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Abstract—Decision making for lane change manoeuvre is of
practical importance to guarantee a smooth, efficient and safe
operation for autonomous driving. It is, however, challenging. On
one hand, the behaviours of ego vehicle and adjacent vehicles
are dependent and interactive. On the other hand, the decision
should strictly guarantee safety during the whole process of lane
change with uncertain and incomplete information in a dynamic
and cluttered environment. To this end, the concept of Receding
Horizon Control (RHC) is integrated into game theory in con-
junction with reachability analysis tool, resulting in RHC based
game theory. Specifically, the decision of each game relies on not
only uncertain information at current step but also the future
information calculated by reachability analysis. The decision is
repeatedly made with the advent of new information using the
concept of RHC. As a result, safety can be guaranteed during
the whole process of lane change in a dynamic environment.
Case study is conducted to demonstrate the advantages of the
proposed approach. It is shown that the proposed RHC based
game theory approach incorporating uncertain information can
provide a safer and real-time decision.

Index Terms—Game theory, Lane change, Reachability
analysis, Receding horizon, Safety assessment

I. INTRODUCTION

Lane-change manoeuvre, as one of the most important
and commonly encountered automatic driving operations for
autonomous vehicles, is receiving increasing attention in both
academia and industry recently [1]. On one hand, the lane-
change manoeuvre is a necessity for performing other more
complicated operations such as leaving the road, overtaking
another vehicle among others [2]. On the other hand, this
manoeuvre is a major source of congestion and collisions
[3]. Among many lane-change indexes (such as efficiency,
comfort), safety is the highest priority, which must be strictly
guaranteed in the whole process of lane change within an
uncertain dynamic environment.

Conventional lane change models (e.g., Gipps Model [4] and
MOBIL [5]) only assume one-direction impact of surrounding
vehicles on the ego vehicle. This assumption may not be true
in practice since the ego vehicle can also affect the decision of
surrounding vehicles [6]. As a result, the lane change decision
problem involves multiple vehicles interacting with each other.
Game theory provides a promising framework for scenarios
where interaction is involved [3] [6] [7]. Kita [6] pioneered
the work of applying game theory to lane change decision
in mandatory merging scenario, where the information about
surrounding vehicles such as their velocities and distances is

assumed to be available. Recently, Vehicle-to-Vehicle (V2V)
communications is used in [3] to improve drivers’ awareness
about surrounding traffic conditions and consequently lead to
a safer and more efficient driving manoeuvre.

In this paper, however, no coordination (via V2V or vehicle
to central station communication) is assumed, whereas the
information about surrounding vehicles purely relies on the
on-board sensors. This poses new research challenges. First,
the information of surrounding vehicles at current step (e.g.,
position, velocity) inferred through filtering algorithms using
on-board sensors is inevitably subject to errors due to many
factors. For example, forward-looking radar devices for vehicle
tracking may result in unsatisfying tracking accuracy due to
low angular resolution; vision sensors are often vulnerable to
poor weather and lighting conditions. This leads to uncertain-
ties at current step.

Secondly, the future information of the surrounding vehicles
is important for safety assessment in lane change decision.
The commonly used approach is to predict vehicles’ future
information several seconds ahead based on the inferred in-
formation at current step. If perfect information about sur-
rounding vehicles at current step and the kinematics model
are known, trajectory prediction could be realized by a simple
mathematical calculation [8]. However, as pointed out in [9],
this assumption is not realistic in real environments. Apart
from the uncertainties at current step, the physical model
describing the vehicle movement is subject to uncertainties
(e.g., driver’s intentional or unintentional manoeuvre). This
leads to uncertainties in the prediction model.

To account for the aforementioned uncertainties such that
safety can be strictly guaranteed [10], uncertain interval
models are adopted in this paper to capture the uncertainness
at current step (i.e., position, velocity) and uncertainties in the
prediction models (i.e., drivers’ uncertain manoeuvre). On this
basis, reachability analysis in [11] can be drawn to calculate
all possible trajectories of the surrounding vehicles in future
time horizon. Worst case analysis is explicitly derived such
that the upper and lower bound of all possible trajectories can
be determined in a more computation-efficient way. This is
possible by exploiting the special structure of the reachability
analysis problem under consideration, where no uncertainties
appear in the system matrices. The calculated bound informa-
tion is then used in the pay-off matrix calculation involved in
the game theory model.
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Furthermore, the surrounding environment for the ego ve-
hicle is dynamically changing. As a result, a decision made
at current step may be obsolete for the next several steps.
Consequently, it is more useful and rational to repeatedly
make decision with the advent of new information rather than
implementing one fixed decision for the rest of steps. This
strategy coincides with the idea of Receding Horizon Control
(RHC) from control engineering [12]. In RHC, the decision
is derived by repeatedly solving a constrained optimization
problem over a moving N -step-ahead horizon based on the
information at current step [13], where only the first action is
applied to the system. At the next step, the time horizon is
shifted one step forward and the same optimizing procedure
for another N steps in the near future is repeatedly solved
with new information.

