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Abstract— Situation awareness is required for an Unmanned
Aerial Vehicle (UAV) when it makes an arrival at an uncon-
trolled airfield. Since no air traffic control service is available,
the UAV needs to detect and track other traffic aircraft by
using its onboard sensors. General aviation pilots obtain enough
situation awareness to operate in these environments, only
using their vision and radio messages heard from other traffic
aircraft. To improve the target tracking performance of a
UAV, the circuit flight rules and standard radio messages
are incorporated to provide extra knowledge about the target
behaviour. This is achieved by using the multiple models to
describe the target motions in different flight phases and
characterising the phase transition in a stochastic manner.
Consequently, an interacting multiple model particle filter with
state-dependent transition probabilities is developed to perform
Bayesian filtering with bearing-only observations from a vision
sensor.

I. INTRODUCTION

There is a large drive for Unmanned Aerial Vehicles
(UAVs) to be integrated within the national airspace system.
This is due to the huge advantages of their use in areas
such as search and rescue, border security and environmental
monitoring. However, Civil Aviation Authority in U.K. has
stated in CAP722 that “For a UAV to operate within busy
civil airspace it is required to comply with Air Traffic Control
(ATC) instruction in the same way and within the same
timeframe that the pilot of a manned aircraft would” [1].
This means that a UAV must be predictable, communicative,
perform self-separation and see-and-avoid against other air
traffic. These requirements become more critical when a
UAV is flying into a terminal area around an airport with high
traffic density, which in turn necessitates the development of
advanced situation awareness for the UAV.

The scenario concerned in this paper is that a UAV is
making an arrival into an uncontrolled licensed aerodrome.
Unlike a controlled aerodrome where ATC is responsible
for all separation between aircraft and their navigation, in
an uncontrolled aerodrome the service is completely non
authoritative. Therefore, the pilots, or equivalently UAVs,
are completely responsible for their own operations. Smaller
aircraft operating in and around uncontrolled aerodromes
are unlikely to have Automated Dependant Surveillance -
Broadcast (ADS-B) system, which can directly transmit their
state to all other aircraft. This means the UAV has to rely
solely on its onboard sensors, like a monocular camera, to
detect and track traffic aircraft thus to build good situation
awareness. Specifically, the UAV needs to be able to track

other traffic aircraft, know there intentions and stage of flight,
and project their positions to the future in order to maintain
adequate separation.

It is known that estimating other aircraft’s state using the
onboard sensors can be cast into a target tracking problem
and solved by different filtering techniques [2]. Given camera
based vision systems are commonly equipped by UAVs, a
bearing only tracking algorithm is investigated in this paper
comparing to a previous study [3]. Bearings-only tracking
presents a challenge for any manouvering target tracking
algorithm due to target’s low observability and inherent
nonlinearities [4]. To improve tracking performance in bear-
ing only tracking, [5] suggests that the observer vehicle
must significantly out manoeuvre the target. However, in the
terminal area the UAV will not be allowed to manoeuvre
how it likes, as it will need to fly safely and predictably in
accordance with the rules of the air, just as the traffic aircraft
will be.

To improve the situation awareness of a UAV in uncon-
trolled aerodrome, this paper aims to incorporate aerodrome
circuit flight rules, and some of the standard radio messages
transmitted from other traffic aircraft into the filtering pro-
cess. Therefore, the knowledge of the circuit pattern and
these radio messages need to be converted into a probabilistic
representation to be exploited by the filtering process. First,
multiple models of aircraft dynamics are adopted to char-
acterise the behaviours at different flight phases. To further
reflect the flight direction in each circuit phase, minimum
velocity constraints are applied on each model by taking into
account the stall speed of the aircraft, as well as lateral veloc-
ity constrains to reflect that the circuit legs are approximately
parallel or perpendicular to the runway. Second, the transition
behaviours between consecutive flight phases are described
in a state-dependent and stochastic manner. Compared with
the traditional Markov jump transition techniques (see, e.g.
ref [6]), the state-dependent transition (SDT) allows one to
more precisely describe a phase transition as stated in flight
rules, whereas the stochastic modelling is able to capture
the uncertainties during this process. Thirdly the use of the
small number of radio messages as an extra and different
measurement, to further enhance the information provided
to the filter.

