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ABSTRACT 

This thesis describes research on ‘Efficient Discrete Modelling of 

Axisymmetric Radiating Structures’. Investigating the possibilities of 

surmounting the inherent limitation in the Cartesian rectangular 

Transmission Line Modelling (TLM) method due to staircase approximation 

by efficiently implementing the 3D cylindrical TLM mesh led to the 

development of a numerical model for simulating axisymmetric radiating 

structures such as cylindrical and conical monopole antennas.  

Following a brief introduction to the TLM method, potential applications of 

the method are presented. Cubic and cylindrical TLM models have been 

implemented in MATLAB and the code has been validated against 

microwave cavity benchmark problems. The results are compared to 

analytical results and the results obtained from the use of commercial cubic 

model (CST) in order to highlight the benefit of using a cylindrical model 

over its cubic counterpart.  

A cylindrical TLM mesh has not previously been used in the modelling of 

axisymmetric 3D radiating structures. In this thesis, it has been applied to 

the modelling of both cylindrical monopole and the conical monopole. The 

technique can also be applied to any radiating structure with axisymmetric 

cylindrical shape. The application of the method also led to the development 

of a novel conical antenna with periodic slot loading. Prototype antennas 

have been fabricated and measured to validate the simulated results for the 

antennas. 
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CHAPTER 1  

 

INTRODUCTION 

Axisymmetric structures are found frequently in microwave engineering, 

such as those found in microwave cavities, coaxial transmission lines, wire 

antennas and broadband antennas. The behaviour of these structures, as well 

as most systems in Electromagnetics (EM), can be described by Maxwell’s 

equations. To understand the propagation of the EM waves in these 

structures and the materials they are made up of, Maxwell’s equations have 

to be solved either in differential or integral form. A few of these structures 

such as simple strip lines have simple reliable analytic solutions to the 

Maxwell’s equations. However, many systems in practice are complex and 

the solutions to the equations are not trivial. Therefore, numerical solutions 

using computer simulations are employed in practice. 

 These methods of solving complex problems using computer simulation are 

commonly referred to as numerical modelling techniques. Numerical 

modelling techniques involve discretising the equations in time or frequency 

as well as in space, such that the equations can be solved using a computer. 

A wide range of numerical techniques for solving electromagnetic problems 

in both differential and integral forms have been developed.  

The field of study that deals with solving EM problems using numerical 

techniques, also known as computer simulation techniques, is commonly 

referred to as Computational Electromagnetics (CEM). CEM is a 

demanding branch of engineering because the EM waves propagate over 

large distances in a very short time and each material the propagating waves 
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come in contact with also interacts with the waves. Further complication is 

added to the analysis of these waves by the anisotropic and non-linear 

behaviour of the materials they come in contact with. The aim of this thesis 

is to model axisymmetric radiating structures using a CEM method called 

the Transmission Line Modelling (TLM) method or the Transmission Line 

Matrix method. 

Since the pioneering article on the TLM method was published by Johns 

and Buerle in 1971 [1], the method has been studied extensively and has 

become a powerful numerical tool in solving electromagnetic (EM) 

problems. It is gaining increasing acceptance in the EM community because 

of its stability, ease of application and capability for wideband applications 

[2]. TLM has been successfully applied to simulate a wide range of 

microwave problems and it has been found useful when modelling antennas 

in complex environments [3]–[5]. The application of rectangular Cartesian 

TLM to the modelling of radiating structures is not a new concept and it has 

been extensively reported in the literature [6]–[9].  

However, this numerical modelling method involves the representation of 

the problem space in a discretised manner; a procedure simply referred to as 

meshing of the simulation space. A TLM mesh in its basic form is 

rectangular in nature and this makes mesh-to-structure conformity a 

problem when modelling structures with curved features [10]. This 

difficulty is a result of the fact that curved boundaries are approximated to 

fit the numerical cells, resulting in a staircase approximation error at the 

curved edges. Although many commercial solvers apply the TLM method to 

the analysis of microwave structures, the simulations are based on 

rectangular meshes [11]. Consequently, this results in a requirement to use a 

large number of steps to represent smooth edges. 
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Since the accurate solution of problems in electromagnetics ideally requires 

conformity of the mesh with the structure being modelled, meshes have to 

be formed in such a way that they map into the problem space or into the 

system of interest as closely as possible [12]. In this regard, particular 

attention is required in the description of localised geometry details and 

geometrical features that have curved boundary when modelling complex 

systems. When applying a rectangular TLM mesh to simulate antennas, the 

common option for an acceptable level of accuracy to be obtained is to 

perform mesh adaptation such that a finer mesh is used around the curved 

boundaries [13]. The accuracy obtained through mesh adaptation comes at 

the cost of an increase in both computer storage and computation time as 

demonstrated in Chapter 3. Unstructured meshes such as the triangular and 

tetrahedral meshes, which are more adaptable to the modelled structure have 

recently been developed for TLM simulation method [14], [15]. However, 

the generation of these adaptable meshes can also be mathematically 

intensive depending on the nature of the object/structure to be modelled. 

Since the nodes in these meshes have different scattering behaviour, large 

storage space is also required to process and store the scatter-connect 

procedure information for every node in the mesh [14]. Moreover, to 

achieve an acceptable level of accuracy, these unstructured meshes, like 

their rectangular counterpart, require some form of modification to fit 

curved edges to the mesh.  

To improve accuracy and still optimise storage and computation time, 

curvilinear meshes where curved lines are used in the mesh formulation 

have been proposed for better mesh-to-structure conformity [16]–[20]. The 

cylindrical TLM mesh is an example of one of these curvilinear meshes. A 

planar circular microstrip antenna has been reported to be successfully 

simulated using cylindrical mesh [11] but there has not been any known 

work done on nonplanar 3D antenna structures using cylindrical mesh. In 
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this thesis, the application of curvilinear cylindrical TLM mesh to modelling 

of radiating structures with axisymmetric shape is discussed. 

1.1 THE PROBLEM STATEMENT 

The efficient incorporation of suitably structured meshes in full-field time 

domain models for accurate description of curved boundaries where the 

need is to avoid staircase approximations is a challenging procedure [21]. 

With increasing technological advancement, the requirement for accurate 

and efficient antenna design processes is becoming more important. This 

poses a problem because many of the modelling tools in existence for 

solving electromagnetic problems are either based on a rectangular 

Cartesian mesh or other parallelepiped meshes with sharp corners. However, 

when it comes to the modelling of radiating structures with curved 

boundaries, the fundamental issues of the staircase approximation error in 

rectangular Cartesian TLM mesh comes into play.  

Substantial work has been done to improve the TLM method but the issues 

associated with accurate and efficient representation of curved boundaries 

are a point of concern [22]–[24]. In this research, a numerical model for 

axisymmetric radiating structures with curved boundaries is developed, 

based on the 3D cylindrical TLM algorithm. 

1.2 FOCUS OF RESEARCH 

This aim of this research is to improve the accuracy of modelling 

axisymmetric structures by implementing a 3D cylindrical TLM mesh. The 

research investigates the possibilities of surmounting the staircase 

approximation limitation that is inherent in the rectangular Cartesian TLM 

by efficiently implementing the 3D cylindrical TLM mesh. The 

investigation results in the development of a numerical model for simulating 
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axisymmetric radiating structures such as cylindrical and conical monopole 

antenna. The developed model maximises the efficiency of TLM in antenna 

modelling by exploiting the axisymmetric nature of these radiating 

structures of interest to save time and computer resources and improving the 

capability of TLM in ultra-wide band applications.  

The objectives are: 

• To bridge the gap between the theoretical foundations of cylindrical 

TLM and its applications.  

• To develop a simulation code for solving electromagnetic problems 

in MATLAB using the TLM algorithm 

• To investigate the performance of the developed numerical solver.  

• To model axisymmetric radiating structures such as dipole, 

monopole and wideband conical antenna structures using the 

developed solver. 

• To study the effects of slots and dielectric loaded slots on the 

performance of the conical antenna. 

1.3 CHOICE OF MODELLING METHOD 

CEM has experienced a phenomenal growth in the electromagnetic 

community and time domain differential methods are becoming increasingly 

popular [25]–[27]. This is due to the fact that they are versatile in handling 

complex electromagnetic problems and provide simulation results that are 

meaningful to microwave engineers and circuit designers. Research into 

numerical modelling techniques has evolved over the years and has been 

established in different fields of applications. Some of the computational 

methods that are more widely used are Finite Element Method - Frequency 

Domain Finite Element Method (FD-FEM) and Time Domain Finite 

Element Method (TD-FEM) [28], Finite Difference Methods - Finite 
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Difference Beam Propagation Method (FD-BPM), Finite Difference Time 

Domain (FDTD) method and Finite Difference Frequency Domain method 

(FDFD) [29]–[31], Transmission Line Modelling method (TLM) [32], Time 

Domain Integral Equation (TDIE) techniques [33], [34], Method of 

Moments (MOM) [35] and Fast Multipole Methods (FMM) [36], 

Geometrical Theory of Diffraction (GTD) [37] and Finite Integration 

Technique (FIT) [38] to mention a few.  

The various available methods offer a wide range of modelling capabilities 

with varying accuracy. The finite difference method (FDTD or FDFD) 

involves spatial discretisation into rectangular blocks and it is commonly 

applied in time domain form. It produces electric and magnetic fields at 

alternate halves of the time step if applied in the time domain version but 

the frequency domain application requires the solution of a set of 

simultaneous linear equations. It is suitable for complex geometry but 

boundaries generally must lie on cell faces, which lead to staircase 

approximations of curved boundaries [31], [39]. The Finite Element Method 

(FDFEM or TDFEM) involves spatial discretisation into tetrahedral blocks. 

It is most commonly formulated in the frequency domain. It operates by 

reducing the problem to a set of simultaneous linear equations, which are 

then solved by minimising energy functional. Complex configurations and 

material types are easily achieved in FEM and it is possible to attain 

accurate geometry representation because the elements can be individually 

scaled to fit the problem at hand. However, the flexibility of the element 

shapes means that more effort, than what is required for rectangular 

discretisation, goes into data preparation in FEM and with complicated 

geometry; FEM use a lot of elements, particularly near to small geometrical 

features [40]. In MOM, the modelling space is discretised into wires, 

conducting patches or dielectric volumes. Although the time domain MOM 

exists, it is commonly applied in the frequency domain. It functions by 

reducing the integral form of Maxwell’s equation to a set of simpler linear 
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equations, which are then solved by the technique called “the method of 

weighted residuals”. The implementation of highly accurate absorbing 

boundaries is possible in MOM. However, different forms of the field 

integral equations apply to different sort of problem, which means that 

combining two problem types such as wire and patches on a single 

modelling space is not a trivial thing to accomplish [35]. 

The axisymmetric structures considered in this thesis include cylindrical 

dipole, cylindrical monopole and conical dipole antennas. These structures 

may be broadband in nature depending on their configurations. 

Computational tools for broadband operations in most cases are simulated in 

the time domain [21]. This is due to the fact that in dealing with the most 

general material and conductor configurations at high frequencies, 

differential time-domain techniques offer the most versatile simulation tool. 

They have the capability of covering a wide frequency band in a single 

simulation with an impulsive excitation and allow for solutions without the 

need to solve large linear systems of equations [41]. Moreover, when 

solving complex electromagnetic problems or modelling electromagnetic 

fields in the time domain, the spectral characteristics are obtained over a 

wide range of frequencies and the EM wave can be easily traced [42]. 

Transient phenomena can also be studied directly and dispersive and non-

linear behaviour can be easily modelled [43]. They are also particularly well 

suited for implementation on parallel or vector processors [43]. In addition, 

getting results in the frequency domain is not a problem because results 

obtained in the time domain can easily be converted to frequency domain 

using Fourier Transform [44]. In this light, FDTD and TLM are two 

appealing numerical methods. 

FDTD and TLM are both full-wave numerical techniques for solving 

Maxwell’s equations and are closely related [45]. TLM nodes are modelled 

using equivalent transmission lines for each node while FDTD models the 
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propagation through the elements using a discrete form of Maxwell’s curl 

equation. Results obtained from the two models have even been found to 

have equivalent results in certain situations [46] [47]. For instance, Hoefer 

[43] suggested that dispersion of the propagation vector is a good basis for 

comparing discrete time domain field models and he investigated the 

dispersion characteristic of TLM and FDTD equivalent schemes. He 

concluded that the two models lead to practically identical results and he 

recommended that the final choice between TLM and FDTD depends on 

personal preferences and familiarity with one or the other method. A school 

of thought says there is some difference between the two methods in term of 

their formulation but Jin and Vahldieck [48] researched the derivation of 

TLM using centred differencing and averaging and reported a positive 

outcome, meaning that TLM can be formulated as the physical model of a 

transmission line network or as the mathematical model of Maxwell’s 

equations. Another school of thought  suggested that the only difference 

between the two lies in their field of application - FDTD found more 

application in radiation and scattering while TLM has found its major use in 

guided propagation problems[49]. However, more recent research has 

proved that TLM can be equally applied in radiating and scattering 

problems as FDTD [50] proving this distinction to be invalid.  

As closely related as the two techniques are, TLM has been found to have 

advantages over FDTD in certain applications. For instance, the TLM 

boundary description is found to be twice as fine in relation to the FDTD 

and TLM provides engineers with conceptual models using transmission 

line rather than a mathematical model using differencing as applied in the 

finite difference methods [51]. Furthermore, both electric and magnetic field 

components are available at the same time step in TLM, which means that 

all six field components can be access at one point in space, while they are 

separated by half-time step in FDTD [52]; TLM stability has been found to 

be better than that of FDTD in materials with high permittivity and TLM 
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also performs better in modelling the fields around sharp conducting edges 

[30].  

Moreover, TLM is a conceptually simple but powerful technique for solving 

electromagnetic problems and the method has been proven to be well suited 

to analysing complex electromagnetic structures [53]. It is a time-based 

numerical modelling method [3] [54] meaning that it can produce an 

impulse response for the modelled system, which makes it suitable for 

wideband applications [2]. It has been known to be a versatile numerical 

tool in solving electromagnetic (EM) problems because of its stability and 

ease of application [55] and it has the benefit of being a relatively 

straightforward algorithm that is easy to implement [2]. It also has the 

ability to take into account the local material properties, which means that 

inhomogeneous materials can be described and complex physical structures 

can be modelled. For this thesis, the computational tool of choice is the 

TLM method. 

1.4 NOVELTY OF RESEARCH 

For objects with curved edges, it has been found that the TLM cylindrical 

mesh yields more accurate results and brings about a reduction in the 

number of nodes required for simulation compared to using a rectangular 

Cartesian or other parallelepiped mesh. A TLM solver based on both 

rectangular Cartesian and cylindrical TLM meshes has been developed in 

MATLAB to verify this fact. This solver has the capability to simulate 

microwave cavity problems and resonant structures. Canonical microwave 

cavity problems with known analytical solutions have been simulated using 

the developed solver and the results are encouraging. The cylindrical mesh 

also allows the exploitation of symmetry and this results in optimised 

modelling time when modelling cylindrical curvilinear structures. 
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Radiating structures such as dipole, monopole and conical antennas were 

modelled using the developed cylindrical solver. The simulation produced 

results such as the operating frequency of the antenna, which agree with 

analytical expectations. Prototype antennas were fabricated and measured to 

validate the simulated results and the results compared well. 

A novel conical antenna with periodic slot loading was developed and 

measured. The simulation was conducted using the newly developed solver 

and the proposed antennas fabricated and measured for results comparison. 

Parametric studies on the effects of slot parameters such as its position, 

depth, width and permittivity (dielectric loading) on the performance of the 

solid cone antenna was carried out. Features displayed by the slotted-cone 

antennas can be used as a tool for frequency selective property in conical 

antennas operation, adjusting the operation bandwidth of a cone antenna and 

to reject a band of unwanted frequencies. The inclusion of removable 

dielectric material in the slots means that dielectric materials of various 

permittivity values can be used to shift the operating frequency as desired.  

1.5 STRUCTURE OF THESIS 

Chapter 2 reviews the fundamentals of TLM. The derivations of the 

rectangular TLM parameters and the formulations of TLM algorithm for 

both 2D and 3D electric waves are also presented.  

Chapter 3 is dedicated to simulations of canonical problems with known 

theoretical solutions with the intention to validate the rectangular Cartesian 

part of the code written for this research (TLS).  

Chapter 4 deals with the fundamentals of cylindrical TLM and simulated 

results for benchmarked microwave problems solved with cylindrical mesh 

of the developed solver.  
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Chapter 5 describes the application of the cylindrical TLM to the modelling 

of axisymmetric radiating structures. Measured results of the fabricated 

prototype compared to the simulated cylindrical and conical monopole 

antennas are presented.  

In Chapter 6, the modelling of axisymmetric conical antennas with 

incorporated slots is described. Measured results of fabricated prototype 

slotted-cone antennas are compared to the simulated results. 

In Chapter 7, general remarks on the results achieved in the process of 

modelling the axisymmetric radiating structures effectively using TLM 

mesh and directions for further research are outlined. 
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CHAPTER 2  

 

 

INTRODUCTION TO TRANSMISSION 

LINE MODELLING THEORY 

This Chapter gives a general introduction to the Transmission Line 

Modelling (TLM) method. The historical background of TLM method, the 

theoretical relations of rectangular TLM nodes to the Maxwell’s equations, 

the TLM implementation procedure and boundary application in TLM 

method are discussed.  

2.1 EVOLUTION OF TLM: THE HISTORICAL BACKGROUND 

TLM has developed steadily over the years and is still evolving. The work 

of Johns and Beurle in 1971 [1] started the research into TLM method and 

played a significant role in its development. They were the first to propose 

the TLM formulation of Maxwell’s equations. Their work was inspired by 

the circuit analogy of EM phenomena proposed by Kron in 1944 [56]. Johns 

and Beurle described a novel numerical technique for solving two-

dimensional (2D) problems based on Huygens’ principle [57]. Huygens’ 

Principle simply states that secondary wavelets that spread outward with a 

speed equal to the speed of light are generated from every point of a wave 

front. It can be inferred that every point in an EM wave acts as a source of 

the continuing wave if Huygens’ analysis is considered in the light of 

Ampere’s law (a flowing current in a conductor gives rise to a magnetic 
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field) and Faraday’s law (varying magnetic field gives rise to an electric 

field).  

The theory of TLM is based on Maxwell’s equations in differential form [3] 

but the algorithm is relatively straight-forward to implement because it uses 

the concepts of circuit theory [2]. TLM does not solve the mathematics of 

Maxwell’s equations directly but conceptually fills the simulation space 

with transmission lines and calculates both the electric and magnetic fields 

using the scatter-connect procedure of pulse propagation along the link lines 

in the modelling space [58]. Time is also discretised in TLM models such 

that the scatter-connect procedure takes place within a stipulated discrete 

timeframe. As in any numerical method, the simulation space is finite and is 

normally truncated at its periphery by the application of suitable boundaries. 

Boundaries are implemented by applying various reflection coefficients to 

the pulse arriving at the boundaries. They are applied at the points of 

transition between two different materials in inhomogeneous media and at 

the simulation edge. These boundaries are either placed at the centre of the 

nodes nearest to the position where the boundary is required or between two 

adjacent nodes nearest to the targeted position. 

2D TLM was the first TLM structure developed. It was made up of two 

transmission lines connected at the centre. The connecting point was 

referred to as the node; a grid of these nodes was called a mesh and the 

connecting lines between two nodes were called link lines. This structure 

was named shunt node based on the nature of its connection at the node [1]. 

The shunt node was later optimised to accommodate the modelling of 

inhomogeneous and lossy material and the corresponding series node was 

also developed [59], [60]. A typical 2D node is as shown in Fig. 2.1. 
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Fig.  2.1: A typical 2D TLM node. 

Following the successful development of 2D TLM, Akhtarzad and Johns 

developed the Expanded TLM node [10]. Problems mostly encountered in 

general engineering applications are three dimensional (3D); therefore the 

expanded TLM node was developed to address these types of problems. Its 

development involved the combination of series and shunt nodes to 

represent the six fields in space [10] . Its equivalent circuit consists of three 

shunt and three series nodes electrically connected. The expanded TLM 

node is similar in structure to the Finite Difference Frequency Domain 

(FDTD) scheme developed by Yee [31] but unlike FDTD, it uses more 

variables. The expanded node, however, has the advantage of generating 

three of the six field components at each scattering point instead of one as is 

the case in FDTD. The expanded TLM node is as shown in Fig. 2.2. 

 

Fig.  2.2: The Expanded Node after Trenkic [62]. 
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The complicated topology of the expanded TLM node is a disadvantage 

because the scattering procedure at its shunt nodes has a shift of half a 

discretisation interval in time with respect to scattering in its series nodes 

[63]. The implication of the shift is that field components with different 

polarisations are calculated at points that are physically separated, which 

makes it difficult to apply boundary conditions. The inability to place 

boundaries correctly introduced possible errors especially when dealing 

with the interfaces between different materials [53]. The theory of the 

expanded node was reviewed in detail by Hoefer [22]. Some of the 

shortcomings observed in the Expanded TLM node application were 

improved on by Saguet and Pic [64] and led to the development of the 

Asymmetrical Condensed Node (ACN) shown in Fig. 2.3.  

 

Fig.  2.3: The Asymmetrical Condensed Node after Trenkic [62]. 

The ACN has the advantage of performing the scattering operation at one 

point, which makes it more efficient in terms of computational resources. In 

addition, all the field components can be obtained at a single point at the 

same time and the boundary can be easily placed either at the centre of the 

node or between two nodes. However, like the Expanded Node, the ACN 
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node is asymmetric in nature and the first connection at the node can either 

be series or shunt depending on the direction of approach. The implication 

of this is that the boundaries may have slightly different properties when 

approached from different sides and this difference can be significant when 

dealing with high frequencies [65]. The ACN was later developed into 

Symmetrical Condensed Node (SCN) by Johns [53]. A typical SCN is as 

shown in Fig. 2.4. 

 

Fig.  2.4: Symmetrical Condensed Node after Trenkic [62]. 

The SCN provides the six field components at the same point and allows for 

easy placement of boundaries especially in inhomogeneous media. It is fully 

symmetric, which removes the difficulties associated with the asymmetric 

structures. The symmetry gives better accuracy and reduced dispersion 

when using irregular nodes in a mesh[66]. The theory and application of the 

SCN TLM is detailed in [3].  

This thesis will be limited to the use of the 2D and the 3D SCN TLM 

techniques but it is worth mentioning that various other techniques have 

since been developed to enhance the implementation of TLM. Some of 

these developments allow for arbitrary shapes and geometries with fine 
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details to be modelled in TLM using hybrid variable mesh techniques [67], 

multi-grid techniques [16], [68]–[70] and general curvilinear meshes [71]–

[73]. Cylindrical TLM is a typical example of the curvilinear mesh. The 

theory and implementation of this technique will be discussed to detail in 

Chapter 4.  

Some other developments such as the variation of the characteristic 

impedance of the link lines to form hybrid TLM mesh such as Hybrid 

Symmetrical Condensed TLM Nodes and Symmetrical Super-Condensed 

TLM Nodes [74], [75] and the development of the Frequency Domain TLM 

(FDTLM) [76]–[78] have resulted in a more efficient implementation of 

TLM. 
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2.2 MAXWELL’S EQUATIONS AND RECTANGULAR CARTESIAN 

TLM ANALOGIES 

As earlier mentioned in Section 2.1, Maxwell’s equations in differential 

form are the basis for the theory of TLM. The components of the 

transmission lines are derived from the analogy between Maxwell’s 

equations and equations guiding the propagation of waves called wave 

equations. The ease with which the TLM can be applied means that it is 

possible to use it without an in-depth understanding of its relation to the 

basic Maxwell’s equations it solves [79]. In this Section, the relationship 

between Maxwell’s equations and the TLM components will be explored. In 

its simplest form, the TLM mesh is a rectangular Cartesian grid of 

uniformly spaced intersecting transmission lines. This basic structure is 

what gave it the name rectangular Cartesian TLM. For the rest of this thesis, 

it will simply be referred to as rectangular TLM mesh. The focus of this 

Section will be on the analogies of the Maxwell’s equations to the 

rectangular TLM mesh. 

2.2.1 MAXWELL’S EQUATIONS IN RECTANGULAR CARTESIAN FORM 

Generally, Maxwell’s equations is expressed as [3] 

𝛻𝛻 × 𝑯𝑯 = 𝑱𝑱 +
𝜕𝜕𝑫𝑫
𝜕𝜕𝜕𝜕

 (2.1)  

𝛻𝛻 × 𝑬𝑬 = −
𝜕𝜕𝑩𝑩
𝜕𝜕𝜕𝜕

 (2.2)  

𝛻𝛻.𝑫𝑫 = 𝜌𝜌 (2.3)  



 
 
 

Introduction to Transmission Line Modelling Theory 
_____________________________________________________________ 

34 
 

𝛻𝛻.𝑩𝑩 = 0 (2.4)  

where H is magnetic field strength ( 𝐴𝐴𝑚𝑚−1), E is the electric field strength 

(𝑉𝑉𝑚𝑚−1); 𝑫𝑫 is the electric displacement field (𝐶𝐶𝑚𝑚−2)); 𝑩𝑩 is magnetic flux 

density (T or 𝑊𝑊𝑊𝑊𝑚𝑚−1); J is the conduction current density (𝐴𝐴𝐴𝐴−2); ρ is the 

electric charge density (𝐶𝐶𝑚𝑚−3)). 

In linear, isotropic, non-dispersive materials, D and B are related to H and E 

by 

𝑫𝑫 = 𝜀𝜀𝑬𝑬 = 𝜀𝜀0𝜀𝜀𝑟𝑟𝑬𝑬 

𝑩𝑩 = 𝜇𝜇𝑯𝑯 = 𝜇𝜇0𝜇𝜇𝑟𝑟𝑯𝑯 
(2.5)  

where 𝜀𝜀  and 𝜇𝜇  are the permittivity and permeability of the medium 

respectively, 𝜀𝜀𝑟𝑟 and 𝜇𝜇𝑟𝑟 are the relative permittivity and relative permeability 

of the material respectively and 𝜀𝜀0  (= 8.85×10-12 𝐹𝐹𝑚𝑚−1) and 𝜇𝜇0  (= 4𝜋𝜋 ×

10−7 ≅ 1.26 × 10−6 𝐻𝐻𝐻𝐻−1) are the permittivity and permeability of free 

space respectively. 

In rectangular coordinates, Maxwell’s curl equation (2.1) can be expressed 

as (2.6) - (2.8); (2.2) expressed as (2.9) - (2.11); (2.3) as (2.12) and (2.4) as 

(2.13). 

𝜕𝜕𝐻𝐻𝑧𝑧
𝜕𝜕𝜕𝜕

−
𝜕𝜕𝐻𝐻𝑦𝑦
𝜕𝜕𝜕𝜕

= 𝐽𝐽𝑥𝑥 +
𝜕𝜕𝐷𝐷𝑥𝑥
𝜕𝜕𝜕𝜕

 (2.6)  

𝜕𝜕𝐻𝐻𝑥𝑥
𝜕𝜕𝜕𝜕

−
𝜕𝜕𝐻𝐻𝑧𝑧
𝜕𝜕𝜕𝜕

= 𝐽𝐽𝑦𝑦 +
𝜕𝜕𝐷𝐷𝑦𝑦
𝜕𝜕𝜕𝜕

 (2.7)  
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𝜕𝜕𝐻𝐻𝑦𝑦
𝜕𝜕𝜕𝜕

−
𝜕𝜕𝐻𝐻𝑥𝑥
𝜕𝜕𝜕𝜕

= 𝐽𝐽𝑧𝑧 +
𝜕𝜕𝐷𝐷𝑧𝑧
𝜕𝜕𝜕𝜕

 (2.8)  

𝜕𝜕𝐸𝐸𝑧𝑧
𝜕𝜕𝜕𝜕

−
𝜕𝜕𝐸𝐸𝑦𝑦
𝜕𝜕𝜕𝜕

= −
𝜕𝜕𝐵𝐵𝑥𝑥
𝜕𝜕𝜕𝜕

 (2.9)  

𝜕𝜕𝐸𝐸𝑥𝑥
𝜕𝜕𝜕𝜕

−
𝜕𝜕𝐸𝐸𝑧𝑧
𝜕𝜕𝜕𝜕

= −
𝜕𝜕𝐵𝐵𝑦𝑦
𝜕𝜕𝜕𝜕

 (2.10)  

𝜕𝜕𝐸𝐸𝑦𝑦
𝜕𝜕𝜕𝜕

−
𝜕𝜕𝐸𝐸𝑥𝑥
𝜕𝜕𝜕𝜕

= −
𝜕𝜕𝐵𝐵𝑧𝑧
𝜕𝜕𝜕𝜕

 (2.11)  

𝜕𝜕𝐸𝐸𝑥𝑥
𝜕𝜕𝜕𝜕

+
𝜕𝜕𝐸𝐸𝑦𝑦
𝜕𝜕𝜕𝜕

+
𝜕𝜕𝐸𝐸𝑧𝑧
𝜕𝜕𝜕𝜕

=
𝜌𝜌
𝜀𝜀

 (2.12)  

𝜕𝜕𝐻𝐻𝑥𝑥
𝜕𝜕𝜕𝜕

+
𝜕𝜕𝐻𝐻𝑦𝑦
𝜕𝜕𝜕𝜕

+
𝜕𝜕𝐻𝐻𝑧𝑧
𝜕𝜕𝜕𝜕

= 0 (2.13)  

where  Hx, Hy, Hz are the magnetic field components in x, y and z direction; 

Ex, Ey, Ez are the electric field components in x, y and z directions; Bx, By, Bz 

are magnetic field components in the x, y and z direction; Dx, Dy, Dz are the 

electric displacement fields in the x, y and z directions.  

In this Section, Maxwell’s equations have been expressed in rectangular 

coordinate. These equations will be used in Section 2.3.2 to show the 

relationship of the Maxwell’s equations to the parameters of the rectangular 

TLM. 
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2.2.2 ANALOGIES OF MAXWELL’S EQUATIONS TO THE RECTANGULAR 

TLM CIRCUIT PARAMETERS 

It is important to understand the composition of the rectangular TLM model 

in order to compare it to Maxwell’s equations. The basic building block for 

the TLM algorithm is the 2D model, which has two configurations on the x-

y plane – the shunt and the series configurations. The shunt configuration 

models magnetic fields transverse to the direction of propagation of the EM 

wave and admits only electric field components in the direction of 

propagation, which means that the non-zero field components modelled 

are:  𝐻𝐻𝑥𝑥,𝐻𝐻𝑦𝑦 and 𝐸𝐸𝑧𝑧 . This is termed the Transverse Magnetic mode (TM 

mode). The TLM series configuration models electric field components that 

are transverse to the direction of propagation and admits only magnetic field 

components in the direction of propagation, which implies that the non-zero 

field components are 𝐸𝐸𝑥𝑥,  𝐸𝐸𝑦𝑦 and 𝐻𝐻𝑧𝑧. This is referred to as the Transverse 

Electric mode (TE mode). Nevertheless, both the series and the shunt nodes 

can be used in simulating either TE or TM modes by applying the principle 

of duality in electromagnetics [3], as long as the appropriate analogy 

between the circuit quantities and the fields is established. For simplicity, 

the two models will be discussed separately and then the results will be 

combined to form equations for general TLM nodes.  

In the shunt node configuration, other field components beside  𝐻𝐻𝑥𝑥 , 

𝐻𝐻𝑦𝑦 and 𝐸𝐸𝑧𝑧 are set to zero and the Maxwell’s equations reduce to: 

𝜕𝜕𝐸𝐸𝑧𝑧
𝜕𝜕𝜕𝜕

=  −𝜇𝜇
𝜕𝜕𝐻𝐻𝑥𝑥
𝜕𝜕𝜕𝜕

 (2.14)  

−
𝜕𝜕𝐸𝐸𝑧𝑧
𝜕𝜕𝜕𝜕

=  −𝜇𝜇
𝜕𝜕𝐻𝐻𝑦𝑦
𝜕𝜕𝜕𝜕

 (2.15)  
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𝜕𝜕𝐻𝐻𝑦𝑦
𝜕𝜕𝜕𝜕

−  
𝜕𝜕𝐻𝐻𝑥𝑥
𝜕𝜕𝜕𝜕

=  𝜀𝜀
𝜕𝜕𝐸𝐸𝑧𝑧
𝜕𝜕𝜕𝜕

 (2.16)  

Differentiating equation (2.14) and (2.15) with respect to 𝑦𝑦  and 𝑥𝑥 

respectively, adding the resulting equation and combining with equation 

(2.16) eliminates the magnetic field component to give (2.17), which is the 

wave equation for 2-D propagation in rectangular form. 