Consequently, in this paper, the concept of RHC is in-
tegrated into game theory in conjunction with reachability
analysis tool. At each step, the decision is made for the
interactive players using game theory maximizing their mutual
payoffs, where the uncertainties in the surrounding vehicles
are effectively handled by reachability analysis. Then the
concept of RHC is applied such that the decision is repeatedly
made with the advent of new information. Simulation study
is conducted, which shows that the proposed decision making
strategy taking uncertainties into account can guarantee a safer
decision in comparison with the one without using uncertain
information. At the same time, it is also shown that by using
the concept of RHC, an updated decision can be provided at
each step with the advent of new information.

II. PROBLEM STATEMENT AND PRELIMINARIES

A. Problem Statement

There are two types of lane changes, i.e., Mandatory Lane
Change (MLC) and Discretionary Lane Change (DLC). MLC
occurs when a driver must change lane to follow a specified
path due to lane closure ahead, while DLC occurs when a
driver changes to a lane perceived to obtain better traffic
conditions [1]. In this paper, DLC is considered.

Figure 1 shows a scenario of DLC by ego vehicle M . In
this scenario, the speed of vehicle M is lower than its desired
speed, which is limited by its leading vehicle La on Lane A
and vehicle M plans to change from Lane A to Lane B to
get a better driving condition, e.g., closer to its desired speed.
However, the following questions should be addressed : 1) Is
it safe to make the lane change? 2) Is it worth making the
lane change?

Motivated by the observations from practical traffic situ-
ations where the ego vehicle can also affect the decisions
of surrounding vehicles, we adopt a game theory approach
to model the lane change decision problem which involves
multiple vehicles interacting with each other.

The lane change game for the scenario in Figure 1 consists
of two players, i.e., the ego vehicle M and the following
vehicle Fb. Each vehicle makes decision by taking into account
the other vehicles’ potential response and consequently the
game belongs to a two-player non-cooperative game.

Fig. 1: Discretionary Lane Change Scenario.

B. Non-cooperative Game

In a non-cooperative game, each player makes decisions
independently. Nash equilibrium (NE) is a solution concept of
the non-cooperative game involving two or more players, in
which no player has anything to gain by changing only their
own strategy [14].

Let (S, f) be a game with n players, where Si is the strategy
set for player i, S = S1×S2× · · · ×Sn is the set of strategy
profiles and f(x) = (f1(x), . . . , fn(x)) is the pay-off function
evaluated at strategy profile x ∈ S. Let xi ∈ Si be the strategy
of player i and x−i be the strategies of all players except
player i. When each player i ∈ {1, . . . , n} chooses strategy
xi resulting in a strategy profile x = (x1, . . . , xn), player i
obtains pay-off fi(x). A strategy profile x∗ ∈ S is a Nash
equilibrium if no unilateral deviation in strategy by any single
player is profitable for that player [15] [16], that is:

∀i, xi ∈ Si : fi(x
∗
i , x
∗
−i) ≥ fi(xi, x∗−i).

C. Reachability analysis

Reachability analysis can potentially calculate all pos-
sible trajectories of a given uncertain system with initial
state/parameter/input uncertainties [11]. Consider an uncertain
system described by interval matrices

ẋ ∈ Ax+ Bu, (1)

where x is the uncertain state vector with uncertain initial
value x(0) ∈ X0 and u ∈ U is the uncertain system input,
interval matrix A = [A, Ā] and B = [B, B̄] are the uncertain
system and input matrices respectively, with A,B and Ā, B̄
being their lower bound and upper bound matrices.

