
PhD thesis

Computation of Scattering Matrices and
Resonances for Waveguides

Greg Roddick

Supervised by
Dr. Alexander Strohmaier

April 26, 2016

Contents

1 Introduction 5

2 Background and definitions 7

2.1 Basic analysis background . 7

2.1.1 Banach and Hilbert spaces . 7

2.1.2 Bounded and compact operators . 8

2.2 Fourier transforms and distributions . 9

2.2.1 Fourier transforms . 9

2.2.2 Distribution theory . 10

2.3 Sobolev spaces . 12

2.4 Unbounded self-adjoint operators on Hilbert spaces 14

2.4.1 A recap of the bounded case . 14

2.4.2 Symmetric operators . 14

2.5 Friedrich’s extension and quadratic forms 15

2.6 Resolvents and spectra of unbounded operators 17

2.7 Spectral theory for compact operators . 19

2.8 Elliptic differential operators . 19

2.9 The Neumann Laplace operator . 20

2.9.1 The Neumann Laplacian and its resolvent 20

2.9.2 Inhomogeneous boundary conditions 21

2.10 Resolvent kernels of (∆− λ) in R . 21

2.10.1 The Schwartz kernel theorem . 22

2.10.2 Calculating resolvent kernels in R . 22

2.11 The Scattering matrix in a general setting 24

3 Thesis background theory 25

3.1 Waveguides . 25

3.1.1 A description of the domain of our resolvent function 27

3.2 The continuation of the resolvent . 30

3.3 Generalised Eigenfunctions and the Scattering Matrix 36

3.4 The Neumann to Dirichlet map . 40

3.5 Calculating the Neumann to Dirichlet map 40

3.5.1 The Levitin-Marletta method for indirect calculation of the Neu-
mann to Dirichlet map . 43

3.5.2 Improving the rate of convergence 43

3.6 An outline of the finite element method . 44

3.6.1 Eigenvalue problems . 46

3.6.2 The FreeFem++ package and some references to the algorithms . . . 47

2

Contents

4 Calculating scattering matrices and their derivatives 48

4.1 From the Neumann to Dirichlet map to the scattering matrix and its deriva-
tives . 48

4.1.1 Calculating the S matrix . 48

4.2 Derivatives of the S matrix . 50

4.2.1 A Neumann to Dirichlet map for the system on the external domain 50

4.2.2 A Neumann to Dirichlet map for the system on the internal domain 53

4.2.3 Extracting S(n)(λ) . 54

4.2.4 A few words about computational cost 55

4.3 Embedded eigenvalues and resonances . 55

4.3.1 Embedded eigenvalues . 55

4.3.2 Resonances and their calculation . 56

5 Numerical computations on various domains using the scattering matrix 58

5.1 Cylinders with a Circular Obstacle . 58

5.1.1 Some notes on mesh refinement . 59

5.1.2 Some notes on the number of eigenvalues 60

5.1.3 Observing a resonance transition from one sheet to another 61

5.2 Some more numerical results . 63

5.3 Varying the widths of ends . 64

5.3.1 The singe ended case . 64

5.3.2 The two ended case . 67

5.3.3 The three ended case . 69

5.4 Varying the size of an obstacle of fixed position 71

5.4.1 The single ended case . 71

5.4.2 The two ended case . 72

5.4.3 Three ended case . 75

5.5 Varying the position of an obstacle of radius 0.5 76

5.5.1 The single ended case . 77

5.5.2 The two ended case . 82

5.5.3 The three ended case . 85

5.6 Time delay and scattering length . 90

6 Documentation of code 92

6.1 Documentation Freefem++ of code . 92

6.1.1 File structure . 92

6.1.2 Generating domains . 92

6.1.3 Generating a directly computed Neumann to Dirichlet map 94

6.1.4 Generating eigendata . 95

6.1.5 A shell script to automate the production of, Neumann to Dirichlet
maps and eigendata . 95

6.2 Documentation Mathematica code . 96

6.2.1 Reading the eigendata . 96

6.2.2 Calculating scattering matrices and their derivatives 97

6.2.3 Calculating resonances . 100

6.2.4 A sample of the implementation of this code for a search area 106

6.2.5 A visual summary of all of this . 108

6.3 3d Domains . 109

6.3.1 Cuboidal ends . 109

6.3.2 Cylindrical, circular ends . 109

6.3.3 Cylindrical ends with arbitrary cross section 109

3

Contents

7 Concluding remarks 110
7.1 Future directions . 110
7.2 Acknowledgements . 110

4

Chapter 1

Introduction

The scattering matrix has its origins in physics, both theoretical and experimental, where
it is used to describe the outcome of a scattering event; the scattering of a wave packet
originating at infinity. In any such event, a proportion of an incoming wave packet will be
transmitted and a proportion reflected, the coefficients of the scattering matrix encode this
information. The scattering matrix is a significant component of the branch of mathemat-
ical physics know as scattering theory. There is a vast amount of literature, particularly in
physics, on potential scattering. For example Reed-Simon’s third text in the methods of
modern mathematical physics series gives a good introduction to the mathematical back-
ground of potential scattering [1]. Mathematicians have also considered more geometric
cases, such as the case of manifolds with hyperbolic ends, asymptotically flat manifolds,
obstacle scattering in Rn (see [2], [3], [4] [5],[6]) and, in our case, waveguides in Euclidian
space.

Waveguides in Euclidian space are piecewise path connected subsets of Rn that can be
written as the union of a compact domain with boundary and their cylindrical ends. The
compact and non-compact parts share a common boundary. This boundary is assumed to
be Lipschitz, piecewise smooth and piecewise path connected. The ends can be thought of
as the cartesian product of the boundary with the positive real half-line. A notable feature
of Euclidian waveguides is that the scattering matrix admits a meromorphic continuation
to a certain Riemann surface with a countably infinite number of leaves [2], which we will
describe in detail and deal with. In order to construct this meromorphic continuation,
one usually first constructs a meromorphic continuation of the resolvent for the Laplace
operator. In order to do this, we will use a well known glueing construction (see for exam-
ple [5]), which we adapt to waveguides. The construction makes use of the meromorphic
Fredholm theorem and the fact that the resolvent for the Neumann Laplace operator on
the ends of the waveguide can be easily computed as an integral kernel. The resolvent can
then be used to construct generalised eigenfunctions and, from them, the scattering matrix.

This thesis is concerned with the computation of the scattering matrix and its deriva-
tives from the Neumann to Dirichlet map on the boundary of the compact domain. This
relies on an idea of Levitin and Marletta [7], who use an expression for the Neumann to
Dirichlet map in terms of Dirichlet data of Neumann eigenvalues in order to compute em-
bedded eigenvalues and locate resonances. The main advantage of this method is that the
computation of the Dirichlet data of Neumann eigenvalues has to be performed only once.
This is the most computationally costly step. We show here that the scattering matrix, as
well as its derivatives can be obtained from this data directly, by means of linear algebra.
Levitin and Strohmaier have used this technique to obtain the scattering matrix on finite
volume, non-compact hyperbolic surfaces [3]. Due to the more complicated nature of the

5

Riemann surface and the fact that the rank of the scattering matrix jumps each time the
spectrum is crossed, the problem determining the scattering matrix for waveguides is more
complex. We present here an algorithm capable of numerically computing the scattering
matrix as well as its derivative at a point on an arbitrary sheet of the Riemann surface.

Being in possession of the scattering matrix allows us to calculate resonances; poles of
the scattering matrix. We are able to do this using a combination of numerical contour
integration and Newton’s method, but for this we require not just the scattering matrix,
but its first derivative.

With all of this, we have created code for computing the scattering matrix and its deriva-
tives, with a combination of the FreeFem++ [8] and Mathematica languages. This uses
Levitin and Marletta’s method and our own extension of it. This code is both fast and
flexible, and automated to some extent; the FreeFem++ code generates eigendata from
the internal domains, and the Mathematica code uses this to produce the scattering ma-
trix, automatically detecting the number of ends, their widths etc. We have also created a
fairly sophisticated script to use the scattering matrix to locate resonances within a given
search area.

Using this code, we have been able to replicate results from others, namely Levitin and
Marletta [7] and Aslanyan, Parnovski and Vassiliev [9], and compare their results to ours,
before presenting some results of our own on a selection of domains. We have also com-
puted the scattering length and time delay for a sample of these domains, and in so doing,
verified some formulas from Müller and Strohmaier’s paper [10].

The thesis is organised as follows: In the first two chapters, we will outline the neces-
sary background theory needed to properly understand the material. The first chapter
covers the basic background theory culminating in the spectral theorem for self-adjoint
operators on Hilbert spaces, the Schwartz kernel theorem, Friedrichs extension and ex-
istence and regularity for elliptic differential operators. The second chapter deals with
background theory specific to this thesis, including a detailed description of waveguides
and the Riemann surface that the resolvent operator inhabits, the Neumann to Dirichlet
map in abstract then concrete terms, generalised eigenfunctions and defining the scatter-
ing matrix and an outline of the finite element method, which has been pivotal to our
calculations. The fourth chapter gives a description of the construction of scattering ma-
trices and their derivatives, and the fifth chapter presents some computational results.
We will finish off by outlining the code that was used to produce these results, giving full
instructions on how to make use of it, for the benefit of anyone who may wish to.

6

Chapter 2

Background and definitions

2.1 Basic analysis background

2.1.1 Banach and Hilbert spaces

It is assumed that the reader is familiar with the basic definitions and properties of normed
vector spaces, Banach spaces, and Hilbert spaces up to the level of an undergraduate
analysis course. We will remind the reader of some, but not all, of them here, introducing
new material as is necessary for the presentation of the results gathered.

Definition 1. Hilbert space
A Hilbert space H is an inner product space that is complete with respect to its induced

norm ‖v‖ = 〈v, v〉
1
2 .

As the inner product induces a norm, every Hilbert space is also a Banach space
[11, Page 8].

Definition 2. Lp spaces
Let (Ω, µ) be a measure space. For any 1 ≤ p < ∞, we define Lp(Ω, dµ) to be the set of
equivalence classes of measurable functions on Ω such that

‖f‖pLp(Ω,dµ) =

∫
Ω
|f(x)|pdµ(x), (2.1)

is finite.

Two Lp functions are said to be equivalent if they only differ on a set of measure zero.
Reed-Simon cover measure theory in their book [11, Page 26], but, for the most part, we
will simply be interested in the basic Lebesgue measure.

We can check the norm axioms and see that when f ∈ Lp(Ω, dµ), the ‖f‖Lp(Ω,dµ) de-
fine norms. It can be proved that Lp spaces are, in fact, Banach spaces. For the special
case of p = 2, we may define an inner product for f, g ∈ L2(Ω, dµ), by

〈f, g〉Lp(Ω,dµ) =

∫
Ω
f(x)g(x)dµ(x),

and obtain a Hilbert space.

Another useful family of spaces, which we shall define here are Frechet spaces. For these
we will need to introduce several definitions and concepts before being able to define them.
The first is that of a seminorm.

7

2.1. Basic analysis background

Definition 3. Seminorm
A seminorm is a map s : V −→ R+, obeying the following rules:

1. s(u+ v) ≥ s(u) + s(v)

2. s(au) = |a|.s(u)

for all u, v ∈ V, a ∈ C.

This is very similar to the definition of a norm, but with the zero condition dropped;
nonzero elements may be mapped to zero by the seminorm.

Definition 4. Let {sα}α∈A be a family of seminorms, where A is a, not necessarily count-
able, indexing set. We say that such a family of seminorms separates points,
if for all v ∈ V \{0}, there exists α ∈ A such that sα(v) 6= 0.

Definition 5. Fréchet space
A Fréchet space is a vector space V equipped with a countable family of seminorms,
{sα}α∈A, that separate points.

This next lemma is crucial, as it means that a Frechet space can be thought of as a metric
space, and all of the useful properties of metric spaces apply to them.

Lemma 6. Let V , be a Frechet space, with enumerated seminorms {sj}∞j=1, then V has
the structure of a metric space by defining, for u, v ∈ V , the metric d to be

d(u, v) =
∞∑
j=0

2−j
sj(u− v)

1 + sj(u− v)
. (2.2)

Proof. This is contained in the Appendix in Taylor [12, Page 480], or discussed in detail
in a section in Reed-Simon [11, Page131].

2.1.2 Bounded and compact operators

A class of very useful operators, which we shall commonly encounter in this thesis, are
compact operators. Compact operators have a spectral theorem that greatly simplifies our
understanding of them. This section will give an overview of them. We assume knowledge
of the various definitions and implications of compactness in a point-set topological con-
text. We will start by stating of some definitions and properties of compact operators.

We call a linear map between two normed spaces X and Y :

T : X −→ Y, (2.3)

bounded, if and only if

supx∈X/{0}
‖Tx‖Y
‖x‖X

<∞.

We will denote the vector space of bounded operators from spaces Y to X by B(Y,X). A
stronger property than boundedness is compactness, which we shall now introduce.

Definition 7. Compact operator
Let T : X → Y be a map between two Banach spaces X and Y .
We say that T is compact if for all bounded subsets of X, their image under T has compact
closure.
Or equivalently, for any bounded sequence in X, its image under T has a Cauchy subse-
quence in Y .

8

2.2. Fourier transforms and distributions

Compact operators have a number of useful properties. The sum of two compact operators
is itself compact, the composition of a compact operator with any other operator is compact
(they form an ideal) and the limit of a sequence of operators compact in the norm topology
is compact.

2.2 Fourier transforms and distributions

Distributions, sometimes called generalised functions, generalise our definitions of func-
tions and of differentiation to a larger category of objects and make various familiar spaces
closed. This section gives a brief description of them.

2.2.1 Fourier transforms

Fourier transforms and their inverses are important because they reduce differential op-
erators to multiplication operators when such an operator is conjugated with the Fourier
transform. We will briefly outline the basic definitions and state, without proof, the the-
orems we intend to use throughout this thesis. We will begin by defining the Schwartz
space, which will be our first example of a Fréchet space.

Definition 8. Schwartz space
Define seminorms

sj(f) =
∑
|α|≤k

sup〈x〉j |Dαf(x)| j ∈ N, α ∈ Nn.

We say that a function f is in Schwartz space, or f ∈ S(Rn), if ∀j ∈ N there is an Nj > 0
such that sj(f) < Nj ,.

Definition 9. The Fourier transform and its inverse

For a function f ∈ S(Rn) we define maps F ,F−1 : S(Rn) :→ S(Rn) called the Fourier
transform and the Fourier inverse respectively given on functions by:

(Ff)(ξ) =
1

(2π)n/2

∫
Rn
e−ixξf(x)dx, (F−1f)(ξ) =

1

(2π)n/2

∫
Rn
eixξ f̂(ξ)dξ.

It can be proved with an elementary calculation that, for functions in Schwartz space,
the Fourier transform and its inverse are bone fide maps and that the Fourier inverse is
indeed the inverse map of the Fourier transform. This means that the Fourier transform
is a bijection from the Schwartz space to itself. What’s more, as the Schwartz space is
contained in L2(Rn), we can look at the L2 norm and get the following theorem.

Theorem 10. For functions f, g ∈ S(Rn), 〈Ff,Fg〉 = 〈f, g〉, and also ‖Ff‖ = ‖f‖.

The theorem is referred to as Plancherel’s theorem or Plancherel’s formula. The proof
is a series of fairly straightforward, but longwinded calculation that we shall omit here.
Although S is a complete metric space, (the metric is given by equation 2.2), it is not
a Hilbert space and therefore too restrictive to be of any use to us. Fortunately, due to
S(Rn) being dense in L2(Rn), we can extend the Fourier transform to a unitary map on
L2(Rn), but within the inner product only, by thinking of elements in L2(Rn) to be L2

limits of Schwartz functions. i.e. when

f, g ∈ L2(Rn), 〈Ff,Fg〉 = 〈f, g〉, (2.4)

where, in the case of f and g not being in the Schwartz space, they are thought of as L2

limits of functions that are.

9

2.2. Fourier transforms and distributions

In L2, we encounter problems when we attempt to compute the Fourier transforms explic-
itly. For example, if we were to take f(x) = 1

1+|x| , then (Ff) is not even a function; look

at (Ff)(0). Constructing a sequence of Schwartz functions tending towards a given L2

function is also difficult. One way of overcoming this difficulty is to invoke the Riemann-
Lebesgue Lemma:

Lemma 11. For all f ∈ L1(Rn),

(Ff)(ξ) =
1

(2π)n/2

∫
Rn
e−ixξf(x)dx

is well defined, continuous, and (Ff)(ξ)→ 0, as ξ →∞.

A consequence of the Riemann-Lebesgue lemma is that for functions; f ∈ L1(Rn)∩L2(Rn),
we are able to explicitly calculate the Fourier transform and can prove that it is the same
map as in equation 2.4; the Fourier transform defined on Schwartz space, then extended
to L2. We also note that L1(Rn) ∩ L2(Rn) is dense in L2(Rn), indeed, take the trunca-
tion. Thus Fourier transforms for L2 functions can be thought of as limits of the Fourier
transforms of their truncations at N as N →∞.

Another way to approach this problem will lead us into the next section.

2.2.2 Distribution theory

In the last section, when we attempted to compute the Fourier transform of f(x) = 1
1+|x| ,

we ran into problems: As a function, it was undefined. In actual fact, it is a Schwartz
distribution; a generalisation of L2(Rn). The aim of this section is to give an overview of
such objects. In order to do so we will need to introduce the weak* topology. Before we
do so, we shall recap some of the absolute basics from point-set topology.

A function f mapping one topological space to another is continuous if and only if for
all open sets U in the range, their pre-image in the domain, f−1(U) is open. It stands to
reason that notions of continuity are heavily dependent on the choice of topology. The
same is true for convergence. In a purely topological sense a sequence converges to a point
if given a neighbourhood of that point, all elements of the sequence will be contained in
that neighbourhood, for sufficiently large N . Here, neighbourhood of a point is defined
to be an open set containing that point. Now if we have an underlying set X, and two
topologies, F1,F2. If F1 ⊂ F2, then we say that F1 is weaker than F2. This is due to the
fact that convergence of sequences in F1 is a weaker property than F2: more neighbour-
hoods implies more opportunities for convergence to fail. Let us now state a very basic
definition.

Definition 12. Bounded linear functional
Let H be a Hilbert space C, a bounded linear map

T : H −→ C

we call a bounded linear functional.

We will now state, without proof, a very important theorem:

Theorem 13. Riesz representation theorem
Let H be a Hilbert space and let T ∈ H∗, a bounded linear map from H to C. Then there

exists a unique g ∈ H such that T (f) = 〈f, g〉, and also ‖T‖H∗ = ‖g‖H .

10

2.2. Fourier transforms and distributions

This theorem is significant because it says that Hilbert spaces are self-dual.

Definition 14. Weak topology
Let H be a Hilbert space. The weak topology on H is the weakest topology such that every
functional, as defined in the Riesz representation theorem, is continuous.

When fn ∈ H is a sequence. We say that fn converges to f in the weak topology, or fn
weakly converges to f . If for all T ∈ H∗ then T (fn)→ T (f).

Definition 15. Weak* topology
Let X be a Banach space, the weak* topology on X∗ is the weakest topology such that, for
all T ∈ X∗ and x ∈ X, the functions T 7→ T (x) are continuous.

A sequence of functionals Tn ∈ X∗ converges in the weak* topology to T ∈ X∗ if for all
x ∈ X, Tn(x) converges to T (x) point-wise.

Definition 16. Tempered Distribution
We say that the space of tempered distributions S ′(Rn), acting on Schwartz functions, is
the set made up of continuous linear functionals

T : S(Rn) :−→ C

equipped with the weak* topology.

It ought to be mentioned that S is a Fréchet space and not a Banach space, which makes
S ′ somewhat out of place in this section but, as we shall see in due course, it allows us to
introduce the distributional derivative in the most natural way, so we will overlook this.

We should observe here that L2(Rn) can be included in the space of Schwartz distri-
butions as, for some f ∈ L2(Rn), 〈·, f〉 defines a continuous linear functional acting on
S(Rn). Distributions allow us to extend our notion of differentiation:

Definition 17. Distributional derivative
Let f ∈ S ′(Rn) and g ∈ S(Rn). We define

(Dαf)(g) = (−1)|α|
∫
Rn
f(x)(Dαg)(x)dx

where Dα is the partial differential operator of order |a|, which is given component-wise
by α = (α1, . . . , αn), thus

Dα = (−i)|α| ∂
α1

∂x1
· · · ∂

αn

∂xn
.

If Dαf is indeed well defined, as a function, then integration by parts shows us that Dαf as
a distributional derivative (−1)|α|(f,Dα·) is the same as the functional (·, Dαf), otherwise,
the fact that g is a Schwartz function, means that Dαf is always exists as a distribution.

When attempting to apply the Fourier transform to L2(Rn) in the last section, we en-
countered the problem that for an f ∈ L2(Rn), (Ff) may not exist as a function; it does,
however always exist as a Schwartz distribution. We can see this by explicitly defining
it, for f ∈ L2(Rn) : (Ff) = (f,F·). This always exists by Theorem 10, and, in the
case of (Ff) existing as a function; we see that the distribution associated to it will be
(Ff) = ((Ff), ·) = (Ff) = (f,F·), by Theorem 10. Thus we can finally state that the
Fourier transform and its inverse extend uniquely to Schwartz distributions, and are con-
tinuous in the weak* topology.

We will end this section by defining some other distributions, which will be of use to
us later on. A general distribution D′(Rn) acts on C∞0 (R)n, the space of test functions
on Rn.

11

2.3. Sobolev spaces

Definition 18. General Distribution
A general distribution on Rn is a map

T : C∞0 (Rn) −→ C

that is both linear and continuous in the topology of uniform convergence. We denote the
space of all such distributions on Rn as D′(Rn).

Definition 19. Compactly supported distribution
We say that a distribution T ∈ D′(Rn) is compactly supported if there is a closed, bounded
set K, such that when T is paired with a test function g that vanishes in a neighbourhood
of K, then T (g) = 0. We denote the space of compactly supported distributions by E ′(Rn).
We call the smallest such set the support of T.

2.3 Sobolev spaces

The properties of Sobolev spaces play a very important, as we shall see in the next section;
they are the natural domains for various differential operators. A crucial property of
Sobolev spaces is that, given certain criteria on their domain and order, that compactly
embed into each other. Later on this will be a vital tool in proving that certain operators
are compact, with all of the consequences that ensue from this. With this in mind we
begin.

Definition 20. Sobolev spaces on Rn
Define

Hk(Rn) = {f ∈ L2(Rn)|Dαf ∈ L2(Rn), ∀|α| ≤ k}.

Where k ∈ N, α ∈ Nn is a multi-index, and the differential operator Dα, considered to be
a distributional derivative acts on L2(Rn), though we consider Dαf as a Schwartz distri-
bution. [12, Page 204]

We can extend this definition using the Fourier transform so that we can have Sobolev
spaces of real order, not just positive integers.

Definition 21.
Hs(Rn) = {f ∈ S ′(Rn)|〈ξ〉s(Ff) ∈ L2(Rn)}.

Where 〈ξ〉 = (1 + |ξ|2)
1
2 .

Simply observing the Fourier transform’s action on Dαf and vice versa ought to be enough
to convince us that when s ∈ N, these definitions are equivalent. Sobolev spaces become
Hilbert spaces, if we define the Soblolev inner product to be

〈f, g〉Hs(Rn) = 〈F−1(〈ξ〉sFf),F−1(〈ξ〉sFg)〉L2(Rn).

Using the Riesz representation theorem, we can see that Hs(Rn)∗ = H−s(Rn).

Sobolev spaces on compact bounded domains X ⊂ Rn are defined in exactly the same was
as in Definition 20, and subject to certain conditions for the smoothness of the boundary,
lead to Rellich’s theorem. The main condition is that X must be a Lipschitz domain,
which we shall define here.

Definition 22. Lipschitz domain
Let X ⊂ Rn, we say that X is a Lipschitz domain if for all points x on the boundary
∂X, there is a neighbourhood of x on which ∂X is the graph of a Lipschitz function.

12

2.3. Sobolev spaces

Definition 23. Compact embedding
Let, Banach spaces, V ⊂W be an embedding, we say such an embedding is compact if the
identity operator

I : V →W

is a compact operator.

We would ultimately like to have a coherent definition of Sobolev spaces on compact
manifolds with boundary. We would also like to prove that the embeddings of higher
order Sobolev spaces into lower order Sobolev spaces are compact: a version of the Relich-
Kondrachov theorem. Taylor devotes a section to this in his book to prove this [12, Page
283]. We intend not to fully reproduce his proof here, but to give a very rough commentary
of how this was achieved. Let us define:

Definition 24. Sobolev spaces on compact manifolds
Let M be a compact manifold and U ⊂M be a co-ordinate chart. Define:

Hs(M) = {f ∈ D′(M) : ∀U and g ∈ C∞0 (U), f.g ∈ Hs(U)},

where we obtain Hs(U) by identifying U, with the image of its co-ordinate maps in Rn.

It must be proved that definition 24 is not dependent on the choice of co-ordinates for M.
This is achieved by showing that, if T : Rn → Rn is a linear map, which, in the case of
manifolds, could be our change of co-ordinates, then

T ∗ : Hs(Rn)→ Hs(Rn).

Where T ∗f(x) = f(T (x)). For integer valued s, this can be achieved by the chain rule,
and extends to manifolds by considering its actions on the coordinates. To prove this for
non-integer s, complex interpolation must be used, which Taylor explains in detail [12,
Page 284].

On the n-Torus, the Fourier transform becomes discrete (Fourier series), thus the op-
erator of F−1〈ξ〉−sF will be limit of a sequence of finite rank (compact) operators, and
thus compact. This is used to show that the embedding Hs(Tn) ⊂ Ht(Tn) is compact for
s > t. We can then use the fact that X is compact to pick a co-ordinate cover that maps
onto Tn for each chart and construct Hs(X) by using a partition of unity subordinate to
our choice of co-ordinates. This is used to prove that the embedding Hs(Tn) ⊂ Ht(Tn) is
also compact.

When X is a compact manifold with piecewise smooth Lipschitz boundary ∂X, we can
extend X along a tubular neighbourhood [13, Page 255] about ∂X. This can in turn be
smoothed at its boundary, then identified with a copy of itself to produce M; a compact
manifold (without boundary). The boundary, MUST, be piecewise smooth and Lipschitz
in order for us to be able to do this. We can now simply define Hs(X) using equivalence
classes as follows:

Definition 25. Sobolev spaces on compact manifolds with boundary

Hs(X) ∼= Hs(M)/{f ∈ Hs(M)| f |X = 0}.
The embedding Hs(X) ⊂ Ht(X) is proved to be compact by proving that the map,

E : Hs(X)→ Hs(M)

is well defined and
R : Hs(X)→ Hs(M)

is onto, before using a commutative diagram argument, together with the fact that com-
positions of compact operators are compact to finally prove the result.

13

2.4. Unbounded self-adjoint operators on Hilbert spaces

2.4 Unbounded self-adjoint operators on Hilbert spaces

We will assume here that the reader is familiar with the basics of point-set topology; the no-
tion of compactness/sequential compactness, boundedness, completeness, open/closedness,
density and duality. Otherwise see [11, Page 90]. Those who are familiar with the notion
of self-adjointness in the case of bounded operators will appreciate its significance for the
study of those objects: It makes possible the spectral theorem; an infinite dimensional
analogue of the diagonalisation of matrices. This is, without doubt, a highly desirable
property to have in an operator one wishes to study. In the unbounded case, things be-
come more complicated, but nevertheless, self-adjointness is still definable and still leads
to a spectral theorem. Will will outline this theory here, starting with a recap of the
bounded case.

2.4.1 A recap of the bounded case

The Riesz representation theorem is significant here; because of the self-duality of Hilbert
spaces, it leads to a natural definition of the adjoint operator in the case of bounded
operators. For an operator T : H → H, we can simply define T ∗ to be the unique op-
erator such that 〈Tf, g〉 = 〈f, T ∗g〉, ∀f, g ∈ H. To prove existence and uniqueness of
this operator, we can simply apply the Riesz Representation theorem. We say that T is
self-adjoint if T ∗ = T . Of course all of this assumes boundedness. Once this condition is
no longer satisfied, we encounter problems. Overcoming these to obtain a working notion
of self-adjointness will occupy the rest of the section.

2.4.2 Symmetric operators

We will now move on and outline some background theory relating to unbounded linear
operators on Hilbert spaces. Differential operators are the prime example of such objects.
As a map between normed spaces, the operator’s continuity in the operator norm is equiv-
alent to its boundedness. Boundedness is a condition for many of the standard theorems
one may encounter when studying operators and their spectra; it is a necessary condition
of compactness, which we shall discuss in the next section, and it also alleviates, to some
extent, the issue of domains, which we must deal with. For reasons that will become clear
later on, we will not attempt to define an unbounded operator (T say) on the whole of
our Hilbert space H but instead on some subspace D(T), which we will call the domain
of T , so that we can write our, now unbounded T as

T : D(T)→ H.

If D(T) is dense in H, as is normally the case, then we say that T is densely defined.

Definition 26. Graph and Graph norm

The graph of a linear operator T is the set

{(f, Tf) : f ∈ D(T)} ⊂ H ×H.

This is often denoted Γ(T) [11, Page 250]. We can define an inner product, and conse-
quently a norm, on such a set as follows:

〈(f1, ψ1), (f2, g2)〉 = 〈f1, f2〉+ 〈g1, g2〉.

We say that an operator T is closed if its graph is a closed subset of H×H.

14

2.5. Friedrich’s extension and quadratic forms

Definition 27. T ′ is an extension of operator T on H if, Γ(T) ⊂ Γ(T ′), and is also a
bone-fide operator on H itself.

An operator is closable if it admits a closed extension. We are now ready to introduce
the notion of the adjoint of an unbounded operator.

Definition 28. The adjoint of an unbounded operator

Let T : D(T)→ H be a densely defined operator on a Hilbert space H
Let D(T ∗) ⊂ H be the set of g such that there exists η ∈ H and

〈Tf, g〉 = 〈f, η〉 ∀f ∈ D(T).

We define T ∗ϕ, the adjoint of T by T ∗ϕ = η.