𝜕𝜕2𝐸𝐸𝑧𝑧
𝜕𝜕𝑥𝑥2

+
𝜕𝜕2𝐸𝐸𝑧𝑧
𝜕𝜕𝑦𝑦2

 = 𝜇𝜇 𝜀𝜀
𝜕𝜕2𝐸𝐸𝑧𝑧
𝜕𝜕𝑡𝑡2

 (2.17)  

In order to represent the Maxwell’s equations according to Huygens’s 

principle, both space and time are divided into finite discrete elementary 

units [80]. The length between two consecutive nodes is called discrete 

length/ discrete space-step as shown in Fig. 2.5. The discrete length is 

denoted ∆x, ∆y or ∆z depending on the direction of interest as illustrated in 

Fig. 2.5.  

 

Fig.  2.5: Discrete length in TLM node. 
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For general use, it is usual to simply refer to the discrete length as ∆l and 

this is obtained by finding the minimum value among ∆𝑙𝑙𝑥𝑥,  ∆𝑙𝑙𝑦𝑦  and ∆𝑙𝑙𝑧𝑧 , 

which are functions of ∆x, ∆y and ∆z and are given as:  

∆𝑙𝑙𝑥𝑥 =
∆𝑦𝑦∆𝑧𝑧
∆𝑥𝑥

 

∆𝑙𝑙𝑦𝑦 =
∆𝑥𝑥∆𝑧𝑧
∆𝑦𝑦

 

∆𝑙𝑙𝑧𝑧 =
∆𝑥𝑥∆𝑦𝑦
∆𝑧𝑧

 

(2.18)  

The electrical components of a single shunt node are as shown in Fig. 2.6. 

Assuming an equal small space-step in all propagation directions i.e.∆𝑙𝑙 → 0, 

then the differential equation describing the circuit quantities may be 

expressed as: 

𝜕𝜕𝑉𝑉𝑧𝑧
𝜕𝜕𝜕𝜕

=  −𝐿𝐿
𝜕𝜕𝐼𝐼𝑦𝑦
𝜕𝜕𝑡𝑡

 (2.19)  

−
𝜕𝜕𝑉𝑉𝑧𝑧
𝜕𝜕𝜕𝜕

=  −𝐿𝐿
𝜕𝜕𝐼𝐼𝑥𝑥
𝜕𝜕𝜕𝜕

 (2.20)  

𝜕𝜕𝐼𝐼𝑦𝑦
𝜕𝜕𝜕𝜕

+  
𝜕𝜕𝐼𝐼𝑥𝑥
𝜕𝜕𝜕𝜕

=  −2𝐶𝐶
𝜕𝜕𝑉𝑉𝑧𝑧
𝜕𝜕𝜕𝜕

 (2.21)  
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Fig.  2.6: Shunt 2D TLM node 

Differentiating equation (2.19) and (2.20) with respect to 𝑦𝑦  and 𝑥𝑥 

respectively, adding the resulting equations and combining it with equation 

(2.21) eliminates the current terms and gives (2.22) 

𝜕𝜕2𝑉𝑉𝑧𝑧
𝜕𝜕𝑥𝑥2

+
𝜕𝜕2𝑉𝑉𝑧𝑧
𝜕𝜕𝑦𝑦2

 = 2𝐿𝐿𝐿𝐿
𝜕𝜕2𝑉𝑉𝑧𝑧
𝜕𝜕𝑡𝑡2

 (2.22)  

Equation (2.21) is isomorphic to (2.16) and (2.22) is isomorphic to (2.17). 

When the equations are compared the following equivalences are 

established:  

 the electric field component (𝐸𝐸) maps unto the electric potential (𝑉𝑉) 

to give 

𝐸𝐸𝑧𝑧 = −
𝑉𝑉𝑧𝑧
∆𝑙𝑙

 (2.23)  
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 magnetic field component (H) maps unto the nodal current (I) to 

give  

𝐻𝐻𝑦𝑦 = −
𝐼𝐼𝑥𝑥
∆𝑙𝑙

 (2.24)  

𝐻𝐻𝑥𝑥 = −
𝐼𝐼𝑦𝑦
∆𝑙𝑙

 (2.25)  

 the permeability (𝜇𝜇) maps unto inductance (𝐿𝐿) to give: 

𝐿𝐿 = 𝜇𝜇∆𝑙𝑙 (2.26)  

 and permittivity (ε) maps unto capacitance (𝐶𝐶) to give:  

2𝐶𝐶 = 𝜀𝜀∆𝑙𝑙 (2.27)  

Solutions to the Maxwell’s equations and their analogies to the TLM 

parameters, for the series configuration shown in Fig. 2.7 are obtained by 

following the same procedure as with the shunt TLM configuration.  
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Fig.  2.7: Series 2D TLM node. 

The non-zero field components are  𝐸𝐸𝑥𝑥,  𝐸𝐸𝑦𝑦 and 𝐻𝐻𝑧𝑧 . Maxwell’s equations 

then reduce to: 

𝜕𝜕𝐻𝐻𝑧𝑧
𝜕𝜕𝜕𝜕

=  𝜀𝜀
𝜕𝜕𝐸𝐸𝑥𝑥
𝜕𝜕𝜕𝜕

 (2.28)  

−
𝜕𝜕𝐻𝐻𝑧𝑧
𝜕𝜕𝜕𝜕

=  𝜀𝜀
𝜕𝜕𝐸𝐸𝑦𝑦
𝜕𝜕𝜕𝜕

 (2.29)  

𝜕𝜕𝐸𝐸𝑦𝑦
𝜕𝜕𝜕𝜕

−  
𝜕𝜕𝐸𝐸𝑥𝑥
𝜕𝜕𝜕𝜕

=  −𝜇𝜇
𝜕𝜕𝐻𝐻𝑥𝑥
𝜕𝜕𝜕𝜕

 (2.30)  

and the mapping equations are: 
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𝜕𝜕𝐼𝐼𝑦𝑦
𝜕𝜕𝜕𝜕

=  −𝐶𝐶
𝜕𝜕𝑉𝑉𝑥𝑥
𝜕𝜕𝜕𝜕

 (2.31)  

𝜕𝜕𝐼𝐼𝑦𝑦
𝜕𝜕𝜕𝜕

=  −𝐶𝐶
𝜕𝜕𝑉𝑉𝑧𝑧
𝜕𝜕𝜕𝜕

 (2.32)  

𝜕𝜕𝑉𝑉𝑥𝑥
𝜕𝜕𝜕𝜕

+  
𝜕𝜕𝑉𝑉𝑧𝑧
𝜕𝜕𝜕𝜕

=  −2𝐿𝐿
𝜕𝜕𝐼𝐼𝑦𝑦
𝜕𝜕𝜕𝜕

 (2.33)  

The mapping of (2.30) into (2.33) results in the magnetic field component 

(𝐻𝐻𝑧𝑧) as given in (2.34) and the inductance (L) in (2.36). (2.28) and (2.29) 

maps unto (2.31) and (2.32) respectively to give the electric field 

components given in (2.35) and the capacitance (C) as shown in (2.36) 

𝐻𝐻𝑧𝑧 = −
𝐼𝐼𝑧𝑧
∆𝑙𝑙

 (2.34)  

𝐸𝐸𝑥𝑥 = −
𝑉𝑉𝑥𝑥
∆𝑙𝑙

 

𝐸𝐸𝑦𝑦 = −
𝑉𝑉𝑦𝑦
∆𝑙𝑙

 

(2.35)  

2𝐿𝐿 = 𝜇𝜇∆𝑙𝑙 (2.36)  

𝐶𝐶 = 𝜀𝜀∆𝑙𝑙 (2.37)  
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2.2.3 DERIVATION OF TLM NODE PARAMETERS 

The relationship between Maxwell’s equations and the parameters of the 

TLM was established in Section 2.3.2. In this Section, the procedure for 

determining the TLM parameters is discussed.  

For a 3D TLM node, there are parameter variations in three dimensions and 

the total capacitance, C of the node given in (2.27) can be expressed as 

(2.38): 

𝐶𝐶 = �
𝐶𝐶𝑥𝑥
𝐶𝐶𝑦𝑦
𝐶𝐶𝑧𝑧
� (2.38)  

where 𝐶𝐶𝑥𝑥  ,  𝐶𝐶𝑦𝑦  and 𝐶𝐶𝑧𝑧 are the capacitance values for the x, y, and z 

dimensions expressed as (2.39) [16] 

𝐶𝐶𝑥𝑥 = 𝜀𝜀𝑥𝑥∆𝑙𝑙𝑥𝑥 ;   𝐶𝐶𝑦𝑦 = 𝜀𝜀𝑦𝑦∆𝑙𝑙𝑦𝑦;   𝐶𝐶𝑧𝑧 = 𝜀𝜀𝑧𝑧∆𝑙𝑙𝑧𝑧 (2.39)  

In the same manner, the total inductance of the node, L given in (2.26) can 

be expressed as (2.40): 

𝐿𝐿 = �
𝐿𝐿𝑥𝑥
𝐿𝐿𝑦𝑦
𝐿𝐿𝑧𝑧
� (2.40)  

where 𝐿𝐿𝑥𝑥 , 𝐿𝐿𝑦𝑦 and 𝐿𝐿𝑧𝑧 are the inductance values for the x, y, and z dimensions 

expressed as  (2.41) [16]: 

𝐿𝐿𝑥𝑥 = 𝜇𝜇𝑥𝑥∆𝑙𝑙𝑥𝑥;   𝐿𝐿𝑦𝑦 = 𝜇𝜇𝑦𝑦∆𝑙𝑙𝑦𝑦;   𝐿𝐿𝑧𝑧 = 𝜇𝜇𝑧𝑧∆𝑙𝑙𝑧𝑧 (2.41)  
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In the TLM mesh, the time it takes for the pulse to travel the node distance 

( ∆𝑥𝑥, ∆𝑦𝑦 or ∆𝑧𝑧) and arrive back at the centre of the nodes is called the time-

step (∆𝑡𝑡). During the scatter-connect procedure of the TLM scheme, some 

of the scatter pulses propagate forward to connect with the adjacent nodes 

while some reflect back to the originating node within this constant 

propagation time, ∆𝑡𝑡. It is essential that all pulses, transmitting or reflecting, 

arrive back at the centre of nodes at the same time. This requirement is 

termed synchronism and it is very crucial to the stability of the TLM scheme. 

In order to fulfil this requirement, it is important to know the velocity of 

propagation along the link lines and determine an appropriate value of ∆𝑡𝑡. 

The procedure for determining this will be discussed later in this Chapter. 

Up to this point, equal space-step (∆𝑙𝑙) assumption in all directions has been 

made but this may not be applicable in practice because inhomogeneous and 

lossy materials are used for various purposes. Numerical problems 

containing materials with relative permittivity and relative permeability 

greater than 1 (𝜀𝜀𝑟𝑟 > 1, 𝜇𝜇𝑟𝑟 > 1) vary the speed of waves and the space-step 

has to be adjusted accordingly in order to maintain synchronism in the 

scatter-connect procedure of the TLM scheme. Some problems require that 

the simulation space be modelled with meshes of various node sizes. Thus, 

special methods for handling irregular and non–uniform nodes, while 

maintaining synchronism in the scatter-connect procedure of the TLM, 

become necessary. One of the approaches for doing this is the introduction 

of stubs.  

The stub works in such a way as to increase the local permittivity and 

permeability without affecting the synchronism in the circuit. When dealing 

with inhomogeneous materials or non-cuboid nodes, stubs are added to the 

nodes to account for variability in the permeability and/or permittivity of the 

medium [81].  They are also added in order to account for losses in the 

medium and to correct for variation in distances travel by pulse when 
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travelling through a mesh of non-cubic node. The capacitive stub, also 

known as open-circuit stub, models additional permittivity by increasing the 

capacitance and it generally applies in shunt-connected networks. It is 

achieved by maintaining an open-circuit at one end of the transmission line 

section implying a reflection coefficient of 1. The inductive stub models 

additional permeability in series-connected networks by increasing the 

inductance and this is achieved by short-circuiting one end of the 

transmission line section. A reflection coefficient of -1 applies. To maintain 

synchronism, they are designed such that a pulse propagates from the node 

centre to the stub termination in half the discretised time (∆𝑡𝑡 2� ) in order to 

ensure that any pulse incident on a stub returns back to the node at time, ∆𝑡𝑡. 

As shown in Fig. 2.8, the scattered pulse at B takes time ∆𝑡𝑡 to arrive at 

junction A while the pulse scattered into the stub at node A takes time  ∆𝑡𝑡 2�  

to arrive at the junction, meaning the two pulses arrive at node junction A at 

the same time before the scattering procedure is repeated. 

 

Fig.  2.8: Stub application in TLM. 
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Equations (2.39) and (2.41) are essential to the proper modelling of any 

TLM node irrespective of the combination of link lines and stubs it is made 

up of. For example, the total capacitance modelled by the SCN node in one 

direction is represented by the distributed capacitances of the transmission 

lines and stub polarised in that direction. This means that the total 

capacitance modelled by an SCN in the 𝑧𝑧-direction (𝐶𝐶𝑧𝑧) is represented by 

the distributed capacitance of the 𝑧𝑧-polarised transmission lines of length ∆𝑥𝑥 

and ∆𝑦𝑦 plus the capacitance of the open-circuit stub in the 𝑧𝑧-direction ( 𝐶𝐶𝑜𝑜𝑜𝑜), 

expressed as (2.42): 

𝐶𝐶𝑧𝑧 = 𝐶𝐶𝑥𝑥𝑥𝑥∆𝑥𝑥 + 𝐶𝐶𝑦𝑦𝑦𝑦∆𝑦𝑦 + 𝐶𝐶𝑜𝑜𝑜𝑜 (2.42)  

The total capacitance equation for the other directions can be expressed as 

(2.43) - (2.44): 

𝐶𝐶𝑥𝑥 = 𝐶𝐶𝑧𝑧𝑧𝑧∆𝑧𝑧 + 𝐶𝐶𝑦𝑦𝑦𝑦∆𝑦𝑦 + 𝐶𝐶𝑜𝑜𝑜𝑜 (2.43)  

𝐶𝐶𝑦𝑦 = 𝐶𝐶𝑥𝑥𝑥𝑥∆𝑥𝑥 + 𝐶𝐶𝑧𝑧𝑧𝑧∆𝑧𝑧 + 𝐶𝐶𝑜𝑜𝑜𝑜 (2.44)  

In the same way, the total inductance modelled by the SCN in the 𝑧𝑧 -

direction (𝐿𝐿𝑧𝑧) is represented by the distributed capacitance of the 𝑧𝑧-polarised 

transmission lines of length ∆𝑥𝑥  and ∆𝑦𝑦  and the inductance of the short-

circuit stub in the 𝑧𝑧-direction (𝐿𝐿𝑠𝑠𝑠𝑠) as (2.45): 

𝐿𝐿𝑧𝑧 = 𝐿𝐿𝑥𝑥𝑥𝑥∆𝑥𝑥 + 𝐿𝐿𝑦𝑦𝑦𝑦∆𝑦𝑦 + 𝐿𝐿𝑠𝑠𝑠𝑠 (2.45)  

Total inductance equations for the other directions can also be expressed as 

(2.46) - (2.47): 
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𝐿𝐿𝑥𝑥 = 𝐿𝐿𝑦𝑦𝑦𝑦∆𝑦𝑦 + 𝐿𝐿𝑧𝑧𝑧𝑧∆𝑧𝑧 + 𝐿𝐿𝑠𝑠𝑠𝑠 (2.46)  

𝐿𝐿𝑦𝑦 = 𝐿𝐿𝑥𝑥𝑥𝑥∆𝑥𝑥 + 𝐿𝐿𝑧𝑧𝑧𝑧∆𝑧𝑧 + 𝐿𝐿𝑠𝑠𝑠𝑠 (2.47)  

Equations (2.48) - (2.53) represent the correct modelling of the simulated 

medium using any type of the 3D node and these are obtained by 

substituting (2.42) - (2.44) in (2.39) and (2.45) - (2.47) in (2.41) 

𝐶𝐶𝑥𝑥𝑥𝑥∆𝑥𝑥 + 𝐶𝐶𝑦𝑦𝑦𝑦∆𝑦𝑦 + 𝐶𝐶𝑜𝑜𝑜𝑜  = 𝜀𝜀𝑥𝑥∆𝑙𝑙𝑥𝑥 (2.48)  

𝐶𝐶𝑥𝑥𝑥𝑥∆𝑥𝑥 + 𝐶𝐶𝑧𝑧𝑧𝑧∆𝑧𝑧 + 𝐶𝐶𝑜𝑜𝑜𝑜 = 𝜀𝜀𝑦𝑦∆𝑙𝑙𝑦𝑦 (2.49)  

𝐶𝐶𝑥𝑥𝑥𝑥∆𝑥𝑥 + 𝐶𝐶𝑦𝑦𝑦𝑦∆𝑦𝑦 + 𝐶𝐶𝑜𝑜𝑜𝑜 = 𝜀𝜀𝑧𝑧∆𝑙𝑙𝑧𝑧 (2.50)  

𝐿𝐿𝑥𝑥𝑥𝑥∆𝑥𝑥 + 𝐿𝐿𝑦𝑦𝑦𝑦∆𝑦𝑦 + 𝐿𝐿𝑠𝑠𝑠𝑠 = 𝜇𝜇𝑥𝑥∆𝑙𝑙𝑥𝑥 (2.51)  

𝐿𝐿𝑦𝑦𝑦𝑦∆𝑦𝑦 + 𝐿𝐿𝑧𝑧𝑧𝑧∆𝑧𝑧 + 𝐿𝐿𝑠𝑠𝑠𝑠 =  𝜇𝜇𝑦𝑦∆𝑙𝑙𝑦𝑦 (2.52)  

𝐿𝐿𝑥𝑥𝑥𝑥∆𝑥𝑥 + 𝐿𝐿𝑧𝑧𝑧𝑧∆𝑧𝑧 + 𝐿𝐿𝑠𝑠𝑠𝑠 =  𝜇𝜇𝑧𝑧∆𝑙𝑙𝑧𝑧 (2.53)  

As earlier mentioned, the value of ∆𝑡𝑡 in the TLM scheme is related to the 

velocity of propagation along the link lines. The velocity of propagation 

along specific transmission link lines is a function of the distributed 

capacitance and inductance in that direction. It can be calculated as the ratio 

of the node distance to the time-step, i.e. the velocity of propagation along 

x-directed, z-polarised link line, for instance, is given by (2.54) and (2.55): 
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𝑣𝑣𝑥𝑥𝑥𝑥 =
1

�𝐿𝐿𝑥𝑥𝑥𝑥𝐶𝐶𝑥𝑥𝑥𝑥
 (2.54)  

𝑣𝑣𝑥𝑥𝑥𝑥 =
∆𝑥𝑥
∆𝑡𝑡

 (2.55)  

Combining (2.54) and (2.55), time synchronism can be enforced on the link 

line xz as (2.56): 

∆𝑡𝑡 =
∆𝑥𝑥
𝑣𝑣𝑥𝑥𝑥𝑥

= ∆𝑥𝑥�𝐿𝐿𝑥𝑥𝑥𝑥𝐶𝐶𝑥𝑥𝑥𝑥 (2.56)  

Similarly, the time-step for the other link line can be calculated as (2.57) - 

(2.61): 

∆𝑡𝑡 =
∆𝑥𝑥
𝑣𝑣𝑥𝑥𝑥𝑥

= ∆𝑥𝑥�𝐿𝐿𝑥𝑥𝑥𝑥𝐶𝐶𝑥𝑥𝑥𝑥 (2.57)  

∆𝑡𝑡 =
∆𝑦𝑦
𝑣𝑣𝑦𝑦𝑦𝑦

= ∆𝑦𝑦�𝐿𝐿𝑦𝑦𝑦𝑦𝐶𝐶𝑦𝑦𝑦𝑦 (2.58)  

∆𝑡𝑡 =
∆𝑦𝑦
𝑣𝑣𝑦𝑦𝑦𝑦

= ∆𝑦𝑦�𝐿𝐿𝑦𝑦𝑦𝑦𝐶𝐶𝑦𝑦𝑦𝑦 (2.59)  

∆𝑡𝑡 =
∆𝑧𝑧
𝑣𝑣𝑧𝑧𝑧𝑧

= ∆𝑧𝑧�𝐿𝐿𝑧𝑧𝑧𝑧𝐶𝐶𝑧𝑧𝑧𝑧 (2.60)  

∆𝑡𝑡 =
∆𝑧𝑧
𝑣𝑣𝑧𝑧𝑧𝑧

= ∆𝑧𝑧�𝐿𝐿𝑧𝑧𝑧𝑧𝐶𝐶𝑧𝑧𝑧𝑧 (2.61)  
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Other important parameters in TLM are the characteristic impedances (𝑍𝑍) 

and admittances (𝑌𝑌) of the link lines. The characteristic impedance of an x-

directed, z-polarised link line is given as (2.62): 

𝑍𝑍𝑥𝑥𝑥𝑥 = �
𝐿𝐿𝑥𝑥𝑥𝑥
𝐶𝐶𝑥𝑥𝑥𝑥

=
1
𝑌𝑌𝑥𝑥𝑥𝑥

 (2.62)  

The relationship between  ∆𝑡𝑡 , 𝑌𝑌𝑥𝑥𝑥𝑥  and 𝑍𝑍𝑥𝑥𝑥𝑥  can be obtained by combining 

(2.56) and (2.62) as in (2.63) and (2.64). Similar equations can be obtained 

for the other five link lines.  

𝑍𝑍𝑥𝑥𝑥𝑥 = �𝐿𝐿𝑥𝑥𝑥𝑥∆𝑥𝑥
∆𝑡𝑡

 (2.63)  

and  

𝑌𝑌𝑥𝑥𝑥𝑥 = �𝐶𝐶𝑥𝑥𝑥𝑥∆𝑥𝑥
∆𝑡𝑡

 (2.64)  

In conventional TLM nodes, it is required that the link lines have the 

characteristic impedance of the background medium [82], usually assumed 

to be free-space. The impedance and admittance of the free space are 

calculated as (2.65): 

𝑍𝑍0 = �𝜇𝜇0 𝜀𝜀0⁄  

𝑌𝑌0 = 1 𝑍𝑍0⁄  
(2.65)  
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The characteristic admittance of a capacitive stub, 𝑌𝑌𝑜𝑜𝑜𝑜 is given as (2.66) and 

the characteristic impedance of an inductive stub, 𝑍𝑍𝑠𝑠𝑠𝑠 is given as (2.67) [83] 

𝑌𝑌𝑜𝑜𝑜𝑜 =
2𝐶𝐶𝑜𝑜𝑞𝑞
∆𝑡𝑡

 (2.66)  

𝑍𝑍𝑠𝑠𝑠𝑠 =
2𝐿𝐿𝑠𝑠𝑠𝑠
∆𝑡𝑡

 (2.67)  

where subscript 𝑜𝑜  and 𝑠𝑠  signify open-circuit stub and short-circuit stub 

respectively and 𝑞𝑞 represents the coordinate axis. 𝐶𝐶𝑜𝑜𝑜𝑜 is the stub capacitance 

and 𝐿𝐿𝑠𝑠𝑠𝑠 is the stub inductance 

The description of the physical property of the medium is achieved by a 

combination of its parameters - the capacitance (2.48) - (2.50), the 

inductance (2.51) - (2.53) and the conditions for time synchronism (2.56 -

 2.61). The combination of these three parameters gives (2.68) - (2.73): 

�𝑍𝑍𝑥𝑥𝑥𝑥 + 𝑍𝑍𝑦𝑦𝑦𝑦 + 𝑍𝑍𝑠𝑠𝑠𝑠� 2⁄ = 𝜇𝜇𝑧𝑧
∆𝑥𝑥∆𝑦𝑦
∆𝑧𝑧∆𝑡𝑡

 (2.68)  

�𝑍𝑍𝑦𝑦𝑦𝑦 + 𝑍𝑍𝑧𝑧𝑧𝑧 + 𝑍𝑍𝑠𝑠𝑠𝑠� 2⁄ = 𝜇𝜇𝑥𝑥
∆𝑦𝑦∆𝑧𝑧
∆𝑥𝑥∆𝑡𝑡

 (2.69)  

�𝑍𝑍𝑥𝑥𝑥𝑥 + 𝑍𝑍𝑧𝑧𝑧𝑧 + 𝑍𝑍𝑠𝑠𝑠𝑠� 2⁄ = 𝜇𝜇𝑦𝑦
∆𝑥𝑥∆𝑧𝑧
∆𝑦𝑦∆𝑡𝑡

 (2.70)  

�𝑌𝑌𝑥𝑥𝑥𝑥 + 𝑌𝑌𝑦𝑦𝑦𝑦 + 𝑌𝑌𝑜𝑜𝑜𝑜� 2⁄ = 𝜀𝜀𝑧𝑧
∆𝑥𝑥∆𝑦𝑦
∆𝑧𝑧∆𝑡𝑡

 (2.71)  
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�𝑌𝑌𝑥𝑥𝑥𝑥 + 𝑌𝑌𝑧𝑧𝑧𝑧 + 𝑌𝑌𝑜𝑜𝑜𝑜� 2⁄ = 𝜀𝜀𝑦𝑦
∆𝑥𝑥∆𝑧𝑧
∆𝑦𝑦∆𝑡𝑡

 (2.72)  

�𝑌𝑌𝑦𝑦𝑦𝑦 + 𝑌𝑌𝑧𝑧𝑧𝑧 + 𝑌𝑌𝑜𝑜𝑜𝑜� 2⁄ = 𝜀𝜀𝑥𝑥
∆𝑦𝑦∆𝑧𝑧
∆𝑥𝑥∆𝑡𝑡

 (2.73)  

Link and stub parameters (𝒀𝒀𝑜𝑜𝑜𝑜  and  𝒁𝒁𝑠𝑠𝑠𝑠 ) can be obtained using either 

(2.68) – (2.73) or (2.48) - (2.53). By imposing the constraint of having free-

space as the background medium [82], the impedance of the link lines 

become the impedance of free space and (2.68) - (2.73) can be simplified to 

obtain 𝑌𝑌𝑜𝑜𝑜𝑜 and 𝑍𝑍𝑠𝑠𝑠𝑠 as (2.74) - (2.75): 

𝒀𝒀𝑜𝑜𝑜𝑜 = 2𝑌𝑌0 �
𝜀𝜀𝑟𝑟𝑟𝑟∆𝑙𝑙𝑞𝑞
𝑐𝑐∆𝑡𝑡

− 2� (2.74)  

𝒁𝒁𝑠𝑠𝑠𝑠 = 2𝑍𝑍0 �
𝜇𝜇𝑟𝑟𝑟𝑟∆𝑙𝑙𝑞𝑞
𝑐𝑐∆𝑡𝑡

− 2� (2.75)  

In an application where only a slice of the model is required, meaning that 

2D TLM will be more efficient for the simulation, there is a little change to 

the calculation of the link line impedance. The impedance of link lines for 

2D-TLM is 𝑍𝑍0√2 = �2𝜇𝜇0 𝜀𝜀0⁄ . This constraint changes the stub equations 

(2.74) and (2.75) to (2.76) and (2.77): 

𝒀𝒀𝑜𝑜𝑜𝑜 = 2𝑌𝑌0 �
𝜀𝜀𝑟𝑟𝑟𝑟∆𝑙𝑙𝑞𝑞
𝑐𝑐∆𝑡𝑡

− √2� (2.76)  

𝒁𝒁𝑠𝑠𝑠𝑠 = 2𝑍𝑍0 �
𝜇𝜇𝑟𝑟𝑟𝑟∆𝑙𝑙𝑞𝑞
𝑐𝑐∆𝑡𝑡

− √2� (2.77)  
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It is important to note is that in practical problems, the modelling space is 

not loss free and the effect of these losses may need to be accounted for in 

the TLM formulations. Stubs of infinite lengths can be inserted at the 

scattering junction of node to represent these losses [75]. A stub that serves 

as a lossy element does not reflect any pulse but dissipates all of the energy 

that enters it. In this way, it models the dissipation of energy without 

tampering with the velocity of wave propagation. In 2D networks, a shunt 

conductance, 𝐺𝐺  gives electric losses by modelling electric conductivity 

while series resistance, 𝑅𝑅  gives magnetic losses in series 2D network by 

modelling the magnetic conductivity. In an SCN network, six additional 

stubs are required, one shunt conductance, 𝐺𝐺𝑞𝑞 and one series resistance, 𝑅𝑅𝑞𝑞 

for each of the three directions. They are given as (2.78) and (2.79): 

𝐺𝐺𝑞𝑞 = 𝜎𝜎𝑒𝑒𝑒𝑒∆𝑙𝑙𝑞𝑞 (2.78)  

𝑅𝑅𝑞𝑞 = 𝜎𝜎𝑚𝑚𝑚𝑚∆𝑙𝑙𝑞𝑞 (2.79)  

where 𝜎𝜎𝑒𝑒𝑒𝑒 signifies electric conductivities and 𝜎𝜎𝑚𝑚𝑚𝑚 magnetic conductivities 

respectively in 𝑞𝑞 coordinate axis. 

In summary, when modelling materials with arbitrary permittivity and 

permeability or using graded mesh (i.e. use of discretisation nodes of 

arbitrary aspect ratio), open and short-circuit stubs are added to the 

conventional TLM [53]. Six stubs are added to the SCN node to account for 

the irregularity in mesh and material properties and another six to account 

for losses in the node. A node with stubs is usually referred to as a stub-

loaded SCN. However, some disadvantages associated with the addition of 

the stubs include more demand for storage capacity, more dispersion and the 

necessity to keep the time-step small in order to avoid introducing stubs 
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with negative impedance, which bring about instabilities in the TLM 

scheme [84].  

Other approaches have been developed to address the issue of non-uniform 

grids and changes in permittivity and permeability when modelling 

homogenous media in TLM. These methods involve changing the 

characteristic impedances of the link lines. One example of this method is 

the Symmetrical Super-Condensed Node (SSCN) [85]. Stubs are not 

required in the implementation of the SSCN [86]. Permittivity and 

permeability of the simulated medium are modelled into the link lines as 

inductances and capacitances, making the characteristic impedance of the 

six link lines at each node to be different to one another. One problem with 

SSCN is the requirement to model reflection/transmission processes at the 

boundaries between distinct node regions to account for the differences in 

link line impedances. In some cases, both the application of stubs and 

modification of link line impedance are combined to model an 

inhomogeneous medium as in Hybrid SCN, HSCN [67] [74], [87]. HSCN 

has two configurations, type 1 HSCN and type 2 HSCN. Type 1 HSCN is a 

TLM node whereby all inductances are modelled by the link lines and hence 

there is no need for inductive stubs. Type 2 HSCN may be implemented 

where all capacitances are modelled by the link lines and there are no 

capacitive stubs. The HSCN does not require as much storage space as stub-

loaded SCN for general problems. It has better dispersion properties and can 

be operated with larger time-steps compared to the stub-loaded SCN [24]. 

  



 
 
 

Introduction to Transmission Line Modelling Theory 
_____________________________________________________________ 

54 
 

2.3 IMPLEMENTATION OF THE TLM ALGORITHM 

The derivation of the TLM node parameters has been established in Section 

2.2. In this Section, the procedure for the implementation of the TLM 

algorithm will be discussed. 

In 1690, Huygens stated that each point on the wave-front acts as an 

isotopic spherical radiator and the superposition of all the elementary point 

radiators forms a new wave-front [57]. This is the mechanism by which 

wave-front propagates and it is the method adopted in the formulation of the 

TLM procedure.  

Solving electromagnetic problems with TLM involves populating the entire 

problem space with a grid of transmission lines in each direction and 

launching an excitation at a node of choice depending on the nature of the 

problem [58]. The pulse reflected from a node impinges on another node 

adjacent to it and sets up a spherical wave. Every voltage pulse that arrives 

at a particular transmission line is regarded as an incident voltage and is 

represented with the superscript i while the scattered/reflected voltage 

travelling away from the node is represented with the superscript r. The 

pulse propagates and scatters on the entire grid of lines that make up the 

modelling medium. The procedure by which TLM models the EM field 

propagation in the modelling space is termed the scatter-connect procedure 

[7], [88]. Before describing the scatter-connect procedure in detail in the 

next Section, it is important to first define some useful notations. 

Voltages leaving or arriving at the ports of the node are called port voltages. 

