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Abstract 
 

Economies of scope are typically modelled and estimated using a cost function that is 
common to all firms in an industry irrespective of their type, e.g. whether they specialize in a 
single output or produce multiple outputs. Instead, we estimate a flexible technology model 
that allows for type-specific technologies and show how it can be estimated using linear 
parametric forms including the translog. A common technology remains a special case of our 
model and is testable econometrically. Our sample, of publicly owned US electric utilities, 
does not support a common technology for integrated and specialized firms. Our empirical 
results therefore suggest that assuming a common technology might bias estimates of 
economies of scale and scope. Thus, how we model the production technology clearly 
influences the policy conclusions we draw from its characteristics. 
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1. Introduction 

 

Economies of scale and scope are fundamental concepts explaining many economic 

decisions. From a business perspective, they play a central role in assessing the potential 

benefits of firms’ growth and diversification strategies. From an industry perspective, they are 

central for the determination of efficient market structures. In particular, they influence the 

restructuring and deregulation of network industries worldwide. For instance, changes in the 

economies of scale of electricity generation swayed many countries to liberalize electricity 

markets. Subsequently, the belief that gains from competition would outstrip any losses in 

economies of scope led many countries to mandate electric utilities to divest their generation 

assets to prevent discrimination in newly developed wholesale markets. Similarly many banks 

today argue that economies of scale and scope make large integrated banks more efficient and 

caution against their break-up to minimize the systematic risk from individual bank failures. 

Almost the entire literature on the estimation of economies of scope follows the 

seminal work of Baumol et al. (1982) and employs a cost function based approach, which 

allows identification of “the production technology of the firms in an industry”. That is, it is 

assumed that both diversified and specialized firms can be represented by a common 

technology. However, this approach ignores the theoretical, but empirically testable 

possibility, that firms engaged in different activities employ different production technologies, 

which is recognized in the literature (Saal and Parker, 2006; Weninger, 2003; Bottaso et al., 

2011). But the full implications for estimating economies of scale and in particular scope have 

not been widely recognized. The assumption of a common technology when heterogeneous 

technologies are present will potentially lead to biased estimates of costs and therefore, biased 

estimates of economies of scale and scope. 

Our contribution is to estimate economies of scale and scope with a model where 

technology can be fully flexible across firm types, e.g. specialized and non-specialized firms. 

As our approach allows firm type specific technologies to be estimated jointly without 

separating the sample, we can also test statistically whether the previous literature’s 

assumption of a common technology is appropriate. Similarly, by comparing results with and 

without imposing the common technology assumption, we can explore its impact on scale and 

scope economy estimates. Therefore, unlike previous studies that focused on modelling 

unobserved heterogeneity (e.g. Fetz and Filippini, 2010), our focus is on modelling observed 

technological heterogeneity, and we thereby explicitly explore the implications of potential 

heterogeneity in technology between integrated and nonintegrated firms. A further 
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contribution is that our approach allows scope economies to be estimated with any linear 

functional form including the popular translog form introduced by Christensen et al. (1973). 

This is important because, despite the widely accepted advantages of the translog 

specification, the non-admission of zero values in the translog form has previously been seen 

as precluding its use for the estimation of economies of scope (Caves et al. 1980). 

We empirically demonstrate the usefulness of our modelling approach by estimating 

economies of scale and vertical integration (i.e. scope economies between vertical stages) for 

a sample of publicly-owned US electric companies. Our data is suitable for this task as it 

comprises both specialized (generating-only and distributing-only) and vertically integrated 

firms. Our results indicate that within our sample, cost relationships differ between integrated 

and specialized firms. We find that using our approach in comparison to a common 

technology model leads to different estimates of scale and in particular scope economies. 

The rest of the paper is organized as follows. Section 2 provides the necessary 

theoretical background including the relevant literature. Section 3 sets out our contribution to 

the modelling of economies of scale and scope. Section 4 introduces our empirical model and 

tests. Section 5 has our empirical application. Section 6 presents the results and section 7 

gives a short conclusion. 

 

2. Scale and Scope Economies with a Common Technology 

 

In this section we provide a summary of the standard approach to model and estimate 

multiple output cost functions. We first recall the definition of scale and scope economies. Let 

N = {1,2,…,N} be the set of products under consideration, with output quantities y = (y1,…,yn). 

The function C(y,w) denotes the minimum cost of producing the entire set of products, at the 

output quantities and input prices indicated by the vectors y and w. 3 The degree of scale 

economies defined over the entire product set N, at y, is given by  

 

(1)                                         𝑆𝑆𝑁𝑁(𝑦𝑦, 𝑤𝑤) =
𝐶𝐶(𝑦𝑦,𝑤𝑤)

∑ 𝑦𝑦𝑖𝑖𝐶𝐶𝑖𝑖(𝑦𝑦, 𝑤𝑤)𝑛𝑛
𝑖𝑖=1

=
1

∑ 𝜕𝜕ln𝐶𝐶/𝜕𝜕ln𝑦𝑦𝑖𝑖𝑛𝑛
𝑖𝑖=1

  

 

                                                 
3 Duality theory allows us to estimate the underlying production technology via a cost function. Duality theory 
and the implied restrictions on the cost function ensure that the latter does not violate the physics of production. 
For an introduction see the survey by Fuss and McFadden (1978). 
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where Ci is the first derivative of cost with respect to product i. Returns to scale are 

said to be increasing, decreasing or constant as S is greater than, less than, or equal to unity, 

respectively. 

Let us consider two subsets, U ∈ N, and D ∈ N such that U ∪ D = N, and U ∩ D = Ø. 

Let yU denote the vector whose elements are set equal to those of y for i ∈ U and yD denote the 

vector whose elements are set equal to those of y for i ∈ D. Similarly, C(yU,w) and C(yD,w) 

denote the cost of producing only the products in the subset U and D, respectively. The degree 

of economies of scope between yU and yD is defined as 

 

(2)                                        𝑆𝑆𝑆𝑆𝑈𝑈,𝐷𝐷(𝑦𝑦, 𝑤𝑤) =
𝐶𝐶(𝑦𝑦𝑈𝑈,𝑤𝑤) + 𝐶𝐶(𝑦𝑦𝐷𝐷,𝑤𝑤) − 𝐶𝐶(𝑦𝑦,𝑤𝑤)

𝐶𝐶(𝑦𝑦,𝑤𝑤)  

 

The degree of economies of scope SC is measured by (2) where the separation of 

production is said to increase, decrease or leave unchanged the total cost as SC is greater than, 

less than, or equal to zero, respectively. Equation (2) shows that the estimation of economies 

of scope (i.e. the costs and benefits of joint production) requires the comparison of costs 

between specialized and non-specialized firms at a given vector of input prices. In our below 

application, this measure of economies of scope can be readily interpreted as a measure of 

firm’s vertical integration economies in a multi-stage context. Thus, if N denotes the entire 

product set along the firm’s vertical chain, U denotes the subset of upstream only products, 

and D=N-U denotes the subset of downstream only products, then (2) measures the degree of 

vertical integration economies. 

For empirical estimation of (1) and (2) the researcher has to choose an appropriate 

functional form, obtain relevant data, and decide on a model of the underlying production 

technology. We now discuss each point in turn. For multiproduct cost functions, Caves et al. 

