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Abstract 

Nowadays, manufacturing systems are shifting rapidly with the significant change in technology, business, and industry to become more 
complex and involved in more difficult issues, customised products, variant services and products, unavailable machines, and rush jobs. In the 
current practices, there are limited models or approaches that are dealing with these complexities. Most of the scheduling models in literature 
are proposed as centralised approaches. Researchers recently started to pay attention to reduce energy consumption in manufacturing due to the 
rising cost and the environmental impact. The energy consumption factor has been lately introduced into scheduling research among other 
traditional objectives such as time, cost and quality. Although reducing energy in manufacturing systems is very important, few researchers 
have considered energy consumption factor into scheduling in dynamic flexible manufacturing systems. This paper proposes an agent-based 
dynamic bio-objective robustness for energy and time in a job shop. Two types of agent are introduced which are machine agent and product 
agent. A new decision making and negotiation model for multi-agent systems is developed. Two types of dynamic unexpected events in the 
shop floor are introduced: dynamic job arrival and machines breakdown. A case study is provided in order to verify the result. 
© 2015 The Authors. Published by Elsevier B.V. 
Peer-review under responsibility of Scientific committee of the 49th CIRP Conference on Manufacturing Systems (CIRP-CMS 2016). 
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1. Introduction 

In the manufacturing process, energy is the key to running of 
the plants and consumption of energy is evident in different 
levels of the manufacturing process. Evans found that the 
manufacturing activities are major users of energy in the 
world accounting for over one-third of the world’s usage of 
energy [1]. It is factual that the world population is on the 
increase and there is significant rise in living standards which 
translates to increased demand of manufactured goods. The 
challenge facing the manufacturing sectors is the energy 
consumption. As the populations grow, more manufactured 
products are required and subsequently a lot of energy is used 
to manufacture the products. Therefore, manufacturing 
systems and processes that are energy efficient should be 
incorporated in the production process [2]. 
There are many research efforts that have been carried out to 

provide knowledge on the ways energy consumption can be 
reduced at various levels of manufacturing system [3]. These 
levels are the process level [4], equipment level [5], systems 
level [6] and the factory level [7]. This paper focuses on the 
system level where energy can be reduced through scheduling 
and planning. 

Scheduling is a process of allocating or assigning appropriate 
resources to a job [8]. A good scheduling can help in reducing 
the effort, time or cost in manufacturing. The classical 
scheduling or static scheduling approaches may achieve this 
and help in solving the problem. However, real manufacturing 
systems are complex and dynamic with a large number of 
products and processes, involving many production levels, 
and subject to accidental disturbances. Examples of these 
disturbances include: arrivals of new orders, cancellation of 
jobs in queues, changes in urgency of some jobs, failure of 
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technological equipment or temporary unavailability of some 
resources. Therefore, in real life conditions, classical 
scheduling or static scheduling approaches turns out to be 
impractical due to their mostly unrealistic assumptions [9]. 
So, such dynamic entity requires dynamic scheduling. 
Therefore, dynamic scheduling can play a very important role 
for the successful implementation of real-world scheduling 
systems. 
 
Since the scheduling problem is complex and considered to be 
NP-hard, the researchers apply different types of artificial 
intelligent techniques to optimise the production scheduling. 
These techniques are including genetic algorithms, fuzzy 
logics, neural networks, and Tabu search. However, such 
methods are likely to encounter difficulties when applied to 
real-world situations as they are essentially centralised and 
based on simplified theoretical models. Multi-agent systems 
(MAS) have been applied in decentralised manufacturing 
planning and scheduling as well as for shop floor control 
where they have been demonstrated to good results especially 
for dynamically changing situations [10]. Hence, they provide 
a very promising framework for more dynamic and adaptive 
scheduling. 
 
This paper focuses on investigating the robustness of flexible 
job shops controlled by multi-agent system with dual 
optimisation objectives; tardiness and total energy 
consumption. In order to measure the robustness, the system 
should be analysed to assess how quickly it responds to 
possible natural errors that can occur and the impacts of these 
disruptions. In this study, two types of dynamic uncertainties 
were considered to benchmark the robustness of the proposed 
multi-agent scheduling system. These are the dynamic arrival 
of jobs and random machine breakdowns.  