An important property of the adjoint is that it is always closed [11, Page 253]. If we
happen to apply definition 2.4.2 to the case of a bounded operator, we very quickly see
that D(T) = D(T ∗) and we have no issues. This is because for every g ∈ H, the functional
〈T ·, g〉 : H → C is always a bounded linear functional; the boundedness of T guarantees
it, so by the Riesz representation theorem, there will be a η = T ∗ϕ always. When T is
unbounded, this may or may not be so, thus we need the following:

Definition 29. Symmetric operator

Let T be densely defined on H We say that T is symmetric if and only if D(T) ⊂ D(T ∗)
and

〈Tf, g〉 = 〈f, Tg〉, ∀f, g ∈ D(T).

We say that T is self-adjoint if, in addition to the above, D(T) = D(T ∗).

We can see that a symmetric operator is closable as D(T) ⊂ D(T ∗), and T ∗ is a closed
extension of T , but even a closed symmetric operator may still fail to be self-adjoint. The
next theorem, can be thought of a a corollary of the closed graph theorem [11, Page 84]
it will cause major problems for us, as we shall now see.

Theorem 30. Hellinger-Toeplitz theorem
An everywhere defined (D(T) = H) symmetric operator T is necessarily bounded.

This means that to make sense of symmetric operators on Hilbert spaces, we can’t think
of them as being defined on the whole space, but must instead think of them as exten-
sions of symmetric operators, defined on a dense subspace of our Hilbert space called a
core. These extensions might not exist, and are by no means unique. In the case of a sym-
metric operator having a unique self-adjoint extension we call it essentially self-adjoint.

2.5 Friedrich’s extension and quadratic forms

We left the last section with the theory of self-adjoint operators. We showed that un-
bounded self-adjoint operators make sense only as extensions of densely defined, symmet-
ric operators, and that given a densely defined symmetric operator, self adjoint extensions
may not be unique, or even exist. We will now present a construction that, in the case
of our operator in question being positive, gives a self-adjoint extension with a number of
interesting properties.

15

2.5. Friedrich’s extension and quadratic forms

Definition 31. Quadratic form

Let Q(q) be a dense vector subspace of our Hilbert space H. A map

q : Q(q)×Q(q) −→ C,

that is sesquilinear in the same order as the inner product, we define to be a quadratic
form, and we call Q(q) its form domain.

We call a quadratic form symmetric if q(φ, ϕ) = q(ϕ, φ) for all φ, ϕ ∈ Q(q) and positive
if q(ϕ,ϕ) ≥ 0 for all ϕ ∈ Q(q). We could further generalise and introduce the concept of
semi-boundedness for quadratic forms, as Reed and Simon do, but positivity alone will
suffice for what we wish to do with them. [11, Pagr 276]

Of particular interest to us will be the fact that if T is a positive symmetric operator
on H, we can obtain a quadratic form q by setting

q(φ, ϕ) = 〈Tφ, ϕ〉,

with form domain D(T). We have already encountered closed operators in 2.4.2, whose
graph norm is a closed subset of H×H. We will now introduce the analogue concept for
a quadratic form and associated norm.

Definition 32. Closed and closable quadratic forms
Let q be a positive quadratic, we say that it is closed, if the form domain Q(q) is complete
in the norm

‖ϕ‖+1 =
√
q(ϕ,ϕ) + 〈ϕ,ϕ〉.

We say that q is closable if for all sequences ϕn ∈ Q(q), such that ϕn → 0 in H as n→∞
and q(ϕn − ϕm, ϕn − ϕm)→ 0, n,m→∞ in ‖·‖+1, then ϕn → 0, n→∞ in ‖·‖+1.

This next theorem is provides justification as to why it is beneficial to look at quadratic
forms and not simply look at the operators as before.

Theorem 33. Any positive, closed, symmetric quadratic form is the quadratic form as-
sociated to a unique self-adjoint operator.

This is property is especially pleasant for us as it means that, quadratic forms need only
be closed, bounded and symmetric to be self-adjoint, and leads us naturally to the main
theorem we wish to present in this section.

Theorem 34. Friedrichs extension
Let T be a positive symmetric operator and let

q(φ, ϕ) = 〈Tφ, ϕ〉, φ, ϕ ∈ D(T). (2.5)

Then q is a closable quadratic form, whose closure q̂ is the quadratic form of a unique
self-adjoint operator T̂ .

T̂ is defined to be the Friedrichs extension of T . T̂ is a positive extension of T and
the lower bound of its spectrum is the lower bound of q. Also, T̂ is the only self-adjoint
extension of T whose domain is contained in the form domain of q̂. [11, Page177]

16

2.6. Resolvents and spectra of unbounded operators

Example 35. The Dirichlet and Neumann Operators on an interval For sim-
plicity, we will perform this calculation in one dimension, although it extends to higher
dimensions.

Here we will let q(φ, ϕ) = 〈dφdx ,
dϕ
dx 〉, with the form-domain of q being C∞[0, 1] ⊂ L2[0, 1].

We will first show that this form is closable, then work out the form domain of its closure
and the self-adjoint operator associated to it.

Going on our definition of closability, we will observe the fact that a sequence ϕn ∈ C∞[0, 1]
such that ϕn → 0, n→∞ in L2[0, 1] and q(ϕn−ϕm, ϕn−ϕm)→ 0, n,m→∞ in ‖·‖+1,
then ϕ′n converges to an element ψ ∈ L2[0, 1] in the L2 norm, so we must now show that
it is 0. Let ψ̂ =

∫ 1
x0
ψ, for any x0 < 1; we claim that ϕn → ψ̂, n→∞. Now

‖ϕn − ψ̂‖ = ‖ϕn −
∫ x

x0

ψ‖ = ‖
∫ x

x0

(ϕ′n − ψ) + ϕn(x0)‖ ≤
∫ x

x0

‖ϕ′n − ψ‖+ ‖ϕn(x0)‖,

by the triangle inequality. Since ϕn → 0, n→∞ in the L2 norm, we know that a subse-
quence of ϕn tends to 0 point-wise outside a null set (we refer the reader to Reed-Simon’s
section on this for discussion and definition of null sets). Thus we can pick an x0 where
ϕnj → 0, j → ∞, and see that ψ̂ is indeed the L2 limit of ϕn, which we have previously

assumed to be 0. This means that ψ̂ is 0 in the L2 norm and so is ψ. Therefore q is closable.

We now need to know the form domain for q̂ the closure of q. A good candidate will
be H1[0, 1]. Any ϕ ∈ Q(q̂) is the limit of a sequence of C∞ functions ϕ such that both
ϕn → ϕ and ϕ′n → ϕ′ in the L2 norm as n → ∞; their limit will be in H1[0, 1]. Con-
versely, any ϕ ∈ H1[0, 1] will be the limit of a sequence of C∞ functions in the ‖·‖+1 norm.

Theorem 33 tells us that q̂ is the quadratic form of a unique self-adjoint operator, such
that q(φ, ϕ) = 〈Tφ, ϕ〉. We can see that for φ,∈ C∞[0, 1], ϕ ∈ H1[0, 1],

q̂(φ, ϕ) = 〈dφ
dx
,
dϕ

dx
〉 = 〈−d

2φ

dx2
, ϕ〉+

dφ

dx
ϕ(1)− φdφ

dx
ϕ(0).

This means that dφ
dx (1) = dφ

dx (0) = 0, and the Neumann Laplacian is the self-adjoint opera-

tor associated to q̂ whose domain {φ ∈ H1[0, 1] : dφdx (1) = dφ
dx (0) = 0} is contained (strictly

in this case) in that of q̂.

If instead of using C∞[0, 1] for our domain, we used C∞0 (0, 1), smooth functions on (0, 1)
with compact support, then the Friedrich’s extension would be the Dirichlet Laplacian.

2.6 Resolvents and spectra of unbounded operators

Having introduced self-adjoint operators, either in the simple case of bounded operators, or
the more involved, unbounded case, we are now in a position to make use of this property;
the fact that the spectral theorem is applicable to them. In this section we will adapt
some of the more basic definitions before concluding the section with the spectral theorem
for self-adjoint operators on Hilbert spaces. The absolute basics to begin with:

Definition 36. Resolvent set
Let T be a, not necessarily bounded, closed operator on a Hilbert space H. We define the
resolvent set ρ(T), to be the λ ∈ C such that the operator

(T − λ) : D(T) −→ H

17

2.6. Resolvents and spectra of unbounded operators

is a bijection of D(T) into its image in H, with bounded inverse. [11, Page 253]

Obviously if T is a bounded operator, one may not worry so much about the issue of do-
mains and this reduces down to the same definition as earlier. The inverse being bounded,
in any case, is a consequence of the bounded inverse theorem [11, Page 83].

Definition 37. Resolvent function
We call the operator valued function

Rλ(T) : C −→ B(H,H) where Rλ(T) = (T − λ)−1

the resolvent function, or sometimes just the resolvent.

This function is holomorphic (see [14]) on the resolvent set. It has some noteworthy
properties, which we shall now outline, before introducing the spectrum.

Lemma 38. The resolvent equation
Let λ, λ0 ∈ ρ(T) then

Rλ(T)−Rλ0(T) = (λ− λ0)Rλ(T)Rλ0(T). (2.6)

Proposition 39. Let λ, λ0 ∈ ρ(T) and |λ− λ0| < ‖Rλ0(T)‖−1, then

Rλ(T) =
∞∑
n=0

(λ− λ0)nRλ0(T)n+1. (2.7)

In order to have a spectral theorem, we must define the spectrum.

Definition 40. Spectrum
The complement of the resolvent set C−ρ(λ), we call the Spectrum of T , denoted σ(T).

This can be decomposed as follows:

• Point spectrum or set of eigenvalues consists of the set of λ ∈ C, for which there
exists non-zero ϕ ∈ X, such that Tϕ = λϕ. We call such ϕ eigenfunctions.

• Residual spectrum comprises of the union spectrum, with the complement of the
set of eigenvalues.

Finally we have arrived at a point where we may present the spectral theorem for un-
bounded self-adjoint operators. We will present the version derived by E.B. Davies in his
text, Spectral theory and Differential Operators; it being the most elegant. [15, Page 37]

Theorem 41. The Spectral Representation
Let T be a self-adjoint operator on H, a Hilbert space. Then there exists a finite measure
on σ(T)× N on and a unitary operator

U : H −→ L2(σ(T)× N, dµ)

so that

• If the function h : σ(t) × N → R is defined as h(λ, n) = λ, then an f ∈ H is in
Dom(T) if and only if h.U(f) ∈ L2.

• (UTU−1f) = hf for all f ∈ U(D(T))

• Uϕ(T)U−1f = ϕ(h)f , forall ϕ ∈ C0(R), f ∈ L2(σ(T)× N, dµ).

This can be uniquely extended from C0(R) to B(R), the space of bounded Borel functions
on R

18

2.7. Spectral theory for compact operators

2.7 Spectral theory for compact operators

We defined compact operators in the first section but, up until now, have not made much
use of them. Having defined the spectrum and presented a spectral theorem for self-adjoint
operators in the previous section, we must now do the same for compact operators. Com-
pact operators, being bounded, relieve us of the burden of having to define them on a
dense domain of our space; we may simply define them on the whole space. This greatly
simplifies the definition of the resolvent set and resolvent. It turns out that the spectrum
of compact operators has a number of remarkable properties:

Let H be a Hilbert space and T : H −→ H be compact, then:

• σ(T) is a discrete, at most countable set, with at most one accumulation point at 0.

• ∀λ ∈ σ(T) λ is also an eigenvalue of T with, at most, finite multiplicity.

We can now state the spectral theorem for compact operators on a Hilbert Space.

Theorem 42. Spectral theorem for compact operators
Let T be a compact operator, on a separable Hilbert space space H. Then there exists a finite
or countable set of orthonormal eigenfunctions {fn}Nn=1 ∈ H, and associated eigenvalues
{λn}Nn=1 ∈ C, where N ∈ N or N”=”∞, such that for some ϕ ∈ H,

T f =
N∑
n=1

λn〈f, fn〉f.

2.8 Elliptic differential operators

We will now digress slightly in order to introduce an important theorem in the theory
of differential operators, which we will use several times throughout this thesis. Before
giving the elliptic regularity theorem, it is necessary to define an elliptic partial differential
operator.

Definition 43. Elliptic operator
A partial differential operator P (D) of order m,

P (x,D) =
∑
|α|≤m

aα(x)Dα,

is said to be elliptic provided |P (x, ξ)| ≥ C|ξ|m, for large |ξ|. [12, Page 245]

With this defined, we may state the theorem.

Theorem 44. Elliptic regularity theorem
Let P (x,D) be an elliptic partial differential operator, and take ϕ ∈ D′(R)n.
If P (x,D)ϕ = f, for some f ∈ D′(Rn), then

sing supp ϕ = sing supp f.

[12, Page 247]

This is important but inadequate for what we intend to do. We require boundary regularity
on piecewise smooth, convex Lipschitz domains (see definition 22). Let us now define an
elliptic boundary problem on them.

19

2.9. The Neumann Laplace operator

Definition 45. Elliptic boundary value problem
Let P be an elliptic differential operator, on a Lipschitz domain X, of order m and let Bj
be a family of differential operators defined in a neighbourhood of ∂X of order strictly less
than m. An elliptic boundary value problem is an equation of the form

P (D)u = f on X, Bju = gj on ∂X.

Theorem 46. Elliptic boundary regularity
If P (D) is elliptic on X and the boundary value problem satisfies the hypothesis of regular-

ity, when the coefficients of the operator are fixed, then given u ∈ Hm(X), if Pu ∈ Hk(X),
for some k ∈ N and Bju ∈ Hm+k−mj−1/2(∂X), then u ∈ Hm+k(X) and

‖u‖2Hm+k(X) ≤ C

‖Pu‖2Hk(X) +
∑
j

‖Bju‖2Hm+k−mj−1/2(∂X)
+ ‖u‖2Hm+k−1(X)

 .

(see [12, Page 383])

2.9 The Neumann Laplace operator

In cartesian co-ordinates, we will no doubt, be aware the Laplace operator’s action on
functions is to sum their second derivatives with respect to each co-ordinate, multiplied
by minus 1. The latter to ensure the operator is positive, (see section 2.5). In this section,
we will give a more, in depth overview of the Neumann Laplace operator, which we first
encountered in Example 35. We focus on the the Neumann Laplace operator here as this
will feature heavily in the rest of the thesis, although, the material in this section, applies
to the Dirichlet Laplace operator with minimal modification.

2.9.1 The Neumann Laplacian and its resolvent

When X is a connected compact manifold, with nonempty smooth boundary, we define
the Neumann Laplacian to be Friedrichs extension of the Laplace operator on C∞(X).
For u, v ∈ C∞(X), we observe that

(∆ϕ,ψ) = 〈dϕ, dψ〉 −
∫
∂X

∂ϕ

∂n
ψdS.

However, due to the Neumann boundary conditions (necessary for (∆ϕ,ψ) to be a closed
quadratic form), ∂ϕ

∂n vanishes on ∂X, and thus the integral vanishes. The domain of the
operator is H2(X) and H1(X) for its associated quadratic form 〈dϕ, dψ〉.

We introduce the operator
QN : H1(X)→ H1(X)∗,

where H1(X)∗ is the dual space to H1(X), which acts on it as follows:

u 7→ 〈d · , du〉 ∈ H1(X)∗ for some u ∈ H1(X).

It is proved that the operator

QN + 1 : H1(X)→ H1(X)∗,

is bijective, whose inverse, when restricted to L2(X) is compact by Rellich’s theorem and
self-adjoint: Symmetric and self-adjointness are equivalent in the bounded case. So then

20

2.10. Resolvent kernels of (∆− λ) in R

there will be an orthonormal basis of L2(X), consisting of eigenfunctions of the inverse: TN ,
whose discrete set of associated, real eigenvalues {αj}, has only one limit point, namely 0.
Thus, when arranged in descending order, they form a non increasing sequence mj → 0 as
j →∞. We can now see that QN has non-zero eigenvalues µj = 1

αj
−1, tending to infinity.

We can see, by inspection, that all of the above remains true true for QN −λ, for any such
λ for which QN − λ is bijective.

We have thus constructed the resolvent of the associated quadratic form to (∆ − λ) and
shown the existence of the resolvent of the operator Rλ(∆). If we wish to do the same for
the Dirichlet Laplacian, we can do so in exactly the same way, but we must use appropriate
domains for such an operator. It should also be noted that as an operator valued function,
Rλ(∆) is analytic (as will be the resolvent for any operator) in its resolvent set, which in
this case will be the complex place minus the discrete set of Neumann eigenvalues µj .

2.9.2 Inhomogeneous boundary conditions

In the previous section, we introduced the resolvent for the Neumann Laplacian, on a
compact manifold, with piecewise-smooth Lipschitz boundary. In this section, we will use
it to show existence and uniqueness of the problem

Lemma 47. Let ϕ be such that, for some non-zero g ∈ C∞(∂X),

(∆− λ)ϕ = 0,
∂ϕ

∂n
|∂X = g, ϕ ∈ L2(X), (2.8)

where λ ∈ C is not a Neumann eigenvalue. Such a function exists, and is unique.

The proof comes from Taylor [12, Page 308].

Proof. Let F ∈ C∞(X) be such that ∂F
∂n |∂X = g.

Then the ϕ in equation 2.8 is equivalent to ϕ = F + ψ, where ψ is a solution to

(∆− λ)ψ = (λ−∆)F,
∂ψ

∂n
|∂X = 0.

Thus we can see that ψ = (QN − λ)−1(λ − ∆)F and thus ψ ∈ H1(X). We can now
construct our ϕ as

F + (QN − λ)−1(λ−∆)F. (2.9)

This method is very similar for Dirichlet boundary conditions.

2.10 Resolvent kernels of (∆− λ) in R

When our domain is no longer compact, the Neumann Laplace operator no longer has a
compact resolvent. We can say some things about it though, namely that as an operator
valued function on C, it admits a meromorphic extension to the whole complex plane.
In this section we will prove this. We have followed the the work of Richard Melrose,
and these results, but not the calculation, are included in his book; Geometric Scattering
Theory [5]. Central to this is the theory in integral kernels, which we now introduce.

21

2.10. Resolvent kernels of (∆− λ) in R

2.10.1 The Schwartz kernel theorem

This next theorem is important. We can simply observe that for two open sets X1 and
X2 ⊂ Rn, a function K ∈ C0(X1, X2) defines a linear operator ; an integral operator

T : C0(X2) :→ C(X1),

by

(Kϕ)(x1) =

∫
X2

K(x1, x2)ϕ(x2)

for ϕ ∈ C0(X2), x1 ∈ X1 [16, Page128]. The Schwartz kernel theorem allows us to extend
this to distributions, where T now must act on C∞0 (X2), we now have

T : C∞0 (X2) :→ D′(X1), (2.10)

For the ϕ ∈ C∞0 (X2) and ψ ∈ C∞0 (X1), we can define the tensor product
ϕ ⊗ ψ ∈ C∞(X1 ×X2), by (ϕ ⊗ ψ)(x1, x2) = ϕ(x1)ψ(x2), x1 ∈ X,x2 ∈ X2. We can now
state that for K ∈ C(X1 ×X2),

〈Tϕ, ψ〉 = K(ψ ⊗ ϕ). (2.11)

We are now ready for the following:

Theorem 48. Schwartz Kernel theorem
For all K ∈ D′(X1×X2) defines a linear map as in (2.10), by way of equation 2.11, where

ϕn → 0⇒ Tϕn → 0, as n→∞,

Conversely, for all
T : C∞0 (X2)→ D′(X1),

there is a unique, square integrable K ∈ D′(X1 ×X2) such that (2.11) holds.

2.10.2 Calculating resolvent kernels in R

With the Schwartz kernel theorem proving existence and uniqueness of the kernel for our
resolvent, we will go about calculating it in this section. In R, we see that by solving the
equation

(∆− λ)k(x, y) = δ(x− y), (2.12)

gives a resolvent kernel if k defines a bounded linear operator. We should remind the
reader that f is some function in the domain of (∆ − λ), y is a parameter and δ is the
Dirac delta distribution.

This is because when we apply (∆ − λ)R(λ)g, for some g in the domain of the resol-
vent, we get

(∆− λ)

∫
R
k(x, y)g(y)dy =

∫
R
δ(x− y)g(y)dy = g(x).

A general solution to equation 2.12, will be of the form,

A(x)e−i
√
λ(x−y) +B(x)ei

√
λ(x−y).

Applying ∆ to this gives us

(λA+ 2i
√
λA′ −A′′)e−i

√
λ(x−y)

(+λB − 2i
√
λB′ −B′′)ei

√
λ(x−y).

22

2.10. Resolvent kernels of (∆− λ) in R

The requirement that our kernel be square integrable for λ in the upper half-plane, implies
that B vanishes for negative values of x − y, and A for positive. Due to this we try,
A(x) = H(y − x), B(x) = H(x− y), we get(

λH(y − x)− 2i
√
λδ(x− y) + δ(x− y)

)
ei
√
λ(x−y)

+
(
λH(x− y)− 2i

√
λδ(x− y)− δ(x− y)

)
e−i
√
λ(x−y).

Meaning that the solution to (∆− λ)k(x, y) = δ(x− y) is

−ei
√
λ|x−y|

2i
√
λ

. (2.13)

Note 49. The requirement that the kernel be square integrable for λ in the upper half-plane
was entirely arbitrary and depends on the branch choice of the square root. We could have

instead chosen the lower half-plane also, to give −e
−i
√
λ|x−y|

2i
√
λ

as the kernel.

Though unused here, it is worth mentioning that this result generalises to higher dimen-
sions by using the same method we have employed here. On Rn the integral kernel will
be

π

2
i
n−2
2 λ

n−2
2 H

(1)
n−2
2

(λ|x− y|),

where H
(1)
n−2
2

is an n−2
2 order Hankel function of the first kind [5]. The NIST digital library

or handbook of mathematical functions gives information on Hankel functions [17] [18],
and in Melrose’s text [5], they appear as kernels of resolvents.

Example 50. Neumann Resolvent on a half-line
Let our domain be R+ with Neumann boundary conditions at 0. By looking at equation

2.13, we see that the kernel of our resolvent is now

−ei|x+y|
√
λ

4i
√
λ

+
−ei|x−y|

√
λ

4i
√
λ

. (2.14)

We should take note of the fact that when x 6= y, this kernel is holomorphic, when defined
as a function of λ, in the branch of the square root where Im(

√
λ) > 0. The anti-diagonal

doesn’t cause problems, because x and y are non-negative.

We can see, by inspection, that (∆ − λ) is elliptic for all C. Theorem 44 also tells us
that for λ in the resolvent set for ∆,

sing supp (∆− λ)−1f = sing supp f.

Lemma 51. The integral kernel: k(x, y) of the Neumann Laplace operator is smooth, off
the diagonal, that is when x 6= y.

Proof. Let us apply the Laplace operator to the first and second variables of its resolvent
integral kernel respectively:
We note that (∆x + ∆y − 2λ) is an elliptic differential operator on M ×M .
Now

(∆x + ∆y − 2λ)k(x, y) = δ(x− y),

which gives

sing supp k(x, y) = sing supp δ(x− y); as a function of x and y.

This proves the lemma.

23

2.11. The Scattering matrix in a general setting

2.11 The Scattering matrix in a general setting

The culmination of the next chapter will be a rigorous mathematical definition of the
scattering matrix. All of the material beforehand will be necessary to achieve this end.
Beforehand though, we will give an overview of this object.

In Reed and Simon’s book on the subject, the scattering matrix appears in the context of
dynamic scattering theory. In a dynamical system there are said to be given dynamics and
free dynamics [1, Page 1]. This is most often a Hamiltonian with and without potential or
a domain or metric with or without perturbation. From these it is possible to define posi-
tive and negative wave operators, which act on the phase space of the dynamical system,
mapping a given position and velocity to the solution of the given dynamical system at
time t = 0 which is asymptotic to the free system at t = −∞ for the positive operator or
t = +∞ in the negative case. The scattering matrix in this context is a composition of the
adjoint of the negative wave operator with the positive wave operators [1, Page8,73]. In
their paper, Müller and Strohmaier have presented a proof, in English, that the scattering
matrices arising from dynamic and stationary scattering theory are the same [4], a fact
originally proved by Guillopé [22]. We will be dealing only with stationary scattering the-
ory in this thesis and will introduce the scattering matrix in this context.The next section
will cover in detail the stationary scattering matrix as we have chosen to define it.

At the most basic level, the scattering matrix for a waveguide describes the outcome
of a scattering event in which a wave packet originating from one of the ends undergoes
scattering. The aftermath of such a scattering event will result in some transmission of
a proportion of the wave packet to the other ends and reflection back down the end it
originated. Each such end will correspond to a column of the scattering matrix where in
turn each element will correspond to an end and denote the proportion of the wave packet
transmitted or reflected along it, subject to an appropriate choice of basis. We can say
that the diagonal elements are the reflection coefficients and the off-diagonal elements are
the transmission coefficients. As will become clear in the next section, this is greatly over
simplified. In the case of Neumann waveguides, which we will be focussing on, the scat-
tering matrix can be said to act on selected Neumann eigenfunctions of the cross sectional
area of the ends. The selection of Neumann eigenfunctions will depend on the sheet of Z,
meaning that the rank of the scattering matrix will also vary with this choice as opposed
to just λ and the geometry of the domain.

In the case of waveguides, the scattering matrix, is indeed a true matrix. In the con-
text of obstacle or potential scattering in Rn the scattering matrix becomes an operator
acting on functions defined on the unit sphere.

24

Chapter 3

Thesis background theory

3.1 Waveguides

From now on let M be a waveguide in n dimensional Euclidian space with K cylindrical
ends, a piecewise path connected subset of Rn that can be written as M = E ∪X. Here
X is a compact, piecewise connected manifold, with piecewise smooth Lipschitz boundary
(a Lipschitz domain) and

E = Γ× R+ =

K⋃
k=1

[Γk × R+] =

K⋃
k=1

Ek.

Γk ⊂ Rn−1 is compact and connected domain, with smooth boundary, and for any i 6= j,

[Γi × R+] ∩ [Γj × R+] = ∅.

Define

Ek = Γk × R+, and Γ = E ∩X = {0} × Γ =
K⋃
k=1

[{0} × Γk] .

Lastly, we will call the boundary of M, Σ.

Figure 3.1: Waveguide

The following theorem is taken directly from Reed and Simon [11, p. 52,II.10]

25

3.1. Waveguides

Theorem 52. Let 〈M1, µ1〉 and 〈M2, µ2〉 be measure spaces so that L2(M1, dµ1) and
L2(M2, dµ2) are separable.

Then there is a unique isomorphism from L2(M1, dµ1)⊗̂L2(M2, dµ2) to
L2(M1 ×M2, dµ1 ⊗ dµ2), where the ⊗̂, denotes the completion of the tensor product, so
that f ⊗ g 7→ fg.

Corollary 53. With E defined as above,

L2(E) ∼= L2(R+)⊗̂L2(Γ).

Applying theorem 52 to E gives us:

Corollary 54. With L2(E), defined as in Corollary 53, ∆Ej can be written in the form

∆Ej = − ∂2

∂x2
⊗ 1− 1⊗∆Γ, (3.1)

where ∆Γ is the Laplace operator on Γ ⊂ Rn−1.

We know that the Neumann subspace of L2(Γ) has an orthonormal basis consisting of
Neumann eigenfuctions of (∆Γ − λ)−1, thus we can say

L2(Γ) ∼=
∞⊕
j=0

C = l2.

We can now conclude that

L2(E) ∼= L2(R+)⊗ L2(Γ) ∼= L2(R+)⊗ l2 ∼=
∞⊕
j=0

L2(R+), (3.2)

where (∆Ej −λ) acts on each summand by − ∂2

∂x2
−λ+µj , where the µj are the, not neces-

sarily distinct, Neumann eigenvalues of ∆Γ, enumerated in ascending order and repeated
with multiplicity taken into account, as needs be. We shall henceforth refer to each of the
summands as modes. ∆Ej − λ acts on each mode as multiplication by ξ2 − λ+ µj in the
spectral representation.

The resolvent, for ∆Ej written as it is in (3.1), can now be written as

R0(λ) =
⊕
j

rj(λ), (3.3)

where rj(λ) = 1
ξ2+µj−λ in the spectral representation. This means we must slightly modify

our integral kernel, that we derived in the last section (equation 2.13) to get

rj(λ) =
−ei|x+y|

√
λ−µj

4i
√
λ− µj

+
−ei|x−y|

√
λ−µj

4i
√
λ− µj

. (3.4)

The existence of square roots, and their branches, adds extra complexity to this resolvent
kernel. Rather than talking about these square roots as being defined on C, we must,
instead talk about them being defined on a complicated Riemann surface Z on which it is
single valued function of λ. Of course R0(λ) only exists as a resolvent function for λ in the
resolvent set, this will occur when the the rj(λ) are square integrable. In the next section
will will describe in detail this surface in order that we may merromorphically continue or
resolvent, from the resolvent set, to the rest of Z.

26

3.1. Waveguides

3.1.1 A description of the domain of our resolvent function

Up until now we have enumerated the Neumann eigenvalues {µj} of Γ in ascending order
with multiplicity taken into account. It will be notationally convenient in this section, to
refer to the same roots as {ηj} enumerated in ascending order, but where i 6= j ⇒ ηi 6= ηj ,
as per Christiansen [2, Page5]. The reason for this is that for each j ∈ N corresponds
to a branch point for

√
λ− ηj . A complete description of this has already appeared in

Guillopé’s paper [22], we will, nevertheless, present our interpretation here.

Before we begin our description of the domain we wish to extend our resolvent to, we
will describe a far simpler one; that of the single square root function

√
λ. We can observe

that for the case of a single square root function λ 7→
√
λ, if we naively plot the Imaginary

component of this function, we observe a branch cut along the negative real axis; a jump
discontinuity, as seen from Figure 2.

