ) , ’ t a r g e t c o o r d i n a t e s . csv ’ ) ) ) ;
85 end
86

87 image loop number = t a s k l i s t { task no } . image number ;
88 point loop number = t a s k l i s t { task no } . target number ;
89 waitbar ( ( task no −1)/ number of tasks , waitbarHandle , [ ’ Task : ’

num2str ( task no ) ’ / ’ num2str ( number o f tasks ) ’ Image : ’
num2str ( image loop number ) ’ Target : ’ num2str (
point loop number ) ] ) ;

90

91 PointLoopFinished = f a l s e ;
92 whi le ∼PointLoopFinished % Star t the s i n g l e po int loop
93 c l o s e a l l
94

95 %% Load in the images and user i d e n t i f i e s the t a r g e t s
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96 f p r i n t f ( ’ \n\n��� Next t a r g e t ���\n ’ )
97 di sp ( [ ’ Image : ’ num2str ( image loop number ) ’ Point : ’ num2str (

point loop number ) ] )
98

99 % Load b lur r ed image
100 I b l u r r ed = imread ( f u l l f i l e (PathName , FileName{ image loop number

}) ) ;
101 I b l u r r ed = rgb2gray ( Ib l u r r ed ) ;
102 I b l u r r ed = 255 − I b l u r r ed ;
103 di sp ( [ ’ Routine081112 : Image loaded from ’ FileName{

image loop number } ] ) ;
104

105 % User crops image
106 di sp ( ’ Routine081112 : Crop the image ’ )
107

108 switch PointSelect ionMode
109 case ’manual ’
110 % Crop
111 % crop r e c t ang l e = [ ] ;
112 i f e x i s t ( ’ c r op r e c t ang l e ’ , ’ var ’ )
113 [ Ib lu r red , c r op r e c t ang l e ] = imcrop ( Ib lur red ,

c r op r e c t ang l e ) ;
114 e l s e
115 [ Ib lu r red , c r op r e c t ang l e ] = imcrop ( Ib l u r r ed ) ;
116 end
117 I s ha rp c r op co rn e r = c r op r e c t ang l e ( [ 2 1 ] ) ;
118 I b l u r r e d c r op c o rn e r = c r op r e c t ang l e ( [ 2 1 ] ) ;
119 c l o s e
120

121 % User s e l e c t e d ob j e c t in b lur r ed image
122 i f e x i s t ( ’ s e l e c t i o n x ’ , ’ var ’ )
123 I b l u r r e d u s e r s e l e c t e d p o i n t = [ s e l e c t i o n y ,

s e l e c t i o n x ] ;
124 e l s e
125 di sp ( ’ Routine081112 : C l i ck on the t a r g e t in the

BLURRED image ’ )
126 f i g u r e
127 imshow ( Ib l u r r ed )
128 hold on
129 [ s e l e c t i o n x , s e l e c t i o n y ] = ginput (1 ) ; % user

s e l e c t s the ’ blob ’
130 I b l u r r e d u s e r s e l e c t e d p o i n t = [ s e l e c t i o n y ,

s e l e c t i o n x ] ;
131 c l o s e
132 end
133 case ’ auto ’
134 i f e x i s t ( f u l l f i l e (PathName , ’ t a r g e t c o o r d i n a t e s . csv ’ ) , ’

f i l e ’ )
135 t a r g e t c o o r d i n a t e s = csvread ( f u l l f i l e (PathName , ’

t a r g e t c o o r d i n a t e s . csv ’ ) ) ;
136 e l s e i f e x i s t ( f u l l f i l e (PathName , ’ t a r g e t c o o r d i n a t e s . mat ’

) , ’ f i l e ’ )
137 load ( f u l l f i l e (PathName , ’ t a r g e t c o o r d i n a t e s ’ ) ) ;
138 e l s e
139 e r r o r ( ’ Routine : No ta r g e t coo rd ina t e s de f i n ed ’ ) ;
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140 end
141 % save ( f u l l f i l e (PathName , ’ t a r g e t c oo rd i na t e s ’ )

, ’ t a r g e t c oo rd i na t e s ’ ) ;
142 I b l u r r e d u s e r s e l e c t e d p o i n t = t a r g e t c o o r d i n a t e s (

point loop number , : ) ;
143 I b l u r r e d c r op c o r n e r = I b l u r r e d u s e r s e l e c t e d p o i n t −

round ( window size . / 2 ) ;
144 I s ha rp c r op co rn e r = Ib l u r r e d c r op c o r n e r ;
145 c r op r e c t ang l e = [ I b l u r r e d c r op c o r n e r ( [ 2 1 ] ) ,

window size ( [ 2 1 ] ) ] ;
146 [ Ib lu r red , c r op r e c t ang l e ] = imcrop ( Ib lur red ,

c r op r e c t ang l e ) ;
147 I b l u r r e d u s e r s e l e c t e d p o i n t =

I b l u r r e d u s e r s e l e c t e d p o i n t − . . .
148 I b l u r r e d c r op c o r n e r ;
149 end
150

151

152 % Recentre the b lur r ed image
153 i f s t r i c t t a r g e t c o o r d s I b l u r r e d
154 I b l u r r e d e s t ima t ed c en t r e = I b l u r r e d u s e r s e l e c t e d p o i n t ;
155 e l s e
156 I b l u r r e d e s t ima t ed c en t r e = s e a r c h f o r t a r g e t i n imag e (

Ib lur red , . . .
157 I b l u r r e d u s e r s e l e c t e d p o i n t ) ;
158 end
159 I b l u r r ed = imread ( f u l l f i l e (PathName , FileName{ image loop number

}) ) ;
160 I b l u r r ed = rgb2gray ( Ib l u r r ed ) ;
161 I b l u r r ed = 255 − I b l u r r ed ;
162 I b l u r r e d e s t ima t ed c en t r e = Ib l u r r e d e s t ima t ed c en t r e +

Ib l u r r e d c r op c o r n e r ;
163 [ Ib lu r red , I b l u r r ed c r op co rn e r , I b l u r r e d e s t ima t ed c en t r e ] =

RecenterCroppedImage ( . . .
164 Ib lur red , I b l u r r ed e s t ima t ed c en t r e , window size ) ;
165

166 % Se l e c t ob j e c t in sharp image
167 I sharp = imread ( f u l l f i l e (PathName , SharpFileName ) ) ;
168 I sharp = rgb2gray ( I sharp ) ;
169 I sharp = 255 − I sharp ;
170 switch c o o r d i n a t e f o r s h a r p t a r g e t
171 case ’ s earch ’
172 I s ha rp e s t ima t ed c en t r e = s e a r c h f o r t a r g e t i n imag e (

I sharp . . .
173 , I b l u r r e d u s e r s e l e c t e d p o i n t+Ib l u r r e d c r op c o r n e r ) ;
174 case ’ coo rd ina te ’
175 I s ha rp e s t ima t ed c en t r e = I b l u r r e d u s e r s e l e c t e d p o i n t

+ Ib l u r r e d c r op c o r n e r ;
176 case ’ as b lu r r ed ’
177 I s ha rp e s t ima t ed c en t r e = Ib l u r r ed e s t ima t ed c en t r e +

Ib l u r r e d c r op c o r n e r ;
178 case ’ s h a r p t a r g e t c o o r d i n a t e s ’
179 I s ha rp e s t ima t ed c en t r e = sha rp t a r g e t c o o r d i n a t e s (

point loop number , : ) ;
180 end
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181 [ Isharp , I sha rp c rop co rne r , I s ha rp e s t ima t ed c en t r e ] =
RecenterCroppedImage ( Isharp , . . .

182 I sha rp e s t imat ed cen t r e , window size ) ;
183

184 %% Run the f i r s t t h r e s h o l d i n g a r e a t e s t
185 di sp ( ’ Routine081112 : t h r e s h o l d i n g a r e a t e s t s t a r t ed ’ )
186 b lu r type = th r e s h o l d i n g a r e a t e s t ( Ib lur red , Isharp ,

I b l u r r ed e s t ima t ed c en t r e , . . .
187 I s ha rp e s t ima t ed c en t r e ) ;
188 di sp ( [ ’ Routine081112 : t h r e s h o l d i n g a r e a t e s t f i n i s h e d ’ upper

( b lu r type ) ] )
189

190 %% Load p r o f i l e parameters
191

192 i f e x i s t ( ’ image p ro f i l e s pa r ame t e r ’ , ’ var ’ )
193 c l e a r image p r o f i l e s pa r ame t e r s
194 end
195 i f e x i s t ( f u l l f i l e (PathName , [ FileName{ image loop number } ( 1 : end

−4) ’ data . mat ’ ] ) , ’ f i l e ’ )
196 % Load f i l e s p e c i f i c parameters
197 load ( f u l l f i l e (PathName , [ FileName{ image loop number } ( 1 : end

−4) ’ data . mat ’ ] ) )
198 parameters conf i rmed = true ;
199 di sp ( [ ’ F i l e s p e c i f i c parameters used f o r ’ FileName{

image loop number } ] )
200 e l s e i f e x i s t ( f u l l f i l e (PathName , ’ a l l imag e s da t a .mat ’ ) , ’ f i l e ’ )
201 % Load f o l d e r s p e c i f i c parameters
202 load ( f u l l f i l e (PathName , ’ a l l imag e s da t a .mat ’ ) )
203 parameters conf i rmed = true ;
204 di sp ( [ ’ Folder s p e c i f i c parameters used f o r ’ FileName{

image loop number } ] )
205 e l s e
206 % Load de f au l t parameters and save f o r next time
207 imag e p r o f i l e s pa r ame t e r s = s t ru c t ( . . .
208 ’ NumberOfScanLines ’ , 40 , . . .
209 ’MinorAxisExpand ’ , 0 . 7 , . . .
210 ’MajorAxisExpand ’ , 1 . 3 , . . .
211 ’ p r o f i l e l e n g t h ’ , 300 , . . . % Number o f

s t ep s in each p r o f i l e
212 ’POINTMARKINGMETHOD’ , ’ th r e sho ld ’ , . . . % OPTIONS: ’

thresho ld ’ ’ th r e sho ld f indpeaks ’ ’max d i f f e r e n c e ’ ’
p r o f i l e r a n s a c ’

213 ’ i n c l u d e b l u r t y p e t e s t ’ , f a l s e , . . .
214 ’ i s s imu l a t ed image ’ , f a l s e , . . .
215 ’ suppres s output ’ , f a l s e , . . .
216 ’ c i r c l e f i t t i n g m e t h o d ’ , ’ f i t e l l i p s e ’ , . . . %

OPTIONS: ’ standard ’ ’ ransac ’ ’ f i t e l l i p s e ’
217 ’ manual edge matching ’ , 2 , . . .
218 ’ a s sumed b lu r d i r e c t i on ’ , ’ ho r i z ’ , . . . % OPTIONS:

’ hor iz ’ ’ vert ’
219 ’ f o r c e b l u r d i r e c t i o n ’ , f a l s e , . . .
220 ’ o v e r i d e t h r e s h o l d ad j u s tmen t a t v e r i f y ’ , f a l s e , . . .
221 ’ r a n s a c t r i a l s ’ , 1000 , . . . % 1000
222 ’ ransac dth ’ , 0 . 1 , . . . % 0 .1
223 ’ r an sac pe r c en t ’ , 10 , . . . % 50
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224 ’ r an sac rL im i t s ’ , [ 1 e−12 1e12 ] , . . . % [ 1 e−12 1e12 ]
225 ’ f i r s t g u e s s ’ , f a l s e ) ;
226 switch b lu r type
227 case ’ i n t e r n a l ’
228 imag e p r o f i l e s pa r ame t e r s . t h r e sho l d ad j u s t = −0.15;
229 imag e p r o f i l e s pa r ame t e r s . s e n s i t i v i t y = 0 . 1 3 ;
230 case ’ e x t e rna l ’
231 imag e p r o f i l e s pa r ame t e r s . t h r e sho l d ad j u s t= −0.10;
232 imag e p r o f i l e s pa r ame t e r s . s e n s i t i v i t y = 0 . 1 0 ;
233 end
234 di sp ( [ ’ Un spe c i f i c parameters used f o r ’ FileName{

image loop number} ’ s e t ’ ] )
235 parameters conf i rmed = f a l s e ;
236 end
237

238 %% Run s c an l i n e s e s t ima t e
239 di sp ( ’ Routine081112 : s c a n l i n e s e s t ima t e s t a r t ed ’ )
240

241 [∼ , ∼ , ∼ , f i r s t p r o f i l e s d a t a ] = s c an l i n e s e s t ima t e ( Ib lur red ,
image p ro f i l e s pa ramet e r s , . . .