 

2. Literature review  

Research on scheduling to minimise energy consumption is 
limited but increasing. One of the significant studies was 
carried out by Mouzon et al. who minimised energy 
consumption and total completion time by turning off the non-
bottleneck machines until needed. Up to 80% of energy 
saving was achieved [11]. Liu et al. focused on the reduction 

of energy consumption and total weighted tardiness using 
Genetic Algorithms in a classical job shop [12]. Fang et al. 
considered the carbon footprint, peak load and productivity 
during a job shop scheduling [13]. Chen et al. investigated the 
reduction of energy consumption by an effective scheduling 
of machine start up and shutdown. Machines were assumed to 
have Bernoulli reliability model [14]. Moreover, Mashaei et 
al. reduced energy consumption in idle machines by using the 
control strategy for closed-loop flow shop [15]. 
In a flexible manufacturing system, Diaz et al. optimised the 
performance of the system in terms of cost and environmental 
impact using discrete-event simulation [16]. Guerrero et al. 
also proposed an optimal scheduling procedure to select the 
appropriate batch and sequence policies to improve the paint 
quality and decrease repaints, resulting in reduction of energy 
and material consumption in an automotive paint shop [17]. 
He Y et al. used mixed integer programming and nested 
partition to optimise energy through the machine selection 
and operation sequence [18]. 

All of these energy reduction researches focused on heuristic 
and meta-heuristic approaches. These methods are all 
centralised approaches. There is a lack on reducing energy 
consumption on a dynamic decentralised approach. The multi-
agent systems are among the promising approaches to 
developing robust, cost-effective, and complex manufacturing 
scheduling systems for the next generation because of their 
autonomy, distribution, and dynamic form, and their strength 
against failures [19]. Multi-agent systems are significant in 
dynamic scheduling in manufacturing systems as a means for 
energy consumption reduction. This research characterises the 
multi-agent system for this purpose. Due to the complexity, 
uncertainty and dynamics in the modern manufacturing 
environment, flexible and adaptive scheduling is essential to 
achieve production objectives that include not only high 
delivery performance and low production costs, but generic 
system properties like the ability to develop flexible 
behaviour, guaranteeing fault tolerance. The centralised 
approaches limit the expandability, re-configurability and 
fault tolerance of manufacturing systems. The multi-agent 
system is the methodology able to design and support efficient 
distributed intelligent manufacturing systems. Several 
researches have applied the agent methodology to develop 
industrial distributed systems.  
 

Figure 1: Multi-agent system approach 
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The MAS is a realisation of a distributed artificial intelligence 
(DAI) system that consists of a group of autonomous agents 
[20]. The agents in the MAS interact and collaborate to 
achieve collective goals while each agent simultaneously 
seeks individual objectives [21]. Manufacturing scheduling 
and control systems can be developed using MAS technology 
if the requirements of reconfigurable and agile manufacturing 
are met. Multi-agent methods are promising approaches that 
can increase productivity and profitability through enhancing 
shop floor flexibility [22]. Due to their flexibility, 
reconfigurability, and scalability, MASs have been 
extensively applied in manufacturing applications [23]. The 
essential aim of the agents in these systems is to fulfill global 
objectives from local agent solutions. Using the agents in 
dynamic manufacturing systems can enrich the reliability and 
flexibility of planning and scheduling functions, as the agent 
structure facilitates reconfigurability in response to changes. 
The agents also provide a fault tolerance feature to the 
manufacturing environment, which can be achieved through 
resource reallocation. Previous research on this topic have 
mainly focused on altering traditional centralised system 
forms and integrating multiple decision makers that can be 
organised via different coordination systems [24].  
 