Figure 3.2: The imaginary part of the positive and negative branches of
√
λ

This is due to the fact that, for λ ∈ C\R there are two possible values for
√
λ, or branches

of the function λ 7→
√
λ; the principal branch, which we have plotted in the figure above,

and the negative branch, which is simply the positive branch with the sign reversed. We
may observe from Figure 2 that when ”glued” together, the square root will become contin-
uous, not on C, but on a Riemann surface; a path-connected, one dimensional complex
manifold, that is also a covering space for the complex plane. The graph of the real com-
ponent of these ”glued” branches is the same as for the imaginary component, rotated a
half-turn about the point 0. We can view this surface as a union of two ”sheets”, each
identified with C \ R+, where the imaginary part of

√
λ is always positive and negative

respectively. In the sheet where
√
λ has positive real components, this is made up from

the positive branch of the square root, when λ is in the upper half-plane and the negative
branch when λ is in the lower.

If we were to look at the image of a point on Z under the covering projection onto
C \ {ηj}, we would see that when joined to another point by a path, this path and its two
endpoints lift into Z. More importantly; any point in Z can be described by a point in
C \ {ηj} and an equivalence class of paths to it from the base point. We will now describe
these equivalence relations. Each sheet can obviously be identified with the complex plane,
minus a half line, but it is the path that determines which sheet of the Riemann surface
our point in C \ {ηj} lifts to. For such a simple Riemann surface this is unnecessary, but
for the much more complicated Riemann surface that forms the domain of our resolvent
function it provides a clear way to comprehend such a structure and this will be how we

27

3.1. Waveguides

shall define it.

0

Figure 3.3: A path in our Riemann surface crossing the boundary between two sheets and
its covering projection crossing the real axis

As we have seen in the last section, the resolvent is made up of the direct sum of the
rj(λ), acting on the direct sum of L2 spaces; equation 3.4. The Riemann surface for each
individual summand that makes up this resolvent will have a branch at each of the ηj , for
j ∈ N, behaving similarly to the ordinary square root function. We define the physical
sheet of Z to be the sheet of the surface, which can be identified with C\R+, for which all
the

√
λ− ηj , have positive imaginary part and identify it with C \R+. The whole surface

Z is made up of uncountably many ”sheets” of this nature, each of which represents a
choice as to whether each

√
λ− ηj has a strictly positive imaginary part or not. To each

sheet, we can associate an infinite sequence of elements in Z2, where the jth element will
be 0 if

√
λ− ηj has a strictly positive imaginary part and 1 otherwise. We can see that

the physical sheet will be represented by a sequence of zeros.

A path in Z will remain a path in C \ {ηj} under the covering projection p. Similarly, a
path in C\{ηj}, lifts to a path in Z if the location of the pre-image of one of the endpoints
is known (or given). We note for paths that paths crossing of the intervals (ηj , ηj+1), j ∈ N
on the real line in C \ {ηj}, correspond with crossings of the boundaries between sheets in
Z. We aim to describe this correspondence here.

Every path of finite length, starting in the physical sheet of Z, γ : I −→ Z, and crossing
the boundary between sheets at least once, can decomposed into K sub-paths γk, such
that γk(0) = γk+1(0), where each sub-path makes only one crossing between sheets. Under
the covering projection, each p◦γk make only one crossing of the real axis. p◦γk will cross
an interval (ηj , ηj+1) say. The consequence of this is that whatever the indexing sequence

28

3.1. Waveguides

for p◦γk(0), the indexing sequence for p◦γk(1) (and consequently p◦γk+1(0)) will have all
entries up to their jth entry changed (1s become 0s and vice versa). The sub-paths gener-
ate a sequence of K such objects, whose Kth entry describes the sheet that the endpoint
of γ; γ(1) resides in. The other entries k = 1 . . .K describe the sheets of Z that γ passes
through on its ’journey’. Given the correspondence between paths from the physical sheet
in Z and paths in the complex plane, and our complete description of how they interact,
from now on, we will refer to paths in C \ {ηj} and paths in Z interchangeably.

µ1 µ2 µ3 µ4 µ5

Figure 3.4: Inequivalent paths to the same point in C

Here we see that, whilst the endpoints for all three paths are the same, all three paths
lift into different sheets of Z and intersect different subsurfaces. The journey of the paths
between sheets, from top to bottom, can be described by the following sequence of indexing
sequences:

(0, . . .) 7→ (1, 1, 1, 1, 0, . . .)

(0, . . .) 7→ (1, 0, . . .) 7→ (0, 1, 0, . . .) 7→ (1, 0, 1, 1, 0, . . .)

(0, . . .) 7→ (1, 1, 1, 1, 0, . . .)

µ1 µ2 µ3 µ4

Figure 3.5: Paths that lift to the same point in Z

29

3.2. The continuation of the resolvent

The paths above all map to the same point in Z, but have different indexing sequences;
and we can describe their journey below:

(0, . . .) 7→ (1, 1, 1, 0, . . .)

(0, . . .) 7→ (1, 1, 0, . . .) 7→ (0, . . .) 7→ (1, 1, 1, 0, . . .)

(0, . . .) 7→ (1, 0, . . .) 7→ (0, . . .) 7→ (1, 1, 1, 0, . . .)

We must however note that the ”looped” path is not homotopic to the others, this will
be something to consider in the in the next section, where we will give an overview of the
monodromy theorem.

3.2 The continuation of the resolvent

The aim of this section is to prove, that for any sheet of Z, the full resolvent R(λ) ad-
mits a meromorphic continuation from the physical sheet onto it. To do this, we must
construct meromorphic continuations of the resolvent on E, R0(λ) beyond the physical
sheet, then use ”glueing constructions” and the meromorphic Fredholm theorem to obtain
this same result for the resolvent R(λ). The main techniques we shall use to prove this
appear in Melrose’s ”Geometric Scattering theory” [5] and were used on the resolvent on
a domain isometric to Rn outside of some compact manifold. They can be adapted to
waveguides with with minimal modification, as we shall demonstrate shortly. Construc-
tion of meromorphic continuations for resolvents, for the purpose of scattering theory, has
a rich history in the literature [23] [10] [5] [24].

We saw in the previous section, that Z is the surface on which the infinite direct sum
of resolvent kernels for each mode rj(λ), is single valued. The resolvent is analytic on the
physical sheet; to construct a meromorphic continuation, we must connect the physical
sheet to our desired sheet with a path of finite length. Melrose and others have already
demonstrated the existence of analytic continuations for the individual rj(λ) [5, Page 11].

We will now state, without proof, the monodromy theorem. It is not our intention to
introduce the geometric topological definitions that we will occasionally make use of here
or prove the complex analytic theorems that are pre-requisites to the monodromy theorem.
If the reader requires such, they can be found in [25, Page 123] Jones and Singerman’s text,
along with more detailed discussions of Riemann surfaces and meromorphic continuations
than are present here.

Lemma 55. Uniqueness of the direct meromorphic continuation
Let f1 be a meromorphic function defined on some region D1. Let D2 be another region,
such that D1∩D2 6= ∅, then a meromorphic f2, defined on D2 such that f1 = f2 on D1∩D2

is unique, if it exists.

The f2, referred to in the lemma will be called a direct meromorphic continuation of
f1 [25, Page124].

Definition 56. Meromorphic continuation along a path
Let γ :→M be a path in some manifold M, and f me a meromorphic function on a disc D,
around γ(0), we define the meromorphic continuation along a path to be a finite sequence
of direct meromorphic continuations

(D, f) ∼ (D1, f1) ∼ . . . (DK , fK)

such that each

30

3.2. The continuation of the resolvent

• each Dk is an open disc in M and γ(0) ∈ D1 ⊆ D.

• there is a partition of the interval, I1, . . . , IK such that γ([Ik, Ik+1]) ⊂ Dk, obviously
γ(1) ∈ DK .

Theorem 57. The monodromy theorem
Let γ1, γ2 be two homotopy-equivalent paths in Z from the physical sheet to to another,
specified non-physical sheet. Also let
γ1(0) = γ2(0), γ1(1) = γ2(1).

If f is a meromorphic function in a neighbourhood of γ1(0)/γ2(0), then, if it exists, the
meromorphic continuation of f along paths γ1 and γ2 will be identical in a neighbourhood
of γ1(1)/γ2(1).

Since each sheet of Z is simply connected, once we have defined a path from the physical
sheet to our chosen sheet and constructed a meromorphic continuation, to a neighbourhood
around a point in this sheet, we can canonically extend this continuation to the whole sheet
unambiguously.

µ1 µ2 µ3 µ4

Figure 3.6: Meromorphic continuations along paths to points in the same sheet are unique.

Lemma 58. Let γ : I → Z be a path of finite length from some point on the physical sheet
to another point on an arbitrarily chosen non-physical sheet. The resolvent R0(λ) admits
a meromorphic continuation along γ to a neighbourhood of γ(1), then subsequently to the
whole sheet containing it.

Lemma 59. Let R0(λ) be the meromorphic continuation of the resolvent of the Laplace
operator on E along some path γ. Let us define weighted L2 spaces,

H±(R+) = L2(R+, e
±x

2

2 dx). (3.5)

Then R0(λ) as an operator from H+ ⊗ l2 to H− ⊗ l2, is bounded.

Proof. We can see here that the meromorphic continuation of each summand that makes
up R0 is achieved canonically in this weighted space just from the definitions given in 2.14.

31

3.2. The continuation of the resolvent

We can now calculate the operator norm of R0(λ):

‖R0(λ)‖=sup
f 6=0

(‖R0(λ)f‖H−⊗l2
‖f‖H+⊗l2

)
=sup
f 6=0

(
sup
j

(∫
R+

|R0(λ)fj(x)|2e
−x2
2 dx.‖f‖−1

H+⊗l2

))

=sup
g 6=0

sup
j

∫
R+

∣∣∣∣∣
∫
R+

−ei|x+y|
√
λ−µj − ei|x−y|

√
λ−µj

4i
√
λ− µj

gj(y)e
−y2
2 dy

∣∣∣∣∣
2

e
−x2
2 dx‖g‖−1

L2⊗l2



<sup
j

∫
R+

∫
R+

∣∣∣∣∣∣∣
−ei|x+y|

√
λ−µj − ei|x−y|

√
λ−µj

e

−y2
2

e
−x2
2

∣∣∣∣∣∣∣
2

dydx

 .

We can see that this is finite all of the time, no matter what sheet of Z we are on, and no
matter what value of j, due to the extreme weighting of these spaces.

The cornerstone of the proof of resolvent meromorphicity is the analytic Fredholm theorem.
We shall state it below bore fore attempting to show the main result.

Theorem 60. Meromorphic Fredholm Theorem

Let Ω be a connected open patch of some complex manifold and A(z) an operator valued
(operators from a Hilbert space to itself) meromorphic function of z. In addition if:

1. A(z) is compact if z ∈ Ω\D, where D is a discrete set, outside of which A is analytic.

2. Coefficients A−k · · ·A−1 of the Laurent series are finite rank operators.

Then either:

• 1−A(z) is not invertible for any z
or

• ∃D′ ⊂ Ω, a discrete set such that (1−A(z))−1 exists if z /∈ D ∪D′ and extends to a
function analytic in Ω\D′, meromorphic in Ω.

This is taken from Reed, Simon IV [26, p. 107].

We now must extend our internal domain slightly, along a tubular neighbourhood of Γ.
Here we define

XL = X ∪ ([0, 1]× Γ) .

The requirement at the start for Γ to be piecewise smooth, path connected, and Lipschitz
guarantees that this construction is possible. Let us define

(∆XL − λ)−1,

the inverse operator for (∆XL − λ), where ∆XL is the Neumann Laplacian restricted to
XL . All of the results that apply for the resolvent of X, still apply for XL; namely that
the resolvent is a compact, self adjoint operator.

With this done, we can now move straight to the main result for this section.

32

3.2. The continuation of the resolvent

Figure 3.7: Extending the centre along the cylindrical ends by an interval.

Theorem 61. Let R(λ) be the resolvent for the Neumann Laplace operator on the waveg-
uide M defined on the upper half-place of the physical sheet of Z. Let γ : I → Z be a path,
of finite length, from the physical sheet of Z into another, arbitrarily chosen sheet. Then
R(λ) is analytic on the physical sheet of Z, and admits a meromorphic continuation, along
γ to the sheet containing its endpoint on which, it may have poles that are, at most, finite
order.

Proof. Let ∆E be the Neumann Laplacian on E, and we will assume any λ to be on the
physical sheet of Z until further notice, identified with C \ R+, as described in the last
section.

Let us now define ρ(a, b) ∈ C∞(R) to be a non-decreasing function with

ρ(a, b)(x) =

{
1, x ≤ a
0, x ≥ b.

Now we can define our cut-off functions on [0, 1]× Γ, where t ∈ [0, 1] and y ∈ Γ:

ψ1(y, t) = ρ

(
1

2
,
3

4

)
(t), φ1(y, t) = ρ

(
7

9
,
8

9

)
(t)

ψ2(y, t) = 1− ρ
(

1

2
,
3

4

)
(t), φ2(y, t) = 1− ρ

(
1

9
,
2

9

)
(t). (3.6)

Figure 3.8: Cut-off functions

33

3.2. The continuation of the resolvent

We have chosen the function ρ and its parameters in such a way that

ψ1 + ψ2 = 1, (3.7)

ψ1φ1 = ψ1,

ψ2φ2 = ψ2,

suppφ′k ∩ suppψk = ∅.

Distance is simply the length of an interval in R in this case. We can canonically extend
these functions to the rest of M so they’re constant on X\ ([0, 1]× Γ) ; just define them
to be 1 or 0 there depending on their value on the. Now define

Q(λ) = ψ1(∆XL − λ)−1φ1 + ψ2(∆E − λ)−1φ2. (3.8)

Here it it will sometimes be notationally convenient to write (∆E − λ)−1 = R(λ), the
meromorphic continuation along γ of the resolvent for ∆ on E.

It is at this stage where we observe that, in coordinates, with f ∈ H1(M), φ ∈ C∞(M)
and, when defined locally, φf ∈ H1(M):

∆(φf) = φ∆f + (∆φ)f − 2∇f.∇φ. (3.9)

Applying Q to (∆− λ)f , for some arbitrary f ∈ H1(X), gives:

Q(λ)(∆− λ)f =

ψ1(∆XL − λ)−1φ1(∆− λ)f (3.10)

+ψ2(∆E − λ)−1φ2(∆− λ)f. (3.11)

In both equations 3.10 and 3.11, we see that multiplying (∆ − λ)f by φi maps this into
the domains of the respective resolvents.

(3.10) = ψ1(∆XL − λ)−1φ0∆f − ψ1(∆XL − λ)−1λφ1f

= ψ1(∆XL − λ)−1(∆− λ)(φ1f)− ψ1(∆XL − λ)−1 [(∆φ1)f + 2∇f.∇φ1)] .

(3.11) = ψ2(∆E − λ)−1φ2∆f − ψ2(∆E − λ)−1λφ2f

= ψ2(∆E − λ)−1(∆− λ)(φ2f)− ψ2(∆E − λ)−1 [(∆φ1)f + 2(∇f.∇φ2)] .

Adding these up, and taking note of equation 3.7 gives us:

f − ψ1(∆XL − λ)−1 [(∆φ1)f + 2(∇f.∇φ1)]

− ψ2(∆E − λ)−1 [(∆φ2)f + 2(∇f.∇φ2)] .

So we conclude that

Q(λ)(∆− λ) = Id− J(λ), (3.12)

where we have defined

J(λ) = ψ1(∆XL − λ)−1 [(∆φ1) + 2(∇φ1.∇)] +ψ2(∆E − λ)−1 [(∆φ2) + 2(∇φ2.∇)] . (3.13)

34

3.2. The continuation of the resolvent

We will call the first and second summands in (3.13) J1, and J2 respectively. Since J and
Q are made up of resolvents, which admit meromorphic continuations along γ, Q and J
inherit these properties and also admit meromorphic continuations along γ. Of course
for λ in a non-physical sheet equation 3.12 will fail, but the continuations of Q and J
nevertheless exist.

Observe that when ψ2(∆E −λ)−1 [(∆φ2) + 2(∇φ2.∇)], acts on a function f in its domain,
it will be of the form

ψ2(x)

∫
R+

k(x, y) [(∆φ2) + 2(∇φ2.∇)] f(y)dy,

=

∫
R+

ψ2(x)k(x, y) [(∆φ2(y)) + 2(∇φ2(y).∇f(y))] dy,

=

∫
R+

ψ2(x)k(x, y)(∆φ2(y))f(y))dy +∇. [2ψ2(x)k(x, y)(∇φ2(y)] f(y))dy

by using integration by parts. Now, the only time that k(x, y) may fail to be smooth is
when y = x, by elliptic boundary regularity. But the ψ2 and φ2 have been specifically
constructed so that the supports of ψ2 and φ′2 are disjoint, so in this case, the integrand
vanishes and we have a smoothing operator. This means that the left hand side of the
above equation is well defined and still smooth.

We have thus constructed a smooth integral kernel k̃(x, y), for

J2 = ψ2(∆E − λ)−1 [(∆φ2) + 2(∇φ2.∇)] ,

given by

k̃(x, y) = ψ2(x)k(x, y)(∆φ2(y))f(y))dy +∇. [2ψ2(x)k(x, y)(∇φ2(y)] ,

which is compactly supported in the y variable and where it’s support in the x and
y variables is disjoint, by choice of cut-off functions: see equation 3.7. Now since the
integral Kernel of the adjoint is compactly supported in the first variable, the adjoint to
ψ2(∆E − λ)−1 [(∆φ2) + 2(∇φk.∇)] is compact, we see that the operator itself is compact.
Thus

ψ2(∆E − λ)−1 [(∆φ2) + 2(∇φk.∇)] ,

is compact.

We observe that(
ψ1(∆XL − λ)−1 [(∆φ1) + 2(∇φ1.∇)]

)∗
: L(XL)2 −→ H(XL)2 −→ H(XL)1,

and is likewise compact by the Rellich-Kondrachov theorem, meaning that J1 is also com-
pact. We can now apply the meromorphic Fredholm theorem [26, Page 107], to (Id+J(λ)),
but we must make sure that the first case of the meromorphic Fredholm theorem applies.
The first case being that (Id + J(λ)) is invertible outside of some discrete set, not that it
isn’t invertible anywhere.

Now J(λ) : H− −→ H−, because [(∆φ1) + 2(∇φ1.∇)] : H− −→ H+.

Now we can see that

‖J(λ)‖H− = C1‖J(λ)‖L2
,

35

3.3. Generalised Eigenfunctions and the Scattering Matrix

for some C1 > 0. This is due to the fact that J(λ) maps to functions with compact
support; everything is multiplied by either ∇φ1,∇φ2, ∆φ1 or ∆φ2, all of which have
compact support. Now

‖J(λ)‖L2
≤

2∑
i=1

‖Ji(λ)‖L2 ,

by the triangle inequality.

We must now deal with J1 and J2 separately again. Let Pi = [(∆φi) + 2(∇φi.∇)] ; we
can see that this is a differential operator of order one. For J1 we can now rewrite it as

J1(λ) = ψ1(∆XL − λ)−1(∆XL + 1)1/2(∆XL + 1)−1/2P1.

and now we can apply the triangle inequality once again to see that

‖J1(λ)‖ ≤ ‖ψ1(∆XL − λ)−1(∆XL + 1)1/2‖.‖(∆XL + 1)−1/2P1‖.

Now the action of (∆XL − λ)−1(∆XL + 1)1/2 on a basis of eigenfunctions will be that of
multiplication by √

λ2
n + 1

λ2
n − λ

, (3.14)

where the λn ∈ R+ are the eigenvalues of their respective eigenfunctions for n = 1, . . . ,∞.
We can now write λ = −R2, R > 0, meaning that

√
λ = iR. So equation3.14 can now be

rewritten as
√
λn + 1

(λ2
n − iR)(λ2

n + iR)
=

√
λn + 1

(λ2
n +R2)1/2(λ2

n +R2)1/2
≤

√
λn + 1

(λ2
n +R2)1/2(λ2

n +R2)1/2
≤ 1

R
.

The same argument holds true for (∆E −λ)−1(∆E + 1)1/2 using the spectral resolution of
the operator ∆E .

This means that we can pick an appropriate value of λ to give (Id + J(λ)) a Neumann
series. Consequently (Id + J(λ)) is invertible outside of some discrete set and,

(Id + J(λ))−1Q(λ)(∆− λ) = Id,

so
(Id + J(λ))−1Q(λ)

is a resolvent for (∆− λ), when λ is in the physical sheet and has a meromorphic contin-
uation along γ.

3.3 Generalised Eigenfunctions and the Scattering Matrix

Let χ be a function on M with support on E that equals 1 outside a compact set and fix
an orthonormal basis of Neumann eigenfunctions of ∆Γ, {νj(y)}. Let γ be a path from
the physical sheet to another, non-physical sheet in Z of our choice. To describe this sheet
we must introduce J ⊂ N given by:

J = {j ∈ N : Im(
√
λ− µj) ≤ 0}. (3.15)

We refer the reader back to section 3.1, where we equated sheets of Z to equivalence
classes of paths. We can consider J to be an indexing set for the sequences defined there.
For example the J for the three examples defined in figure 3.5 would be {1, 2, 3}. This

36

3.3. Generalised Eigenfunctions and the Scattering Matrix

notation, whilst differing slightly from that introduced before, is ideally suited for use later
on.

As was said before, we may identify this sheet with C \ minj∈J [µj ,∞). We will gener-
ally be working with either the physical sheet of Z, or the sheet defined by J, which we
shall refer to as the non-physical sheet from now on. When identified in this way, every λ
in the non-physical sheet of Z has its counterpart in the physical sheet which is identical as
a complex number. As each sheet is simply connected, we may extend γ to λ in only one
homotopy-equivalent way, meaning that once the resolvent is continued, meromorphically
along γ, we can uniquely continue it to a neighbourhood of any point on the same sheet,
without ambiguity. Thus, once we fix a sheet, denoted by equation 3.15, and extend our
resolvent along a path to it from the physical sheet, we can assume that the resolvent is
meromorphic on the whole sheet.

We should make the reader aware of the fact that, from now on, we will be enumer-
ating the transverse Neumann eigenvalues, with multiplicity taken into account; µj , not
to be confused with ηj from before when multiplicity was ignored.

We are now ready to to introduce:

ϕ(λ, x, y) =
∑
j

ϕj(λ, x, y) =
∑
j

χe−i
√
λ−µjxνj(y)−R(λ)

[
(∆− λ)

(
χe−i
√
λ−µjxνj(y)

)]
.

(3.16)
This is a Generalised Eigenfunction, as it is a solution of (∆ − λ)ϕ(λ, x, y) = 0 (we
can verify this, just by applying (∆ − λ) to it) but not an L2 solution when λ is in the
physical sheet. It should be noted that the above equation is not already zero. The reason
for this is that R(λ), unless λ is on the physical sheet, is a meromorphic continuation of
the resolvent and not the resolvent itself. When λ is in the physical sheet, the resolvent is
only an inverse of (∆− λ) for L2 functions. These functions have a number of properties:

Proposition 62. 1. ϕ(λ, x, y) is a meromorphic function of λ for any λ in the non
physical sheet indexed by J and holomorphic if λ is in the physical sheet.

2. For j ∈ J and λ in the physical sheet of Z;

ϕj(λ, x, y)− χe−i
√
λ−µjxνj(y) ∈ L2(R+) (3.17)

3. There exists a unique meromorphic Sj,k(λ), such that on E and with λ in the physical
sheet

ϕ(λ, x, y)=
∑
j∈J

(
e−i
√
λ−µjxνj(y) +

∑
k∈J

Sj,k(λ)ei
√
λ−µkxνk(y)

)
(3.18)

+
∑
j /∈J

Tj(λ)ei
√
λ−µjxνj(y),

and

ϕ(λ, x, y)=
∑
j∈J

(
ei
√
λ−µjxνj(y) +

∑
k∈J

Sj,k(λ)e−i
√
λ−µkxνk(y)

)
(3.19)

+
∑
j /∈J

Tj(λ)ei
√
λ−µjxνj(y),

for λ in the non-physical sheet. In the case where λ is in the physical sheet, the
Sj,k(λ) are holomorphic.

37

3.3. Generalised Eigenfunctions and the Scattering Matrix

Proof.

1. Obvious: It follows from the meromorphicity of the various functions whose products
make up ϕ(λ, x, y).

2. This is due to the square integrability of the resolvent kernels in the physical sheet.

3. Observe that for any j ∈ J , the ϕj(λ, x, y) is a solution to (∆ − λ)ϕj(λ, x, y) = 0.
Using a simple separation of variables on E, we see that any solution to
(∆− λ)F (λ, x, y) = 0, including the one we have, will be of the form,

ϕj(λ, x, y) =

∞∑
k=1

(
Aj,k(λ)e−i

√
λ−µkx +Bj,k(λ)e+i

√
λ−µkx

)
νk(y). (3.20)

We can see that in part 2) of this proposition, the requirement that

ϕj(λ, x, y)− χe−i
√
λ−µjxνj(y) ∈ L2(R+), means that Aj,k = δj,k.

In order to reconcile equation 3.20 with equation 3.16, we call the Bj,k(λ) = Sj,k(λ)
for k ∈ J . For k /∈ J we see that the remaining terms;

Bj,k(λ)e+i
√
λ−µkx (3.21)

are all square integrable as k /∈ J ⇒ Im(
√
λ− µk) > 0.

When we sum the ϕj(λ, x, y) to get ϕ(λ, x, y), as described in equation 3.16, we
get

∑
j∈J

(
e−i
√
λ−µjxνj(y) +

∑
k∈J

Sj,k(λ)ei
√
λ−µkxνk(y)

)
+
∑
k/∈J

∑
j∈J

Bj,k(λ)ei
√
λ−µkxνk(y),

where we can define, for j /∈ J, Tj(λ) =
∑

k∈J Bk,j(λ) to finish. The result for the
non-physical sheet is due to meromorphic continuation.

We will now call S(λ), made up from the Sj,k(λ), the scattering matrix. As has been
mentioned in section 2.11: Many papers have been written which define and make use of
the scattering matrix, and our definition is by no means unique
[2, Page 899] [19] [20, Page 31] [21, Page 248].

We will now prove some useful properties about the generalised eigenfuctions and scatter-
ing matrix.

Proposition 63. Uniqueness of the Generalised Eigenfunctions
Any ϕ(λ, x, y), abbreviated as ϕλ, where (∆ − λ)ϕλ = 0 and that obeys 1) and 2) of
Proposition 62 is unique in L2(R+).

Proof. We have already defined ϕλ, so let ϕ̃λ be some other generalised eigenfunction of
(∆−λ) on M , obeying 1 and 2 of Proposition 62 and let us start on the physical sheet of Z.

We now know that (∆− λ)(ϕλ − ϕ̃λ) = 0.

Given that ϕ̃λ and ϕλ both obey 1) and 2) we can see that (ϕjλ − ϕ̃
j
λ) ∈ L2(R+), ∀j ∈ N.

38

3.3. Generalised Eigenfunctions and the Scattering Matrix

This means that λ is an eigenvalue and (ϕλ−ϕ̃λ) ∈ L2(R) is an eigenfunction, not a gener-
alised eigenfunction. However ∆ is a positive self adjoint operator, so all of its eigenvalues
must be positive and real. Thus contradicts with λ being in the physical sheet, which was
identified with C\R+ in section 8. This implies that on the physical sheet, (ϕλ− ϕ̃λ) = 0,
then by continuation, it is 0 on the rest of Z.

Corollary 64. S(λ) is also uniquely determined by the geometry of M the choice of basis
for the J Neumann eigenfunctions and J .

Let λ be in the non-physical sheet of Z, given by J and identified with a suitable subset
of the complex plane, and let λ∗ be its counterpart in the physical sheet.

Theorem 65. S(λ∗) = S−1(λ)

Proof. We can see that

〈∆ϕ(λ, x, y), ϕ(λ, x, y)〉 − 〈ϕ,∆ϕ〉 = (λ− λ)〈ϕ,ϕ〉 = 0.

The right hand side of the equation above, namely the (λ − λ) is not an issue, as λ is
simply a number in this context and the λ will be in the same sheet of Z as λ.

Green’s second identity can now be invoked to give that∫
Γ

(
∂ϕ(λ∗, x, y)

∂n
ϕ(λ, x, y)− ϕ(λ∗, x, y)

∂ϕ(λ, x, y)

∂n

)
= 0.

In particular, this means that

∑
j,k∈J

i
√
λ∗ − µk(δk,j − Sj,k(λ∗))

∑
l,m∈J

(
δl,m + Sm,l(λ)

)∫
Γ
νk(y)νl(y)

−
∑
j,k∈J

(δk,j + Sj,k(λ
∗))

∑
l,m∈J

−i
√
λ− µl

(
Sm,l(λ)− δl,m

)∫
Γ
νk(y)νl(y) =

∑
j,k∈J

i
√
λ∗ − µk(δk,j − Sj,k(λ∗))

∑
l,m∈J

(
δl,m + Sm,l(λ)

)∫
Γ
νk(y)νl(y)

−
∑
j,k∈J

(δk,j + Sj,k(λ
∗))

∑
l,m∈J

i
√
λ∗ − µl

(
Sm,l(λ)− δl,m

) ∫
Γ
νk(y)νl(y) = 0

This implies that∑
k,j,m∈J

(
(Sj,k(λ

∗)− δk,j)(δk,m + Sm,k(λ)) + (δk,j + Sj,k(λ
∗))(Sm,k(λ)− δk,m)

)
= 0

due to the orthonormality of the {νj} and the way in which we have identified our sheet
of Z with a C. Multiplying these out and simplifying shows that, for fixed j,m ∈ J, we
get ∑

k∈J
Sj,k(λ

∗)Sm,k(λ) = δj,m.

Since S(λ) and S(λ) are, by construction, the same when λ and λ are in the same sheet
of Z the result follows.

39

3.4. The Neumann to Dirichlet map

3.4 The Neumann to Dirichlet map

As usual, let X be a Lipschitz domain in Rn, n ≥ 2.
We define the map

N : H−1/2(∂X)→ H1/2(∂X)

acting on g ∈ H−1/2(∂X) by
Dg = ϕ|∂X ,

where ϕ is the solution to the Neumann problem, with g as the boundary derivative. This
is the inverse of the Dirichlet to Neumann map

D : H1/2(X)→ H−1/2(X),

whose action on f ∈ H1/2 is Df = ∂
∂n(HF), where H is an extension of f to a solution of

(∆− λ)(Hf) = 0 on X. [27]

3.5 Calculating the Neumann to Dirichlet map

The Neumann to Dirichlet map will be a vital intermediate step between the resolvents,
which we have extensively covered, and the scattering matrix. In our case it is significant,
because it can be easily numerically computed using finite element techniques on the in-
ternal domain, and is known for the ”ends”.

