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Abstract— The temperature dependence of the Kerr constant
for water has been determined over the range 19 °C—45 °C at
a wavelength of 658 nm. This paper presents the experimental
arrangement used for this purpose and the data obtained, for
which a polynomial fit is provided. A formula is also suggested
to help estimate the variation of the Kerr constant for water with
both temperature and wavelength.

Index Terms— Electrooptic devices, Kerr effect, pulsed electric
field (PEF).

I. INTRODUCTION

HERE are a number of applications for which the intense

pulsed electric fields generated inside liquids during
pulsed power experiments are required to be accurately known,
sometimes in volumes where access is limited. The usual
technique is to measure the voltage between two metallic
electrodes immersed inside the liquid and to calculate the
resulting electric field using either an electrostatic solver (such
as ANSYS Maxwell [1] or Quickfield [2]) or a complex
electromagnetic software (such as CST EM Studio [3]). The
problem is that under transient high electric stress, although
the numerical results are, in principle, very accurate, various
unaccountable breakdown phenomena may occur inside the
liquid. These phenomena are usually difficult to predict
and implement into the calculations, which makes direct
measurement of the electric field the only practical solution.
Such a measurement inside a liquid is only possible using
electrooptic diagnostics based on either the Pockels effect [4]
or the Kerr effect [5]. The Pockels effect uses a crystal as an
active medium and, therefore, the probe must be calibrated
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when inserted in the liquid, while the Kerr effect uses the
liquid itself as an active medium, making the measurement
extremely convenient. This paper deals with the measurement
of the Kerr effect in water.

Kerr effect measurements of electric fields can be
implemented to give valuable in situ information for a
number of high-voltage pulsed power systems. These include
water-filled pulse forming lines, closing switches operated
under water, and monitoring the pulsed electric field in pulsed
electric field (PEF) equipment used either for food processing
or in medical and biological applications. In [5], the main
technical issues related to measuring the Kerr effect in water
were highlighted and it was demonstrated that, in most cases,
the values of the published Kerr constant are at best unreliable.

There are, however, two supplementary issues, not covered
by previous work, that relate to the variation of the Kerr
constant with temperature and pressure.

In practical applications, the temperature is either
deliberately kept higher than room temperature, as in PEF
processing machines, or simply the measurements with the
pulsed power systems take place at an ambient temperature
that is dependent on the season. Detailed theoretical
considerations of the Kerr effect in liquids are complicated
and outside the scope of this paper, but useful estimations can
be made using the Born formula [5]

B:n2+2
An

where n is the refractive index of the liquid, &, its
static dielectric constant, N the number of molecules per
unit volume, ® a complex function depending on the
liquid temperature 7 and its polarizability, and A is the
light wavelength. As the formula shows, the temperature
dependence of the Kerr constant B is complex, because
n and ® both vary with temperature. It is well beyond the aim
of this paper to discuss these complicated theoretical matters
in detail.

The aim of the work described is to provide a reliable
measurement of the temperature variation of the Kerr constant
for water between 19 °C and 45 °C, the temperature
interval mostly used in the above-mentioned applications. The
literature for this subject is scarce and in the limited number
of sources that are available [6]-[8], the data are sometimes
unreliable, for reasons previously detailed [5].
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The pressure variation of B is more complicated than its
temperature dependence and is not discussed in the literature.
However, as explained [5], theoretical predictions for the
pressure (P) dependence of the dielectric constant &, = &,(P)
suggest important variations at a pressure above 200 Mbar.
Such a pressure will certainly affect the measurement and
can be generated by strong shock waves due to electrical
breakdown inside microscopic air bubbles that may be present
in water. The Kerr cell developed for studying the temperature
variation of the Kerr constant cannot be pressurized and the
authors are confident that there are no physical processes
present inside the liquid in a Kerr cell that can generate
pressures of the order of 200 Mbar or higher. The electric
breakdown inside microscopic air bubbles, if present, is
controlled by the electric field intensity. Hundreds of tests
performed for the work reported in [5] showed that, even
when strong electric fields up to 360 kV/cm are generated,
the Kerr constant remained unchanged. The conclusion is that
if microscopic air bubbles are indeed present, they do not
influence the results obtained. If shock waves are on purpose
generated to produce high pressures, the technique will not
provide reliable results. In preliminary testing with one of the
first Kerr cells [5], shock waves were generated inside the
liquid by accidental electrical breakdown, strongly disturbing
the laser light beam and making the recording difficult to
interpret.