They are named using a three-letter subscript convention proposed by 

Trenkic et al [85]. The first letter of the subscript represents the direction of 

the propagation, the second represent the position of the voltage pulse 

relative to the centre of the node (positive, p or negative, n side of the 

coordinate axis) and the third letter indicates the direction of polarisation of 
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the voltage pulse. Using dummy indices i and j, we can write a general 

notation for voltage pulses at the node as 𝑉𝑉𝑖𝑖𝑖𝑖𝑖𝑖  and 𝑉𝑉𝑖𝑖𝑖𝑖𝑖𝑖 . The voltage 𝑉𝑉𝑖𝑖𝑖𝑖𝑖𝑖 

then represents a voltage pulse on the negative side of the node along an i-

directed, j-polarised transmission line and 𝑉𝑉𝑖𝑖𝑖𝑖𝑖𝑖 is the voltage on the positive 

side of the same line. For the twelve link line voltages of the SCN, these 

dummy indices should be replaced by x, y, z, where 𝑖𝑖, 𝑗𝑗  𝜖𝜖  {𝑥𝑥,𝑦𝑦, 𝑧𝑧} and 𝑖𝑖 ≠ 𝑗𝑗 . 

For example, the port voltage 𝑉𝑉𝑥𝑥𝑥𝑥𝑥𝑥 represents an x-directed voltage pulse, 

located on the negative/left side of the node-centre and polarised in the z-

direction. To differentiate between the reflected and the incident voltages at 

the port, a superscript letter r or i is added to the voltage such as  𝑉𝑉𝑥𝑥𝑥𝑥𝑥𝑥𝑖𝑖  

and 𝑉𝑉𝑥𝑥𝑥𝑥𝑥𝑥𝑟𝑟 . The notations for the link line currents follow the same principle 

as the link voltages. 

2.3.1 SCATTER-CONNECT PROCEDURE IN 2D TLM 

A 2D TLM node consists of two intersecting transmission lines of equal 

lengths and characteristic impedance ,   𝑍𝑍0 . The intersection of the lines 

forms a node with four ports. When a pulse of 1V is launched on one of the 

4 ports to excite the node as shown in Fig. 2.9, it travels to the intersecting 

junction between the lines. The pulse scatters at the junction and follows all 

available channels. The energy at the excited node is conserved and the 

incident pulse spreads isotropically from the node junction to become 

incident on adjacent nodes. 

In a shunt configuration, the link lines are arranged in parallel.  The 1V 

incidence pulse entering from one of the four ports into the node sees three 

link lines in parallel. At the junction, the effective impedance 𝑍𝑍𝐿𝐿 seen by the 

incident pulse is 𝑍𝑍𝐿𝐿 = 𝑍𝑍0 3⁄ . The reflection coefficient,  Г is calculated as 

Г = (𝑍𝑍𝐿𝐿 −  𝑍𝑍0) (𝑍𝑍𝐿𝐿 +  𝑍𝑍0)⁄ = −0.5 (2.80)  
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and the transmission coefficient, 𝜏𝜏 is  

𝜏𝜏 = 2𝑍𝑍𝐿𝐿 (𝑍𝑍𝐿𝐿 + 𝑍𝑍0)⁄ = 0.5 (2.81)  

The incident pulse generates four new pulses at the junction – three 

transmitted and 1 reflected as shown in Fig. 2.9. The four new pulses form a 

spherical wave of 0.5V in each direction depicting Huygens principle in a 

discrete way. The 0.5V pulse is transmitted to each of the link lines and the -

0.5V scattered pulse combines with the incident pulse to form 0.5V pulse, 

which causes the continuity around the node to be maintained. The scattered 

pulses travel through the link lines to the adjacent nodes and become the 

incident pulses on these nodes. As it arrives at the adjacent node, it sets up a 

secondary radiation as shown in Fig. 2.10. It is this principle of scatter and 

connect that characterises the TLM procedure. 

 

Fig.  2.9: Voltage scattering at the incident node of a 2D TLM. 

 

Fig.  2.10: The scatter-connect procedure in 2D TLM. 
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Equations guiding the scattering procedure of the TLM nodes are obtained 

using the Thevenin’s equivalent circuit models for the shunt and series 

nodes shown in Fig. 2.11 and Fig. 2.12 respectively. 

 

Fig.  2.11: Thevenin equivalent circuit for the 2D shunt TLM node after Flint 

[89]. 

 

Fig.  2.12: Thevenin equivalent circuit for the 2D series TLM node after 

Flint [89]. 

In 2D TLM, equations relating the input and output voltages for nodes with 

equal discrete lengths in all dimensions are expressed in matrix as [3]: 
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𝑉𝑉𝑟𝑟 = 𝑆𝑆𝑉𝑉𝑖𝑖  (2.82)  

where 𝑉𝑉𝑖𝑖 is given as: 

𝑉𝑉𝑖𝑖 =

⎣
⎢
⎢
⎢
⎡𝑉𝑉𝑥𝑥𝑥𝑥𝑥𝑥

𝑖𝑖

𝑉𝑉𝑥𝑥𝑥𝑥𝑥𝑥𝑖𝑖

𝑉𝑉𝑦𝑦𝑦𝑦𝑦𝑦𝑖𝑖

𝑉𝑉𝑦𝑦𝑦𝑦𝑦𝑦𝑖𝑖 ⎦
⎥
⎥
⎥
⎤

 (2.83)  

𝑉𝑉𝑟𝑟 as: 

𝑉𝑉𝑟𝑟 =

⎣
⎢
⎢
⎢
⎡
𝑉𝑉𝑥𝑥𝑥𝑥𝑥𝑥𝑟𝑟
𝑉𝑉𝑥𝑥𝑥𝑥𝑥𝑥𝑟𝑟

𝑉𝑉𝑦𝑦𝑦𝑦𝑦𝑦𝑟𝑟

𝑉𝑉𝑦𝑦𝑦𝑦𝑦𝑦𝑟𝑟 ⎦
⎥
⎥
⎥
⎤
 (2.84)  

and 𝑆𝑆 is the scattering matrix. For the shunt 2D TLM, 𝑆𝑆 is expressed as:  

𝑆𝑆 = 0.5 �
−1    1       1    1
   1 −1       1    1
   1
   1

   1
   1

   −1    1
      1 −1

� (2.85)  

and for the series 2D TLM, 𝑆𝑆 is expressed as:  

𝑆𝑆 = 0.5 �
   1    1       1 −1
   1    1    −1    1
   1
−1

−1
   1       1    1

     1    1

� (2.86)  

Equations (2.82) - (2.86) were implemented in the developed solver to 

obtain reflected voltages at the node of the 2D model.  
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The reflected/scattered voltages are connected to the adjacent nodes and 

they are scattered again at the junction of the next node. The connection 

between nodes in a typical 2D TLM mesh is shown in Fig. 2.13 and the 

connection is guided by [3] :  

𝑉𝑉𝑥𝑥𝑥𝑥𝑥𝑥𝑖𝑖 (𝑥𝑥,𝑦𝑦, 𝑧𝑧) =  𝑉𝑉𝑥𝑥𝑥𝑥𝑥𝑥𝑟𝑟 (𝑥𝑥 + 1,𝑦𝑦, 𝑧𝑧) 

𝑉𝑉𝑥𝑥𝑥𝑥𝑥𝑥𝑖𝑖 (𝑥𝑥 + 1,𝑦𝑦, 𝑧𝑧) =  𝑉𝑉𝑥𝑥𝑥𝑥𝑥𝑥𝑟𝑟 (𝑥𝑥,𝑦𝑦, 𝑧𝑧) 

𝑉𝑉𝑦𝑦𝑦𝑦𝑦𝑦𝑖𝑖 (𝑥𝑥,𝑦𝑦, 𝑧𝑧) =  𝑉𝑉𝑦𝑦𝑦𝑦𝑦𝑦𝑟𝑟 (𝑥𝑥,𝑦𝑦 + 1, 𝑧𝑧) 

  𝑉𝑉𝑦𝑦𝑦𝑦𝑦𝑦𝑖𝑖 (𝑥𝑥,𝑦𝑦 + 1, 𝑧𝑧) =  𝑉𝑉𝑦𝑦𝑦𝑦𝑦𝑦𝑟𝑟 (𝑥𝑥,𝑦𝑦, 𝑧𝑧) 

(2.87)  

 

Fig.  2.13: Connection process on a 2D TLM mesh. 

The field components in the mesh are calculated for the shunt node as: 

𝐸𝐸𝑧𝑧 = −
𝑉𝑉𝑧𝑧
∆𝑙𝑙

= −
0.5�𝑉𝑉𝑥𝑥𝑥𝑥𝑥𝑥 + 𝑉𝑉𝑥𝑥𝑥𝑥𝑥𝑥 + 𝑉𝑉𝑦𝑦𝑦𝑦𝑦𝑦 + 𝑉𝑉𝑦𝑦𝑦𝑦𝑦𝑦�

∆𝑙𝑙
 

𝐻𝐻𝑦𝑦 = −
𝐼𝐼𝑥𝑥
∆𝑙𝑙

= −
�𝑉𝑉𝑥𝑥𝑥𝑥𝑥𝑥 − 𝑉𝑉𝑥𝑥𝑥𝑥𝑥𝑥�

𝑍𝑍𝑡𝑡𝑡𝑡∆𝑙𝑙
 

(2.88)  
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𝐻𝐻𝑥𝑥 = −
𝐼𝐼𝑦𝑦
∆𝑙𝑙

= −
�𝑉𝑉𝑦𝑦𝑦𝑦𝑦𝑦 − 𝑉𝑉𝑦𝑦𝑦𝑦𝑦𝑦�

𝑍𝑍𝑡𝑡𝑡𝑡∆𝑙𝑙
 

and  for the series node: 

𝐻𝐻𝑧𝑧 = −
𝐼𝐼𝑧𝑧
∆𝑙𝑙

= −
0.5�𝑉𝑉𝑦𝑦𝑦𝑦𝑦𝑦 − 𝑉𝑉𝑥𝑥𝑥𝑥𝑥𝑥 − 𝑉𝑉𝑦𝑦𝑦𝑦𝑦𝑦 + 𝑉𝑉𝑥𝑥𝑥𝑥𝑥𝑥�

𝑍𝑍𝑡𝑡𝑡𝑡∆𝑙𝑙
 

𝐸𝐸𝑥𝑥 = −
𝑉𝑉𝑥𝑥
∆𝑙𝑙

=
�𝑉𝑉𝑦𝑦𝑦𝑦𝑦𝑦 + 𝑉𝑉𝑦𝑦𝑦𝑦𝑦𝑦�

∆𝑙𝑙
 

𝐸𝐸𝑦𝑦 = −
𝑉𝑉𝑦𝑦
∆𝑙𝑙

=
�𝑉𝑉𝑥𝑥𝑥𝑥𝑥𝑥 + 𝑉𝑉𝑥𝑥𝑥𝑥𝑥𝑥�

∆𝑙𝑙
 

(2.89)  

2.3.2 SCATTER AND CONNECT PROCEDURE IN 3D SYMMETRICAL 

CONDENSED NODE TLM 

The 3D SCN model [90] follows the same scattering and connecting 

procedure as that of the 2D. It is however more complex in that the link at 

the junction is a virtual connection. The 3D node combines the series and 

shunt modes of the 2D TLM nodes.  

In a 3D workspace, there are six intersecting transmission lines 

interconnected in such a way that each node face has two corresponding 

orthogonal ports thereby giving rise to twelve ports per node. The 3D SCN 

node structure is as shown in Fig. 2.14. The field polarisations are 

represented by the voltages at these orthogonal ports and appropriate 

summation of the port voltages at the nodes results in appropriate E and H 

field components [91]. Parameters of the cuboid-shaped TLM node with 

material properties 𝜇𝜇 and 𝜀𝜀 and arbitrary dimensions ∆𝑥𝑥, ∆𝑦𝑦 and ∆𝑧𝑧, can be 

derived using the system of equations described in this Section. 



 
 
 

Introduction to Transmission Line Modelling Theory 
_____________________________________________________________ 

61 
 

 

Fig.  2.14: Three-Dimensional SCN node after Johns [2]. 

2.3.3 DERIVATION OF TLM NODE PARAMETERS 

The relationship between the Maxwell’s equations and the parameters of the 

TLM has been established in Section 2.3.2. In this Section, the procedure 

for determining the TLM parameters is discussed.  

For a 3D TLM node, there are parameter variations in three dimensions and 

the total capacitance, C of the node given in (2.27) can be expressed as: 

𝐶𝐶 = �
𝐶𝐶𝑥𝑥
𝐶𝐶𝑦𝑦
𝐶𝐶𝑧𝑧
� (2.90)  
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where 𝐶𝐶𝑥𝑥  ,  𝐶𝐶𝑦𝑦  and 𝐶𝐶𝑧𝑧 are the capacitance values for the x, y, and z 

dimensions expressed as [16] 

𝐶𝐶𝑥𝑥 = 𝜀𝜀𝑥𝑥∆𝑙𝑙𝑥𝑥 ;   𝐶𝐶𝑦𝑦 = 𝜀𝜀𝑦𝑦∆𝑙𝑙𝑦𝑦;   𝐶𝐶𝑧𝑧 = 𝜀𝜀𝑧𝑧∆𝑙𝑙𝑧𝑧 (2.91)  

In the same manner, the total inductance of the node, L given in (2.26) can 

be expressed as: 

𝐿𝐿 = �
𝐿𝐿𝑥𝑥
𝐿𝐿𝑦𝑦
𝐿𝐿𝑧𝑧
� (2.92)  

where 𝐿𝐿𝑥𝑥 , 𝐿𝐿𝑦𝑦 and 𝐿𝐿𝑧𝑧 are the inductance values for the x, y, and z dimensions 

expressed as [16]: 

𝐿𝐿𝑥𝑥 = 𝜇𝜇𝑥𝑥∆𝑙𝑙𝑥𝑥;   𝐿𝐿𝑦𝑦 = 𝜇𝜇𝑦𝑦∆𝑙𝑙𝑦𝑦;   𝐿𝐿𝑧𝑧 = 𝜇𝜇𝑧𝑧∆𝑙𝑙𝑧𝑧 (2.93)  

In the TLM mesh, the time it takes for the pulse to travel the node distance 

( ∆𝑥𝑥, ∆𝑦𝑦 or ∆𝑧𝑧) and arrive back at the centre of the nodes is called the time-

step (∆𝑡𝑡). During the scatter-connect procedure of the TLM scheme, some 

of the scatter pulses propagate forward to connect with the adjacent nodes 

while some reflect back to the originating node within this constant 

propagation time, ∆𝑡𝑡. It is essential that all pulses, transmitting or reflecting, 

arrive back at the centre of nodes at the same time. This requirement is 

termed synchronism and it is very crucial to the stability of the TLM scheme. 

In order to fulfil this requirement, it is important to know the velocity of 

propagation along the link lines and determine an appropriate value of ∆𝑡𝑡. 

The procedure for determining the value of ∆𝑡𝑡 will be discussed later in this 

Chapter. 
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Up to this point, equal space-step (∆𝑙𝑙) assumption in all directions has been 

made but this may not be applicable in practice because inhomogeneous and 

lossy materials are used for various purposes. Numerical problems 

containing materials with relative permittivity and relative permeability 

greater than 1 (𝜀𝜀𝑟𝑟 > 1, 𝜇𝜇𝑟𝑟 > 1) vary the speed of waves and the space-step 

has to be adjusted accordingly in order to maintain synchronism in the 

scatter-connect procedure of the TLM scheme. Some problems required that 

the simulation space be modelled with meshes of various node sizes. Thus, 

special methods for handling irregular and non–uniform nodes, while 

maintaining synchronism in the scatter-connect procedure of the TLM, 

become necessary. One of the approaches for doing this is the introduction 

of stubs.  

The stub works in such a way as to increase the local permittivity and 

permeability without affecting the synchronism in the circuit. When dealing 

with inhomogeneous materials or non-cuboid nodes, stubs are added to the 

nodes to account for variability in the permeability and/or permittivity of the 

medium [81].  They are also added in order to account for losses in the 

medium and to correct for variation in distances travel by pulse when 

travelling through a mesh of non-cubic node. The capacitive stub, also 

known as open-circuit stub, models additional permittivity by increasing the 

capacitance and it generally applies in shunt-connected networks. It is 

achieved by maintaining an open-circuit at one end of the transmission line 

section implying a reflection coefficient of 1. The inductive stub models 

additional permeability in series-connected networks by increasing the 

inductance and this is achieved by short-circuiting one end of the 

transmission line section. A reflection coefficient of -1 applies. To maintain 

synchronism, they are designed such that a pulse propagates from the node 

centre to the stub termination in half the discretised time (∆𝑡𝑡 2⁄ ) in order to 

ensure that any pulse incident on a stub returns back to the node at time, ∆𝑡𝑡. 
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Equations (2.39) and (2.41) are essential to the proper modelling of any 

TLM node irrespective of the combination of link lines and stubs it is made 

up of. For example, the total capacitance modelled by SCN node in one 

direction is represented by the distributed capacitances of the transmission 

lines and stub polarised in that direction. This means that the total 

capacitance modelled by an SCN in the 𝑧𝑧-direction (𝐶𝐶𝑧𝑧) is represented by 

the distributed capacitance of the 𝑧𝑧-polarised transmission lines of length ∆𝑥𝑥 

and ∆𝑦𝑦 plus the capacitance of the open-circuit stub in the 𝑧𝑧-direction ( 𝐶𝐶𝑜𝑜𝑜𝑜), 

expressed as  

𝐶𝐶𝑧𝑧 = 𝐶𝐶𝑥𝑥𝑥𝑥∆𝑥𝑥 + 𝐶𝐶𝑦𝑦𝑦𝑦∆𝑦𝑦 + 𝐶𝐶𝑜𝑜𝑜𝑜 (2.94)  

The total capacitance equation for the other directions can be expressed as: 

𝐶𝐶𝑥𝑥 = 𝐶𝐶𝑧𝑧𝑧𝑧∆𝑧𝑧 + 𝐶𝐶𝑦𝑦𝑦𝑦∆𝑦𝑦 + 𝐶𝐶𝑜𝑜𝑜𝑜 (2.95)  

𝐶𝐶𝑦𝑦 = 𝐶𝐶𝑥𝑥𝑥𝑥∆𝑥𝑥 + 𝐶𝐶𝑧𝑧𝑧𝑧∆𝑧𝑧 + 𝐶𝐶𝑜𝑜𝑜𝑜 (2.96)  

In the same way, the total inductance modelled by SCN in the 𝑧𝑧-direction 

( 𝐿𝐿𝑧𝑧 ) is represented by the distributed capacitance of the 𝑧𝑧 -polarised 

transmission lines of length ∆𝑥𝑥  and ∆𝑦𝑦  and the inductance of the short-

circuit stub in the 𝑧𝑧-direction (𝐿𝐿𝑠𝑠𝑠𝑠) as: 

𝐿𝐿𝑧𝑧 = 𝐿𝐿𝑥𝑥𝑥𝑥∆𝑥𝑥 + 𝐿𝐿𝑦𝑦𝑦𝑦∆𝑦𝑦 + 𝐿𝐿𝑠𝑠𝑠𝑠 (2.97)  

Total inductance equations for the other directions can also be expressed as: 
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𝐿𝐿𝑥𝑥 = 𝐿𝐿𝑦𝑦𝑦𝑦∆𝑦𝑦 + 𝐿𝐿𝑧𝑧𝑧𝑧∆𝑧𝑧 + 𝐿𝐿𝑠𝑠𝑠𝑠 (2.98)  

𝐿𝐿𝑦𝑦 = 𝐿𝐿𝑥𝑥𝑥𝑥∆𝑥𝑥 + 𝐿𝐿𝑧𝑧𝑧𝑧∆𝑧𝑧 + 𝐿𝐿𝑠𝑠𝑠𝑠 (2.99)  

Equations (2.48) - (2.53) represent the correct modelling of the simulated 

medium using any type of the 3D node and these are obtained by 

substituting (2.42) - (2.44) in (2.39) and (2.45) - (2.47) in (2.41) 

𝐶𝐶𝑥𝑥𝑥𝑥∆𝑥𝑥 + 𝐶𝐶𝑦𝑦𝑦𝑦∆𝑦𝑦 + 𝐶𝐶𝑜𝑜𝑜𝑜  = 𝜀𝜀𝑥𝑥∆𝑙𝑙𝑥𝑥 (2.100)  

𝐶𝐶𝑥𝑥𝑥𝑥∆𝑥𝑥 + 𝐶𝐶𝑧𝑧𝑧𝑧∆𝑧𝑧 + 𝐶𝐶𝑜𝑜𝑜𝑜 = 𝜀𝜀𝑦𝑦∆𝑙𝑙𝑦𝑦 (2.101)  

𝐶𝐶𝑥𝑥𝑥𝑥∆𝑥𝑥 + 𝐶𝐶𝑦𝑦𝑦𝑦∆𝑦𝑦 + 𝐶𝐶𝑜𝑜𝑜𝑜 = 𝜀𝜀𝑧𝑧∆𝑙𝑙𝑧𝑧 (2.102)  

𝐿𝐿𝑥𝑥𝑥𝑥∆𝑥𝑥 + 𝐿𝐿𝑦𝑦𝑦𝑦∆𝑦𝑦 + 𝐿𝐿𝑠𝑠𝑠𝑠 = 𝜇𝜇𝑥𝑥∆𝑙𝑙𝑥𝑥 (2.103)  

𝐿𝐿𝑦𝑦𝑦𝑦∆𝑦𝑦 + 𝐿𝐿𝑧𝑧𝑧𝑧∆𝑧𝑧 + 𝐿𝐿𝑠𝑠𝑠𝑠 =  𝜇𝜇𝑦𝑦∆𝑙𝑙𝑦𝑦 (2.104)  

𝐿𝐿𝑥𝑥𝑥𝑥∆𝑥𝑥 + 𝐿𝐿𝑧𝑧𝑧𝑧∆𝑧𝑧 + 𝐿𝐿𝑠𝑠𝑠𝑠 =  𝜇𝜇𝑧𝑧∆𝑙𝑙𝑧𝑧 (2.105)  

As earlier mentioned, the value of ∆𝑡𝑡 in the TLM scheme is related to the 

velocity of propagation along the link lines. The velocity of propagation 

along specific transmission link lines is a function of the distributed 

capacitance and inductance in that direction. It can be calculated as the ratio 

of the node distance to the time-step, i.e. the velocity of propagation along 

x-directed, z-polarised link line, for instance, is given by (2.54) and (2.55): 
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𝑣𝑣𝑥𝑥𝑥𝑥 =
1

�𝐿𝐿𝑥𝑥𝑥𝑥𝐶𝐶𝑥𝑥𝑥𝑥
 (2.106)  

𝑣𝑣𝑥𝑥𝑥𝑥 =
∆𝑥𝑥
∆𝑡𝑡

 (2.107)  

Combining (2.54) and (2.55), time synchronism can be enforced on the link 

line xz as: 

∆𝑡𝑡 =
∆𝑥𝑥
𝑣𝑣𝑥𝑥𝑥𝑥

= ∆𝑥𝑥�𝐿𝐿𝑥𝑥𝑥𝑥𝐶𝐶𝑥𝑥𝑥𝑥 (2.108)  

Similarly, the time-step for the other link line can be calculated as: 

∆𝑡𝑡 =
∆𝑥𝑥
𝑣𝑣𝑥𝑥𝑥𝑥

= ∆𝑥𝑥�𝐿𝐿𝑥𝑥𝑥𝑥𝐶𝐶𝑥𝑥𝑥𝑥 (2.109)  

∆𝑡𝑡 =
∆𝑦𝑦
𝑣𝑣𝑦𝑦𝑦𝑦

= ∆𝑦𝑦�𝐿𝐿𝑦𝑦𝑦𝑦𝐶𝐶𝑦𝑦𝑦𝑦 (2.110)  

∆𝑡𝑡 =
∆𝑦𝑦
𝑣𝑣𝑦𝑦𝑦𝑦

= ∆𝑦𝑦�𝐿𝐿𝑦𝑦𝑦𝑦𝐶𝐶𝑦𝑦𝑦𝑦 (2.111)  

∆𝑡𝑡 =
∆𝑧𝑧
𝑣𝑣𝑧𝑧𝑧𝑧

= ∆𝑧𝑧�𝐿𝐿𝑧𝑧𝑧𝑧𝐶𝐶𝑧𝑧𝑧𝑧 (2.112)  

∆𝑡𝑡 =
∆𝑧𝑧
𝑣𝑣𝑧𝑧𝑧𝑧

= ∆𝑧𝑧�𝐿𝐿𝑧𝑧𝑧𝑧𝐶𝐶𝑧𝑧𝑧𝑧 (2.113)  
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Other important parameters in TLM are the characteristic impedances (𝑍𝑍) 

and admittances (𝑌𝑌) of the link lines. The characteristic impedance of an x-

directed, z-polarised link line is given as: 

𝑍𝑍𝑥𝑥𝑥𝑥 = �
𝐿𝐿𝑥𝑥𝑥𝑥
𝐶𝐶𝑥𝑥𝑥𝑥

=
1
𝑌𝑌𝑥𝑥𝑥𝑥

 (2.114)  

The relationship between  ∆𝑡𝑡 , 𝑌𝑌𝑥𝑥𝑥𝑥  and 𝑍𝑍𝑥𝑥𝑥𝑥  can be obtained by combining 

(2.56) and (2.62) as in (2.63) and (2.64). Similar equations can be obtained 

for the other five link lines.  

𝑍𝑍𝑥𝑥𝑥𝑥 = �𝐿𝐿𝑥𝑥𝑥𝑥∆𝑥𝑥
∆𝑡𝑡

 (2.115)  

and  

𝑌𝑌𝑥𝑥𝑥𝑥 = �𝐶𝐶𝑥𝑥𝑥𝑥∆𝑥𝑥
∆𝑡𝑡

 (2.116)  

In conventional TLM nodes, it is required that the link lines have the 

characteristic impedance of the background medium [82], usually assumed 

to be free-space. The impedance and admittance of the free space are 

calculated as: 

𝑍𝑍0 = �𝜇𝜇0 𝜀𝜀0⁄  

𝑌𝑌0 = 1 𝑍𝑍0⁄  
(2.117)  
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The characteristic admittance of a capacitive stub, 𝒀𝒀𝑜𝑜𝑜𝑜 is given as (2.66) and 

the characteristic impedance of an inductive stub, 𝒁𝒁𝑠𝑠𝑠𝑠 is given as [83] 

𝒀𝒀𝑜𝑜𝑜𝑜 =
2𝐶𝐶𝑜𝑜𝑜𝑜
∆𝑡𝑡

 (2.118)  

𝒁𝒁𝑠𝑠𝑠𝑠 =
2𝐿𝐿𝑠𝑠𝑠𝑠
∆𝑡𝑡

 (2.119)  

where subscript 𝑜𝑜  and 𝑠𝑠  signify open-circuit stubs and short-circuit stubs 

respectively and 𝑞𝑞 represents the coordinate axis. 𝐶𝐶𝑜𝑜𝑜𝑜 is the stub capacitance 

and 𝐿𝐿𝑠𝑠𝑠𝑠 is the stub inductance. 

The description of the physical property of the medium is achieved by a 

combination of its parameters - the capacitance (2.48) - (2.50), the 

inductance (2.51) - (2.53) and the conditions for time synchronism (2.56 -

 2.61). The combination of these three parameters gives: 

�𝑍𝑍𝑥𝑥𝑥𝑥 + 𝑍𝑍𝑦𝑦𝑦𝑦 + 𝑍𝑍𝑠𝑠𝑠𝑠� 2⁄ = 𝜇𝜇𝑧𝑧
∆𝑥𝑥∆𝑦𝑦
∆𝑧𝑧∆𝑡𝑡

 (2.120)  

�𝑍𝑍𝑦𝑦𝑦𝑦 + 𝑍𝑍𝑧𝑧𝑧𝑧 + 𝑍𝑍𝑠𝑠𝑠𝑠� 2⁄ = 𝜇𝜇𝑥𝑥
∆𝑦𝑦∆𝑧𝑧
∆𝑥𝑥∆𝑡𝑡

 (2.121)  

�𝑍𝑍𝑥𝑥𝑥𝑥 + 𝑍𝑍𝑧𝑧𝑧𝑧 + 𝑍𝑍𝑠𝑠𝑠𝑠� 2⁄ = 𝜇𝜇𝑦𝑦
∆𝑥𝑥∆𝑧𝑧
∆𝑦𝑦∆𝑡𝑡

 (2.122)  

�𝑌𝑌𝑥𝑥𝑥𝑥 + 𝑌𝑌𝑦𝑦𝑦𝑦 + 𝑌𝑌𝑜𝑜𝑜𝑜� 2⁄ = 𝜀𝜀𝑧𝑧
∆𝑥𝑥∆𝑦𝑦
∆𝑧𝑧∆𝑡𝑡

 (2.123)  
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�𝑌𝑌𝑥𝑥𝑥𝑥 + 𝑌𝑌𝑧𝑧𝑧𝑧 + 𝑌𝑌𝑜𝑜𝑜𝑜� 2⁄ = 𝜀𝜀𝑦𝑦
∆𝑥𝑥∆𝑧𝑧
∆𝑦𝑦∆𝑡𝑡

 (2.124)  

�𝑌𝑌𝑦𝑦𝑦𝑦 + 𝑌𝑌𝑧𝑧𝑧𝑧 + 𝑌𝑌𝑜𝑜𝑜𝑜� 2⁄ = 𝜀𝜀𝑥𝑥
∆𝑦𝑦∆𝑧𝑧
∆𝑥𝑥∆𝑡𝑡

 (2.125)  

Link and stub parameters (𝒀𝒀𝑜𝑜𝑜𝑜  and  𝒁𝒁𝑠𝑠𝑠𝑠 ) can be obtained using either 

(2.68) - 2.73) or (2.48) - (2.53). By imposing the constraint of having free-

space as the background medium [82], the impedance of the link lines 

become the impedance of free space and (2.68) - (2.73) can be simplified to 

obtain 𝒀𝒀𝑜𝑜𝑜𝑜 and 𝒁𝒁𝑠𝑠𝑠𝑠 as: 

𝒀𝒀𝑜𝑜𝑜𝑜 = 2𝑌𝑌0 �
𝜀𝜀𝑟𝑟𝑟𝑟∆𝑙𝑙𝑞𝑞
𝑐𝑐∆𝑡𝑡

− 2� (2.126)  

𝒁𝒁𝑠𝑠𝑠𝑠 = 2𝑍𝑍0 �
𝜇𝜇𝑟𝑟𝑟𝑟∆𝑙𝑙𝑞𝑞
𝑐𝑐∆𝑡𝑡

− 2� (2.127)  

In an application where only a slice of the model is required, meaning that 

2D TLM will be more efficient for the simulation, there is a little change to 

the calculation of the link line impedance. The impedance of link lines for 

the 2D TLM is  𝑍𝑍0√2 = �2𝜇𝜇0 𝜀𝜀0⁄ . This constraint changes the stub 

equations (2.74) and (2.75) to: 

𝒀𝒀𝑜𝑜𝑜𝑜 = 2𝑌𝑌0 �
𝜀𝜀𝑟𝑟𝑟𝑟∆𝑙𝑙𝑞𝑞
𝑐𝑐∆𝑡𝑡

− √2� (2.128)  

𝒁𝒁𝑠𝑠𝑠𝑠 = 2𝑍𝑍0 �
𝜇𝜇𝑟𝑟𝑟𝑟∆𝑙𝑙𝑞𝑞
𝑐𝑐∆𝑡𝑡

− √2� (2.129)  
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It is important to note that in practical problems, the modelling space is not 

loss free and the effect of these losses may need to be accounted for in the 

TLM formulations. Stubs of infinite lengths can be inserted at the scattering 

junction of node to represent these losses [75]. A stub that serves as a lossy 

element does not reflect any pulse but dissipates all of the energy that gets 

to it. In this way, it models the dissipation of energy without tampering with 

the velocity of wave propagation. In 2D networks, a shunt conductance, 𝐺𝐺 

gives electric losses by modelling electric conductivity while series 

resistance, 𝑅𝑅 gives magnetic losses in series 2D network by modelling the 

magnetic conductivity. In SCN network, six additional stubs are required, 

one shunt conductance, 𝐺𝐺𝑞𝑞 and one series resistance, 𝑅𝑅𝑞𝑞 for each of the three 

directions. 

𝐺𝐺𝑞𝑞 = 𝜎𝜎𝑒𝑒𝑒𝑒∆𝑙𝑙𝑞𝑞 (2.130)  

𝑅𝑅𝑞𝑞 = 𝜎𝜎𝑚𝑚𝑚𝑚∆𝑙𝑙𝑞𝑞 (2.131)  

where 𝜎𝜎𝑒𝑒𝑒𝑒 signifies electric conductivities and 𝜎𝜎𝑚𝑚𝑚𝑚 magnetic conductivities 

respectively in 𝑞𝑞 coordinate axis. 