It is known that the Neumann eigenvectors of (∆ − λ) on Γ form an orthonormal ba-
sis of L2(Γ), with Neumann eigenvalues µj , j ∈ N. [12] Given a basis of L2(Γ), we may
compute the Neumann to Dirichlet map in matrix form. This is the first step towards
viewing that Neumann to Dirichlet map as a concrete, computable object. Given the
correspondence between the Neumann to Dirichlet map, the scattering matrix and the
resolvent, computing the Neumann to Dirichlet map in this way allows us to realise these
other objects in a similar manner.

Definition 66. Neumann to Dirichlet map, associated to (∆− λ) on a basis
Let us consider an ordered orthonormal basis of the Neumann subspace of L2(Γ), {νj}∞j=0,
and ϕk, such that

(∆− λ)ϕk = 0,
∂ϕk
∂n
|∂X\Γ = 0,

∂ϕk
∂n
|Γ = νk. (3.22)

Then the k, lth element of the Neumann to Dirichlet map, in matrix form, with respect to
basis {νk}, will be given by

〈ϕ|Γ, νl〉L2(Γ).

Obviously, when doing this calculation practically, we must truncate this after a finite
number of entries; say M ∈ N, to get an M ×M matrix, giving the first M rows and M
columns of the infinite dimensional matrix.

We will now present some examples of Neumann to Dirichlet maps calculated, explic-
itly and manually for very simple internal domains. As well as giving the reader a clearer
picture of the nature of this map, they are an important tool to check for errors and
accuracy of any algorithm able to calculate these for more complicated internal domains.

Example 67. A rectangle in R2 with two ends
Let the width of the two ends be denoted by w and the length of the domain l. The ends
Γ1 and Γ2 will be the sets {l} × [0, w] and {0} × [0, w] respectively. An orthonormal basis
of Neumann eigenfunctions for Γ will be or the form {cos(kπw y)}, k = 1 . . .∞ on each

40

3.5. Calculating the Neumann to Dirichlet map

connected component of Γ (or end of X) in turn (it will be 0 on the others). Without loss
of generality, we will perform this calculation for ∂ϕ

∂n |Γ1 = cos(kπw y), some k ∈ N : it will
be the same the other way around anyway.
Solutions to equation 3.22 will now be linear combinations of

cos

√λ− (kπ
w

)2

x

 cos

(
kπ

w
y

)
. (3.23)

Due to our choice of Neumann boundary condition for Γ1, our solution restricted to there
becomes

cos

(√
λ−

(
kπ
w

)2
l

)
√
λ2 −

(
kπ
w

)2
sin

(√
λ2 −

(
kπ
w

)2
l

) cos

(
kπ

w
y

)
, (3.24)

but on Γ2 it is

1√
λ−

(
kπ
w

)2
sin

(√
λ2 −

(
kπ
w

)2
l

) cos

(
kπ

w
y

)
. (3.25)

As we will be truncating after M Neumann eigenvalues,or modes for each end, we can see
here that for this very simple domain, the Neumann to Dirichlet map in matrix form will
be a bi-diagonal 2M × 2M matrix whose diagonal entries will be that of the coefficients
from equation 3.24, the half-diagonal entries (k+M th row ,kth column or k−M th row kth

column; whichever is defined) will be made up of the coefficients from 3.24. This ordering
of elements has come about due to it being the most natural way to calculate the Neumann
to Dirichlet map in FreeFem.

Example 68. A cuboid in R3 with two identical rectangular ends
This is practically the same as in the previous example, though we will provide it here as
it is useful for us when testing out concrete computations and it also provides the enumer-
ation of the basis elements which will be useful later on. Let us define our cuboid to be
of length l width w and height h, with homogeneous Neumann boundary conditions on the
for outside surfaces
{0, y, z}, {w, y, z}, {x, 0, z}, {x, h, z}, where x, y, z run from 0 to w, h, and l respectively.
Our ends Γ1 and Γ2 will be the two rectangles {x, y, l} and {x, y, 0}. We first impose
homogeneous Neumann boundary conditions on the boundary of the domain, excluding Γ1

and Γ2.

To compute this map; truncated and in matrix form, we must first define a basis of eigen-
functions, which span the space of functions satisfying Neumann boundary conditions on
the boundary of the two ’end’ rectangles. The obvious choice for this is {cos(jπw x) cos(kπh y)},
j, k ∈ {0, 1, 2 . . .} on Γ1 and 0 on Γ2 then vice vera. Once again; for this calculation, it
will be sufficient to only consider inhomogeneous boundary conditions on Γ1 for the same
reasons as described in the previous example. We will truncate after N(N+1)

2 elements,
and enumerate in a diagonal pattern as follows:

1, cos(
π

w
x), cos(

π

h
y), cos(

2π

w
x), cos(

π

w
x) cos(

π

h
y), cos(

π

h
y), . . .

. . . , cos(
π

w
x) cos(

(N − 1)π

h
y), cos(

Nπ

h
y).

41

3.5. Calculating the Neumann to Dirichlet map

We set ∂ϕ
∂n |Γ1 = cos(jπw x) cos(kπh y), for some j, k ∈ {0, . . . , N}.

Solutions to equation 3.22 will now be linear combinations of

cos

√λ− (jπ
w

)2

−
(
jπ

h

)2

z

 cos

(
jπ

w
x

)
cos

(
kπ

h
y

)
. (3.26)

Due to our choice of Neumann boundary condition for Γ1, our solution restricted to there becomes

cos

(√
λ−

(
jπ
w

)2 − (jπh)2l)√
λ2 −

(
jπ
w

)2 − (jπh)2 sin

(√
λ2 −

(
jπ
w

)2 − (jπh)2l) cos

(
jπ

w
x

)
cos

(
kπ

h
y

)
, (3.27)

but on Γ2 it is

cos
(
jπ
w x
)

cos
(
kπ
h y
)√

λ−
(
jπ
w

)2 − (jπh)2 sin

(√
λ2 −

(
jπ
w

)2 − (jπh)2l) . (3.28)

As we have been careful to choose the the basis elements of our boundaries to be orthogonal
to each other, (except in the case of the ”same” basis elements on the opposite boundary).
We can see that, in matrix form, with said basis, the column of our Neumann to Dirichlet
map corresponding to basis element cos((jπw)x) cos((jπh)y) will be 0, except on the diagonal,
where it will be the coefficient of (3.27) and the half-diagonal where it will be the coefficient
of (3.28), mapping to the same basis element, on the opposite end in exactly the same way
as in the previous example.

Example 69. A cylinder in R3 with two identical circular ends
To start off, we will let the length of our cylinder be l, and the radius of the circles R.
This calculation is similar for the cylinder, except we will be working in spherical polar
co-ordinates. We must choose a (preferably orthonormal) basis as before, truncate then
enumerate its elements. We have our change of co-ordinates

x 7→ r cos(θ)

y 7→ r sin(θ)

z 7→ z.

Our Laplacian is now −1
r
∂
∂r (r ∂∂r)− 1

r2
∂2

∂θ2
− ∂ϕ
∂z2
−λ2. On the two end discs, an orthonormal

basis of Neumann eigenfunctions will take the form

Jn

(
Z ′n,m
R

r

)
sin(nθ), Jn

(
Z ′n,m
R

r

)
sin(nθ),

where n,m ∈ N, r ∈ R. Here we can see that the Jn are Bessel functions of the first
kind and the Z ′n,m are the mth roots of their first derivatives with respect to r. As in
the previous example, we must truncate this infinite series. For some M ∈ N, we choose
let m,n run between 0 and M giving us a square matrix where each row and column has
#ends.(2M2 −M) elements. This is because we get a cos eigenfunction for every n, but
a sin function only for non-zero n, and this is repeated for all roots m. To calculate this,
we must pick a basis element, for some m,n, an end Γ1 say, where z = L, then solve the
pde. on X, with the homogeneous Neumann boundary conditions as before. Now observe
that our eigenfunctions will be as follows:

cos

√λ− (Zn,m
R

)2

z

 Jn

(
Zn,m
R

r

)
cos(nθ)/ sin(nθ)

42

3.5. Calculating the Neumann to Dirichlet map

Setting the Neumann boundary condition at z = L to be

jn

(
Zn,m
R

r

)
cos(nθ)/ sin(nθ)

yields √
λ−

(
Zn,m
R

)2

cot

√λ2 −
(
Zn,m
R

)2

L

 Jn

(
Zn,m
R

r

)
cos(nθ)/ sin(nθ)

as Dirichlet data.

3.5.1 The Levitin-Marletta method for indirect calculation of the Neu-
mann to Dirichlet map

This has the advantage in that there is only one calculation (the division) involving λ,
which ought to produce faster computation of the Neumann to Dirichlet map, and sub-
sequent scattering matrix, for any given λ. All of the other data can be pre-calculated
and ”used again” for any λ. The following formula for the k, lth entry of N acting on
basis of the Neumann subspace of L2(Γ), {νi}∞i=1, is taken from the paper by Levitin
and Marletta, where it is calculated. [7, Page 11] The {νi}∞i=1 remain the same as in the
examples above and in definition 66; trigonometric functions in the two dimensional case,
products of trigonometric functions in higher dimensional rectangular cases, Bessel and
trig functions in truly cylindrical cases and for ends of arbitrary cross section, they could
themselves be approximated by the finite element method.

Nk,l(λ) =

∞∑
m=1

1

λ− υm
〈νk, Um|Γ〉L2(Γ).〈Um|Γ, νl〉L2(Γ). (3.29)

Where Um and υm are the eigenfunctions and eigenvalues of the homogeneous Neumann
problem on X,

(∆− υm)Um = 0,
∂Um
∂n
|∂X = 0.

3.5.2 Improving the rate of convergence

Equation 3.29 gives us a method to compute Nk,l. It is a vast improvement over direct
calculation, for practical purposes, as once we have obtained our as many eigenvalues
and Fourier coefficients of their associated eigenfunctions, computing N(λ) for any λ we
wish, now only involves matrix multiplication, and not applications of the finite element
method. Levitin and Marletta devised a simple trick/method to further improve the rate
of convergence, or accuracy given a fixed number of eigenvalues and eigenfunctions. We
should observe that for λ, λ̃, calculating N for both and using equation 3.29, noting that
the only part of this equation to have any dependence on the parameter is the fraction to
the right of the sum, gives:

Nk,l(λ)−Nk,l(λ̃) =

∞∑
m=1

λ̃− λ
υ2
m − λυm − λ̃υm + λλ̃

〈νk, Um|Γ〉Γ.〈Um|Γ, νl〉Γ.

Nk,l(λ̃) can be calculated beforehand for fixed λ̃ as in Definition 66, meaning.

Nk,l(λ) = Nk,l(λ̃) +
∞∑
m=1

λ̃− λ
υ2
m − λυm − λ̃υm + λλ̃

〈νk, Um|Γ〉Γ.〈Um|Γ, νl〉Γ. (3.30)

43

3.6. An outline of the finite element method

This now gives, quadratic, as opposed to linear convergence. This process can be repeated
as many times as one desires to further increase the speed of convergence. In practice
however, it is unnecessary to take more than one extra point and doing so would greatly
complicate our implementation of the algorithm we have devised to find derivatives of the
scattering matrix, which will be explained in section 4.1.

3.6 An outline of the finite element method

The finite element method is a numerical method to compute the solutions of linear PDE.s
and has been of such vital importance to our computations that it deserves its own section.
The finite element method is, of course, a massive topic, and we are only able to give it
the most cursory treatment possible here. A more thorough overview of finite element
analysis can be found in the literature [28] [29]. Nevertheless we will begin:

On a compact domain X ⊂ R2, with polygonal boundary, let

∆ϕ = f,
∂ϕ

∂n
|∂X = g. (3.31)

We know that a weak solution to equation 3.31 is a ϕ ∈ D′(X) such that for any test
function ψ

〈∆ϕ,ψ〉 = 〈∇ϕ,∇ψ〉 −
∫
∂X

∂ϕ

∂n
ψ = 〈∇ϕ,∇ψ〉 −

∫
∂X

gψ = 〈f, ψ〉. (3.32)

Re-arranging we see that a weak solution to the problem is akin to finding a unique ϕ
such that for all test functions ψ

〈∇ϕ,∇ψ〉 =

∫
∂X

gψ + 〈f, ψ〉. (3.33)

At this point we can introduce the Lax Milgram theorem, which can be thought of as a
corollary of the [28, Page 18] Riesz Representation theorem, theorem 13. We should take
care to observe that the functionals involved here are real.

Theorem 70. Lax-Milgram theorem
Let H be a real Hilbert space and let q be a bilinear functional on H×H where the following

hold:

• q(ϕ,ϕ) is bounded from below in the Hilbert space norm, i.e. ∃C1 > 0 such that for
all ϕ ∈ H, q(ϕ,ϕ) ≥ C1‖ϕ‖2.

• ∃C2 > 0 such that q(φ, ϕ) ≤ C2‖φ‖‖ϕ‖, forall φ, ϕ ∈ H

If, in addition, we let l(·) be a bounded linear functional on H, then there exists a unique
ϕ ∈ H for all φ ∈ H,

q(ϕ, φ) = l(φ).

With a little extra calculation, we should be able to see that the weak solution to equa-
tion 3.31 satisfies the prerequisites of the Lax-Milgram theorem with the first Sobolev
inner product, and so a unique solution is guaranteed. Of course a classical solution is
necessarily a weak solution.

We must triangulate the domain X i.e. write X as the union of a finite number of trian-
gles, whose sides may only intersect other sides and corners only intersect other corners
(see figure below).

44

3.6. An outline of the finite element method

Figure 3.9: A triangulated domain

Our triangulated domain will have N vertices (in figure 3.9, N = 74). For each vertex
we can constrict a basis function νk(x, y), such that on the kth vertex νk will be 1, but 0
on all of the other vertices. Its support will be contained in the triangles having k as a
vertex, and on this support it will also be a linear, function of x and y. We call the vector
space spanned by these basis functions, the finite element space VN .

0

0

0

1

0

0

0

Figure 3.10: The shaded area from Figure 3.9 enlarged

We can approximate ϕ with linear combinations of N of these functions,
ν1, . . . νN ∈ H1(X), where our approximation

ϕN =
N∑
k=1

xkνk

and x1, . . . xN ∈ C are coefficients to be calculated.

If equation 3.32 is valid for any test function, then it is certainly valid for the basis
functions ν1, . . . , νN . Thus if we take ϕN to be the “solution” to equation 3.31 then for
each νl with 1 ≤ l ≤ N, the equation 3.32 becomes

〈∇ϕN ,∇νl〉 −
∫
∂X

gνl =
N∑
k=1

xk〈∇νk,∇νl〉 −
∫
∂X

gνl = 〈f, νl〉. (3.34)

We can now see that the calculation of the xk has been reduced to a system of N linear
equations in N unknowns if we were to write Ax = b, where for k and l;

Akl = 〈∇νk,∇νl〉 and bl =

∫
∂X

gνl + 〈f, νl〉.

45

3.6. An outline of the finite element method

All of the components that make up A and b are known. A is commonly referred to as
the stiffness matrix.

Lemma 71. Cea’s lemma

‖ϕ− ϕN‖H1(X) = min
ν∈VN

‖ϕ− ν‖H1(X)

Proof. Let ϕN be the weak solution to equation 3.34 in the finite element space. This
means that ∀ν ∈ VN

q(ϕN , ν) = l(ν). (3.35)

Now let ϕ ∈ H1(X) be the unique solution, to equation 3.32, whose existence is guaranteed
by the Lax-Milgram theorem. For any φ ∈ H1(X), ϕ will satisfy

q(ϕ, φ) = l(φ), (3.36)

but since VN ⊂ H1(X), ϕ also satisfies equation 3.35. Subtracting equation 3.35 from
equation 3.36 gives us, for all ν ∈ VN ,

q(ϕ− ϕN , ν) = 0.

This phenomena is referred to as Galerkin orthogonality. From the two assumptions
made in the statement of the Lax-Milgram theorem and using the H1 norm, we can see
that

q(ϕ−ϕN , ϕ−ϕN) ≥ C1‖ϕ−ϕN‖2H1(X) and also q(ϕ−ϕN , ϕ−ϕN) ≤ C2‖ϕ−ϕN‖2H1(X).

This implies that ‖ϕ− ϕN‖2H1(X) ≤
C2
C1
‖ϕ− ϕN‖2H1(X), and the result follows.

This lemma states that the approximation to ϕ given by the finite element method is the
best possible approximation we can have from the finite element space . To compute error
estimates, we can construct functions, that are in the space, whose difference with ϕ in
the Sobolev norm can be explicitly bounded; the bound being greater or equal to that
achieved with ϕN .

3.6.1 Eigenvalue problems

There are a great many numerical eigenvalue algorithms. In this subsection, we will outline
the Arnoldi method, which has made the biggest contribution to the results that we shall
present later on in this thesis. The finite element method can also be used for eigenvalue
problems. We are looking for a ϕ and a λ ∈ R such that (∆−λ)ϕ = 0. In the weak sense,
with homogeneous Neumann boundary conditions,this will be

〈∆ϕ, φ〉 = 〈∇ϕ,∇φ〉 = λ〈ϕ, φ〉

and in the finite element space this will be

〈∆ϕN , νl〉 =

N∑
k=1

xk〈∇νk,∇νl〉 = λ

N∑
k=1

xk〈νk, νl〉

Thus we now have two matrices; A, the stiffness matrix, which we have encountered before
and B = {〈νk, νl〉}, and the eigenvalue problem can be re-written as B−1Ax = λx and
be solved via the myriad of numerical eigenvalue algorithms that exist. For the reader’s
information, the FreeFem++ computer package that uses the implicitly restarted Arnoldi
method [30].

46

3.6. An outline of the finite element method

3.6.2 The FreeFem++ package and some references to the algorithms

To perform the calculation in this section, we have made extensive use of the the FreeFem++
software package [8]. FreeFem++ produces triangulations (or tetrahedralisation if work-
ing in 3-D) for domains given to it by the user in the form of parameterised curves,
implements both the finite element method for solving PDEs and the implicitly restarted
Arnoldi method for finding eigenvalues and eigenvectors by making use of the ARPACK
subroutine [31] [30] [8].

47

Chapter 4

Calculating scattering matrices
and their derivatives

4.1 From the Neumann to Dirichlet map to the scattering
matrix and its derivatives

In this section, we will describe the method for constructing generalised eigenfunctions,
then the scattering matrix and its derivatives from the Neumann to Dirichlet map. As
usual, we fix a sheet of Z and define J, our indexing set, to be the j ∈ N such that
Im(

√
λ− µj) < 0. With this in mind we can proceed as follows:

4.1.1 Calculating the S matrix

Definition 72. Define
PJ : L2(Γ) −→ L2(Γ),

to be the projection whose kernel is spanned by the Neumann eigenfunctions of Γ associated
to µj for j ∈ J.

Fix a basis {νj(y)} for the space of Neumann eigenfunctions on Γ, with corresponding to
Neumann eigenvalues µj .

From Proposition 62, we know that a solution to (∆ − λ)ϕ(λ, x, y) = 0 on the cylin-
drical ends E of M , with homogeneous Neumann boundary conditions on the boundary
will be of the form:

ϕ(λ, x, y) =
∑
j∈J

(
e−i
√
λ−µjxνj(y) +

∑
k∈J

Sj,k(λ)ei
√
λ−µkxνk(y)

)
+
∑
j∈N\J

Tj(λ)ei
√
λ−µjxνj(y),

At x = 0, ϕ(λ, x, y) will be of the form

ϕ(λ, 0, y) =
∑
j∈J

(
νj(y) +

∑
k∈J

Sj,k(λ)νk(y)

)
+
∑
j∈N\J

Tj(λ)νj(y).

But at x = 0, the normal derivative will be of the form

∑
j∈J

(
i
√
λ− µjνj(y)(λ)−

∑
k∈J

i
√
λ− µkSj,k(λ)νk(y)

)
−
∑
j∈N\J

i
√
λ− µjTj(λ)νj(y).

48

4.1. From the Neumann to Dirichlet map to the scattering matrix and its derivatives

Definition 73. Let

D(λ, k) =
∂k

∂λk



i
√
λ− µ1 0 · · · · · · 0

0 i
√
λ− µ2 · · · · · · · · ·

...
... i

√
λ− µ3 · · · · · ·

...
...

...
. . . 0

0
...

... 0 i
√
λ− µ|J |.



Here k ∈ N and D(λ, k) is the |J | × |J | matrix acting on the set of J modes for which
Im(

√
λ− µj) < 0. For the calculation of S(λ), we we will only be using this in the context

of k = 0. In this case we will denote it as Ñ(λ); it’s inverse is the Neumann to Dirichlet
maps on E. For the higher derivatives, we will sometimes abbreviate the notation D(λ, k),
to D(k)

We should note here, that this projection PJ , acting on modes j ∈ N\J and sending
the rest to 0, is vital to this calculation. This is because, on one hand, the Neumann to
Dirichlet map on E, only acts on the boundary data of square integrable functions, thus
we must project out the non square integrable modes of any such generalised eigenfunction
before applying Ñ(λ)−1. It is only in this context that Ñ(λ)−1 is a Neumann to dirichlet
map for (∆− λ) on E.

Now observe that the internal domain X and the external domain (or ends) E share
a common boundary Γ. This means that for any generalised eigenfunction (whose prop-
erties we have defined many times) defined on M , the action of the Neumann to Dirichlet
map calculated on X composed with PJ and the Neumann to Dirichlet map calculated on
E should coincide.

Set
L(λ) =

(
PJN(λ)− Ñ(λ)−1PJ

)
. (4.1)

This matrix, will have a null-space of dimension |J |. Each element of Ker(L) can be
equated with a one of the |J | summands of ϕ(λ, 0, y), as defined in equation 3.16 with in
terms of some, possibly unknown orthonormal basis of Neumann eigenfunctions of ∆Γ.

Applying a singular value decomposition algorithm, or some procedure to find the ker-
nel of a matrix, i.e. QR, gives us |J | kernel vectors.

Let us take the null-space of L

W = {w1, · · · , wJ}.

For each ωj ∈ W we have a representation of a generalised eigenfunction, evaluated at 0,
of the form:

ωj =
⊕
j∈J

(δj,k + Sj,k(λ))
⊕
j∈N\J

Tj(λ), (4.2)

We could now, in theory, extract the scattering matrix from this, but before we are able to
do such things, and for our scattering matrix to be of any use to us, we need to control the
basis of Neumann eigenfunctions. A numerical algorithm for singular value decomposition

49

4.2. Derivatives of the S matrix

will not necessarily give us S(λ) in terms of the basis we want; the basis of Neumann
eigenfunction of Γ that we carefully chose when we began the calculation of N(λ) in the
previous section.

Having found a basis for the null space of (4.1), we restrict our attention to the elements
of these vectors that represent the J Fourier modes and discard the rest by means of ap-
plication of the operator (1−PJ). The image of W under both (1−PJ) and (1−PJ)N(λ)
forms a basis in RJ .

We can think of the linear map τ : RJ −→ RJ , defined on the (1− PJ)wj , by

(1− PJ)ωj 7→ (1− PJ)Nωj ,

as the identity map from the basis {(1− PJ)ω1, · · · , (1− PJ)ωJ} of RJ , to basis
{(1− PJ)Nω1, · · · , (1− PJ)NωJ} of RJ .

We must re-write τ in terms of the standard basis, whose elements represent the cho-
sen basis of the Neumann eigenfunctions of Γ. Thus, when acting our chosen basis of
L2(Γ), τ can be written as,

τ(λ) = {(1− PJ)Nω1, · · · , (1− PJ)NωJ}−1{(1− PJ)ω1, · · · , (1− PJ)ωJ}.

Now we note that applying N to each ωj gives:

N(λ)ωj =
⊕
j∈J

Sj,k(λ)− δj,k
i
√
λ− µj

⊕
j∈N\J

Tj(λ)

i
√
λ− µj

.

One can see now that, as the map (1− P)N will take the J × J matrix form

τ(λ) = (D(λ, 0) + S(λ).D(λ, 0)).(Id + S(λ))−1. (4.3)

This means that finally

S(λ) = (τ(λ)− Ñ(λ))−1(−Ñ(λ)− τ(λ)). (4.4)

4.2 Derivatives of the S matrix

The aim of this section is to be able to calculate S(n)(λ) = ∂n

∂λnS(λ). This is interesting in

its own right but, in our case, the motivation for calculating S(n)(λ) will be to assist us in
or search for resonances later on, by use of the argument principle. We will first outline
the method for obtaining the first derivative, then generalise to higher derivatives.

4.2.1 A Neumann to Dirichlet map for the system on the external do-
main

Let us fix a sheet of Z. We know that if ϕ(λ, x, y) is a generalised eigenfunction, then
(∆− λ)ϕ(λ, x, y) = 0. Thus, when we differentiate with respect to λ, we get:

∂

∂λ
(∆− λ)ϕ(λ, x, y) = (∆− λ)ϕ′(λ, x, y)− ϕ(λ, x, y) = 0.

Indeed, inductively, for any n we get

∂n

∂λn
(∆− λ)ϕ(λ, x, y) = (∆− λ)ϕ(n)(λ, x, y)− ϕ(n−1)(λ, x, y) = 0,

50

4.2. Derivatives of the S matrix

where ϕ(n)(λ, x, y) denotes ∂n

∂λnϕ(λ, x, y) for brevity. One can simply look for a solution
to the resulting system of equations in a similar manner to equation 3.22:

(∆− λ)ϕ(λ, x, y) = 0,
∂ϕ

∂n
|Σ = 0, (4.5)

(∆− λ)ϕ′(λ, x, y)− ϕ(λ, x, y) = 0,
∂ϕ′

∂n
|Σ = 0,

...
...

(∆− λ)ϕ(n)(λ, x, y)− ϕ(n−1)(λ, x, y) = 0,
∂ϕ(n)

∂n
|Σ = 0.

On the other hand, since ϕ(λ, x, y) is known on E, we can recall equation 3.18 and see
that

ϕ(λ, x, y) =
∑
j∈J

(
e−i
√
λ−µjxνj(y) +

∑
k∈J

Sj,k(λ)ei
√
λ−µkxνk(y)

)
+
∑
j /∈J

Tj(λ)ei
√
λ−µjxνj(y),

and deduce that in E

ϕ′(λ, x, y) =
∑
j∈J

(
−ix

2
√
λ− µj

e−i
√
λ−µjxνj(y) +

∑
k∈J

[
S′j,k(λ)−

xSj,k(λ)

2i
√
λ− µk

]
ei
√
λ−µkxνk(y)

)

+
∑
j /∈J

[
T ′j(λ) +

ixTj(λ)

2
√
λ− µj

]
ei
√
λ−µjxνj(y), (4.6)

∂

∂x
ϕ′(λ, x, y) =

∑
j∈J

[
−i

2
√
λ− µj

− x

]
e−i
√
λ−µjxνj(y) (4.7)

+
∑
j,k∈J

[
i
√
λ− µkS′j,k(λ) +

iSj,k(λ)

2
√
λ− µk

− xSj,k(λ)

]
ei
√
λ−µkxνk(y)

+
∑
j /∈J

[
i
√
λ− µjT ′j(λ) +

iTj(λ)

2
√
λ− µj

− xTj(λ)

]
ei
√
λ−µjxνj(y),

At x = 0 these two generalised functions become:

ϕ′(λ, 0, y) =
∑
j∈J

(∑
k∈J

S′j,k(λ)νk(y)

)
+
∑
j∈N\J

T ′j(λ)νj(y), (4.8)

∂

∂x
ϕ′(λ, 0, y) =

∑
j∈J

(
1

2i
√
λ− µj

νj(y) +
∑
k∈J

[
i
√
λ− µkS′j,k(λ)−

Sj,k(λ)

2i
√
λ− µk

]
νk(y)

)

+
∑
j∈N\J

(
i
√
λ− µjT ′j(λ)− Tj(λ)

2i
√
λ− µj

)
νj(y). (4.9)

We can now see that the Neumann to Dirichlet map for the system of equations given by
(4.8) and (4.8) will be of the form

Ñ1(λ) : l2 ⊕ l2 → l2 ⊕ l2.

So by the fact that

∂

∂x
ϕ′(λ, 0, y) = D(0)ϕ′(λ, 0, y) +D(1)ϕ(λ, 0, y)

51

4.2. Derivatives of the S matrix

in addition to the fact that

∂

∂x
ϕ(λ, 0, y) = D(0)ϕ(λ, 0, y),

We can see that

Ñ(1)(λ) =

(
Ñ(λ)PJ 0
∂
∂λÑ(λ) Ñ(λ)

)−1

.

There is no reason for us to limit ourselves to first derivatives. We should go further now
and do the same thing for ϕ(n)(λ, x, y). It is at this point the we take note of the fact that
each successive differentiation of e±i

√
λ−µx respect to λ, produces a factor of of x. Since we

will be focussing on ϕ and ∂
∂xϕ at the boundary, it is unnecessary to differentiate e±i

√
λ−µx

more than once, and all terms that result from such actions, terms in these summands
with a factor of x2 will simply be denoted them as h.o.t..

We will now introduce some new notation: Ñ(n)(λ) and N(n)(λ) to be the Neumann

to Dirichlet maps for ϕ(n)(λ, x, y) on the external and internal domains respectively. Now
let us begin:

ϕ(n)(λ, x, y) =
∑
j∈J

[−xDj(n) + h.o.t] e−i
√
λ−µjxνj(y) (4.10)

+
∑
j,k∈J

x n∑
q=1

(
n

q

)
Dk(q).S

(n−q)
j,k (λ) + S

(n)
j,k (λ) + h.o.t

 ei√λ−µkxνk(y)

+
∑
j /∈J

x n∑
q=1

(
n

q

)
Dj(q).T

(n−q)
j (λ) + T

(n)
j (λ) + h.o.t

 ei√λ−µjxνj(y).