(1980) set out three criteria for the ex-ante choice of functional forms: satisfaction of 

regularity conditions, limited number of parameters, and the ability to admit zero values for 

some outputs. In the general empirical literature the translog and the quadratic are the most 

popular functional forms. However, the translog form, despite its theoretical appeal and wide 

application, has an important drawback in that the cost function is undefined for a zero output 

level. This is important, because the measurement of economies of scope requires the 

comparison of costs between specialized and integrated firms; and specialization requires that 

the production of at least one of the outputs is zero. 
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One solution to the problem of zero output values is to estimate the costs at an 

arbitrarily small level of output. Thus, several studies substitute an arbitrary small positive 

constant (e.g.: 0.01) for zero output values (Jin et al., 2005; Akridge and Hertel, 1986; 

Gilligan and Smirlock, 1984; Cowing and Holtmann, 1983). We will use this approach as our 

empirical benchmark model below. Other studies replace zero values with the minimum value 

of each output within the sample under consideration (Goisis et al., 2009; Rezvanian and 

Mehdian, 2002) or with a value equal to ten per cent of output at the sample means (Kim, 

1987). An alternative solution is to use the Box-Cox transformation on output variables, e.g., 

the generalized (hybrid) translog function, as suggested by Caves et al. (1980). Both 

approaches, however, introduce an unknown bias (e.g. Berger et al., 1987; Gunning and 

Sickles, 2009), while producing erratic estimates due to the degenerate limiting behaviour of 

the translog cost function (Röller, 1990). 

Some studies use a translog form on a subsample of firms with strictly positive outputs 

only, which allows them to estimate cost complementarity between outputs, i.e. the sign of the 

second-order derivative 𝜕𝜕2𝐶𝐶/𝜕𝜕𝑦𝑦𝐺𝐺𝜕𝜕𝑦𝑦𝑈𝑈 (Fuss and Waverman, 1981; Gilsdorf, 1994). However, 

cost complementarity is a sufficient but not a necessary condition for the presence of scope 

economies as shared fixed costs are another potential source of economies of joint production 

(Baumol et al., 1982). 

When specialized firms are absent (instead of being dropped) from the sample, the 

problem of zero outputs does not arise in estimation. Instead, it appears in predicting the 

counterfactual, i.e., predicting the costs of specialized firms from the estimated cost function 

which is assumed to be the same for specialized and non-specialized firms.  In most studies 

the reason for observing integrated firms only is the non-existence of specialized firms in the 

industry. Although the absence of specialized firms might be taken as prima facie evidence 

for the existence of economies of scope, it is not obvious that the existing industry structure is 

only driven by costs considerations, particularly for regulated or publicly owned industries. 

Conversely, observing specialized firms only does not provide evidence for the non-existence 

of economies of scope as this could reflect historical precedent, mandated industry 

restructuring, or other institutional factors that have influenced an industry’s development. 

The quadratic functional form is frequently employed as it readily admits zero values 

and is easy to implement (e.g. Mayo, 1984; Kaserman and Mayo, 1991; Jara-Díaz et al., 

2004; Fetz and Filipini 2010; Jara and Ramos-Real 2011; Arocena et al., 2012). However, it 

also has an important drawback: imposing homogeneity in input prices as a regularity 

condition on the quadratic form sacrifices flexibility (Caves et al. 1980, p. 478). Several 
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authors (e.g. Martínez-Budría et al., 2003) argue that normalizing cost and input prices by one 

of the input prices prior to estimation will circumvent this problem. However, the results are 

not invariant to the choice of normalized input price. Other applied studies propose alternative 

functional forms which allow for zero outputs, (but not for zero values in input prices or 

control variables), the Composite (e.g. Fraquelli et al., 2005), or the Generalized Composite 

form (e.g. Bottasso et al., 2011). For these forms the coefficients can be difficult to estimate 

and sometimes they are not even identified. Convergence is another problem because the 

models are highly non-linear in parameters. We do not see any economic or econometric 

rationale for using the Box-Cox transformation just because the transformation approaches to 

a log transformation as the Box-Cox parameter approaches to zero.  We believe that using a 

true zero value instead of the Box-Cox transformation is a better solution. One can argue for a 

similar transformation for the other variables which are non-zero (Berndt and Khaled, 1979). 

Moreover, a further disadvantage for applied research and policy advice is that individual 

coefficients have no direct economic meaning which reduces transparency. 

We finally emphasize that the econometric literature almost always uses a common 

multiproduct cost function, which is consistent with the definitions of scale and scope 

economies provided in (2) and (3) above. However, this assumes poolability across different 

firm types and the presence of a single underlying production technology for all firms, 

regardless of their degree of specialization. 4  On econometric grounds this maintained 

assumption is hard to justify without empirical testing, and in many cases there are reasons to 

believe that such an assumption is inappropriate (e.g. Bottasso et al., 2011). Weninger (2003) 

argues that the presence of cost (dis)complementarities reflects the differences in the cost 

structure between diversified and specialized firms (the latter by definition produce no 

complementary goods). In the same vein, Garcia et al. (2007) note that when considering 

vertical scope economies in multistage industries, firms' production technologies may differ 

with their level of vertical organization. That is, they suggest that the data generating process 

of the cost of a firm does depend on the vertical organization of the firm. The next section 

therefore proposes a general model with firm type cost function flexibility. 

Thus, we do not pursue an approach that continues an endless game of requiring the 

estimation of more and more generalized forms. Instead, we employ what we believe to be a 

theoretically, both economically and econometrically, correct approach, which is to estimate 
                                                 
4 A related literature that uses nonparametric estimators (Charnes et al., 1978) to measure economies of scope 
always uses models that allow for different technologies across firm types and emphasizes that it is these 
differences that underlie economies of scope (Färe 1986). 
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separate functions for specialized and integrated firms, (e.g. Weninger, 2003; Garcia et al., 

2007), while also allowing for a statistically valid test of this separation. Stated differently, if 

some outputs are genuinely zero and the technologies are genuinely different, separate 

estimation is theoretically appropriate. But since the specification of separate technologies 

will not necessarily be appropriate in all empirical applications it is also theoretically and 

empirically necessary to allows testing of the separate technology assumption. In sum, our 

approach is a generalization of the separate regression approach, which also allows the 

restriction and testing of a common technology assumption. 

 

3. Estimating Economies of Scale and Scope with Firm Type Cost Function 

Flexibility 

 

This section builds on Fuss and Waverman (2002) and proposes a flexible technology 

across firm types for the estimation of scale and scope economies. Let T = {I,U,D} be the set 

of firm types, where I,U,D refer to integrated, upstream, and downstream firms. Integrated 

firms I produce the entire output vector y = (y1,...,yn) as defined above, while upstream U and 

downstream D firms produce output vectors yU and yD, respectively. That is, we allow 

different firm types to have different underlying production possibilities. We therefore define 

a firm type flexible cost function as 

 

 (3)                                                              𝐶𝐶 = �
𝐶𝐶𝐼𝐼(𝑦𝑦, 𝑤𝑤)   
𝐶𝐶𝑈𝑈(𝑦𝑦𝑈𝑈, 𝑤𝑤)
𝐶𝐶𝐷𝐷(𝑦𝑦𝐷𝐷,𝑤𝑤)

 

 

where w is the vector of input prices.5 Equation (3) allows the cost function to be 

flexible across firm types. In (3) we respectively define the upstream cost function as CU 

(yU,w) and the downstream cost function  as CD (yD,w) instead of C (yU,w) and C (yD,w). This 

allows for potentially distinct technologies associated with the production of the distinct 

subsets of outputs for the upstream (yU) and downstream (yD) firms rather than simply 

restricting CI (y) by assigning zero values for non-produced outputs, as is common in most 

previous studies of scope economies. We emphasize that our approach follows the seminal 

work of  Panzar and Willig (1981, p. 268-269), which clearly partitions the integrated output 

set into distinct nonintersecting sub-sets produced by specialized firms when defining scope 

                                                 
5 For notational convenience and ease of exposition, we do not index input prices by utility type.  
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economies.  Panzar and Willig’s theoretical approach defined specialized output sets as a 

subset of all outputs and not as the simple restriction of unproduced outputs to zero output 

quantities.  However, it is less clear from their notation whether they allowed technologies to 

differ by firm type. Fuss and Waverman (2002) stated that the difference between 

technologies is “sufficiently fundamental that these technologies [for specialized firms] 

cannot be recovered [...] simply by setting the missing output equal to zero”. Fundamentally, 

if CD(yD,w) ≠ CI(0,yD,w) and/or CU (yU,w) ≠ CI (yU,0,w) this implies that the underlying 

technology employed by integrated firms, even when only producing a specialized subset of 

its potential outputs is distinct from the production technology(ies) associated with 

specialized firms. 