The exact state reachable sets Re(r) for a given time t = r
is formally defined as

Re(r) = {x(r)|x(t) =
∫ t

0
[Ax(τ) +Bu(τ)]dτ,

x(0) ∈ X0, A ∈ A, B ∈ B,∀t : u ∈ U}.

Although exact reachable set computation can only be
achieved for a limited class of systems, tools are available
to over-approximate the reachable set in a tight way (see [11]
and [17] among many others). It is a promising tool to conduct
safety assessment considering the uncertain characteristics and
safety-critical requirements in autonomous driving.

The point-mass kinematic equations of motion describing
vehicle motion in the longitudinal direction [18] is given by[

ṡ
v̇

]
︸ ︷︷ ︸

ẋ

=

[
0 1
0 0

]
︸ ︷︷ ︸

A

x+

[
0
1

]
︸ ︷︷ ︸

B

u, (2)



where s, v denote its position and velocity. Suppose that the
uncertain intervals are given by s(0) ∈ [s(0)min, s(0)max]
with s(0)wid = s(0)max− s(0)min denoting its width, v(0) ∈
[v(0)min, v(0)max] with v(0)wid = v(0)max − v(0)min and
u ∈ [umin, umax] with uwid = umax − umin. As a result,
Eq. (2) falls into the form of system (1) and the reachability
analysis tool can be applied.

However, considering the special structure of Eq. (2) where
uncertainties only appear in the input in an additive way and
initial states rather than system matrices, the following simple
mathematical manipulation can provide a more efficient way to
calculate the upper and lower bound of the uncertain variables
of interest. The solution of Eq. (2) at step t is given by

x(t) = eAtx(0) +
∫ t
0
eA(t−τ)Bu(τ)dτ, eAt =

[
1 t
0 1

]
.

from which, one can obtain s(t) and v(t), given by{
s(t) = s(0) + tv(0) + 0.5t2u
v(t) = v(0)t+ tu

. (3)

It follows from Eq. (3) that for all t ≥ 0, s(t) is a monotonic
increasing function of s(0), v(0) and u. As such, the upper and
lower bounds of s(t) are given by{

s(t)min = s(0)min + tv(0)min + 0.5t2umin
s(t)max = s(0)max + tv(0)max + 0.5t2umax

.

III. OUR PROPOSED APPROACH

A. Lane Change Game Formulation

In our proposed lane change game, the interactions between
the ego vehicle M and the following vehicle Fb are considered.
We will first discuss the strategies of each player and then
formulate their pay-off matrix.

Following [3] [6], we consider two strategies for the ego
vehicle (i.e., change lane (CL) and not change lane (NCL))
and following vehicle (i.e., acceleration (AC) and deceleration
(DE)). Deceleration can be seen as a courtesy yielding by the
following vehicle while acceleration can be understood as not
willing to give way. The pay-off matrix of this lane change
game can be formulated as Table I.

TABLE I: Pay-off matrix of the proposed lane change game

hhhhhhhhhhhVehicle M
Vehicle Fb AC DE

CL E11, F11 E12, F12
NCL E21, F21 E22, F22

B. Vehicle Information at time t0 and tT
1) Vehicle Information at t0 and Assumptions: At decision

time t0, we assume the initial information of vehicles are
available as follows:
• The speed of vehicle M is v0M and position of M is s0M ;
• The speed of vehicle La is v0La

and position of La is s0La
;

• The speed of vehicle Lb is v0Lb
and position of Lb is s0Lb

;
• The speed of vehicle Fb is v0Fb

and position of Fb is s0Fb
.

Assume vehicle M needs a duration of time T to finish the
lane change manoeuvre. We denote tT = t0 + T .

When making lane change decisions for vehicle M at time
t0, the future information (position/speed at tT ) of all the
vehicles are needed to be taken into account.

It is further assumed that vehicles M , La and Lb are at
constant speed in this study.

Assume that if vehicle Fb accelerates, it will choose a
preferred acceleration of aac0 which is only known to Fb itself.
However, the ego vehicle M cannot get this exact acceleration
information of Fb. The acceleration of Fb perceived by the ego
vehicle can be represented as aac ∈ [aacmin, a

ac
max]; Similarly,

if Fb decelerates, it will choose a preferred deceleration of
ade0 which is only known to itself and the deceleration of Fb
perceived by the ego vehicle is ade ∈ [ademin, a

de
max].