So we can see that

ϕ(n)(λ, 0, y) =
∑
j,k∈J

S
(n)
j,k (λ)νk(y) +

∑
j /∈J

T
(n)
j (λ)νj(y), (4.11)

∂

∂x
ϕ(n)(λ, 0, y) =

∑
j∈J

[−Dj(n)] νj(y) +
∑
j,k∈J

 n∑
q=0

(
n

q

)
Dk(q).S

(n−q)
j,k (λ)

 νk(y) (4.12)

+
∑
j /∈J

 n∑
q=0

(
n

q

)
Dj(q).T

(n−q)
j (λ)

 νj(y).

We can now see that Ñ(n)(λ) will be a block-upper triangular matrix,

Ñ(n)(λ) :
⊕
{0,...,n}

l2 −→
⊕
{0,...,n}

l2,

given by

Ñ(n)(λ) =



Ñ(λ)PJ 0 · · · · · · · · · 0
∂
∂λÑ(λ) Ñ(λ) 0 · · · · · · 0(

2
0

)
∂2

∂λ2
Ñ(λ)

(
2
1

)
∂
∂λÑ(λ)

(
2
2

)
Ñ(λ) 0 · · · 0

· · · · · · · · · · · · · · · 0
· · · · · · · · · · · · · · · 0(

n
0

)
∂n

∂λn Ñ(λ)
(
n
1

)
∂n−1

∂λn−1 Ñ(λ) · · · · · · · · ·
(
n
n

)
Ñ(λ)



−1

52

4.2. Derivatives of the S matrix

4.2.2 A Neumann to Dirichlet map for the system on the internal do-
main

Now we should turn our attention towards the internal domain X. We can compute N(n)(λ)
with an adaptation of Levitin-Marletta’s method. Equation 3.29 describes the method
when used to compute N(λ). The subsequent trick to increase the rate of convergence is
unaffected by our extension.

In the same context as equation 3.29, we will use {Um} to denote the orthonormal Neu-
mann eigenfunctions, µm their corresponding eigenvalues. {νj} will denote orthonormal

basis of L2(Γ) and finally, we will use {Φk} and {Φ(n)
k }, all elements L2(X), to denote

solutions to the following system:

(∆− λ)Φk(λ, x, y) = 0,
∂Φk

∂n
|Σ = 0,

∂Φk

∂n
|Γ = νk0 (4.13)

(∆− λ)Φ′k(λ, x, y)− Φk(λ, x, y) = 0,
∂Φ′k
∂n
|Σ = 0,

∂Φ′k
∂n
|Γ = νk1

...
...

(∆− λ)Φ
(n)
k (λ, x, y)− Φ

(n−1)
k (λ, x, y) = 0,

∂Φ
(n)
k

∂n
|Σ = 0,

∂Φ
(n)
k

∂n
|Γ = νkn ,

where k is the n-tuple {k0, k1, . . . kn}.

We begin, by fixing λ and will now calculate elements of N(n)(λ), which map to Φ(n),
where kn ∈ N and l ∈ Nn :

N(n),kn,l = 〈Nνkn , νl〉 = 〈Φ(n)
k |Γ, νl〉 = 〈Φ(n)

k |Γ,
∂Φ

(n)
l

∂n Γ
〉

= 〈∇Φ
(n)
k ,∇Φ

(n)
l 〉+ 〈∆Φ

(n)
k ,Φ

(n)
l 〉 = 〈∇Φ

(n)
k ,∇Φ

(n)
l 〉+ λ〈Φ(n)

k ,Φ
(n)
l 〉+ 〈Φ(n−1)

k ,Φ
(n)
l 〉.

Since each Φk can be written as
∑

m Φk〈Φk, Um〉 (the same is true for Φ
(n)
k), and by

definition, Φk = (∆− λ)−jΦ(n−j) we get that.

N(n),kn,l =
∑
m

(〈∇Um,∇Um〉+ λ)〈Φ(n)
k , Um〉〈Um,Φ(n)

l 〉+ 〈Φ(n−1)
l ,Φ

(n)
l 〉

=
∑
m

(〈∇Um,∇Um〉+ λ)〈Φ(n)
k , Um〉〈Um,Φ(n)

l 〉+
∑
m

〈Φ(n−1)
k , Um〉〈Um,Φ(n)

l 〉

=
∑
m

(λ− µm)〈Φ(n)
k , Um〉〈Um,Φ(n)

l 〉+
∑
m

〈Φ(n−1)
k , Um〉〈Um,Φ(n)

l 〉. (4.14)

Now, using Green’s second identity, for any j;

〈Φj , Um〉 =
∑
m

1

λ− µm
(〈∆Φj , Um〉 − 〈Φj ,∆Um〉) =

∑
m

1

λ− µm
〈νj , Um|Γ〉 (4.15)

〈Φ(n)
j , Um〉 =

∑
m

1

λ− µm

(
〈∆Φ

(n)
j , Um〉 − 〈Φ(n)

j ,∆Um〉 − 〈Φ(n−1)
j , Um〉

)
.

=
∑
m

1

λ− µm

(
〈νjn , Um|Γ〉 − 〈Φ

(n−1)
j , Um〉

)
.

So then N(n),k,l becomes∑
m

(
〈νk, Um|Γ〉 − 〈Φ

(n−1)
j , Um〉

)
〈Um,Φ(n)

l 〉,

53

4.2. Derivatives of the S matrix

and inductively, we see that

N(n),kn,l =
∑
m

〈νkn , Um|Γ〉〈Um,Φ
(n)
l 〉 =

∑
m

n∑
p=1

(−1)p−1

(λ− µm)p
〈νkn , Um|Γ〉〈Um|Γ, νlp,〉.

Thus the nth block-row forN(n)(λ) is made up of the direct sum of maps defined component-
wise by

η(p)(λ) =
∑
m

(−1)p−1

(λ− µm)p
〈νk, Um|Γ〉〈Um|Γ, νl,〉,

where p runs through 1, . . . n.

We can now finally see that for the system, Nn(λ) is a block upper-triangular matrix,
acting on Φ⊕ · · · ⊕ Φ(n), of the same form as Ñ(n)(λ), given by

N(n)(λ) =



η(1)(λ) 0 · · · · · · · · · 0

η(2)(λ) η(1)(λ) 0 · · · · · · 0

η(3)(λ) η(2)(λ) η(1)(λ) 0 · · · 0

· · · · · · · · · · · · · · · 0
· · · · · · · · · · · · · · · 0

η(n)(λ) η(n−1)(λ) · · · · · · · · · η(1)(λ)



4.2.3 Extracting S(n)(λ)

With this, we can now compute the coefficients of ϕ
(n)
j (λ, 0, y) by finding a basis for the

null space of

Ln =
(
PJN(n) − Ñ(n)

)
.

We will denote such a basis as ω
(n)
1 , . . . ω

(n)
J . Now, finally, using the same argument made

when calculating S(λ)

τn(λ) = {(1− PJ)ω
(n)
1 , · · · , (1− PJ)ω

(n)
J }{(1− PJ)Nω

(n)
1 , · · · , (1− PJ)Nω

(n)
J }

−1,

thus

τn(λ) =

D(n)−
n∑
q=0

(
n

q

)
D(q).S(n−q)(λ)

S(n)(λ)−1

=

D(n)−
n∑
q=1

(
n

q

)
D(q).S(n−q)(λ)−D(0)S(n)(λ)

S(n)(λ)−1

Where all of the S(n−q)(λ) are known, having been previously calculated. Finally we can
say that

S(n)(λ) =

(
Id−D(0)τn(λ)

)−1

.

D(n).τn(λ)−
n∑
q=1

(
n

q

)
D(q).τn(λ).S(n−q)(λ)

 .

54

4.3. Embedded eigenvalues and resonances

4.2.4 A few words about computational cost

Before moving on, we ought to give at least a cursory mention to the issue of computa-
tional complexity and cost. The main strength of this procedure is that the very costly
finite element method only needs to be performed once for each domain. Once this has
been performed, the computation of the scattering matrix and its derivatives is then a
matter of data processing and linear algebra. We will nevertheless make some comments
on the computational complexity of these procedures. The formula for computing N(λ)
uses equation 3.30. When computing N(λ) in practice, we must truncate these sums and
only use a finite number of modes (νk) and eigenfunctions (Um). Sticking with the same
notation as in example 67, we will have K ×M modes in total (there are K ends) and E
eigenfunctions.

We can see that to compute N(λ), we must perform a matrix multiplication between
two rectangular matrices of dimensions K.M ×E and E ×K.M. This has computational
complexity of O(K2M2E).

Once we have obtained the N(λ) or N(n)(λ) we must perform singular value decomposi-
tion and several matrix inversions on square matrices of dimensions K.M or K.M.n2 in
the case where we wish to calculate derivatives. The computational complexity of such
operations is O(3K3M3.n6) and approximately O((K.M.n2)2.4) respectively [32].

As well as the cost of these matrix computations, there is also the unknown, but highly
non-trivial cost of parsing and processing the data we have in order to produce the matri-
ces we perform these operations on. This becomes more costly with more modes, a higher
rank scattering matrix (larger |J |), more derivatives and more ends.

4.3 Embedded eigenvalues and resonances

4.3.1 Embedded eigenvalues

Our operator; the self adjoint extension of (∆− λ), on M , with Neumann boundary con-
ditions, has spectrum R+. We know that the spectrum of an operator is made up of
a disjoint union of its pure point spectrum; eigenvalues, and the residual or continuous
spectrum (See definition 40). The question now arises as to when does the operator have
an eigenvalue embedded in its continuous spectrum; an embedded eigenvalue.

The paper by Evans, Levitin and Vassiliev [33] proved the existence of embedded eigenval-
ues for the Neumann Laplacian on two dimensional waveguides with an obstacle, and/or
deformation of the waveguide so long as the domain has cross-sectional symmetry. The
argument involved looking for antisymmetric solutions ϕ to (∆− λ)ϕ = 0 with all of the
usual boundary conditions. Solutions to such a problem are also solutions to the original
problem without the condition of antisymmetry. The continuous spectrum of such an
operator (antisymmetric) starts at the first transverse Neumann eigenvalue (π

2

w2), thus to
prove existence of an embedded eigenvalue, it is sufficient to prove existence of an eigen-
value below the continuous spectrum for the antisymmetric problem. This was achieved
using cutoff functions and variational methods. The problem is greatly simplified due to
the symmetry, as when we are considering anti-symmetric solutions on such a domain, it
can be reduced to the top or bottom cross section, with Dirichlet boundary conditions on
the midpoint. This was further generalised to waveguides with cylindrical ends by Davies
and Parnovski [34]. Parnovski and Levitin have, amongst others, produced two other pa-
pers on this topic [35] [36].

55

4.3. Embedded eigenvalues and resonances

Embedded eigenvalues can be calculated numerically by looking for zero eigenvalues of the
sub-matrix of L in equation 4.1, obtained by omitting the rows and columns representing
non square integrable modes. As resonances, which are neither Neumann eigenvalues nor
embedded eigenvalues, inhabit the complex plane, this is not an adequate method to locate
them. Fortunately, we can make use of the very useful properties of the scattering matrix
and its derivatives to achieve this.

4.3.2 Resonances and their calculation

We define a resonance to be a pole of the scattering matrix. The relationship between the
resolvent, the Neumann to Dirichlet map and the scattering matrix means that poles of the
resolvent coincide with zeros of the determinant of the the inverse of the scattering matrix,
and their multiplicities will be the same. Previous work on this topic has focused on on
either providing asymptotic bounds for the number of resonances([2] [37] [38] [19] [39]),
or their calculation ([7] [40] [9] [41] [42] [43] [44]). We will of course focus on the latter.

Theorem 65 is now extremely useful to us because it tells us that every pole of S(λ)
on a non-physical sheet of Z coincides with a zero of S(λ∗) in the physical sheet and
vice versa. Remember, we have used λ∗ to denote the canonical projection of λ to the
physical sheet if there is ever any ambiguity about which is which. When both λ and
λ∗ are identified with a subset of the complex plane, they will be in the same location.
Since the resolvent and scattering matrix are holomorphic in the physical sheet, it can’t
have poles there, and we will have no zeros in a non-physical sheet of Z. This means we
can now make use of the argument principle to locate the resonances, and locating reso-
nances in a non-physical sheet of Z has been reduced to locating zeros in the physical sheet.

When we apply the argument principle to the determinant of S(λ) and, using the Ja-
cobi formula, integrate Tr(S(λ)−1.S′(λ)) over a contour in the physical sheet of Z; there
will be no poles to cancel out the effect of any zeros there may be within that contour.
Thus we can detect and even count the number resonances enclosed by a contour. This
approach was featured in the paper by Davies and Aslanyan, but not applied to the scat-
tering matrix [40]. To summarise:

Proposition 74. Let C be a contour in a non-physical sheet of Z with winding number
one then defining the counting function #, C 7→ N which counts the number of poles
enclosed by C, we get that.

#(C) =
1

2πi

∮
C

Tr(S(λ)−1.S′(λ)).

If a contour can be found that contains one or more zeros, we can subdivide then inte-
grate over the subdivisions and repeat the process until a small enough contour has been
found, containing a single resonance. Then we can use Newton’s method to obtain its
exact location, or in practical terms, to a desired accuracy. We can then multiply the
scattering matrix S(λ) by (λ0 − λ)−1, where λ0 is the location of the zero, then apply
Newton’s method again, repeating if necessary to find the order of the zero.

Parnovski and Vassiliev [9] were the first to explicitly compute embedded eigenvalues and
resonances for waveguides with cylindrical ends in two dimensions. Levitin and Marletta

56

4.3. Embedded eigenvalues and resonances

replicated their results with their simple algorithm for calculating Neumann to Dirichlet
maps [7], which has been the inspiration for this work. In the next section, we have used
this method to replicate these results again and to obtain data for a larger class of objects.

57

Chapter 5

Numerical computations on
various domains using the
scattering matrix

As we now have a fast and efficient algorithm for the computation of the scattering ma-
trix, we can now put it to work. This section will describe the outcome of some of our
our numerical experiments. We will first apply it to replicate the results of Levitin and
Marletta and Aslanyan, Parnovski and Vassiliev.

5.1 Cylinders with a Circular Obstacle

Figure 5.1: One of our triangulated interior domains. The waveguide is composed of this
interior domain, with the two ends the same width as the interior domain joined on the
left and right sides.

Two papers provided the inspiration for this. The first by Aslanyan, Parnovski, etc. etc.
and the second by Michael Levitin and Marco Marletta. Amongst other things, Levitin
and Marletta looked at a cylinder (continuous rectangle) of width 2, with a single circular
obstruction. The radius of this obstruction is varied, along with the position of its cen-
tre (vertical displacement), relative to the centre line of the cylinder. It was found that
when the vertical displacement was 0, there exist embedded eigenvalues, as there ought
to be! When this displacement becomes non-zero, the embedded eigenvalue decays to a
resonance [7]. With the parameterisation of λ 7→ λ2, they presented a number of values
for these resonances. We will perform our calculation to the highest accuracy we are able
to and compare our results to theirs. We largely agree with the calculation of Levitin and
Marletta and believe that our calculations offer an improvement on the number of decimal
places.

58

5.1. Cylinders with a Circular Obstacle

Our calculation Levitin-Marletta Aslanyan et al

R = 0.3

δ = 0 1.50497 1.50486 1.5048

δ = 0.1 1.50783 + 0.0001205i 1.5078 + 10−4i 1.5102 +×10−4i

δ = 0.2 1.51651 + 0.0004740i 1.5165 + 5× 10−4i 1.5188 = 5× 10−4i

R = 0.5

δ = 0 1.39138 1.39134 1.3913

δ = 0.1 1.39785 + 0.0009255i 1.3979 + 9× 10−4i 1.3998 + 9× 10−4i

δ = 0.2 1.41779 + 0.0039101i 1.4178 + 3.90× 10−3i 1.4196 + 3.93× 10−3i

5.1.1 Some notes on mesh refinement

Figure 5.2: Some internal domains for R = 0.3, δ = 0.1 with mesh refinement of 10 and
80 respectively.

With these results as a starting point, we were able to look at the effects of mesh refine-
ments, on the accuracy of the results we obtained. Whilst it is obvious that the more
refined the mesh becomes, the more accurate the result, we have tabulated the results of
some experiments to demonstrate just to what extent. The standard method for produc-
ing a triangulated domain in FreeFem is to draw the outline as a union of parameterised
curves, then use the programs own triangulation algorithm after specifying the number of
points on each such curve. Our scale of mesh refinement will be the number of such points
per unit length on the boundary. We have tabulated some results for the calculation of
these resonances, using 2000 eigenvalues and 20 modes for each connected component of
Γ (see Figure 5.2) The reader can see how as the mesh refinement increases, the result
stabilises.

59

5.1. Cylinders with a Circular Obstacle

Mesh refinement R = 0.3 δ = 0.1 R = 0.3 δ = 0.2

10 1.50943 + 0.0001157i 1.51791 + 0.0004530i
15 1.50847 + 0.0001185i 1.51708 + 0.0004657i
20 1.50821 + 0.0001193i 1.51684 + 0.0004691i
25 1.50805 + 0.0001198i 1.51670 + 0.0004712i
30 1.50797 + 0.0001200i 1.51663 + 0.0004722i
35 1.50793 + 0.0001202i 1.51660 + 0.0004727i
40 1.50790 + 0.0001203i 1.51657 + 0.0004731i
45 1.50788 + 0.0001203i 1.51655 + 0.0004734i
50 1.50786 + 0.0001204i 1.51654 + 0.0004736i
55 1.50785 + 0.0001204i 1.51653 + 0.0004737i
60 1.50785 + 0.0001204i 1.51652 + 0.0004738i
65 1.50784 + 0.0001204i 1.51651 + 0.0004739i
70 1.50783 + 0.0001205i 1.51651 + 0.0004740i
75 1.50783 + 0.0001205i 1.51651 + 0.0004740i
80 1.50783 + 0.0001205i 1.51651 + 0.0004740i

N R = 0.5 δ = 0.1 R = 0.5 δ = 0.2

10 1.39874 + 0.0009122i 1.41857 + .00385170i
15 1.39822 + 0.0009199i 1.41811 + 0.0038854i
20 1.39805 + 0.0009225i 1.41796 + 0.0038971i
25 1.39797 + 0.0009237i 1.41789 + 0.0039021i
30 1.39793 + 0.0009243i 1.41786 + 0.0039049i
35 1.39791 + 0.0009247i 1.41784 + 0.0039063i
40 1.39789 + 0.0009249i 1.41782 + 0.0039075i
45 1.39788 + 0.0009251i 1.41781 + 0.0039083i
50 1.39787 + 0.0009252i 1.41781 + 0.0039089i
55 1.39786 + 0.0009253i 1.41780 + 0.0039092i
60 1.39786 + 0.0009254i 1.41780 + 0.0039095i
65 1.39786 + 0.0009254i 1.41779 + 0.0039097i
70 1.39785 + 0.0009255i 1.41779 + 0.0039098i
75 1.39785 + 0.0009255i 1.41779 + 0.0039101i
80 1.39785 + 0.0009255i 1.41779 + 0.0039101i

5.1.2 Some notes on the number of eigenvalues

In the previous subsection, we mentioned that we have used 2000 eigenvalues but gave no
justification for this. Here we intend to present the reader with some graphs and charts
to demonstrate convincingly, if not necessarily rigorously, why this was a good choice.
On the same theme, we ought to observe what happens when we increase the number of
eigenvalues. We will display some convergence graphs that track the value of the leading
coefficient of the scattering matrix as the number of eigenvalues increases, for a selection
of the domains above at a random point.

60

5.1. Cylinders with a Circular Obstacle

Number of eigenvalues R = 0.3 δ = 0.1 R = 0.3 δ = 0.2

200 1.50783 + 0.000120482i 1.51651 + 0.000474043i
400 1.50783 + 0.000120482i 1.51651 + 0.000474045i
600 1.50783 + 0.000120482i 1.51651 + 0.000474045i
800 1.50783 + 0.000120483i 1.51651 + 0.000474045i
1000 1.50783 + 0.000120483i 1.51651 + 0.000474046i
1200 1.50783 + 0.000120483i 1.51651 + 0.000474046i
1400 1.50783 + 0.000120483i 1.51651 + 0.000474046i
1600 1.50783 + 0.000120483i 1.51651 + 0.000474046i
1800 1.50783 + 0.000120483i 1.51651 + 0.000474046i
2000 1.50783 + 0.000120483i 1.51651 + 0.000474046i

N R = 0.5 δ = 0.1 R = 0.5 δ = 0.2

200 1.39785 + 0.000925529i 1.41779 + 0.00391010i
400 1.39785 + 0.000925536i 1.41779 + 0.00391013i
600 1.39785 + 0.000925536i 1.41779 + 0.00391014i
800 1.39785 + 0.000925537i 1.41779 + 0.00391014i
1000 1.39785 + 0.000925537i 1.41779 + 0.00391014i
1200 1.39785 + 0.000925537i 1.41779 + 0.00391014i
1400 1.39785 + 0.000925537i 1.41779 + 0.00391014i
1600 1.39785 + 0.000925537i 1.41779 + 0.00391014i
1800 1.39785 + 0.000925537i 1.41779 + 0.00391014i
2000 1.39785 + 0.000925537i 1.41779 + 0.00391014i

From this it might seem like it is unnecessary to use many eigenvalues, however the
number if eigenvalues does have a significant impact on the coefficients of the scattering
matrix as we shall demonstrate with some graphs. We have picked, as an example, the
domain where R = 0.3 and δ = 0.1 with a mesh refinement of 80. We have plotted the
real and imaginary components of the leading coefficient of the scattering matrix at the
value 1 + 0.1i. This is typical behaviour for any arbitrarily chosen point.

Figure 5.3: The real and imaginary components of the first coefficient of the scattering
matrix plotted against the number of eigenvalues and eigenvectors used to compute it.

It should be noted that the number of modes and the auxiliary point chosen has an
undetectable effect on the calculations as long as the choice is “sensible”. It should also be
noted from our discussions on computational cost that the increasing the number of modes
is the most computationally costly action we can take and that they should be minimised.
For the rest of the results, we have used 20 modes for each end, 1000 eigenvalues and a
mesh refinement of 30.

5.1.3 Observing a resonance transition from one sheet to another

We have calculated resonances and embedded eigenvalues over a wider variety of radii and
displacements, and we have also looked beyond the first non-physical sheet. In the tables

61

5.1. Cylinders with a Circular Obstacle

below and throughout, we will be using the parameterisation λ 7→ λ instead of λ 7→ λ2.

R = 0.3 R = 0.4 R = 0.5 R = 0.6

0 2.26495 2.09281 1.93595 1.81802

0.1 2.27386 + 0.00030i 2.10666 + 0.00111i 1.95414 + 0.00258i 1.84091 + 0.0051i

0.2 2.30007 + 0.00143i 2.14855 + 0.00460i 2.01025 + 0.01108i 1.91246 + 0.024i

0.3 2.34144 + 0.00309i 2.21863 + 0.01073i 2.10809 + 0.02749i 2.04002 + 0.0631i

0.4 2.39242 + 0.00481i 2.31323 + 0.01870i 2.24875 + 0.05208i -

0.5 2.4409 + 0.00510i 2.41444 + 0.02222i - -

0.6 2.67240 + 0.00134i - - -

Of particular interest here is the case where R = 0.2. As δ increases from 0.6 to 0.7 the
resonance moves from the sheet J = {1} to J = {2} as can be seen in the table below.

R = 0.2 J = {1} J = {2}
δ = 0 2.4036 -

δ = 0.1 2.40712 + 0.00006i -

δ = 0.2 2.41709 + 0.00021i -

δ = 0.3 2.43170 + 0.00040i -

δ = 0.4 2.44777 + 0.00059i -

δ = 0.5 2.46101 + 0.00053i -

δ = 0.6 2.46725 + 0.00013i -

δ = 0.7 - 2.46475 + 0.00063i

Figure 5.4: Resonances for the domain R = 0.2 showing the resonance moving to a different
sheet of Z.

62

5.2. Some more numerical results

We have plotted the absolute value of the determinant of the scattering matrix for this
occurrence. We can observe that the “tail” of the resonance is visible on both sheets prior
to the resonance moving sheets.

Figure 5.5: Contour plots showing the resonance crossing from one sheet of Z to another.
Here R = 0.2 throughout.

5.2 Some more numerical results

The main bulk of our numerical experiments concerns circular domains, with one or more
ends attached, and with the possibility of one circular ”obstacle” inside. There are a
number of variables we can alter. We can adjust the the radius and position of the
obstacle, the width of the ends, the number of ends, and in the case of multiple ends, the
angles between them. For each such instance, we have searched for resonances, on sheets
J = {1}, J = {2} and J = {3}, within in the search area given by

{λ : 0 ≤ Re(λ) ≤ 15,−3 ≤ Im(λ) ≤ 3}, (5.1)

and tabulated the results found. We can be confident that the accuracy of the resonances
calculated is at least three decimal places, though we have included the fourth place in
a lighter shade for the reader’s information. In addition to this, we have plotted them
on graphs, with colour coded markers indicating the respective sheet of Z they reside on;
black for J = {1}, red for J = {2} and green for J = {3}. In the case of varying widths,
the ”paths” taken by the resonances as the widths vary continuously are clearly visible in
table form, and we have included them there too.

63

5.3. Varying the widths of ends

5.3 Varying the widths of ends

We use w to denote the width of the end(s). Beforehand, we will show first 9 non-zero
Neumann eigenvalues, of the circle of radius 2, which can be compared to the resonances,
especially when w is small.

0.8476 2.3323 3.6709 4.4130 7.0698 7.1068 10.2911 11.2442 12.3059

Figure 5.6: Neumann eigenvalues for a circle of radius 2

5.3.1 The singe ended case

Figure 5.7: An example of some internal domains from waveguides with a single end:
varying widths.

J = {1}
w = 0.1 w = 0.2 w = 0.5 w = 1

0.8496 + 0.0206i 0.8541 + 0.0408i 0.8753 + 0.0992i 0.9255 + 0.1957i
2.3388 + 0.0416i 2.3525 + 0.0807i 2.413 + 0.1848i 2.5431 + 0.3334i
3.6742 + 0.0145i 3.6814 + 0.0265i 3.7091 + 0.0512I 3.7577 + 0.0802i
4.4246 + 0.0664i 4.4480 + 0.1285i 4.5452 + 0.3009I 4.7425 + 0.5764i
7.0947 + 0.0022i 7.0946 + 0.0011i 7.0947 + 0.0004i 7.8573 + 1.0573i
7.1124 + 0.1328i 7.1721 + 0.2541i 7.4065 + 0.5657i 10.7726 + 0.1699i
10.3293 + 0.1186i 10.4037 + 0.2071i 10.6664 + 0.2940i 12.2884 + 0.8945i
11.2547 + 0.0572i 11.2733 + 0.1151i 11.368 + 0.35467i 12.0991 + 0.3521i
12.3122 + 0.0263i 12.3237 + 0.0502i 12.3567 + 0.1348i 14.7205 + 0.6654i
14.1139 + 0.1527i 14.1949 + 0.2766i 14.4649 + 0.5345i

w = 1.5 w = 2 w = 2.5 w = 3

0.9900 + 0.3010i 1.0710 + 0.4264i 1.1752 + 0.5898i 1.3176 + 0.8290i
2.6965 + 0.4627i 2.8746 + 0.5614i 3.0696 + 0.5767i 3.1713 + 0.4476i
3.8154 + 0.1224i 3.9000 + 0.2054i 4.0569 + 0.3750i 4.5055 + 0.5486i
4.9403 + 0.8597i 5.0970 + 1.1417i 5.1843 + 1.3491i 5.3676 + 1.4029i
7.1276 + 0.0014i 7.1757 + 0.0151i 9.2528 + 2.4257i
8.2933 + 1.6165i 8.6102 + 2.1380i
10.7234 + 0.0883i 11.9290 + 0.0758i
12.0129 + 0.1897i 13.780 + 2.6635i
13.1459 + 2.0493i
14.5252 + 0.3368i

64

5.3. Varying the widths of ends

J = {2}
w = 0.1 w = 0.2 w = 0.5 w = 1

10.2536 + 0.11562i
11.2435 + 0.01777i
14.2167 + 0.42736i

w = 1.5 w = 2 w = 2.5 w = 3

7.2439 + 0.4698i 4.6065 + 0.4829i 2.3695 + 0.3389i 2.6042 + 0.6511i
7.7433 + 0.9299i 11.0769 + 0.08842i 4.9869 + 0.8324i 5.5217 + 1.2393i
10.9022 + 0.7275i 11.8264 + 1.38616i 7.1156 + 0.0011i 7.1356 + 0.0192i
11.1970 + 0.1239i 8.3670 + 1.44198i 9.1096 + 1.9492i

10.9968 + 0.0355i 14.1616 + 2.7545i
12.7631 + 2.1634i

J = {3}
w = 0.1 w = 0.2 w = 0.5 w = 1

w = 1.5 w = 2 w = 2.5 w = 3

10.3673 + 0.2721i 7.0639 + 0.2546i 7.6306 + 0.7147i
14.7867 + 0.8682i 11.831 + 0.0873i 11.6268 + 0.0988i

11.161 + 1.0833i 12.4059 + 2.0430i

65

5.3. Varying the widths of ends

w = 0.1 w = 0.2

w = 0.5 w = 1.0

w = 1.5 w = 2.0

w = 2.5 w = 3.0

Figure 5.8: Some colour coded plots of the location of resonances. In this instance the
width of a single end is changed. The larger markers are the resonances for the domain
indicated, the smaller markers are the entire family of domains with varying widths. This
allows the reader to visualise the paths the resonances take as the width of the end in-
creases.

66

5.3. Varying the widths of ends

5.3.2 The two ended case

Figure 5.9: An example of some internal domains from waveguides with two ends; varying
widths.