In summary, when modelling materials with arbitrary permittivity and 

permeability or using graded mesh (i.e. use of discretisation nodes of 

arbitrary aspect ratio), open and short-circuit stubs are added to the 

conventional TLM [53]. Six stubs are added to the SCN node to account for 

the irregularity in mesh and material properties and another six to account 

for losses in the node. A node with stubs is usually referred to as a stub-

loaded SCN. However, some disadvantages associated with the addition of 

the stubs include more demand for storage capacity, more dispersion and the 

necessity to keep the time-step small in order to avoid introducing stubs 
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with negative impedance, which bring about instabilities in the TLM 

scheme [84].  

Other approaches have been developed to address the issue of non-uniform 

grids and changes in permittivity and permeability when modelling 

homogenous media in TLM. These methods involve changing the 

characteristic impedances of the link lines. One example of this method is 

the Symmetrical Super-Condensed Node (SSCN) [85]. Stubs are not 

required in the implementation of the SSCN [86]. Permittivity and 

permeability of the simulated medium are modelled into the link lines as 

inductances and capacitances, making the characteristic impedance of the 

six link lines at each node to be different to one another. One problem with 

SSCN is the requirement to model reflection/transmission processes at the 

boundaries between distinct node regions to account for the differences in 

link line impedances. In some cases, both the application of stubs and 

modification of link line impedance are combined to model an 

inhomogeneous medium as in Hybrid SCN, HSCN [67] [74], [87]. HSCN 

has two configurations, type 1 HSCN and type 2 HSCN. Type 1 HSCN is a 

TLM node whereby all inductances are modelled by the link lines and hence 

there is no need for inductive stubs. Type 2 HSCN may be implemented 

where all capacitances are modelled by the link lines and there are no 

capacitive stubs. The HSCN does not require as much storage space as stub-

loaded SCN for general problems. It has better dispersion properties and can 

be operated with larger time-steps compared to the stub-loaded SCN [24].  

2.3.4 DISPERSION IN TLM 

TLM, being a numerical method, is dispersive because of spatial 

discretisation and it is a fundamental requirement that a suitable number of 

nodes is used for the model [92]–[94]. The dispersive behaviour is due to 

the fact that the time it takes for a pulse to propagate along the mesh axis at 
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00 is not the same as the time required for the pulse to travel across the mesh 

diagonal path (450), meaning that its propagation characteristic is 

anisotropic as shown in Fig. 2.15.  

 

Fig.  2.15: Dispersion in TLM mesh. 

If the time taken for a pulse to move from point B in the mesh to point D 

diagonally (BD) is t, then it will take the same pulse time 2t to reach the 

same point D if it travels through the axial path BAD or BCD in the mesh. 

In the case of the diagonal propagation, the TLM mesh propagation velocity 

(𝑢𝑢𝑇𝑇𝑇𝑇𝑇𝑇) is given as [3]: 

𝑢𝑢𝑇𝑇𝑇𝑇𝑇𝑇 =
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

=
√2∆𝑙𝑙
2∆𝑡𝑡

=
𝑐𝑐
√2

 

For the axial path (00),  

𝑢𝑢𝑇𝑇𝑇𝑇𝑇𝑇 =
𝑐𝑐𝑐𝑐 �∆𝑙𝑙𝜆𝜆0

�

𝑠𝑠𝑠𝑠𝑠𝑠−1 �√2 𝑠𝑠𝑠𝑠𝑠𝑠 �𝜋𝜋 ∆𝑙𝑙𝜆𝜆0
��

 

Where 𝜆𝜆0 is the free space wavelength 
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The dispersion reduces with increase in the number of nodes/ λ as depicted 
by the curves in Fig. 2.16.  

 

Fig.  2.16: Dispersion curve for TLM.  

According to Hoefer [43], if maximum acceptable error for a model is 1%, 
the ratio of length discretisation to that of the wavelength (∆𝑙𝑙/𝜆𝜆) should be 
smaller than 0.075, for all frequency of interest. Therefore, assuming the 
maximum velocity error acceptable at the highest frequency of interest is 
known, the dispersion curve can be used in determining the discretisation 
length, ∆𝑙𝑙 for simulation.   
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2.4 BOUNDARY APPLICATION IN TLM 

As earlier mentioned in Section 2.1, external boundaries are needed at the 

mesh edge. Therefore, boundaries are applied to restrict the computational 

domain in numerical modelling. To model boundaries in TLM, appropriate 

impulse reflection coefficients are introduced in the network and accounted 

for by altering the scatter-connect procedure in the TLM algorithm as in [95]  

𝑉𝑉𝑚𝑚𝑖𝑖 (𝑝𝑝, 𝑞𝑞, 𝑟𝑟) = 𝜌𝜌𝑛𝑛𝑛𝑛+1 𝑉𝑉𝑚𝑚𝑟𝑟(𝑝𝑝, 𝑞𝑞, 𝑟𝑟) (2.132)  

where 𝜌𝜌 is the reflection coefficient of the boundaries with values ranging 

from -1 to +1 (i.e. −1 ≤ 𝜌𝜌 ≤= 1), 𝑛𝑛 is the iteration counter, 𝑚𝑚 is the node 

number, and p, q and 𝑟𝑟 are the coordinate indicators. 

There are three conventional types of boundaries that could be used in the 

TLM: the open-circuit boundary, the short-circuit boundary and the matched 

boundary. In a shunt-connected 2D TLM in which the voltage simulates an 

electric field, a short and open-circuit boundary simulates an electric wall 

and a magnetic wall respectively. They are perfect reflecting walls of either 

zero impedance (electric wall) or infinite impedance (magnetic wall). In an 

open-circuit boundary, the pulse is reflected back into the physical problem 

with a reflection coefficient of 1. It is normally referred to as a perfect 

magnetic wall. The concept is such that pulses arriving at the boundary are 

reflected back in phase and with equal magnitude. In a short-circuit 

boundary, a reflection coefficient of -1 is simulated. The short-circuit 

boundary can be inserted at the node or between nodes. In a matched 

boundary, the pulse is reflected back by the reflection coefficient 

Г =
𝑍𝑍𝑠𝑠 −  𝑍𝑍𝑙𝑙
𝑍𝑍𝑠𝑠 +  𝑍𝑍𝑙𝑙

 (2.133)  
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where 𝑍𝑍𝑠𝑠  is the surface impedance of the boundary and  𝑍𝑍𝑙𝑙  is the 

characteristic impedance of the mesh line.  

For antenna and unbounded field problems, modelling of the free space 

boundaries in an accurate way is very important in order to maintain result 

accuracy while maximising the simulation time and memory storage [96]. In 

these cases, Absorbing (or Artificial) Boundary Condition (ABC) [97]–[99] 

or Perfectly Matched Layers (PML) [86], [100], [101] are employed. PML 

is a non-physical absorber created adjacent to the outer  boundary nodes, 

with impedance that is non-related to the angle of incidence and the 

frequency of the outgoing waves [102]. 

Conventionally, boundaries are implemented halfway between two nodes in 

order to maintain the synchronism in the mesh [16], [103]. Therefore, the 

pulse gets to the boundary at half time-step (2.5∆𝑡𝑡) and returns to the node 

at the end of the time-step. However, TLM has the ability to accommodate 

various boundary conditions [104] and there has been several novel 

approaches to boundary placements in TLM. A new approach to boundary 

implementation was presented by Chen et al. [105], where the boundary was 

placed across the nodes instead of halfway between them. This arrangement 

is made in such a way that the boundary wall coincides with a row of nodes 

thereby removing the need for the mesh parameter ∆𝑙𝑙  to be the integer 

fraction of the structure dimension, a required condition when the boundary 

is halfway between nodes. The new boundary procedure is purely numerical, 

unlike the conventional method. It is performed at discrete node locations 

along the boundary. German [106] presented infinitesimally adjustable 

boundaries in symmetrical node TLM simulation. Muller [107] introduced 

the technique of arbitrary boundary positioning in the TLM network using a 

recursive algorithm which replaces the boundary reflection coefficient while 

leaving the impulse scattering matrix intact. Porter and Dawson suggested 

the use of asymmetric boundary to avoid distortion of the wave front due to 
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discontinuity of the plane wave at the boundary [108] and James et al 

proposed an absorbing boundary for plane wave where pulses are swapped 

between opposite boundaries [109]. 
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2.5 CONCLUSIONS 

TLM is a useful numerical tool in solving electromagnetic (EM) problems. 

TLM simulations represent models of the electromagnetic wave propagating 

through a network of discrete transmission lines connected at scattering 

junctions. In this Chapter, the fundamentals of TLM scheme including a 

brief history of TLM and an introduction to the analogies of TLM to 

Maxwell’s equations in rectangular coordinate have been discussed. The 

rigorous derivations of the rectangular TLM parameters and the 

formulations of TLM algorithm for both 2D and 3D electric waves are also 

presented. Common terminologies used in TLM are defined in this Chapter 

and the concepts of stub application and boundaries application are also 

discussed. 

This Chapter will serve as the foundation on which other aspects of this 

thesis are built. An electromagnetic solver (TLS), based on the discussed 

TLM algorithm, was developed using MATLAB. To test the effectiveness 

of the TLS, a set of canonical problems were solved by the code. The details 

of these models and the simulated results are discussed in Chapter 3. 

  



 
 
 

Validation of The rectangular TLM Method for Cuboid and Cylindrical 
Microwave Cavities 

_____________________________________________________________ 

78 
 

CHAPTER 3  

 

 

VALIDATION OF THE RECTANGULAR 

TLM METHOD FOR CUBOID AND 

CYLINDRICAL MICROWAVE CAVITIES 

In this Chapter, rectangular meshes are used to validate the 3D TLM method 

in the context of microwave cavities serving as benchmark for the model.  A 

brief introduction to microwave cavities is presented in this Section and 

equations discussed in here for analytical calculation of the cavity resonant 

frequencies will be useful as basis for comparison of simulated results in 

Section 3.2.  

3.1 MICROWAVE CAVITIES 

Microwave cavities are waveguides (a form of transmission line) made out 

of hollow metallic structures with a closed fixed cross-sectioned area within 

which a guided wave propagates. An example of such a structure is shown 

in Fig. 3.1. These cavities can be filled with materials of various permittivity, 

𝜀𝜀 and permeability, 𝜇𝜇 properties depending on the required application. In a 

microwave cavity, waves reflect back at the wall boundaries forming 

standing waves. These standing waves form modes that are either transverse 

magnetic (TM) or transverse electric (TE) in the cavity and each of these 

modes have distinct operating frequencies, from which they begin to 

propagate, commonly referred to as its cut-off frequency, 𝑓𝑓𝑐𝑐 . At this 
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frequency, the mode characteristics of the cavities are determined by the 

cross-section of the waveguide and the type of material in it.  

 

Fig.  3.1: The rectangular cavity. 

The cut-off frequency of rectangular microwave cavity is analytically 

calculated as [110], [111]:  

𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚 =
1

2√𝜇𝜇𝜇𝜇
��

𝑚𝑚
𝑎𝑎
�
2

+ �
𝑛𝑛
𝑏𝑏
�
2

+ �
𝑙𝑙
𝑑𝑑
�
2

 (3.1)  

where  𝑎𝑎, 𝑏𝑏 and 𝑑𝑑 are the dimension of the cavity in the 𝑥𝑥, 𝑦𝑦 and 𝑧𝑧 direction 

respectively; 𝑚𝑚, 𝑛𝑛, and 𝑙𝑙 represent the cavity mode signifying the number of 

variations in the standing wave pattern in the 𝑥𝑥, 𝑦𝑦, and 𝑧𝑧 direction; 𝜀𝜀 = 𝜀𝜀𝑟𝑟𝜀𝜀0 

is the absolute permittivity of the medium of propagation; 𝜇𝜇 = 𝜇𝜇𝑟𝑟𝜇𝜇0 is the 

absolute permeability of the medium of propagation; 𝜀𝜀𝑟𝑟  and 𝜇𝜇𝑟𝑟 are the 

relative permittivity and relative permeability of the material content of the 

cavity respectively; 𝜀𝜀0 and 𝜇𝜇0  are the permittivity and permeability of free 

space. 

For propagation in free space, 𝜀𝜀𝑟𝑟 = 1 and 𝜇𝜇𝑟𝑟 = 1. Substituting 𝜀𝜀𝑟𝑟, 𝜇𝜇𝑟𝑟 = 1 in 

(3.1) reduced the equation to: 
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𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚 =
𝑐𝑐
2
��

𝑚𝑚
𝑎𝑎
�
2

+ �
𝑛𝑛
𝑏𝑏
�
2

+ �
𝑙𝑙
𝑑𝑑
�
2

 (3.2)  

where   𝑐𝑐 = 1
�𝜀𝜀0𝜇𝜇0

 is the velocity of propagation in free space; 𝜀𝜀0  is the 

relative permittivity of free space; and 𝜇𝜇0 is the relative permeability of free 

space.  

If the transmission line is assumed to be infinitely long, the length (𝑑𝑑) is 

assumed to tend to infinity (𝑑𝑑 → ∞) and so can be ignored in the calculation. 

This assumption reduces the problem to a 2D form and (3.2) can be further 

simplified to (3.3). The same assumption applies when variation in 𝑧𝑧 -

direction is not required in a 3D structure. 

𝑓𝑓𝑚𝑚𝑚𝑚 =
𝑐𝑐
2
��

𝑚𝑚
𝑎𝑎
�
2

+ �
𝑛𝑛
𝑏𝑏
�
2
 (3.3)  

The resonant frequency of cylindrical cavity resonator is given as [110]:  

𝑓𝑓𝑛𝑛𝑛𝑛𝑛𝑛 =
1

2𝜋𝜋√𝜇𝜇𝜇𝜇
��

𝑃𝑃𝑛𝑛𝑛𝑛
𝑟𝑟
�
2

+ �
𝑙𝑙𝑙𝑙
𝑑𝑑
�
2

 (3.4)  

where  𝜇𝜇 is the absolute permittivity; 𝜀𝜀 is the absolute permeability; 𝑑𝑑 is the 

height of the cylindrical cavity resonator and the indices 𝑛𝑛, 𝑚𝑚, 𝑙𝑙 describe the 

mode. 𝑚𝑚 refers to the number of full-period variations of the field along the 

circumferential direction, 𝑛𝑛 is the number of half-period variations of the 

field in the radial direction and 𝑙𝑙 is the number of half-period variations in 
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𝑧𝑧-direction and 𝑃𝑃𝑃𝑃𝑃𝑃 are roots of the Bessel functions given in Table 3.1 

[110], [111]: 

Table  3.1: Roots of the Bessel function 

n Pn1 Pn2 Pn3 

0 2.405 5.520 8.654 

1 3.832 7.016 10.174 

2 5.135 8.417 11.620 

The fundamental equations discussed in Section 3.1 will be used to 

analytically calculate the expected results for cavity simulations in Sections 

3.2 and 3.3.  
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3.2 SIMULATION OF THE RECTANGULAR MICROWAVE CAVITY 

RESONATOR USING RECTANGULAR TLM METHOD 

In this Section, rectangular microwave cavities are simulated using the 

developed TLS solver. The TLM methods employed are the shunt 2D TLM 

node and the SCN TLM operated in 2D mode. The simulated resonant 

cavity has an arbitrary cross-sectional area of 100 mm x 100 mm. The cut-

off frequencies for possible modes in this cavity are calculated using (3.3), 

where 𝑎𝑎 = 100 mm and 𝑏𝑏 = 100 mm. The structure was meshed and excited 

by an impulse of 1V applied at the centre of the mesh and the output was 

taken as the vertical component of the electric field (𝐸𝐸𝐸𝐸) at the point of 

excitation. The Discrete Fourier Transform (DFT) was employed to convert 

the obtained time-domain results to their frequency-domain forms [44].  

Generally, the choice of the discrete length (∆l) of the nodes in all direction 

in the simulation space depends on the highest frequency of interest. It is 

recommended that 𝜆𝜆 > 10∆𝑙𝑙   in order to minimise dispersion error [32]. 

Therefore, the dispersion cut-off frequency for the modelled square cavity is 

calculated as: 

𝑓𝑓𝑐𝑐𝑡𝑡𝑡𝑡𝑡𝑡 =
𝑣𝑣𝑡𝑡𝑡𝑡𝑡𝑡
𝜆𝜆𝑚𝑚

 (3.5)  

where   𝑣𝑣𝑡𝑡𝑡𝑡𝑡𝑡  is the velocity of wave in TLM and  𝜆𝜆𝑚𝑚  is the modelled 

wavelength in meters. 

The cavity is filled with air, which means  𝑣𝑣𝑡𝑡𝑡𝑡𝑡𝑡 = 𝑐𝑐 ≅ 3 × 108 𝑚𝑚𝑠𝑠−1. At 10 

nodes per wavelength, for a cavity of 100 mm: 
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𝑓𝑓𝑐𝑐𝑡𝑡𝑡𝑡𝑡𝑡 =
3 × 108

0.1
= 3𝐺𝐺𝐺𝐺𝐺𝐺 (3.6)  

The dispersion cut-off frequency is 3 GHz at this level of discretisation, 

which means that any results beyond this frequency are prone to high 

dispersion error. In order to accommodate more modes within the dispersion 

cut-off limit of the modelled cavities, the mesh used for this simulation is 21 

nodes per 𝜆𝜆. The dispersion cut-off frequency then becomes 6.25 GHz. 

3.2.1 SIMULATION OF RECTANGULAR CAVITY USING 2D SHUNT TLM 

NODE METHOD 

The first model considered in this Section was simulated using the 2D shunt 

TLM node. The cavity was represented by mesh of 441 nodes. Nodes at the 

edges of the cavity were terminated by an electric wall (𝛤𝛤 = −1) in all 

dimensions. The mesh was excited by an impulse voltage of 1V at node 

(11,11,1) and the electric field simulated was observed at the same node 

where the mesh was excited. The simulation was done with 4096 time 

steps/iterations. The normalised electric field simulated by TLS is as shown 

in Fig. 3.2. The distribution of the TM110 mode in the simulated cavity at 

2.121 GHz after 4096 iterations is shown in Fig. 3.3. The results are 

normalised to the highest electric field magnitude in the simulation. A 

similar cavity was simulated using the CST Microstripes solver, which uses 

3D TLM method, for validation purposes. Results for both simulations are 

compared in Table 3.2. 



 
 
 

Validation of The rectangular TLM Method for Cuboid and Cylindrical 
Microwave Cavities 

_____________________________________________________________ 

84 
 

 

Fig.  3.2: The normalised simulated resonant frequency for a 

100 mm x 100 mm cavity modelled with a shunt 2D TLM after 4096 

iterations. 

 

Fig.  3.3: The normalised simulated electric field distribution of the TM110 

mode for a 100 mm x 100 mm cavity modelled with 2D shunt TLM (2.121 

GHz) after 4096 iterations. 
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Table  3.2: Comparison of the analytically generated resonant frequencies to 

the simulated using shunt 2D TLM and CST 

Modes Analytical 

Results (GHz) 

Simulated Results 

Shunt 2D TLM 

(GHz) 

CST (GHz) 

TM110 2.120 2.121 2.120 

TM220 4.243 Not excited Not excited 

TM330 6.364 6.364 6.355 

TM440 8.485 7.568 7.642 

The normalised electric field simulated by the shunt node of the TLS 

compared well with the analytical results and the mode distribution pattern 

in the simulated cavity was also as expected from theory. The simulated 

results using the TLS solver also agreed with the simulated results from the 

CST. These results show that the TLS solver has been correctly 

implemented and the level of accuracy obtained in the simulated result 

shows the effectiveness of the solver in modelling the cavity.  

However, it was observed that TM220 was not excited. A resonance 

theoretically not expected occurred at 4.74 GHz as shown in Fig. 3.2. Since 

the method and position of excitation affects the type of modes excited in a 

cavity, the position or type of excitation used in this simulation could be 

responsible for the absence of TM220 and the excitation of the other mode 

at 4.74 GHz that was not initially predicted for the cavity simulated cavity 

type. This occurrence of a mode at 4.74 GHz resonance was common to 

both the shunt node and the CST simulations. 
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Checking the effect of dispersion on the simulated results, it was observed 

that results are not significantly affected by dispersion error up to the 

calculated 6.25 GHz TLM dispersion cut-off frequency for the cavity at 21 

nodes per 𝜆𝜆. As can be seen in Table 3.2 the results of both the TLS solver 

and CST compared well with the analytical results up to 6.364 GHz, slightly 

higher than the calculated dispersion cut-off frequency. The disparity in the 

simulated results above 6.364 GHz in comparison to the analytical results 

can therefore be accounted for by the numerical dispersion effect of TLM. 

This effect can be clearly seen on the results of the TM440 mode of the 

cavity, which falls in the frequency range higher than the 10 𝑛𝑛𝑛𝑛𝑑𝑑𝑒𝑒𝑒𝑒 𝜆𝜆⁄  limit. 

Therefore, it is very important that any result beyond the dispersion cut-off 

frequency be treated with caution because of the dispersion error. 

3.2.2 SIMULATION OF RECTANGULAR CAVITY USING THE SYMMETRICAL 

CONDENSED NODE (SCN) TLM 

In the Section 3.1.1, a cavity of arbitrary dimension 100 mm x 100 mm was 

simulated using the shunt 2D TLM nodes of the TLS solver and the 

simulated results were compared with the analytical results and the results 

obtained from CST. Here in this Section, the same cavity is modelled using 

the SCN nodes of the TLS solver in order to compare the output of the two 

simulated results produced by the two methods.  

In the SCN model of the cavity, the z-axis cavity was modelled by one node 

and electric boundary applied on the faces of the node since variation of the 

electric field along the cylinder height (z-direction) is not required. Electric 

boundaries were applied on other edges of the cavity as well. The cavity 

was excited at node (11, 11, 1) of the 21 x 21 x 1 mesh with an impulse 

voltage of 1V and the field was observed at the same node where the cavity 

was excited. The simulated resonant frequency is shown in Fig. 3.4. All 
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results are normalised to the highest electric field (𝐸𝐸𝑧𝑧) magnitude in the 

simulations.  

 

Fig.  3.4: The normalised simulated resonant frequency for a 

100 mm x 100 mm cavity modelled with SCN TLM. 

Apart from the occurrence of a resonance at 4.74 GHz and suppression of 

mode TM220, the agreement of all the simulated results within the 

dispersion limit compared with the analytical expectations is accurate with 

less than 0.1% error as shown in Table 3.3. As in the shunt model, the effect 

of dispersion error is more significant in the resonant frequency of TM440 

because its value is above the acceptable dispersion cut-off frequency of the 

simulated cavity. The electric field distributions for the first three modes are 

shown in Table 3.4. 
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Table  3.3: Simulated resonant frequencies using the analytic, the shunt TLM, 

SCN TLM and CST methods 

Modes Analytical Results 

(GHz) 

Simulated Results 

SCN TLM (GHz) CST (GHz) 

TM110 2.120 2.121 2.120 

TM 220 4.243 - - 

TM 330 6.364 6.360 6.355 

TM 440 8.485 7.649 7.642 
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Table  3.4: Normalised simulated electric field distributions for a 100 mm x 

100 mm cavity modelled with SCN TLM after 8192 iterations. 

  

Mode 1 (TM110) at 2.12 GHz Mode 2 at 4.74 GHz 

 
 

Mode 3 (TM330) at 6.36 GHz Mode 4 (TM440) at 7.649 GHz 

3.2.3 COMPARING THE SHUNT 2D TLM AND THE SCN TLM 

The shunt and the SCN TLM methods have been applied to the modelling of 

cavity in Section 3.2.1 and 3.2.2 respectively. In this Section a short 

comparison between the two methods is presented. Considering the 

effectiveness of the two methods in simulating the rectangular microwave 
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cavity with respect to the accuracy of the result, it was observed that the two 

models produced similar results with acceptable levels of accuracy. The 

small difference between the results for these two methods occurred outside 

the dispersion cut-off frequency limit as shown in Fig. 3.5. The 

implementation of 2D Shunt is simpler as fewer variables are required in the 

simulation compared to the SCN as discussed in Chapter 2. 

 

Fig.  3.5: Comparison of the normalised simulated electric fields with 

resonant frequency for a 100 mm x 100 mm cavity modelled with SCN 

TLM and shunt TLM. 

From Fig. 3.5, TM22 is observed to be suppressed by the two models but 

another mode was excited at 4.74 GHz. A common node (11,11,1) was 

chosen for the excitation of the two meshes and it could be deduced that 

some of the expected modes were not excited or were suppressed, as is the 

case with TM220, due to the position or type of excitation rather than the 

particular method used. The excitation of another mode, that was not 

initially planned for, as in the case at the 4.74 GHz frequency, was also 

common to both methods. 
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The choice between the two methods thus depends on the problem being 

considered and the level of simplicity required. However, although the 

resonant frequency of the cavity is determined by the radius of the cavity 

and not by its length, a 2D model will only generate modes that have no 

variations along the cavity height. This implies that in order to get all the 

possible modes in the cavity, a 3D model is required, which makes the SCN 

model a preferred option over the 2D shunt TLM. Moreover, characteristics 

of propagation in two dimensions can be predicted in 3D SCN mesh while 

only one direction can be achieved per iteration when working with a 2D 

TLM model [112]. 

For the rest of this thesis, the focus in reference to the rectangular TLM will 

be on the SCN method. 
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3.3 SIMULATION OF THE CIRCULAR MICROWAVE CAVITY 

RESONATOR USING A RECTANGULAR TLM METHOD 

When modelling with rectangular TLM mesh, the surfaces of a curved 

boundaries or boundaries that are not conforming to the mesh are normally 

approximated to fit the mesh [41], [113]. The approximated boundaries have 

a staircase effect at the edge and are referred to as staircase approximations. 

According to Sewell et al. [7], the staircase approximation to curved 

boundaries results in the misrepresentation of the area of geometry in 

question and this poses several problems in the results of the model. For 

example, staircase approximations in modelling of circular resonators 

produce an irregular boundary creating spurious resonances and shifts of 

resonant frequencies from the expected values. In this Section, a cylindrical 

cavity is simulated using the rectangular TLM to verify this staircase error 

and lay a foundation for the work done in the Sections that follow.  

The resonant frequencies excited in a cavity depend on the dimensions and 

the material contained in the cavity. In this example, the radius, 𝑟𝑟 of the 

simulated circular cavity was 50 mm and the height was 100 mm as shown 

in Fig. 3.6. The cavity content was air, that is 𝜀𝜀𝑟𝑟 = 1 and 𝜇𝜇𝑟𝑟= 1.  

 

Fig.  3.6: The simulated air-filled cavity. 
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Since the simulated cavity is cylindrical in shape, the principle of cylindrical 

cavity resonator was used in calculating the resonant frequency. The 

resonant frequency was calculated using equation (3.4). In the TLS solver, 

the cross section of the cavity was mapped onto 21x21x1 nodes and a short 

circuit boundary was inserted at the nodes nearest to the perimeter of the 

cylinder. The variation in the z-direction was not considered, therefore, the 

simulation is conducted as a 2D model on the x-y plane only.  The 

normalised electric field generated for the cavity after 4096 time steps are 

shown in Fig. 3.7. Fig. 3.8 shows the field distribution simulated for mode 

TM110 of the cavity at the 2.21 GHz resonant frequency. 

 

Fig.  3.7: The normalised simulated resonant frequency for a 50 mm radius 

circular cavity modelled with 21x21x1 nodes after 4096 iterations. 
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Fig.  3.8: The normalised simulated TM010 mode for a 50 mm radius 

circular cavity modelled with 21x21x1 SCN nodes at 2.21 GHz after 4096 

iterations. 

The simulated resonant frequencies are compared with the analytically 

generated results in Table 3.5 and it is accurate to an approximately 3% 

error. There is a shift in the simulated resonant frequencies, which makes it 

lower for TM010 and higher for TM030 compared to the analytical 

expectations and this makes it difficult to associate the resonance to 

theoretically expected corresponding mode for the modelled cavity.   

Table  3.5: The modes in the simulated circular cavity using rectangular 

TLM are: 

Modes Analytical Results (GHz) Simulated Results (GHz) 

TM010 2.295 2.209 

TM030 4.900 5.050 
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Another problem with the staircase approximation is the possibility of 

spurious modes occurring. The two simulated resonances were placed 

beside their closest possible analytical value in Table 3.5 but any of the two 

simulated frequencies may well be mere spurious modes as a result of 

irregularities in the boundary placement. Spurious modes do occur in the 

TLM model as in most numerical methods [114] but they occur at high 

frequencies that are well beyond the cut-off frequency of the TLM mesh 

(∆𝑙𝑙 ≈ 𝜆𝜆 10⁄ ). The problem with spurious modes, however, is that they 

propagate with intense dispersion as a result of their high resonant 

frequencies and sometimes they have relatively high magnitudes and 

propagate without attenuation through the cavity. They are generated by 

physical or temporal discontinuities in the modelled structure/system [115]. 

The way around these spurious modes is to either avoid spatial 

discontinuities or to process the excitation signal using a low-pass or band 

limiting filter [116]. Since the spatial discontinuity cannot be avoided in the 

staircase approximated boundary, spurious mode can be reduced by 

applying a finer mesh [13].  

The effect of the mesh’s grading on the simulated results obtained for the 

modelled cavity was examined by comparing the simulated results for 

different mesh grades. Regrading the mesh affected ∆𝑡𝑡 and consequently the 

number of iterations had to be modified accordingly in order to compare the 

variations in the mesh accurately. The requirement for greater time for 

pulses in the finer mesh to attain steady state was taken into account. The 

time required for each mesh size to attain steady state was calculated 

separately. The discrete time step and the number of iterations for the first 

simulation were set as ∆𝑡𝑡1  and 𝑁𝑁1  respectively. Number of time steps 

required for subsequent mesh operations, 𝑁𝑁𝑖𝑖 was then obtained using (3.5) 

[72].  
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𝑁𝑁𝑖𝑖 =
𝑁𝑁1∆𝑡𝑡1
∆𝑡𝑡𝑖𝑖

 (3.7)  

where ∆𝑡𝑡𝑖𝑖 is the discrete time step for the new mesh and i= 1, 2, 3 ….n. n is 

the last mesh considered, which in this case is 5. 

The simulated resonant frequencies for different mesh sizes and the 

calculated number of iterations used for each simulation are as shown in 

Table 3.6. The mode distributions for 3 different mesh sizes are shown in 

Table 3.7. 

Table  3.6: Comparison of the results for different discretization mesh sizes 

i Number of nodes Number of iterations, Ni Frequency (GHz) 

1 121 (11 × 11 nodes) 4096 2.151 

2 225 (15 × 15 nodes) 5586 2.190 

3 441 (21 × 21 nodes) 7820 2.205 

4 1225 (35 × 35 nodes) 11543 2.234 

5 2601 (51 × 51 nodes) 18991 2.247 

Analytic = 2.295 GHz 

In this example, a finer mesh has been applied to every part of the modelled 

structure to achieve better results. The results show that the finer the mesh, 

the closer the results to the analytical expectations. With finer mesh, the 

staircase approximation edge improved in its adjustment to the curved 

boundary of the circular cavity and the field distribution becomes smoother 

around the approximated edge of the cavity. The progressive improvement 

in the accuracy of the simulated result, compared to the analytical result, 
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with increasing mesh size is shown in Fig. 3.9. This accuracy, however, 

comes at the expense of storage space and simulation time.  

 

Fig.  3.9: Effect of using finer rectangular mesh for cylindrical cavity 

simulation with 𝑁𝑁 mesh indicating 𝑁𝑁 × 𝑁𝑁 nodes. 

Conventionally, geometrical conformity is catered for by the  use of graded 

mesh, such that a finer mesh is used around the curved walls of the 

structure/object in comparison with the non-curved parts of the object being 

modelled [70]. Graded mesh uses less storage space. Another approach well 

known is the mesh adaptation method where a mesh that can fit the 

boundary more accurately, such as triangular and tetrahedral meshes, are 

applied around the curved walls [14], [15]. Al Mukhtar and Sitch [16] were 

the first to develop the polar meshes for a lossless TLM model with axial 

symmetry, which paved the way for further research into curvilinear mesh 

development [16]–[19], [71]. The use of curvilinear meshes such as 

cylindrical TLM in which curved meshes are used instead of a linear mesh 

allow for closer conformity of the mesh structure to the original modelled 

object. The procedure used in developing the cylindrical TLM part of the 

TLS and results of simulation examples are presented in Chapter 4. 
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Table  3.7: The normalised simulated TM010 mode for a 50 mm radius 

circular cavity modelled using SCN TLM 

Modes Frequency GHz) Electric  field distribution in the simulated cavity 

11x11 

Nodes 
2.15 

 

21x21 

Nodes 
2.21 

 

51x51 

Nodes 
2.25 

 

The analytical frequency = 2.29 GHz 
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3.4 CONCLUSIONS 

This Chapter is focused on the simulations of canonical problems with 

known theoretical solutions with the intention to validate the rectangular 

part of the solver developed for this thesis based on the TLM algorithm. The 

theoretical background of the rectangular TLM mesh and the algorithm 

procedures used in developing the TLS were discussed in Chapter 2. The 

report of electromagnetic simulation of some canonical problems using 2D 

and 3D was presented. The presented results proved that the solver is 

capable of simulating practical EM problems. The simulation results 

generated by the TLS for 2D and the 3D TLM are compared to that of the 

analytical results for validation purpose. The simulated results of the TLS 

were also compared with the simulated results of an existing modelling tool, 

CST, for the validation of the newly developed solver. 