242 I b l u r r ed e s t ima t ed c en t r e , 0 , Isharp , I s ha rp e s t ima t ed c en t r e ) ;
243 f i r s t p r o f i l e s d a t a . c r op co rne r = Ib l u r r e d c r op c o r n e r ;
244 I b l u r r e d e s t ima t ed c en t r e = f i r s t p r o f i l e s d a t a .

blob WeightedCentroid ;
245 xc1 = f i r s t p r o f i l e s d a t a . xc1yc1xc2yc2 (1 ) ;
246 yc1 = f i r s t p r o f i l e s d a t a . xc1yc1xc2yc2 (2 ) ;
247 xc2 = f i r s t p r o f i l e s d a t a . xc1yc1xc2yc2 (3 ) ;
248 yc2 = f i r s t p r o f i l e s d a t a . xc1yc1xc2yc2 (4 ) ;
249

250 di sp ( ’ Routine081112 : s c a n l i n e s e s t ima t e f i n i s h e d ’ )
251 f p r i n t f ( ’ \b Measurement :Row = %1.3 f , Col = %1.3 f \n ’ ,

f i r s t p r o f i l e s d a t a . s e p a r a t i o n c a r t e s i a n (1 ) ,
f i r s t p r o f i l e s d a t a . s e p a r a t i o n c a r t e s i a n (2 ) )

252

253 i f ∼parameters conf i rmed && ∼AutoAcceptParameters
254 MenuResponse = menu( ’The image p r o f i l e s parameters are not

s e t f o r t h i s image or f o l d e r ’ , . . .
255 ’SAVE used parameters f o r t h i s image and CONTINUE’ , . . .
256 ’CONTINUE without sav ing parameters ’ , . . .
257 ’STOP / bad parameters ’ ) ;
258 i f MenuResponse == 3
259 r e turn
260 e l s e i f MenuResponse == 1
261 save ( f u l l f i l e (PathName , [ FileName{ image loop number } ( 1 :

end−4) ’ data . mat ’ ] ) , . . .
262 ’ image p r o f i l e s pa r ame t e r s ’ )
263 di sp ( ’ image p r o f i l e s pa r ame t e r s saved f o r next time ’ )
264 end
265 i f MenuResponse == 1 | | MenuResponse == 2
266 minf ig ( gcf , 1 )
267 end
268 end
269

270

271 %% Ref ine with s imu la t i on
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272 window size = window size ; Padding = [50 5 0 ] ;
273 % image p r o f i l e s pa r ame t e r s .POINTMARKINGMETHOD = ’ thresho ld ’ ;
274 imag e p r o f i l e s pa r ame t e r s . i n c l u d e b l u r t y p e t e s t = f a l s e ;
275 imag e p r o f i l e s pa r ame t e r s . suppres s output = true ;
276 Padded window size = window size + Padding ;
277 aa = 0 ;
278 r e f i n emen t i t e r a t i o n s = 4 ;
279

280 % FIRST , RE−CENTRE IMAGES
281 % Sharp : Load again , re−crop to cent r e
282 di sp ( ’ Routine081112 : Re−c en t r e i ng SHARP image ’ ) ,
283 I sharp = imread ( f u l l f i l e (PathName , SharpFileName ) ) ;
284 I s ha rp e s t ima t ed c en t r e = I sha rp e s t ima t ed c en t r e +

I sha rp c r op co rn e r ;
285 [ Isharp , I sha rp c rop co rne r , I s ha rp e s t ima t ed c en t r e ] = . . .
286 RecenterCroppedImage ( Isharp , I sha rp e s t imat ed cen t r e ,

Padded window size ) ;
287 I sharp = 255 − I sharp ;
288

289 % Blurred : Load again , re−crop to cent r e
290 di sp ( ’ Routine081112 : Re−c en t r e i ng BLURRED image ’ )
291 I b l u r r ed = imread ( f u l l f i l e (PathName , FileName{ image loop number

}) ) ;
292 I b l u r r e d e s t ima t ed c en t r e = Ib l u r r e d e s t ima t ed c en t r e +

Ib l u r r e d c r op c o r n e r ;
293 [ Ib lu r red , I b l u r r ed c r op co rn e r , I b l u r r e d e s t ima t ed c en t r e ] =

. . .
294 RecenterCroppedImage ( Ib lur red , I b l u r r ed e s t ima t ed c en t r e ,

window size ) ;
295 I b l u r r ed = 255 − I b l u r r ed ;
296 % Ib l u r r e d u s e r s e l e c t e d p o i n t = Ib l u r r e d e s t ima t ed c en t r e ;
297 f i r s t p r o f i l e s d a t a = Recent r ePro f i l e sData ( f i r s t p r o f i l e s d a t a ,

I b l u r r e d c r op c o r n e r ) ;
298

299 % Carry out r e f i n i n g
300 % image p r o f i l e s pa r ame t e r s . i n c l u d e b l u r t y p e t e s t = true ;
301 [∼ , best match , p r o f i l e s d a t a ] = r e f i n e w i t h s imu l a t i o n 3

(0 , 0 , 0 , 0 , window size , Padding , aa , r e f i n emen t i t e r a t i o n s ,
Isharp , I sha rp e s t imat ed cen t r e , Ib lur red , 0 , 0 , . . .

302 image p ro f i l e s pa ramet e r s , 0 , f i r s t p r o f i l e s d a t a ) ;
303

304 di sp ( ’ Routine081112 : r e f i n e w i t h s imu l a t i o n f i n i s h e d ’ )
305 f p r i n t f ( ’ \b Measurement :Row = %1.3 f , Col = %1.3 f \n ’ ,

best match (1 ) , best match (2 ) )
306

307 xc av = Ib l u r r e d e s t ima t ed c en t r e (2 ) + Ib l u r r e d c r op c o r n e r (2 ) ;
308 yc av = Ib l u r r e d e s t ima t ed c en t r e (1 ) + Ib l u r r e d c r op c o r n e r (1 ) ;
309 yc1 = yc av + best match (1 ) � s i n ( best match (2 ) � pi ( ) /180) / 2 ;
310 yc2 = yc av − best match (1 ) � s i n ( best match (2 ) � pi ( ) /180) / 2 ;
311 xc1 = xc av + best match (1 ) � cos ( best match (2 ) � pi ( ) /180) / 2 ;
312 xc2 = xc av − best match (1 ) � cos ( best match (2 ) � pi ( ) /180) / 2 ;
313

314 % %% Test with r e f l e c t i o n
315 % Test With Re f l e c t i on
316
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317 %% Ask the user what to do
318 i f ∼e x i s t ( ’ B lurDisp lacementsPai r s ’ , ’ var ’ )
319 BlurDisp lacementsPai r s = [ ] ;
320 end
321 i f AutoResponse == 0
322 MenuResponse = menu( ’ Routine081112 : Where to go next ? ’ , . . .
323 ’REJECT measurement and REPEAT th i s t a r g e t ’ , . . .
324 ’ACCEPT measurement and REPEAT th i s t a r g e t (may r e s u l t

in dup l i c a t e s ! ) ’ , . . .
325 ’ACCEPT measurement and CONTINUE to next t a r g e t ’ , . . .
326 ’REJECT measurement and CONTINUE to next t a r g e t ’ , . . .
327 ’STOP where we are ’ ) ;
328 e l s e
329 MenuResponse = AutoResponse ;
330 end
331

332 % Save po int
333 i f MenuResponse == 2 | | MenuResponse == 3
334 BlurDisp lacementsPai r s ( end+1 , : ) = [ xc1 yc1 xc2 yc2 ] ;
335 t a s k l i s t { task no } . xc1yc1xc2yc2 = [ xc1 yc1 xc2 yc2 ] ;
336 t a s k l i s t { task no } . t a s k s t a t u s = ’ completed ’ ;
337 t a s k l i s t { task no } . datet ime = now ;
338 t a s k l i s t { task no } . p r o f i l e s d a t a = p r o f i l e s d a t a ;
339 di sp ( [ num2str ( s i z e ( BlurDisp lacementsPairs , 1 ) ) ’

d i sp lacements pa i r s s to r ed ’ ] )
340 end
341 % Repeat
342 i f MenuResponse == 3 | | MenuResponse == 4 | | MenuResponse == 5
343 PointLoopFinished = true ;
344 end
345 i f MenuResponse == 5
346 r e turn ;
347 end
348

349 end % End the po int f i n i s h e d loop
350 0 ;
351 %% Ending the task l i s t
352

353 catch ME
354 t a s k l i s t { task no } . t a s k s t a t u s = ’ e r r o r ’ ;
355 t a s k l i s t { task no } . e r ro r mes sage = ME. message ;
356 t a s k l i s t { task no } . e r r o r i d e n t i f i e r = ME. i d e n t i f i e r ;
357 t a s k l i s t { task no } . e r r o r s t a c k = ME. stack ;
358 i f ∼e x i s t ( ’ B lurDisp lacementsPai r s ’ , ’ var ’ )
359 BlurDisp lacementsPai r s = [ ] ;
360 end
361 BlurDisp lacementsPai r s ( end+1 , : ) = ze ro s (1 , 4 ) ;
362 end
363 end % End the task loop o f each image
364

365 c a l c u l a t e c i r c l e f i t v a r i e n c e s
366 SaveBlurMeasurementsAsCSV
367

368 waitbar (1 , waitbarHandle , ’ Completed ’ )
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C.2 ‘scanlines estimate’

1 %
2 % Usage : s c a n l i n e s e s t ima t e ( I , image p ro f i l e s pa ramet e r s ,

e s t ima t ed t a r g e t c en t r e ,∼ , Isharp , [ I s ha rp e s t ima t ed c en t r e ] )
3 %
4 % Where I : The g r ay s c a l e image
5 % image p ro f i l e pa r ame t e r s I s a s t r u c tu r e array
6 % es t ima t ed t a r g e t c en t r e : After t h r e s o l d i n g the image , the blob
7 % at t h i s p o s i t i o n w i l l be examined .
8 % Isharp : Used to t e s t b lur type ( Int /Ext )
9 % Isha rp e s t ima t ed c en t r e :

10 %
11 % Outputs :
12 % 1: [ xc1 yc1 xc2 yc2 ]
13 % 2: Weighted c en t r o i d
14 % 3: [ xc1 yc1 R1 ; xc2 yc2 R2 ] ( s c a n l i n e c i r c l e d a t a )
15 % 4: p r o f i l e s d a t a s t r u c tu r e array
16

17 f unc t i on [ varargout ] = s c an l i n e s e s t ima t e ( I , image p ro f i l e s pa ramet e r s , . . .
18 e s t ima t ed t a r g e t c en t r e ,∼ , va ra rg in )
19

20 SCANMODE = ’ auto ’ ; % OPTIONS: ’ auto ’ ’manual ’
21 au t o a c c e p t au t o t h r e s h o l d i n c r e a s e s = true ;
22

23 % Unpack v a r i a b l e s
24 NumberOfScanLines = image p r o f i l e s pa r ame t e r s . NumberOfScanLines ;
25 MinorAxisExpand = image p r o f i l e s pa r ame t e r s . MinorAxisExpand ;
26 MajorAxisExpand = image p r o f i l e s pa r ame t e r s . MajorAxisExpand ;
27 t h r e s ho l d ad ju s t = image p r o f i l e s pa r ame t e r s . t h r e sho l d ad j u s t ;
28 s e n s i t i v i t y = image p r o f i l e s pa r ame t e r s . s e n s i t i v i t y ;
29 p r o f i l e l e n g t h = image p r o f i l e s pa r ame t e r s . p r o f i l e l e n g t h ;
30 POINTMARKINGMETHOD = image p r o f i l e s pa r ame t e r s .POINTMARKINGMETHOD;

% OPTIONS: ’ thresho ld ’ ’max d i f f e r e n c e ’ ’ p r o f i l e r a n s a c ’
31 suppres s output = image p r o f i l e s pa r ame t e r s . suppres s output ;
32 i f strcmp (SCANMODE, ’manual ’ ) ; suppres s output = f a l s e ; end ;
33