The most straightforward way to estimate (3) is to estimate separate models for each 

firm type (e.g. Weninger, 2003; Garcia et al., 2007). In essence, this is also the approach 

followed by the related literature that uses mathematical programming techniques to estimate 

economies of scope, following the pioneering work by Färe (1986). We propose joint 

estimation of the three technologies specified in (3) first without imposing constraints and 

then imposing constraints to test for common technology. To illustrate the idea we write the 

three technologies as 

 

 (3𝑎𝑎)
                 𝐶𝐶𝐼𝐼(𝑦𝑦, 𝑤𝑤) = 𝑋𝑋𝐼𝐼Γ𝐼𝐼 + 𝑢𝑢𝐼𝐼  

                        𝐶𝐶𝑈𝑈(𝑦𝑦𝑈𝑈, 𝑤𝑤) = 𝑋𝑋𝑈𝑈Γ𝑈𝑈 + 𝑢𝑢𝑈𝑈  
                        𝐶𝐶𝐷𝐷(𝑦𝑦𝐷𝐷,𝑤𝑤) = 𝑋𝑋𝐷𝐷Γ𝐷𝐷 + 𝑢𝑢𝐷𝐷  

 

 

where X variables are covariates (outputs and input prices), Γ represents the firm type 

specific unknown technology parameters, and u are noise terms. With an appropriately 

designed matrix X, the formulation in (3a) fits a quadratic (when the variables are in levels) 

and a translog specification when the variables are logged. Thus, regardless of the cost 

specification, we can stack the equations in (3a) and write it as 

 

(3𝑏𝑏)                                            𝐶𝐶(𝑦𝑦, 𝑤𝑤) = 𝑋𝑋Γ + 𝑢𝑢   

 

where 𝑋𝑋 = �
𝑋𝑋𝐼𝐼 0 0
0 𝑋𝑋𝑈𝑈 0
0 0 𝑋𝑋𝐷𝐷

� and Γ= �
Γ𝐼𝐼

Γ𝑈𝑈

Γ𝐷𝐷
�.  
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Moreover, the stacked equation (3b) can be estimated using OLS/GLS. However, note 

the data structure in X: the matrices below XI are filled with zeros because these data are not 

relevant to integrated firms, while a similar structure is used for upstream and downstream 

firms. 

The technologies in (3a) can alternatively be written with the use of dummy variables 

 

(4)            𝐶𝐶(∙) = 𝐼𝐼 ∗ 𝐶𝐶𝐼𝐼�𝑦𝑦, 𝑤𝑤,Γ𝐼𝐼� + 𝑈𝑈 ∗ 𝐶𝐶𝑈𝑈�𝑦𝑦𝑈𝑈,𝑤𝑤,Γ𝑈𝑈� + 𝐷𝐷 ∗ 𝐶𝐶𝐷𝐷�𝑦𝑦𝐷𝐷,𝑤𝑤,Γ𝐷𝐷� 

 

where the three dummy variables I, D and U take the value one if the firm is integrated or 

specializes in the downstream or upstream activity, respectively. The first term in equation (4) 

represents integrated firms and is “activated” or “turned on” only if I takes the value of one. 

Similarly, the second and third terms represent upstream and downstream only firms, 

respectively. The second (third) term is activated when U (D) takes a value of unity. We refer 

to this model as a firm type flexible technology model as opposed to a restricted or common 

technology model. 

Note this is not a single cost function theoretically, but instead combines the three 

separate technologies allowed for in (3). However, we write it this way to illustrate that for 

estimation purposes it is viewed as a single cost function. This model allows both the 

variables and associated parameters to vary between the three firm types. The firm type cost 

functions in C(·) can take any functional form including a translog form. Note that CI (·) is 

defined for the full set of outputs, whereas CU (·) and CD (·) are defined for subsets of outputs 

yU and yD respectively. 

We note that Battese (1997) and Battese et al. (1996) employ a related artifice in the 

estimation of production functions when some observations have zero input values. 

Particularly, Battese et al. (1996) investigate the production function for wheat production, 

where some farmers use fertilizers or pesticides while others do not. Thus, Battese (1997) 

suggests the introduction of a dummy variable associated with the incidence of the 

observations that take zero values, which permits the intercepts to be different for farms with 

positive and zero inputs, while maintaining the same parameters for inputs employed by all 

firms. Our model generalizes Battese’s restricted method, and allows a fully flexible 

technology specification, where technologies, and hence all parameters, can differ fully 

between firm types.  

When using the translog form for each of the technologies with parameters of their 

own, we can write (4) in log form as 
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(4a)               ln𝐶𝐶(∙) = 𝐼𝐼 ∗ ln𝐶𝐶𝐼𝐼�𝑦𝑦, 𝑤𝑤,Γ𝐼𝐼� + 𝑈𝑈 ∗ ln𝐶𝐶𝑈𝑈�𝑦𝑦𝑈𝑈,𝑤𝑤,Γ𝑈𝑈� + 𝐷𝐷 ∗ ln𝐶𝐶𝐷𝐷�𝑦𝑦𝐷𝐷,𝑤𝑤,Γ𝐷𝐷� 

 

where ln𝐶𝐶𝐼𝐼�𝑦𝑦, 𝑤𝑤,Γ𝐼𝐼�,  ln𝐶𝐶𝑈𝑈�𝑦𝑦𝑈𝑈, 𝑤𝑤,Γ𝑈𝑈� and ln𝐶𝐶𝐷𝐷�𝑦𝑦𝐷𝐷, 𝑤𝑤,Γ𝐷𝐷� are three different 

translog functions for integrated, upstream and downstream firms. If we write it in stacked 

form (similar to (3b)) as ln𝐶𝐶(𝑦𝑦, 𝑤𝑤) = ln𝑋𝑋 Γ + 𝑢𝑢  we need to pay attention to the data matrix 

ln X. In this case, it requires the following adjustment for empirical implementation. Assume 

for illustration that the number of integrated, downstream and upstream firms are n1, n2 and n3, 

so that the total number of firms is n = n1+n2+n3. Thus ln𝐶𝐶(∙) in (4a) is defined for all n firms. 