The effect of stair-cased approximation on curved boundaries when 

modelling with rectangular TLM mesh is highlighted. It was observed that 

the results obtained when the rectangular mesh was applied to model the 

circular cavity are less accurate compared to the analytical results. The 

application of finer mesh improved the results but the error was still present 

and the improvement in the accuracy of the obtained results was achieved 

by sacrificing time and computation resources. Since accuracy is very 

essential when it comes to modelling of axisymmetric radiating structures, 

the use of cylindrical TLM mesh in the place of rectangular mesh is 

investigated in Chapter 4. 
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CHAPTER 4  

 

 

DEVELOPMENT OF CYLINDRICAL 

TRANSMISSION LINE SOLVER 

In Chapter 2, an electromagnetic (EM) solver (TLS) was developed based 

on the TLM method. The solver includes both the rectangular and the 

cylindrical mesh. The theoretical background of rectangular TLM and its 

algorithm have been discussed in Chapter 2. The simulation results for 

cuboid and cylindrical microwave cavities modelled using TLS’ rectangular 

TLM mesh were also presented. The aim of this Chapter is to create a bridge 

in the gap between the theoretical foundations of cylindrical TLM and its 

applications. The focus is to theoretically establish the cylindrical TLM 

node scheme by presenting its analogies to Maxwell’s equations and 

explaining its implementation algorithm.  Simulation results of modelled 

examples will also be presented to evaluate the effectiveness of the 

cylindrical TLM mesh EM problems with curved edges and to validate the 

accurate implementation of the mesh in TLS.  

When modelling with a rectangular TLM, curved boundaries are 

approximated to fit the object and this approximation results in a staircase 

finish along the curved edges as discussed in Chapter 3. Results of the 

circular cavity simulated using the rectangular mesh showed a high level of 

error when compared with the analytic solutions. Curvilinear mesh methods 

[16]–[19], [71], such as cylindrical TLM, have curved link lines that can be 

fitted better with curved surfaces.  
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However, there have been underlying challenges in implementing the 

cylindrical TLM, making it less popular than its rectangular counterpart 

despite its better efficiency in dealing with curved boundaries. The foremost 

of these challenges is that there are very few publications on the use of the 

cylindrical TLM mesh and rigorous analysis of the fundamental relationship 

of the cylindrical TLM model to Maxwell’s equations is not available in the 

literature. This Chapter aims to bridge this gap by presenting a rigorous 

analysis of the relationship between the cylindrical TLM and Maxwell’s 

equations. 

4.1 THEORY OF CYLINDRICAL TLM MESH 

In this Section, the theory of cylindrical TLM will be presented. Maxwell’s 

equations in cylindrical form, their analogies to the cylindrical TLM nodes 

parameters and how synchronism is achieved in cylindrical TLM will be 

described. 

4.1.1 MAXWELL’S EQUATIONS IN CYLINDRICAL FORM 

The relationship of Maxwell’s equations to the cylindrical TLM model is 

similar to that of rectangular TLM except for the difference in geometry. 

Maxwell’s equations have already been given in Section 2.3.1 of Chapter 2. 

As with rectangular coordinates, Maxwell’s equations can be expressed in 

cylindrical coordinates. To achieve this, the components 𝑥𝑥,𝑦𝑦, 𝑧𝑧 have to be 

replaced by 𝑟𝑟, 𝜃𝜃, 𝑧𝑧.  For example, a point in the cylindrical coordinate can be 

expressed as in Fig. 4.1. Components  𝑟𝑟,𝜃𝜃, 𝑧𝑧 are the radial, circumferential 

and axial components of the cylindrical coordinate system respectively.   
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Fig.  4.1: Cylindrical coordinates. 

In cylindrical coordinates, Maxwell’s curl equations (2.1) can be expressed 

as in (4.1) - (4.3), (2.2) as (4.4) - (4.6), (2.3) as (4.7) and (2.4) as (4.8). 

𝜕𝜕𝐻𝐻𝑧𝑧
𝑟𝑟𝑟𝑟𝑟𝑟

−
𝜕𝜕𝐻𝐻𝜃𝜃
𝜕𝜕𝜕𝜕

= 𝐽𝐽𝑟𝑟 +
𝜕𝜕𝐷𝐷𝑟𝑟
𝜕𝜕𝜕𝜕

 (4.1)  

𝜕𝜕𝐻𝐻𝑟𝑟
𝜕𝜕𝜕𝜕

−
𝜕𝜕𝐻𝐻𝑧𝑧
𝜕𝜕𝜕𝜕

= 𝐽𝐽𝜃𝜃 +
𝜕𝜕𝐷𝐷𝜃𝜃
𝜕𝜕𝜕𝜕

 (4.2)  

𝜕𝜕𝐻𝐻𝜃𝜃
𝜕𝜕𝜕𝜕

−
𝜕𝜕𝐻𝐻𝑟𝑟
𝑟𝑟𝑟𝑟𝑟𝑟

= 𝐽𝐽𝑧𝑧 +
𝜕𝜕𝐷𝐷𝑧𝑧
𝜕𝜕𝜕𝜕

 (4.3)  

𝜕𝜕𝐸𝐸𝑧𝑧
𝑟𝑟𝑟𝑟𝑟𝑟

−
𝜕𝜕𝐸𝐸𝜃𝜃
𝜕𝜕𝜕𝜕

= −
𝜕𝜕𝐵𝐵𝑟𝑟
𝜕𝜕𝜕𝜕

 (4.4)  

𝜕𝜕𝐸𝐸𝑟𝑟
𝜕𝜕𝜕𝜕

−
𝜕𝜕𝐸𝐸𝑧𝑧
𝜕𝜕𝜕𝜕

= −
𝜕𝜕𝐵𝐵𝜃𝜃
𝜕𝜕𝜕𝜕

 (4.5)  

𝜕𝜕𝐸𝐸𝜃𝜃
𝜕𝜕𝜕𝜕

−
𝜕𝜕𝐸𝐸𝑟𝑟
𝑟𝑟𝑟𝑟𝑟𝑟

= −
𝜕𝜕𝐵𝐵𝑧𝑧
𝜕𝜕𝜕𝜕

 (4.6)  
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𝜕𝜕𝐸𝐸𝑟𝑟
𝜕𝜕𝜕𝜕

+
𝜕𝜕𝐸𝐸𝜃𝜃
𝑟𝑟𝑟𝑟𝑟𝑟

+
𝜕𝜕𝐸𝐸𝑧𝑧
𝜕𝜕𝜕𝜕

= 𝜌𝜌 (4.7)  

𝜕𝜕𝐻𝐻𝑟𝑟
𝜕𝜕𝜕𝜕

+
𝜕𝜕𝐻𝐻𝜃𝜃
𝑟𝑟𝑟𝑟𝑟𝑟

+
𝜕𝜕𝐻𝐻𝑧𝑧
𝜕𝜕𝜕𝜕

= 0 (4.8)  

 As in the rectangular node, the cylindrical node is broken into series and 

shunt parts for clarity. In the series part, the electric fields, Er, Eθ and the 

magnetic field, Hz are the non-zero fields and Maxwell’s equations in 

cylindrical form reduce to (4.9) – (4.11) using  D = εE 

𝜕𝜕𝐻𝐻𝑧𝑧
𝑟𝑟𝑟𝑟𝑟𝑟

= 𝜀𝜀
𝜕𝜕𝐸𝐸𝑟𝑟
𝜕𝜕𝜕𝜕

 (4.9)  

−
𝜕𝜕𝐻𝐻𝑧𝑧
𝜕𝜕𝜕𝜕

= 𝜀𝜀
𝜕𝜕𝐸𝐸𝜃𝜃
𝜕𝜕𝜕𝜕

 (4.10)  

𝜕𝜕𝐸𝐸𝜃𝜃
𝜕𝜕𝜕𝜕

−
𝜕𝜕𝐸𝐸𝑟𝑟
𝑟𝑟𝑟𝑟𝑟𝑟

= −𝜇𝜇
𝜕𝜕𝐻𝐻𝑧𝑧
𝜕𝜕𝜕𝜕

 (4.11)  

Subtracting the differential (4.9) with respect to θ and that of (4.10) with 

respect to r gives (4.12). Inserting (4.11) into (4.12) results in the wave 

equation as given in (4.13) 

𝜕𝜕2𝐻𝐻𝑧𝑧
𝑟𝑟2𝜕𝜕𝜃𝜃2

+
𝜕𝜕2𝐻𝐻𝑧𝑧
𝜕𝜕𝑟𝑟2

= −𝜀𝜀
𝜕𝜕
𝜕𝜕𝜕𝜕
�
−𝜕𝜕𝐸𝐸𝑟𝑟
𝑟𝑟𝑟𝑟𝑟𝑟

+
𝜕𝜕𝐸𝐸𝜃𝜃
𝜕𝜕𝜕𝜕

� (4.12)  

𝜕𝜕2𝐻𝐻𝑧𝑧
𝑟𝑟2𝜕𝜕𝜃𝜃2

+
𝜕𝜕2𝐻𝐻𝑧𝑧
𝜕𝜕𝑟𝑟2

= 𝜀𝜀𝜀𝜀
𝜕𝜕2𝐻𝐻𝑧𝑧
𝜕𝜕𝑡𝑡2

 (4.13)  
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In the shunt part, magnetic fields Hr, Hθ and the electric field, Ez are the 

non-zero fields and  Maxwell’s equations in cylindrical form reduce to (4.14) 

- (4.16) 

𝜕𝜕𝐸𝐸𝑧𝑧
𝑟𝑟𝑟𝑟𝑟𝑟

= −𝜇𝜇
𝜕𝜕𝐻𝐻𝑟𝑟
𝜕𝜕𝜕𝜕

 (4.14)  

−
𝜕𝜕𝐸𝐸𝑧𝑧
𝜕𝜕𝜕𝜕

= −𝜇𝜇
𝜕𝜕𝐻𝐻𝜃𝜃
𝜕𝜕𝜕𝜕

 (4.15)  

𝜕𝜕𝐻𝐻𝜃𝜃
𝜕𝜕𝜕𝜕

−
𝜕𝜕𝐻𝐻𝑟𝑟
𝑟𝑟𝑟𝑟𝑟𝑟

= 𝜀𝜀
𝜕𝜕𝐸𝐸𝑧𝑧
𝜕𝜕𝜕𝜕

 (4.16)  

Following the same procedure as in the series part, by differentiating (4.14) 

with respect to 𝜃𝜃 and (4.15) with respect to r and combining the results 

gives 

𝜕𝜕2𝐸𝐸𝑧𝑧
𝜕𝜕𝑟𝑟2

+
𝜕𝜕2𝐸𝐸𝑧𝑧
𝑟𝑟2𝜕𝜕𝜃𝜃2

= −𝜇𝜇 �
𝜕𝜕2𝐻𝐻𝜃𝜃
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕

+
𝜕𝜕2𝐻𝐻𝑟𝑟
𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

� (4.17)  

Inserting equation (4.16) into (4.17) gives another wave equation: 

𝜕𝜕2𝐸𝐸𝑧𝑧
𝜕𝜕𝑟𝑟2

+
𝜕𝜕2𝐸𝐸𝑧𝑧
𝑟𝑟2𝜕𝜕𝜃𝜃2

= 𝜇𝜇𝜇𝜇
𝜕𝜕2𝐸𝐸𝑧𝑧
𝜕𝜕𝑡𝑡2

 (4.18)  

The two wave equations, (4.13) and (4.18), describe the behaviour of an EM 

wave in a lossy medium.  
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4.1.2 ANALOGIES OF MAXWELL’S EQUATIONS TO CYLINDRICAL TLM 

To understand the analogy between the E and H fields and the electric 

circuit parameters modelled by the TLM, a section of a long transmission 

line is considered as shown in .4.2. As the discrete length, 𝜕𝜕𝜕𝜕 → 0 , the 

infinitesimal sign ∂ is replaced by ∆, which is a finite value for numerical 

solution and the voltage and current of the circuit can be deduced using 

Kirchhoff’s laws as: 

−
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

∆𝑙𝑙 = 𝐿𝐿
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

 

−
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
∆𝑙𝑙 = 𝐶𝐶

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

+  
𝑉𝑉
𝑅𝑅

 

(4.19)  

 

Fig.  4.2: Electrical components of a transmission line. 

If the same steps followed in obtaining (4.13) and (4.18) are repeated, 

similar equations in circuit form are obtained in terms of current and voltage. 

By comparing the circuit equations obtained from the Kirchhoff’s laws for a 

discrete transmission line with the wave equations, an analogy between the 

two can be deduced. 

As mentioned in Chapter 2, the basic building block for the TLM algorithm 

is the 2D model in shunt and the series configurations. To simplify the 
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analysis, the 3D cylindrical TLM node can be broken into series and shunt 

2D nodes.  In a series model, two transmission lines are connected in such a 

way that the current flows through two inductors, 2L and across one 

capacitor, C. The current equations for the inductors and across the 

capacitor are given by:   

∆𝐸𝐸𝑟𝑟
𝑟𝑟𝑟𝑟𝑟𝑟

−
∆𝐸𝐸𝜃𝜃
𝜕𝜕𝜕𝜕

= 2𝐿𝐿
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

 (4.20)  

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝐶𝐶∆𝑟𝑟
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

 (4.21)  

The resistor 𝑅𝑅  is not considered in this equation because it is normally 

modelled as a lossy stub in the TLM node (see details in Chapter 2, Section 

2.2.3).  

Assuming the current is flowing in the 𝑧𝑧-direction, the amount of current, 𝐼𝐼𝑧𝑧 

that flows in the finite space step, ∆z, gives the magnetic field, Hz:  

𝐻𝐻𝑧𝑧 = 𝐼𝐼𝑧𝑧 ∆𝑧𝑧⁄  (4.22)  

Substituting for I in (4.20) gives 

∆𝐸𝐸𝑟𝑟
𝑟𝑟𝑟𝑟𝑟𝑟

−
∆𝐸𝐸𝜃𝜃
𝜕𝜕𝜕𝜕

= 2𝐿𝐿
𝜕𝜕𝐻𝐻𝑧𝑧
𝜕𝜕𝜕𝜕

 (4.23)  

The inductance per unit length along 𝑧𝑧 can be deduced by comparing (4.23) 

with (4.11) as: 
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𝐿𝐿 = 𝜇𝜇∆𝑧𝑧 (4.24)  

Substituting Hz for I in (4.21) also gives  

𝜕𝜕𝐻𝐻𝑧𝑧
𝜕𝜕𝜕𝜕

= 𝐶𝐶
𝜕𝜕𝐸𝐸𝜃𝜃
𝜕𝜕𝜕𝜕

 (4.25)  

and by comparing equation (4.25) with (4.10), the capacitance per unit 

length along 𝑧𝑧 can be deduced as: 

𝐶𝐶 = 𝜀𝜀∆𝑧𝑧 (4.26)  

All the parameters of the medium can be obtained by comparing similar 

pairs of circuit related equations and wave-related equations as shown 

below. It is possible to establish a mapping between the components of the 

magnetic field, 𝐻𝐻 and nodal current, 𝐼𝐼; components of electric field, 𝐸𝐸 and 

electric potential, 𝑉𝑉; permeability, 𝜇𝜇 and inductance,  𝐿𝐿  and permittivity, 

𝜀𝜀 and capacitance, 𝐶𝐶.  

−
𝜕𝜕𝐻𝐻𝑧𝑧
𝑟𝑟𝑟𝑟𝑟𝑟

= 𝜀𝜀
𝜕𝜕𝐸𝐸𝑟𝑟
𝜕𝜕𝜕𝜕

 ↔  
𝜕𝜕𝐼𝐼𝑧𝑧
𝜕𝜕𝜕𝜕

= −𝐶𝐶𝑟𝑟
𝜕𝜕𝑉𝑉𝑟𝑟
𝜕𝜕𝜕𝜕

 (4.27)  

𝜕𝜕𝐻𝐻𝑧𝑧
𝜕𝜕𝜕𝜕

= 𝜀𝜀
𝜕𝜕𝐸𝐸𝜃𝜃
𝜕𝜕𝜕𝜕

 ↔  
𝜕𝜕𝐼𝐼𝑧𝑧
𝜕𝜕𝜕𝜕

= −𝐶𝐶𝜃𝜃
𝜕𝜕𝑉𝑉𝜃𝜃
𝜕𝜕𝜕𝜕

 (4.28)  

𝜕𝜕𝐸𝐸𝜃𝜃
𝜕𝜕𝜕𝜕

−
𝜕𝜕𝐸𝐸𝑟𝑟
𝑟𝑟𝑟𝑟𝑟𝑟

= −𝜇𝜇
𝜕𝜕𝐻𝐻𝑧𝑧
𝜕𝜕𝜕𝜕

 ↔  
𝜕𝜕𝑉𝑉𝜃𝜃
𝜕𝜕𝜕𝜕

−
𝜕𝜕𝑉𝑉𝑟𝑟
𝑟𝑟𝑟𝑟𝑟𝑟

= 2𝐿𝐿
𝜕𝜕𝐼𝐼𝑧𝑧
𝜕𝜕𝜕𝜕

 (4.29)  
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The circuit equivalent equations for electric fields Er and Eθ are also given 

as  

𝐸𝐸𝑟𝑟 = −
𝑉𝑉𝑟𝑟
∆𝑟𝑟

;𝐸𝐸𝜃𝜃 = −
𝑉𝑉𝜃𝜃
𝑟𝑟∆𝜃𝜃

 (4.30)  

Similarly in the shunt TLM node, the current flows across two capacitors 

and through one inductor and obtain 

𝜕𝜕𝐸𝐸𝑧𝑧
𝑟𝑟𝑟𝑟𝑟𝑟

= −𝜇𝜇
𝜕𝜕𝐻𝐻𝑟𝑟
𝜕𝜕𝜕𝜕

 ↔  
𝜕𝜕𝑉𝑉𝑧𝑧
𝜕𝜕𝜕𝜕

∆𝑟𝑟 = −𝐿𝐿𝑟𝑟
𝜕𝜕𝐼𝐼𝑟𝑟
𝜕𝜕𝜕𝜕

 (4.31)  

−
𝜕𝜕𝐸𝐸𝑧𝑧
𝜕𝜕𝜕𝜕

= −𝜇𝜇
𝜕𝜕𝐻𝐻𝜃𝜃
𝜕𝜕𝜕𝜕

 ↔  
𝜕𝜕𝑉𝑉𝑧𝑧
𝜕𝜕𝜕𝜕

= −𝐿𝐿𝜃𝜃
𝜕𝜕𝐼𝐼𝜃𝜃
𝜕𝜕𝜕𝜕

 (4.32)  

𝜕𝜕𝐻𝐻𝜃𝜃
𝜕𝜕𝜕𝜕

−
𝜕𝜕𝐻𝐻𝑟𝑟
𝑟𝑟𝑟𝑟𝑟𝑟

= 𝜀𝜀
𝜕𝜕𝐸𝐸𝑧𝑧
𝜕𝜕𝜕𝜕

 ↔  
𝜕𝜕𝐼𝐼𝑟𝑟
𝑟𝑟𝑟𝑟𝑟𝑟

+
𝜕𝜕𝐼𝐼𝜃𝜃
𝜕𝜕𝜕𝜕

= −2𝐶𝐶
𝜕𝜕𝐸𝐸𝑧𝑧
𝜕𝜕𝜕𝜕

 (4.33)  

The circuit equivalent for fields components at the shunt node are  

𝐸𝐸𝑧𝑧 = −
𝑉𝑉𝑧𝑧
∆𝑧𝑧

;𝐻𝐻𝜃𝜃 =
𝐼𝐼𝑟𝑟
𝑟𝑟∆𝜃𝜃

;𝐻𝐻𝑟𝑟 = −
𝐼𝐼𝜃𝜃
∆𝑟𝑟

 (4.34)  

It is worthy of note that equations (4.11) and (4.18) are similar to the 

∇ × 𝐸𝐸 = −𝜇𝜇 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

 and ∇ × 𝐻𝐻 = 𝜀𝜀 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

 in rectangular coordinates except for the 

geometry related parameter 1 𝑟𝑟 ⁄ in the cylindrical coordinate system. This 

additional parameter results from the variation in discrete length along the 

theta dimension outwardly from the centre of the cylinder. 
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4.1.3 SYNCHRONISM IN CYLINDRICAL TLM NODE 

The increase in length on the theta dimension of the cylindrical node 

described by the additional geometric parameter   1 𝑟𝑟⁄  means that there 

would be lack of synchronism in the scatter-connect procedure of the node 

since pulses along the theta dimension has a longer distance to travel before 

connection at any time ∆𝑡𝑡. In order to ensure synchronism of pulses between 

nodes in the cylindrical TLM mesh, the parameter 1 𝑟𝑟⁄  has to be included in 

the TLM formulations. This is achieved by introducing extra inductance and 

capacitance in the form of closed and open stubs respectively into the node. 

For a 3D cylindrical node, there are parameter variations in 𝑟𝑟,𝜃𝜃 and 𝑧𝑧 

directions and the total capacitance, C of the node given in (4.26) can be 

expressed as: 

𝐶𝐶 = �
𝐶𝐶𝑟𝑟
𝐶𝐶𝜃𝜃
𝐶𝐶𝑧𝑧
� (4.35)  

where 𝐶𝐶𝑟𝑟 , 𝐶𝐶𝜃𝜃 and 𝐶𝐶𝑧𝑧 are the capacitance value for the three dimension 𝑟𝑟,𝜃𝜃, 

and 𝑧𝑧. The total capacitance modelled by a cylindrical node in a particular 

direction, for example, is represented by the distributed capacitance of the 

transmission lines and stub polarised in that direction and it is obtained as 

[16] : 

𝐶𝐶𝑟𝑟 = 𝜀𝜀𝑟𝑟∆𝑙𝑙𝑟𝑟 + 𝐶𝐶𝑜𝑜𝑜𝑜 = 𝐶𝐶𝑧𝑧𝑧𝑧∆𝑧𝑧 + 𝐶𝐶𝜃𝜃𝜃𝜃∆𝑇𝑇 + 𝐶𝐶𝑜𝑜𝑜𝑜 

𝐶𝐶𝜃𝜃 = 𝜀𝜀𝜃𝜃∆𝑙𝑙𝜃𝜃 + 𝐶𝐶𝑜𝑜𝑜𝑜 = 𝐶𝐶𝑟𝑟𝑟𝑟∆𝑟𝑟 + 𝐶𝐶𝑧𝑧𝑧𝑧∆𝑧𝑧 + 𝐶𝐶𝑜𝑜𝑜𝑜 

𝐶𝐶𝑧𝑧 = 𝜀𝜀𝑧𝑧∆𝑙𝑙𝑧𝑧 + 𝐶𝐶𝑜𝑜𝑜𝑜 = 𝐶𝐶𝑟𝑟𝑟𝑟∆𝑟𝑟 + 𝐶𝐶𝜃𝜃𝜃𝜃∆𝑇𝑇 + 𝐶𝐶𝑜𝑜𝑜𝑜 

(4.36)  
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where ∆𝑙𝑙𝑟𝑟 = ∆𝑇𝑇∆𝑧𝑧
∆𝑟𝑟

 , ∆𝑙𝑙𝜃𝜃 = ∆𝑟𝑟∆𝑧𝑧
∆𝑇𝑇

  and ∆𝑙𝑙𝑧𝑧 = ∆𝑟𝑟∆𝑇𝑇
∆𝑧𝑧

 ; subscript ‘𝑜𝑜’signifies open 

circuit stub and ∆𝑇𝑇 = ℎ∆𝜃𝜃 and ℎ = node index number from the cylinder 

centre. 

In the same manner, the total inductance of the node, L given in (4.24) can 

be expressed as: 

𝐿𝐿 = �
𝐿𝐿𝑟𝑟
𝐿𝐿𝜃𝜃
𝐿𝐿𝑧𝑧
� (4.37)  

where 𝐿𝐿𝑟𝑟 , 𝐿𝐿𝜃𝜃 and 𝐿𝐿𝑧𝑧 are the inductance value for the three dimension 𝑟𝑟,𝜃𝜃, 

and 𝑧𝑧 obtained from [16]: 

𝐿𝐿𝑟𝑟 = 𝜇𝜇𝑟𝑟∆𝑙𝑙𝑟𝑟 + 𝐿𝐿𝑠𝑠𝑠𝑠 = 𝐿𝐿𝜃𝜃𝜃𝜃∆𝑇𝑇 + 𝐿𝐿𝑧𝑧𝑧𝑧∆𝑧𝑧 + 𝐿𝐿𝑠𝑠𝑠𝑠 

𝐿𝐿𝜃𝜃 = 𝜇𝜇𝜃𝜃∆𝑙𝑙𝜃𝜃 + 𝐿𝐿𝑠𝑠𝑠𝑠 = 𝐿𝐿𝑟𝑟𝑟𝑟∆𝑟𝑟 + 𝐿𝐿𝑧𝑧𝑧𝑧∆𝑧𝑧 + 𝐿𝐿𝑠𝑠𝑠𝑠 

𝐿𝐿𝑧𝑧 = 𝜇𝜇𝑧𝑧∆𝑙𝑙𝑧𝑧 + 𝐿𝐿𝑠𝑠𝑠𝑠 = 𝐿𝐿𝑟𝑟𝑟𝑟∆𝑟𝑟 + 𝐿𝐿𝜃𝜃𝜃𝜃∆𝑦𝑦 + 𝐿𝐿𝑠𝑠𝑠𝑠 

(4.38)  

where subscript ‘𝑠𝑠’ signifies short circuit stub.  

For proper modelling of any cylindrical TLM node, (4.35) and (4.38) are 

essential. The velocity of propagation along i-directed, j-polarised link line, 

for a cylindrical node is given as 

𝑣𝑣𝑖𝑖𝑖𝑖 =
∆𝑖𝑖
∆𝑡𝑡

 (4.39)  

where 𝑖𝑖 ≠ 𝑗𝑗 and  
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∆𝑡𝑡 = ∆𝑖𝑖�𝐿𝐿𝑖𝑖𝑖𝑖𝐶𝐶𝑖𝑖𝑖𝑖 (4.40)  

The characteristic impedance of an i-directed, j-polarised link line is given 

as: 

𝑍𝑍𝑖𝑖𝑖𝑖 = �
𝐿𝐿𝑖𝑖𝑖𝑖
𝐶𝐶𝑖𝑖𝑖𝑖

=
1
𝑌𝑌𝑖𝑖𝑖𝑖

 (4.41)  

The relationship between  ∆𝑡𝑡 and 𝑌𝑌𝑖𝑖𝑖𝑖 and 𝑍𝑍𝑖𝑖𝑖𝑖 can be obtained by combining 

(4.39) and (4.41) to give (4.42).  

𝑍𝑍𝑖𝑖𝑖𝑖 = �𝐿𝐿𝑖𝑖𝑖𝑖∆𝑖𝑖
∆𝑡𝑡

;  𝑌𝑌𝑖𝑖𝑖𝑖 = �𝐶𝐶𝑖𝑖𝑖𝑖∆𝑖𝑖
∆𝑡𝑡

 (4.42)  

The characteristic admittance of a capacitive stub, 𝑌𝑌𝑜𝑜𝑜𝑜 and the characteristic 

impedance of an inductive stub, 𝑍𝑍𝑠𝑠𝑠𝑠 are given in (4.43) 

𝑌𝑌𝑜𝑜𝑜𝑜 =
2𝐶𝐶𝑜𝑜𝑜𝑜
∆𝑡𝑡

;  𝑍𝑍𝑠𝑠𝑠𝑠 =
2𝐿𝐿𝑠𝑠𝑠𝑠
∆𝑡𝑡

 (4.43)  

where subscript ‘𝑜𝑜’and ‘𝑠𝑠’signify open circuit stub and short circuit stubs 

respectively and ‘𝑞𝑞’ represent the coordinate axis. 𝐶𝐶 is the stub capacitance 

and 𝐿𝐿, the stub inductance.  

The description of the physical property of the medium is achieved by the 

combination of its parameters - the capacitance in (4.36) the inductance in 
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(4.38) and the conditions for time synchronism (4.39). The combination of 

the 3 parameters produced: 

𝑍𝑍𝑖𝑖𝑖𝑖 + 𝑍𝑍𝑗𝑗𝑗𝑗 + 𝑍𝑍𝑠𝑠𝑠𝑠 2⁄ = 𝜇𝜇𝑘𝑘
∆𝑖𝑖(ℎ∆𝑗𝑗)
∆𝑘𝑘∆𝑡𝑡

 (4.44)  

where 𝑖𝑖, 𝑗𝑗,𝑘𝑘 = 𝑟𝑟,𝜃𝜃, 𝑧𝑧 and ℎ = index number of the node counting from the 

centre of the cylinder indicating the node location.  
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4.2 IMPLEMENTATION OF THE CYLINDRICAL TLM ALGORITHM 

Having established the theory of cylindrical TLM mesh in the previous 

Section, the next to be considered in this Section is the implementation of its 

algorithm. The scatter-connect procedure in the cylindrical TLM is the same 

as in the SCN TLM discussed in Chapter 2 except that in cylindrical TLM, 

the discretized spatial lengths are not equal on all direction because there is 

a gradual increase in the discretized length along the circumference of the 

cylinder as shown in Fig. 4.3. To accommodate the requirements for 

synchronism and connectivity in a variable mesh such as cylindrical TLM, it 

is necessary to add stubs to the node [81]. The geometry of the cylinder is 

included in the calculation of stubs’ values to cater for the changes in the 

angular discrete length outwardly from the centre. 

 

Fig.  4.3: An example of a cylindrical TLM mesh in rθ view. 

A typical cylindrical node is as shown in Fig. 4.4. The nomenclature of the 

link lines follows the same format as that of the cubic mesh. The first letter 

in the subscript group represents the direction of the propagation, the second 

represents the position of the voltage pulse relative to the centre of the node 

(positive (𝑝𝑝) or negative (𝑛𝑛) side of the coordinate axis) and the third letter 

indicates the polarisation of the voltage pulse. This means the port 
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voltage𝑉𝑉𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖 , for example, represents an 𝑟𝑟-directed voltage pulse, located on 

the negative side of the node-centre and polarised in the 𝜃𝜃-direction. The 

superscript letter, i, in this case, indicates that the voltage is incident at the 

port. If it was a reflected voltage, it is represented by a superscript letter, r, 

instead. 

 

Fig.  4.4: A cylindrical TLM node after Ruddle et al [2]. 