34 i f imag e p r o f i l e s pa r ame t e r s . i n c l u d e b l u r t y p e t e s t && narg in < 6
35 e r r o r ( ’ s c a n l i n e s e s t ima t e was reques ted a b lur type t e s t but did not

r e c i e v e the Isharp image ’ )
36 e l s e i f image p r o f i l e s pa r ame t e r s . i n c l u d e b l u r t y p e t e s t
37 I sharp = vararg in {1} ;
38 I s ha rp e s t ima t ed c en t r e = vararg in {2} ;
39 end
40

41 i f i s f i e l d ( image p ro f i l e s pa ramet e r s , ’ l ow thr e sho ld ’ )
42 l ow thr e sho ld = image p r o f i l e s pa r ame t e r s . l ow thr e sho ld ;
43 h i gh th r e sho ld = image p r o f i l e s pa r ame t e r s . h i gh th r e sho ld ;
44 end
45

46 % check we ’ ve got the cen t r e o f the t a r g e t
47 [ e s t ima t ed t a r g e t c en t r e ] = s e a r c h f o r t a r g e t i n imag e ( I ,

e s t ima t ed t a r g e t c e n t r e ) ;
48 % THIS COULD BE MOVED TO PARENT FUNCTION
49
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50

51 %% Set up the scan l i n e s
52 switch SCANMODE
53 case ’ auto ’
54 a c c e p t a u t o p r o f i l e l i n e s = f a l s e ;
55 whi le ∼a c c e p t a u t o p r o f i l e l i n e s
56 % This makes some e s t imate s about the shape o f the b lur us ing
57 % simple th r e sho ld i ng
58 th r e sho ld = graythresh ( I ) + th r e sho l d ad j u s t ;
59 bw = im2bw( I , th r e sho ld ) ;
60 blobs = bwconncomp(bw, 4) ;
61 b l o b s l a b e l l e d = labe lmat r i x ( b lobs ) ;
62

63 e s t ima t ed t a r g e t c e n t r e = round ( e s t ima t ed t a r g e t c e n t r e ) ;
64

65 s e l e c t e d b l ob no = b l o b s l a b e l l e d ( e s t ima t ed t a r g e t c e n t r e (1 )
. . .

66 , e s t ima t ed t a r g e t c e n t r e (2 ) ) ;
67 blob prop = reg ionprops ( s t r u c t ( ’ Connect iv i ty ’ , 4 , ’ ImageSize ’ ,

b lobs . ImageSize , . . .
68 ’ NumObjects ’ , 1 , . . .
69 ’ P i x e l I dxL i s t ’ , {{ blobs . P i x e l I dxL i s t { s e l e c t e d b l ob no } }}

) . . .
70 , I . . .
71 , ’ Centroid ’ , ’ Or i enta t i on ’ , ’ MajorAxisLength ’ , ’

MinorAxisLength ’ , ’ WeightedCentroid ’ , ’ P i x e l L i s t ’ ) ;
72

73 % Does the b lur o r i e n t a t i o n need c o r r e c t i n g ?
74 i f imag e p r o f i l e s pa r ame t e r s . f o r c e b l u r d i r e c t i o n
75 switch image p r o f i l e s pa r ame t e r s . a s sumed b lu r d i r e c t i on
76 case ’ ho r i z ’
77 blob prop . Or i enta t i on = 0 ;
78 case ’ ve r t ’
79 blob prop . Or i enta t i on = 90 ;
80 end
81 e l s e i f b lob prop . MajorAxisLength/ blob prop . MinorAxisLength <=

1.1
82 % I f the b lur i s almost a c i r c l e , sometimes the est imated
83 % or i e n t a t i o n i s the oppos i t e to what i t r e a l l y i s , so we

f i x i t
84 % hor i z on t a l ! ! ! ! ! ! ! !
85 di sp ( ’ This i s qu i t e a c i r c u l a r blob . Im going to assume the

b lur d i r e c t i o n to be ’ )
86 switch image p r o f i l e s pa r ame t e r s . a s sumed b lu r d i r e c t i on
87 case ’ ho r i z ’
88 f p r i n t f ( ’ \bHORIZONTAL.\n ’ ) ;
89 blob prop . Or i enta t i on = 0 ;
90 case ’ ve r t ’
91 f p r i n t f ( ’ \bVERTICAL.\n ’ ) ;
92 blob prop . Or i enta t i on = 90 ;
93 end
94 end
95

96 % Set up two ba s i c v e c t o r s that are used to s e l e c t coo rd ina t e s
in
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97 % the image
98 BasicMajorVector = [ cos ( b lob prop . Or i enta t i on � pi ( ) /180) . . .
99 −s i n ( b lob prop . Or i enta t i on � pi ( ) /180) ] .� blob prop .

MajorAxisLength /2 ;
100 BasicMinorVector = [ −s i n ( b lob prop . Or i enta t i on � pi ( ) /180) . . .
101 −cos ( b lob prop . Or i enta t i on � pi ( ) /180) ] .� blob prop .

MinorAxisLength /2 ;
102 % Create X,Y pa i r s f o r the scan l i n e s , saved in ScanLines array

.
103 p r o f i l e c o o r d i n a t e s = ze ro s (NumberOfScanLines , 4 ) ;
104 f o r p ro f i l e number = 0 : NumberOfScanLines−1
105 p r o f i l e c o o r d i n a t e s ( p ro f i l e number +1 ,[1 2 ] ) = . . .
106 blob prop . Centroid + . . .
107 BasicMinorVector �(2� pro f i l e number /(NumberOfScanLines

−1)−1)� . . .
108 MinorAxisExpand − BasicMajorVector �MajorAxisExpand ;
109 p r o f i l e c o o r d i n a t e s ( p ro f i l e number +1 ,[3 4 ] ) = blob prop .

Centroid + . . .
110 BasicMinorVector �(2� pro f i l e number /(NumberOfScanLines

−1)−1)� . . .
111 MinorAxisExpand + BasicMajorVector �MajorAxisExpand ;
112 end
113

114 % Check i f image p r o f i l e s exceed image dimensions
115 i f . . .
116 sum(sum( p r o f i l e c o o r d i n a t e s ( : , [ 1 3 ] ) > s i z e ( I , 2 ) ) ) +

. . .
117 sum(sum( p r o f i l e c o o r d i n a t e s ( : , [ 1 3 ] ) < 0) ) + . . .
118 sum(sum( p r o f i l e c o o r d i n a t e s ( : , [ 2 4 ] ) > s i z e ( I , 1 ) ) ) +

. . .
119 sum(sum( p r o f i l e c o o r d i n a t e s ( : , [ 2 4 ] ) < 0) ) . . .
120 ∼= 0
121 warning ( ’ s c a n l i n e s e s t ima t e : P r o f i l e l i n e s coo rd ina t e s

exceed the dimensions o f the image ’ )
122 i f t h r e sho ld >= 0.95 % Can ’ t reduce th r e sho ld f u r t h e r
123 f i g u r e ;
124 t i t l e ( ’ P r o f i l e l i n e s exceed image dimensions ’ )
125 subp lot ( 1 , 2 , 1 )
126 imshow ( I ) ;
127 subp lot ( 1 , 2 , 2 )
128 imshow ( I ) ;
129 hold on ;
130 p lo t ( b lob prop . P i x e l L i s t ( : , 1 ) , b lob prop . P i x e l L i s t ( : , 2 ) ,

’ r . ’ )
131 drawnow
132 e r r o r ( ’ s c a n l i n e s e s t ima t e : P r o f i l e l i n e s coo rd ina t e s

exceed the dimensions o f the image , and thr e sho ld
couldn ’ ’ t be i n c r ea s ed f u r t h e r ’ )

133 e l s e % Reduce th r e sho ld a l i t t l e more
134 t h r e s ho l d ad j u s t = th r e sho l d ad j u s t + 0 . 0 5 ;
135 i f ∼au t o a c c e p t au t o t h r e s h o l d i n c r e a s e s
136 wa i t f o r (msgbox ( [ ’ th r e sho ld i s be ing adjusted to ’

num2str ( th r e sho ld +0.05) ] ) )
137 end
138 end
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139 e l s e
140 a c c e p t a u t o p r o f i l e l i n e s = true ;
141 end
142 end
143

144 case ’manual ’
145 % I f we ’ re t e s t i n g in manual mode , j u s t get a pa i r o f c oo rd ina t e s
146 % from the user f o r a s i n g l e scan l i n e .
147 f i g u r e
148 imshow ( I )
149 t i t l e ( ’ s c a n l i n e s e s t ima t e : Manual mode . S e l e c t two po in t s to take

imp r o f i l e between ’ )
150 [ inputX , inputY ] = ginput (2 ) ;
151 p r o f i l e c o o r d i n a t e s = [ inputX (1) inputY (1) inputX (2) inputY (2) ] ;
152 c l o s e
153 NumberOfScanLines = 1 ;
154 end
155

156 %% Check i f image p r o f i l e s exceed image dimensions
157 i f . . .
158 sum(sum( p r o f i l e c o o r d i n a t e s ( : , [ 1 3 ] ) > s i z e ( I , 2 ) ) ) + . . .
159 sum(sum( p r o f i l e c o o r d i n a t e s ( : , [ 1 3 ] ) < 0) ) + . . .
160 sum(sum( p r o f i l e c o o r d i n a t e s ( : , [ 2 4 ] ) > s i z e ( I , 1 ) ) ) + . . .
161 sum(sum( p r o f i l e c o o r d i n a t e s ( : , [ 2 4 ] ) < 0) ) . . .
162 ∼= 0
163 warning ( ’ s c a n l i n e s e s t ima t e : P r o f i l e l i n e s coo rd ina t e s exceed the

dimensions o f the image ’ )
164 f i g u r e ;
165 t i t l e ( ’ P r o f i l e l i n e s exceed image dimensions ’ )
166 subp lot ( 1 , 2 , 1 )
167 imshow ( I ) ;
168 subp lot ( 1 , 2 , 2 )
169 imshow ( I ) ;
170 hold on ;
171 p lo t ( b lob prop . P i x e l L i s t ( : , 1 ) , b lob prop . P i x e l L i s t ( : , 2 ) , ’ r . ’ )
172 drawnow
173 end
174

175

176 %% Plot the scan l i n e s
177 i f suppres s output == f a l s e
178 % Or ig ina l image
179 f i g u r e
180 subp lot ( 2 , 2 , 1 ) , imshow ( I )
181

182 % Image superimposed with p r o f i l e s
183 subp lot ( 2 , 2 , 2 )
184 subimage(255− I )
185 colormap ( ’ j e t ’ )
186 ax i s o f f
187 hold on
188 i f strcmp (SCANMODE, ’ auto ’ )
189 % Plot the major and minor ax i s
190 p lo t ( [ b lob prop . Centroid (1 )−BasicMajorVector (1 ) b lob prop . Centroid

(1 )+BasicMajorVector (1 ) ] , . . .
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191 [ b lob prop . Centroid (2 )−BasicMajorVector (2 ) b lob prop . Centroid
(2 )+BasicMajorVector (2 ) ] , ’ r− ’ )

192 p lo t ( [ b lob prop . Centroid (1 )−BasicMinorVector (1 ) b lob prop . Centroid
(1 )+BasicMinorVector (1 ) ] , . . .