It is a challenging task to solve the corresponding multi-
mode target tracking problem after incorporating the circuit
knowledge due to the nonlinear/non-Gaussian nature of this



kind of problems. Interacting multiple model (IMM) schemes
based on the Kalman filters [6], [7] and particle filter (PF)
solutions [8], [9] have been developed for Markov jump
transition. When the transition behaviour are modelled as
a linear state-dependent function with Gaussian stochastic
uncertainties, Seah and Hwang have developed a promising
hybrid estimation framework based on multiple Kalman fil-
ters under Gaussian assumptions [10], [11]. However, when
both the system models and the state-dependent transition
are in nonlinear forms, Kalman filter based algorithms are
no longer applicable. To this end, this paper follows a general
IMM Bayesian filtering framework [12] to develop the filter-
ing cycle. To actually implement the Bayesian framework for
the formulated target tracking problem, a constrained particle
filter solution is developed, which is able to take into account
the state constraints and nonlinear stochastic transition of
system modes.

II. VISUAL FLIGHT RULES IN TERMINAL AREAS

A terminal area is the airspace surrounding an airfield
which is mainly used by aircraft arriving at or departing
from that airfield, which can be either controlled or uncon-
trolled. Uncontrolled airfields will normally be smaller and
have non-authoritative Aircraft Flight Information Service
(AFIS) instead of an ATC. At these aerodromes the pilot,
or equivalently a UAV, is completely responsible for their
own operations and no clearances are required, hence a high
level of situation awareness is needed. Given no ATC service
available, aircraft landing at an uncontrolled aerodrome are
required to follow the Visual Flight Rule (VFR), which
consists of a number of standard procedures. The circuit
flight pattern is the most significant VFR procedure. The
circuit is a rectangular flight path flown by all arriving
aircraft which ensures that the runway and all other traffic
remain in sight at all times. There are four distinct phases
of the circuit, namely crosswind leg, downwind leg, base
leg and final, which are flown in that order [13]. These are
shown in Fig. 1.

The use of VHF radio messages is also an essential part of
aerodrome operations, used by both the ground radio opera-
tors, and other aircraft to give locations as well as intentions.
These messages are very standard in nature for example

G-ABCD, Downwind to land

G-ABCD, report final

WILCO, G-ABCD

This is the radio message transmitted by the aircraft with
registration G-ABCD saying that they have reached the
downwind part of the circuit. This tells any other pilot the
aircraft’s approximate location relative to the runway and
that the aircraft will flying parallel to the runway opposite
to the landing direction.

The exact dimensions of a circuit are not completely
fixed but can be greatly constrained by a couple of rules.

For example, the downwind leg is flown parallel to the
runway, until the aircraft is at a relative bearing of 45◦

from the threshold point of the runway from the extended
centreline [14], where another 90◦ turn is made to the base
leg. Somewhere around the beginning of the base leg the
aircraft will start descending, and slowing until the aircraft
reaches the speed where it can extend its flaps. Next, a turn
onto the final leg to land will be performed. By the end of
the turn the aircraft is flying straight at the runway down the
extended centreline. When the aircraft is lined up on final it
will make another radio call. Fig. 1 shows the approximate
areas where both the downwind and final radio calls will be
made. It can be seen that the area is more well defined for
the call on final than downwind as an aircraft will be fly the
final leg close to the extended centreline.
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Fig. 1: Circuit dimensions

For a UAV intending to land at an uncontrolled airfield,
it needs to be aware of other aircraft within this terminal
region, especially those who are already in the circuit and
may breach the separation criterion in the near future. In
order to coordinate with other aircraft to guarantee the self-
separation, the essential problem of situation awareness in
terminal region is to acquire the status of target aircraft
and their intentions, i.e. the circuit phases. Generally, this
problem can be cast into a target tracking problem based on
the understanding of the target’s motion and the observation
from sensors.

III. PROBLEM FORMULATION

The target tracking using bearing only measurements,
Radiotelephony (RT) and circuit flight rules is formulated
in this section. First, the aircraft’s dynamics associated with
each fight phase are modelled where the phase transition
behaviour is described in a state-dependent stochastic form.
Then, in conjunction with the sensor model, the estimation
problem is formulated in a filtering problem.