The scattering procedure using indices 𝑖𝑖, 𝑗𝑗,𝑘𝑘 can be written in a compact 

form as [32]:  

𝑉𝑉𝑖𝑖𝑖𝑖𝑖𝑖𝑟𝑟 = 𝑉𝑉𝑗𝑗 ± 𝐼𝐼𝑘𝑘𝑍𝑍𝑖𝑖𝑖𝑖𝑖𝑖 − 𝑉𝑉𝑖𝑖𝑖𝑖𝑖𝑖𝑟𝑟 + ℎ𝑖𝑖𝑖𝑖 (4.45)  

𝑉𝑉𝑖𝑖𝑖𝑖𝑖𝑖𝑟𝑟 = 𝑉𝑉𝑗𝑗 ∓ 𝐼𝐼𝑘𝑘𝑍𝑍𝑖𝑖𝑖𝑖𝑖𝑖 − 𝑉𝑉𝑖𝑖𝑖𝑖𝑖𝑖𝑟𝑟 + ℎ𝑖𝑖𝑖𝑖 (4.46)  

where the lower signs apply for indices 

(𝑖𝑖, 𝑗𝑗,𝑘𝑘) ∈ {(𝑟𝑟,𝜃𝜃, 𝑧𝑧), (𝜃𝜃, 𝑧𝑧, 𝑟𝑟), (𝑧𝑧, 𝑟𝑟,𝜃𝜃)} and the upper signs apply for indices 
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(𝑖𝑖, 𝑗𝑗,𝑘𝑘) ∈ {(𝑟𝑟, 𝑧𝑧,𝜃𝜃), (𝜃𝜃, 𝑟𝑟, 𝑧𝑧), (𝑧𝑧,𝜃𝜃, 𝑟𝑟)}, Vj is the equivalent voltage in the 𝑗𝑗-

direction and it is calculated as: 

𝑉𝑉𝑗𝑗 =
2�𝑉𝑉𝑘𝑘𝑘𝑘𝑘𝑘𝑖𝑖 𝑌𝑌𝑘𝑘𝑘𝑘𝑘𝑘 + 𝑉𝑉𝑘𝑘𝑘𝑘𝑘𝑘𝑖𝑖 𝑌𝑌𝑘𝑘𝑘𝑘𝑘𝑘 + 𝑉𝑉𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖 + 𝑉𝑉𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑌𝑌𝑖𝑖𝑖𝑖𝑗𝑗 + 𝑌𝑌𝑜𝑜𝑜𝑜𝑉𝑉𝑜𝑜𝑜𝑜𝑖𝑖 �

𝑌𝑌𝑘𝑘𝑘𝑘𝑘𝑘 + 𝑌𝑌𝑘𝑘𝑘𝑘𝑘𝑘 + 𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖 + 𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖 + 𝑌𝑌𝑜𝑜𝑜𝑜 + 𝐺𝐺𝑗𝑗
 (4.47)  

where 𝑌𝑌𝑜𝑜𝑜𝑜 is the normalised admittance of the stub and 𝐺𝐺𝑗𝑗 is the conductance 

stub associated with electric losses in 𝑗𝑗-direction. 

 𝐼𝐼𝑘𝑘 is the equivalent current given as: 

𝐼𝐼𝑘𝑘 = 2
�𝑉𝑉𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 − 𝑉𝑉𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 + 𝑉𝑉𝑗𝑗𝑗𝑗𝑗𝑗𝑖𝑖 − 𝑉𝑉𝑗𝑗𝑗𝑗𝑗𝑗𝑖𝑖 − 𝑉𝑉𝑠𝑠𝑠𝑠𝑖𝑖 �

𝑍𝑍𝑖𝑖𝑖𝑖𝑖𝑖 + 𝑍𝑍𝑖𝑖𝑖𝑖𝑖𝑖 + 𝑍𝑍𝑗𝑗𝑗𝑗𝑗𝑗 + 𝑍𝑍𝑗𝑗𝑗𝑗𝑗𝑗 + 𝑍𝑍𝑠𝑠𝑠𝑠 + 𝑅𝑅𝑘𝑘
 (4.48)  

where 𝑍𝑍𝑠𝑠𝑠𝑠 is the normalised impedance of the stub in 𝑗𝑗-direction and 𝑅𝑅𝑘𝑘 is 

the resistance stub associated with magnetic losses in 𝑗𝑗-direction. 

 Factor ℎ𝑖𝑖𝑖𝑖  is given as: 

ℎ𝑖𝑖𝑖𝑖 =
𝑍𝑍𝑖𝑖𝑖𝑖𝑖𝑖 − 𝑍𝑍𝑖𝑖𝑖𝑖𝑖𝑖
𝑍𝑍𝑖𝑖𝑖𝑖𝑖𝑖 + 𝑍𝑍𝑖𝑖𝑖𝑖𝑖𝑖

�𝑉𝑉𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 − 𝑉𝑉𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 � (4.49)  

In the solver developed for this thesis, the link impedances and admittances 

are normalised to the impedance and admittance of free space respectively. 

Thus, the total current at each of the nodes are calculated as: 

𝐼𝐼𝑟𝑟 = 2
�𝑉𝑉𝜃𝜃𝜃𝜃𝜃𝜃𝑖𝑖 + 𝑉𝑉𝑧𝑧𝑧𝑧𝑧𝑧𝑖𝑖 − 𝑉𝑉𝑧𝑧𝑧𝑧𝑧𝑧𝑖𝑖 − 𝑉𝑉𝜃𝜃𝜃𝜃𝜃𝜃𝑖𝑖 + 𝑉𝑉𝑠𝑠𝑠𝑠𝑖𝑖 �

4 + 𝑍𝑍𝑠𝑠𝑠𝑠 + 𝑅𝑅𝑟𝑟
 (4.50)  
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𝐼𝐼𝜃𝜃 =
2�𝑉𝑉𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖 + 𝑉𝑉𝑧𝑧𝑧𝑧𝑧𝑧𝑖𝑖 − 𝑉𝑉𝑧𝑧𝑧𝑧𝑧𝑧𝑖𝑖 − 𝑉𝑉𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖 + 𝑉𝑉𝑠𝑠𝑠𝑠𝑖𝑖 �

4 + 𝑍𝑍𝑠𝑠𝑠𝑠 + 𝑅𝑅𝜃𝜃
 

𝐼𝐼𝑧𝑧 =
2�𝑉𝑉𝜃𝜃𝜃𝜃𝜃𝜃𝑖𝑖 + 𝑉𝑉𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖 − 𝑉𝑉𝜃𝜃𝜃𝜃𝜃𝜃𝑖𝑖 − 𝑉𝑉𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖 + 𝑉𝑉𝑠𝑠𝑠𝑠𝑖𝑖 �

4 + 𝑍𝑍𝑠𝑠𝑠𝑠 + 𝑅𝑅𝑧𝑧
 

and the total equivalent voltages at the nodes can be calculated as: 

𝑉𝑉𝑟𝑟 = 2
𝑉𝑉𝜃𝜃𝜃𝜃𝜃𝜃𝑖𝑖 + 𝑉𝑉𝜃𝜃𝜃𝜃𝜃𝜃𝑖𝑖 + 𝑉𝑉𝑧𝑧𝑧𝑧𝑧𝑧𝑖𝑖 + 𝑉𝑉𝑧𝑧𝑧𝑧𝑧𝑧𝑖𝑖 + 𝑌𝑌𝑜𝑜𝑜𝑜𝑉𝑉𝑜𝑜𝑜𝑜𝑖𝑖

4 + 𝑌𝑌𝑜𝑜𝑜𝑜 + 𝐺𝐺𝑜𝑜𝑜𝑜
 

𝑉𝑉𝜃𝜃 = 2
𝑉𝑉𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖 + 𝑉𝑉𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖 + 𝑉𝑉𝑧𝑧𝑧𝑧𝑧𝑧𝑖𝑖 + 𝑉𝑉𝑧𝑧𝑧𝑧𝑧𝑧𝑖𝑖 + 𝑌𝑌𝑜𝑜𝑜𝑜𝑉𝑉𝑜𝑜𝑜𝑜𝑖𝑖

4 + 𝑌𝑌𝑜𝑜𝑜𝑜 + 𝐺𝐺𝑜𝑜𝑜𝑜
 

𝑉𝑉𝑧𝑧 = 2
𝑉𝑉𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖 + 𝑉𝑉𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖 + 𝑉𝑉𝜃𝜃𝜃𝜃𝜃𝜃𝑖𝑖 + 𝑉𝑉𝜃𝜃𝜃𝜃𝜃𝜃𝑖𝑖 + 𝑌𝑌𝑜𝑜𝑜𝑜𝑉𝑉𝑜𝑜𝑜𝑜𝑖𝑖

4 + 𝑌𝑌𝑜𝑜𝑜𝑜 + 𝐺𝐺𝑜𝑜𝑜𝑜
 

(4.51)  

The electric field and the magnetic field components are calculated as: 

𝐸𝐸𝑟𝑟 =
𝑉𝑉𝑟𝑟
∆𝑟𝑟

;𝐸𝐸𝜃𝜃 =
𝑉𝑉𝜃𝜃
∆𝑇𝑇

;𝐸𝐸𝑧𝑧 =
𝑉𝑉𝑧𝑧
∆𝑧𝑧

 

𝐻𝐻𝑟𝑟 =
𝐼𝐼𝑟𝑟
∆𝑟𝑟

;𝐻𝐻𝜃𝜃 =
𝐼𝐼𝜃𝜃
∆𝑇𝑇

;𝐻𝐻𝑧𝑧 =
𝐼𝐼𝑧𝑧
∆𝑧𝑧

 

(4.52)  

and the admittance and impedance stubs are calculated as:  

𝑌𝑌𝑜𝑜𝑜𝑜 = (2𝜀𝜀𝑟𝑟∆𝑇𝑇∆𝑧𝑧 ∆𝑟𝑟⁄ 𝑐𝑐∆𝑡𝑡) − 4;      𝑍𝑍𝑠𝑠𝑠𝑠 = (2𝜇𝜇𝑟𝑟∆𝑇𝑇∆𝑧𝑧 ∆𝑟𝑟𝑟𝑟∆𝑡𝑡⁄ ) − 4 

𝑌𝑌𝑜𝑜𝑜𝑜 = (2𝜀𝜀𝑟𝑟∆𝑟𝑟∆𝑧𝑧 ∆𝑇𝑇𝑇𝑇∆𝑡𝑡⁄ ) − 4;     𝑍𝑍𝑠𝑠𝑠𝑠 = (2𝜇𝜇𝑟𝑟∆𝑟𝑟∆𝑧𝑧 ∆𝑇𝑇⁄ 𝑐𝑐∆𝑡𝑡) − 4 

𝑌𝑌𝑜𝑜𝑜𝑜 = (2𝜀𝜀𝑟𝑟∆𝑇𝑇∆𝑟𝑟 ∆𝑧𝑧⁄ 𝑐𝑐∆𝑡𝑡) − 4;     
 
𝑍𝑍𝑠𝑠𝑠𝑠 = (2𝜇𝜇𝑟𝑟∆𝑇𝑇∆𝑟𝑟 ∆𝑧𝑧𝑧𝑧∆𝑡𝑡⁄ ) − 4 

(4.53)  
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where ∆𝑟𝑟, ∆𝑇𝑇, and ∆𝑧𝑧 are the unit cell dimension (discretized length) along 

the radial, angular and 𝑧𝑧-dimension respectively. c the wave velocity in 

vacuum and 𝜀𝜀𝑟𝑟 and 𝜇𝜇𝑟𝑟 are the relative permittivity and permeability of the 

medium respectively. Assuming the model background is vacuum, the stubs 

are normalised to the impedance of free space, 𝑍𝑍0 = 377Ω. The value of ∆𝑇𝑇 

depends on the azimuthal angle and the distance of the node from the centre 

of the cylinder.  It is calculated as: 

∆𝑇𝑇 = 𝑟𝑟𝑛𝑛∆𝜃𝜃 (4.54)  

where ∆𝜃𝜃 is the azimuthal discrete angle and 𝑟𝑟𝑛𝑛 is the node distance from 

the origin in meter given as: 

 𝑟𝑟𝑛𝑛 = (0.5(𝑖𝑖∆𝑟𝑟 + (𝑖𝑖 + 1)∆𝑟𝑟) (4.55)  

where i is the radial index. 

𝐺𝐺𝑟𝑟 ,𝐺𝐺𝜃𝜃,𝐺𝐺𝑧𝑧 ,𝑅𝑅𝑟𝑟 ,𝑅𝑅𝜃𝜃 and 𝑅𝑅𝑧𝑧 are additional six stubs added to the node to take 

into account possible losses in modelling of inhomogenous, anisotropic 

media and are given by (4.56). Energy scattered into any of these stubs is 

absorbed and not reflected back into the node because the stubs are assumed 

to be infinitely long or terminated in their own characteristic impedance. 

The loss stubs are calculated as:  
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𝐺𝐺𝑟𝑟 =  𝑍𝑍0𝜎𝜎𝑒𝑒∆𝑇𝑇∆𝑧𝑧 ∆𝑟𝑟⁄ ;      𝑅𝑅𝑟𝑟 = 𝜎𝜎𝑚𝑚∆𝑇𝑇∆𝑧𝑧 𝑍𝑍0∆𝑟𝑟⁄  

𝐺𝐺𝜃𝜃 = 𝑍𝑍0𝜎𝜎𝑒𝑒∆𝑟𝑟∆𝑧𝑧 ∆𝑇𝑇⁄ ;      𝑅𝑅𝜃𝜃 = 𝜎𝜎𝑚𝑚∆𝑟𝑟∆𝑧𝑧 𝑍𝑍0∆𝑇𝑇⁄  

𝐺𝐺𝑧𝑧 = 𝑍𝑍0𝜎𝜎𝑒𝑒∆𝑇𝑇∆𝑟𝑟 ∆𝑧𝑧⁄ ;      
 

  𝑅𝑅𝑧𝑧 = 𝜎𝜎𝑚𝑚∆𝑇𝑇∆𝑟𝑟 𝑍𝑍0∆𝑧𝑧⁄  

(4.56)  

  The voltages scattered into the link lines are connected to adjacent nodes 

using [117]: 

𝑉𝑉𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖 (𝑟𝑟, 𝑡𝑡, 𝑧𝑧) = 𝑉𝑉𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 (𝑟𝑟 + 1, 𝑡𝑡, 𝑧𝑧);   𝑉𝑉𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖 (𝑟𝑟 + 1, 𝑡𝑡, 𝑧𝑧) = 𝑉𝑉𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 (𝑟𝑟, 𝑡𝑡, 𝑧𝑧) 

𝑉𝑉𝜃𝜃𝜃𝜃𝜃𝜃𝑖𝑖 (𝑟𝑟, 𝑡𝑡, 𝑧𝑧) = 𝑉𝑉𝜃𝜃𝜃𝜃𝜃𝜃𝑟𝑟 (𝑟𝑟, 𝑡𝑡 + 1, 𝑧𝑧);   𝑉𝑉𝜃𝜃𝜃𝜃𝜃𝜃𝑖𝑖 (𝑟𝑟, 𝑡𝑡 + 1, 𝑧𝑧) = 𝑉𝑉𝜃𝜃𝜃𝜃𝜃𝜃𝑟𝑟 (𝑟𝑟, 𝑡𝑡, 𝑧𝑧) 

𝑉𝑉𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖 (𝑟𝑟, 𝑡𝑡, 𝑧𝑧) = 𝑉𝑉𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 (𝑟𝑟 + 1, 𝑡𝑡, 𝑧𝑧);   𝑉𝑉𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖 (𝑟𝑟 + 1, 𝑡𝑡, 𝑧𝑧) = 𝑉𝑉𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 (𝑟𝑟, 𝑡𝑡, 𝑧𝑧) 

𝑉𝑉𝜃𝜃𝜃𝜃𝜃𝜃𝑖𝑖 (𝑟𝑟, 𝑡𝑡, 𝑧𝑧) = 𝑉𝑉𝜃𝜃𝜃𝜃𝜃𝜃𝑟𝑟 (𝑟𝑟, 𝑡𝑡 + 1, 𝑧𝑧);   𝑉𝑉𝜃𝜃𝜃𝜃𝜃𝜃𝑖𝑖 (𝑟𝑟, 𝑡𝑡 + 1, 𝑧𝑧) = 𝑉𝑉𝜃𝜃𝜃𝜃𝜃𝜃𝑟𝑟 (𝑟𝑟, 𝑡𝑡, 𝑧𝑧) 

𝑉𝑉𝑧𝑧𝑧𝑧𝑧𝑧𝑖𝑖 (𝑟𝑟, 𝑡𝑡, 𝑧𝑧) = 𝑉𝑉𝑧𝑧𝑧𝑧𝑧𝑧𝑟𝑟 (𝑟𝑟, 𝑡𝑡, 𝑧𝑧 + 1);  𝑉𝑉𝑧𝑧𝑧𝑧𝑧𝑧𝑖𝑖 (𝑟𝑟, 𝑡𝑡, 𝑧𝑧 + 1) = 𝑉𝑉𝑧𝑧𝑧𝑧𝑧𝑧𝑟𝑟 (𝑟𝑟, 𝑡𝑡, 𝑧𝑧) 

𝑉𝑉𝑧𝑧𝑧𝑧𝑧𝑧𝑖𝑖 (𝑟𝑟, 𝑡𝑡, 𝑧𝑧) = 𝑉𝑉𝑧𝑧𝑧𝑧𝑧𝑧𝑟𝑟 (𝑟𝑟, 𝑡𝑡, 𝑧𝑧 + 1);  𝑉𝑉𝑧𝑧𝑧𝑧𝑧𝑧𝑖𝑖 (𝑟𝑟, 𝑡𝑡, 𝑧𝑧 + 1) = 𝑉𝑉𝑧𝑧𝑧𝑧𝑧𝑧𝑟𝑟 (𝑟𝑟, 𝑡𝑡, 𝑧𝑧) 

(4.57)  
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4.3 IMPLEMENTATION OF CENTRE BOUNDARY IN CYLINDRICAL 

TLM METHOD 

When solving electromagnetic problem in cylindrical coordinates using 

TLM, modelling of the space on the centre axis has been known to pose a 

challenge. The challenge is that the type of boundary used for the cylinder 

centre termination could affect simulation results. It is important to give 

special attention to the accurate modelling of this centre point in order to 

avoid error in the simulations [118] . 

Modelling the centre of the cylindrical cavity using cylindrical TLM mesh 

can be achieved in two ways. The first approach is to place a magnetic 

boundary at the centre of the cylinder and the second is to terminate the 

centre of the cylinder with an electric wall, equivalent to placing a thin wire 

at the centre of the cylinder. Using an electric wall termination is based on 

the fact that there is no cross talk between nodes in TLM mesh and there is 

no communication across the centre of the cylinder from one side of the 

symmetry to the other. Thus, it is expected that the voltage at the centre of 

the cylinder should be equal to zero i.e. 𝑉𝑉(𝑟𝑟=0) = 0. This is possible in the 

EM wave simulation when the centre boundary is described as a coaxial 

system with an infinitely thin central conductor at 𝑟𝑟 = 0. This means the 

centre is described with a reflection coefficient,   𝛤𝛤 = −1 . This method 

works well with a coaxial cavity model. However, in the case of an air-filled 

cavity, the centre of the cylinder is assumed to have zero voltage. This 

means that  the impedance is assumed to be infinite and 𝛤𝛤 = 1  [11]. 

Therefore, to model the centre of the air-filled cavity correctly, it is better to 

treat the centre boundary as a magnetic wall. The choice between the two 

methods depends on the type of model being considered.  
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4.4 VALIDATION OF THE DEVELOPED CYLINDRICAL TLM 

SOLVER 

In Section 3.3, it was noted that the staircase approximation of the curved 

boundary affected the accuracy of the resonant frequency of the simulated 

electric field when rectangular mesh was applied to the model. In this 

Section, the cylindrical TLM mesh is applied to the modelling of circular 

cavity to verify the efficiency of the cylindrical mesh in modelling the 

circular cavity compared to the rectangular mesh. The resonant frequency of 

cylindrical cavity was analytically calculated using equation (3.4) discussed 

in Section 3.1 of Chapter 3.  

4.4.1 SIMULATION OF AIR-FILLED CYLINDRICAL CAVITY MODEL AND 

SIMULATED RESULTS 

The same cavity modelled in Section 3.3 of Chapter 3 (Fig. 3.7) is repeated 

here in this Section. The decision to use the same example was based on the 

need to facilitate easy comparison of results obtained from the rectangular 

model to the results of the cylindrical model. The simulated cavity has a 

radius of 50 mm and height of 100 mm. The cavity was represented by a 

mesh of (10 x 60 x 10) nodes for a dispersion frequency limit of 6 GHz. 

However, since the variation in 𝑧𝑧-direction is not being considered, a 2D 

slice on the 𝑧𝑧-axis is sufficient for the required model, meaning that only 

(10x60x1) nodes are required for the model. 

The structure was excited by an impulse voltage of 1V applied at node (6, 1, 

1) in the mesh and the output was taken at the same node as the vertical 

component of the electric field (𝐸𝐸𝑧𝑧).  The centre of the cavity was modelled 

as a magnetic wall and simulations was done with 16382 time steps. The 

resonant frequencies for the simulated cavity are shown in Fig. 4.5. The 

simulated resonant frequencies are compared with the analytically generated 

results in Table 4.1 and are found to have good agreement. The simulated 
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modes TM 010 and TM 020 as shown in Fig. 4.6 and Fig. 4.7 also 

correspond to the simulated resonant frequencies as theoretically expected. 

 

Fig.  4.5: The simulated frequency response for the air-filled cavity. 

Table  4.1: The simulated and analytical resonant frequencies for the empty 

cylindrical cavity 

Modes Analytical (GHz) Simulated (GHz) 

TM 010 2.295 2.297 

TM 020 3.657 3.666 

TM 030 4.901 4.929 

TM 110 5.268 5.278 

TM 120 6.6948 6.876 
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Fig.  4.6: The simulated mode (TM 010) for a circular cavity of 50 mm 

radius at 2.297 GHz with magnetic wall centre termination after 16384 

iterations. 

 

Fig.  4.7: The simulated mode (TM 110) for a circular cavity of 50 mm 

radius at 3.666 GHz with magnetic wall centre termination after 16384 

iterations. 
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Considering the correlation of the cylindrical mesh to the modelled cavity 

shape, the mesh mapped accurately with the cavity structure and the mode 

distribution was spread smoothly through the mesh. This is an improvement 

over the uneven distribution of the field experienced with the use of the 

rectangular mesh as a result of staircase approximations.  

These results not only shows that the cylindrical TLM mesh is in principle 

better suited to the modelling of curved boundaries than the rectangular 

mesh, they also demonstrate that the developed solver TLS has been 

correctly implemented and can be confidently applied to the modelling of 

the radiating structure, which is the aim of this research. Unlike the 

rectangular mesh, the symmetry about the centre axis of the cylindrical 

mesh can be employed in such a way that only one layer of nodes in the 

theta dimension is applied to simulate the cavity. This will result in a 

substantial saving in time and memory required for the simulation 

procedures.   

To further validate the cylindrical TLM solver TLS, a coaxial cavity was 

simulated in Section 4.4.2 and the result compared to the same model 

simulated in CST.  A dielectric loaded cavity was also simulated and results 

compared to the published results in Section 4.4.3.  

4.4.2 SIMULATION OF COAXIAL CAVITY MODEL AND SIMULATED 

RESULTS 

A coaxial cavity of 50 mm outer radius and an inner thin wire of radius 2 

mm were simulated. The centre wire running from the top to the bottom of 

the cavity was position at the centre of the cavity as shown in Fig. 4.8. Only 

a slice on the z-axis, taken as the length along the height of the cavity, was 

considered meaning there are only mode variation in the r and 𝜃𝜃 dimensions 

and not in the z dimension. The cavity was meshed with 𝑟𝑟 × 𝜃𝜃 × 𝑧𝑧 = 25 ×

63 × 1 nodes such that the smallest cell coincided with the radius of the 
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inner wire. The dispersion frequency limit for this mesh was approximately 

6.14 GHz.  

 

Fig.  4.8: The simulated coaxial cavity with an inner wire of 2 mm at the 

centre.Two methods were attempted for the modelling of the inner wire. In 

the first attempt, the node representing the wire was modelled as a short 

node represented with a reflection coefficient   𝛤𝛤 = −1  and the second 

attempt was just to model the wire as copper with electric conductivity = 

5.8 × 107 Sm−1 . The centre and the outer walls of the cavity were 

modelled as an electric wall. The cavity was excited with 1V impulse 

voltage at (12,1,1) and the electric field observed at the same node.  

As shown in Table 4.2, TLS produced the same simulation results for both 

models and the simulated results of the CST was only shifted by 0.01 GHz 

when the wire was modelled with copper compared to when it was modelled 

as a short circuited node. It can then be deduced from the results that the 

two methods produced the same results and the choice of one over the other 

depends on the need or choice of individual.   
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Table  4.2: The simulated resonant frequencies for the coaxial cavity with 

inner conductor simulated as short circuit nodes compared with the one 

simulated as copper material 

TLS (GHz) CST (GHz) 

Copper Short circuit Copper Short circuit 

2.88 2.88 2.89 2.88 

3.68 3.68 3.65 3.64 

4.91 4.91 4.86 4.85 

The mode distributions for the first three modes simulated with TLS are 

compared with the mode simulated with CST in Table 4.3. 

The simulated resonant frequencies for the coaxial cavity are higher than the 

simulated frequencies in the modelled air-filled cavity but the mode 

distribution is similar except for the effect of the inner wire can be seen at 

the centre of the mesh. Although the field’s distribution obtained in the 

cavity modelled with the hexahedral mesh was observed to be better than 

the distribution obtained with the use of rectangular mesh where staircase 

effect could be vividly seen; the distributions were still not as smooth as the 

ones obtained from the cylindrical mesh. This further confirms that the 

boundary is well mapped into the mesh of the cylindrical TLM compared to 

its parallelepiped counterpart. The stability of TLS in the presence of the 

wire also confirmed that the stubs were well implemented in the developed 

solver giving a better confidence of its suitability for the modelling of 

axisymmetric radiating structures.  
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Table  4.3: The simulated results generated from the TLS code compared 

with the CST simulation for a coaxial cavity 

Cylindrical TLM Simulation CST simulation 

2.88 GHz 

 

2.88 GHz 

 

3.68 GHz 

 

3.64 GHz 

 

4.91 GHz 

 

4.85 GHz 
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4.4.3 SIMULATION OF DIELECTRIC LOADED CYLINDRICAL CAVITY AND 

SIMULATED RESULTS 

In this Section, the effects of loading a microwave cylindrical cavity with 

radial dielectric rod using the cylindrical TLM modelling method are 

discussed. The dielectric-loaded cylindrical cavity problem presented in 

[120] was simulated using the developed cylindrical TLM solver, TLS. The 

simulated results are compared with the published results. 

Perturbation method [121], [122] where dielectric/metallic rod is inserted 

into the cavity is the most common practice to alter the resonant frequency 

of the cavity. With this method, the resonant frequency of the cavity can be 

controlled by the material properties of the inserted rod or by adjusting its 

level of penetration into the cavity [123]. Dielectric loaded cavities are a 

special type of resonator and have found applications in microwave filters 

for satellite and mobile communication as a result of their small size, low 

loss and temperature stability [124], [125]. These applications have attracted 

further research and there is a significant number of publications reporting 

the numerical calculation of resonant frequencies of canonical metallic 

cavities loaded with dielectric resonators [126]–[132].  

The radius of the cavity described by Chan and Reader is 40 mm and the 

height is 75 mm [120]. The schematic diagram of the simulated cavity is as 

shown in Fig. 4.9. The analytical resonant frequency for the dominant mode 

(TM 010) of the cylindrical cavity, before dielectric loading, is 2.871 GHz. 

The cavity was excited such that only the TM modes were generated and the 

simulated frequency for TM 010 using the cylindrical TLM solver is 2.874 

GHz as shown in Fig. 4.10. Having confirmed the result of the solver for the 

unloaded cavity is satisfactory, the first mode of the cavity is set as the point 

of reference for all other results. 
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Fig.  4.9: Simulated dielectric loaded cylindrical cavity. 

 

Fig.  4.10: Simulated resonant frequency for the unloaded cylindrical cavity. 

The loading dielectric rod was coaxially positioned at the centre of the 

cylindrical cavity. It was 10 mm in diameter with permittivity, 𝜀𝜀𝑟𝑟 = 25. The 

distribution of the permittivity in the coaxially dielectric-loaded cavity is 

anisotropic in nature unlike the air-filled cavity, which has evenly 

distributed permittivity at every point in the cavity. In the dielectric-loaded 
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case, there are two materials of different permittivity values inside the 

cavity – air (𝜀𝜀𝑟𝑟 = 1 ) and the dielectric material (𝜀𝜀𝑟𝑟 = 25 ). As earlier 

mentioned in Section 3.2 of Chapter 3, it is generally recommended that ∆l 

should be less than 1 10⁄  of the shortest wavelength in order to reduce 

dispersion error [32] in TLM models. Therefore, for accurate 

implementation of the dielectric loaded-cavity, the permittivity difference in 

the cavity should be taken into account when dealing with the space 

discretisation to ensure that the  dispersion constraint of at least 10 nodes 

per wavelength at the maximum frequency of interest is satisfied at every 

part of the modelling space [39]. This means that the dielectric material with 

higher relative permittivity value requires corresponding smaller nodes. 

Number of nodes in the dielectric layer, 𝑁𝑁𝑑𝑑 is calculated as [18]: 

𝑁𝑁𝑑𝑑 = 𝑁𝑁𝑎𝑎 �𝜀𝜀𝑟𝑟⁄  (4.58)  

where 𝑁𝑁𝑎𝑎 is the number of nodes in the air  

The dispersion cut-off frequency calculated for the cavity was 6 GHz. 

Simulated results for the dielectric loaded cavity are shown in Table 4.4. 

The results are accurate within a 1 % error within the mesh dispersion limit 

when compared to the analytical results.  The results also compared well 

with the simulated results published in [120] and [18] for the same problem. 



 
 
 

Development of Cylindrical Transmission Line Solver 
_____________________________________________________________ 

130 
 

Table  4.4: Comparison of the analytical results with the simulated results for 

the cavity loaded with dielectric rod 

 Resonant Frequency (GHz) 

Mode Analytical Chow [120] Jukovic [18] Simulated (TLS) 

TM010 1.0189 1.0190 1.0396 1.0100 

TM020 3.5702 3.5740 3.5592 3.5560 

TM030 4.9917 4.9930 Not published 5.0950 

TM040 6.8346 6.8460 Not published 7.0370 

4.4.4 EFFICIENCY OF CYLINDRICAL MESH COMPARED WITH THE 

RECTANGULAR MESH  

In Section 3.3, it was seen that the staircase approximation of curved 

boundaries affected the accuracy of the resonant frequency of the simulated 

electric fields when rectangular mesh was applied to the modelling of 

circular cavity. The staircase error does not occur in the cylindrical TLM 

model as discussed in Section 4.4.1 and in the absence of staircase errors, 

cylindrical TLM mesh yielded results with better accuracy. The purpose of 

this Section is to further verify the efficiency of the two models - 

rectangular and cylindrical mesh - in modelling of the circular cavity. 

The first comparison was made on the efficiency of the time steps and the 

second on the total number of operations involved in the execution of each 

of the model. Table 4.9 summarises the simulated results obtained for the 

dominant mode of the cavity (TM010) using the two meshes. For accurate 

comparison, an equivalent number of iterations used in the rectangular mesh 

was derived as [72]: 
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𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐 =
𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐∆𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐
∆𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐

 (4.59)  

where  ∆𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐  and ∆𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐  are the discrete time step in rectangular and 

cylindrical models respectively, while  𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐  and 𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐  are the number of 

iterations in rectangular and cylindrical models respectively. 

To compare the execution time for the two methods, using equal number of 

iterations, the number of operations, 𝑁𝑁𝑜𝑜𝑜𝑜 for each of the model is calculated 

from the mesh dimension, number of iterations (𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐  and 𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐 ) and the 

number of performed operations in the execution of model, 𝑃𝑃 . For the 

cylindrical model, 𝑁𝑁𝑜𝑜𝑜𝑜 is given as [72]: 

𝑁𝑁𝑜𝑜𝑜𝑜 = 𝑁𝑁𝑟𝑟 × 𝑁𝑁𝜃𝜃 × 𝑁𝑁𝑧𝑧 × 𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐 × 𝑃𝑃 (4.60)  

and for the rectangular model, 𝑁𝑁𝑜𝑜𝑜𝑜 is given as: 

𝑁𝑁𝑜𝑜𝑜𝑜 = 𝑁𝑁𝑥𝑥 × 𝑁𝑁𝑦𝑦 × 𝑁𝑁𝑧𝑧 × 𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐 × 𝑃𝑃 (4.61)  

where 𝑁𝑁𝑟𝑟 , 𝑁𝑁𝜃𝜃 , 𝑁𝑁𝑥𝑥 , 𝑁𝑁𝑦𝑦  and 𝑁𝑁𝑧𝑧  are the number of nodes in 𝑟𝑟,𝜃𝜃, 𝑥𝑥 , 𝑦𝑦 and 𝑧𝑧 

respectively. 𝑁𝑁𝑧𝑧 = 1 for both models. 

Three simulations were considered. The first simulation was conducted 

using 121 rectangular nodes. An odd number was selected to ensure that the 

symmetry of the cavity from one side to the other was not compromised. To 

achieve this, one node was set as the centre of the cavity while the 

remaining was evenly distributed along the diameter of the cavity. The 

second simulation was conducted using 120 cylindrical nodes in order to get 

the number of the nodes used for the cylindrical mesh as close to the 
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rectangular mesh as possible. The third simulation was conducted with a 

more coarse cylindrical mesh than the one used in the second simulation to 

check how it affects the results. In this third example, only 60 cylindrical 

nodes were used. The simulated resonant frequencies for the cavity and the 

mode distribution in the cavity are as shown in Fig. 4.11, Fig. 4.12. The 

results obtained from using the two methods are compared in Table 4.5. 