3. Methodology and implementation: 

In order to investigate the robustness of flexible job shops, we 
use MAS to implement a decentralised flexible manufacturing 
system. With MAS, it is easier conduct experiments 
comparing with a real-life system, and we can control which 
of dynamic factors to be introduced into the system. Figure 1 
describes the structure of the system. It consists of many 
machines and products. Each machine can perform one or 
more services and has different time and energy consumption. 
And each product requires a sequence of services to be 
performed on it. Since a service can be performed by several 

machines, a product can be processed by different machines 
depend on decision-making policies in the negotiation 
protocol. There is also a yellow page service (YPS), which 
has the set of services provided by machines. The 
transpiration is not considered in this study. 
 
The MAS is implemented using JADE platform (Java Agent 
Development Environment) [25]. In the proposed system, 
agents represent the manufacturing system components. Two 
types of agents are involved: the resource agent (RA) 
representing a machine and the product agent (PA) 
representing a product. Agents communicate and interact with 
each other by using a common shared communication 
protocol, ACL messages [26]. 
 
Agent structure: 
 
A resource agent represents a machine: 
 Each machine agent can perform a several predefined 

tasks. 
 For each task, a machine also has information on the time 

and energy required to perform that task. 
 When a machine is idle, it also consumes a predefine 

amount of idle energy. 
 Machines breakdown occur randomly with a random 

duration between 15 and 20 minutes. 

A product agent represents a product: 
 Each product agent has a list of tasks to be performed and a 

due time. 
 Products arrive dynamically at the shop floor as per 

probability. 
 When starting up, a product agent calculates the total 

minimum processing time by summing all the minimum 
time required to do each task on the list. The product is 
defined as urgent if the slack time is less than 30% of total 
minimum processing time. 

Figure 2: Sequence diagram 



731 Abdulaziz Alotaibi et al.  /  Procedia CIRP   57  ( 2016 )  728 – 733 

 
Agent behaviours: 
Figure 2 is a sequence diagram that illustrates the interaction 
between products and machines. When the system starts up, 
the product agent looks up the current task on the list and gets 
the list of machines that are able to perform the task from 
Directory Facilitator (DF), which manages the YPS. Once the 
product agent receives the reply list of machines, it will send a 
call-for-proposal (CFP) message to the all machines in the 
list. In the CFP, the product also informs machines its urgent 
status. When receiving CFP, the machine waits for a 
predefined period before choosing one product based on its 
decision-making policy. After that, machine can send a 
PROPOSAL message which includes the energy and time for 
the required task, as well as the remaining time of the 
machine, and REFUSE messages to other products (or when 
the machine breaks down, or cannot perform the task the 
product is required). If there is no PROPOSAL message, the 
product will look for another machine. After receiving all 
PROPOSAL messages from all the machines that can perform 
the current task, the product agent chooses which machine to 
perform the task using following decision-making policy of 
the product. After choosing a machine, the product will send 
an ACCEPT_PROPOSAL message to that machine. Upon 
receiving the ACCEPT_PROPOSAL message, the machine 

will put the product on the queue, and send an AGREE 
message to inform the product agent. The queue of the 
machine is FIFO (First In First Out) which means the earlies 
the product goes into the queue, the earliest it will be 
processed. When starting processing a product, the machine 
agent sends an INFORM message to the product. When the 
machine is done with a product, it will send a CONFIRM 
message to the product. The decision making policies of RA 
and PA are listed and reviewed in Table 1. 
 

4. Experiment: 

The present study looks at a dynamic flexible job shop under 
the presence of uncertainty. The proposed system parameters, 
which include number of machines, number of products, setup 
time, cutting time, idling energy and cutting energy was 
obtained from [18]. The system was modified and the due 
dates were implemented in order to show the effectiveness of 
the system in terms of tardiness. In addition, the current 
system is subject to dynamic uncertainty. These uncertainties 
are arriving of products and the breaking down of machines, 
which both occur randomly. The fixing time rate for machine 
is from 15 to 20 minutes.  

Table 1: Decision making policies 

Agent Policy Full name Explanation 

RA 

U&FIFO Urgent & First In First Out Choose the first urgent product, prioritizing urgent over 
non-urgent products. 