A. Aircraft model
To estimate the state of a traffic aircraft in the circuit,

a mathematical model is required to describe its dynamical
behaviour. Although in general the aircraft’s state can be
described by position and velocity, the aircraft may possess
different dynamic features in different circuit phases. There-
fore, multiple models are adopted according to different cir-
cuit phases. Because circuit height is usually pre-determined
and as collisions are more likely to occur when aircraft fly
at the same height, this paper only focuses on the horizontal
motions of the aircraft in 2-dimensions. Given the aircraft
position (x, y) in local coordinates, the aircraft state at time
index k can be defined as xk = [ xk ẋk yk ẏk ]T ,
which also includes the velocity. A number of candidate
models are summarised as follows.

1) Constant velocity model: The aircraft flying in the
crosswind and downwind leg can be described by the con-
stant velocity (CV) model, such that

xk+1 =


1 T 0 0
0 1 0 0
0 0 1 T
0 0 0 1

xk +


T 2

2 0
T 0

0 T 2

2
0 T

wk, (1)

where k is the time index, T is the sampling time, xk ∈ R4

is the aircraft state, and wk ∈ R2 is the process noise. The
noise vector wk is assumed to be Gaussian with zero mean
vector and covariance matrix Qk.

2) White-noise acceleration model: The aircraft flying in
base leg and final approach are more likely to reduce their
speed rather than maintaining a constant cruise. The simplest
model for describing this motion is a white-noise acceleration
(WA) model, which differs from the CV model (1) only in
the noise level [15].

3) Coordinated turn model: The model associated with
the turning phases, including turning onto the downwind
leg, base leg and final approach, can be described by the
coordinated turn (CT) model

xk+1 =


1 sin(ωT )

ω 0 − 1−cos(ωT )
ω

0 cos(ωT ) 0 − sin(ωT )

0 1−cos(ωT )
ω 1 sin(ωT )

ω
0 sin(ωT ) 0 cos(ωT )

xk

+


T 2

2 0
T 0

0 T 2

2
0 T

wk,

(2)

where ω is the nominal turning rate and the Gaussian process
noise wk is used to capture the uncertainties.

In addition to the multiple models which are used to
distinguish between the flight phases, other information on
circuit flight like the speed constraints can also be exploited
to improve the target tracking.

B. Discrete mode transition
To incorporate the multiple models associated with the

circuit flight, a discrete mode variable mk ∈ M is intro-
duced to indicate the current phase of the aircraft, where

M = {1, 2, . . . ,M} is the set of M circuit phases. From
the crosswind to final approach, the circuit phases and the
corresponding models are summarised in Table I.

TABLE I: Circuit phases and aircraft models.

Mode Circuit phase Aircraft Model
1 crosswind CV
2 turning into downwind CT
3 downwind CV
4 turning into base CT
5 base WA
6 turning into final CT
7 final WA

The mode transition process can be described in a proba-
bilistic way. Suppose at time k the transition probability from
mode i to mode j is denoted as πij(xk), where i, j ∈ M. A
commonly used method for modelling this process assumes
the Markov jump model where the probability πij is assumed
to be a known constant and independent of the state xk.
Although this method is very popular in the target tracking
field, it cannot fully take into account the flight patterns in the
circuit. As mentioned earlier there is no nominal circuit path
for all aircraft, the pilots usually execute the circuit flight
by following a number of rules. Therefore, it is necessary to
develop a dedicated transition model for the circuit flight.

In general, the stochastic transition criterion from mode
i to mode j can be modelled as a nonlinear function of
state xk in conjunction with a random vector to capture the
uncertainties (see [3]), such that

Gij(xk) + γij ≤ 0, (3)

where Gij(xk) is a nonlinear function of xk and γij is a
random vector satisfying a distribution pij(γ). The mode
transition probability thus can be expressed as

πij(xk) = Pr{Gij(xk) + γij ≤ 0} (4)

In particular, when γij follows a Gaussian distribution with
zero mean and standard deviation of σ, (4) can be written as

πij(xk) = Φ(−Gij(xk); 0, σ
2) = 1− Φ(Gij(xk); 0, σ

2),
(5)

where Φ(y; 0, σ2) =
∫ y

∞ N (u; 0, σ2) du denotes the cumula-
tive distribution function (CDF) with zero mean and standard
deviation σ. The constructed mode transition probabilities
need to be normalised such that

∑
j∈M πij(xk) = 1. Other

distributions for random variable γij may also be adopted
depending on the scenario, but it is beyond the scope of the
current paper.