However, ln𝐶𝐶𝐼𝐼�𝑦𝑦, 𝑤𝑤,Γ𝐼𝐼�, ln𝐶𝐶𝑈𝑈�𝑦𝑦𝑈𝑈, 𝑤𝑤,Γ𝑈𝑈� and ln𝐶𝐶𝐷𝐷�𝑦𝑦𝐷𝐷,𝑤𝑤,Γ𝐷𝐷� are respectively defined for 

only n1, n2 and n3 firms. This problem can be readily solved by appropriately filling the blanks 

(we say blanks when something is not in the data, instead of zero). For example, there will be 

n2+n3 blanks for the (log) output variables for the integrated firms. These blanks can be 

replaced by arbitrary, positive numbers because when we multiply them by the I dummy these 

n2+n3 observation that do not belong to the integrated firms will be completely eliminated. We 

can do the same for the upstream and downstream firms. The blanks (for outputs and input 

prices) for each firm type are filled and then removed by the appropriate firm type dummy. 

We emphasize that this approach preserves firm type flexibility by not imposing the 

assumption that CD(yD,w)= CI(0,yD,w) and/or CU (yU,w)= CI (yU,0,w). However, in contrast to 

the separate estimation approach, the appropriateness of this assumption can be readily tested 

for by imposing parameter equalities across the three firm type technologies. 
We note that Bottasso et al. (2011) allow costs to depend on the firm type using a 

Generalized Composite function. They found that it is an undue restriction to impose a 

common technology for two types of water companies in England and Wales, water-and-

sewage and water-only companies. However, they used a Box-Cox transformation which 

defeats the purpose of using firm type specific technologies. The Box-Cox transformation in 

their formulation is used to handle observations with zero values so that a common 

technology can be estimated. Unlike the model used by Bottasso et al. (2011) our model is 

much simpler and does not require a Box-Cox transformation. 

Given the firm type flexible cost function in (3) we can rewrite the textbook definition 

of economies of scale and scope. For scale we rewrite (1) as 

 

(5𝑎𝑎)                                      𝑆𝑆𝑁𝑁𝑇𝑇(𝑦𝑦, 𝑤𝑤) = 𝐶𝐶𝑇𝑇(𝑦𝑦𝑇𝑇,𝑤𝑤)
𝑦𝑦𝑇𝑇𝐶𝐶𝑖𝑖

𝑇𝑇(𝑦𝑦𝑇𝑇,𝑤𝑤)    for specialized firms (T = U or D) and 



11 
 

(5𝑏𝑏)                                      𝑆𝑆𝑁𝑁𝑇𝑇(𝑦𝑦, 𝑤𝑤) = 𝐶𝐶𝑇𝑇(𝑦𝑦𝑇𝑇,𝑤𝑤)
∑ 𝑦𝑦𝑖𝑖𝐶𝐶𝑖𝑖

𝑇𝑇(𝑦𝑦𝑇𝑇,𝑤𝑤)2
𝑖𝑖=1

   for non-specialized firms (T = I). 

 

Thus, returns to scale now depend on the firm type T. Similarly, for the degree of 

economies of scope we rewrite (2) as 

  

(6)                                     𝑆𝑆𝑆𝑆𝑈𝑈,𝐷𝐷(𝑦𝑦, 𝑤𝑤) =
𝐶𝐶𝑈𝑈(𝑦𝑦𝑈𝑈,𝑤𝑤) + 𝐶𝐶𝐷𝐷(𝑦𝑦𝐷𝐷,𝑤𝑤) − 𝐶𝐶𝐼𝐼(𝑦𝑦, 𝑤𝑤)

𝐶𝐶𝐼𝐼(𝑦𝑦, 𝑤𝑤)  

 

where we now allow for different technologies for the three firm types. Unlike in 

Baumol et al. (1982), both differences in cost levels and differences in technology drive 

economies of integration. This model is general in the sense that it allows specialized firms to 

operate with a different underlying production technology than integrated firms. It also allows 

for the imposition and testing of the common technology assumption through imposition of 

appropriate parameter restrictions. It should be obvious from these equations that it is really 

the estimates of the underlying technologies that drive economies of scale and scope. If the 

estimates of the technologies are incorrect the estimates for economies of scale and scope will 

be incorrect as well. 

 

4. Modelling and estimation approach 

 

Applying a translog form to (4a) we estimate the following two output model6 

 

                                                 
6 Although we are using notations yU and yD these can be generically labeled as y1 and y2 so that yU and yD  for the 
integrated firm are nothing but y1 and y2. 
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(7)    ln 𝐶𝐶 = 𝐼𝐼 ∗ �𝛼𝛼0𝐼𝐼 + 𝛽𝛽1𝐼𝐼 ln 𝑦𝑦𝑈𝑈 +𝛽𝛽2𝐼𝐼 ln 𝑦𝑦𝐷𝐷 +�𝛾𝛾𝑘𝑘𝐼𝐼
𝑀𝑀

𝑘𝑘=1

ln𝑤𝑤𝑘𝑘 +
1
2
𝜌𝜌1𝐼𝐼(ln 𝑦𝑦𝑈𝑈)2 +

1
2
𝜌𝜌2𝐼𝐼 (ln 𝑦𝑦𝐷𝐷)2 +

+ 𝜌𝜌12𝐼𝐼 (ln 𝑦𝑦𝑈𝑈)(ln𝑦𝑦𝐷𝐷) +
1
2
��𝜆𝜆𝑘𝑘𝑘𝑘𝐼𝐼

𝑀𝑀

𝑗𝑗=1

𝑀𝑀

𝑘𝑘=1

ln𝑤𝑤𝑘𝑘 ln𝑤𝑤𝑗𝑗 + �𝜃𝜃1𝑘𝑘𝐼𝐼
𝑀𝑀

𝑘𝑘=1

ln 𝑦𝑦𝑈𝑈 ln𝑤𝑤𝑘𝑘

+ �𝜃𝜃2𝑘𝑘𝐼𝐼
𝑀𝑀

𝑘𝑘=1

ln 𝑦𝑦𝐷𝐷 ln𝑤𝑤𝑘𝑘�+      

+ 𝑈𝑈 ∗ �𝛼𝛼0𝑈𝑈 + 𝛽𝛽𝑈𝑈 ln 𝑦𝑦𝑈𝑈 +�𝛾𝛾𝑘𝑘𝑈𝑈
𝐺𝐺

𝑘𝑘=1

ln𝑤𝑤𝑘𝑘 +
1
2
𝜌𝜌𝑈𝑈(ln 𝑦𝑦𝑈𝑈)2

+
1
2
��𝜆𝜆𝑘𝑘𝑘𝑘𝑈𝑈

𝐺𝐺

𝑗𝑗=1

𝐺𝐺

𝑘𝑘=1

ln𝑤𝑤𝑘𝑘 ln𝑤𝑤𝑗𝑗 + �𝜃𝜃𝑘𝑘𝑈𝑈
𝐺𝐺

𝑘𝑘=1

ln 𝑦𝑦𝑈𝑈 ln𝑤𝑤𝑘𝑘�+

+ 𝐷𝐷 ∗ �𝛼𝛼0𝐷𝐷 + 𝛽𝛽𝐷𝐷 ln 𝑦𝑦𝐷𝐷 + �𝛾𝛾𝑘𝑘𝐷𝐷
𝐿𝐿

𝑘𝑘=1

𝑙𝑙𝑙𝑙𝑤𝑤𝑘𝑘 +
1
2
𝜌𝜌𝐷𝐷(ln 𝑦𝑦𝐷𝐷)2

+
1
2
��𝜆𝜆𝑘𝑘𝑘𝑘𝐷𝐷

𝐿𝐿

𝑗𝑗=1

𝐿𝐿

𝑘𝑘=1

ln𝑤𝑤𝑘𝑘 ln𝑤𝑤𝑗𝑗 + �𝜃𝜃𝑘𝑘𝐷𝐷
𝐿𝐿

𝑘𝑘=1

ln 𝑦𝑦𝐷𝐷 ln𝑤𝑤𝑘𝑘� + 𝑢𝑢  

 

where C = total costs, yU = the quantity of upstream output, yD = the quantity of 

downstream output, wk = the price of input k, M = the number of inputs used by integrated 

firms, G = the number of inputs used by upstream firms,  L = the number of inputs used by 

downstream firms, and the Greek letters stand for the unknown population parameters.  