193 [ b lob prop . Centroid (2 )−BasicMinorVector (2 ) b lob prop . Centroid
(2 )+BasicMinorVector (2 ) ] , ’b− ’ )

194 end
195 % Plot p r o f i l e l i n e s
196 f o r l =1: s i z e ( p r o f i l e c o o r d i n a t e s , 1 )
197 p lo t ( [ p r o f i l e c o o r d i n a t e s ( l , 1 ) ; p r o f i l e c o o r d i n a t e s ( l , 3 ) ] , [

p r o f i l e c o o r d i n a t e s ( l , 2 ) ; p r o f i l e c o o r d i n a t e s ( l , 4 ) ] , ’− ’ , ’ c o l o r ’
, [ 0 0 . 5 0 ] ) ;

198 end
199 end
200

201 %% Test f o r ex t e rna l b lur
202 i f strcmp (SCANMODE, ’manual ’ )
203 imag e p r o f i l e s pa r ame t e r s . i n c l u d e b l u r t y p e t e s t = f a l s e ;
204 end
205 i f imag e p r o f i l e s pa r ame t e r s . i n c l u d e b l u r t y p e t e s t == true
206 n o t u s e r s e l e c t e d c e n t r e = [ blob prop . Centroid (2 ) , b lob prop . Centroid

(1 ) ] ;
207 BlurType = th r e s h o l d i n g a r e a t e s t ( I , Isharp , n o t u s e r s e l e c t e d c e n t r e ,

I s ha rp e s t ima t ed c en t r e ) ;
208 e l s e
209 BlurType = ’ not r eque s t ed ’ ;
210 end
211

212

213 %% Get image p r o f i l e s
214 [ edge1 , edge2 , edge3 , edge4 ] = dea l ( nan (NumberOfScanLines , 2 ) ) ;
215

216 f o r p ro f i l e number =1:NumberOfScanLines % FOR EACH SCAN LINE
217

218 inputX = p r o f i l e c o o r d i n a t e s ( pro f i l e number , [ 1 3 ] ) ; % Get the
coo rd ina t e s o f t h i s scan l i n e

219 inputY = p r o f i l e c o o r d i n a t e s ( pro f i l e number , [ 2 4 ] ) ;
220

221 % Get the p r o f i l e l i n e
222 ima g e p r o f i l e v a l u e s = imp r o f i l e ( I , inputX , inputY , p r o f i l e l e n g t h , ’

b i l i n e a r ’ ) ;
223

224 % Basic f i l t e r
225 ima g e p r o f i l e v a l u e s = smooth ( imag e p r o f i l e v a l u e s ) ;
226

227 switch POINTMARKINGMETHOD
228 case ’ th r e sho ld ’
229 % IDENTIFY POINTS USING THRESHOLD
230 [∼ , mid point ] = max( imag e p r o f i l e v a l u e s ) ;
231 p i x e l r ang e = max( imag e p r o f i l e v a l u e s ) − min(

imag e p r o f i l e v a l u e s ) ;
232

233 l e f t c r o s s s e c t i o n = imag e p r o f i l e v a l u e s ( 1 : mid point ) ;
234 r i g h t c r o s s s e c t i o n = imag e p r o f i l e v a l u e s ( mid point+1:end ) ;
235 l o w l e f t p o i n t s = l e f t c r o s s s e c t i o n <= . . .
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236 min( l e f t c r o s s s e c t i o n )+p i x e l r ang e � s e n s i t i v i t y ;
237 l ow r i g h t p o i n t s = r i g h t c r o s s s e c t i o n <= . . .
238 min( r i g h t c r o s s s e c t i o n )+p i x e l r ang e � s e n s i t i v i t y ;
239

240 h i gh po in t s = imag e p r o f i l e v a l u e s >= . . .
241 max( imag e p r o f i l e v a l u e s )−p i x e l r ang e � s e n s i t i v i t y ;
242

243 point2 = f i nd ( h igh po in t s , 1 , ’ f i r s t ’ ) ;
244 point3 = f i nd ( h igh po in t s , 1 , ’ l a s t ’ ) ;
245

246 point1 = f i nd ( l ow l e f t p o i n t s , 1 , ’ l a s t ’ ) ;
247 point4 = f i nd ( l ow r i gh t po i n t s , 1 , ’ f i r s t ’ ) + mid point ;
248

249 case ’ t h r e sho ld s s e t ’
250 % IDENTIFY POINTS USING THRESHOLD
251 [∼ , mid point ] = max( imag e p r o f i l e v a l u e s ) ;
252 p i x e l r ang e = max( imag e p r o f i l e v a l u e s ) − min(

imag e p r o f i l e v a l u e s ) ;
253

254 i f ∼e x i s t ( ’ l ow thr e sho ld ’ , ’ var ’ ) ;
255 l ow thr e sho ld = min ( imag e p r o f i l e v a l u e s )+p i x e l r ang e �

s e n s i t i v i t y ;
256 h i gh th r e sho ld = max( imag e p r o f i l e v a l u e s )−p i x e l r ang e �

s e n s i t i v i t y ;
257 end
258

259 l e f t c r o s s s e c t i o n = imag e p r o f i l e v a l u e s ( 1 : mid point ) ;
260 r i g h t c r o s s s e c t i o n = imag e p r o f i l e v a l u e s ( mid point+1:end ) ;
261 l o w l e f t p o i n t s = l e f t c r o s s s e c t i o n <= low thre sho ld ;
262 l ow r i g h t p o i n t s = r i g h t c r o s s s e c t i o n <= low thre sho ld ;
263

264 h i gh po in t s = imag e p r o f i l e v a l u e s >= high th r e sho ld ;
265

266 point2 = f i nd ( h igh po in t s , 1 , ’ f i r s t ’ ) ;
267 point3 = f i nd ( h igh po in t s , 1 , ’ l a s t ’ ) ;
268

269 point1 = f i nd ( l ow l e f t p o i n t s , 1 , ’ l a s t ’ ) ;
270 point4 = f i nd ( l ow r i gh t po i n t s , 1 , ’ f i r s t ’ ) + mid point ;
271

272 case ’ th r e sho ld f indpeaks ’
273 % IDENTIFY POINTS USING THRESHOLD
274 [∼ , mid point ] = max( imag e p r o f i l e v a l u e s ) ;
275 p i x e l r ang e = max( imag e p r o f i l e v a l u e s ) − min(

imag e p r o f i l e v a l u e s ) ;
276

277 l e f t c r o s s s e c t i o n = imag e p r o f i l e v a l u e s ( 1 : mid point ) ;
278 r i g h t c r o s s s e c t i o n = imag e p r o f i l e v a l u e s ( mid point+1:end ) ;
279 l o w l e f t p o i n t s = l e f t c r o s s s e c t i o n <= min( l e f t c r o s s s e c t i o n )+

p i x e l r ang e � s e n s i t i v i t y ;
280 l ow r i g h t p o i n t s = r i g h t c r o s s s e c t i o n <= min(

r i g h t c r o s s s e c t i o n )+p i x e l r ang e � s e n s i t i v i t y ;
281

282 point1 = f i nd ( l ow l e f t p o i n t s , 1 , ’ l a s t ’ ) ;
283 point4 = f i nd ( l ow r i gh t po i n t s , 1 , ’ f i r s t ’ ) + mid point ;
284
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285 % f indpeaks f o r high po in t s
286 mid thresho ld = min ( imag e p r o f i l e v a l u e s ) + round ( p i x e l r ang e

/2) ;
287 h i gh po in t s = imag e p r o f i l e v a l u e s >= mid thresho ld ;
288 h i g h p o i n t s l e f t = f i nd ( h igh po in t s , true , ’ f i r s t ’ ) ;
289 h i g h p o i n t s r i g h t = f i nd ( h igh po in t s , true , ’ l a s t ’ ) ;
290 mid values = imag e p r o f i l e v a l u e s ( h i g h p o i n t s l e f t :

h i g h p o i n t s r i g h t ) ;
291 [∼ , p e ak l o c s ] = f indpeaks ( mid values , ’NPEAKS’ ,2 , ’SORTSTR’ , ’

descend ’ ) ;
292 i f s i z e ( peak loc s , 1 ) == 2
293 i f p eak l o c s (1 ) > peak l o c s (2 )
294 peak l o c s = [ peak l o c s (2 ) p eak l o c s (1 ) ] ;
295 end
296 point2 = peak l o c s (2 ) + h i g h p o i n t s l e f t −1;
297 point3 = peak l o c s (1 ) + h i g h p o i n t s l e f t −1;
298 e l s e
299 %thre sho ld f o r high po in t s
300 h i gh po in t s = imag e p r o f i l e v a l u e s >= . . .
301 max( imag e p r o f i l e v a l u e s )−p i x e l r ang e � s e n s i t i v i t y ;
302 point2 = f i nd ( h igh po in t s , 1 , ’ f i r s t ’ ) ;
303 point3 = f i nd ( h igh po in t s , 1 , ’ l a s t ’ ) ;
304 end
305

306 0 ;
307

308 case ’max d i f f e r e n c e ’
309 % IDENTIFY POINTS USING DIFFERENTIATED PROFILE
310 d i f f e r e n t s e c t i o n = ze ro s ( p r o f i l e l e n g t h , 1 ) ;
311 f o r s tep = 2 : p r o f i l e l e n g t h
312 d i f f e r e n t s e c t i o n ( step , 1 ) = imag e p r o f i l e v a l u e s ( s tep ) −

ima g e p r o f i l e v a l u e s ( step −1) ;
313 end
314

315 % Rudimentary f i l t e r
316 d i f f e r e n t s e c t i o n = d i f f e r e n t s e c t i o n .� abs ( d i f f e r e n t s e c t i o n ) /max(

abs ( d i f f e r e n t s e c t i o n ) ) ;
317

318 maxd i f f e r ent = max( abs ( d i f f e r e n t s e c t i o n ) ) ; m ind i f f e r en t = −
maxd i f f e r ent ;

319

320 po s i t i v e g r ad i e n t i n d = f i nd ( d i f f e r e n t s e c t i o n > maxd i f f e r ent �
s e n s i t i v i t y ) ;

321 nega t i v eg rad i en t i nd = f i nd ( d i f f e r e n t s e c t i o n < mind i f f e r en t �
s e n s i t i v i t y ) ;

322

323 point1 = po s i t i v e g r ad i e n t i n d (1 ) ;
324 point2 = po s i t i v e g r ad i e n t i n d ( end ) ;
325 point3 = nega t i v eg rad i en t i nd (1 ) ;
326 point4 = nega t i v eg rad i en t i nd ( end ) ;
327 i f sum( i snan ( [ po int1 po int2 po int3 po int4 ] ) ) > 0
328 warndlg ’Some po in t s have not been l o ca t ed . Try r a i s i n g

th r e sho ld ’
329 end
330
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331 case ’ p r o f i l e r a n s a c ’
332 % IDENTIFY POINTS USING RANSAC
333 g r av i t y we i gh t ed c en t r e = . . .
334 sum( ( imag e p r o f i l e v a l u e s �1 : s i z e ( imag e p r o f i l e v a l u e s ) ) ) / s i z e (

imag e p r o f i l e v a l u e s , 1 ) ;
335 l e f t c r o s s s e c t i o n = imag e p r o f i l e v a l u e s ( 1 : round (

g r av i t y we i gh t ed c en t r e ) ) ;
336 pts = [ [ 1 : s i z e ( l e f t c r o s s s e c t i o n ) ] ; l e f t c r o s s s e c t i o n ’ ;

z e r o s ( s i z e ( l e f t c r o s s s e c t i o n ) ) ’ ] ;
337 % RANSAC
338 [V, L , i n l i e r s ] = r a n s a c f i t l i n e ( pts , thDist )
339

340

341 iterNum = 150 ;
342 thDist = 2 ;
343 th In l rRa t i o = . 1 ;
344 [ t , r ] = ransac ( pts , iterNum , thDist , t h In l rRa t i o ) ;
345 k1 = −tan ( t ) ;
346 b1 = r / cos ( t ) ;
347 f i g u r e
348 p lo t (X, k1�X+b1 , ’ r ’ )
349

350 case ’ type2 ’
351 [∼] = type2 de t e c t i on ( imag e p r o f i l e v a l u e s ) ;
352

353 case ’ type3 ’
354 [∼] = type3 de t e c t i on ( imag e p r o f i l e v a l u e s ) ;
355

356 case ’ type4 ’
357 [ point1 , point2 , point3 , po int4 ] = type4 de t e c t i on (

imag e p r o f i l e v a l u e s , s e n s i t i v i t y ) ;
358 end
359

360

361

362 i f ∼s i z e ( point1 , 1 ) | | ∼s i z e ( point2 , 1 ) | | ∼s i z e ( point3 , 1 ) | | ∼s i z e (
point4 , 1 )

363 f i g u r e
364 imshow ( I )
365 hold on
366 p lo t ( e s t ima t ed t a r g e t c e n t r e (2 ) , e s t ima t ed t a r g e t c e n t r e (1 ) , ’ r+ ’ )
367 0 ;
368 e r r o r ( ’Some po in t s are miss ing ’ )
369 end
370