The state-dependent transition has been investigated in
some pioneering works, including an example where the
transition probability πij(xk) is a piecewise linear function
of state xk [12] and multiple Markov jump probabilities
depending on the system state [16]. A more advanced
modelling of using random variables to capture the transition
uncertainties has been shown in a series of hybrid state
estimation algorithms [10], [11], where the state-dependent
function and the integration of the random variables have



to satisfy a linear form. Comparing to above methods, this
paper adopts a general nonlinear state function to provide
more flexibilities.

C. Hybrid state estimation

Combining the multiple models described in Eq. (1)-(2)
and the transition of the discrete mode variable mk, the
motions and intentions of the traffic aircraft in the circuit
can be cast into a hybrid system

xk+1 = f(xk,mk,wk), mk ∈ M (6)

where the discrete state mk determines the aircraft model and
the associated process noise wk that govern the evolution of
continuous state xk.

In order to estimate the traffic aircraft’s state described in
Eq. (6) without any direct measurements from transponders,
a UAV needs to rely on bearing information from the
camera, and may use RT information to infer the position
and intentions of traffic aircraft. Therefore, in this paper the
measurement model is expressed as.

zk =


xk

yk

arctan

(
yk − ȳk
xk − x̄k

)
+ vk (7)

where (x̄k, ȳk) denotes the UAV’s position assumed to be
available , and vk denotes the observation noise vector which
is Gaussian with zero mean vector and covariance matrix R.
The first two elements in vk represent the uncertainty in the
RT location report, and the final element represents the actual
noise on the bearing measurement to the traffic aircraft.
However as radio calls are not very frequent, between them
only the bearing part of the measurement will be used.

The current situation of the traffic aircraft can be rep-
resented by the probabilistic distribution of the aircraft’s
state and the associated mode. Therefore, the awareness
of the aircraft involves the estimate of the distribution
p(xk,mk|z1:k) at time k based on the observation sequence
z1:k = {z1, . . . , zk} and the initial distribution p(x0,m0),
which in turn can be done in a recursive probabilistic
inference process.

IV. BAYESIAN FILTERING

Bayesian filtering provides a generic mathematical tool for
probabilistic inference. However, for the formulated hybrid
system a dedicated IMM Bayesian filtering scheme in [12]
will be adopted with a particle filter implementation.

A. IMM Bayesian framework

Baye’s theorem can be used to construct the conditional
density p(xk,mk|z1:k). Following [12], the Bayesian infer-
ence can be summarised as

p(xk,m
j
k|z1:k) =

1

ct
p(zk|xk,m

j
k)

∫
Rn

p(xk|xk−1,m
j
k)∑

i∈M

Πij(xk−1)p(xk−1,m
i
k−1|z1:k−1) dxk−1

(8)

where ct is the normalisation factor, mj
k denotes that the

discrete mode mk takes the value of j, mi
k−1 denotes

mk−1 = i and the state-dependent transition probability is
defined as

Πij(xk−1) = p(mj
k|m

i
k−1,xk−1), ∀i, j ∈ M (9)

To implement the above recursive equation by using a bank
of mode-matched filters, the inference process is decomposed
into four steps.