Taking all the above features into account, the pressure
dependence in the tests performed for this work is completely
neglected.

As a final comment, the Kerr constant can also be influenced
by the frequency f of the electric field. Fortunately, for
most liquids including water, the dispersion of the dielectric
constant &, = &,(f) remains constant up to about 1 GHz.

II. EXPERIMENTAL ARRANGEMENT

The experimental arrangement, presented in Figs. 1 and 2, is
similar to that used in previous Kerr experimentation [5], [9].
A 1 = 658-nm laser launches a light beam through a
water-filled Kerr cell maintained at a constant temperature by
a water bath surrounding the cell. The temperature inside the
cell is accurately measured using a thermocouple immediately
before and after each test. The water inside the cell is
both purified and heated by a system comprising a pump, a
filter, and a heating resistance. The authors have not studied
the variation of the Kerr constant with water salinity or
when additives are present. However, demineralized water
(resistivity 33 kQ - cm) and tap water (resistivity between
4 kQ - cm and 5 kQ - cm) used in previous experiments [5]
provided identical results.

The Kerr cell described in [5] uses a pair of
400-mm long parallel-plate stainless-steel electrodes held
d = 5.00 & 0.05 mm apart with the aid of a polyethylene
support. For the present work, however, the material for the
support was changed to Polymethylmethacrylate, having a
thermal expansion coefficient of about 70 x 107%/°K, so
that even a 20 °C temperature increase will cause only a
7 pum increase of the 5 mm initial separation measured
at 25 °C, representing a change of 0.14%. The cell was
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Fig. 1. Practical arrangement for Kerr experiments, with the main elements
listed below: Electrical: TG70 is a pulsed voltage generator connected
to the Kerr cell electrodes, with the high-voltage sensor attached to an
oscilloscope (OSC 1). Optics: a battery-operated laser launches the light
into the Kerr cell, with P1 and P2 being two crossed polarizers and L a
collimating lens connected to a optical fiber; O/E represents an optoelectronic
convertor attached to an oscilloscope (OSC 2). Water system: a heated water
tank (heater) is connected through a pump and filter (not shown) to the
Kerr cell.

Fig. 2.
high-voltage sensor and water heating tank. (b) Detail showing a polarizer
and the high-precision mechanical components used to align the collimator
lens.

Experimental assembly. (a) Overall view of the Kerr cell with

mounted vertically to encourage air bubbles to surface easily.
The transient electric field E(t) was generated between the
cell electrodes by the application of a voltage impulse from
a high-voltage trigger generator type TG-70 (L-3 Applied
Technologies [10]). The corresponding time-varying light
intensity /(¢) detected by an optoelectronic converter can be
predicted from [5]

5 (1) 5 (TBI'V3(t)
I(t) = Imax51n2 (T) = ImaX51n2 (T (2)
where Iy is the maximum light intensity, J the
retardation between the two electric field components of the

linearly polarised light, and I’ = d> fé E(x)%dx the effective
optical path length, calculated for the present cell using
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Fig. 3. Typical oscilloscope recordings at various temperatures. Left column:
the train of electric field impulses applied between the Kerr cell electrodes,
derived from the voltage signal. Right column: the corresponding recorded
optical signals (blue lines). Qualitatively, a decrease in the Kerr constant for
higher water temperatures is clearly indicated by a reduced number of light
oscillations. Theoretical predictions (red lines) using (1) and voltage data are
practically indistinguishable, demonstrating that no external interference has
disturbed the tests.

3-D ANSYS Maxwell software as I’ = 404.11 mm. The
voltage V (r) applied to the Kerr cell electrodes was measured
using a North Star voltage probe type PVM 6 [11], mounted
in a way different from that used in [5], a technique adopted
to simplify data interpretation and improve the precision of
the measurement (see the Appendix). The voltage probe used
in the tests has an accuracy guaranteed by the manufacturer
of less than 1.5% and the authors used a similar probe kept
as a reference to check the calibration, before performing
experiments with the new Kerr arrangement.