 

Fig.  4.11: The simulated normalised electric field for the cavity (analytical 

frequency = 2.295 GHz). 
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Cartesian TLM (x × y = 11×11 nodes) 

 

Cylindrical TLM (r × θ = 5×12 nodes) 

Fig.  4.12: The normalised simulated TM010 mode for the circular cavity 

using 120 cylindrical nodes and 121 rectangular nodes. 
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Table  4.5: Comparison of simulated results of using rectangular mesh, 

cylindrical mesh and coarse cylindrical mesh for the simulation of circular 

cavity. 

 Cartesian 

TLM 

Cylindrical 

TLM 

Cylindrical TLM 

Nodes 121 (x × y = 

11×11 nodes) 

120 (r × θ = 

5×12 nodes) 

60 (r × θ = 5×6 

nodes) 

discrete time step 

 

1.5 × 10−11 4.3633 × 10−12 3.5368 × 10−12 

Number of iterations 298 2048 2526 

Frequency (GHz) 2.13 2.282 2.282 

Error in result (%) 6.98 0.39 0.39 

Analytical frequency = 2.295 GHz 

The discrete time step used in the execution of the rectangular TLM 

procedure for the mesh of 121 nodes was 1.5 × 10−11   

and the number of iterations,  𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐 was 298 while the time step used in the 

execution of the cylindrical mesh procedure for the mesh of 120 nodes was  

4.3633 × 10−12  and the required number of iterations, 𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐  was 2048. It 

was observed that the  𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐 =  6.87 × 𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐 , meaning that the number of 

iterations is higher in the cylindrical TLM model compared to its 

rectangular TLM counterpart.  

However, assuming the same number of iterations N, the calculated 𝑁𝑁𝑜𝑜𝑜𝑜 =

 121𝑁𝑁𝑁𝑁, 120𝑁𝑁𝑁𝑁 and 60𝑁𝑁𝑁𝑁 for the 121 nodes, 120 nodes, and the 60 nodes 

mesh respectively. That is, the number of operations required in the 

implementation of the cylindrical mesh is lower compared to the rectangular 
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mesh. This means that the overall execution time is reduced in the 

cylindrical model.  

As shown in Table 4.5, the improvement in results obtained by modelling 

with the cylindrical mesh is appreciable and was also achieved with fewer 

nodes compared with the rectangular mesh. In the simulated example, the 

error in the results obtained using 121 nodes rectangular mesh was 6.98 

times higher than the error generated using 120 nodes cylindrical mesh. 

Compared to the same model simulated with a more coarse cylindrical mesh 

of 60 nodes, 4.3633e-12 discrete time step, 1024 iterations; the error from 

121 nodes rectangular mesh was still 6.98 times higher. These results show 

that a cylindrical mesh of 60 nodes is sufficient for the accurate simulation 

of the cavity, which prove that the cylindrical mesh allows for savings in the 

time and storage resources.  

To further verify this claim, new simulations were run in both rectangular 

and cylindrical TLM with the aim to achieve the same level of accuracy. 

The results are as shown in Table 4.6. Comparing the results obtained using 

the two methods, the difference in the number of nodes required to obtain 

the same level of accuracy in rectangular TLM is 377.50 times higher as in 

the cylindrical TLM and the corresponding simulation time in the 

rectangular TLM significantly higher. The storage space taken by the 

rectangular mesh is also 47.2 times larger compared to the cylindrical mesh. 

This shows that there is an enormous savings in term of computing time and 

storage resources when using the cylindrical TLM mesh. 
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Table  4.6: Comparison the simulated results for the circular cavity using 

rectangular mesh and cylindrical mesh at the same level of accuracy.  

 Cartesian TLM Cylindrical TLM 

Nodes 90601 (x × y = 

301×301 nodes) 

240 (r × θ = 

10×12 nodes) 

Discrete time step 

 

1.5614 × 10−14 1.0908 × 10−12 

Number of iterations 16302 8192 

Frequency (GHz) 2.290 2.291 

Simulation time (s) 108035 87.16 

Storage space  23.6 MB 500 KB 

Error in result (%) = 0.17,  Analytical frequency = 2.295 GHz 

In addition, symmetry application is another point where the cylindrical 

mesh has upper hand over the rectangular mesh. For the rectangular TLM 

application, the minimum section that can be simulated when applying the 

rule of symmetry is a quarter of the cylindrical cavity whereas it is possible 

to simulate the cavity with a thin mesh slice in cylindrical TLM and attain 

exactly the same result as when the whole mesh is used for the simulation. 

For example, using a single slice 𝑟𝑟 × 𝜃𝜃 × 𝑧𝑧 = 5 × 1 × 1 mesh produced the 

same result as using the full plane mesh of 𝑟𝑟 × 𝜃𝜃 × 𝑧𝑧 = 5 × 12 × 1 mesh 

reducing the simulation time from 54.49s to 14.24s. 
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4.5 CONCLUSIONS 

An electromagnetic TLM solver TLS developed in MATLAB was applied 

to the modelling of different canonical problems: a rectangular cavity, an 

air-filled circular cavity, a coaxial cavity and a dielectric loaded cavity. The 

simulated results are in good agreement with the analytical expectations. 

Simulated results also compared well with the results obtained form an 

existing solver and with results obtained from the literature.  

The analysis of the rectangular resonant cavity was carried out using the 2D 

shunt TLM and SCN TLM methods. To verify the accuracy of the TLM, the 

simulated results were compared with the analytical results and the results 

of the commercial electromagnetic simulator, CST and it was found to be 

accurate with an error of less than 0.1% for the considered example. 

 For the circular cavity model, the resonant frequencies were obtained from 

the characteristic equation discussed in Chapter 3 (3.2) and were used as 

benchmark for the simulated results. In modelling of the circular resonator, 

both rectangular mesh and cylindrical mesh models were considered. The 

two methods did not produce the same results. In the case of rectangular 

model, the staircase approximation affected the accuracy of the results by 

shifting the simulated resonances down compared with the analytical 

expectations. Increasing the mesh size produced better results but at the 

expense the time, storage and a higher dispersion. Simulated results 

obtained from the cylindrical mesh are more accurate than those obtained 

using the rectangular mesh. The savings in memory and time observed when 

using cylindrical mesh is highly commendable when compared with the 

rectangular mesh simulations. Another advantage of the cylindrical mesh is 

in the possibility of exploiting the symmetry about the centre axis such that 

only one layer of nodes in the theta dimension is required for the simulation 

of the entire cavity. A large simulation space will be required for the 
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modelling of axisymmetric radiating structures that will be discussed in 

Chapter 5 and symmetry application will be applied to reduce the simulation 

time and storage memory that will be required. 

In summary, by comparing the simulated results of modelling circular cavity 

with the rectangular and the cylindrical meshes, it has been confirmed that 

the cylindrical mesh is more accurate than the rectangular mesh in 

modelling curved boundaries. Therefore for the purpose of this thesis, the 

cylindrical mesh is considered a preferred choice for the simulation of 

axisymmetric radiating structures, which will be discussed in Chapter 5. 
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CHAPTER 5  

 

 

THE CYLINDRICAL TRANSMISSION 

LINE MODELLING OF AXISYMMETRIC 

RADIATING STRUCTURES 

In this Chapter, the modelling procedure for the axisymmetric radiating 

structures using the cylindrical TLM method is discussed.  The cylindrical 

TLM mesh was discussed in Chapter 4. Before proceeding into the 

modelling procedures, a short introduction to a range of typical 

axisymmetric antenna structures - cylindrical dipole, cylindrical monopole 

and conical monopole antennas - is presented in Section 5.1. These radiating 

structures will be simulated using the cylindrical TLM mesh of the 

developed Transmission Line Simulator (TLS). The cylindrical TLM mesh 

has been chosen, over its rectangular counterpart, for the simulations of 

these axisymmetric radiating structures because mesh-to-structure 

conformity is possible with the use of cylindrical mesh and its application 

promises potentially more accurate results as discussed in Section 4.6.3 of 

Chapter 4. The simulation procedures and simulated results for these 

structures using the cylindrical TLM mesh are discussed in Section 5.2. 

Measured results from the fabricated prototype antennas are presented in 

Section 5.3 to validate simulated results while conclusions to this Chapter 

are drawn in Section 5.4. 
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5.1 INTRODUCTION TO THE AXISYMMETRIC RADIATING 

STRUCTURES 

As previously mentioned, the cylindrical dipole, cylindrical monopole and 

conical monopole antennas are examples of structures that possess axial 

symmetry. In this Section, a short introduction to these structures is 

presented. 

5.1.1 CYLINDRICAL DIPOLE AND CYLINDRICAL MONOPOLE ANTENNAS 

Cylindrical dipoles and monopoles are inexpensive, simple antennas and 

can be made from wire. Both antennas are desirable because despite their 

simplicity, they can be used to achieve some degree of wideband antenna 

characteristics by modifying the conductor thickness. Wideband antennas 

are needed for applications that require coverage of a broad range of 

frequencies such as in television reception of all channels [20], [133].  

A dipole is made of two bilaterally-symmetric, identical radiating elements 

separated at the centre by an insulator. The two elements are connected to a 

feed line, which is usually a 50-Ω impedance coaxial cable. To make the 

dipole resonant, its total electrical length should be half-wavelength (λ/2) of 

the lowest desired operating frequency. The lowest frequency at which the 

dipole resonates is called the fundamental frequency and the subsequent 

resonances occur at odd multiples of the fundamental frequency [20].  

When one of the radiating elements of the dipole antenna is replaced by a 

finite conducting surface/plane termed ground plane, it becomes a 

monopole antenna, making the length of the monopole a quarter-wavelength 

(λ/4) at the desired fundamental frequency. When placed over a large 

ground plane, a quarter-wave monopole antenna excited by a source at its 

base displays the same radiation pattern in the region above the ground as a 

half-wave dipole in free space. This simply means that the conducting plane 
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commonly referred to as the ground plane, replaces the second conducting 

wire of the dipole. The ground plane behaves like the other half of the 

dipole and if the ground plane is sufficiently large, the monopole antenna 

can be as strong as the dipole in its radiation. The monopole can only radiate 

above the ground plane and so, the angular image of the radiation is limited 

to 0 ≤ 𝜃𝜃 ≤ 𝜋𝜋 2⁄  compare to 0 ≤ 𝜃𝜃 ≤ 𝜋𝜋 in a dipole antenna. The simplicity 

in construction and the broadband characteristics of the monopole antenna 

[134] lend to its common use in portable equipment such as mobile/cellular 

telephone and automobiles. It is also widely used in ground-based 

communications systems wireless sensor networks [135]–[137]. 

The broadband nature of the cylindrical monopole, as that of the dipole, 

depends on the thickness of its diameter [20]. The thin dipole is generally 

considered narrowband while the thick ones are broadband.  Although, large 

diameter dipole and/or monopole are more broadband in nature, the 

diameter of the radiating structure should be chosen with care because they 

resonate at lower frequencies than their thin counterpart. On the other hand, 

the radiation characteristics of dipoles are also frequency dependent. The 

rate at which these characteristics change as a function of frequency 

depends on the antenna bandwidth.  For very thin dipoles/monopoles, small 

alterations in the frequency of operation result in large changes in its 

operational behaviour. In order to reduce the sensitivity of the dipole 

radiation characteristics as a function of frequency for a given length of wire, 

the ratio of the antenna length to its diameter (𝑙𝑙/𝑑𝑑 ratio) has to be controlled. 

One conventional way by which its operational bandwidth can be enlarged 

in an acceptable way is to decrease the length to diameter ratio (l/d ratio). 

The sensitivity of the dipole to frequency changes reduces as the 𝑙𝑙/𝑑𝑑 ratio 

decreases. 
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5.1.2 CONICAL MONOPOLE ANTENNAS 

In this Section, the conical antenna is introduced. As mentioned previously, 

the bandwidth of monopole antennas depends on the diameter of the 

radiating structure. Conical monopole antennas have large surface areas, 

which give them a broad bandwidth characteristic [133]. In addition to 

having broad bandwidth, conical antennas also have omnidirectional 

radiation pattern. For both military and commercial applications, there is an 

increasing demand for Ultra Wide band (UWB) antennas with omni-

directional coverage [138]. These characteristics possessed by the conical 

monopole have attracted research interest to the structure [139]–[142].  

A conical antenna is made up of a cone, with or without a spherical cap, and 

a horizontal ground plane. Ideally, the ground plane is infinitely large but in 

practice, it is impossible to have an infinite ground plane for the conical 

antenna. Therefore, the ground plane is usually built as a reflective plane of 

finite size. The consequence of using a finite ground plane in practice is that 

end reflections and standing waves are introduced, which in turn reduces the 

bandwidth of the antenna  and introduces unwanted effects such as 

significant back lobes in the  radiation pattern of the antenna [143], [144]. 
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5.2 ANTENNA MODELLING USING DEVELOPED TRANSMISSION 

LINE SIMULATOR 

In this Section, the cylindrical dipole, cylindrical monopole and conical 

monopole introduced in Section 5.1 are simulated using cylindrical TLM 

mesh. Using the cylindrical TLM solver for the simulations means that 

antennas are simulated in the cylindrical coordinate instead of the 

conventional spherical coordinate. General descriptions of the method 

adopted for the antenna feed and the application of the absorbing boundary 

will be discussed in the following Sections. Simulated results for the three 

antennas are also presented and discussed. Since the cylindrical dipole and 

cylindrical monopole antennas are similar, both are discussed in Section 

5.2.1 while the conical monopole is discussed in Section 5.2.2. 

5.2.1 MODELLING OF CYLINDRICAL DIPOLE AND CYLINDRICAL 

MONOPOLE ANTENNAS 

Procedures for the simulation of the cylindrical dipole and cylindrical 

monopole antennas are presented here. These two antennas have their 

dimensions chosen in order to operate at approximately 2 GHz.  

5.2.1.1 ANTENNA DIMENSIONS 

The lengths of the two antennas were determined based on the wavelength 𝜆𝜆 

of the desired operating frequency. For the 2 GHz operating frequency, 𝜆𝜆 = 

150 mm. The length, 𝑙𝑙 of the simulated dipole antenna was set to 75 mm. 

This length was chosen because it is a fundamental requirement that the 

dipole antenna be half-wavelength long (𝑙𝑙 = 𝜆𝜆 2⁄  ) in order for it to radiate 

[20]. Each radiating element of the dipole was 37.5 mm long in length. The 

diameter, 𝑑𝑑 of the dipole antenna was set to 3 mm resulting in l/d ratio of 25. 

For a 2 GHz operating frequency, the required length for the monopole,  𝑙𝑙 =
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𝜆𝜆 4 = 37.5 mm⁄ . The monopole was positioned at the centre of a circular 

ground plane of  2𝜆𝜆  diameter.  

5.2.1.2 THE MESHING PROCEDURE 

In the example discussed in this Section, the two antennas simulated were 

discretised in computational cylindrical modelling space of  200 × 251 ×

200. The discretization of lengths for the TLM simulation were chosen such 

that the largest discrete lengths conform to the 0.1λ dispersion limit [42]. 

These radiating structures were positioned symmetrically about the origin 

with their lengths directed along the z-axis in the simulation space. 

Radiating elements were simulated as copper with electric 

conductivity, 𝜎𝜎𝑐𝑐 = 5.8 × 107 S/m. The ground plane used for the monopole 

was also simulated as copper.  

The axisymmetric nature of the antenna and the simulation space means that 

one slice of 𝜃𝜃 was sufficient for the simulation. Application of the symmetry 

resulted in total of 200 × 1 × 200  nodes for the simulation. The largest 

discretised length was 3.75 mm and it was determined based on the λ of the 

expected highest frequency within the acceptable dispersion cut-off 

frequency range, in this case, 8 GHz. The discretised time step for the 

simulation of the both dipole and monopole antennas was 1.5645 × 10−14 s.  

In the simulation space, the dipole antenna was positioned in such a way 

that a node serving as the input port was separating the two radiating 

elements of the dipole. The feeding port was modelled to serve as the 50 Ω 

matching feed point. The detailed procedure of the port model is described 

in Section 5.2.1.3. The feeding node increased the total length of the 

antenna by 1.5 mm making the total length 76.5 mm and 𝑙𝑙/𝑑𝑑 ratio of 25.5. 

The simulation mesh view for the dipole in the r-z plane is as shown in Fig. 

5.1 (a). Likewise, the monopole was positioned in the simulation space such 

that a node was separating the radiating structure from the ground plane and 
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this node served as the feeding node. The feeding node increased the length 

to 39 mm giving 𝑙𝑙 𝑑𝑑⁄ = 13. The r-z view of meshes used for the dipole and 

the monopole are shown in Fig. 5.1. Only one slice of the simulation space 

was simulated because of symmetry. Thus, in order to aid the visualisation 

of the antenna in the mesh, the image was mirrored at the centre of 

symmetry on r. The image has also been zoomed in from its original size. 
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(a) Cylindrical dipole 

 

(b)  Cylindrical Monopole 

Fig.  5.1: Simulated (a) dipole and (b) monopole in the simulation space with 

the red lines indicating the copper and meshed background representing the 

open space. 

r-axis (m)
-0.05 0 0.05

z-
ax

is 
(m

)

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

0.12

feeding

port

r-axis (m)
-0.05 -0.04 -0.03 -0.02 -0.01 0 0.01 0.02 0.03 0.04 0.05

z-
ax

is
 (

m
)

0

0.01

0.02

0.03

0.04

0.05

feeding port



 
 
 

The Cylindrical Transmission Line Modelling of Axisymmetric Radiating 
structures 

_____________________________________________________________ 

147 
 

5.2.1.3 ANTENNA EXCITATION PROCEDURE 

Once the meshing procedure was completed, the antenna was excited using 

the procedure discussed in this Section. There are various ways by which an 

excitation pulse can be applied to the radiating structure in TLM [3]. Three 

different methods are briefly described and the novel approach adopted for 

excitation of the antennas in the simulations reported in this thesis is then 

presented. 

One of the known methods for exciting antennas in TLM model is to model 

the feed wire/node(s) as a short circuit placed in the middle of link line(s) 

and then impose the incident voltage pulses on the adjacent ports. The 

second possible approach is to model the feed wire/node(s) as a short circuit 

placed in the middle of link line(s) and then induce a current by imposing a 

magnetic field. The third method involves connecting a voltage source with 

known internal impedance to the antenna. This third method is referred to as 

the wire-feed model and it is achieved in TLM by manipulating the 

capacitance and inductance of the wire node to accommodate the presence 

of the wire  in the simulation space [145]. For the examples in this thesis, 

the method used in the excitation of the simulated antenna is a novel 

optimised version of the second method described above.  

To excite the simulated antenna, the node directly between the two poles of 

the dipole and the node between the monopole and the ground plane was 

modified. The node was modified to model a 50 Ω impedance feed-wire 

serving as a matching node for the antenna instead of using a short node as 

described in the second method above. The node is termed feed-node. In the 

simulation space, the feed-node was represented in terms of its electric 

conductivity. This was achieved by setting the impedance, 𝑍𝑍𝑤𝑤  of the feed-

wire, which in this case is 50 Ω to be equal to the ratio of the resistivity of 

the wire, 𝜌𝜌𝑤𝑤, to the cross Sectional area 𝐴𝐴𝑤𝑤 of the wire. Using (5.1) – (5.4), 
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the equivalent conductivity for the 50 Ω feed-wire of length 𝑙𝑙𝑤𝑤 and radius 

𝑟𝑟𝑤𝑤 was calculated.  

𝑍𝑍𝑤𝑤 =  
𝜌𝜌𝑙𝑙𝑤𝑤
𝐴𝐴𝑤𝑤

 (5.1) 

where 

𝐴𝐴𝑤𝑤 = 𝜋𝜋𝑟𝑟𝑤𝑤2 (5.2) 

 The electric conductivity 𝜎𝜎𝑤𝑤 is inversely proportional to 𝜌𝜌𝑤𝑤 and it is given 

as: 

𝜎𝜎𝑤𝑤 = 1 𝜌𝜌𝑤𝑤⁄  (5.3) 

Substituting for 𝜌𝜌𝑤𝑤 and 𝐴𝐴𝑤𝑤 gives 

𝜎𝜎𝑤𝑤 =
𝑙𝑙𝑤𝑤

𝐴𝐴𝑤𝑤𝑍𝑍𝑤𝑤
=

𝑙𝑙𝑤𝑤
𝜋𝜋𝑟𝑟𝑤𝑤2𝑍𝑍𝑤𝑤

 (5.4) 

The optimised matching node, the feed-node, now serves as the feed-wire 

having 50 Ω resistance and conductivity, 𝜎𝜎𝑤𝑤 . Current was injected at the 

base of the antenna by exciting the H-field around the optimised node as 

shown in Fig. 5.2. 
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Fig.  5.2: Antenna excitation (H-field in dotted arrow, 𝑑𝑑 = 2𝑟𝑟𝑤𝑤 and D is the 

simulation space diameter). 

The simulated results for the modelled cylindrical dipole and the monopole 

antennas are presented in Sections 5.2.1.1 and 5.2.1.2 respectively.  

5.2.2 SIMULATED RESULTS FOR THE CYLINDRICAL MONOPOLE AND THE 

CYLINDRICAL DIPOLE 

The simulated results for the modelled cylindrical dipole are presented in 

this Section. The radiation frequency of the antenna is the main antenna 

characteristics produced by the TLS. The electric fields in the two 

simulations were observed at a location adjacent to the feed point, 100 

nodes away from the antenna. The electric field in the simulation space for 

the monopole antenna is shown in Fig. 5.3. The electric field response 

shows that the signal gradually dampens and tends to zero with time. These 

results suggest that the boundary is correctly implemented because this is 

the kind of response theoretically expected from a simulation space 

terminated by an absorbing boundary.  
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Fig.  5.3: The simulated electric field for the cylindrical monopole after 

40960 iterations (observed at node r, 𝜃𝜃, z  =100, 1, 75). 

For easy comparison, the magnitude of the electric field in frequency 

domain was normalised to the highest value in the simulation result. It can 

be deduced from Fig. 5.4 that the simulated radiated frequencies are as 

theoretically expected. There is a fundamental resonant frequency of 2 GHz 

for  λ 4⁄  and a secondary resonance around 6 GHz, which is an odd multiple 

of the fundamental frequency (3λ 4⁄ ), as expected of a typical monopole. 

These results show that the model has been correctly implemented in TLM. 

However, for a monopole/dipole of 1.5 mm radius, a narrow bandwidth is 

theoretically expected while the bandwidths of the simulated operating 

frequencies are wide. In the simulation of the monopole, two approaches 

were considered in order to check if the position of the antenna in the 

simulation space affects the simulated results and to determine the best 

position for the radiating structure in the simulation space. The first 

approach was to place the radiating structure and the ground plane at the 

centre of the simulation space and the second approach was to place the 

radiating structure and the ground plane at the base of the simulation space. 

The results obtained for both position were found to be very close when 

Time (ns)
0 0.01 0.02 0.03 0.04 0.05 0.06 0.07

El
ec

tri
c f

iel
d, 

Ez
 (V

/m
)

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1



 
 
 

The Cylindrical Transmission Line Modelling of Axisymmetric Radiating 
structures 

_____________________________________________________________ 

151 
 

compared. For the remaining part of this thesis, the base position was the 

chosen method for all simulations.  

To verify the theoretical expectation that the monopole on an infinite ground 

plane should radiate at the same frequency as the dipole twice its length, the 

frequency responses of the simulated antennas were compared as shown in 

Fig. 5.4.  It was observed that the simulated electric field followed the same 

trend of radiating frequencies except for the difference in amplitude and a 

small shift in phase at higher frequencies. 

 

Fig.  5.4: Comparison of the normalised electric field for the cylindrical 

monopole and the dipole antennas after 16384 iterations. 

5.2.3 SIMULATION OF CONICAL MONOPOLE ANTENNA AND SIMULATED 

RESULTS 

For a resonant frequency of 2 GHz, the length of the cylindrical antenna was 

set at λ/4 = 37.5 mm and the antenna half-angle 45°. The antenna was 

modelled to stand on a circular ground plane of radius 1λ. Both the antenna 

and the ground plane were simulated as copper. The schematic diagram of 

the simulated cone is shown in Fig. 5.5. The conical antenna was simulated 

in the same computational cylindrical modelling space as the dipole and 
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monopole in Section 5.2.1. The simulation mesh view for the conical 

monopole in the rz-plane is as shown in Fig. 5.6. With the application of 

symmetry, only one slice of the cone was simulated. Therefore, in order to 

aid the visualisation of the cone in the mesh, the image was mirrored around 

the 𝜃𝜃 axis and at the centre symmetry on r. The image has also been zoomed 

in from its original size. 

 

Fig.  5.5: The schematic diagram of the simulated conical monopole. 

 

Fig.  5.6: The simulated conical monopole meshed in TLM with red 

indicating the copper and meshed background representing the open space. 
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The H-field was excited around the 𝜃𝜃-axis as described in Section 5.2.1 and 

the electric field propagation is along the z-axis and absorbing boundary 

termination was applied to the end of the modelling space. The simulated 

electric field for the conical structure is shown in Fig. 5.7. It can be deduced 

from the figure that the simulated conical antenna has a broad bandwidth 

compared to the monopole and dipole output presented in Fig. 5.4. 

 

Fig.  5.7: Normalised simulated electric field for the conical antenna after 

40960 iterations.  
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5.3 EXPERIMENTAL RESULTS AND DISCUSSIONS 

Since the simulated results were closely in-line with theoretical predictions, 

the antennas were fabricated and measured to further validate the simulated 

results. In this Section, the results of these measurements made on prototype 

monopole antennas are discussed. The antennas were built using solid 

copper while the ground planes were constructed from FR4 with single-

sided copper metallisation. The diameter of the ground plane for the two 

prototype antennas was 300 mm. Both antennas were 37.5 mm high/long. 

The cylindrical monopole had a 3-mm diameter while the cone had a 75 mm 

diameter circular base at 45° half-angle.  A tiny hole was drilled to the base 

of the cone in order to connect the 50 Ω SMA connector.  Pictures of the 

fabricated antennas are shown in Fig. 5.8 and Fig. 5.9.  

 

Fig.  5.8: Picture of the fabricated prototype cylindrical monopole antenna. 

  

Fig.  5.9: Pictures of the fabricated prototype conical monopole antennas.  
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For the measurement of the reflection coefficient (𝑆𝑆11) of the antennas, an 

Anristsu 37397D VNA analyser calibrated to measure up to 12 GHz was 

used. The 𝑆𝑆11 results give a general overview of the antenna’s behaviour. 

The analyser was connected to the coaxial feed, which was connected to the 

ground plane. The antennas were mounted on a stand during measurements 

as shown in Fig. 5.10 and Fig. 5.11. To support the weight of the conical 

antenna on the measuring equipment, a square shaped Styrofoam with a 

conical-shaped hollow middle was built and fastened to the ground plane 

with a nylon strip and bolt as shown in Fig. 5.13. The connection of the 

SMA feed to the cone was carefully set to ensure good contact.  

 

Fig.  5.10: Measurement set-up for the cylindrical monopole antenna. 

    

Fig.  5.11: Measurement set-up for the conical monopole antenna. 
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Fig.  5.12: Support structure for the cone antenna measurement. 

The measured parameter in the experiment is S11 parameter while the 

simulated parameter is the electric field. It was observed that the simulated 

electric field peaks at the point where the crest of the S11 parameter lies. 

Therefore, to compare the simulation results to the experimental results, the 

peaks and the crests of the two results are compared. The measured 𝑆𝑆11 

parameter for the cylindrical monopole antenna prototype is as shown in Fig. 

5.14. The fabricated antenna resonates at 1.98 GHz and 5.8 GHz, which are 

very close to both the theoretical and simulated predictions.  

 

Fig.  5.13: S11 parameter for the prototype cylindrical monopole antenna. 

The 𝑆𝑆11 parameter of the prototype conical monopole antenna is as shown in 

Fig. 5.15. Compared to the ultra-wide bandwidth predicted by the simulated 
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result, the prototype cone demonstrated a broad bandwidth from 1.10 – 6.41 

GHz at -10 dB. Notwithstanding, at -9.5 dB, the antenna has an ultra-wide 

bandwidth over the frequency range 1.10 – 12.0 GHz, which is very good .  

 

Fig.  5.14: Measured  S11 parameter for the prototype conical monopole. 

It was also observed that although the antenna’s vertical height was 

calculated to be 37.5 mm for the 2 GHz fundamental frequency, the antenna 

started radiating below -10 dB at 1.10 GHz. This is in line with theoretical 

expectations because the lowest resonant frequency of an antenna, which is 

1.10 GHz in this case, is determined by the longest length on the antenna 

structure. The longest length on the conical antenna is not the vertical height 

but the length of the slant edge of the cone, which is calculated as  

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 ℎ𝑒𝑒𝑒𝑒𝑒𝑒ℎ𝑡𝑡 =
𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 ℎ𝑒𝑒𝑒𝑒𝑒𝑒ℎ𝑡𝑡

sin(ℎ𝑎𝑎𝑎𝑎𝑎𝑎 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎) =
37.5

sin (45°)
= 53.03 𝑚𝑚𝑚𝑚 

With the length of 53.03 mm, the antenna is theoretically expected to radiate 

at 1.41 GHz frequency. However, the top of the solid cone formed a 

continuous path for the propagating wave and is expected to have some 

effect on the frequency. 
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5.4 CONCLUSIONS 

The Transmission Line Simulator (TLS), developed for this research has 

been used successfully for the simulation of microwave cavity resonator in 

Chapter 4. In this Chapter, the application of the solver is extended to the 

modelling of axisymmetric radiating structures. The structures simulated are 

a cylindrical dipole, a cylindrical monopole and the conical monopole 

antennas. The simulated results were compared with the analytical results 

and were found to be in reasonable agreement.  

To validate the simulated results, prototype cylindrical monopole and 

conical monopole antennas were fabricated and measured. The measured 

results compared well with the theoretical and simulated results.  

Having established the effectiveness of the TLS in modelling axisymmetric 

radiating structure, the next step is to apply the simulator to a more 

advanced application. In Chapter 6, the solver is applied to the modelling of 

radial slots on a solid cone antenna and the effects of these slots on the 

antenna properties are investigated. 
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CHAPTER 6  

 

 

MODELLING OF THE SLOTTED CONE 

As mentioned in Chapter 5, the finite nature of the mono-cone antenna 

introduces end reflections and standing waves, which affect the bandwidth 

of the antenna [143]. One common method used in improving the 

bandwidth of conical antennas is modifying the top of the antenna such that 

it has a spherical surface [146]. Examples of such type of designs that have 

been used in practice are sphere-loading [147], teardrop (defined as the 

combination of a finite cone and a sphere [143]), the merge of a cone with a 

circular cylinder [133] and adding a hemispherical dome to the top of the 

cone [148]. These loading methods improve matching and thus reduce the 

amount of reflected energy. Sphere loading increases the electrical length of 

the antennas as well.  

Other modifications that bring improvement to the conical antenna include 

dielectric loading and resistive loading. Dielectric loading increases the 

electrical length of the antenna but has a negative side effect of loading the 

near field of the antenna affecting the characteristic impedance of the 

antenna. Hallén [149] researched into an antenna with quasi-distributed 

capacitive loading and concluded that it has excellent broadband 

characteristics. Rao et al. [150] worked on an antennas with exponentially 

tapered capacitive loading and concluded that this also had good broadband 

characteristic.  Palud et al. [151] and Gentili et al. [152] also researched into 
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the effect of adding parasitic elements and a capacitive loading ring to the 

antenna and came to a similar conclusion.  

Resistive loading of the antenna, on the other hand, alters the current 

distribution along the antenna length thereby reducing the reflections from 

the ends of the antenna [153]. It reduces the distortion of the radiation from 

the open end and feed region of the antenna. Resistive antennas are an 

interesting concept but have a major disadvantage of low efficiency. This 

deficiency does not occur in reactive loading [153]. King and Wu [154] 

presented theoretical analysis of a resistive antenna with constant loading. 

Shen [155] experimentally analysed the resistive antenna and it was 

reported that his results were in agreement with King and Wu to some 

extent. More recently, Maloney and Smith [139] placed a continuous 

resistive material along the antenna length to produce an exact replica of the 

input pulse as observed on a conical antenna and conducted an experimental 

study using the discrete version of the resistive profile proposed by King 

and Wu [154]  and obtained results that were in good agreement with the 

theoretical work. 