1) Mode transition: The evolution of the conditional
model probability from k − 1 to k is characterised as the
mode transition step, such that

p(mj
k|z1:k−1) = p(mi

k−1|z1:k−1)∑
i∈M

∫
Rn

Πij(xk−1)p(xk−1|mi
k−1, z1:k−1) dxk−1

(10)

This relation shows that the predicted model probability
p(mj

k|z1:k−1) can be derived from the mode conditional
density p(xk−1|mi

k−1, z1:k−1) and the mode probability
p(mi

k−1|z1:k−1).
2) State interaction: The initial state density

p(xk−1|mj
k, z1:k) for each mode-matched filter is calculated

in this step by considering the influence of the predicted
model probability as

p(xk−1|mj
k, z1:k) =

∑
i∈M

Πij(xk−1)p(xk−1,m
i
k−1|z1:k−1)

p(mj
k|z1:k−1)

(11)
3) State evolution: Given the initial state for each mode-

matched filter in Eq. (11), the state evolution step propagates
these densities from k−1 to k through integration, such that

p(xk|mj
k, z1:k−1)

=

∫
Rn

p(xk|xk−1,m
j
k)p(xk−1|mj

k, z1:k−1) dxk−1

(12)

where the transition density p(xk|xk−1,m
j
k) can be obtained

from the corresponding models and distributions of process
noises.

4) Correction: In this step, the latest measurement in-
formation is used to update the prior distribution in each
mode-matched filter. Following Eq. (??) gives

p(xk,m
j
k|z1:k)

∝ p(zk|xk,m
j
k)p(xk|mj

k, z1:k−1)p(m
j
k|z1:k−1)

(13)

where the likelihood density p(zk|xk,m
j
k) can be derived

from the observation model.
To complete the recursive cycle, the required mode-

conditioned state distribution and mode probability at the
next time step can also be calculated such that

p(mj
k|z1:k) =

∫
Rn

p(xk,m
j
k|z1:k) dxk (14)

and

p(xk|mj
k, z1:k) ∝ p(zk|xk,m

j
k)P (xk|mj

k, z1:k−1). (15)



B. Particle filter implementation

Although the Bayesian filtering scheme provides a general
framework for state estimation of the hybrid systems, a par-
ticle filter implementation is required to solve this nonlinear
and non-Gaussian filtering problem.

Suppose that at time k − 1 there exists a set of weighted
particles {xi,n

k−1, µ
i,n
k−1; i ∈ M, n ∈ {1, . . . , N}}, which

spans over the joint distribution

p(xk−1,m
i
k−1|Zk−1) ≈

N∑
n=1

µi,k
k−1δ(xk−1 − xi,k

k−1) (16)

where δ(·) is a Dirac delta function. For each discrete mode
i ∈ M, N particles are allocated to the corresponding mode-
matched filter with a total number of Np = N ·M weighted
particles.

The development of Sequential Monte Carlo implemen-
tation involves the substitution of the empirical density Eq.
(16) into four filtering cycles, respectively. Firstly, the prior
mode probability in Eq. (10) is approximated as

p(mj
k|z1:k−1) ≈

M∑
i=1

N∑
n=1

πij(x
i,n
k−1) · µ

i,n
k−1 , Λj

k−1. (17)

Secondly, the initial density for each mode-conditioned filter
in Eq. (11) can be approximated

p(xk−1|mj
k, z1:k−1)

≈
M∑
i=1

N∑
n=1

πij(x
i,n
k−1)µ

i,n
k−1δ(xk−1 − xi,n

k−1)/Λ
j
k−1

(18)

where the density p(xk−1|mj
k, z1:k−1) is approximated by

Np particles instead of N . A solution to this problem as
suggested in ref [12] is to perform a resampling process so
that N samples {x̄j,n

k−1, µ̄
j,n
k−1} ∼ p(xk−1|mj

k, z1:k−1) are
generated for each mode.

The third step is to propagate the mode-conditioned den-
sity derived in (18) to the next time step k. This means to
draw new samples {xj,n

k } from p(xk|xk−1,m
j
k) based on

the resampled particles {x̄j,n
k−1, µ̄

j,n
k−1} so that

p(xk|xk−1,m
j
k) ≈

N∑
n=1

µ̄j,n
k δ(xk − xj,n

k ). (19)

The last step in the filtering cycle aims to update the
weights using the likelihood function. Inserting Eq. (19) and
the predicted mode probability Λj

k−1 into Eq. (13) gives

p(xk,m
j
k|z1:k)

∝
N∑

n=1

p(zk|xj,n
k ,mj

k)µ̄
j,n
k δ(xk − xj,n

k )Λj
k−1.