J = {1}
w = 0.1 w = 0.2 w = 0.5 w = 1

0.8509 + 0.0414i 0.8580 + 0.0826i 0.8892 + 0.2092i 0.9556 + 0.4519i
2.3452 + 0.0835i 2.3731 + 0.1625i 2.5064 + 0.3788i 2.9102 + 0.6890i
3.6747 + 0.0301i 3.6818 + 0.0596i 3.7019 + 0.1561i 3.6465 + 0.4109i
4.4392 + 0.1318i 4.4930 + 0.2511i 4.7222 + 0.5472i 5.2043 + 0.8424i
7.1259 + 0.0840i 7.1630 + 0.1596i 7.3102 + 0.3771i 7.6756 + 0.9436i
7.1121 + 0.1860i 7.1941 + 0.3502i 7.5071 + 0.7514i 8.0220 + 1.1812i
10.3503 + 0.2468i 10.4585 + 0.4660i 10.8385 + 1.0359i 11.8564 + 0.1919i
11.2828 + 0.1040i 11.3545 + 0.1746i 11.5877 + 0.2568i 11.2959 + 1.7761i
12.3216 + 0.0514i 12.3520 + 0.0935i 12.4763 + 0.2109i 13.0017 + 0.5615i
14.1394 + 0.3189i 14.2642 + 0.6227i 14.7212 + 1.5512i

w = 1.5 w = 2 w = 2.5 w = 3

1.0257 + 0.7763i 1.0765 + 1.2550i 1.0520 + 2.0286i 3.1694 + 0.1047i
3.2914 + 0.3258i 3.2596 + 0.2248i 3.2260 + 0.1682i
3.7096 + 1.5368i 4.2086 + 2.7882i 5.4271 + 0.3014i
5.5731 + 0.7769i 5.6029 + 0.5707i
8.2802 + 1.2045i 8.1398 + 0.7284i
8.5558 + 2.3949i 11.9305 + 0.0507i
11.9213 + 0.1188i
11.0326 + 1.7017i
14.1736 + 0.6063i

w = 1.50 w = 2 w = 2.5 w = 3

J = {2}
w = 0.1 w = 0.2 w = 0.5 w = 1

10.1725 + 0.2234i
11.2516 + 0.0346i
14.2966 + 0.9315i

w = 1.5 w = 2 w = 2.5 w − 3

7.1219 + 0.0348i 4.7058 + 1.2089i 2.1175 + 0.8556i 2.2528 + 2.2713i
7.3486 + 1.0152i 7.1508 + 0.1085i 5.7087 + 2.5471i 6.8281 + 0.2552i
11.3740 + 0.1479i 8.5068 + 2.0717i 7.0720 + 0.2686i 9.5801 + 0.3726i
11.2578 + 1.7061i 11.5491 + 0.5205i 10.3901 + 1.1825i

12.8056 + 2.5197i 13.3884 + 1.2995i

J = {3}
w = 0.1 w = 0.2 w = 0.5 w = 1

11.1845 + 0.0014i

w = 1.5 w = 2 w = 2.5 w = 3

11.8592 + 0.0015i 10.7461 + 0.2789i 7.7114 + 1.2593i 4.1757 + 0.7998i
11.9540 + 0.0523i 11.8240 + 0.2510i

67

5.3. Varying the widths of ends

w = 0.1 w = 0.2

w = 0.5 w = 1.0

w = 1.5 w = 2.0

w = 2.5 w = 3.0

Figure 5.10: Some colour coded plots of the location of resonances. This is similar to the
previous set of plots, but the domains now have two ends.

68

5.3. Varying the widths of ends

5.3.3 The three ended case

Figure 5.11: An example of some internal domains for waveguides with three ends; varying
widths.

J = {1}
w = 0.1 w = 0.2 w = 0.5 w = 1

0.8509 + 0.0310i 0.8585 + 0.0613i 0.8977 + 0.1504i 1.0110 + 0.3023i
2.3406 + 0.0631i 2.3575 + 0.1249i 2.4287 + 0.3136i 2.5605 + 0.6908i
3.6876 + 0.0392i 3.7181 + 0.0572i 3.7754 + 0.0522i 3.8210 + 0.0438i
4.4364 + 0.2060i 4.4858 + 0.4231i 4.7570 + 1.1240i 5.3757 + 2.4361i
7.0954 + 0.0012i 7.0973 + 0.0003i 7.7405 + 0.7594i 7.1394 + 0.0028i
7.1367 + 0.1995i 7.2502 + 0.3719i 10.9137 + 0.1569i 8.5970 + 0.9766i
10.3521 + 0.1822i 10.4892 + 0.3319i 11.2761 + 1.1723i 10.8319 + 0.0763i
11.2476 + 0.0902i 11.2313 + 0.1970i 12.4942 + 0.0991i 12.6999 + 0.2015i
12.3419 + 0.0642i 12.3922 + 0.0862i 12.0468 + 2.8639i
14.2288 + 0.4620i 14.6062 + 0.8252i

w = 1.5 w = 2 w = 2.5 w = 3

1.2045 + 0.4550i 1.4852 + 0.5157i 1.6623 + 0.2910i 4.1989 + 0.4051i
2.6372 + 1.2188i 2.6861 + 2.0245i 4.1456 + 0.2225i 5.7571 + 1.8297i
3.8809 + 0.0547i 3.9864 + 0.0980i 8.1191 + 1.2241i 8.5785 + 0.2062i
10.2237 + 0.2288i 7.8132 + 0.2051i 10.2449 + 2.6780i 11.2726 + 2.0682i
13.0471 + 0.6002i 9.9248 + 0.1923i 13.4925 + 2.6813i

13.5139 + 1.5089i

J = {2}
w = 0.1 w = 0.2 w = 0.5 w = 1

14.4973 + 1.5573i

w = 1.5 w = 2 w = 2.5 w = 3

7.3603 + 0.1101i 4.3538 + 2.2170i 1.2935 + 0.4018i
10.4455 + 1.1805i

J = {3}
w = 0.1 w = 0.2 w = 0.5 w = 1

w = 1.50 w = 2 w = 2.5 w = 3

10.4964 + 0.0004i 10.3713 + 0.0036i 11.4364 + 2.7495i 7.3004 + 0.0429i

69

5.3. Varying the widths of ends

w = 0.1 w = 0.2

w = 0.5 w = 1.0

w = 1.5 w = 2.0

w = 2.5 w = 3.0

Figure 5.12: We now repeat this for three ended domains and a similar pattern emerges.
We can see that with all three diagrams, the resonances start off very close to the eigen-
values of the object without ends (Figure 5.6) and then migrate outwards as the widths
of the ends are increased. Some resonances curl around and cross sheets before doing this
though.

70

5.4. Varying the size of an obstacle of fixed position

5.4 Varying the size of an obstacle of fixed position

With the width of the end(s) fixed at one, we introduce an obstacle in the centre and vary
its width, which we shall denote by R.

5.4.1 The single ended case

Figure 5.13: An example of some internal domains from waveguides with a single end;
varying the obstacle radius.

J = {1}
R = 0 R = 0.1 R = 0.2 R = 0.5

0.9255 + 0.1957i 0.9151 + 0.1942i 0.8843 + 0.1896i 0.72284 + 0.1683i
2.5431 + 0.3334i 2.5420 + 0.3328i 2.5374 + 0.3309i 2.44862 + 0.3196i
3.7577 + 0.0802i 3.8122 + 0.0730i 3.9667 + 0.0509i 4.73258 + 0.1127i
4.7425 + 0.5764i 4.7513 + 0.5775i 4.7840 + 0.5778i 5.14458 + 0.3634i
7.8573 + 1.0573i 7.7798 + 1.0731i 6.7662 + 0.0535i 6.55368 + 0.1566i
10.7726 + 0.1699i 10.7738 + 0.1702i 7.6139 + 1.0741i 7.61349 + 1.1698i
12.0991 + 0.3521i 11.9394 + 0.7791i 10.7582 + 0.1504i 10.1935 + 0.0126i
12.2884 + 0.8944i 12.7264 + 0.3854i 11.7100 + 0.9037i 10.9546 + 1.4582i
14.7205 + 0.6654i 14.7399 + 0.6424i 13.6001 + 0.1020i 14.6424 + 0.3234i

14.8140 + 0.5715i

1 1.5

0.4708 + 0.1652i 0.1683 + 0.3035i
1.8868 + 0.3168i 1.1088 + 0.5125i
4.1287 + 0.4188i 2.7548 + 0.6438i
7.0520 + 0.3768i 5.1091 + 0.7114i
10.1588 + 0.0025i 8.1600 + 0.7175i
10.4560 + 0.0420i 11.8852 + 0.6586i
11.7208 + 0.3288i
13.4591 + 0.3708i
14.7848 + 0.2970i

J = {2}
R = 0 R = 0.1 R = 0.2 R = 0.5

10.2536 + 0.1156i 10.2536 + 0.1156i 10.2537 + 0.1157i 10.1075 + 0.0077i
11.2435 + 0.0178i 11.2395 + 0.0177i 11.1788 + 0.0171i 10.2452 + 0.1138i
14.2167 + 0.4274i 14.2169 + 0.4273i 14.2174 + 0.427i 14.2245 + 0.4250i

1 1.5

9.9999 + 0.0662i 11.7471 + 0.2963i
10.7729 + 0.0065i
12.4841 + 0.0345i
14.0740 + 0.4083i

71

5.4. Varying the size of an obstacle of fixed position

R = 0 R = 0.1

R = 0.2 R = 0.5

R = 1.0 R = 1.5

Figure 5.14: Some plots of the location of resonances with centrally located obstacles of
different radii in the single ended case.

5.4.2 The two ended case

Figure 5.15: An example of some internal domains from waveguides with two ends; varying
the obstacle radius.

72

5.4. Varying the size of an obstacle of fixed position

J = {1}
R = 0 R = 0.1 R = 0.2 R = 0.5

0.9556 + 0.4519i 0.9448 + 0.4470i 0.9127 + 0.4326i 0.7412 + 0.3701i
2.9102 + 0.6890i 2.8937 + 0.6887i 2.8535 + 0.6919i 2.6540 + 0.7014i
3.6465 + 0.4109i 3.7229 + 0.4135i 3.9369 + 0.4135i 5.2090 + 0.3038i
5.2043 + 0.8424i 5.2215 + 0.8149i 5.2678 + 0.7164i 5.2118 + 0.4894i
7.6756 + 0.9436i 7.4808 + 0.9888i 7.0069 + 1.1196i 6.8060 + 1.4799i
8.0220 + 1.1812i 8.0192 + 1.1962i 8.0186 + 1.2313i 8.2708 + 1.2394i
11.8564 + 0.1919i 11.9416 + 0.3141i 11.9336 + 0.5642i 10.5429 + 1.3549i
11.2958 + 1.7761i 11.3061 + 1.7026i 11.3279 + 1.5569i 11.2757 + 1.6419i
13.0017 + 0.5615i 13.1531 + 0.3910i 13.6983 + 0.0910i

R = 1 R = 1.5

0.4537 + 0.3499i 0.8662 + 1.0339i
1.9609 + 0.6718i 2.5511 + 1.3346i
4.3654 + 0.8781i 4.9976 + 1.4890i
7.4886 + 0.7113i 8.1929 + 1.4988i
10.3866 + 0.0248i 12.0949 + 1.3574i
10.7912 + 0.3194i
13.4641 + 0.2284i
13.5376 + 1.4311i

J = {2}
R = 0 R = 0.1 R = 0.2 R = 0.5

10.1725 + 0.2234i 10.1725 + 0.2234i 10.1726 + 0.2235i 10.1016 + 0.0143i
11.2516 + 0.0346i 11.2474 + 0.0345i 11.1865 + 0.0337i 10.1721 + 0.2234i
14.2966 + 0.9315i 14.2966 + 0.9315i 14.2973 + 0.9309i 14.3038 + 0.9249i

R = 1 R = 1.5

9.9120 + 0.1040i 11.7001 + 0.6162i
10.7696 + 0.0115i
12.5095 + 0.0554i
14.1336 + 0.9146i

73

5.4. Varying the size of an obstacle of fixed position

R = 0 R = 0.1

R = 0.2 R = 0.5

R = 1.0 R = 1.5

Figure 5.16: Some colour coded plots of the location of resonances with centrally located
obstacles of different radii in the two ended case.

74

5.4. Varying the size of an obstacle of fixed position

5.4.3 Three ended case

Figure 5.17: An example of some internal domains from waveguides with three ends;
varying the obstacle radius.

J = {1}
R = 0 R = 0.1 R = 0.2 R = 0.5

1.0110 + 0.3023i 0.9992 + 0.2998i 0.9642 + 0.2921i 0.7857 + 0.2582i
2.5604 + 0.6909i 2.5641 + 0.6877i 2.5727 + 0.6779i 2.5182 + 0.6155i
3.8210 + 0.0438i 3.8680 + 0.0385i 4.0022 + 0.0245i 4.7887 + 0.0252i
5.3757 + 2.4361i 5.3817 + 2.4582i 5.4087 + 2.5183i 5.7730 + 2.7362i
8.5969 + 0.9766i 7.0429 + 0.0110i 6.7829 + 0.0511i 6.5441 + 0.1110i
10.8319 + 0.0763i 8.5259 + 0.9947i 8.3739 + 1.0045i 8.3653 + 0.8888i
12.6999 + 0.2015i 10.8268 + 0.0743i 10.7913 + 0.0578i 11.2519 + 2.9488i
12.0468 + 2.8639i 12.9799 + 0.1596i 12.1541 + 2.6009i 14.9104 + 0.0708i

12.0919 + 2.7766i 13.6786 + 0.0603i

R = 1 R = 1.5

0.5276 + 0.2620i 0.1266 + 0.8249i
1.8946 + 0.5344i 0.9068 + 0.4113i
4.6503 + 1.3915i 2.3353 + 2.0831i
7.4274 + 0.4451i 5.5668 + 1.3166i
11.1490 + 0.6697i 8.1279 + 0.9452i
11.7862 + 0.2202i 12.3883 + 2.0901i
14.6938 + 0.0636i

J = {2}
R = 0 R = 0.1 R = 0.2 R = 0.5

14.4973 + 1.5573i 14.4972 + 1.5574i 14.4972 + 1.5577i 10.2020 + 0.0202i
14.4950 + 1.6162i

R = 1 R = 1.5

10.3039 + 0.0913i 11.5871 + 0.9552i
14.4266 + 1.6114i

75

5.5. Varying the position of an obstacle of radius 0.5

R = 0 R = 0.1

R = 0.2 R = 0.5

R = 1.0 R = 1.5

Figure 5.18: Some colour coded plots of the location of resonances with centrally located
obstacles of different radii in the three ended case. In all three cases, the resonances move
more erratically as the radius of the obstacle increases with particularly vigorous motion
at certain times. For this reason, the small markers are unhelpful here. This has been
animated and clip are available online (https://figshare.com/s/5c73783781b80265879a).
A point of interest is that once the obstacle reaches a certain size, all resonances begin to
move in unison towards certain discrete points on the real line.

5.5 Varying the position of an obstacle of radius 0.5

With the ends of fixed width and angles (where they exist equal), we will fix the radius of
the obstacle at 0.5, translate it, by a vector δ; first in the y direction, then the x direction.

76

5.5. Varying the position of an obstacle of radius 0.5

5.5.1 The single ended case

Figure 5.19: An example of some internal domains from waveguides with a single end;
varying the vertical position of the obstacle.

J = {1}
δ = (0, 0) δ = (0, 0.1) δ = (0, 0.2) δ = (0, 0.5)

0.7228 + 0.1683i 0.7230 + 0.1682i 0.7235 + 0.1678i 0.7269 + 0.1655i
2.4486 + 0.3196i 2.4450 + 0.3173i 2.4344 + 0.3106i 2.3669 + 0.2674i
4.7326 + 0.1126i 4.6878 + 0.0702i 4.5518 + 0.0159i 4.0631 + 0.0285i
5.1446 + 0.3634i 5.0712 + 0.4095i 4.9670 + 0.4813i 4.7605 + 0.5692i
6.5537 + 0.1566i 6.4279 + 0.0048i 6.5436 + 0.1213i 6.6118 + 0.0833i
7.6135 + 1.1698i 6.5722 + 0.1449i 6.8712 + 0.0075i 7.7488 + 1.2256i
10.1935 + 0.0126i 7.6224 + 1.1871i 7.6556 + 1.2323i 8.3154 + 0.1535i
10.9546 + 1.4589i 10.2133 + 0.0093i 10.2793 + 0.0020i 10.8161 + 0.7311i
14.6424 + 0.3232i 10.9615 + 1.4410i 10.9825 + 1.3823i 11.3380 + 0.1179i

14.6403 + 0.3168i 14.6292 + 0.2848i 13.2054 + 0.2212i
14.8662 + 0.6091i

δ = (0, 1) δ = (0, 1.4)

0.8157 + 0.0003i 0.7338 + 0.1499i
0.7369 + 0.1591i 0.9400 + 0.0030i
2.1027 + 0.0006i 1.9774 + 0.0170i
2.2612 + 0.1758i 2.6705 + 0.1760i
3.5906 + 0.1372i 3.4467 + 0.1314i
4.3189 + 0.0009i 4.1512 + 0.6733i
4.4729 + 0.6474i 4.6044 + 0.0334i
6.7028 + 0.0023i 6.4204 + 0.0244i
6.9348 + 0.0038i 6.6509 + 0.0521i
7.8345 + 0.0062i 7.1855 + 0.0496i
7.3849 + 1.1557i 7.7420 + 0.8023i
10.4159 + 0.2818i 9.8379 + 0.0272i
10.8786 + 0.0644i 9.9630 + 0.2118i
12.1136 + 0.5138i 10.8567 + 0.0273i
13.6234 + 0.1082i 12.2886 + 0.8418i
14.4912 + 0.7606i 14.4295 + 0.6705i

J = {2}
δ = (0, 0) δ = (0, 0.1) δ = (0, 0.2) δ = (0, 0.5)

10.1075 + 0.0077i 10.1422 + 0.0072i 10.2402 + 0.0014i 10.7611 + 0.0123i
10.2452 + 0.1138i 10.2435 + 0.1148i 10.2417 + 0.1216i 10.2196 + 0.1112i
14.2245 + 0.4250i 14.2246 + 0.4251i 14.2246 + 0.4258i 14.1989 + 0.4334i

δ = (0, 1) δ = (0, 1.4)

9.9183 + 0.0432i 12.5301 + 0.0065i
13.9308 + 0.3962i 13.4939 + 0.2635i

77

5.5. Varying the position of an obstacle of radius 0.5

δ = (0, 0) δ = (0, 0.1)

δ = (0, 0.2) δ = (0, 0.5)

δ = (0, 1) δ = (0, 1.4)

Figure 5.20: Plots showing the location of the resonances for the three sheets as the
obstacle is moved in the y direction.

Figure 5.21: An example of some internal domains from waveguides with a single end;
varying the horizontal position of the obstacle.

78

5.5. Varying the position of an obstacle of radius 0.5

J = {1}
−1.4 −1 −0.5 −0.2

1.0222 + 0.2165i 0.8728 + 0.1512i 0.7549 + 0.1377i 0.7270 + 0.1514i
2.6956 + 0.3753i 2.3424 + 0.3880i 2.4379 + 0.3748i 2.4626 + 0.3346i
3.2732 + 0.0118i 3.3779 + 0.0011i 4.0149 + 0.0166i 4.5173 + 0.0140i
4.9982 + 0.6553i 4.6885 + 0.6671i 4.7881 + 0.7985i 5.1374 + 0.8093i
6.3463 + 0.0012i 6.9434 + 0.1284i 7.4654 + 0.4123i 6.8889 + 0.0100i
8.1574 + 1.1108i 8.7223 + 1.0651i 8.5700 + 0.4235i 7.5298 + 0.9330i
10.0743 + 0.1693i 10.2260 + 0.6504i 10.7400 + 0.2029i 10.2827 + 0.0021i
11.7517 + 0.1644i 11.6403 + 0.0073i 12.1332 + 0.7969i 11.0462 + 1.1096i
13.5506 + 0.1174i 13.9068 + 0.0185i 13.1575 + 0.2820i 14.4983 + 0.1285i
13.8170 + 1.9108i 14.7920 + 1.6958i 14.9036 + 0.3622i

−0.1 0 0.1 0.2

0.7235 + 0.1590i 0.7228 + 0.1683i 0.7250 + 0.1794i 0.73019 + 0.1925i
2.4583 + 0.3253i 2.4486 + 0.3196i 2.4339 + 0.3179i 2.41459 + 0.3212i
4.6444 + 0.0562i 4.7326 + 0.1126i 4.7822 + 0.0709i 4.60956 + 0.0050i
5.2553 + 0.6274i 5.1446 + 0.3634i 4.8467 + 0.3207i 4.72489 + 0.3767i
6.5746 + 0.0883i 6.5537 + 0.1566i 6.7403 + 0.0874i 6.97491 + 0.0108i
7.5108 + 1.0358i 7.6135 + 1.1698i 7.8554 + 1.2193i 8.10826 + 1.0813i
10.2097 + 0.0093i 10.1935 + 0.0126i 10.2231 + 0.0091i 10.2860 + 0.0020i
10.9721 + 1.2496i 10.9546 + 1.4589i 11.0539 + 1.7736i 11.4426 + 2.1556i
14.5846 + 0.2358i 14.6424 + 0.3232i 14.6990 + 0.3802i 14.7446 + 0.3539i

0.5 1 1.4

0.7674 + 0.2468i 1.0102 + 0.3480i 1.1140 + 0.1237i
2.3354 + 0.3731i 2.3919 + 1.0966i 2.9288 + 0.1006i
3.9822 + 0.0065i 3.3878 + 0.0409i 3.5587 + 0.1320i
4.5723 + 0.4418i 4.1455 + 1.0430i 5.5494 + 0.2310i
7.4270 + 0.3564i 6.6443 + 0.9726i 6.8410 + 0.0962i
8.4904 + 0.2103i 7.8119 + 0.0374i 8.7682 + 0.3389i
10.5693 + 0.0919i 10.0088 + 0.9315i 11.3862 + 0.0109i
12.7211 + 0.4540i 11.6363 + 0.0002i 12.6191 + 0.4425i
13.1348 + 0.3870i 13.3636 + 0.0486i
14.5575 + 0.2097i 14.0624 + 0.7323i

J = {2}
−1.4 −1 −0.5 −0.2

10.7373 + 0.0755i 9.9428 + 0.0433i 10.2165 + 0.1125i 10.2414 + 0.0021i
13.4628 + 0.2454i 10.8172 + 0.0504i 10.7621 + 0.0083i 10.2413 + 0.1191i

13.9285 + 0.3677i 14.2091 + 0.4366i 14.2279 + 0.4247i

−0.1 0 0.1 0.2

10.1418 + 0.0065i 10.1075 + 0.0077i 10.1429 + 0.0085i 10.2394 + 0.0011i
10.2445 + 0.1145i 10.2452 + 0.1138i 10.2420 + 0.1148i 10.2410 + 0.1256i
14.2259 + 0.4244i 14.2245 + 0.4250i 14.2244 + 0.4251i 14.2257 + 0.4233i

0.5 1 1.4

10.2245 + 0.1030i 9.9238 + 0.0498i 10.7435 + 0.0041i
10.7572 + 0.0282i 10.8234 + 0.0013i 13.5869 + 1.2249i
14.2180 + 0.3811i 13.9119 + 0.4090i

79

5.5. Varying the position of an obstacle of radius 0.5

δ = (−1.4, 0) δ = (−1, 0)

δ = (−0.5, 0) δ = (−0.2, 0)

δ = (−0.1, 0) δ = (0, 0)

δ = (0.1, 0) δ = (0.5, 0)

80

5.5. Varying the position of an obstacle of radius 0.5

δ = (1, 0) δ = (1.4, 0)

Figure 5.22: Plots showing the location of the resonances for the three sheets as the
obstacle is moved in the x direction.

81

5.5. Varying the position of an obstacle of radius 0.5

5.5.2 The two ended case

Figure 5.23: An example of some internal domains from waveguides with two ends; varying
the vertical position of the obstacle.

J = {1}
δ = (0, 0) δ = (0, 0.1) δ = (0, 0.2) δ = (0, 0.5)

0.7412 + 0.3701i 0.7415 + 0.3699i 0.7424 + 0.3691i 0.7487 + 0.3639i
2.6540 + 0.7014i 2.3321 + 0.0004i 2.3243 + 0.0016i 2.2747 + 0.0097i
5.2090 + 0.3038i 2.6517 + 0.6943i 2.6446 + 0.6732i 2.5884 + 0.5326i
5.2118 + 0.4894i 5.0847 + 0.2988i 4.8398 + 0.3140i 4.1928 + 0.4792i
6.8060 + 1.4799i 5.2108 + 0.4947i 5.2075 + 0.5104i 4.4816 + 0.0001i
8.2708 + 1.2394i 6.4576 + 0.0075i 6.8753 + 0.0032i 5.1636 + 0.6086i

6.8089 + 1.4735i 6.8179 + 1.4545i 6.8976 + 1.3343i
8.2799 + 1.2812i 8.3053 + 1.4024i 8.1725 + 0.1664i

11.4557 + 0.1122i
13.3686 + 0.1799i

δ = (0, 1) δ = (0, 1.4)

0.8243 + 0.0005i 0.7716 + 0.3274i
0.7669 + 0.3492i 0.9529 + 0.0044i
2.1449 + 0.0355i 2.0128 + 0.0711i
2.4196 + 0.2518i 2.8646 + 0.1576i
3.7307 + 0.8344i 3.5064 + 1.0050i
4.3826 + 0.0016i 4.5129 + 0.7434i
4.8888 + 0.7709i 4.6833 + 0.0488i
7.0332 + 0.0052i 6.5208 + 0.1096i
7.8400 + 0.0102i 6.8180 + 0.0371i
7.2547 + 1.0979i 7.6191 + 0.9962i
7.5023 + 1.2409i 7.8962 + 0.7465i
10.7093 + 0.0183i 10.3594 + 0.2451i
10.9728 + 1.4674i 12.7574 + 0.5214i
12.3397 + 0.3141i
13.7010 + 0.0439i

J = {2}
δ = (0, 0) δ = (0, 0.1) δ = (0, 0.2) δ = (0, 0.5)

10.1016 + 0.0142i 10.1353 + 0.0151i 10.2340 + 0.0171i 10.1356 + 0.2078i
10.1721 + 0.2234i 10.1714 + 0.2234i 10.1691 + 0.2231i 10.7664 + 0.0267i
14.3038 + 0.9249i 14.3041 + 0.9252i 14.3044 + 0.9266i 14.2807 + 0.9385i

δ = (0, 1) δ = (0, 1.4)

9.8802 + 0.0315i 9.9015 + 0.0009i
14.0230 + 0.8172i 12.5366 + 0.0112i

13.7606 + 0.4991i

82

5.5. Varying the position of an obstacle of radius 0.5

δ = (0, 0) δ = (0, 0.1)

δ = (0, 0.2) δ = (0, 0.5)

δ = (0, 1) δ = (0, 1.4)

Figure 5.24: Some plots showing the location of the resonances as the obstacle is moved
in the y direction in the two ended case. We can see that, unlike in the singe ended
case, moving the obstacle destroys the symmetry of the domain and causes embedded
eigenvalues to decay to resonances.

Figure 5.25: An example of some internal domains from waveguides with a two ends;
varying the horizontal position of the obstacle.

83

5.5. Varying the position of an obstacle of radius 0.5

J = {1}
δ = (0, 0) δ = (0.1, 0) δ = (0.2, 0) δ = (0.5, 0)

0.7412 + 0.3701i 0.7423 + 0.3722i 0.7458 + 0.3786i 0.7716 + 0.4262i
2.6540 + 0.7014i 2.6513 + 0.7064i 2.6430 + 0.7213i 2.5748 + 0.8261i
5.2090 + 0.3038i 4.9678 + 0.2570i 4.7031 + 0.1972i 4.0017 + 0.1106i
5.2118 + 0.4894i 5.3879 + 0.6558i 5.3651 + 0.9373i 5.0600 + 1.1587i
6.8060 + 1.4799i 6.8994 + 1.2908i 7.2405 + 0.9213i 7.9022 + 0.9331i
8.2708 + 1.2394i 8.2906 + 1.2048i 8.3159 + 1.0858i 8.7312 + 0.3562i
10.5429 + 1.3549i 10.7324 + 1.3443i 11.0150 + 1.1390i 11.4731 + 1.0368i
11.2757 + 1.6419i 11.2279 + 1.7507i 11.4670 + 2.1666i 13.3491 + 0.4910i

13.0244 + 0.7479i

δ = (1, 0) δ = (1.4, 0)

0.9619 + 0.6279i 1.2088 + 0.4344i
2.4196 + 1.5252i 3.1540 + 0.1222i
3.3663 + 0.0313i 3.6774 + 0.7649i
4.6408 + 1.7521i 5.9924 + 0.3516i
7.2658 + 0.6318i 7.1447 + 1.0036i
8.1850 + 1.5538i 9.3574 + 0.9252i
10.6018 + 1.5176i 11.6548 + 0.2055i
11.6388 + 0.0077i 12.5919 + 0.3646i
13.9743 + 0.4695i 13.8100 + 2.0111i
14.9101 + 2.0925i

J = {2}
δ = (0, 0) δ = (0.1, 0) δ = (0.2, 0) δ = (0.5, 0)

10.1016 + 0.0142i 10.1352 + 0.0157i 10.2330 + 0.0195i 10.1424 + 0.2054i
10.1721 + 0.2234i 10.1716 + 0.2232i 10.1704 + 0.2226i 10.7656 + 0.0385i
14.3038 + 0.9249i 14.3034 + 0.9249i 14.3021 + 0.9246i 14.2818 + 0.9025i

δ = (1, 0) δ = (1.4, 0)

9.8450 + 0.0336i 10.7451 + 0.0794i
10.8212 + 0.0507i 13.5035 + 1.5953i
13.9816 + 0.8366i

84

5.5. Varying the position of an obstacle of radius 0.5

δ = (0, 0) δ = (0.1, 0)

δ = (0.2, 0) δ = (0.5, 0)

δ = (1, 0) δ = (1.4, 0)

Figure 5.26: Some plots showing the location of the resonances as the obstacle is moved
in the x direction in the two ended case. In this case, moving the obstacle in the x
direction doesn’t destroy symmetry to the same extent as in the y direction, and we don’t
immediately see new resonances formed from decaying embedded eigenvalues.

5.5.3 The three ended case

Figure 5.27: An example of some internal domains from waveguides with three ends;
varying the vertical position of the obstacle.