At time t0, vehicle M can get the velocity information of Fb
as v′0Fb

∈ [v0min, v
0
max] and the position as s′0Fb

∈ [s0min, s
0
max]

via on-board sensors.
2) Estimated Vehicle Information at tT : Based on above

vehicle information at time t0 in conjunction with the reach-
ability analysis tool discussed in Section II-C, we have the
upper bound and lower bound of the position of vehicle Fb at
time tT perceived by vehicle M computed as follows, where
Eq. (4) is for acceleration while Eq. (5) is for deceleration.{

sacmax = s0max + v0max + 1
2a
ac
maxT

2

sacmin = s0min + v0min + 1
2a
ac
minT

2 , (4)

{
sdemax = s0max + v0max + 1

2a
de
maxT

2

sdemin = s0min + v0min + 1
2a
de
minT

2 . (5)

Furthermore, positions of vehicles M , La, Lb at time tT
are given as follows:

sTM = s0M + v0M × T
sTLa

= s0La
+ v0La

× T
sTLb

= s0Lb
+ v0Lb

× T
,

while positions of Fb at time tT under its preferred accel-
eration aac0 and deceleration ade0 , which are only accurately
known to Fb itself, are given by{

sTac = s0Fb
+ v0Fb

× T + 1
2a
ac
0 × T 2

sTde = s0Fb
+ v0Fb

× T + 1
2a
de
0 × T 2 .

C. Pay-off Quantification for Ego Vehicle M

We define the length of the vehicles as L. The minimum
safe gap between M and Fb for safe lane change is GFb

, while
the minimum safe gap between Lb and M for safe lane change
is GLb

. Both the safety and the potential speed gain of the ego
vehicle are considered in quantifying its payoff.

Firstly, we quantify the payoffs of ego vehicle M if it
changes lane based on Rule 1 and Rule 2. Depending on how
the following vehicle Fb acts, there are two payoffs for M .
If Fb accelerates, the payoff of M is E11; if Fb decelerates,
the payoff of M is E12. If it is safe for the ego vehicle M
to make a lane change (i.e., the gaps between the ego vehicle
and other related vehicles at time tT are no less than any of



the minimum safe gaps), the payoffs of M are then quantified
by its potential speed gain which is represented as the velocity
difference between the leading vehicle on the target lane (i.e.,
Lb) and the leading vehicle on the current lane (i.e., La).
Otherwise, a high penalty (-50 in this study) is applied.

• Rule 1: Rule for quantifying E11

if sTM − sacmax −L ≥ GFb and sTLb
− sTM −L ≥ GLb then

E11 = v0Lb
− v0La

else
E11 = −50

end if

• Rule 2: Rule for quantifying E12

if sTM − sdemax −L ≥ GFb and sTLb
− sTM −L ≥ GLb then

E12 = v0Lb
− v0La

else
E12 = −50

end if

Secondly, we quantify the payoffs of ego vehicle M if it
does not change lane. As the driving condition of M in this
case does not change and is not affected by the potential
actions of vehicle Fb, we set the payoffs of M (i.e., E21,
E22) to zero. That is,

• E21 = 0
• E22 = 0.

D. Pay-off Quantification for Following Vehicle Fb
For following vehicle Fb, we consider safety and speed

variation in quantifying its pay-off. Note that if vehicle M
changes lane, the gap between Fb and M at time tT will be
checked first to guarantee the driving safety of Fb. If vehicle
M does not change lane, the gap between Fb and Lb will be
checked instead to guarantee the driving safety of Fb.

It is further assumed that the higher the speed variation of
Fb, the lower the payoff. The above assumption is reasonable
due to the fact that a higher speed variation will cause more
inconvenience or disturbance to the driving conditions of the
vehicle and therefore result in a lower payoff. In this study,
the speed variation is defined as acceleration or the absolute
value of deceleration of the following vehicle Fb.

Firstly, we quantify the payoffs of following vehicle Fb
based on Rule 3 and Rule 4 if it accelerates. Depending on
how the ego vehicle M acts, there are two payoffs for Fb.
If M changes lane, the payoff of Fb is F11; if M does not
change lane, the payoff of Fb is F21. If the driving safety of
Fb is guaranteed, the payoffs of Fb are quantified by its speed
variation which is represented as the reciprocal of its preferred
acceleration. Otherwise, a high penalty (-50 in this study) is
applied.