Another method that has been used to improve the bandwidth of conical 

antennas is the alteration of the ground plane. Mulenga and Flint [144] 

researched into modifying the ground plane to achieve improved broadband 

antenna performance. They investigated the effect of using a partially 

corrugated reflector instead of the normal Perfect Electric Conductor (PEC) 

reflector on the radiation pattern of the conical antenna and detected that the 

corrugated reflector gives a more stable radiation pattern over a wide 

frequency band than the conventional PEC. 

Oleksiy [156] carried out research into improving the radiation pattern of a 

bi-conical antenna by reducing its side lobes using radial slots. He achieved 

this by cutting quarter-wavelength deep annular slot out of the conical 
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radiating structure. The slots were also reported to have brought about a 

reduction in the antenna diameter by a factor of two. The bandwidth was 

however traded off for this size improvement to be achieved. Best [157] also 

researched  into the effect of cutting slots into the body of open conical 

antenna but he worked on an open cone antenna. Doroshenko et al. are other 

researchers who  have worked on the use of slot to enhance the performance 

of conical antenna characteristics [158]. 

Based on the work of Best [157], Mulenga [159] explored the use of single 

and multiple slots to improve the radiation pattern of conical antenna. It was 

reported that the behaviour of conical antennas with cut out slots was 

complex and slots on a 3-D conical antenna brought about disruption to the 

TEM mode of the broadband antenna. It was also reported that slots 

introduce several anti-resonant frequencies in the operating band. 

In this Chapter, slotted cone antennas are simulated using the developed 

Transmission Line Modelling Solver. The purpose of these simulations is to 

check the effectiveness of the developed code in simulating slots because it 

has been reported that slots can be efficiently represented in TLM [4]. The 

simulated results of slotted conical antennas are presented and compared 

with the analytical results obtained using the equations proposed by 

Mulenga [159]. The possibilities of using dielectric loaded slots to improve 

the characteristics of the conical antenna was also investigated and reported 

here. The simulation procedures and the results obtained for the slotted 

cones are discussed in Section 6.2, simulated results showing the effect of 

the dielectric load on the conical antenna are presented in Section 6.3 and 

measured results to validate the simulated results are presented in Section 

6.4. 
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6.1 SLOTTED-CONE ANTENNA SIMULATION AND SIMULATED 

RESULTS 

In this Section, simulated results for cones having annular slots are 

discussed. Similar to the cone simulated in Section 5.2.1, the vertical length 

of all simulated slotted-cone antennas were set at λ/4 (37.5 mm) for 2 GHz 

frequency and the antenna half-angle set at 45o. The antennas were placed 

on a circular ground plane of 2λ diameter. These dimensions were chosen in 

order to be able to compare simulated results of the slotted antenna with the 

already simulated plain cone to determine the effect of the slot(s) on the 

conical monopole antenna parameters. Both the antenna and the ground 

plane were simulated as copper. 

A solid cone antenna with a slot (see Fig. 6.1) is theoretically expected to 

generate anti-resonant frequency at a certain frequency band [159]. The 

expected anti-resonant frequency/trap frequency ( 𝑓𝑓𝑠𝑠) and the position of the 

slot on the cone, slot-position (ℎ𝑠𝑠)  that would allow its occurrence are 

analytically calculated as  [159]:  

𝑓𝑓𝑠𝑠 =
𝑐𝑐

2𝜋𝜋𝑠𝑠𝑑𝑑√𝜀𝜀𝑟𝑟𝜇𝜇𝑟𝑟
 (6.1)  

ℎ𝑠𝑠 =
𝑐𝑐

4𝑓𝑓𝑠𝑠
 (6.2)  

where   𝑐𝑐 = 1
�𝜀𝜀0𝜇𝜇0

 is the speed of light in free space; 𝜀𝜀0  and 𝜇𝜇0  are the 

permittivity and the permeability of free space respectively; 𝜀𝜀𝑟𝑟  and 𝜇𝜇𝑟𝑟  are 

the relative permittivity and the relative permeability of material in the slot 

respectively and 𝑠𝑠𝑑𝑑 is the depth of the slot.  
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Fig.  6.1: The schematic diagram of single-slotted cone antenna. 

In order to verify the accuracy of equations (6.1) and (6.2) for the 

calculation of 𝑓𝑓𝑠𝑠, a benchmark simulation was conducted for a slotted cone 

with cone-height = 37.5 mm, slot-width, 𝑠𝑠𝑤𝑤 = 3 mm, 𝑠𝑠𝑑𝑑 = 15 mm. Equation 

(6.1) gives  𝑓𝑓𝑠𝑠 = 3.18 GHz and ℎ𝑠𝑠 = 23.58 mm. Since the two equations 

were yet to be verified, another simulation was run in CST for validation of 

the simulated result. The two simulated results were compared in Table 6.1. 

For the selected parameters, the simulation results compared to the 

theoretical results with a 21% difference in both TLS and CST. The 

difference in the analytical result compared to the simulated results could be 

as a result of the selected value of 𝑠𝑠𝑤𝑤, which is not included in the analytical 

equation but was reported to be very small. For accurate comparison of 

simulated results with the analytical solutions, the calculated values from 

the equations had to be corrected for this error. However, the equation gives 

a rough estimate of the frequency range for the occurrence of trap 

frequencies, which served as a useful guide.  
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Table  6.1: Comparison of benchmark analytical result to simulation results 

 Frequency (GHz) 

 Theory 3.18 

Simulation  by CST 3.86 

Simulation by TLS 3.85 

𝑠𝑠𝑤𝑤 = 3 mm, 𝑠𝑠𝑑𝑑 = 15 mm, ℎ𝑠𝑠 = 23.58 mm 

Four parametric studies showing the effect of the slots on the performance 

of the cone were carried out. The study includes the effect of the slot’s-

position, depth, width and multiple slots. The first three studies, parametric 

test 1, 2 and 3, examined the effects of the slot’s location depth and width, 

on the operating frequency of the antenna respectively. The fourth study 

parametric test 4 checked the effects of two slots on the cone antenna 

parameters and the last test. Another simulation was performed to determine 

the effect of loading the slot with dielectric material of 𝜀𝜀𝑟𝑟 > 1  on the 

resonant frequency. 

6.1.1 PARAMETRIC TEST 1 – THE LOCATION TEST 

This parametric test was conducted to verify the effect of the slot’s location 

on the operating frequency of a conical antenna and the results are discussed 

here using two simulations. An annular slot of 𝑠𝑠𝑤𝑤 = 1.5 mm , 𝑠𝑠𝑑𝑑 = 15 mm 

was positioned at two different locations on the cone and their simulated 

results compared. For the first simulation referred to as slotted cone antenna 

1a,  ℎ𝑠𝑠 = 18.75 mm and for the second simulation referred to as slotted cone 

antenna 1b,  ℎ𝑠𝑠 =  26.25 mm as shown in Fig. 6.2(a) and (b) respectively. 

The rz-view of the meshes used for the two single-slotted cones are shown 

in Fig. 6.3. With the application of symmetry, only one slice of the cone was 

simulated.  
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(a) Slotted-cone antenna 1a: ℎ𝑠𝑠 = 18.75 mm , 𝑠𝑠𝑑𝑑 = 15 mm  

 

(b) Slotted-cone antenna 1b: ℎ𝑠𝑠 = 26.25 mm , 𝑠𝑠𝑑𝑑 = 15 mm 

Fig.  6.2: The schematic diagrams of simulated single-slotted cone antennas 

for the location parametric test, cone angle = 45o. 
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(a) slotted-cone antenna 1a: ℎ𝑠𝑠 = 18.75 mm , 𝑠𝑠𝑑𝑑 = 15 mm 

 

(b) slotted-cone antenna 1b: ℎ𝑠𝑠 = 26.25 mm , 𝑠𝑠𝑑𝑑 = 15 mm 

Fig.  6.3: The rz-view of the mesh used for the simulation of the single-

slotted cone antennas for location parametric test. 
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The result obtained from the simulated plain cone discussed in Section 5.2.3 

is used as reference for the results of the slotted cones simulated in this 

Section. The simulated plain cone was broadband in nature as shown in Fig. 

5.18. Fig. 6.4 shows the normalised electric field as a function of frequency 

for the two slotted-cone antennas. 

 

 Fig.  6.4: Comparison of the normalised simulated electric field for plain 

cone (―) slotted-cone antenna 1a (---) and slotted-cone antenna 1b (-•-). 

As shown in Fig. 6.4, the frequencies of the slotted-cone antennas followed 

the same trend as that of the plain cone. However, the insertion of the slot 

with 𝑠𝑠𝑤𝑤 = 15 mm affected the magnitude of the electric field simulated for 

the slotted-cone antennas by introducing a deeper crest, which signify an 

anti-resonant frequency, at 3.73 GHz. The presence of the anti-resonant 

frequency produced a trap within the broad bandwidth of the plain cone. It 

can be deduced from Fig. 6.4 that despite the fact that the two slots were not 

positioned at the same location on the cone, both produced anti-resonant 

frequency about the same point. There was a little shift towards the lower 

frequency observed in the trap produced by the slot located at 18.75 mm 

cone height compared to that of the slot located at 26.25 mm cone height. 

The slot position could be responsible for this shift, which means that it is 
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important to put into consideration the position of the slot on the cone in 

order to obtain accurate results. This is in agreement with the theoretical 

prediction. The slot located closer to the top of the cone at 26.25 mm cone 

height was also observed to produce a stronger trap compared to the one 

placed at the mid-length of the cone (18.75 mm cone-height). 

6.1.2 PARAMETRIC TEST 2 – THE DEPTH TEST 

In order to evaluate the impact of 𝑠𝑠𝑑𝑑  on the operating frequencies of the 

slotted-cone antennas, two different slot-depths were simulated and the 

results obtained compared.  For the first simulation, the 𝑠𝑠𝑑𝑑 = 7.5 mm and for 

the second simulation, 𝑠𝑠𝑑𝑑 = 15 mm. 𝑠𝑠𝑤𝑤 = 1.5 mm and ℎ𝑠𝑠 = 18.75 mm for the 

two antennas. The simulated electric field at different frequencies for the 

two slot-depths considered are compared with that of the cone with no slot 

in Fig. 6.5. 

 

Fig.  6.5: Comparison of the simulated electric field of the plain cone 

antenna (―) with the slotted-cone antennas with  sd = 7.5 mm (---) and sd = 

15 mm (•••) at hs = 18.75 mm. 

It was observed from the results of the depth variation presented in Fig. 6.5 

that the anti-resonance frequencies produced by the two slots considered are 
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inversely proportional to the depth of the slots as theoretically predicted. 

The deeper slot produced a trap at a lower frequency while the relatively 

shallow slot produced a trap at a higher frequency. It was also observed that 

the higher frequency was strongly affected by the slot as it produced a 

stronger trap compared to the lower frequency. This is in line with 

theoretical expectations. It can be deduced from these results that the 𝑠𝑠𝑑𝑑 can 

be used to determine what frequency is radiated and which one is 

blocked/trapped within the broadband frequency range of the host antenna, 

the plain cone antenna. 

6.1.3 PARAMETRIC TEST 3 – THE WIDTH TEST 

In order to highlight the effect of the slot-width on the operating frequencies 

of the slotted-cone antennas, parametric simulations with varying width was 

conducted. While varying the widths of the slot,  ℎ𝑠𝑠 was fixed at 26.25 mm 

and 𝑠𝑠𝑑𝑑  was fixed at 15 mm. The results of four different slot-widths are 

compared with that of the ordinary plain cone in Fig. 6.6. 

 

Fig.  6.6: Comparison of the simulated normalised electric field for single 

slotted-cones with different slot-widths. 
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It could be inferred from the results shown in Fig. 6.6 that the variation of 

the slot-width affected the bandwidth of the anti-resonance created by the 

slots in direct proportion. Contrary to the theoretical expectation, it was 

observed that the fundamental frequencies of the slotted cone did not 

significantly shift towards lower values but those of the anti-resonant 

frequencies did with increases in the slot width. This shift widened the 

bandwidths of the anti-resonant frequencies at the expense of the bandwidth 

of the fundamental frequency. It was observed that despite the difference in 

the slot-widths of the slotted-cone antennas, their frequencies followed the 

same trend by showing anti-resonances at approximately the same 

frequency. These results show that the slot-depth has significant impact in 

determining the position of the anti-resonant frequency as suggested by 

equation (6.1) while the slot-width affects the bandwidth of the trap. It can 

also be deduced from these results that a well calculated slot on a solid cone 

antenna can be used to suppress any frequency range that is not required in a 

wideband application. This also means that if the antenna is to be 

conditioned for frequency rejection or selective frequency radiation, the 

width of the slot can be used to adjust the bandwidth of the rejected 

frequency while the frequency to be blocked can be selected by varying the 

depth of the slot. These results were considered as a guide in the choice of 

the slot-width for the prototype antennas discussed in Section 6.2. 

6.1.4 PARAMETRIC TEST 4 – DOUBLE SLOTS 

The tests conducted on slotted-cone antennas in Section 6.1.1 – 6.1.3 

involved the use of a single slot on the cone. To check the effect of multiple 

slots on the operating frequency of the cone antenna, two annular slots were 

placed on the cone as discussed in this Section. Two slots were positioned at 

heights hs1 = 18.75 mm and hs2 = 26.25 mm on the cone as shown Fig. 6.6 

and this particular slotted-cone is referred to as a double-slotted cone 

antenna.  
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Two variants of the double–slotted cone antenna were considered: double-

slotted antenna 4a and double-slotted antenna 4b. In the double-slotted 

antenna 4a test,  𝑠𝑠𝑑𝑑 = 15 mm for the two slots. In the double-slotted antenna 

4b test, a slot with 𝑠𝑠𝑑𝑑 = 7.5 mm was positioned at hs1 = 18.75 mm and slot 

with 𝑠𝑠𝑑𝑑 = 15 mm was positioned at hs2 = 26.25 mm. The 𝑠𝑠𝑤𝑤 = 1.5 mm was 

maintained for both slots. The schematic diagram of the double slotted cone 

and the rz-view of the mesh used for the simulation are shown in Fig. 6.7 

and Fig. 6.8 respectively. The simulated operating frequency for slotted-

cone antenna 4a and 4b are compared with that of the plain cone in Fig. 6.9.  

 

Fig.  6.7: The schematic diagram of the simulated double-slotted cone 

antenna. 
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Fig.  6.8: The rz-view of the mesh used for the simulation of the double-

slotted cone antennas. 

 

Fig.  6.9: Comparison of the simulated normalised electric field for the plain 

cone (―) and the double-slotted cone antennas. 

Based on the analytical results and previous response of the 15 mm deep 

slot, positioned at 26.25 mm cone-height, it was expected that the double-

slotted-cone would generate a trap frequency band about 3.73 GHz. The 
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simulation results confirmed this expectation by creating anti-resonant 

frequencies aligning within the predicted range of frequency range (3.31 - 

3.99 GHz). Despite been located at different positions on the cone, there 

was only one noticeable trap produced by the two slots. However, the 

bandwidth of the trap frequency created was wider than that of a single slot. 

The width of the trap frequency was observed to be similar to the bandwidth 

produced by the single slot with 3 mm width. It can therefore be deduced 

that the width of the two slots had a cumulative effect on the result, 

producing an equivalent effect of 3 mm width. The trap created by the two 

slots is stronger than that of a single slot as shown in Fig. 6.9 despite the 

fact that the width was maintained at 1.5 mm depth.  

It can be deduced from Fig. 6.9, that the double-slotted antenna 4b produced 

two clear anti-resonant frequencies associated with the two different slot-

depths. The 15 mm deep slot produced the lower anti-resonant frequency 

while the 7.5 mm deep slot was responsible for the higher anti-resonant 

frequency. In the case of double-slotted antenna 4a, the trap frequency only 

occurred between 3.31 – 3.99 GHz confirming the fact that the slot-depth 

has great impact on the operating frequency of a slotted antenna. It was also 

observed that the double slotted-antenna produced stronger anti-resonance 

with wider bandwidth compared to their single slot counterparts showing 

the effect of the cumulative slot-width. 

6.1.5 DIELECTRIC LOADED SLOTTED-CONE 

The effect of loading the slots with a dielectric material of permittivity value 

𝜀𝜀𝑟𝑟 = 2.5 is discussed here. A slotted cone with 𝑠𝑠𝑤𝑤 = 3 mm, 𝑠𝑠𝑑𝑑 = 15 mm and  

ℎ𝑠𝑠 = 26.25 mm was used for this test. The slot was filled with the dielectric 

material as shown in Fig. 6.10 and the simulated results are compared with 

the simulated results for the single-slotted cone without dielectric load in 

Fig. 6.11. 
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Fig.  6.10: The rz-view of the mesh used for the simulation of the dielectric 

loaded slotted-cone antenna. 

 

Fig.  6.11: Comparison of the normalised simulated electric field for the 

dielectric loaded single-slotted cone antenna (hs = 26.25 mm, sw = 3 mm, sd 

= 15 mm) with plain cone (―) and unloaded double-slotted antenna (---). 
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Fig. 6.11 confirmed the theoretical expectation that the dielectric load would 

increase the electrical length of the slot and shift the trap frequencies of the 

double-slotted cone to lower values. A certain level of trap control may be 

possible with the application of the dielectric load to the slot but an 

extended study would be required to ascertain these effects on the 

characteristics of the conical antenna.  
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6.2 EXPERIMENTAL RESULTS AND DISCUSSIONS 

Prototypes of some of the slotted-cone monopole antennas simulated in 

Section 6.1 were fabricated and the measured results are presented and 

discussed in this Section. The purpose of these measurements is to validate 

the simulated results obtained in Section 6.1. The antennas were built using 

solid copper with the same specifications used for the fabrication of the 

plain cone discussed in Section 5.3. This was to allow for easy comparison 

of the cone performances before and after incorporating the slot. Three 

variants of the slotted-cone antenna prototype were fabricated. 

The width of all the slots was chosen to be 3 mm. This choice was based on 

results obtained in Section 6.1.3, which showed that the occurrence of an 

anti-resonant frequency became more evident with slots of widths ≥ 3 mm. 

The choice of 3 mm was also considered over the 1.5 mm width to facilitate 

easy and more accurate machining of the slot without compromising the 

resonance of the slotted antennas. 

The first annular slot was cut 7.5 mm deep at 26.25 mm cone-height 

(slotted-cone antenna 1, see Fig. 6.12). The second slot was cut 15 mm deep 

at the same cone-height as the first (slotted-cone antenna 2, see Fig. 6.14). 

This example was used to evaluate the impact of varying the slot depth on 

the performance of the cone antenna while keeping the slot-width constant. 

There were two annular slots on the third cone (slotted-cone antenna 3, see 

Fig. 6.15). The first slot on slotted-cone antenna 3 was 15 mm deep 

positioned at 26.25 mm cone-height while the second slot was 7.5 mm deep 

and it was positioned at 18.75 mm cone height.  

The measurement setting applied in Section 5.3 was adopted for all the 

measurements. The S11 parameters were measured using the Anritsu 

37397D VNA analyser calibrated to measure up to 12 GHz frequency. 
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6.2.1 SLOTTED-CONE ANTENNA 1 

The measured results of the prototype antenna with annular slot of 7.5 mm 

deep at 26.25 mm cone-height is presented and discussed here. The picture 

of the fabricated cone with the slot machined into it is shown in Fig. 6.12 

and the measured S11 parameter of the prototype plain cone antenna 

discussed in Section 5.3 is compared to that of the slotted cone antenna 1 in 

Fig. 6.13.  

As predicted in the simulation results, for slot cone with 𝑠𝑠𝑑𝑑 = 7.5 mm, the 

measured result presented a trap between 6.04 - 8.68 GHz with S11 

above −6 dB. The slotted-cone and the plain cone have similar operating 

frequency patterns but effect of the slot can be seen on the bandwidth of the 

antenna’s radiation frequencies. There was another trap at 3.60 - 6.04 GHz 

in the measured result which was not predicted by either the analytical or 

the simulation method. 

 

Fig.  6.12: Prototype cone with  sd = 7.5 mm and hs = 26.25 mm. 
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Fig.  6.13: Comparison of the measured S11 for plain cone (—) and cone with 

slot (- - -):  sd = 7.5 mm and hs = 26.25 mm. 

The trap divides the wide bandwidth of the plain cone antenna creating three 

narrower bandwidths with the application of the 7.5 mm deep slot. It was 

observed that the slot also has some effect on the matching of the antenna. 

Although still very good at S11 ≤ 15 dB, the antenna impedance matches at 

the first two radiating frequencies were not as good as those obtained for the 

plain cone antenna. It did, however, improve the match for the much higher 

third radiation frequency.  

6.2.2 SLOTTED-CONE ANTENNA 2 

The measured results of the prototype antenna with an annular slot of 𝑠𝑠𝑑𝑑 = 

15 mm and ℎ𝑠𝑠 = 26.25 mm are presented and discussed here. The picture of 

the fabricated slotted-cone is shown in Fig. 6.14, similar to the slotted cone 

antenna 1 discussed in Section 6.2.1 except for the difference in the slot-

depth. The S11 of the prototype plain cone antenna and the slotted-cone 

antenna 2 are compared in Fig. 6.15.  
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Fig.  6.14: Prototype cone with sd = 15 mm single slot at hs = 26.25 mm. 

 

Fig.  6.15: Comparison of the measured S11 for plain cone (—) and cone with 

slot (-•-): sd = 15 mm and hs = 26.25 mm. 

In line with the simulated result shown in Fig. 6.5 for the 15 mm deep slot, 

there was a clear anti-resonant frequency between 3.06 - 3.91 GHz. This 

means that, as with the slotted cone measured in Section 6.1.2, the antenna 

demonstrated a stopband. The frequency ranges affected in this case were 
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lower compared with those affected by the 7.5 mm slot in Section 6.2.1. 

These results confirm the conclusion drawn from the simulations: the 

frequency range affected by the slot is predominantly related to the depth of 

the slot(s). If this property is explored, the antenna can be customised to 

preferentially radiate or receive signals at a given frequency band while 

suppressing others. This could be a useful tool to be harnessed in frequency 

selection or for prevention of interference where antennas operating within a 

common band are being used for different purposes in the same 

environment.  

Like the 7.5 mm deep slot, the presence of the slot produced three distinct 

bands in the measured S11 parameter plot: 1.59 - 3.05 GHz, 3.92 - 6.03 GHz 

and 7.73 - 12 GHz. The bandwidth of the fundamental resonant frequency 

became narrower compared to that of the cone without slot but it displayed 

wider band in comparison to the 7.5 mm deep slotted-cone especially at the 

two higher resonant frequencies. It was also observed that the 15 mm deep 

slotted-cone antenna has better match for the first two bands compared to 

the slotted cone with 7.5 mm depth. 

As predicted in the simulations, the cone with the 15 mm deep slot was 

observed to display a trap with bandwidth starting from a lower frequency 

compared to both the plain cone and the cone with 7.5 mm deep slot. This 

shift in the operating frequency was not very significant with the relatively 

shallow slot of the slotted-cone antenna 1, meaning the shift is relative to 

the depth of the slot.  This implies that the electrical length of the antenna 

became longer with the input of these slots as theoretically expected and the 

level of impact is relative to the depth of the slot. These results show that a 

solid cone antenna can be miniaturised by cutting slots of strategically 

calculated depth into the body of the cone. There are other variables that 

could affect this result such as the width of the slot on the characteristics of 

the antenna but keeping the slot location and the 𝑠𝑠𝑤𝑤 constant and varying the 
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𝑠𝑠𝑑𝑑 in Section 6.1.3 has shown that the depth of the slot plays a significant 

role in the behaviour of the slotted cone antenna. 

Cutting of a slot in the cone is also advantageous in reducing the weight of 

the antenna. Solid cone antennas are generally known for their weight and 

cutting slots into the cone would not only increase the antenna’s electrical 

length but it will also reduce the weight of the antenna by the volume of the 

material removed to form the slot. These results show that, with effective 

placement and well calculated depth, a slot can be used to modify the 

antenna bandwidth for different applications. 

6.2.3 SLOTTED-CONE ANTENNA 3 

For this antenna, there are two annular slots on the cone. The picture of the 

fabricated cone showing the position of the slots on the cone is shown in Fig. 

6.16. The S11 of the prototype plain cone antenna and the slotted cone 

antenna 3 are compared in Fig. 6.17.  

 

Fig.  6.16: Prototype cone with 2 slots:  sd = 15 mm at  hs = 26.25 mm and sd 

= 7.5 mm at hs = 18.75 mm. 
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Fig.  6.17: Comparison of the measured S11 for plain cone (—) and cone with 

double slots (- -). 

The measured result shown in Fig. 6.17 agreed with the simulated result 

obtained in Section 6.1.4 (see Fig. 6.9). There are two anti-resonant 

frequencies associated with each of the two slots between 3.10 - 4.03 GHz 

and 5.18 - 6.57 GHz. This means that multiple stopbands can be created by 

the use of multiple slots. The fundamental frequency of the measured result 

shifted to a lower value confirming the increase in the electrical length of 

the antenna with the presence of the two slots as theoretically expected, and 

as predicted by the simulated results.  

To further check the effect of multiple slots on the performance of the 

conical monopole, the resonance of double-slotted cone was compared with 

resonances of the plain cone and the single-slotted cones (slotted cone 

antenna 1and 2) as shown in Fig. 6.18.  
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Fig.  6.18: Comparison of the measured S11 for plain cone (―) with cone 

antennas 1, 2 and 3. 

It was observed from Fig. 6.17 that unlike the single-slotted cone that 

produced three frequency bands, the double-slotted cone produced four 

frequency bands at: 1.18 - 3.09 GHz, 4.05 - 5.09 GHz, 6.66 - 9.19 GHz and 

10.77 - 12 GHz. The antenna match for all the bands was fairly maintained 

at the same level with the match of the original cone. These results show 

that with effective placement and well calculated depth, a slot can be used to 

manipulate the width of an antenna bandwidth. 

6.2.4 DIELECTRIC LOADED SLOTTED-CONE ANTENNAS 

The slots were loaded with dielectric material of 𝜀𝜀𝑟𝑟 = 2.5. The dielectric 

material was printed from polyamide material (𝜀𝜀𝑟𝑟 = 2.4 - 2.7) using a 3D 

printer. The effective 𝜀𝜀𝑟𝑟 of the dielectric material is likely lower than the 

specified value because the printed material had some air trapped in it 

during the printing process, which could not be quantified. The measured 

results for the dielectric loaded single- and double-slotted cones are 
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presented in Fig. 6.19 and 6.20 respectively. In line with the theoretical 

expectation, the trap frequencies were shifted to lower values as a result of 

the dielectric loading. The effect was more pronounced in the loaded 

double-slotted cone result than in the loaded single-slotted cone. It is 

important to note that the dielectric load also brought about a reduction in 

the bandwidth of the antenna compared to the slotted-cone without 

dielectric load.  

 

Fig.  6. 19: Comparison of the measured S11 for plain, unloaded and loaded 

slotted cones (sd = 15 mm at hs = 26.25 mm). 
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Fig.  6. 20: Comparison of the measured S11 for plain cone (—), unloaded (- 

- -) and loaded (-•-) double slots cones ( sd = 7.5 mm at hs = 18.75 mm and  

sd = 15 mm at hs = 26.25 mm). 
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6.3 CONCLUSIONS 

The concept of adding slots to a solid cone antenna has been described in 

this Chapter. The addition of the slot to the cone produced anti-resonances 

as theoretically predicted. Parametric studies on the effects of slot 

parameters such as its position, depth, width and permittivity (dielectric 

loading) on the performance of the solid cone antenna was carried out. The 

anti-resonant frequencies produced by the slots varied inversely 

proportional with the depth of the slots such that deeper slots produced anti-

resonance at lower frequencies while the relatively shallow slot produced 

anti-resonance at higher frequencies. Increase in the slot-width was found to 

widen the bandwidth of the stopband created by the anti-resonant 

frequencies.  The application of double slots to the cone produced a wider 

stopband and the widths of the two slots were found to be cumulative in 

their relationship. Dielectric loading of the slots produced a little shift in the 

operating frequency of the antenna but further research is required to fully 

quantify the effect of the slot-loading on the general characteristics of the 

antenna. The prototype antennas were fabricated and measured to verify the 

simulated results and agreement between the measured results and the 

simulated is good. 

These features displayed by the slotted-cone antennas can be used as a tool 

for adjusting the operation bandwidth of a cone antenna and to reject a band 

of unwanted frequencies. 
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CHAPTER 7  

 

 

CONCLUSIONS 

The aim of this thesis was to develop efficient technique for modelling of 

axisymmetric radiating structures using a numerical method. The TLM 

technique was chosen because of its many attractive features. A short 

review of the fundamentals of TLM including a brief history of TLM and an 

introduction to the analogies of TLM to Maxwell’s equations in rectangular 

and cylindrical coordinates was presented. The outcome of this research is 

the development of a 3D modelling tool for axisymmetric radiating 

structures such as cylindrical dipoles, cylindrical monopoles, conical 

monopoles and slotted cone antennas. The model was validated by 

fabricated prototypes of the simulated antennas as well as by comparison 

with analytical models and a commercial rectilinear TLM solver (CST) 

where appropriate. This Chapter summarises the contribution of this 

research and suggests areas for future research. 

7.1 Contributions of the Thesis 

• An electromagnetic solver was developed for this research based on 

the TLM algorithm written in MATLAB. The solver was termed 

Transmission Line Solver, TLS. 

• Canonical problems with known theoretical solutions were simulated 

with the intention to validate the rectangular part of the developed 

code (TLS). Reports of the electromagnetic simulation of some 
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canonical problems using 2D shunt TLM mesh and 3D symmetrical 

condensed node were presented and compared to that of the 

analytical results for validation purposes. The simulation results 

obtained from an existing modelling tool, CST, are also presented 

for the validation of newly developed solver. The effect of stair-

cased approximation on curved boundaries when modelling with 

rectangular TLM mesh is highlighted.  

• The fundamentals of cylindrical TLM were presented and the 

relationship of the cylindrical TLM and to the Maxwell’s equations 

was discussed. The implementation of the cylindrical TLM 

algorithm was described and the simulated results for benchmarked 

microwave problems solved with cylindrical mesh were presented 

and discussed. The quantitative comparison of the cylindrical and 

the rectangular TLM mesh was also presented along with the 

improvement obtained by modelling the curved boundaries using 

cylindrical mesh instead of the rectangular mesh. 

• The application of the cylindrical TLM to the modelling of 

axisymmetric radiating structures was described. A brief review of 

cylindrical dipole, cylindrical monopole and conical monopole 

antennas and description of the modelling procedures for the 

simulated of the three antennas using TLS were presented. The 

simulated results were compared with the measured results of 

fabricated prototype cylindrical and conical monopole antennas and 

were found to be in good agreement.  

• The modelling of axisymmetric conical antennas with incorporated 

slots was described. The solid cone monopole with slot cut into the 

body of the cone at strategically calculated locations were simulated 

and the parametric studies to determine the effects of the slot-
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position, slot-width, slot-depth and multiple slots on the performance 

on the antenna was conducted. In addition, the effects of loading the 

slotted antennas, by filling the slots with dielectric material of 

known permittivity value, on the radiation characteristics of the 

antennas were investigated and reported in this Chapter. 

7.2 Suggestions for Further Research 

• A Dirac impulse function was used for the excitation for all 

simulations reported in this thesis. It is well known that the Fourier 

Transform of a Dirac impulse function is a wideband response 

ranging from 0 - ∞ . This brings some spurious modes into the 

simulated results and some of these resonances have very high 

amplitude that dwarfs the desired resonances to be extracted from 

the problem space. There are different approaches to dealing with 

this problem. One of such approaches is to use a controlled input 

such as cosine, sinusoidal or Gaussian input. Another approach is to 

filter either the input or output with a low pass or bandlimited filter. 

Exploring the best approach to extracting simulated data from the 

simulation space would be part of the work that will be done to 

enhance the solver. 

• Calculation of parameters such as radiation pattern, s-parameter, 

gain and antenna effectiveness would be focus of future work.  

• The visualisation of results at the moment is limited. The impacts of 

different modifications on the antenna such as effect of the slot load 

on the antenna performance are better relayed in terms of 

visualisation of the result. These are possible addition to the code in 

the near future. 
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• The boundary used in terminating the simulation space edge for the 

antenna simulating edge was a simple absorbing boundary with a 

reflection coefficient of 0. Addition of a PML absorbing boundary to 

the model will enhance the effectiveness of the boundary. Further 

study on the centre boundary of the cylindrical mesh for radiating 

structures is also essential. 

• An extended parameter studies on the slotted cones could give a lot 

of useful data. 

• Creation of a user interface for the solver. This will make it easier 

for individual with little or no understanding of the code to use it 

easily and makes it accessible to the general public.   
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