III. RESULTS

In each test, a reproducible train of pulsed electric
fields with a maximum peak exceeding 100 kV/cm was
applied between the Kerr cell electrodes, while from
test to test the water temperature was varied between
292 K (19 °C) and 318 K (45 °C). Due to presently not
well-understood phenomena (accumulation of air bubbles,
water turbulence, etc.), higher temperature shots do not
provide reliable data. Typical experimental results are shown
in Fig. 3.

The technique used to analyze the results was presented
previously [5]. Briefly, B is calculated only at certain points,
i.e., voltage (i.e., electric field) peaks, where the precision
is the highest. The fact that in Fig. 3 the trace provided by
formula is practically indistinguishable from the real light trace
is not related to any precision, as this information is not used
in the measurement of the Kerr constant. It only serves to
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Fig. 4. Temperature dependence of the Kerr constant for water at 658 nm.
Full circles are experimental data while the line represents a temperature
polynomial fit (see text).
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Fig. 5. Alternative ways of mounting the voltage sensor to measure the
voltage impulse applied to a Kerr cell, represented by the dotted rectangle.

demonstrate that there is no external interference disturbing the
actual test. The measurement of the Kerr constant is, however,
affected by the following errors [5]:

AB A1) AV (1)
B 5(t) ﬂ_i it V()

The detailed analysis [5] is perfectly applicable to the
present work and shows the total error for each right-hand side
term is, respectively, £2%, £3%, £1%, and 3%, resulting in
a very conservatively estimated total error of less than +10%.
It is important to note that the statistical scatter for many
identical experiments is always much less than this.

As expected, the Kerr constant B is affected by the
temperature 7 and, for the data points in Fig. 4, the best
polynomial interpolation (presented in a form similar to that
used in previous work [6]-[8]) was found as

3 A
:ZT_i

k=0

Al

3)

B (T; /lref)

Il 4
B (Tref, jvref) ( )

where the result is normalized to the Kerr constant
B(Tret, Aref) = 2.746 - 1071 (m/V?) at an arbitrarily chosen
reference temperature of Trer = 294 K, with Aef = 658 nm.
The four polynomial constants are

Ag =
Ay

12.59900; A; = —1.16036-10* K
3.65080 - 10° K* A3 = —3.65043 - 10% K3.



The nonlinear least-squares fit mathematical procedure
used in obtaining the four constants provided a correlation
coefficient of 0.987 with a confidence level of 0.99. The
error in calculating B using (4) is conservatively estimated
as +10%.

IV. CONCLUSION

This paper has accurately defined the Kerr constant for
water for a range of temperatures between 19 °C and 45 °C.
When Kerr sensors use laser wavelengths A slightly different
from that of this paper, the appropriate Kerr constant can be
estimated with £10% error from

3

B(T, 2) ~ B(Tret, zm% > % )
k=0

The results obtained represent an important step in the

development of a reliable and accurate pulsed electric field

measurement technique. It is of particular value for PEF

treatment systems and in general for water-filled HV pulsed

power components such as transmission lines, capacitors, and
spark gaps.

APPENDIX

Fig. 5 presents two ways in which a voltage sensor can be
mounted to measure the voltage impulse applied across the
Kerr cell capacitance C.

1) In this case, a current i having a high time rate-of-change
di/dt flows through the cell and, therefore, the voltage
across C is different from that measured by the voltage
sensor, which includes the supplementary inductive term
L-di/dt. To obtain the required result, a correction must
be made, as indicated in [5].

2) In this case, the connection between the sensor and
the Kerr cell has a low value of self-inductance L
and, due to the high-impedance of the sensor, the time
rate-of-change of the current i is extremely small and
the inductive voltage term L - di1/dt is consequently
negligible. In this case, the sensor measures accurately
the voltage across C and no corrections are required.