85

5.5. Varying the position of an obstacle of radius 0.5

J = {1}
δ = (0, 0) δ = (0, 0.1) δ = (0, 0.2) δ = (0, 0.5)

0.7857 + 0.2582i 0.7870 + 0.2498i 0.7899 + 0.2428i 0.8063 + 0.2315i
2.5182 + 0.6155i 0.7863 + 0.2678i 0.7889 + 0.2788i 0.8135 + 0.3188i
4.7887 + 0.0252i 2.5042 + 0.5866i 2.4827 + 0.5598i 2.3847 + 0.5047i
5.7730 + 2.7362i 2.5240 + 0.6449i 2.5209 + 0.6736i 2.4607 + 0.7370i
6.5441 + 0.1110i 4.7296 + 0.0284i 4.5855 + 0.0357i 4.0750 + 0.0662i
8.3653 + 0.8888i 5.7577 + 2.6940i 4.6226 + 0.0008i 4.5678 + 0.0028i
11.2518 + 2.9486i 6.5472 + 0.1091i 5.7035 + 2.5887i 5.3970 + 2.2979i
14.9104 + 0.0708i 6.6563 + 0.1138i 6.5583 + 0.1042i 6.6300 + 0.0742i

8.3686 + 0.9081i 6.9370 + 0.1190i 7.6579 + 0.2786i
8.3892 + 0.8755i 8.3842 + 0.9327i 8.9914 + 0.4912i
11.2818 + 2.8222i 8.4629 + 0.8586i 8.3916 + 1.0652i
14.8967 + 0.0717i 11.3515 + 2.7356i 10.9543 + 0.2226i

14.8513 + 0.0846i 11.7925 + 2.4953i
12.8555 + 0.2927i
14.8184 + 0.0992i

δ = (0, 1) δ = (0, 1.4)

0.8363 + 0.2549i 0.8298 + 0.2946i
0.9847 + 0.4056i 1.2676 + 0.2862i
2.1161 + 0.7152i 2.6131 + 0.9794i
2.3674 + 0.6254i 2.1611 + 1.4600i
3.5335 + 0.1248i 3.4163 + 0.0740i
4.4867 + 0.0104i 3.8523 + 2.2149i
4.9140 + 2.1375i 4.8536 + 0.0954i
6.7836 + 0.0136i 6.5543 + 0.0550i
7.5278 + 0.1717i 7.2450 + 0.1168i
8.3286 + 0.6988i 7.6758 + 1.6590i
8.0627 + 1.3637i 8.0726 + 0.7751i
10.4712 + 0.0738i 9.8347 + 0.5492i
10.4274 + 0.6301i 10.3957 + 0.0704i
11.9549 + 0.4040i 11.1995 + 0.7058i
11.9206 + 2.7510i 12.6264 + 0.0533i
13.7051 + 0.6438i 14.7061 + 0.0763i

J = {2}
δ = (0, 0) δ = (0, 0.1) δ = (0, 0.2) δ = (0, 0.5)

10.2020 + 0.0202i 10.2192 + 0.0201i 3.0580 + 0.0005i 10.5338 + 0.0132i
14.4950 + 1.6162i 10.2250 + 0.0249i 10.2787 + 0.0246i 14.4798 + 1.6150i

14.4940 + 1.6189i 10.2877 + 0.0296i
3.0647 + 0.0001i 14.4906 + 1.6260i

δ = (0, 1) δ = (0, 1.4)

14.0978 + 1.4082i 13.6302 + 1.2088i

86

5.5. Varying the position of an obstacle of radius 0.5

δ = (0, 0) δ = (0, 0.1)

δ = (0, 0.2) δ = (0, 0.5)

δ = (0, 1) δ = (0, 1.4)

Figure 5.28: Some plots showing the location of the resonances as the obstacle is moved
in the y direction in the three ended case. Here we are able to observe the bifurcation of
some resonances the obstacle is moved from the centre.

Figure 5.29: An example of some internal domains from waveguides with three ends;
varying the horizontal position of the obstacle.

87

5.5. Varying the position of an obstacle of radius 0.5

J = {1}
δ = (−1.4, 0) δ = (−1, 0) δ = (−0.5, 0) δ = (−0.2, 0)

0.7873 + 0.3652i 0.7962 + 0.3487i 0.8289 + 0.2378i 0.7930 + 0.2442i
1.1153 + 0.4457i 0.9697 + 0.2885i 0.7879 + 0.3066i 0.7856 + 0.2770i
2.0490 + 0.2501i 2.2066 + 0.3583i 2.3924 + 0.4731i 2.4841 + 0.5562i
2.6925 + 0.4968i 2.3148 + 0.6485i 2.4480 + 0.7393i 2.5189 + 0.6757i
3.3620 + 0.0785i 3.4217 + 0.0431i 4.0120 + 0.0136i 4.5741 + 0.0278i
4.1929 + 2.2096i 5.3573 + 2.1341i 5.5097 + 2.2797i 5.7234 + 2.5863i
6.3912 + 0.0461i 6.6786 + 0.0039i 6.6261 + 0.0678i 6.5718 + 0.1047i
6.6761 + 0.0142i 6.9882 + 0.1134i 7.5044 + 0.2146i 6.9325 + 0.1252i
8.6966 + 1.1772i 8.6909 + 1.0842i 8.5055 + 0.9751i 8.3954 + 0.8893i
9.0696 + 0.8080i 9.1826 + 0.5290i 9.7626 + 0.4315i 8.5124 + 0.9378i
9.7527 + 0.0743i 10.2396 + 0.0607i 11.4442 + 0.3104i 14.8397 + 0.0964i
10.5725 + 0.3687i 11.6292 + 0.3872i 13.0882 + 0.1067i
13.2967 + 0.2212i 13.9393 + 0.1028i

δ = (−0.1, 0) δ = (0, 0) δ = (0.1, 0) δ = (0.2, 0)

0.7878 + 0.2502i 0.7857 + 0.2582i 0.7863 + 0.2494i 0.7873 + 0.2411i
0.7855 + 0.2674i 2.5182 + 0.6155i 0.7870 + 0.2683i 0.7916 + 0.2808i
2.5046 + 0.5858i 4.7887 + 0.0252i 2.5038 + 0.5875i 2.4811 + 0.5634i
2.5235 + 0.6456i 5.7730 + 2.7362i 2.5245 + 0.6443i 2.5232 + 0.6713i
4.6317 + 0.0001i 6.5441 + 0.1110i 4.7316 + 0.0297i 4.5981 + 0.0447i
4.7276 + 0.0270i 8.3653 + 0.8888i 5.7546 + 2.6940i 4.6220 + 0.0003i
5.7608 + 2.6939i 11.2518 + 2.9486i 6.5397 + 0.1083i 5.6841 + 2.5904i
6.5556 + 0.1099i 14.9104 + 0.0708i 6.6618 + 0.1132i 6.5440 + 0.1026i
6.6500 + 0.1145i 8.3938 + 0.8672i 6.9417 + 0.1132i
8.3760 + 0.8808i 8.3578 + 0.9117i 8.3447 + 0.9422i
8.3881 + 0.9076i 14.8974 + 0.0706i 8.4478 + 0.8156i
14.8959 + 0.0729i 14.8607 + 0.0710i

δ = (0.5, 0) δ = (1, 0) δ = (1.4, 0)

0.7930 + 0.2199i 0.8136 + 0.1988i 0.8459 + 0.1987i
0.8302 + 0.3365i 1.1194 + 0.4407i 1.1897 + 0.1824i
2.3719 + 0.5387i 2.3421 + 0.7619i 2.2623 + 0.7388i
2.4791 + 0.7338i 2.1522 + 1.1817i 3.3234 + 0.7410i
4.1512 + 0.1274i 3.6979 + 0.2156i 3.6111 + 0.1130i
4.5589 + 0.0020i 4.3883 + 0.0128i 4.2666 + 0.0284i
5.2895 + 2.2934i 4.4419 + 2.3607i 6.8529 + 0.2168i
6.6167 + 0.0750i 6.8669 + 0.0191i 6.9969 + 0.0005i
7.8457 + 0.4308i 7.8427 + 0.1651i 6.3864 + 1.9588i
8.5287 + 0.2866i 7.8404 + 0.7543i 7.8151 + 0.6937i
8.2125 + 0.9667i 7.8729 + 1.6446i 8.9574 + 0.3020i
10.5532 + 0.0046i 10.0236 + 1.1017i 10.6537 + 0.0187i
10.7212 + 0.0814i 10.6436 + 0.0096i 11.5515 + 0.0824i
11.9479 + 2.5133i 12.0365 + 0.5682i 12.5734 + 0.1726i
12.5405 + 0.3457i 13.3287 + 0.0781i 14.2606 + 1.1892i
14.7397 + 0.0950i

88

5.5. Varying the position of an obstacle of radius 0.5

J = {2}
δ = (−1.4, 0) δ = (−1, 0) δ = (−0.5, 0) δ = (−0.2, 0)

13.8989 + 0.6895i 14.2838 + 1.3295i 10.5659 + 0.0098i 10.2868 + 0.0250i
14.4389 + 1.6448i 10.2834 + 0.0320i

14.4878 + 1.6279i

δ = (−0.1, 0) δ = (0, 0) δ = (0.1, 0) δ = (0.2, 0)

10.2204 + 0.0203i 10.2020 + 0.0202i 10.2181 + 0.0199i 10.2714 + 0.0222i
10.2243 + 0.0251i 14.495 + 1.6162i 10.2258 + 0.0247i 10.2902 + 0.0295i
14.4936 + 1.6192i 14.4943 + 1.6187i 14.4932 + 1.6244i

δ = (0.5, 0) δ = (1, 0) δ = (1.4, 0)

14.5090 + 1.6076i 14.0822 + 1.4900i 12.9339 + 2.3059i

δ = (−1.4, 0) δ = (−1, 0)

δ = (−0.5, 0) δ = (−0.2, 0)

δ = (−0.1, 0) δ = (0, 0)

89

5.6. Time delay and scattering length

δ = (0.1, 0) δ = (0.5, 0)

δ = (1, 0) δ = (1.4, 0)

Figure 5.30: Some plots showing the location of the resonances as the obstacle is moved
now in the x direction in the three ended case. We see a similar phenomena; some
resonances bifurcate once the obstacle ceases to be located in the centre.

5.6 Time delay and scattering length

As well as the calculation of resonances, there are other useful things we can obtain from
the scattering matrix and its derivative; among these are the time delay and scattering
length. The concept is outlined by Reed-Simon [1]. Müller and Strohmaier have also
covered it in their paper [10], where they give results that relate the time delay to the
geometry of the internal domain. In this section, we will apply this to a selection of our
domains. We should note here that the λ in this context will be a real number less than
µ1 representing the energy of the system and not an element of the Z that is has been
up until now. The notion of time delay hails from dynamic scattering theory, which we
do not intend to cover in this thesis. The Appendix of Müller and Strohmaier’s paper
provides a good overview of the time delay in this setting [4]. For our purposes, we will
take the (non standard) definition to be:

Definition 75. Time delay

T (λ) = −2
√
λS−1(λ).S′(λ)

when λ = 0, we define this to be the scattering length.

Wigner and Eisenbud were the first to present the time delay in this manner for potential
scattering and T (λ) is often called the Eisenbud-Wigner time delay operator [45][46].
Müller and Strohmaier have, amongst other things, proved this formula for the case of
manifolds with cylindrical ends and, in the case of a single end

T (0) = 2
Vol(X)

Vol(Γ)
.

90

5.6. Time delay and scattering length

We will pick a selection of our single ended domains from above and plot their time delay
as λ approaches 0.

Figure 5.31: Circle of radius 2, with end
width 1.5. T (0) should theoretically be
25.1327.

Figure 5.32: Circle of radius 2 with end
width 1, obstacle radius 0.5. T (0) should
theoretically be 11.781.

Figure 5.33: Circle of radius 2 with end
width 1, obstacle radius 0.5 and translated
by 0.5 in the y axis. T (0) should theoret-
ically be 11.781.

Figure 5.34: Circle of radius 2 with end
width 1, obstacle radius 0.5. T (0) should
theoretically be 9.42478

91

Chapter 6

Documentation of code

To produce such results, we have used a collection of FreeFem++ [8], Mathematica and
shell scripts, together with a coherent system of organising the data they produced, which
taken together make up a program. This section will explain all aspects of this, in order
to maximise the utility of this code for anyone who wishes to make use of it and/or add
to it. We should state that, largely due to time constraints, we have only considered
the Neumann waveguides, but this can be very easily adapted for Dirichlet waveguides.
This section contains a detained description of the algorithm, its use and implementa-
tion. If the reader simply wishes to see an overview of the program, we have included a
diagram/flowchart at the end of this section.

6.1 Documentation Freefem++ of code

6.1.1 File structure

As we are dealing with potentially hundreds of domains, we need some for of coherent
system to organise them. We have put FreeFem scripts themselves in the same directory
of FreeFem. Output data from our programs is stored in various nested subdirectories from
where each individual domain has its own further, unique subdirectory containing all the
data associated with that domain. The name of each such directory will contain data for
that domain and, in addition to a possibly brief brief text description, the directory name
will be made up of several numbers, separated by underscores, that uniquely determine
the domain it represents. This is best shown by some examples:

/freefem/circleinrectangle/8_2_2_0.5_0/

/freefem/circle1ends/8_2_3_0_0_0/

/freefem/circle1ends/8_2_3_0.3_0_0/

/freefem/circle2ends/8_2_3_0_0_0_0_0/

/freefem/circle2ends/8_2_3_0_0_0.3_0_0/

/freefem/circle3ends/8_2_3_0_0_0_0_0/

/freefem/circle3ends/8_2_3_0_0_0_0.3_0_0/

The precise meaning of these numbers will be contained in the documentation of the piece
of code that generated the directory. They exist to provide each domain with its own
directory and provide information to a human reader; no other part of the program reads
them.

6.1.2 Generating domains

In FreeFem each domain is constructed from piecewise curves. To create a domain from
scratch is a time consuming, laborious process. To partially alleviate this, we have used a

92

6.1. Documentation Freefem++ of code

series of ”templates”: FreeFem scripts that create a particular type of domain. Changing
a small parameter within the code of the template alters an aspect of the domain pro-
duced, the width of the ends for instance, without having to redraw the domain again
and again from scratch. These templates create mesh files and boundary data and create
the directory they are are saved in. The eigenvalue generating and direct Neumann to
Dirichlet map generating scripts will read these files and store their output in the same
directory. In addition to the mesh file being saved, we also save a JPEG file of a plot of
the domain (some of these are displayed in the previous section) and a text file containing
information about the boundary Γ.

For example, if we were to take the first example of

/freefem/circleinrectangle/8_2_2_0.5_0/

The script will create/has created the subdirectory

/8_2_2_0.5_0/

automatically but when the template was first used, the directory

/circleinrectangle/

needed to be both created manually and the permissions set to make it writable. For the
use of existing templates, this is not an issue, but if the reader wishes to create his own,
or modify existing templates, it is necessary to perform this step.

In the example we have used in this section, the script entitled makecircleinrectangle

will create a rectangle with 8 mesh refinements, of length 2, width 2, and a circle of radius
0.5 cut out from the centre of the rectangle, with Γ consisting of the left and right sides
of the rectangle. The name of these domain directories will vary depending on the type
of domain and, again, the name of the directory will not be read by any further scripts,
except in order to open the directory. The variables that alter the domain produced will
be clearly documented with comments inside the code of each template. To create a very
large number of domains, the entire code of a template can be wrapped in a loop, with
the looping variable used to change the parameters.

Once the mesh generating template script has been run, the mesh containing directory
will contain three files:

bdata.txt

mesh.msh

meshplot.jpg

The mesh.msh file is FreeFem’s own file format and can be imported and exported. The
text file contains information about the boundaries and the number of ends. Whilst
this information is contained in the .msh file, extracting it is very labour intensive. The
contents of the bdata.txt file for our example is:

2,2,0,2,2,0,0,0,2,2

The first number is always the number of ends. The subsequent numbers are the x and
then the y coordinates of the first start point, the x and y coordinates of the first end
point, the x and the y coordinates of the second start point, the x and the y values of the
second end point. If there were more ends then this would continue in a similar manner.
The final two values are the lengths of the two boundaries. Domains/mesh in FreeFem

93

6.1. Documentation Freefem++ of code

are made from the triangulations of boundaries, which are themselves made up piecewise
of parameterised curves and lines. Each curve/line will be given a numerical label. Those
making up ∂X \ Γ will have a label of 0, those making up a connected component of Γ
will be given a number which must correspond to its position in the bdata.txt file. For
example The line from (2, 0) to (2, 2) will have the label 1.

6.1.3 Generating a directly computed Neumann to Dirichlet map

This script is run in tandem with the readerautoevs script, which we shall document
in the next subsection. Its purpose is to directly compute a Neumann to Dirichlet map
of specified spectral parameter and specified dimensions, so that we can make use of
the technique from equation (3.30). To run this script we must have a mesh.msh file,
a bdata.txt file and a directory for them as described above. This script needs three
parameters in its standard input;

• the path to a directory containing only one mesh.msh file and only one bdata.txt

file corresponding to the mesh.

• A value of λ. Throughout this work we have used the value 0.4, but there is no
particular reason for this, it can be any value that is not a Neumann eigenvalue.

• The number of modes to compute N(λ) up to: If you have a domain with k ends,
the dimension of the resulting matrix will be k times this number.

Note 76. When running the ”readerautoevs script, which we shall go over in the next
subsection, the number of modes given to it, for the same domain, must be exactly the
same as this otherwise the Mathematica code that reads the output from both of these
scripts will fail!

The command to activate this script for our sample domain is shown below.

cd "<Path to FreeFem>/freefem" ; /usr/local/bin/FreeFem++

"<Path to FreeFem>/freefem/pivotndm"

<Path to FreeFem>/freefem/circleinrectangle/8_2_2_0.5_0/ 0.4 20

This script will create two text files and store them in the directory that was given to it
as a parameter and which also contains the mesh.msh and bdata.txt files. These are as
follows:

ppmcalcsize.txt

ppmndfcs.txt

The ppmcalcsize.txt file for this domain and parameters entered above will be:

20

0.4

2

This should be fairly self-explanatory; number of eigenvalues of each connected component
of Γ, the spectral parameter for which we have directly compute a Neumann to Dirichlet
map for, the number of ends of our domain (the latter is duplicated as it also appears in
the bdata.txt file, but makes life easier later on, when constructing a Matrix from this
in mathematica to have all of this information in a single file).

The ppmndfcs.txt file contains all of the entries that will make up our directly com-
puter matrix. The entries are computed exactly as described in Definition 66, for our
working example, there will be 1600 entries in this file; (20× 2)× (20× 2), where each 40
entries is a column of the Neumann to Dirichlet map.

94

6.1. Documentation Freefem++ of code

6.1.4 Generating eigendata

• the path to a directory containing only one mesh.msh file and only one bdata.txt

file corresponding to the the mesh

• A value of λ. Throughout this work we have used the value 0.4, but there is no
particular reason for this, it can be any value that is not a Neumann eigenvalue.

• the basis elements of each connected component of Γ to compute N(λ) up to. i.e.
if you have a domain with 2 ends, the dimension of the resulting matrix will be 2
times this number.

cd "<Path to FreeFem>/freefem" ; /usr/local/bin/FreeFem++

"<Path to FreeFem>/freefem/readerautoevs"

<Path to FreeFem>/freefem/circleinrectangle/8_2_2_0.5_0/ 200 20

The command above would call the script readerautoevs which would compute eigendata
for X for 200 eigenvalues and 20. This will eventually be used to construct equation 3.29
with the Um truncated in this case at 200 values and the φj running from 1 to 20× 2 = 4
values. We should repeat: the latter parameter must be the same as in the previous script
otherwise the code will fail to work.

This script will export the output of its computations to three text files, stored in the
same directory as the mesh.msh et al files. These are:

meval.txt

mevec.txt

mnums.txt

The meval.txt file stores the Neumann eigenvalues of the internal domain X; 200 for our
working example. The mevec.txt file stores the values of

〈φk, Um|Γ〉L2(Γ) –see equations 3.29 and 3.30

6.1.5 A shell script to automate the production of, Neumann to Dirich-
let maps and eigendata

There have been times when we have wanted to apply the above two scripts to large
number of domains, indeed most of the time! We have used a shell script to automate this
process somewhat. This should be fairly self-explanatory:

#!/bin/bash

for entry in "<Path to FreeFem>/freefem/circle3ends/"/*

do

if [-e "$entry/meval.txt"]

then

echo "${entry:28} Already has eigenvalues and eigenvectors"

else

cd "<Path to FreeFem>/freefem";

/usr/local/bin/FreeFem++ "<Path to FreeFem>/freefem/readerautoevs"

${entry:28} 2000 20

fi

if [-e "$entry/ppmndfcs.txt"]

95

6.2. Documentation Mathematica code

then

echo "${entry:28} Already has a directly computed nd map"

else

cd "<Path to FreeFem>/freefem";

/usr/local/bin/FreeFem++ "<Path to FreeFem>/freefem/pivotndm"

${entry:28} 0.4 20

fi

done

Obviously the first line can be changed depending on the location of the mesh data to be
processed and the numbers passed into the standard input for the readerautoevs and
pivotndm can be changed to taste.

6.2 Documentation Mathematica code

In the previous section we have described the system we have created to organise our
data and the FreeFem scripts used to generate it, we will now move on to describe the
mathematica code we have used to process it, with the aim of calculating resonances.

6.2.1 Reading the eigendata

As was stated before, each domain is contained in its own directory, whose unique name
describes it in terms of parameters (width of ends, mesh refinements etc). The parent
directory of these is a subdirectory of the ”freefem” directory that describes a class of
objects, in this case a circle with three ends, all generated by a single template script.

Domains =

FileNames[{"<Path to freefem>/freefem/gaunt/*",

"<Path to freefem>/freefem/circle3ends/*"}];

PopupMenu[Dynamic[jj], Domains]

Dynamic[jj]

Dynamic[ImageTake[Import[jj, "meshplot.jpg"], {400, 800}]]

Print[Dynamic[

First[Import[StringJoin[jj, "/mnums.txt"], "Table"][[

2]]]], " Eigenvalues, ",

Dynamic[First[

Import[StringJoin[jj, "/mnums.txt"], "Table"][[3]]]], " Modes"]

This piece of code reads all data containing subdirectories of parent directories given in the
form of a list at the beginning and generates a popup menu of all the available domains,
dynamically displays a plot of their mesh the number of eigenvalues and modes available.

{CDIM,tempLAMBDA,ENDSc}= Flatten[Import[StringJoin[jj,

"/ppmcalcsize.txt"],"Table"]];

tempndm = Transpose[Partition[ToExpression[First[Import[StringJoin[jj,

"/ppmndfcs.txt"], "Table"]]], ENDSc*CDIM]];

H=Flatten[ToExpression[Import[StringJoin[jj, "/mnums.txt"], "Table"]]];

96

6.2. Documentation Mathematica code

{leneval,lenfcs} = {H[[2]],H[[3]]};

Widths = Table[First[H[[i]]], {i, 4, ENDSc + 3}];

Clear[H];

NEVEC = Partition[ToExpression[Flatten[Import[StringJoin[jj, "/mevec.txt"],

"Table"]]],lenfcs*ENDSc];

EVAL =ToExpression[Flatten[Import[StringJoin[jj, "/meval.txt"], "Table"]]];

Here, the reader will be able to see that tempndm is a directly computed Neumann to
Dirichlet map, EVAL are the Neumann eigenvalues for the internal domain and NEVEC are
the values for 〈φk, Um|Γ〉L2(Γ), which was mentioned in the previous section and its role
in the indirectly computed Neumann to Dirichlet map is explained in equations 3.29 and
3.30.

6.2.2 Calculating scattering matrices and their derivatives

Given that a domain has been selected, the tempndm, EVAL and EVEC tables obtained from
it’s data directory, this next, piece of code is what produces the scattering matrices and
their derivatives.

Here we can see that l is the spectral parameter, e is the number of eigenvalues we
wish to use to calculate the scattering matrix and derivatives, m the number of modes, der
the number of derivatives to calculate up to and mo is used to describe the set J.

mo will be how we pass the set J to our program and will take the form of #ENDS
nested tables, each table will decide whether each

√
λ− µj for each end is the positive or

negative branch of the square root; if negative then j appears in the table.

Note 77. We should caution the reader here that this input has the potential to accept
ambiguous information and it is the responsibility of the user to avoid this. If a transverse
Neumann Eigenvalue has multiplicity greater than 1, then the ”mo” should take this into
account. For example, a three ended domain, where all ends have equal width then

mo={{1,2},{1,2},{2}} (6.1)

is wrong. It is telling the program that
√
λ− µ1 will be on the negative branch when it

appears as a transverse eigenvalue of the first and second ends, but not the third.

Obviously if a domain’s widths are all the same, all tables in ”mo” must be the same.
Examples of values for ”mo” for three ended domains whose ends have equal width are:

{{1},{1},{1}}

{{2},{2},{2}}

{{1,2},{1,2},{1,2}}.

As we can see the first entry corresponds to J = {1}, the second to J = {2} and the third
to J = {1, 2}.

TSM[l_, e_, m_, der_, mo_] :=

Block[{picker =

Flatten[Table[j + lenfcs (i - 1), {i, 1, ENDSc}, {j, 1, m}], 1],

97

6.2. Documentation Mathematica code

tempndm = tempndm[[picker, picker]],

NEVEC = Drop[NEVEC, {e + 1, leneval}, None],

EVAL = EVAL[[1 ;; e]],

NDMAP,

rEXNDM,

rDaut,

reEXT,

rxEXT,

rDNATNDMAP,

rDXXK,

rDiagdif,

U, V, W,

TA, OP, dim},

$HistoryLength = 1;

NEVEC = NEVEC[[All, picker]];

(*Indirectly computed Neumann to Dirichlet map with convergence

acceleration "trick"*)

NDMAP = tempndm -

ConjugateTranspose[

NEVEC].DiagonalMatrix[(tempLAMBDA- l)/(l*tempLAMBDA - l*EVAL -

tempLAMBDA*EVAL + EVAL^2)].NEVEC;

(*Neumann to Dirichlet map for the system up to the n-th derivative*)

rDNATNDMAP[n_] :=

Which[n < 0, Return[ConstantArray[0, {m*ENDSc, m*ENDSc}]], n > 0,

Return[-ConjugateTranspose[

NEVEC].DiagonalMatrix[(-1)^n/(l - EVAL)^(n + 1)].NEVEC], True,

Return[NDMAP]];

(*Computes square root of x minus the j-

the Neumann eigenvalue on the w-th end*)

rEXNDM[x_, j_, w_, trig_] :=

If[Im[l] < 0, -I*Sqrt[x - (j*Pi/Widths[[w]])^2],

I*Sqrt[x - (j*Pi/Widths[[w]])^2]];

(*this is the Neumann to dirichlet map on the external domain

differentiated n times*)

rDaut[n_] :=

If[n >= 0,

DiagonalMatrix[

Flatten[Table[

D[rEXNDM[x, jj, ii, 1], {x, n}] /. {x -> l}, {ii, 1,

98

6.2. Documentation Mathematica code

ENDSc}, {jj, 0, m - 1}]]],

ConstantArray[0, {m*ENDSc, m*ENDSc}]];

(*Puts all of the der*der block-

matrices together to construct the external Neumann to Dirichlet

map for the system*)

reEXT := Inverse[

Join[Flatten[

Table[Transpose[

Join[Flatten[

Table[Transpose[rDaut[i - j]*Binomial[i - 1, j - 1]],

{j, 1,der}], 1]]] , {i, 1, der}], 1]]];

(*Puts all of the der*der block-

matrices together to construct the internal Neumann to Dirichlet

map for the system*)

rxEXT :=

Join[Flatten[

Table[Transpose[

Join[Flatten[Table[Transpose[rDNATNDMAP[i - j]], {j, 1, der}],

1]]] , {i, 1, der}], 1]];

(*combines the internal and external Neumann to Dirichlet maps*)

rDXXK = rxEXT - reEXT;

(*this applies the appropriate projection to the combined Neumann

to Dirichlet maps*)

rDXXK[[Flatten[

Table[endz*m + mo[[endz + 1]], {endz, 0, ENDSc - 1}]], All]] =

0;

(*this is multiplied to the previously calculated derivatives of

scattering matrices to help compute the derivative*)

rDiagdif[n_] :=

DiagonalMatrix[

Flatten[Table[

D[rEXNDM[x, jj, ii, 1], {x, n}] /. {x -> l,

jj -> (mo[[ii]] - 1)}, {ii, 1, ENDSc}]]];

{U, V, W} = SingularValueDecomposition[rDXXK, Tolerance -> 0];

dim = Length[Flatten[mo]];

TA = Table[

99

6.2. Documentation Mathematica code

Transpose[

Partition[

Flatten[Table[

W[[All, j]][[m*ENDSc*(cdrv - 1) + i*m + mo[[i + 1]]]], {j,

m*ENDSc*der - dim + 1, m*ENDSc*der}, {i, 0, ENDSc - 1}]],

dim]].Inverse[

Transpose[

Partition[

Flatten[Table[(rxEXT.W[[All, j]])[[

m*ENDSc*(cdrv - 1) + i*m + mo[[i + 1]]]], {j,

m*ENDSc*der - dim + 1, m*ENDSc*der}, {i, 0, ENDSc - 1}]],

dim]]], {cdrv, 1, der}];

OP = {-Inverse[(TA[[1]] - rDiagdif[0])].(rDiagdif[0] + TA[[1]])};

Do[OP =

Join[OP, {Inverse[(TA[[cdrv]] - rDiagdif[0])].(Sum[

Binomial[cdrv - 1, kk]*rDiagdif[kk].OP[[cdrv - kk]], {kk, 1,

cdrv - 1}] - rDiagdif[(cdrv - 1)])}], {cdrv, 2, der}

];

OP]

Exactly how scattering matrices and their derivatives can be/are computed was discussed
in detail in section 4.1; the code featured above is simply an implementation of that, so
it is unnecessary to go into further detail about it here. The output of this function is
a table of matrices; each of appropriate rank. The first entry, the scattering matrix, the
second, its derivative, the third its second derivative etc. etc.

6.2.3 Calculating resonances

We will now give on overview of some functions which, together, allow us to calculate
resonances.

FUNC[a_,modecontrol_] :=

With[{temp = TSM[a, 200,10, 2,modecontrol}]},

Tr[(Inverse[temp[[1]]]).temp[[2]]]];

FUNC Applies the Jacobi formula to obtain the derivative of the determinant of the scat-
tering matrix then divides by the determinant. This will be our integrand (See Proposi-
tion 74).