• Rule 3: Rule for quantifying F11

if sTM − sTac − L ≥ GFb then
F11 = 1

aac
0

else
F11 = −50

end if

• Rule 4: Rule for quantifying F21

if sTLa
− sTac − L ≥ GFb then

F21 = 1
aac
0

else
F21 = −50

end if

Secondly, we quantify the payoffs of following vehicle Fb
according to Rule 5 and Rule 6 if it decelerates.

• Rule 5: Rule for quantifying F12

if sTM − sTde − L ≥ GFb then
F12 = 1

abs(ade
0 )

else
F12 = −50

end if

• Rule 6: Rule for quantifying F22

if sTLa
− sTde − L ≥ GFb then

F22 = 1

abs(ade
0 )

else
F22 = −50

end if

where abs(ade0 ) represents the absolution value of the
deceleration rate ade0 .

E. Lane Change Game Solution

The solution concept of this lane change game is Nash
equilibrium (NE). We consider solving pure strategy NE for
this game, where all players are playing pure strategies, i.e.,
each player chooses one strategy from its strategy set with a
probability of one [16].

According to the definition of Nash equilibrium [14], a
strategy profile is a Nash equilibrium only if each strategy in
that strategy profile is a best response to all the other strategies
in that same strategy profile. Following the above definition, a
pure strategy Nash equilibrium for this lane change game can
be analytically solved [19].

IV. CASE STUDY

In the section, case studies are conducted to demonstrate the
advantages of the proposed lane change game model where the
payoffs of players are quantified using reachability analysis.
The vehicle information at time t0 as well as some other
parameters used in the simulation are given in Table II.

A. Decision at current step t0
First, we compare the game behaviours of vehicle M under

two different cases. The first case happens when reachability
analysis is used by ego vehicle M to estimate the future
position information of Fd at time tT and to quantify the game
payoff matrix accordingly. On the other hand, the second case
assumes that vehicle M uses perceived point values other than
intervals to estimate the position of Fd.

For the second case, we assume the perceived speed of
vehicle Fd by vehicle M at time t0 is 15.5 m/s, the perceived



TABLE II: Parameter Settings for Lane Change Game Simulations

Parameter Description Setting Value
L Length of the vehicle 3.5 m
T Lane change time duration 4 s
v0La

Constant speed of vehicle La 25 m/s

s0La
position of vehicle La at time t0 60 m

v0Lb
Constant speed of vehicle Lb 30 m/s

s0Lb
position of vehicle Lb at time t0 55 m

v0M Constant speed of vehicle M 17 m/s
s0M position of vehicle M at time t0 40 m
v0Fb

Initial speed of vehicle Fb at time t0,
only known to vehicle Fb

15 m/s

s0Fb
Position of vehicle Fb at time t0, only
known to vehicle Fb

20 m

aac0 Acceleration used by vehicle Fb if it
accelerates

1.2 m/s2

ade0 Deceleration used by vehicle Fb if it
decelerates

-1.5 m/s2

v′0Fb
Speed interval of vehicle Fb at time t0
estimated by the on-board sensors of
vehicle M

[15, 16] m/s

s′0Fb
Position interval of vehicle Fb at time
t0 estimated by the on-board sensors
of vehicle M

[20, 22.5] m

aac Acceleration interval of Fd perceived
by ego vehicle M

[1, 2] m/s2

ade Deceleration interval of Fd perceived
by ego vehicle M

[-2, -1] m/s2

GFb
Minimum safe gap between vehicle M
and Fb if M changes lane

3× L

GLb
Minimum safe gap between vehicle Lb

and M if M changes lane
3× L

TABLE III: Pay-off matrix under first case at current step t0, interval
based estimation of vehicle Fd via reachability analysis

hhhhhhhhhhhVehicle M
Vehicle Fb AC DE

CL −50, 0.83 5, 0.66
NCL 0, 0.83 0, 0.66

TABLE IV: Pay-off matrix under second case at current step t0, point
based estimation of vehicle Fd

hhhhhhhhhhhVehicle M
Vehicle Fb AC DE

CL 5, 0.83 5, 0.66
NCL 0, 0.83 0, 0.66

position of Fd at time t0 is 21.25 m, the perceived acceleration
of Fd at time t0 is 1.2 m/s2 and the perceived deceleration
of Fd at time t0 is -1 m/s2.

Given above parameters settings, by using our proposed
approach, the lane change game matrices and the resulting
Nash Equilibria (underlined) are given in Tables III and IV.