Another voltage measurement issue is related to the
inductive effects introduced by the self-inductance of the
connection to ground. To minimize as much as possible
the parasitic inductance between the ground and the lower
plate of the Kerr cell capacitor, a wide (300 mm) and
relatively short (less than 0.8 m) copper sheet was used. The
laboratory ground is a large area (many square meters) of
thin copper layer covered by wooden plates for protection and
connected to a purpose-made low-resistance ground situated in
the immediate vicinity of the pulsed power laboratory where
experiments took place.
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I. INTRODUCTION

HERE are a number of applications for which the intense

pulsed electric fields generated inside liquids during
pulsed power experiments are required to be accurately known,
sometimes in volumes where access is limited. The usual
technique is to measure the voltage between two metallic
electrodes immersed inside the liquid and to calculate the
resulting electric field using either an electrostatic solver (such
as ANSYS Maxwell [1] or Quickfield [2]) or a complex
electromagnetic software (such as CST EM Studio [3]). The
problem is that under transient high electric stress, although
the numerical results are, in principle, very accurate, various
unaccountable breakdown phenomena may occur inside the
liquid. These phenomena are usually difficult to predict
and implement into the calculations, which makes direct
measurement of the electric field the only practical solution.
Such a measurement inside a liquid is only possible using
electrooptic diagnostics based on either the Pockels effect [4]
or the Kerr effect [5]. The Pockels effect uses a crystal as an
active medium and, therefore, the probe must be calibrated
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when inserted in the liquid, while the Kerr effect uses the
liquid itself as an active medium, making the measurement
extremely convenient. This paper deals with the measurement
of the Kerr effect in water.

Kerr effect measurements of electric fields can be
implemented to give valuable in situ information for a
number of high-voltage pulsed power systems. These include
water-filled pulse forming lines, closing switches operated
under water, and monitoring the pulsed electric field in pulsed
electric field (PEF) equipment used either for food processing
or in medical and biological applications. In [5], the main
technical issues related to measuring the Kerr effect in water
were highlighted and it was demonstrated that, in most cases,
the values of the published Kerr constant are at best unreliable.

There are, however, two supplementary issues, not covered
by previous work, that relate to the variation of the Kerr
constant with temperature and pressure.

In practical applications, the temperature is either
deliberately kept higher than room temperature, as in PEF
processing machines, or simply the measurements with the
pulsed power systems take place at an ambient temperature
that is dependent on the season. Detailed theoretical
considerations of the Kerr effect in liquids are complicated
and outside the scope of this paper, but useful estimations can
be made using the Born formula [5]

_n2+2

n

B

(e +2)°NO (1

where n is the refractive index of the liquid, ¢, its
static dielectric constant, N the number of molecules per
unit volume, ® a complex function depending on the
liquid temperature 7 and its polarizability, and A is the
light wavelength. As the formula shows, the temperature
dependence of the Kerr constant B is complex, because
n and ® both vary with temperature. It is well beyond the aim
of this paper to discuss these complicated theoretical matters
in detail.

The aim of the work described is to provide a reliable
measurement of the temperature variation of the Kerr constant
for water between 19 °C and 45 °C, the temperature
interval mostly used in the above-mentioned applications. The
literature for this subject is scarce and in the limited number
of sources that are available [6]-[8], the data are sometimes
unreliable, for reasons previously detailed [5].
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The pressure variation of B is more complicated than its
temperature dependence and is not discussed in the literature.
However, as explained [5], theoretical predictions for the
pressure (P) dependence of the dielectric constant &, = &,(P)
suggest important variations at a pressure above 200 Mbar.
Such a pressure will certainly affect the measurement and
can be generated by strong shock waves due to electrical
breakdown inside microscopic air bubbles that may be present
in water. The Kerr cell developed for studying the temperature
variation of the Kerr constant cannot be pressurized and the
authors are confident that there are no physical processes
present inside the liquid in a Kerr cell that can generate
pressures of the order of 200 Mbar or higher. The electric
breakdown inside microscopic air bubbles, if present, is
controlled by the electric field intensity. Hundreds of tests
performed for the work reported in [5] showed that, even
when strong electric fields up to 360 kV/cm are generated,
the Kerr constant remained unchanged. The conclusion is that
if microscopic air bubbles are indeed present, they do not
influence the results obtained. If shock waves are on purpose
generated to produce high pressures, the technique will not
provide reliable results. In preliminary testing with one of the
first Kerr cells [5], shock waves were generated inside the
liquid by accidental electrical breakdown, strongly disturbing
the laser light beam and making the recording difficult to
interpret.