U&SPT Urgent & Shortest Processing Time Choose the product with the shortest processing time, 
prioritizing urgent over non-urgent products. 

LPT Longest Processing Time Choose the product which requires longest processing time 
LE Least Energy Choose the product which requires least energy 

PA 

FIFO First In First Out Choose the first machine 
SPT Shortest Processing Time Choose the machine with shortest processing time 
LPT Longest Processing Time Choose the machine with longest processing time 
OT&SE On Time & Save Energy Create a list of machines that will process the product on 

time. If there is no machine, create a list with all approved 
machine. Choose the machine with the least energy from 
created list. 

Table 2: Results for all scenarios 

Scenario 
Idle energy 

(Wh) 
Processing 

energy (Wh) 
Total energy 

(Wh) 
Tardiness 
(minute) 

Idle time 
(minute) 

Makespan 
(minute) 

0% breakdown, 0 arrival 565.57 2014.81 2580.38 -24.75 27.90 41.35 

50% breakdown, 0 arrival 705.52 1997.01 2702.53 47.45 33.95 59.80 

0% breakdown, 30m arrival 1069.43 1932.89 3002.32 -34.75 52.65 55.80 

50% breakdown, 30m arrival 1314.14 1978.93 3293.07 24.50 63.00 76.85 
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The policies used in this paper are described in table 1. PA 
and RA have their own individual decision making policy. In 
this experiment, we have investigated the effect of applying 
different decision making policies where the arriving of jobs 
and the breaking down of machine occur randomly.  
 
The experiment is divided into three sections. The first section 
compares fixed system with dynamic system scenarios. The 
second section compares different decision making policies in 
dynamic jobs arrival and machine breakdown scenarios. The 
third compares the effect of the different decision making 
policies on the robustness of the proposed system when it is 
subject to disruptions. 
 
5. Result and discussion  
 
5.1: Comparing between fix vs dynamic scenarios 
 
In this experiment, we experimented by comparing the 
scenarios without and with different dynamic factors. Due to 
the limit space in this paper, only one policy will be 
discussed.  The policy is the same for all scenarios: 
“Urgent+FIFO” for RA and “Least remaining time” for PA.  
Table 2 shows the results of scenarios with different dynamic 
factors. The total energy as well as the makespan increases 
more when there are more dynamic factors in the systems. 
This is because the two dynamic factors we introduced are 
breakdown and arrival time, which will delay the makespan 
and consume more energy. In term of energy, the processing 
energy is similar between four scenarios but there are 
differences in idle energy consumption which cause the 
differences in total energy. Interestingly, the tardiness is 
increasing when only breakdown is included (47.75), but 
decreasing when only dynamic arrival is included (-34.75). It 
can be explained that the breakdown causes the product to be 
processed late; while the dynamic arrival helps spread out the 
jobs, thus more products will be processed on time. The 
energy consumption profile of this study is shown in figure 3. 
 
5.2: Comparing between decision making policies in 
dynamic jobs arrival and machine breakdown 
 
In this experiment, we included both breakdown and dynamic 
arrival in the system, and experiment on 6 different 
combinations of policies for machine and product agents. 
Table 3 shows the average results for each combination. The 
combination 2 (urgent+SPT & SPT) gives us the best result in 
terms of minimizing total energy, total tardiness, and 
makespan. Combination 4 also gives a good result, just 

second best after combination 2. Both combinations have PA 
use SPT. Combination 2 performs better by having A also 
use SPT policy. 
 
5.3: The effect of using different decision making policies 
on the robustness of the proposed system when it is 
subject to disruption. 
 