371 % Calcu la te coo rd ina t e s and save edge po in t s i n to an array
372 % Point 1
373 edgeX = inputX (1) + ( inputX (2)−inputX (1) ) /( p r o f i l e l e n g t h −1)�( point1 −1)

;
374 edgeY = inputY (1) + ( inputY (2)−inputY (1) ) /( p r o f i l e l e n g t h −1)�( point1 −1)

;
375 edge1 ( pro f i l e number , [ 1 2 ] ) = [ edgeX edgeY ] ;
376

377 % Point 2
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378 edgeX = inputX (1) + ( inputX (2)−inputX (1) ) /( p r o f i l e l e n g t h −1)�( point2 −1)
;

379 edgeY = inputY (1) + ( inputY (2)−inputY (1) ) /( p r o f i l e l e n g t h −1)�( point2 −1)
;

380 edge2 ( pro f i l e number , [ 1 2 ] ) = [ edgeX edgeY ] ;
381

382 % Point 3
383 edgeX = inputX (1) + ( inputX (2)−inputX (1) ) /( p r o f i l e l e n g t h −1)�( point3 −1)

;
384 edgeY = inputY (1) + ( inputY (2)−inputY (1) ) /( p r o f i l e l e n g t h −1)�( point3 −1)

;
385 edge3 ( pro f i l e number , [ 1 2 ] ) = [ edgeX edgeY ] ;
386

387 % Point 4
388 edgeX = inputX (1) + ( inputX (2)−inputX (1) ) /( p r o f i l e l e n g t h −1)�( point4 −1)

;
389 edgeY = inputY (1) + ( inputY (2)−inputY (1) ) /( p r o f i l e l e n g t h −1)�( point4 −1)

;
390 edge4 ( pro f i l e number , [ 1 2 ] ) = [ edgeX edgeY ] ;
391

392 % Halfway though , p l o t a p r o f i l e
393 i f ( p ro f i l e number == round (NumberOfScanLines /2) )
394 i f suppres s output == f a l s e
395 subp lot ( 2 , 2 , 4 ) ;
396 p lo t ( imag e p r o f i l e v a l u e s , ’−k ’ ) ; hold on
397 p lo t ( [ po int1 po int3 ] , imag e p r o f i l e v a l u e s ( round ( [ po int1 po int3

] ) ) , ’ ob ’ ) ;
398 p lo t ( [ po int2 po int4 ] , imag e p r o f i l e v a l u e s ( round ( [ po int2 po int4

] ) ) , ’ or ’ ) ;
399 end
400 end
401 end
402

403 %% I f t h i s was an ex t e rna l blur , c o r r e c t i t
404

405

406 i f imag e p r o f i l e s pa r ame t e r s . manual edge matching == 0
407

408 i f ( strcmp (POINTMARKINGMETHOD, ’ th r e sho ld f indpeaks ’ ) | | . . .
409 strcmp (POINTMARKINGMETHOD, ’ th r e sho ld ’ ) ) && strcmp (BlurType , ’ e x t e rna l

’ )
410 c i r c l e 1 e d g e = [ edge1 ; edge3 ] ;
411 c i r c l e 2 e d g e = [ edge2 ; edge4 ] ;
412 di sp ( ’ s c a n l i n e s e s t ima t e : Switching some co−ords ’ )
413 e l s e
414 c i r c l e 1 e d g e = [ edge1 ; edge2 ] ;
415 c i r c l e 2 e d g e = [ edge3 ; edge4 ] ;
416 end
417

418

419 e l s e i f image p r o f i l e s pa r ame t e r s . manual edge matching == 1
420 c i r c l e 1 e d g e = [ edge1 ; edge2 ] ;
421 c i r c l e 2 e d g e = [ edge3 ; edge4 ] ;
422 e l s e i f image p r o f i l e s pa r ame t e r s . manual edge matching == 2
423 c i r c l e 1 e d g e = [ edge1 ; edge3 ] ;
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424 c i r c l e 2 e d g e = [ edge2 ; edge4 ] ;
425 e l s e
426 e r r o r ( ’ s c a n l i n e s e s t ima t e : i n c o r r e c t manual edge matching parameter ’ )
427 end
428

429

430

431 %% Fit c i r c l e to the po in t s
432 switch image p r o f i l e s pa r ame t e r s . c i r c l e f i t t i n g m e t h o d
433 case ’ standard ’
434 [ xc1 , yc1 , R1 ] = c i r c f i t ( c i r c l e 1 e d g e ( : , 1 ) , c i r c l e 1 e d g e ( : , 2 ) ) ;
435 [ xc2 , yc2 , R2 ] = c i r c f i t ( c i r c l e 2 e d g e ( : , 1 ) , c i r c l e 2 e d g e ( : , 2 ) ) ;
436 case ’ ransac ’
437 t r i a l s = image p r o f i l e s pa r ame t e r s . r a n s a c t r i a l s ;
438 dth = image p r o f i l e s pa r ame t e r s . ransac dth ;
439 percent = image p r o f i l e s pa r ame t e r s . r an sac pe r c en t ;
440 rL imi t s = image p r o f i l e s pa r ame t e r s . r an sa c rL im i t s ;
441

442 [ r an sac cente r , r an sa c r ] = r a n s a c c i r c l e ( c i r c l e 1 e d g e , t r i a l s , dth
, percent , rL imi t s ) ;

443 [ xc1 , yc1 ] = dea l ( r an sa c c en t e r (1 ) , r an s a c c en t e r (2 ) ) ;
444 R1 = ran sa c r ;
445

446 [ r an sac cente r , r an sa c r ] = r a n s a c c i r c l e ( c i r c l e 2 e d g e , t r i a l s , dth
, percent , rL imi t s ) ;

447 [ xc2 , yc2 ] = dea l ( r an sa c c en t e r (1 ) , r an s a c c en t e r (2 ) ) ;
448 R2 = ran sa c r ;
449 case ’ f i t e l l i p s e ’
450 e l l i p s e t 1 = f i t e l l i p s e ( c i r c l e 1 e d g e ( : , 1 ) , c i r c l e 1 e d g e ( : , 2 ) ) ;
451 xc1 = e l l i p s e t 1 . X0 in ;
452 yc1 = e l l i p s e t 1 . Y0 in ;
453 R1 = ( e l l i p s e t 1 . a+e l l i p s e t 1 . b ) /2 ;
454 e l l i p s e t 2 = f i t e l l i p s e ( c i r c l e 2 e d g e ( : , 1 ) , c i r c l e 2 e d g e ( : , 2 ) ) ;
455 xc2 = e l l i p s e t 2 . X0 in ;
456 yc2 = e l l i p s e t 2 . Y0 in ;
457 R2 = ( e l l i p s e t 2 . a+e l l i p s e t 2 . b ) /2 ;
458 end
459 [ c i r c 1 r e s i d u a l ] = c i r c f i t r e s i d u a l s ( xc1 , yc1 ,R1 , c i r c l e 1 e d g e ( : , 1 ) ,

c i r c l e 1 e d g e ( : , 2 ) ) ;
460 [ c i r c 2 r e s i d u a l ] = c i r c f i t r e s i d u a l s ( xc2 , yc2 ,R2 , c i r c l e 2 e d g e ( : , 1 ) ,

c i r c l e 2 e d g e ( : , 2 ) ) ;
461 i f c i r c 1 r e s i d u a l > 0 .5 | | c i r c 2 r e s i d u a l > 0 .5
462 f p r i n t f ( ’WARNING: c i r c l e f i t might not be very good . Mean e r r o r : Blue :

%1.3 f Red : %1.3 f \n ’ , c i r c 1 r e s i d u a l , c i r c 2 r e s i d u a l ) ;
463 end
464

465

466 %% Plot the measured edges
467 % The ( l a s t ) sampled l i n e p r o f i l e w i l l a l s o be p l o t t ed in the case o f
468 % manual t e s t i n g mode
469 i f suppres s output == f a l s e
470 subp lot ( 2 , 2 , 3 )
471 imshow(255− I ) %%% THIS CHANGES THE INVERSE FOR IMAGE 3
472 hold on ,
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473 p lo t ( c i r c l e 1 e d g e ( : , 1 ) , c i r c l e 1 e d g e ( : , 2 ) , ’ ob ’ , c i r c l e 2 e d g e ( : , 1 ) ,
c i r c l e 2 e d g e ( : , 2 ) , ’ or ’ ) , c ax i s auto , %co lorbar , colormap ( j e t )

474 i f strcmp (SCANMODE, ’manual ’ )
475 f i g u r e
476 subp lot ( 1 , 3 , 1 ) ; % 1 : Show the image
477 hold o f f , imshow ( I ) , hold on , c ax i s auto ,
478 p lo t ( c i r c l e 1 e d g e ( : , 1 ) , c i r c l e 1 e d g e ( : , 2 ) , ’ ob ’ ) , c ax i s auto , %

co lorbar , colormap ( j e t )
479 p lo t ( c i r c l e 2 e d g e ( : , 1 ) , c i r c l e 2 e d g e ( : , 2 ) , ’ or ’ ) , c ax i s auto , %

co lorbar , colormap ( j e t )
480

481 subp lot ( 1 , 3 , 2 ) ; % 2 : The l i n e p r o f i l e
482 % f i g u r e (20)
483 p lo t ( imag e p r o f i l e v a l u e s , ’−k ’ ) ; hold on
484 p lo t ( [ po int1 po int3 ] , imag e p r o f i l e v a l u e s ( [ po int1 po int3 ] ) , ’om ’ ) ;
485 p lo t ( [ po int2 po int4 ] , imag e p r o f i l e v a l u e s ( [ po int2 po int4 ] ) , ’om ’ ) ;
486 i f strcmp (POINTMARKINGMETHOD, ’ th r e sho ld ’ )
487 p lo t ( [ 0 mid point ] , repmat (min ( l e f t c r o s s s e c t i o n )+p i x e l r ang e �

s e n s i t i v i t y , 1 , 2 ) , ’ g− ’ )
488 p lo t ( [ mid point p r o f i l e l e n g t h ] , repmat (min ( r i g h t c r o s s s e c t i o n )+

p i x e l r ang e � s e n s i t i v i t y , 1 , 2 ) , ’ g− ’ )
489 p lo t ( [ 0 p r o f i l e l e n g t h ] , repmat (max( imag e p r o f i l e v a l u e s )−

p i x e l r ang e � s e n s i t i v i t y , 1 , 2 ) , ’ g− ’ )
490 end
491 hold o f f ;
492

493 % 3: the d i f f e r e n t i a t e p r o f i l e
494 i f strcmp (POINTMARKINGMETHOD, ’max d i f f e r e n c e ’ )
495 subp lot ( 1 , 3 , 3 ) , p l o t ( d i f f e r e n t s e c t i o n ) ; f i g u r e ( g c f ) , hold on
496 p lo t ( [ po int1 po int2 po int3 po int4 ] , [ maxd i f f e r ent � s e n s i t i v i t y

maxd i f f e r ent � s e n s i t i v i t y m ind i f f e r en t � s e n s i t i v i t y
m ind i f f e r en t � s e n s i t i v i t y ] , ’ or ’ ) , hold o f f

497 end
498 end
499 end
500

501 %% Plot and o f f e r to the user
502 i f suppres s output == f a l s e && strcmp (SCANMODE, ’ auto ’ )
503 th = l i n s p a c e (0 ,2� pi , 2 0 ) ’ ;
504 % plot1
505 xe1 = R1� cos ( th )+xc1 ; ye1 = R1� s i n ( th )+yc1 ;
506 p lo t ( [ xe1 ; xe1 (1 ) ] , [ ye1 ; ye1 (1 ) ] , ’b− ’ , xc1 , yc1 , ’ bx ’ )
507 % plot2
508 xe2 = R2� cos ( th )+xc2 ; ye2 = R2� s i n ( th )+yc2 ;
509 p lo t ( [ xe2 ; xe2 (1 ) ] , [ ye2 ; ye2 (1 ) ] , ’ r− ’ , xc2 , yc2 , ’ rx ’ )
510 ax i s equal
511 s e t ( gcf , ’ Po s i t i on ’ , get (0 , ’ S c r e en s i z e ’ ) ) ;
512 drawnow
513 end
514