SMSONATOR[a_, b_, density_] := Block[{simpnum =

Max[IntegerPart[20*Abs[b - a]*density], 20], h},

h = (b - a)/simpnum;

$HistoryLength = 1;

(h/3)*Sum[

FUNC[a + (2 in - 2) h] + 4*FUNC[a + (2 in - 1) h] +

FUNC[a + (2 in) h], {in, 1, (simpnum/2)}]

];

SMSONATOR performs a numerical integration from a to b using the Composite Simpson’s
rule with the density parameter multiplying 20 times the distance from a to b giving the

100

6.2. Documentation Mathematica code

number of subintervals. If this number is insufficiently large, then twenty subintervals will
be used.

Clear[fastgrid]

fastgrid[rmin_, rmax_, rni_, immin_, immax_, ini_, density_] :=

Block[{rh = (rmax - rmin)/rni,

ih = (immax - immin)/ini,

horizints,

vertints,

values},

$HistoryLength = 1;

$Messages = {};

values =

Table[rmin + immin I + rr*rh + ii*ih I, {ii, 0, ini}, {rr, 0,

rni}];

horizints =

Table[SMSONATOR[values[[cc, rr]], values[[cc, rr + 1]],

density], {cc, 1, ini + 1}, {rr, 1, rni}];

vertints =

Table[SMSONATOR[values[[cc, rr]], values[[cc + 1, rr]],

density], {cc, 1, ini}, {rr, 1, rni + 1}];

Flatten[

Table[{-vertints[[ii, jj]] + horizints[[ii, jj]] +

vertints[[ii, jj + 1]] -

horizints[[ii + 1, jj]], {Re[values[[ii, jj]]],

Re[values[[ii + 1, jj + 1]]], 2, Im[values[[ii, jj]]],

Im[values[[ii + 1, jj + 1]]], 2, density}}, {jj, 1, rni}, {ii,

1, ini}], 1]];

Share[fastgrid]

fastgrid performs numerical integration over several rectangular contours using Simp-
son’s rule. The values rmin and rmax are the minimum and maximum real values of the
search area, similarly immin and immax are the minimum and maximum values of the
imaginary component of the total area. rni and ini are the number of intervals the real
and imaginary intervals should be divided into, meaning that a total of rni×ini contour
integrations will be performed. The program will output as many tables of the form:

{<value of the integration>,{ rmin,rmax,2,immin,immax,2,density}} (6.2)

nested in an array themselves, where the rmin, rmax, immin, immax here are the values for
that particular sub-contour, not the ones inputted. The density value here will be the
same as inputted. Each such table is designed so that it can be fed back into the fastgrid
module, without modification, if desired, where it will be further subdivided and contour
integrations performed as before. It is intended that this code be applied iteratively to
various selected elements of its output to give an array of exponentially shrinking contours.
The user can define a search area that is not necessarily square on the first iteration and
use the rni and ini parameters to ensure that the sub-contours will be, after which, if an
element of the output is fed back into the program, these values will both be 2.

Since performing numerical integration over the derivative of the determinant of the scat-
tering matrix is computationally costly, this code re-cycles the integrals of intervals, where

101

6.2. Documentation Mathematica code

two sub-contours share a line segment, providing greater efficiency. A further improvement
on this is the following:

fastergrid[rmin_, rmax_, rni_, immin_, immax_, ini_, density_,

iterations_, vintsl_ , vintsr_, hintst_, hintsb_] :=

Module[{rh, imh, values, horizints, vertints, rsublen, imsublen},

$HistoryLength = 1;

Clear[vertints, horizints];

rh = If[NumberQ[hintst] == True,

N[(rmax - rmin)/(rni*2^(iterations - 1))],

N[(rmax - rmin)/Length[hintst]]];

imh = If[NumberQ[vintsl] == True,

N[(immax - immin)/(ini*2^(iterations - 1))],

N[(immax - immin)/Length[vintsl]]];

values =

Table[rsp + isp I, {isp, immin, immax, imh}, {rsp, rmin, rmax, rh}];

rsublen = (Length[values[[1, All]]] - 1)/rni;

imsublen = (Length[values[[All, 1]]] - 1)/ini;

horizints =

If[NumberQ[hintst] == True,

Transpose[

Table[Table[

SMSONATOR[values[[1 + cc*imsublen, rsi + rsublen*ri]],

values[[1 + cc*imsublen, rsi + rsublen*ri + 1]],

density], {rsi, 1, rsublen}], {ri, 0, rni - 1}, {cc, 0, ini}]],

Join[{Partition[hintst, rsublen]}, {Table[

Table[SMSONATOR[values[[1 + imsublen, rsi + rsublen*ri]],

values[[1 + imsublen, rsi + rsublen*ri + 1]], density], {rsi,

1, rsublen}], {ri, 0, rni - 1}]}, {Partition[hintsb,

rsublen]}]];

vertints =

If[NumberQ[vintsr] == True,

Table[Table[

SMSONATOR[values[[csi + ci*imsublen, 1 + rr*rsublen]],

values[[csi + ci*imsublen + 1, 1 + rsublen*rr]],

density], {csi, 1, imsublen}], {ci, 0, ini - 1}, {rr, 0, rni}],

Transpose[

Insert[Join[{Partition[vintsl, imsublen]}, {Partition[vintsr,

imsublen]}],

Table[Table[

SMSONATOR[values[[csi + ci*imsublen, 1 + rsublen]],

values[[csi + ci*imsublen + 1, 1 + rsublen]], density], {csi,

1, imsublen}], {ci, 0, ini - 1}], 2]]];

Flatten[

Table[{-Total[vertints[[ii, jj]]] + Total[horizints[[ii, jj]]] +

Total[vertints[[ii, jj + 1]]] -

Total[horizints[[ii + 1, jj]]], {Re[

values[[1 + (ii - 1) imsublen, 1 + (jj - 1) rsublen]]],

Re[values[[1 + ii imsublen, 1 + jj rsublen]]], 2,

Im[values[[1 + (ii - 1) imsublen, 1 + (jj - 1) rsublen]]],

102

6.2. Documentation Mathematica code

Im[values[[1 + ii imsublen, 1 + jj rsublen]]], 2, iterations,

density, vertints[[ii, jj]], vertints[[ii, jj + 1]],

horizints[[ii, jj]], horizints[[ii + 1, jj]]}}, {jj, 1,

rni}, {ii, 1, ini}], 1]]

This code peforms numerical integration over the specified area, in the same way as
fastgrid but its output will be a table where each element will have the the form

{<value of the integration>,{ rmin,rmax,2,immin,immax,2,density,

{<lefthandside integrals>},

{<righthandsideintegrals>},

{<bottom inegrals>},{<top integrals>}}}

(6.3)

Each left, one of the right and top bottom integrals will be a table of values such that,
when summed, will be the numerical integral of the respective parts of that contour given
by the preceding rmin, rmax ,immin immax values with the desired number of points as
specified by the density parameter in the beginning. These four tables will then be subse-
quently subdivided on subsequent iterations to give the top bottom left and right integrals
of the contours whose lengths shrink by a factor of two on each iteration. The number of
entries will be determined by the iterations parameter in the beginning. These can then
be fed back into the module on subsequent iteration eliminating the need for numerically
integrating eight line segments on each contour each time. This gives a huge advantage
over the previous procedure; unnecessary, repeated numerical elimination of the same line
segment is completely eliminated!

fastresonancefinder[rmin_, rmax_, rni_, immin_, immax_, ini_,

density_, iterations_] :=

Module[{fastintsiloc, intsiloc, fastrfoutput, rfoutput,

fastiterations},

$HistoryLength = 1;

fastiterations =

IntegerPart[N[Log[2, density*20*(rmax - rmin)/rni] - 1]];

Print[fastiterations, " fast iterations"];

fastintsiloc = {{2 I, {rmin, rmax, rni, immin, immax, ini, density,

fastiterations, 0, 0, 0, 0}}};

fastrfoutput = {{2 I, {rmin, rmax, rni, immin, immax, ini, density,

fastiterations, 0, 0, 0, 0}}};

Do[fastintsiloc = Flatten[fastergrid @@@ fastintsiloc[[All, 2]], 1];

fastintsiloc = Select[fastintsiloc, Abs[Im[#[[1]]]] > 1 &];

Print[fastintsiloc];

If[NumberQ[fastintsiloc[[1, 1]]] == True,

fastrfoutput = fastintsiloc, Break[]];

Print["fast iteration complete"], {it, 0, fastiterations - 1}];

intsiloc =

Flatten[fastgrid @@@

Drop[Drop[Partition[Flatten[fastrfoutput], 13], None, {9, 13}],

None, {1}], 1];

intsiloc = Select[intsiloc, Abs[Im[#[[1]]]] > 0.5 &];

103

6.2. Documentation Mathematica code

rfoutput = intsiloc;

Print[intsiloc];

Do[intsiloc = Flatten[fastgrid @@@ intsiloc[[All, 2]], 1];

intsiloc = Select[intsiloc, Abs[Im[#[[1]]]] > 0.5 &];

If[NumberQ[intsiloc[[1, 1]]] == True, rfoutput = intsiloc, Break[]];

Print["normal iteration complete"], {it, 0,

iterations - fastiterations - 2}];

rfoutput]

This code takes a search area given by rmin- the minimum real value, rmax, the maximum
real value immin and immax the minimum and maximum imaginary values respectively.
The rni and ini parameters give the number of subdivisions of the search area on the
first iteration; for subsequent iterations this will be 2. The rni and ini can be used
to ensure that on the first, (and consequently all the others) iteration, the sub-contours
will be square They can also be used to cut computation time if some information is
known beforehand about the location of the resonances. The density parameter has been
discussed before will simply be passed to the FUNC module that makes use of it when
performing the integration. The iterations parameter is self-explanatory; the number of
times that contours containing resonances should be sub-divided and integrated over. Each
iteration produces an array of tables in the form of (6.3); those with a contour integral
whose imaginary part is less than a threshold (which we have set to 1 here) are discarded,
the rest will be fed back into the fastergridgrid routine. Whilst the numerical contour
integral around resonances should be an integer miultiple of 2π, we would have to take
more interpolation points than is practical to get close to this number; experience has
taught us that the imaginary part of the numerical integral around contours containing
no resonance is very close to zero, hence we discard them if it is less than 1. The user
can control these parameters and make a tradeoff between speed and accuracy. As the
contours become very small, the number of interpolation points per unit length will have
to increase to ensure that there are any points for numerical integration at all, this is
built into the SMSONATOR function. Because the fastergrid module works backwards,
computing the numerical integral for a line segment, by computing the numerical integral
for the smallest possible line segments that would result from successive subdivision of the
original line segment, storing them for later use, then adding them up, this would cause
the number of interpolation points used for the integration of the original line segment to
be larger than desired if too many iterations/subdivisions are requested. To avoid this,
after a certain number of iterations/subdivisions, the normal fastgrid is used instead,
and each iteration will then produce an array of tables in the form of (6.2). At this point
in time, the contours will be so small that numerically integrating around them will be
acceptably fast anyway.

NRM[a_, mcontrol_, iterations_, repeat_,modes_evals_] :=

Module[{temp},

$HistoryLength = 1;

temp = ConstantArray[0, 10];

temp[[1]] = a;

For[nn = 2, nn <= iterations, nn++,

temp[[nn]] =

temp[[nn - 1]] -

1/Tr[(Inverse[

TSM[temp[[nn - 1]], evals, modes, 1, mcontrol][[1]]]).(TSM[

temp[[nn - 1]], evals, modes, 2, mcontrol][[2]])];

If[Abs[Det[TSM[temp[[nn]], 200, 20, 1, mcontrol][[1]]]] == 0,

104

6.2. Documentation Mathematica code

Break[]]

];

{temp[[nn - 1]],

Abs[Det[TSM[temp[[nn - 1]], evals, modes, 1, mcontrol][[1]]]]}]

As we can see, this is an implementation of Newton’s method. a is the start point and
mcontrol is the sheet of our Riemann surface. iterations controls how many iterations
of Newton’s method we use. As usual; modes and evlas control how many modes of Γ
and eigenvalues of X we use to make the Neumann to Dirichlet map.

Clear[NRMSQ]

NRMSQ[rmin_, rmax_, immin_, immax_, evals_, modes_, attempts_,

iterations_, mcontrol_] := Module[{temp, output},

$HistoryLength = 1;

temp = ConstantArray[((rmax + rmin)/2) + ((immax + immin)/2) I,

attempts];

output = ConstantArray[Null, attempts];

Do[

Catch[Do[

If[Abs[Det[TSM[temp[[aa]], evals, modes, 1, mcontrol][[1]]]] ==

0, output[[aa]] = temp[[aa]]; Throw[temp[[aa]]]];

temp[[aa]] =

temp[[aa]] -

1/(Tr[(Inverse[

TSM[temp[[aa]], evals, modes, 1, mcontrol][[1]]]).(TSM[

temp[[aa]], evals, modes, 2, mcontrol][[2]])] -

Sum[1/(temp[[aa]] - temp[[jj]]), {jj, 1, aa - 1}]);

If[Re[temp[[aa]]] < rmin || Re[temp[[aa]]] > rmax ||

Im[temp[[aa]]] < immin || Im[temp[[aa]]] > immax ||

NumberQ[temp[[aa]]] == False, output[[aa]] = Null;

temp[[aa]] = Break[]];

output[[aa]] = temp[[aa]];

, {nn, 2, iterations}]];

, {aa, 1, attempts}];

DeleteCases[output, Null]]

The resonancefinder procedure has given us a contour; this may contain more than one
resonance. We can apply Newton’s method repeatedly in this case. After finding the
exact value of a resonance, λ0 say, the determinant of the scattering matrix (or indeed any
function we wish to find the roots of) can be multiplied by 1

λ−λ0 and Newton’s method
applied to the product [47]. We may repeat this procedure as many times as we wish. This
can be used to determine the order of the resonances as, Newton’s method will converge to
the same number after n repetitions of this procedure for a resonance of order n. The NRMSQ
procedure is similar to the NRM procedure, except that it takes as an input the minimum
and maximum real and imaginary values of a search area: rmin rmax immin immax and
starts Newton’s method in the midpoint between these real and imaginary maxima and
minima. atemts controls how many times to repeat the above procedure and iterations

controls the number of iterations of Newton’s method each time. If during iterations the
value strays beyond the minima and maxima real and imaginary values the code will stop.
The output will be an array of length less or equal to the attempts parameter or even an
empty array if no zeros/resonances are found within the search area.

105

6.2. Documentation Mathematica code

6.2.4 A sample of the implementation of this code for a search area

We believe it would be beneficial to the reader to give an example of these procedures set
up to find resonances of a given search area.

BatchDomains={<an array of paths to domain directories

containing Neumann to Dirichlet

data in string form>};

modetable={<An array of mode information>};

Do[

modecontrol = modetable[[ii]];

FUNC[a_] :=

With[{temp = TSM[a, 600, 20, 2, modecontrol]},

Tr[(Inverse[temp[[1]]]).temp[[2]]]];

Do[

Print[HQBatchDomains[[nnnn]]];

Print[modecontrol];

{CDIM,tempLAMBDA,ENDSc}=

Flatten[Import[StringJoin[BatchDomains[[nnnn]],

"/ppmcalcsize.txt"],"Table"]];

tempndm = Transpose[Partition[ToExpression[First[Import[StringJoin[

BatchDomains[[nnnn]], "/ppmndfcs.txt"], "Table"]]], ENDSc*CDIM]];

H=Flatten[ToExpression[Import[StringJoin[BatchDomains[[nnnn]],

"/mnums.txt"], "Table"]]];

{leneval,lenfcs} = {H[[2]],H[[3]]};

Widths = Table[First[H[[i]]], {i, 4, ENDSc + 3}];

Clear[H];

NEVEC = Partition[ToExpression[Flatten[Import[StringJoin[BatchDomains[[nnnn]],

"/mevec.txt"],

"Table"]]],lenfcs*ENDSc];

EVAL =ToExpression[Flatten[Import[StringJoin[BatchDomains[[nnnn]],

"/meval.txt"], "Table"]]];

finderinput =

Parallelize[

fastresonancefinder[0.1, 15, 15, 0.0000001, 3, 3, 8, 10],

Method -> "FinestGrained"][[All, 2]];

finderinput = Drop[finderinput, None, {3}];

finderinput[[All, 5]] = 1000;

finderinput[[All, 6]] = 20;

finderinput =

Transpose[

Join[Transpose[finderinput],

Transpose[

106

6.2. Documentation Mathematica code

ConstantArray[{4, 25, modecontrol},

Length[finderinput[[All, 1]]]]]]];

output = Flatten[DeleteCases[NRMSQ @@@ finderinput, {}]];

output = Join[output, Conjugate[output]];

output = DeleteDuplicates[output];

Export[StringJoin[HQBatchDomains[[nnnn]], "/resdata_",

ToString[modetable[[ii]]]], output, "Table"];

Print[output];

] ,{nnnn,1,Length[BatchDomains]}], {ii, 1, Length[modetable]}]

This takes an array of paths to various user inputted domains, an array of mode control
tables (we have described how these work at the start of 6.1) and calculates the resonances
for them in a given search area ([0.1− 0.7]× [0.0000001i, 3i] in this example), before sav-
ing them, in table format, in the same directory as the domain data. The output of the
resonancefinder module, is changed slightly so that it can be inputted into the NRMSQ

module to obtain the actual location of the resonances found. Experience has taught us
that if a multi-core processor, or remote Mathematica kernels are available, it is better to
parallelise at this point and not before. The output will be a series of tables of resonances
within the defined search area for the various domains and sheets of Z requested. Within
each table of resonances, each resonance will appear as often as its multiplicity.

107

6.2. Documentation Mathematica code

6.2.5 A visual summary of all of this

Mesh generating
FreeFem script creates

a directory for the
domain and deposits
the following into it:

bdta.txt

mesh.msh

meshplot.jpg

pivotndm is the FreeFem
script that reads the
mesh file and directly

computes the Neumann
to Dirichlet map

directly for a given
value of λ for a given

number of modes.

readerautoevs is the
FreeFem script that
reads the mesh file
and outputs a given
number of Neumann
eigenvalues and the
coefficients of their
Eigenfunctions for a

given number of modes.

ppmcalcsize.txt

ppmfcs.txt

meval.txt

mevec.txt

mnums.txt

bdta.txt

mesh.msh

meshplot.jpg

ppmcalcsize.txt

ppmfcs.txt

mevec.txt

mnums.txt

Mathematica scattering
matrix calculating script

reads all of this data
and creates a Mathe-

matica function called:

TSM

Mathematica resonance
finding scripts looks for

resonances inside a given
search area on a given
sheet of Z and outputs

List of resonances
inside the search area
for a given sheet of Z

108

6.3. 3d Domains

6.3 3d Domains

Everything thus far has been implemented for domains in two dimensions, but this can
extend to three dimensions with only minor modification to the file format and some
knowledge of creating 3d objects in FreeFem with tetgen [48], or some other add-on to
FreeFem++ which allows for the creation of 3-D mesh. Although no results have been
shown here, this program has been extended to three dimensions with full functionality.
There are some slight differences, which we shall document here.

6.3.1 Cuboidal ends

Once a mesh generating template script has been run, the mesh containing directory will
contain two files. Unfortunately FreeFem’s plot feature is unable to save 3d plots.

bdata.txt

mash.msh

Within the bdata.txt file the first number is still the number of ends. The subsequent
numbers are the x, y and z coordinates of the first start point, the x and y and z compo-
nents of the first width vector and the x and the y and z components of the first height
vector. Subsequent ends follow a similar pattern. After this comes the width of the first
end, then the width of subsequent ends, then the same for height. This will be stored in
exactly the same way as for 2d domains. When we wish to generate a directly computed
Neumann to dirichlet map and eigendata, we have created the scripts pivotndm3drect

and readerautoevs3drect, which work exactly the same as for 2d domains. The modes
on the boundary will be ordered as in Example 68. There is also Mathematica code that
works in the same way for such domains to obtain scattering matrices and their derivatives.

6.3.2 Cylindrical, circular ends

A mesh generating template script will create the bdata.txt and mesh.msh files as above.
The structure of the of the bdata.txt file is as follows: The first entry will be the number
of ends, the next three entries will be the x, y and z coordinates of the centre of the first
end, the next three entries will be the x, y and z components of a unit normal vector from
the first end. This pattern is repeated for the number of ends in the domain. The entries
after will be the radii of the first then subsequent ends.

In the FreeFem directory there will contain a comma separated list containing Neumann
Bessel function zeros which we have labelled neumbes0s.txt. These are used in preference
to Mathematica’s internal library of such values. The first entry will be the number of
Bessel functions we have provided zeros for and the second will be the Number of zeros
for each Bessel function. The rest of the table will be the zeros; care must be taken to
make sure that this table is large enough to provide sufficient data for the number of
modes required. As for the cuboidal case, the modes on the boundary will be ordered as
in Example 69.

The scripts pivotndm3dcyl and readerautoevs3dcyl will process the data. Separate
mathematica code will process this to calculate the scattering matrices..

6.3.3 Cylindrical ends with arbitrary cross section

No code currently exists for this although there is no practical impediment to it being
created. We would need to compute an orthonormal basis for each cross section beforehand
then proceed as before.

109

Chapter 7

Concluding remarks

7.1 Future directions

The program is currently limited in that it is restricted to Neumann or Acoustic waveguides
in Euclidian space: extending these techniques and computer programs to those with
Dirichlet or mixed boundary conditions will require some more work, as will allowing
for non-Euclidian metrics on either the internal domain or the ends. There is also the
possibility to look at potentials supported on the internal domain and ends with arbitrary
cross section. A natural application of this program now, will be the study of domain
optimisation questions involving resonances.

7.2 Acknowledgements

Besides friends and family, I wish to thank my supervisor Dr Alexander Strohmaier for all
the inspiration, advice and support during the time of writing and Dr Keith Watling for
going out of his way to supply me with computers, without which the calculations would
be a fraction of what they are.

110

Bibliography

[1] M. Reed and B. Simon, Methods of modern mathematical physics. III. Academic
Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1979. Scattering
theory.

[2] T. Christiansen, “Some upper bounds on the number of resonances for manifolds with
infinite cylindrical ends,” Annales Henri Poincar, vol. 3, no. 5, pp. 895–920, 2002.

[3] M. Levitin and A. Strohmaier, “Computations of eigenvalues and resonances on per-
turbed hyperbolic surfaces with cusps,”

[4] W. Müller and A. Strohmaier, “Scattering at low energies on manifolds with cylin-
drical ends and stable systoles,” Geometric and Functional Analysis, vol. 20, no. 3,
pp. 741–778, 2010.

[5] R. Melrose, Geometric Scattering Theory. Stanford Lectures: Distinguished Visiting
Lecturers in Mathematics, Cambridge University Press, 1995.

[6] D. Yafaev, Mathematical Scattering Theory: General Theory. Mathematical scatter-
ing theory: general theory, American Mathematical Soc., 1992.

[7] M. Levitin and M. Marletta, “A simple method of calculating eigenvalues and res-
onances in domains with infinite regular ends,” Proceedings of the Royal Society of
Edinburgh: Section A Mathematics, vol. 138, pp. 1043–1065, 10 2008.

[8] F. Hecht, “New development in freefem++,” J. Numer. Math., vol. 20, no. 3-4,
pp. 251–265, 2012.

[9] A. Aslanyan, L. Parnovski, and D. Vassiliev, “Complex resonances in acoustic waveg-
uides,” The Quarterly Journal of Mechanics and Applied Mathematics, vol. 53, no. 3,
pp. 429–447, 2000.

[10] W. Müller, “On the analytic continuation of rank one eisenstein series,” Geometric
& Functional Analysis GAFA, vol. 6, no. 3, pp. 572–586, 1996.

[11] M. Reed and B. Simon, I: Functional Analysis. Methods of Modern Mathematical
Physics, Elsevier Science, 1981.

[12] M. Taylor, Partial Differential Equations I: Basic Theory. Applied Functional Anal-
ysis: Applications to Mathematical Physics, Springer, 1996.

[13] J. Lee, Introduction to Smooth Manifolds. Graduate Texts in Mathematics, Springer,
2003.

[14] W. Rudin, Real and complex analysis. Mathematics series, McGraw-Hill, 1987.

[15] E. B. Davies, Spectral Theory and Differential Operators. Cambridge University Press,
1995. Cambridge Books Online.

111

Bibliography

[16] L. Hörmander, The Analysis of Linear Partial Differential Operators II: Differential
Operators with Constant Coefficients. Classics in Mathematics, Springer, 2004.

[17] “NIST Digital Library of Mathematical Functions.” http://dlmf.nist.gov/, Release
1.0.10 of 2015-08-07. Online companion to [18].

[18] F. W. J. Olver, D. W. Lozier, R. F. Boisvert, and C. W. Clark, eds., NIST Handbook
of Mathematical Functions. New York, NY: Cambridge University Press, 2010. Print
companion to [17].

[19] Z. M. Christiansen, Tanya, “Spectral asymptotics for manifolds with cylindrical
ends,” Annales de l’institut Fourier, vol. 45, no. 1, pp. 251–263, 1995.

[20] T. J. Christiansen, Scattering theory on compact manifolds with boundary. PhD thesis,
Massachusetts Institute of Technology. Dept. of Mathematics.

[21] R. B. Melrose, The Atiyah-Patodi-Singer index theorem, vol. 4 of Research Notes in
Mathematics. A K Peters, Ltd., Wellesley, MA, 1993.

[22] L. Guillopé, “Théorie spectrale de quelques variétés à bouts,” Ann. Sci. École Norm.
Sup. (4), vol. 22, no. 1, pp. 137–160, 1989.

[23] R. Mazzeo and A. Vasy, “Analytic continuation of the resolvent of the laplacian on
symmetric spaces of noncompact type,” Journal of Functional Analysis, vol. 228,
no. 2, pp. 311 – 368, 2005.

[24] A. Strohmaier, “Analytic continuation of resolvent kernels on noncompact symmetric
spaces,” Mathematische Zeitschrift, vol. 250, no. 2, pp. 411–425, 2005.

[25] G. Jones and D. Singerman, Complex Functions: An Algebraic and Geometric View-
point. Cambridge University Press, 1987.

[26] M. Reed and B. Simon, Methods of modern mathematical physics: Analysis of oper-
ators. Methods of Modern Mathematical Physics, Academic Press, 1978.

[27] A. Girouard and I. Polterovich, “Spectral Geometry of the Steklov Problem.”.

[28] P. Ŝoĺın, Partial Differential Equations and the Finite Element Method. Pure and
Applied Mathematics: A Wiley Series of Texts, Monographs and Tracts, Wiley, 2005.

[29] P. Tong and J. Rossettos, Finite-element method: basic technique and implementa-
tion. MIT Press, 1977.

[30] D. C. Sorensen, “Implicitly restarted arnoldi/lanczos methods for large scale eigen-
value calculations,” 1996.

[31] R. B. Lehoucq, D. C. Sorensen, and C. Yang, “Arpack users guide: Solution of large
scale eigenvalue problems by implicitly restarted arnoldi methods.,” 1997.

[32] G. Golub and C. Van Loan, Matrix Computations. Johns Hopkins Studies in the
Mathematical Sciences, Johns Hopkins University Press, 1996.

[33] D. V. Evans, M. Levitin, and D. Vassiliev, “Existence theorems for trapped modes,”
Journal of Fluid Mechanics, vol. 261, pp. 21–31, 2 1994.

[34] E. B. Davies and L. Parnovski, “Trapped modes in acoustic waveguides,” Quart. J.
Mech. Appl. Math., vol. 51, no. 3, pp. 477–492, 1998.

112

Bibliography

[35] H. Hawkins and L. Parnovski, “Trapped modes in a waveguide with a thick obstacle,”
Mathematika, vol. 51, no. 1-2, pp. 171–186 (2005), 2004.

[36] E. R. Johnson, M. Levitin, and L. Parnovski, “Existence of eigenvalues of a linear
operator pencil in a curved waveguide—localized shelf waves on a curved coast,”
SIAM J. Math. Anal., vol. 37, no. 5, pp. 1465–1481 (electronic), 2006.

[37] R. B. Melrose, “Polynomial bound on the distribution of poles in scattering by an
obstacle,” Journes quations aux drives partielles, pp. 1–8, 1984.

[38] M. Zworski, “Sharp polynomial bounds on the number of scattering poles of radial
potentials,” Journal of Functional Analysis, vol. 82, no. 2, pp. 370 – 403, 1989.

[39] L. Guillope and M. Zworski, “Scattering asymptotics for riemann surfaces,” Annals
of Mathematics, vol. 145, no. 3, pp. pp. 597–660, 1997.

[40] A. M. Aslanyan and E. B. Davies, “Separation of variables in perturbed cylinders,”
Tech. Rep. math.SP/0012113, Dec 2000.

[41] D. Borthwick, “Distribution of resonances for hyperbolic surfaces,” Exp. Math.,
vol. 23, no. 1, pp. 25–45, 2014.

[42] L. N. Trefethen and T. Betcke, “Computed eigenmodes of planar regions,” in Recent
advances in differential equations and mathematical physics, vol. 412 of Contemp.
Math., pp. 297–314, Amer. Math. Soc., Providence, RI, 2006.

[43] T. Betcke and L. N. Trefethen, “Reviving the method of particular solutions,” SIAM
Rev., vol. 47, no. 3, pp. 469–491 (electronic), 2005.

[44] S. A. Nazarov, K. Ruotsalainen, and P. Uusitalo, “Bound states of waveguides with
two right-angled bends,” J. Math. Phys., vol. 56, no. 2, pp. 021505, 24, 2015.

[45] E. P. Wigner, “Lower limit for the energy derivative of the scattering phase shift,”
Phys. Rev., vol. 98, pp. 145–147, Apr 1955.

[46] L. Eisenbud, Dissertation, Unpublished. PhD thesis, Princeton University.

[47] A. Strohmaier, “Private conversation.”

[48] H. Si, “Tetgen, a delaunay-based quality tetrahedral mesh generator,” ACM Trans.
Math. Softw., vol. 41, pp. 11:1–11:36, Feb. 2015.

113