The last section of the experiment focused on the effect of 
using different decision making policies on the robustness, 
stability, and resilience in the scenario where the machines 
breakdown. In this experiment, the profiles of energy 

consumption over the time of a fixed system using all policies 
are created and compared with the scenario of machine 
breakdown. It was found that some policies resulted in more 
energy consumption and required longer time to recover. 
There was a remarkable variation in the energy consumption 
when compared to fixed system scenario. On the other hand, 
other policies performed well and were able to minimise the 
impact of the disturbances faster in terms of energy 
consumption. Figure 4 shows the energy consumption profile 
of policy 4 used in static system and machine breakdown 
system. It can be seen that there were slightly different 
variation in energy consumption when compared to the fixed 
system. Figure 5 shows the energy consumption profile of 
policy 3 used in fixed system and machine breakdown. When 
comparing both scenarios, it is clear that the proposed policy 
is not resilient since it does not respond well when disruption 
occurs. 
 

 
Figure 3: result for fixed and other dynamic system scenarios 

 

 
Figure 4: result for Policy 4 in fixed and machine breakdown scenarios 
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Table 3: both dynamic jobs arrival and machine breaking down 
scenarios results 
RA PA Total 

Energy 
(Wh) 

Tardiness 
(minute) 

Makespan 
(minute) 

1-U+FIFO FIFO 3407.29 48.55 84.90 
2-U+SPT SPT 3107.54 18.30 76.80 
3-LPT LPT 3866.43 93.05 95.40 
4-LE OT&SE 3122.05 34.80 81.00 
5-U+FIFO SPT 3293.07 24.50 76.85 
6-U+FIFO OT&SE 3240.67 39.20 80.95 
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Figure 5:  Result for policy 3 in fixed and machine breakdown system 
scenario 

 

6. Conclusion  

The paper investigated the effect of testing different decision 
making policies using MAS. Dynamic disturbances such as 
machine breakdown and dynamic jobs arrival were introduced 
in the system. The system consists of two agents: machine 
agent and product agent. We compared one policy in different 
system scenarios. We also compared six different decision 
making policies in a dynamic system which includes machine 
breakdown and dynamic arrival jobs. We examined how 
different combinations of decision making policies affect the 
system. This can be very hard and expensive to perform in the 
real system. Thus, our approach in using simulation with 
dynamic factors can be used to explore the decision making 
policies and later make informed decisions on the real job 
shops. 
 
It was found that the resilience of the system changes 
significantly as a result of using different decision making 
policy. In the scenarios where machines breakdown, it is 
noticeable that the energy consumption decreases. This is due 
to the times of broken machine and not consuming energy. 
This result suggests a new strategy that can be used in further 
research for energy optimisation through setting machines on 
a sleep mode when they are not operating. In addition, 
considering the transportation agent in the future research will 
have a major impact on the dynamic scheduling. 
 

Acknowledgement 

The reported work has been partially funded by the EPSRC 
Centre for Innovated Manufacturing in Intelligent Automation 
(EP/IO33467/1). The support of which is gratefully 
acknowledged. 
 

References 

 [1] Evans LB. Saving energy in manufacturing with smart technology. 
WORLD. 2003;6(2):112. 

[2] Baines T, Brown S, Benedettini O, Ball P. Examining green production 
and its role within the competitive strategy of manufacturers. Journal of 
Industrial Engineering and Management. 2012 Jun 18;5(1):53-87. 

[3] Apostolos F, Alexios P, Georgios P, Panagiotis S, George C. Energy 
efficiency of manufacturing processes: a critical review. Procedia CIRP. 
2013 Dec 31;7:628-33. 

[4] Burke S, Gaughran WF. Developing a framework for sustainability 
management in engineering SMEs. Robotics and Computer-Integrated 
Manufacturing. 2007 Dec 31;23(6):696-703. 

 
[5] Martin N, Worrell E, Ruth M, Price L, Elliott RN, Shipley AM, Thorne J. 

Emerging energy-efficient industrial technologies. Lawrence Berkeley 
National Laboratory. 2000 Oct 1. 

[6] Gahm C, Denz F, Dirr M, Tuma A. Energy-efficient scheduling in 
manufacturing companies: A review and research framework. European 
Journal of Operational Research. 2016 Feb 1;248(3):744-57. 