515 s e pa r a t i o n po l a r (1 ) = hypot ( yc2−yc1 , xc2−xc1 ) ;
516 s e pa r a t i o n po l a r (2 ) = atan2d ( ( yc2−yc1 ) , ( xc2−xc1 ) ) ;
517

518 i f strcmp (SCANMODE, ’ auto ’ )
519 varargout {1} = [ xc1 yc1 xc2 yc2 ] ;
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520 varargout {2} = blob prop . WeightedCentroid ( [ 2 1 ] ) ;
521 varargout {3} = [ xc1 yc1 R1 ; xc2 yc2 R2 ] ;
522 varargout {4} = s t ru c t ( . . .
523 ’ c i r c f i t r e s u l t ’ , [ xc1 yc1 R1 ; xc2 yc2 R2 ] , . . .
524 ’ b lob WeightedCentroid ’ , b lob prop . WeightedCentroid ( [ 2 1 ] ) , . . .
525 ’ s e p a r a t i o n r c ’ , [ yc2−yc1 , xc2−xc1 ] , . . .
526 ’ s e p a r a t i o n c a r t e s i a n ’ , [ yc2−yc1 , xc2−xc1 ] , . . .
527 ’ e c l ud i an s epa r a t i on ’ , s q r t (sum ( [ yc2−yc1 , xc2−xc1 ] . ˆ 2 ) ) , . . .
528 ’ b lu r type ’ , BlurType , . . .
529 ’ point marking method ’ , POINTMARKINGMETHOD, . . .
530 ’ scanmode ’ , SCANMODE, . . .
531 ’ c i r c l e 1 p o i n t s ’ , c i r c l e 1 e d g e , . . .
532 ’ c i r c l e 2 p o i n t s ’ , c i r c l e 2 e d g e , . . .
533 ’ s e p a r a t i o n po l a r ’ , s epa ra t i on po l a r , . . .
534 ’ xc1yc1xc2yc2 ’ , [ xc1 yc1 xc2 yc2 ] , . . .
535 ’ s e p a r a t i o n d i s t an c e ’ , hypot ( yc2−yc1 , xc2−xc1 ) ) ;
536 i f strcmp (POINTMARKINGMETHOD, ’ th r e sho ld s s e t ’ )
537 varargout {4} . l ow thr e sho ld = low thre sho ld ;
538 varargout {4} . h i gh th r e sho ld = h igh th r e sho ld ;
539 end
540 i f strcmp ( image p r o f i l e s pa r ame t e r s . c i r c l e f i t t i n g me t h od , ’ f i t e l l i p s e ’

)
541 varargout {4} . e l l i p s e t 1 = e l l i p s e t 1 ;
542 varargout {4} . e l l i p s e t 2 = e l l i p s e t 2 ;
543 end
544 e l s e
545 [ varargout {1} , varargout {2} , varargout {3} , varargout {4} ] = dea l ( nan ) ;
546 di sp ( ’ s c a n l i n e s e s t ima t e : No u s e f u l outputs when in manual scan mode ’ )

;
547 end
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C.3 ‘refine with simulation3’

1 f unc t i on [ varargout ] = r e f i n e w i t h s imu l a t i o n 3 (∼ ,∼ ,∼ ,∼ , window size ,
Padding , aa , i t e r a t i o n s l im i t , . . .

2 Isharp , I sha rp c ropped e s t imated cen t r e , Iobserved ,∼ ,∼ ,
image p ro f i l e s pa ramet e r s ,∼ , f i r s t p r o f i l e s d a t a )

3

4 i f s i z e ( Iobserved , 1 ) == 0 , d i sp ( ’ Blurred image i s empty ’ ) , return , end
5 i f s i z e ( Isharp , 1 ) == 0 , d i sp ( ’ Sharp image i s empty ’ ) , return , end
6

7 n e c e s s a r y p r e c i s i o n = [ 0 .01 5 ]
8 i t e r a t i o n s l i m i t = 50
9 s e a r c h i n g f o r z e r o = f a l s e ;

10 i t e r a t i o n = 1 ; % The f i r s t i t e r a t i o n w i l l be numbered 1
11 i t e r a t i o n l e v e l = 1 ;
12 nece s sa ry accu racy r eached = f a l s e ;
13 n e c e s s a r y p r e c i s i o n r e a c h ed po l a r = f a l s e (2 ) ;
14 image p ro f i l e s pa ramet e r s ,
15

16 i f i s f i e l d ( image p ro f i l e s pa ramet e r s , ’ f i r s t g u e s s ’ ) . . .
17 && image p r o f i l e s pa r ame t e r s . f i r s t g u e s s
18 i t e r a t i o n s l i m i t = 1 ;
19 end
20

21 % Sets each b lur d i sp lacement that w i l l be t e s t ed in the f i r s t i t e r a t i o n
22 % and s e t s the t a r g e t
23 p r o f i l e s p o l a r t a r g e t = f i r s t p r o f i l e s d a t a . s e pa r a t i o n po l a r ;
24 p r o f i l e s p o l a r t a r g e t (2 ) = pu t po l a r ang l e w i t h i n r ang e (

p r o f i l e s p o l a r t a r g e t (2 ) ) ;
25 row th = p r o f i l e s p o l a r t a r g e t (1 ) ; % Row = d i s t
26 r ow th s t a r t = row th (1) ; row th end = row th ( end ) ;
27 row th=0;
28

29 % Check i f the b lur o r i e n t a t i o n i s f o r c ed
30 i f imag e p r o f i l e s pa r ame t e r s . f o r c e b l u r d i r e c t i o n
31 n e c e s s a r y p r e c i s i o n r e a c h ed po l a r (2 ) = true ;
32 switch image p r o f i l e s pa r ame t e r s . a s sumed b lu r d i r e c t i on
33 case ’ ho r i z ’
34 c o l t h = 0 ;
35 case ’ ve r t ’
36 c o l t h = 90 ;
37 end
38 e l s e
39 c o l t h = p r o f i l e s p o l a r t a r g e t (2 ) ; % Col = angle
40 end
41 c o l t h s t a r t = c o l t h (1 ) ; c o l t h end = co l t h ( end ) ;
42

43 0 ;
44

45 row ind = 1 : s i z e ( row th , 2 ) ; % Numbers the b lur d i sp lacements
46 %%%%%%%%%%%%%%%%% row/ c o l i n d v a r i a b l e s can
47 %%%%%%%%%%%%%%%%% probably be removed
48 row th span = row th end − r ow th s t a r t ;
49 c o l i n d = 1 : s i z e ( co l th , 2 ) ;
50 c o l t h span = co l t h end − c o l t h s t a r t ;
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51

52

53

54 % Plot f i r s t image with s c a n l i n e s data
55 i f ∼imag e p r o f i l e s pa r ame t e r s . suppres s output
56 f i g h o b s v s f i l t e r e d = f i g u r e (10) ;
57 maxfig ( gcf , 1 ) ;
58 subp lot ( 2 , 4 , [ 1 2 ] )
59 subimage ( Iobserved )
60 c ax i s auto
61 hold on
62 f i r s t p r o f i l e s f i t c i r c l e s = f i r s t p r o f i l e s d a t a . c i r c f i t r e s u l t ;
63 i f ∼imag e p r o f i l e s pa r ame t e r s . suppres s output
64 d i sp l ay image p rog r e s s ( f i g h o b s v s f i l t e r e d , Iobserved ,

f i r s t p r o f i l e s d a t a , 1 )
65 end
66

67 hold o f f
68 t i t l e ( ’ Blurred obse rvat i on image ’ )
69 end
70

71

72

73

74 %% THIS IS WHERE ITERATIONS START
75 whi le ∼nece s sa ry accu racy r eached && i t e r a t i o n <= i t e r a t i o n s l i m i t
76 % c = nan ( row ind ( end ) , c o l i n d ( end ) ) ;
77 s c a n l i n e d i f f e r e n c e = nan ( row ind ( end ) , c o l i n d ( end ) ) ;
78 [ p o l a r d i s t d i f f e r e n c e , p o l a r a n g d i f f e r e n c e ] = dea l ( nan ( row ind ( end ) ,

c o l i n d ( end ) ) ) ;
79

80 % Fi r s t i t e r a t e po la r ang le
81 row = round ( row ind ( end ) /2) ;
82 c o l = 1 ;
83 f p r i n t f ( ’ r e f i n e w i t h s imu l a t i o n : Polar mode I t e r :%1u Lev:%

lu Ind :%2.0u ,%2.0u Dist : %5.3 f Ang : %5.3 f \n ’ , i t e r a t i o n ,
i t e r a t i o n l e v e l , row , co l , row th ( row ) , c o l t h ( c o l ) ) ;

84 i f i snan ( c o l t h ( c o l ) )
85 di sp ( ’ ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! c o l t h ( c o l i s Nan ’ ) , end
86 [ I s h a r p f i l t e r e d , ∼ , ∼ , p r o f i l e s d a t a c u r r e n t ] = . . .
87 v e r i f y w i t h s imu l a t i o n ( Iobserved , Isharp , . . .
88 0 , [ 0 0 0 0 ] , window size , . . .
89 Padding , aa , I sha rp c ropped e s t imated cen t r e , . . .
90 image p ro f i l e s pa ramet e r s , [ row th ( row ) c o l t h ( c o l ) ] ,

s e a r c h i n g f o r z e r o ) ;
91 i f ∼imag e p r o f i l e s pa r ame t e r s . suppres s output
92 d i sp l ay image p rog r e s s ( f i g h o b s v s f i l t e r e d , I s h a r p f i l t e r e d

, p r o f i l e s d a t a c u r r e n t ) % Display prog r e s s
93 end
94

95 p r o f i l e s p o l a r c u r r e n t = p r o f i l e s d a t a c u r r e n t . s e p a r a t i o n po l a r
;

96 p r o f i l e s p o l a r c u r r e n t (2 ) = pu t po l a r ang l e w i t h i n r ang e (
p r o f i l e s p o l a r c u r r e n t (2 ) ) ;

97
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98 p o l a r d i s t d i f f e r e n c e ( row , c o l ) = p r o f i l e s p o l a r c u r r e n t (1 ) −
p r o f i l e s p o l a r t a r g e t (1 ) ;

99 p o l a r a n g d i f f e r e n c e ( row , c o l ) = p r o f i l e s p o l a r c u r r e n t (2 ) −
p r o f i l e s p o l a r t a r g e t (2 ) ;

100

101 f p r i n t f ( ’ \b D i f f s : d : %1.5 f a : %1.5 f \n ’ , p o l a r d i s t d i f f e r e n c e
( row , c o l ) , p o l a r a n g d i f f e r e n c e ( row , c o l ) ) ;

102 di sp ( [ ’ Polar DIST : Target : ’ num2str ( p r o f i l e s p o l a r t a r g e t (1 ) )
’ Current : ’ num2str ( p r o f i l e s p o l a r c u r r e n t (1 ) ) ] ) ;

103 di sp ( [ ’ Polar ANGLE: Target : ’ num2str ( p r o f i l e s p o l a r t a r g e t (2 ) )
’ Current : ’ num2str ( p r o f i l e s p o l a r c u r r e n t (2 ) ) ] ) ;

104

105

106 % [∼ , h i g h e s t c o r r e l a t i o n s u b (2 ) ] = min ( abs ( p o l a r a n g d i f f e r e n c e (
row , : ) ) ) ;

107 % e l s e
108 h i g h e s t c o r r e l a t i o n s u b (2 ) = 1 ;
109 % end
110

111

112 h i g h e s t c o r r e l a t i o n s u b (1 ) = 1 ;
113

114 i f ∼imag e p r o f i l e s pa r ame t e r s . suppres s output
115 f i g u r e ( f i g h o b s v s f i l t e r e d )
116 jetmap = colormap ( ’ j e t ’ ) ;
117 % subplot ( 1 , 3 , 1 ) , imshow ( s c a n l i n e d i f f e r e n c e ) , t i t l e ( ’ Scan l ine ec lud

. d i s t . d i f f . ’ )
118 subp lot ( 2 , 4 , 5 ) , subimage ( p o l a r an g d i f f e r e n c e , jetmap ) , t i t l e ( ’ Polar .

ang . d i f f . ’ )
119 subp lot ( 2 , 4 , 6 ) , subimage ( p o l a r d i s t d i f f e r e n c e , jetmap ) , t i t l e ( ’ Polar .