The cost function is required to satisfy the following symmetry and linear 

homogeneity (in input prices) constraints. Ignoring firm type indicators for ease of illustration, 

these are: 

 

(8)                          𝜌𝜌12 = 𝜌𝜌21; 𝜆𝜆𝑘𝑘𝑘𝑘 = 𝜆𝜆𝑗𝑗𝑗𝑗, for U, D, and I 

 

(9)                           ∑ 𝛾𝛾𝑘𝑘 = 1𝑘𝑘 ; ∑ 𝜃𝜃𝑘𝑘 = 0𝑘𝑘  for all 𝑘𝑘; ∑ 𝜆𝜆𝑘𝑘𝑘𝑘 = 0𝑘𝑘 , for U, D, and I and for all j. 

 

The linear homogeneity constraints are automatically imposed if we divide cost and 

input prices by one arbitrarily chosen input price and drop the corresponding share equation. 
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Using Shephard's Lemma and the symmetry constraint we obtain share equation (10) for input 

k. 

 

(10)                                    𝑠𝑠𝑘𝑘 = 𝐼𝐼 ∗ [𝛾𝛾𝑘𝑘𝐼𝐼 + 𝜃𝜃1𝑘𝑘𝐼𝐼 ln 𝑦𝑦𝑈𝑈 + 𝜃𝜃2𝑘𝑘𝐼𝐼 ln 𝑦𝑦𝐷𝐷 + ∑𝜆𝜆𝑘𝑘𝑘𝑘𝐼𝐼 ln𝑤𝑤𝑗𝑗] 

+𝑈𝑈 ∗ �𝛾𝛾𝑘𝑘𝑈𝑈 + 𝜃𝜃𝑘𝑘𝑈𝑈 ln 𝑦𝑦𝑈𝑈 + ∑𝜆𝜆𝑘𝑘𝑘𝑘𝑈𝑈 ln𝑤𝑤𝑗𝑗�  

+𝐷𝐷 ∗ �𝛾𝛾𝑘𝑘𝐷𝐷 + 𝜃𝜃𝑘𝑘𝐷𝐷 ln 𝑦𝑦𝐷𝐷 + ∑𝜆𝜆𝑘𝑘𝑘𝑘𝐷𝐷 ln𝑤𝑤𝑗𝑗�  

 

We estimate this system of the cost function and share equations using the iterated 

seemingly unrelated regression (SUR) technique (Zellner, 1962) after adding classical error 

terms in the cost function and the cost share equations. The additional structure imposed by 

the share equations makes the estimates more efficient as we add equations but do not 

increase the number of parameters. All variables are demeaned so that the translog expansion 

is around the sample mean across all firms and the first order coefficients can be interpreted 

as elasticities at the sample mean. 

In any case, it should be clear to the reader that the flexible technology model 

formulated above is applicable to any functional form. Nevertheless, we emphasize that we 

have specifically chosen the translog specification in our empirical model precisely because 

we wish to show that our approach is particularly useful for the translog form, which is 

normally considered to be problematic for the empirical analysis of scope economies. 

If the parameters for each firm type technology are different, one can estimate them 

separately by using the respective cost function and the share equations. However, a separate 

regression approach always assumes the existence of different technologies without allowing 

the possibility of hypothesis testing with regard to whether this assumption is valid.  

Therefore, there are several advantages of our joint estimation approach over estimating 

separate equations using data for each group. Only joint estimation is truly flexible in the 

sense of allowing for both the possibility of a common technology or differences in firm type 

technologies. Thus, even if there are enough observations in each group to separately estimate 

each firm type technology, separate estimation may inappropriately impose different 

technologies. More precise estimates are obtained by estimating all the parameters jointly and 

by using a system approach. The other significant advantage is to test hypotheses across firm 

type technologies which cannot be done if these technologies are estimated separately. In the 

joint estimation the implicit (default) assumption is that the error variances and covariances 

(in the cost and share equations) are the same for different firm type technologies. This can be 
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easily generalized. In the separate estimation by firm type the variances and covariances vary 

across firm type, and it is not possible to impose restrictions across firm type technologies 

because they are estimated separately. 

As usual we make the assumption that the errors are i.i.d.. We also assume that 

inefficiency (which we do not model explicitly) is i.i.d. and thereby inefficiency would only 

affect the intercept. If the mean of inefficiency is different for different types of firms 

(Integrated, Upstream, and Downstream firms), it will change the intercept for each type. 

Inefficiency does not affect the elasticity estimates. Thus, the presence of differences in mean 

inefficiency across types is a further argument in favor of our flexible technology approach.7 

Here, we consider two outputs, which results in three types of technologies. Generally, 

our flexible technology model allows testing for as many technologies as can reasonably be 

defined. In practice, the number of technologies that can be accommodated would be 

constraint by the data available. 

We perform the standard likelihood ratio test for inferences across groups. First, we 

test whether restriction of the three firm type technologies to a single common technology is 

valid. This common technology restriction is readily tested with a Likelihood ratio test by 

imposing the following restrictions 

 

(11)                                                            𝐻𝐻0: 𝛼𝛼𝐼𝐼 ≡ 𝛼𝛼𝑈𝑈≡ 𝛼𝛼𝐷𝐷 

 𝛽𝛽𝐼𝐼 ≡ 𝛽𝛽𝑈𝑈≡ 𝛽𝛽𝐷𝐷 

𝛾𝛾𝐼𝐼 ≡ 𝛾𝛾𝑈𝑈≡ 𝛾𝛾𝐷𝐷  

𝜌𝜌𝐼𝐼 ≡ 𝜌𝜌𝑈𝑈≡ 𝜌𝜌𝐷𝐷 

𝜆𝜆𝐼𝐼 ≡ 𝜆𝜆𝑈𝑈≡ 𝜆𝜆𝐷𝐷 

𝜃𝜃𝐼𝐼 ≡ 𝜃𝜃𝑈𝑈≡ 𝜃𝜃𝐷𝐷 

 

These restrictions can be easily implemented by appropriately defining the data matrix 

ln𝑋𝑋 in the formulation ln𝐶𝐶(𝑦𝑦, 𝑤𝑤) = ln𝑋𝑋 Γ + 𝑢𝑢.                                                              

Second, we can also separately test the restriction of the upstream (downstream) cost 

function parameters to be equal to the integrated parameters. Thus, for example, to test 

equivalence between the integrated firm parameters and the upstream firm parameters, we 

would test a null hypothesis after dropping the second equality signs and setting all the 

downstream only parameters to zero in (11). 

                                                 
7 We thank an anonymous referee for making this point. 
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5. Empirical application 

 

To further illustrate the usefulness of the flexible approach to deal with technological 

heterogeneity, we apply it to investigate the presence of economies of vertical integration in 

the electric power industry. In this industry the estimation of the potential cost reduction from 

integrating the different stages of electricity supply has been the subject of several studies. 