(20)

Thus, the samples remain the same, whereas the new weights
can be updated as

µj,n
k = p(zk|xj,n

k ,mj
k)Λ

j
k−1µ̄

j,n
k /(

M∑
j=1

N∑
n=1

µ̄j,n
k ). (21)

V. CASE STUDY

A case study is designed to demonstrate the performance
of the proposed algorithm. It is concerned with the arrival
and landing of a UAV to a licensed uncontrolled aerodrome,
e.g. Wellsbourne aerodrome in UK. In order to speed up its
arrival the UAV is assumed to request a direct join on to the
final. As the UAV is skipping the standard overhead join, it
needs to be aware of other aircraft already in the circuit. To
find an aircraft visually at distance using its zoom camera,
an initial idea of the aircraft would be very helpful. This can
be acquired when the traffic aircraft makes its downwind RT
call exactly like the example in II, which gives a much better
estimate of the aircraft’s initial position.

This example scenario is illustrated in Fig 2, where three
different circuit phases, namely downwind (Phase 3), turning
into base (Phase 4) and the base leg (Phase 5), are considered
during the simulation. It is assumed that at time k = 0 a
traffic aircraft is located in the downwind phase with the
coordinates (−1700m,−3300m) and the speed of 50m/s. It
follows the nominal circuit flight rules, i.e. with constant
speed parallel to the runway in the downwind phase and
then turns onto base with a turning rate about 3◦/s. Once
established on the base leg indicated by the 90◦ heading
angle, it starts to decrease its speed at an acceleration of
−1m/s2.
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Fig. 2: Target tracking scenario

Following the general rules of air, the nominal transition
criteria for turning into base can be described by the 45◦

line which can be written as C34 = xk + yk ≥ 0. Since a
human pilot may not be able to fly the circuit perfectly, a
random variable γ34 is introduced to characterise the stochas-
tic transition behaviour. Thus, the state-dependent transition
criteria can be modelled as C34 = {xk + yk ≥ γ}, where the
random variable is assumed to follow a Gaussian distribution
with a zero mean, i.e. γ34 ∼ N (γ; 0, σ2

34). The standard
deviation in the simulation is chosen to be σ1 = 200m
to capture the uncertainty in making the turning decision.
The associated state-dependent transition probability can
be evaluated as π34(xk) = Pr{C34|xk} = Φ(C34; 0, σ2

34).
Similarly, the transition criteria from mode 4 to mode 5 can
be written as C45 = arctan( ẏk

ẋk
) − 85 ≥ +γ45, where the

Gaussian random variable γ45 is zero mean with standard
deviation of 5◦. To capture any exception in modelling the
stochastic transition modelling, a small number of transition
probabilities are added into the theoretical ones. Therefore,
the state-dependent transition probability matrix π(xk) ∈



R3×3 used in this case study can be defined as π11 = [1 −
Φ(C34; 0, σ2

34)]/κ, π12 = [Φ(C34; 0, σ2
34) + 0.005]/κ, π13 =

0.005/κ, π21 = 0.005/κ, π22 = [1 − Φ(C45; 0, σ2
34)]/κ,

π23 = [Φ(C45; 0, σ2
45)+0.005]/κ and for the last row π31 =

0.005, π32 = 0.005 and π33 = 0.99. The normalisation factor
can be calculated to be κ = 1.01.

In the case study, the proposed SDT IMM particle filter is
compared with traditional Markov jump based IMM particle
filters with constant state transition matrices. Two filters
(denoted as IMM-PF-1 and IMM-PF-2, respectively) are
considered where the the mode transition matrices are

Π1 =

0.96 0.02 0.02
0.02 0.96 0.02
0.02 0.02 0.96

Π2 =

0.8 0.1 0.1
0.1 0.8 0.1
0.1 0.1 0.8

 (22)

where Π2 represents a higher chance of transition than Π1.
In designing filters, the process noises for different

flight modes are set as zero mean Gaussian with different
covariance matrices, i.e. σcv = diag{(1m/s)2, (0.5m/s)2},
σct = diag{(1.5m/s)2, (1.5m/s)2} and σwa =
diag{(0.5m/s)2, (1.5m/s)2}, respectively. It can be noted that
for downwind (CV) and base (WA) modes the covariances
are directional to reflect the corresponding directions of
motion. The observation noise vk is also assumed to be
a Gaussian random variable which has zero mean and
covariance matrix σv = diag{(200m)2, (300m)2, (1◦)2}.
Moreover, to comply with the stall speed the minimum
forward speeds in those models is assumed to be 20m/s.
More importantly the lateral velocities in those two modes
are constrained to represent the aircraft flying approximately
parallel to the runway on downwind and perpendicular to it
on base by restricting the directions within 10◦ variation.
These state constraints can be incorporated in the particle
filter by using the constrained likelihood function [17].