d i s t . d i f f . ’ )
120 colormap ( ’ j e t ’ ) , c ax i s auto
121

122 % Output some handy f i g u r e s to check on the p rog r e s s
123 f i g u r e ( f i g h o b s v s f i l t e r e d ) ,
124 i f ∼n e c e s s a r y p r e c i s i o n r e a c h ed po l a r (2 )
125 subp lot ( 2 , 4 , 7 ) ,
126 p lo t ( co l th , p o l a r a n g d i f f e r e n c e ( round ( row ind ( end ) /2) , : ) ) ;
127 ax i s equal ;
128 t i t l e ( ’ Angular i t e r a t i o n s ’ )
129 end
130 i f ∼n e c e s s a r y p r e c i s i o n r e a c h ed po l a r (1 )
131 subp lot ( 2 , 4 , 8 ) ,
132 p lo t ( row th , p o l a r d i s t d i f f e r e n c e ( : , h i g h e s t c o r r e l a t i o n s u b (2 ) ) ) ;
133 ax i s equal ;
134 t i t l e ( ’ Distance i t e r a t i o n s ’ )
135 end
136

137 end
138 % Pre c i s i on check
139 c u r r e n t p r e c i s i o n (1 ) = abs ( p o l a r d i s t d i f f e r e n c e ) ;
140 c u r r e n t p r e c i s i o n (2 ) = abs ( p o l a r a n g d i f f e r e n c e ) ;
141 i f ( c u r r e n t p r e c i s i o n <= ne c e s s a r y p r e c i s i o n ) == [1 1 ] ;
142 nece s sa ry accu racy r eached = true ;
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143 di sp ( s t r c a t ( ’ Accurecy check :− Current : ’ , num2str (
c u r r e n t p r e c i s i o n ) , ’ Limit : ’ , num2str ( n e c e s s a r y p r e c i s i o n ) , ’
ACCEPT! ’ ) )

144 e l s e
145 di sp ( s t r c a t ( ’ Accurecy check :− Current : ’ , num2str (

c u r r e n t p r e c i s i o n ) , ’ Limit : ’ , num2str ( n e c e s s a r y p r e c i s i o n ) )
)

146 end
147 i f c u r r e n t p r e c i s i o n (2 ) <= ne c e s s a r y p r e c i s i o n (2 )
148 n e c e s s a r y p r e c i s i o n r e a c h ed po l a r (2 ) = true ;
149 end
150 i f c u r r e n t p r e c i s i o n (1 ) <= ne c e s s a r y p r e c i s i o n (1 )
151 n e c e s s a r y p r e c i s i o n r e a c h ed po l a r (1 ) = true ;
152 end
153

154

155 % Columns = Angle
156 i f n e c e s s a r y p r e c i s i o n r e a c h ed po l a r (2 )
157 % [ c o l t h s t a r t , c o l t h end ] = dea l ( c o l t h (

h i g h e s t c o r r e l a t i o n s u b (2 ) ) ) ;
158 e l s e
159 c o l t h = co l t h + po l a r a n g d i f f e r e n c e (1 , 1 ) ;
160 end
161

162 % Rows = Distances
163 i f n e c e s s a r y p r e c i s i o n r e a c h ed po l a r (1 )
164 % [ row th s ta r t , row th end ] = dea l ( row th (

h i g h e s t c o r r e l a t i o n s u b (1 ) ) ) ;
165 e l s e
166 i f row th − p o l a r d i s t d i f f e r e n c e (1 , 1 ) < 0
167 % Check i f l ook ing f o r ze ro
168 row th = row th /2
169 e l s e
170 % Not look ing f o r ze ro
171 row th = row th − p o l a r d i s t d i f f e r e n c e (1 , 1 ) ;
172 end
173 end
174 i t e r a t i o n l e v e l = i t e r a t i o n l e v e l +1;
175

176 i f ∼nece s sa ry accu racy r eached && i t e r a t i o n < i t e r a t i o n s l i m i t % Check
i f the re are more i t e r a t i o n s to go

177

178 e l s e % This was the f i n a l i t e r a t i o n − t h i s va lue
179 % w i l l be passed back to the parent func t i on .
180 best match row = row th ;
181 bes t match co l = c o l t h ;
182 % best match co l = p r o f i l e s p o l a r c u r r e n t (2 ) ;
183 best match = [ best match row bes t match co l ] ;
184 end
185

186 i t e r a t i o n = i t e r a t i o n + 1 ; % Inc r e a s e the counter
187 end
188

189 i f i s f i e l d ( image p ro f i l e s pa ramet e r s , ’ f i r s t g u e s s ’ ) . . .
190 && image p r o f i l e s pa r ame t e r s . f i r s t g u e s s
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191 best match = f i r s t p r o f i l e s d a t a . s e p a r a t i o n po l a r −
p r o f i l e s d a t a c u r r e n t . s e p a r a t i o n po l a r ;

192 end
193 0 ;
194

195 varargout {1} = best match ;
196 varargout {2} = best match ;
197 varargout {3} = p r o f i l e s d a t a c u r r e n t ;
198 end
199

200 f unc t i on [ output ang le ] = pu t po l a r ang l e w i t h i n r ang e ( i nput ang l e )
201

202 i f i npu t ang l e < 0
203 i npu t ang l e = input ang l e + 180 ;
204 end % Output range : 0 ∼ 180
205 i f i npu t ang l e > 105
206 i npu t ang l e = input ang l e − 180 ;
207 end % Output range : −45 ∼ 105
208

209 output ang le = input ang l e ;
210 end
211

212 f unc t i on d i sp l ay image p rog r e s s ( f i g hand l e , I s h a r p f i l t e r e d ,
c u r r e n t p r o f i l e s d a t a , vara rg in )

213 f i g u r e ( f i g h and l e )
214 % Observat ion image d i sp l ayed by r e f i n e w i t h s imu l a t i o n func t i on
215 i f narg in == 4
216 subp lot ( 2 , 4 , [ 1 2 ] )
217 e l s e
218 subp lot ( 2 , 4 , [ 3 4 ] )
219 end
220 subimage ( I s h a r p f i l t e r e d )
221 hold on
222 switch i s f i e l d ( c u r r e n t p r o f i l e s d a t a , ’ e l l i p s e t 1 ’ )
223 case f a l s e
224 xc1 = c u r r e n t p r o f i l e s d a t a . c i r c f i t r e s u l t ( 1 , 1 ) ;
225 yc1 = c u r r e n t p r o f i l e s d a t a . c i r c f i t r e s u l t ( 1 , 2 ) ;
226 R1 = cu r r e n t p r o f i l e s d a t a . c i r c f i t r e s u l t ( 1 , 3 ) ;
227 xc2 = c u r r e n t p r o f i l e s d a t a . c i r c f i t r e s u l t ( 2 , 1 ) ;
228 yc2 = c u r r e n t p r o f i l e s d a t a . c i r c f i t r e s u l t ( 2 , 2 ) ;
229 R2 = cu r r e n t p r o f i l e s d a t a . c i r c f i t r e s u l t ( 2 , 3 ) ;
230 th = l i n s p a c e (0 ,2� pi , 2 0 ) ’ ;
231 xe1 = R1� cos ( th )+xc1 ; ye1 = R1� s i n ( th )+yc1 ; % p lo t1
232 p lo t ( [ xe1 ; xe1 (1 ) ] , [ ye1 ; ye1 (1 ) ] , ’b− ’ , xc1 , yc1 , ’ bx ’ )
233 p lo t ( c u r r e n t p r o f i l e s d a t a . c i r c l e 1 p o i n t s ( : , 1 ) ,

c u r r e n t p r o f i l e s d a t a . c i r c l e 1 p o i n t s ( : , 2 ) , ’ bo ’ )
234 xe2 = R2� cos ( th )+xc2 ; ye2 = R2� s i n ( th )+yc2 ; % p lo t2
235 p lo t ( [ xe2 ; xe2 (1 ) ] , [ ye2 ; ye2 (1 ) ] , ’ r− ’ , xc2 , yc2 , ’ rx ’ )
236 p lo t ( c u r r e n t p r o f i l e s d a t a . c i r c l e 2 p o i n t s ( : , 1 ) ,

c u r r e n t p r o f i l e s d a t a . c i r c l e 2 p o i n t s ( : , 2 ) , ’ ro ’ )
237 case t rue
238 xc1 = c u r r e n t p r o f i l e s d a t a . e l l i p s e t 1 . X0 in ;
239 yc1 = c u r r e n t p r o f i l e s d a t a . e l l i p s e t 1 . Y0 in ;
240 a1 = cu r r e n t p r o f i l e s d a t a . e l l i p s e t 1 . a ;
241 b1 = cu r r e n t p r o f i l e s d a t a . e l l i p s e t 1 . b ;
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242 phi1 = c u r r e n t p r o f i l e s d a t a . e l l i p s e t 1 . phi ;
243 e l l i p s e ( a1 , b1 , phi1 , xc1 , yc1 , ’b ’ )
244 p lo t ( xc1 , yc1 , ’ bx ’ )
245

246 xc2 = c u r r e n t p r o f i l e s d a t a . e l l i p s e t 2 . X0 in ;
247 yc2 = c u r r e n t p r o f i l e s d a t a . e l l i p s e t 2 . Y0 in ;
248 a2 = cu r r e n t p r o f i l e s d a t a . e l l i p s e t 2 . a ;
249 b2 = cu r r e n t p r o f i l e s d a t a . e l l i p s e t 2 . b ;
250 phi2 = c u r r e n t p r o f i l e s d a t a . e l l i p s e t 2 . phi ;
251 e l l i p s e ( a2 , b2 , phi2 , xc2 , yc2 , ’ r ’ )
252 p lo t ( xc2 , yc2 , ’ rx ’ )
253

254 end
255 t i t l e ( ’ Sharp f i l t e r e d image ’ )
256 hold o f f
257 ax i s equal
258 end
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C.4 ‘verify with simulation’

1 % ve r i f y w i t h s imu l a t i o n
2 % D McCarthy Nov 2012
3 % Takes a b lur r ed and unblurred image , a r t i f i c i a l l y b lu r s the sharp image ,
4 % and c a l c u l a t e s the c o r r e l a t i o n s t a t i s t i c
5 %
6 % Usage : c = v e r i f y w i t h s imu l a t i o n ( Ib lur red , Isharp ,∼ , . . .
7 % BlurDisplacementsPair , window size ,∼ , aa , . . .
8 % Isha rp e s t ima t ed c en t r e )
9 %

10 % where Ib l u r r ed : Cropped b lur r ed obs e rva t i on s image
11 % Isharp : Cropped sharp images with padding
12 % BlurDisp lacementsPair : [ xc1 xc2 yc1 yc2 ]
13 % window size : S i z e o f c o r r e l a t i o n window
14 % aa : Parameter f o r the a r t i f i c i a l p s f
15 % Isha rp e s t ima t ed c en t r e : Centre o f the sharp image
16 %
17

18 f unc t i on [ varargout ] = v e r i f y w i t h s imu l a t i o n ( Ib lur red , Isharp ,∼ ,
BlurDisplacementsPair , . . .