That is, the issue consists of determining whether the cost of a vertically integrated utility that 

produces and distributes certain amount of power, is lower (higher) than the cost of producing 

and distributing the same amount of power by means of two separate firms: a stand-alone 

generator and a stand-alone distributor. This issue has important policy implications regarding 

the assessment of the costs and benefits of the unbundling or vertical separation implemented 

in the electricity industry as part of the major restructuring reforms carried out over the past 

two decades in many countries. Meyer (2012) provides a broad survey of this literature. 

The data is for US local government owned electric utilities and were sourced from the 

EIA-412 survey, which was gathered by the U.S. Energy Information Administration until 

2003. The data comprises three firm types: upstream, integrated, and downstream. Our sample 

only includes conventional fossil-fuel generators to avoid the bias from combining very 

different power generation technologies as well as the complexity of allowing for both 

vertical and horizontal integration economies when interpreting the scope economies 

estimates (Arocena et al., 2012). Downstream firms (D) are pure power distributors, and 

integrated firms (I) engage in both activities, i.e. they generate electricity from fossil fuels 

only and distribute the power. The data is an unbalanced panel for the years 2000 to 2003. 

Table 1 illustrates the distribution of firms across the output space (using electricity 

generation as the upstream output and peak demand as the downstream output). The table 

gives the observation count by size bracket for the upstream and downstream activities. The 

first row and first column give the counts of fully specialized firms and the diagonal gives the 

count for fully integrated firms. There are 84 generation only and 148 distribution only firm-

year observations. Clearly the space between the diagonal and the two axes is less densely 

populated. The total number of observations is 436. 

 

[Place Table 1 about here] 
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We define the following variables. Our dependent variable, total cost (C) is measured 

in US dollars and is the sum of capital, fuel and operating expenses. Operating expenses is the 

sum of generation O&M, distribution O&M, Customer Accounts Expenses, Customer Service 

& Informational Expenses, Sales/Marketing Expenses and a pro-rata Admin & General O&M. 

We do not include any transmission expenses. Likewise, purchased power expenses are 

excluded to avoid double counting generation costs, as is thoroughly discussed in the related 

literature (e.g. Gilsdorf, 1994; Kwoka, 2002; Jara-Díaz et al., 2004; Fraquelli et al., 2005). 

Capital expense is the capital stock multiplied by the interest rate paid on long-term debt, plus 

depreciation expenses. The capital stock (K) is the written down accounting value of fixed 

assets. 

We consider a single upstream output, measured by net electricity generated (yG), and 

a single distribution output (yD). Given its complexity, it is common to model electricity 

distribution as a multiple output technology including total distribution volumes, peak 

demand, customers served, and/or distribution network length. However, while all these 

output attributes are important, their inclusion also tends to cause serious multicollinearity 

problems in estimation (Arocena et al., 2012; Kuosmanen, 2012). Given that the purpose of 

this paper is primarily methodological, we chose a more parsimonious model for two reasons. 

Firstly, to avoid multicollinearity among second order terms due to strong correlation between 

distribution output measures. Secondly, a simple model specification saves the estimation of 

the large number of parameters typically required by the translog functional form when the 

number of outputs increases. Therefore, we focus on results based on a single distribution 

output module while experimenting with an alternative distribution output: power delivered. 

We believe that the model that uses the peak demand specification has two important 

advantages. Firstly, it is consistent with the logic that electrical system design and its 

associated costs are to a larger extent driven by peak rather than average loads. Secondly, in 

our application peak demand is less correlated with the generation output than power 

delivered. In any case, the qualitative results are robust to both output specifications.  

 Finally, we include input prices for capital (wK), fuel (wF) and others (wO). The capital 

price (wK) is capital expense divided by the capital stock (K). The fuel price (wF) is the fuel 

expenditure divided by BTUs of fuel consumption. The final input variable that we define is 

an Other Operating Costs (OC) variable. This variable includes both labour costs and other 

operating costs excluding fuel expenses (e.g., outsourced services). Since detailed labour cost 

data were not available in the EIA-412 survey, we had to specify a single aggregate measure 

to capture these items. The price of other (wO) is therefore defined as the state-level Census 
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Bureau index of average wages for all employees. The quantity measure for other inputs is 

then obtained implicitly by deflating the cost measure by this price index. The price of other 

inputs is the numeraire used to impose homogeneity in input prices.  

We note that our model assumes that firms treat input prices and output quantities as 

exogenous elements in their decision processes, thereby following the argument of Nerlove 

(1963) and Christensen and Greene (1976). These two seminal studies of electricity industry 

costs emphasize that, unlike for production function estimation where input quantities are 

likely to be endogenous, cost function estimation is appropriate, given the reasonable 

assumption that factor prices are determined in competitive markets or through regulation, 

while electricity output is determined by consumer demand. Our sample consists of regulated 

electric utilities that are obliged to serve all customers. Further, electric power cannot be 

economically stored and thereby must be supplied on demand. Hence the decision on outputs 

is exogenous to the firm. Thus, our empirical estimation approach builds on a well-established 

literature that relies on dual cost function estimation to specifically avoid the endogeneity 

problems that can affect production function estimation. 

Table 2 provides summary statistics by firm type. The table shows that there are 

important differences across the three firm types and that there are large variances within each 

group. Dots indicate that a variable is not applicable to the type of firm. Regarding the outputs, 

on average, generation only companies generate more than twice the amount of electricity as 

integrated firms, arguably reflecting the fact that integrated firms can choose between making 

and buying electricity. By contrast, the mean of the distribution output is virtually the same 

for integrated firms and pure distributors. We note that the publicly owned utilities in our 

sample are much smaller in terms of output than the investor owned utilities employed in 

previous studies on US electric utilities (e.g., Kaserman and Mayo, 1991; Kwoka, 2002; 

Arocena et al., 2012, amongst others). 

Mean prices of capital and other inputs are very similar across firm types. However, 

the estimated price of fuel for integrated firms is substantially higher than the price for 

generation only firms. We believe that this reflects the fact that our sample only includes 

fossil-fuel generators (i.e. no nuclear, hydro, or renewables). Fossil-fuel based generation 

involves the combustion of a mix of different fuels, mostly different coal types (e.g. 

lignite/brown coal, bituminous coal/steam coal, anthracite/hard coal), natural gas and oil fuels 

(e.g. fuel oil, diesel oil). These fuels show substantial price differences. Therefore, we believe 

that the average price per BTU of fuel differs across utilities according to the mix of fossil 

fuels used in their available power plants. In our sample, vertically integrated firms use a 
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higher proportion of natural gas and oil fuels, which are typically more expensive than coal. 

Further, lower volumes of power produced, as is the case for the average vertically integrated 

firms in our sample, usually means a lower number of stable operating hours, facing more 

interrupted production and more frequent start-ups, and thereby a greater use of ancillary and 

backup fuels (e.g. diesel oil). 

Finally, we again caution the readers that our empirical application is meant to 

primarily serve as a methodological demonstration rather than an in-depth study of the 

publicly owned US electricity sector’s performance. Thus, while it is possible that more  

accurate estimates of scope and scale economies in the power industry could and should be 

obtained, this would require a more comprehensive and detailed data base than the one we 

have. In particular, it would require additional variables in order to better control for 

differences in the operating environment faced by electric utilities. 