Taking all the above features into account, the pressure
dependence in the tests performed for this work is completely
neglected.

As a final comment, the Kerr constant can also be influenced
by the frequency f of the electric field. Fortunately, for
most liquids including water, the dispersion of the dielectric
constant &, = &,(f) remains constant up to about 1 GHz.

II. EXPERIMENTAL ARRANGEMENT

The experimental arrangement, presented in Figs. 1 and 2, is
similar to that used in previous Kerr experimentation [5], [9].
A 1 = 658-nm laser launches a light beam through a
water-filled Kerr cell maintained at a constant temperature by
a water bath surrounding the cell. The temperature inside the
cell is accurately measured using a thermocouple immediately
before and after each test. The water inside the cell is
both purified and heated by a system comprising a pump, a
filter, and a heating resistance. The authors have not studied
the variation of the Kerr constant with water salinity or
when additives are present. However, demineralized water
(resistivity 33 kQ - cm) and tap water (resistivity between
4 kQ -cm and 5 kQ - cm) used in previous experiments [5]
provided identical results.

The Kerr cell described in [5] uses a pair of
400-mm long parallel-plate stainless-steel electrodes held
d = 5.00 &£ 0.05 mm apart with the aid of a polyethylene
support. For the present work, however, the material for the
support was changed to Polymethylmethacrylate, having a
thermal expansion coefficient of about 70 x 107%/°K, so
that even a 20 °C temperature increase will cause only a
7 um increase of the 5 mm initial separation measured
at 25 °C, representing a change of 0.14%. The cell was
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Fig. 1. Practical arrangement for Kerr experiments, with the main elements
listed below: Electrical: TG70 is a pulsed voltage generator connected
to the Kerr cell electrodes, with the high-voltage sensor attached to an
oscilloscope (OSC 1). Optics: a battery-operated laser launches the light
into the Kerr cell, with P1 and P2 being two crossed polarizers and L a
collimating lens connected to a optical fiber; O/E represents an optoelectronic
convertor attached to an oscilloscope (OSC 2). Water system: a heated water
tank (heater) is connected through a pump and filter (not shown) to the
Kerr cell.

Fig. 2.
high-voltage sensor and water heating tank. (b) Detail showing a polarizer
and the high-precision mechanical components used to align the collimator
lens.

Experimental assembly. (a) Overall view of the Kerr cell with

mounted vertically to encourage air bubbles to surface easily.
The transient electric field E(t) was generated between the
cell electrodes by the application of a voltage impulse from
a high-voltage trigger generator type TG-70 (L-3 Applied
Technologies [10]). The corresponding time-varying light
intensity /(¢) detected by an optoelectronic converter can be
predicted from [5]

.5 [0 ., (TBI'V?(1)
I(t) = Imaxsm2 (T) = Imaxsm2 (T) 2)

where Iynax is the maximum light intensity, ¢ the
retardation between the two electric field components of the

linearly polarised light, and I’ = d? fé E(x)%dx the effective
optical path length, calculated for the present cell using
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Fig. 3. Typical oscilloscope recordings at various temperatures. Left column:
the train of electric field impulses applied between the Kerr cell electrodes,
derived from the voltage signal. Right column: the corresponding recorded
optical signals (blue lines). Qualitatively, a decrease in the Kerr constant for
higher water temperatures is clearly indicated by a reduced number of light
oscillations. Theoretical predictions (red lines) using (1) and voltage data are
practically indistinguishable, demonstrating that no external interference has
disturbed the tests.

3-D ANSYS Maxwell software as I’ = 404.11 mm. The
voltage V (¢) applied to the Kerr cell electrodes was measured
using a North Star voltage probe type PVM 6 [11], mounted
in a way different from that used in [5], a technique adopted
to simplify data interpretation and improve the precision of
the measurement (see the Appendix). The voltage probe used
in the tests has an accuracy guaranteed by the manufacturer
of less than 1.5% and the authors used a similar probe kept
as a reference to check the calibration, before performing
experiments with the new Kerr arrangement.