19 window size ,∼ , aa , I sha rp e s t imat ed c en t r e , image p ro f i l e s pa ramet e r s ,
va ra rg in )

20

21

22 % s e a r c h i n g f o r z e r o = vararg in {2} ;
23

24 %% Estimate the b lur PSF and f i l t e r the sharp image
25 % k e r n e l s i z e = [50 5 0 ] ;
26

27 % i f po la r ?
28 i f narg in >= 10
29 po l a r s e pa r a t i on = vararg in {1} ;
30 % e s t ima t e d b l u r s i z e = [ 0 po l a r s e pa r a t i o n (1 ) ] ;
31 % ke r n e l r o t a t i o n = po l a r s e pa r a t i o n (2 ) ;
32 e l s e
33 xc1 = BlurDisp lacementsPair (1 ) ; % Just c o l l e c t i n g the input v a r i a b l e s
34 xc2 = BlurDisp lacementsPair (2 ) ;
35 yc1 = BlurDisp lacementsPair (3 ) ;
36 yc2 = BlurDisp lacementsPair (4 ) ;
37 % e s t ima t e d b l u r s i z e = [ yc2−yc1 , xc2−xc1 ] ;
38 % ke r n e l r o t a t i o n = 0 ;
39 end
40

41 ps f = s i n u s o i d a l b l u r k e r n e l 5 ( p o l a r s e pa r a t i o n (1 ) , p o l a r s e pa r a t i o n (2 ) , aa ) ;
42 I s h a r p f i l t e r e d = im f i l t e r ( Isharp , psf , ’ r e p l i c a t e ’ ) ;
43

44 % Crop away the add i t i o na l padding added e a r l i e r
45 I s ha rp c r op co rne r 2 = round ( I sha rp e s t ima t ed c en t r e ) − window size . / 2 ;
46 I s h a r p f i l t e r e d = imcrop ( I s h a r p f i l t e r e d , [ I s ha rp c r op co rne r 2 (2 )

I sha rp c r op co rne r 2 (1 ) window size (2 )−1 window size (1 ) −1]) ;
47 % Do the same f o r u n f i l t e r e d Isharp
48 I sharp = imcrop ( Isharp , [ I s ha rp c r op co rne r 2 (2 ) I sha rp c r op co rne r 2 (1 )

window size (2 )−1 window size (1 ) −1]) ;
49 I s ha rp e s t ima t ed c en t r e = I sha rp e s t ima t ed c en t r e − I s ha rp c r op co rne r 2 ;



C. Key Matlab algorithms 243

50

51 %% Compare to the b lur r ed image
52

53 c = 0 ;
54

55 % USING PROFILES
56 I u s e r s e l e c t e d p o i n t = round ( s i z e ( I s h a r p f i l t e r e d ) /2) ;
57

58 imag e p r o f i l e s pa r ame t e r s . i s s imu l a t ed image = true ;
59 i f i s f i e l d ( image p ro f i l e s pa ramet e r s , ’

o v e r i d e t h r e s h o l d ad j u s tmen t a t v e r i f y ’ )
60 i f imag e p r o f i l e s pa r ame t e r s . o v e r i d e t h r e s h o l d ad j u s tmen t a t v e r i f y
61 imag e p r o f i l e s pa r ame t e r s . t h r e sho l d ad j u s t = 0 ;
62 end
63 end
64

65 new Isharp c rop corne r = ( ( s i z e ( I sharp ) − s i z e ( I b l u r r ed ) ) /2) ;
66 % Crop the some add i t i o na l padding ?
67 I sharp = Isharp ( new I sharp c rop corne r (1 ) +1: new I sharp c rop corne r (1 )+s i z e

( Ib lur red , 1 ) , . . .
68 new Isharp c rop corne r (2 ) +1: new I sharp c rop corne r (2 )+s i z e ( Ib lur red , 2 )

) ;
69

70 [∼ , ∼ , ∼ , c u r r e n t p r o f i l e s d a t a ] = s c an l i n e s e s t ima t e ( I s h a r p f i l t e r e d , . . .
71 image p ro f i l e s pa ramet e r s , I u s e r s e l e c t e d p o i n t , 0 , Isharp ,

I s ha rp e s t ima t ed c en t r e ) ;
72

73 s can l i n e cu r r en t magn i tude = c u r r e n t p r o f i l e s d a t a . s e p a r a t i on po l a r (1 ) ;
74 s c a n l i n e c u r r e n t r o t a t i o n = c u r r e n t p r o f i l e s d a t a . s e p a r a t i on po l a r (2 ) ;
75 c u r r e n t p r o f i l e s d a t a . s e p a r a t i on po l a r ;
76

77 %% Figures
78

79 % FULLSCREEN
80 % se t ( gcf , ’ Pos i t ion ’ , get ( 0 , ’ S c r e en s i z e ’ ) ) ;
81 i f ∼imag e p r o f i l e s pa r ame t e r s . suppres s output
82 c ax i s auto
83 drawnow
84 end
85

86 varargout {1} = I s h a r p f i l t e r e d ;
87 varargout {2} = 0 ; %s c an l i n e c u r r e n t ; % UNUSED
88 varargout {3} = cu r r e n t p r o f i l e s d a t a . s e p a r a t i on po l a r ; % UNUSED
89 varargout {4} = cu r r e n t p r o f i l e s d a t a ;
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C.5 ‘sinusoidal blur kernel5’

1 f unc t i on p s f = s i n u s o i d a l b l u r k e r n e l 5 ( psf magnitude , p s f r o t a t i o n , aa )
2

3 k e r n e l s i z e = [ 1 c e i l ( ps f magnitude /2) �2+5] ;
4

5 bb = 1 − aa ;
6

7 ps f = nan ( k e r n e l s i z e ) ; % Create an array f o r the b lur ke rne l
8 c e n t r e o f p s f = k e r n e l s i z e /2 ;
9

10 ke rn e l c o l m in = c e n t r e o f p s f ( 2 )−psf magnitude /2+0.5;
11 kerne l co l max = c e n t r e o f p s f ( 2 )+psf magnitude /2+0.5;
12

13 % Check f o r s p e c i a l c a s e s
14 i f ps f magnitude == 1
15 ps f = [ 0 1 1 0 ] ;
16 e l s e i f ps f magnitude < 1
17 ps f = f s p e c i a l ( ’ motion ’ , abs ( ps f magnitude )+1) ;
18 e l s e i f ps f magnitude < 2 && psf magnitude > 1
19 ps f = [ 0 , ps f magnitude /2 , 2−psf magnitude , ps f magnitude /2 , 0 ] ;
20 e l s e
21 % Not a s p e c i a l case
22 row = round ( k e r n e l s i z e (1 ) /2) ;
23 f o r c o l = 1 : k e r n e l s i z e (2 )
24 % p i x e l i s on the minimum edge o f the b lur func t i on
25 i f c o l == f l o o r ( k e rn e l c o l m in )
26 % % Linear i n t e r p o l a t i o n
27 l e f t = ke rne l co l m in−c o l ;
28 r i g h t = 1− l e f t ;
29 l e f t p a r t = 0 ;
30 r i g h t p a r t = ( 1/2� cos ( ( ( r i g h t /2 ) ) �2� pi ( ) /( ps f magnitude )

)+1/2 ) �bb+aa ;
31 ps f ( row , c o l ) = l e f t � l e f t p a r t + r i gh t � r i g h t p a r t ;
32 cont inue
33 end
34

35 % p i x e l i s i n s i d e the b lur func t i on
36 i f ( c o l >= f l o o r ( k e rn e l c o l m in ) ) && ( co l < c e i l ( ke rne l co l max ) )
37 ps f ( row , c o l ) = . . .
38 (1/2� cos ( ( ( co l−ke rn e l c o l m in ) ) �2� pi ( ) / ps f magnitude )

+1/2 ) �bb+aa ;
39 cont inue
40 end
41

42 % p i x e l i s on the maximum edge o f the b lur func t i on
43 i f c o l == c e i l ( ke rne l co l max )
44 ps f ( row , c o l ) = l e f t � l e f t p a r t + r i gh t � r i g h t p a r t ;
45 end
46 end
47 end
48

49 ps f ( i snan ( p s f ) ) = 0 ;
50

51 % Rotate ke rne l



C. Key Matlab algorithms 245

52 ps f = imrotate ( psf , p s f r o t a t i o n , ’ b i l i n e a r ’ ) ;
53

54 ps f = ps f . / sum(sum( ps f ) ) ;
55

56 % plo t ( p s f )





Appendix D

Accuracy Regression Analysis
Results

The full output of the MS Excel regression analysis for the accuracy assessment described
in section 3.4 follows.

Summary Output
Regression Statistics
Multiple R 0.999688
R Square 0.999376

Adjusted R Square 0.999370
Standard Error 0.095532
Observations 115

ANOVA
df SS MS F Significance F

Regression 1 1653 1653 181105 6.096E-183
Residual 113 1.0313 0.009127
Total 114 1653

Coefficients Standard Error t Stat P-value
Intercept -0.3369 0.0181 -18.600 3.501E-36
X Variable 1 1.035 0.002432396 425.6 6.0964E-183

Lower 95% Upper 95% Lower 95.0% Upper 95.0%
Intercept -0.3727 -0.3010 -0.3728 -0.3010
X Variable 1 1.030 1.040 1.030 1.040

247
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Residual Output

Observation Predicted Y Residuals
1 0.145 -0.053
2 0.145 -0.072
3 0.145 -0.031
4 0.145 0.033
5 0.587 0.070
6 0.587 0.019
7 0.587 0.152
8 0.587 0.191
9 1.058 -0.083
10 1.058 -0.064
11 1.058 -0.038
12 1.058 -0.021
13 1.498 0.076
14 1.498 0.060
15 1.498 0.072
16 1.498 0.091
17 1.878 -0.123
18 1.878 -0.103
19 1.878 -0.119
20 1.878 -0.104
21 2.324 -0.004
22 2.324 -0.020
23 2.324 -0.008
24 2.324 0.031
25 2.745 -0.125
26 2.745 -0.021
27 2.745 -0.012
28 2.745 -0.028
29 3.191 -0.083
30 3.191 -0.041
31 3.191 -0.056
32 3.191 0.009
33 3.696 -0.174
34 3.696 -0.016
35 3.696 -0.016
36 3.696 0.021
37 4.152 -0.139
38 4.152 -0.043
39 4.152 -0.078
40 4.152 -0.024

Observation Predicted Y Residuals
41 4.540 -0.052
42 4.540 0.114
43 4.540 0.084
44 4.540 0.112
45 5.020 -0.059
46 5.020 0.126
47 5.020 0.048
48 5.020 0.112
49 5.427 -0.029
50 5.427 0.146
51 5.427 0.130
52 5.427 0.082
53 5.927 -0.118
54 5.927 0.130
55 5.927 0.115
56 5.927 0.141
57 6.419 -0.138
58 6.419 0.023
59 6.419 0.026
60 6.419 0.007
61 6.875 -0.234
62 6.875 -0.041
63 6.875 -0.022
64 6.875 -0.038
65 7.301 0.049
66 7.301 0.066
67 7.301 0.223
68 7.301 0.121
69 7.728 0.037
70 7.728 0.074
71 7.728 0.202
72 7.728 0.105
73 8.189 -0.178
74 8.189 -0.116
75 8.189 -0.009
76 8.189 -0.130
77 8.598 -0.039
78 8.598 0.000
79 8.598 0.135
80 8.598 0.005
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Observation Predicted Y Residuals
81 9.092 -0.187
82 9.092 -0.151
83 9.092 0.020
84 9.092 -0.135
85 9.528 -0.144
86 9.528 -0.119
87 9.528 0.035
88 9.528 -0.102
89 9.997 0.067
90 9.997 0.026
91 9.997 0.198
92 9.997 0.021
93 10.443 0.023
94 10.443 0.014
95 10.443 0.215
96 10.443 0.106
97 10.918 0.009
98 10.918 0.016
99 10.918 0.113
100 10.918 0.065
101 11.381 -0.069
102 11.381 -0.042
103 11.381 -0.024
104 11.825 -0.063
105 11.825 -0.015
106 11.825 -0.041
107 12.261 -0.081
108 12.261 0.018
109 12.261 0.014
110 12.676 -0.009
111 12.676 0.086
112 12.676 0.093
113 13.189 -0.144
114 13.189 -0.073
115 13.189 -0.076





Appendix E

Camera Settings for LEMBI
Measurement

Consumer grade DSLR cameras are typically supplied with the automatic setting of many
parameters activated. The LEMBI measurement tests required some of these settings
which are listed below to be manually enforced.

As is common in photogrammetry, focus was fixed when the camera was calibrated to
preserve interior orientation. Throughout this project flash was never used. The settings
listed below were used to optimise images of motion-blurred targets for measurement with
the developed algorithm. These also provided enhanced control over the short interval
between shutter button activation (manual or automated) and the start of the image
capture, for when the double external trigger was used.

The enforced settings were:

� Manual shooting mode

� Exposure set with regard to expected vibration frequency (see section 5.2.4)

� Sensitivity set to the lowest ISO100

� Aperture was set through trial and error so that targets were appropriately exposed,
which for the Nikon D80 camera was between f/11 & f/22.

� When outdoors, it was necessary to use ND filters, and a combination of ND2, ND4
& ND8 filters were used, selected by trial whilst checking image exposure.
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