 

 [Place Table 2 about here] 

 

6. Results 

 

This section presents the parameter estimates and estimates for economies of scale and 

scope. We normalize the data at the sample mean so that the first order coefficients of the 

translog functions can be interpreted as elasticities (of the respective variables) at the mean of 

the data. Table 3 gives the coefficient estimates for our three models, in which peak demand 

measures the distribution output8. Under Model 1 we report the estimates of the firm type 

flexible technology model as detailed in equation (7) above. Note that even though the 

estimates for the three firm types are given in different columns all the parameters are 

estimated using a single regression. The first three rows in each column give the firm type 

specific constant. Model 2 reports the parameter estimates from the conventional common-

technology model for the translog specification, where zeros were replaced by an arbitrary 

small number (0.0001). Finally, Model 3 reports the parameters estimated allowing for firm 

type technologies by using separate regressions for each firm type. 

Statistics for the goodness of fit at the bottom of the Table 3 show that the R-squared 

statistics (for the cost function equations) are very high for all models, but highest for Model 

                                                 
8 In the interest of brevity, we do not report the coefficient estimates for the models that define the distribution 
output as power delivered. They are available upon request. In any case, Table 4 below shows the scale and 
scopes estimates for both distribution output specifications. 
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1. We observe that the coefficients, and hence estimated cost elasticities of Model 1 are very 

close to those obtained from Model 3. In contrast, the individual coefficients for the 

conventional common-technology specification with replacement of zero outputs with an 

arbitrary number reported in Model 2 differ greatly. 

We also check for violations on the assumption that the technology is concave in input 

prices for Model 1 and 2. There are no violations for the price of fuel. However, there are 

violations for the price of capital. In Model 1, 63 per cent of the upstream observations violate 

the concavity constraint. For integrated and downstream observations the percentages are 15 

and 6, respectively. Despite allowing for different parameter estimates the variable definitions 

are identical across types of firms. This might be too strong an assumption. For Model 2, 18 

per cent of the observations violate the concavity constraint for the price of capital. There are 

no violations of the monotonicity assumption. 

 

[Place Table 3 about here] 

 

We next perform statistical tests using Model 1 for the null hypothesis that the 

different firm types share a common technology. We reject the null hypothesis in (11) that the 

technologies are the same across the different firm types at the 1 per cent level. Table 4 

provides values of the relevant statistics. The first column tests equality of all coefficients 

across the three firm types. The second and third columns show the test results for the 

hypothesis that the technology of a specialized firm is the same as the technology for the 

integrated firm. The second column for instance tests whether the parameters relating to the 

upstream activity only are identical for upstream only and integrated firms. We stress that 

inference on common technology is an important benefit of the firm type flexible technology 

approach specified in (3), (4) and (7). Thus, while Model 3 demonstrates that it is possible to 

estimate different technologies for the different production structures with separate 

regressions, only our flexible technology approach in Model 1 allows this direct statistical test 

of whether the underlying technological parameters for the three firm types are statistically 

different, and therefore an appropriate cost function specification.  

 

[Place Table 4 about here] 

 

Table 5 reports estimates of the economies of scale (S) and scope (SC) for the three 

models and the two distribution output definitions. All estimates are at the sample mean. 
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Consider the estimates for economies of scale. For each model we report estimates of 

economies of scale for integrated firms as well as estimates for the two types of specialized 

firms. The degree of scale economies defined over the entire integrated product set does not 

widely differ either across models or distribution output specification: all models provide 

evidence for increasing returns to scale at the sample mean. Further, the scale economy 

estimates for pure generators and distributors also consistently indicate increasing returns to 

scale under both Models 1 and 3. 

A further drawback of the conventional common-technology approach is that it is not 

feasible to estimate the degree of scale economies for single output companies. Thus, the 

standard approach here is to compute product-specific returns to scale, defined as the ratio of 

the average incremental cost of a product to its marginal cost (Baumol et al., 1982), e.g. 

 

(13)                            ( ) ( )
( ) ( )
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where ICi is the incremental cost of the product i, C(y) is the cost function, 

( ) ii yyCyC ∂∂= /)( is the marginal cost of product i, and yN-i is a vector with a zero component 

in place of yi and components equal to those of y for the remaining products. That is, SU(y) 

(SD(y)) relates to the increment in the firm’s cost which results from the addition of certain 

level of upstream (downstream) product to the firm’s set of outputs, holding the magnitude of 

all other products constant. Therefore the estimates for the common technology approach are 

not readily comparable with the scale measures obtained from the other two models. 

Nevertheless, the estimates for scale for the specialized firm differ between Model 2 and 

Model 1 (Model 3). In particular, the estimate for the upstream technology in Model 2 is 

unrealistically low. 

 

[Place Table 5 about here] 

 

We now turn to the estimates for economies of scope (SC), also shown in Table 5.  

Models 1 and 3 report almost identical positive estimates at the sample mean. Thus, the 

separate production of output vectors yG and yD increases the total cost by 4.3% to 4.4% when 

distribution output is measured by peak demand, and by 0.6% to 0.9% when it is measured by 

the amount of power delivered. In contrast, the estimated economies of scope are much 

stronger using a conventional common technology approach with zero replacement. The 
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estimate from Model 2 suggests that the vertical separation of the average sample firm would 

increase total costs by 35.2% to 40.1%, depending on the distribution output definition. In 

quantitative terms such an estimate seems somewhat unrealistic but is within the range of 

results reported in some previous studies for the US electric industry (e.g. Kaserman and 

Mayo, 1991; Kwoka, 2002; Greer, 2008) who also use common-technology quadratic models. 

Finally, as shown by Fraquelli et al. (2005), with a translog specification scope 

economies are very sensitive to the chosen value of the arbitrary small number. In our 

application, scope economies estimates for Model 2 range from 26.2% when zeros are 

replaced by 0.001, to 54.1% when are instead replaced by 0.00001. This evidence highlights 

the advantage of the proposed approach employed in Model 1 compared to previous 

conventional translog-based empirical studies: without the proposed firm type flexible method 

it is simply not possible to provide reliable estimates for scope and scale economies by means 

of a translog cost frontier specification. 

 

 

7. Conclusion 

 

This paper has highlighted the importance of modelling separate technologies for 

different observed firm types when estimating economies of scale and scope. And it 

demonstrated the feasibility of estimating scope economies using a translog form. This is 

accomplished by relaxing the generally accepted practice of estimating a single cost function 

model, while assuming that both integrated and specialized firms operate with the same 

production technology. The relaxation of this assumption immediately eliminates the well-

known zero output problem for translog estimation of multiple output technologies, but also 

requires the availability of data for both specialized and integrated firms. However, the same 

data restriction also applies, for example, to quadratic cost function models that impose a 

common technology, as it is generally accepted, that even with a common technology 

assumption, a sufficient number of specialized firms is required to validate the estimates. 

Thus, in contrast to previous translog applications, which have relied on either cost 

complementarity results, or approximations of scale and scope economies derived from zero 

replacement models, our flexible technology model demonstrates a readily estimable model, 

which provides theoretically consistent estimates of scale and scope economies. Thus we 

emphasize that contrary to accepted opinion, it is indeed feasible to accurately estimate scope 

economies with a translog model, provided that it is a firm type flexible model. 
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For our sample of publicly owned US electric utilities, our modelling approach has not 

only demonstrated the feasibility, but also the necessity of relaxing the standard practice of 

assuming a common technology for specialized and integrated firms. While this conclusion is 

application specific, we nonetheless suggest that a further substantial benefit of our flexible 

technology model is its ability to allow readily applicable hypothesis testing of the 

assumption that integrated and specialized firms share a common technology. Thus, a flexible 

technology approach can also be applied with other functional forms such as the quadratic, 

and will always allow for the empirical possibility of a common technology or significant 

differences in technology between specialized and integrated firms. We note, however, that 

our proposed model does not deal with unobserved heterogeneity as our approach explicitly 

focuses on observable differences across firm types. Hence, we acknowledge that coefficient 

biases from unobserved heterogeneity may remain in our reported estimates. We therefore 

suggest that in future research, the firm type specific technology approach we have 

demonstrated here could be augmented with methods that also allow for unobserved 

heterogeneity. 