III. RESULTS

In each test, a reproducible train of pulsed electric
fields with a maximum peak exceeding 100 kV/cm was
applied between the Kerr cell electrodes, while from
test to test the water temperature was varied between
292 K (19 °C) and 318 K (45 °C). Due to presently not
well-understood phenomena (accumulation of air bubbles,
water turbulence, etc.), higher temperature shots do not
provide reliable data. Typical experimental results are shown
in Fig. 3.

The technique used to analyze the results was presented
previously [5]. Briefly, B is calculated only at certain points,
i.e., voltage (i.e., electric field) peaks, where the precision
is the highest. The fact that in Fig. 3 the trace provided by
formula is practically indistinguishable from the real light trace
is not related to any precision, as this information is not used
in the measurement of the Kerr constant. It only serves to

%)

-14

B(10 m/V

temperature (K)

Fig. 4. Temperature dependence of the Kerr constant for water at 658 nm.
Full circles are experimental data while the line represents a temperature
polynomial fit (see text).

os¢

Fig. 5. Alternative ways of mounting the voltage sensor to measure the
voltage impulse applied to a Kerr cell, represented by the dotted rectangle.

demonstrate that there is no external interference disturbing the
actual test. The measurement of the Kerr constant is, however,
affected by the following errors [5]:
AB Ad(t) Ad AU AV (1)
— = +2—+ —+£2 .
B o) d I V()

The detailed analysis [5] is perfectly applicable to the
present work and shows the total error for each right-hand side
term is, respectively, +2%, £3%, +1%, and £3%, resulting in
a very conservatively estimated total error of less than +10%.
It is important to note that the statistical scatter for many
identical experiments is always much less than this.

As expected, the Kerr constant B is affected by the
temperature 7 and, for the data points in Fig. 4, the best
polynomial interpolation (presented in a form similar to that
used in previous work [6]-[8]) was found as

3)

3

B (Ta /Iref) . Z ﬂ
B (Tref> j«ref) Tk

where the result is normalized to the Kerr constant
B(Tref, Aref) = 2.746 - 10714 (m/V?) at an arbitrarily chosen
reference temperature of Tier = 294 K, with Aef = 658 nm.
The four polynomial constants are

“)

k=0

Ao = 12.59900; A; = —1.16036- 10* K
Az = 3.65080 - 10° K* A3 = —3.65043 - 10% K.



The nonlinear least-squares fit mathematical procedure
used in obtaining the four constants provided a correlation
coefficient of 0.987 with a confidence level of 0.99. The
error in calculating B using (4) is conservatively estimated
as £10%.

IV. CONCLUSION

This paper has accurately defined the Kerr constant for
water for a range of temperatures between 19 °C and 45 °C.
When Kerr sensors use laser wavelengths A slightly different
from that of this paper, the appropriate Kerr constant can be
estimated with +10% error from

3
B(T, 1) ~ B(Tef, zref)% > % )
k=0

The results obtained represent an important step in the

development of a reliable and accurate pulsed electric field

measurement technique. It is of particular value for PEF

treatment systems and in general for water-filled HV pulsed

power components such as transmission lines, capacitors, and
spark gaps.

APPENDIX

Fig. 5 presents two ways in which a voltage sensor can be
mounted to measure the voltage impulse applied across the
Kerr cell capacitance C.

1) In this case, a current i having a high time rate-of-change
di/dt flows through the cell and, therefore, the voltage
across C is different from that measured by the voltage
sensor, which includes the supplementary inductive term
L-di/dt. To obtain the required result, a correction must
be made, as indicated in [5].

2) In this case, the connection between the sensor and
the Kerr cell has a low value of self-inductance L
and, due to the high-impedance of the sensor, the time
rate-of-change of the current i; is extremely small and
the inductive voltage term L, - di1/dt is consequently
negligible. In this case, the sensor measures accurately
the voltage across C and no corrections are required.

Another voltage measurement issue is related to the
inductive effects introduced by the self-inductance of the
connection to ground. To minimize as much as possible
the parasitic inductance between the ground and the lower
plate of the Kerr cell capacitor, a wide (300 mm) and
relatively short (less than 0.8 m) copper sheet was used. The
laboratory ground is a large area (many square meters) of
thin copper layer covered by wooden plates for protection and
connected to a purpose-made low-resistance ground situated in
the immediate vicinity of the pulsed power laboratory where
experiments took place.
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