To represent the aircrafts unknown position prior to
the downwind call the initial state distribution will be
very uncertain. It is set to be Gaussian, with mean
x0 = [ −2500 50 −3000 0 ]T and covariance P0 =
diag{1000, 10, 1000, 5}. The initial mode probabilities are
p(m1

0) = 1, p(m2
0) = 0 and p(m3

0) = 0 which shows that
after the RT call the filter is 100% certain that the aircraft is
on the downwind leg. The sampling interval is T = 1 second
and the simulation runs for 140 time steps. The particle
number used in the simulation is N = 4000.

In the case study, Monte Carlo simulations were carried
out for L = 100 random generated tracks. Some example
trajectories are given in Fig.3, where the mode changing
points can be varied in a stochastic manner. The algorithm
performances in terms of the tracking accuracy were evalu-
ated by Root Mean Square Errors (RMSE) of the position
and velocity. The time histories of RMSE are given in Fig. 4
and Fig. 5. The statistics of the MC simulation results are
displayed in Table II, including average RMSE (aRMSE) for
both position and velocity and the mode error count (MEC)
of mode estimate.

It can be observed that the proposed SDT based IMM-
PF significantly outperforms the IMM-PFs based on constant
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Fig. 3: Example trajectories for the MC simulation

transition probabilities because the circuit knowledge is more
effectively incorporated in the filtering process in the pro-
posed method. During the downwind phase the performance
is similar but during mode 4 and 5 it is significantly better
as the mode estimation is much more accurate for the SDT-
IMM.
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Fig. 4: RMSE of position estimation
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Fig. 5: RMSE of velocity estimation

The mode estimation accuracy is also an important mea-
sure of the performance. The estimated mode probabilities
for a typical simulation run are shown in Fig. 6 It can be seen
that the IMM-PF-1 with lower transition probability shows
significant delays in estimating the mode transition, whereas
the result from IMM-PF-2 is still susceptible to early mode
change estimate, which is especially problematic for steady-
state motion. The proposed SDT IMM particle filter on the
other hand is able to demonstrate a better mode probability
history. The counts of mode estimation errors during the
simulation can be found in Table II.



TABLE II: MC simulation results.

Filters aRMSE (pos.) aRMSE (vel.) MEC
SDT-IMM-PF 105 m 4.8 m/s 7
IMM-PF-1 192.6 m 16.3 m/s 37.2
IMM-PF-2 229 m 10.5 m/s 47.4
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(a) Mode estimation of SDT-IMM-PF
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(b) Mode estimation of IMM-PF-1
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Fig. 6: Mode estimation for a typical simulation run

VI. CONCLUSIONS

Inserting a UAV into an uncontrolled aerodrome requires
a good level of situation awareness on other traffic aircraft.
In estimating the traffic aircraft’s dynamical state and phase
in the circuit, this paper investigates the effectiveness of
incorporating the circuit flight rules into the traditional
bearing-only target tracking. Multiple models are used to
represent the different motion behaviours in different fight
phases and the stochastic state-dependent transitions are used
to characterise the actual phase transition with uncertainties.
The resulted hybrid estimation problem is solved by the
proposed SDT IMM particle filter, where the mode transition
probabilities is calculated as a cumulative density function
of system state instead of a constant matrix. This algorithm
was compared with general Markov jump based IMM PFs in
the case study. The MC simulations show that the proposed
algorithm is not only able to obtain a better position and
velocity accuracy but also a significantly improved mode
estimate, which can more clearly indicate the intentions
of the traffic aircraft. Future research following this work
includes the further investigation on statistical modelling of
the phase transition behaviours and incorporation of more
realistic camera sensor model with data associated process.
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