We finally emphasize that our analysis may have significant implications for the 

validity of the past scope economy literature, not only in the utilities sector but also in other 

industries where scale and scope economies have been extensively analyzed (e.g. banking, 

education, transport, and the health sector). Thus, if it can be demonstrated that the production 

technologies employed by specialized and integrated firms differ significantly we would need 

to conclude that much of the past literature on scope economies might have provided biased 

results. It is of course impossible to draw any conclusions from our particular results about 

any potential general biases in the results from previous studies, given that estimates are 

largely affected by the definition of the input and output variables. In contrast, our 

contribution is therefore to emphasize that the presence of different technologies may be an 

important driver of economies of scale and scope (for given inputs and outputs). Such a 

conclusion suggests a need to reconsider the previous empirical literature, its empirical 

estimates, and the policy and managerial conclusions that may be drawn from it. We would 

argue that our approach, by allowing for both parameter heterogeneity and a straightforward 

means of testing for the presence of different technologies, offers an appropriate methodology 

to begin such an undertaking. 
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Table 1. Firm Count in Size Bracket 

 
    Distribution (GWh)    
Generation (GWh) 0 <250 <500 <750 <1000 <2500 <5000 <7500 Total 
0 0 47 39 24 5 21 4 8 148 
<50 3 10 9 5 0 0 0 0 27 
<250 9 9 42 2 3 10 0 0 75 
<500 14 0 20 10 7 17 0 0 68 
<750 7 0 3 4 4 4 0 0 22 
<1000 13 0 0 0 0 5 0 0 18 
<2500 28 0 4 4 6 11 8 0 61 
<5000 10 0 0 0 2 1 4 0 17 
Total 84 66 117 49 27 69 16 8 436 

 

 

Table 2. Summary Statistics 

 

       All     Generation    Integrated   Distribution 
 mean sd mean sd mean sd mean sd 

Total Cost (M.US dollars) 28.71 29.92 39.24 27.07 36.76 34.11 11.62 13.44 
yG Net Generation (GWh) 753.46 847.61 1176.78 948.98 579.15 736.78 . . 
yD Peak Demand (MW) 192.87 236.08 . . 191.30 187.57 195.03 290.67 
yD Retail Sales (GWh) 855.71 1061.34 . . 826.31 776.16 896.24 1361.95 
         
wK Price of Capital (Rate) 0.12 0.03 0.12 0.04 0.13 0.03 0.11 0.03 
wF Price of Fuel (M/Mbtu) 2.25 1.73 1.28 0.67 2.65 1.87 . . 
wO Price of Other Inputs  0.92 0.12 0.92 0.12 0.92 0.13 0.91 0.11 
         
Capital share 0.32 0.11 0.33 0.12 0.27 0.08 0.38 0.11 
Fuel share 0.31 0.11 0.36 0.12 0.29 0.11 . . 
Other input share 0.48 0.16 0.32 0.13 0.44 0.10 0.62 0.11 
Observations 436  84  204  148  
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Table 3. Parameter estimates 
 
 Model 1   Model 2   Model 3  

 Integrated 
firms 

Upstream 
firms 

Downstream 
firms 

 All firms  Integrated 
firms 

Upstream 
firms 

Downstream 
firms 

I 0.099***           

 [0.03]           
U  −0.327***         

   [0.04]         
D    −0.841***       

     [0.03]       
yG 0.457*** 0.866***    0.546***  0.453*** 0.882***   

 [0.02] [0.03]    [0.0160]  [0.0185] [0.0224]   
yD 0.426***  0.905***  0.361***  0.446***  0.903*** 

 [0.03]  [0.02]  [0.0227]  [0.0291]  [0.0288] 
wK 0.274*** 0.308*** 0.399***  0.279***  0.275*** 0.298*** 0.403*** 

 [0.01] [0.01] [0.01]  [0.00756]  [0.00601] [0.0119] [0.00966] 
wF 0.293*** 0.397***    0.296***  0.294*** 0.406***   

 [0.00] [0.01]    [0.00660]  [0.00569] [0.00825]   
yG2 0.105*** 0.038    0.0478***  0.118*** 0.0243   

 [0.02] [0.03]    [0.00190]  [0.0141] [0.0173]   
yD2 0.079  −0.252***  0.0464***  0.0836  −0.230*** 

 [0.08]  [0.03]  [0.00330]  [0.0507]  [0.0500] 
wK2 0.009 −0.112*** 0.136***  0.00529  0.000186 −0.0776* 0.163*** 

 [0.02] [0.03] [0.03]  [0.0163]  [0.0183] [0.0364] [0.0366] 
wF2 0.146*** 0.206***    0.0198***  0.158*** 0.223***   

 [0.01] [0.01]    [0.00472]  [0.00584] [0.00928]   
yD*yG −0.110***      −0.0215***  −0.118***     

 [0.03]      [0.00123]  [0.0200]     
wK*yG −0.023** 0.011    0.00617**  −0.0305*** 0.0150   

 [0.01] [0.01]    [0.00238]  [0.00623] [0.0107]   
wK*yD 0.022  0.021**  −0.00232*  0.0297**  0.0202* 

 [0.01]  [0.01]  [0.000955]  [0.00950]  [0.00868] 
wF*yG 0.105*** 0.042***    0.00516*  0.115*** 0.0359***   

 [0.00] [0.01]    [0.00215]  [0.00561] [0.00750]   
wF*yD −0.083***      −0.0047***  −0.0987***    

 [0.01]      [0.000827]  [0.00838]     
wF*wK −0.044*** −0.036**    −0.0248***  −0.0571*** −0.0609***   

 [0.01] [0.01]    [0.00522]  [0.00746] [0.0127]   
Constant     0.109***  0.0899*** −0.332*** −0.855*** 
     [0.0226]  [0.0234] [0.0262] [0.0412] 

Observations 436      436  204 84 148 
RSS 32.90      37.82  12.46 4.26 16.13 
RMSE 0.27      0.29  0.25 0.23 0.33 
Ll 1104.55      812.22  612.22 241.09 82.86 
R-squared 0.95      0.92  0.92 0.93 0.87 

 
Notes:  
yD is Peak Demand (MW).  
Standard errors in brackets. 
* p < 0.05, ** p < 0.01, *** p < 0.001 
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Table 4. Inference on Common Technology 

 

 All Upstream Downstream 
N 436 436 436 
Chi2 872.69 393.52 2575.09 
DF 16 15 16 
p 0.00 0.00 0.00 

 
Null hypothesis is that single technology is nested in separate technologies 

 

 

 

 

Table 5. Economies of scale and scope at the sample mean 

 

 

 yD = Peak 
demand 

yD = Power 
distributed 

Model 1: Firm type flexible technology  
S (I) 1.132 1.109 
S (U) 1.155 1.148 
S (D) 1.105 1.113 
SC 0.043 0.009 

Model 2: Common Technology   
(zero values replaced by 0.0001) 

S (I) 1.102 1.052 
S (U) 0.701 0.866 
S (D) 1.293 1.158 
SC 0.401 0.352 

Model 3: Separate regressions 
S (I) 1.112 1.091 
S (U) 1.134 1.130 
S (D) 1.108 1.116 
SC 0.044 0.006 

 

 

 

 