One can see from Tables III and IV that in the first case,
the decision of ego vehicle M is not to change lane, while the
decision of M under the second case is to change lane.

These different game behaviours of M under the above
two cases (note that vehicle Fb is accelerating in both cases)
can be better understood by looking into Figure 2 where the
position of the ego vehicle from time t0 to tT and the perceived
positions of the following vehicle under both the point based
estimation and the interval based estimation from time t0 to

Time (sec)
0 0.5 1 1.5 2 2.5 3 3.5 4

P
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on

 (
m
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20
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60

70
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110
Result at tT step

Ego vehicle
Following (point)
Following (interval)-upper
Following (interval)-lower

Fig. 2: The predicted position of ego vehicle and following vehicle
(following vehicle accelerates) based on information at time t0 for a
prediction horizon of time T = 4 seconds.

tT are illustrated in Figure 2
As aforementioned, since vehicle M always tends to avoid

collision with other vehicles and guarantee its safety in any
situation, it will use worst case analysis when faced with
uncertainties in decision making. As a result, under the first
case, vehicle M uses the perceived upper bound position
information of the following vehicle Fb to decide if it should
change lane or not. As one can see from Figure 2, the distance
between ego vehicle M and the following vehicle under the
first case at the 4th second is less than the minimum gap GFb

.
To guarantee its own safety, M will choose not to change
lane. This leads to a Nash equilibrium of (NCL, AC). On
the contrary, the distance between M and Fd under second
case is greater than the minimum safe gap GFb

, which leads
to a Nash equilibrium of (CL, AC).

In other words, the decision made via our proposed reach-
ability analysis based game approach by taking the future
uncertain information of surrounding vehicles into account is
safer and can avoid any potential collisions in the lane change
process.

B. Decision at next time step t1

At the next time step, new information about the surround-
ing vehicles might be available. Consequently, following the
idea of RHC, a new decision might need to be made by
taking the new information into account. We suppose at time
t1 (i.e., the next time step), the newly measured position
information about the vehicle Fb is available, given by [28,
30.2] m (the rest information of Fb remains the same, and all
the information about other vehicles is just shifted one step
ahead based on Table II). The lane change game matrix and
the resulting Nash Equilibria (underlined) at time t1 are given
in Tables V and VI respectively.

For both the point based estimation case and the interval
based estimation case, the decision of the ego vehicle M is
to change lane. As one can see from Figure 3, the distance



TABLE V: Pay-off matrix under first case at t1, interval based
estimation of vehicle Fd via reachability analysis

hhhhhhhhhhhVehicle M
Vehicle Fb AC DE

CL 5, 0.83 5, 0.66
NCL 0, 0.83 0, 0.66

TABLE VI: Pay-off matrix under second case at t1, point based
estimation of vehicle Fd

hhhhhhhhhhhVehicle M
Vehicle Fb AC DE

CL 5, 0.83 5, 0.66
NCL 0, 0.83 0, 0.66
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Fig. 3: The predicted position of ego vehicle and following vehicle
(following vehicle accelerates) based on new information at time t1
for a prediction horizon of time T = 4 seconds.

between the ego vehicle and the following vehicle under both
cases at the 5th second is higher than the minimum gap GFb

.
This case study demonstrates that by using the concept of
RHC, the decision can be changed/updated by taking new
information into account. This is of particular importance
for a safe and smooth lane change in a dynamic uncertain
environment.

V. CONCLUSIONS AND FUTURE WORK

This paper proposed a safer and dynamic decision making
strategy for lane change manoeuvre of autonomous vehicles
using game theory. Considering the uncertain information of
surrounding vehicles, reachability analysis is first drawn to
calculate all the possible trajectories of surrounding vehicles,
which is then used in the payoff calculation of game theory.
The concept of Receding Horizon Control (RHC) is integrated
into game theory such that the decision is repeatedly made
with the advent of new information. As a result, safety can be
strictly guaranteed during the whole process of lane change
manoeuvre under dynamic uncertain environments. Compar-
ison case study is conducted to demonstrate the advantages
of the proposed approach. It is shown that the proposed
RHC based game theory approach incorporating uncertain

information provides a safer and real-time decision. Future
work will be done to reduce the uncertainties by learning
the behaviour (e.g., driving styles) of surrounding vehicles
using machine learning techniques so as to have a better
understanding of the intentions of other drivers.
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