[7] Finnveden G, Hauschild MZ, Ekvall T, Guinée J, Heijungs R, Hellweg S, 
Koehler A, Pennington D, Suh S. Recent developments in life cycle 
assessment. Journal of environmental management. 2009 Oct 31;91(1):1-
21. 

[8] Zweben M, Fox M. Intelligent scheduling. Morgan Kaufmann Publishers 
Inc.; 1994 Nov 1. 

[9] Ouelhadj D, Petrovic S. A survey of dynamic scheduling in manufacturing 
systems. Journal of Scheduling. 2009 Aug 1;12(4):417-31. 

[10] Leitão P. Agent-based distributed manufacturing control: A state-of-the-
art survey. Engineering Applications of Artificial Intelligence. 2009 Oct 
31;22(7):979-91. 

[11] Mouzon G, Yildirim MB, Twomey J. Operational methods for 
minimization of energy consumption of manufacturing equipment. 
International Journal of Production Research. 2007 Sep 15;45(18-
19):4247-71. 

[12] Liu Y, Dong H, Lohse N, Petrovic S, Gindy N. An investigation into 
minimising total energy consumption and total weighted tardiness in job 
shops. Journal of Cleaner Production. 2014 Feb 15;65:87-96. 

[13] Fang K, Uhan N, Zhao F, Sutherland JW. A new approach to scheduling 
in manufacturing for power consumption and carbon footprint reduction. 
Journal of Manufacturing Systems. 2011 Oct 31;30(4):234-40. 

[14] Chen G, Zhang L, Arinez J, Biller S. Energy-efficient production 
systems through schedule-based operations. Automation Science and 
Engineering, IEEE Transactions on. 2013 Jan;10(1):27-37. 

[15] Mashaei M, Lennartson B. Energy Reduction in a Pallet-Constrained 
Flow Shop Through On–Off Control of Idle Machines. Automation 
Science and Engineering, IEEE Transactions on. 2013 Jan;10(1):45-56. 

[16] Diaz N, Dornfeld D. Cost and energy consumption optimization of 
product manufacture in a flexible manufacturing system. InLeveraging 
Technology for a Sustainable World 2012 Jan 1 (pp. 411-416). Springer 
Berlin Heidelberg. 

[17] Guerrero CA, Wang J, Li J, Arinez J, Biller S, Huang N, Xiao G. 
Production system design to achieve energy savings in an automotive 
paint shop. International Journal of Production Research. 2011 Nov 
15;49(22):6769-85. 

 [18] He Y, Li Y, Wu T, Sutherland JW. An energy-responsive optimization 
method for machine tool selection and operation sequence in flexible 
machining job shops. Journal of Cleaner Production. 2015 Jan 15;87:245-
54. 

[19] Aissani N, Bekrar A, Trentesaux D, Beldjilali B. Dynamic scheduling for 
multi-site companies: A decisional approach based on reinforcement 
multi-agent learning. Journal of Intelligent Manufacturing. 2012 Dec 
1;23(6):2513-29. 

[20] Jiang JC, Yu JY, Lei JS. Finding influential agent groups in complex 
multiagent software systems based on citation network analyses. 
Advances in Engineering Software. 2015 Jan 31;79:57-69. 

[21] Kumari S, Singh A, Mishra N, Garza-Reyes JA. A multi-agent 
architecture for outsourcing SMEs manufacturing supply chain. Robotics 
and Computer-Integrated Manufacturing. 2015 Jan 31. 

[22] Shen W, Norrie DH. Agent-based systems for intelligent manufacturing: 
a state-of-the-art survey. Knowledge and information systems. 1999 May 
1;1(2):129-56. 

[23] Shen W, Hao Q, Yoon HJ, Norrie DH. Applications of agent-based 
systems in intelligent manufacturing: An updated review. Advanced 
engineering INFORMATICS. 2006 Oct 31;20(4):415-31. 

[24] Leitao PJP. An agile and adaptive holonic architecture for manufacturing 
control.University of Porto; 2004. [Ph.D. dissertation]. 

[25] JADE, Available at: <http://jade.tilab.com/>, Cited 30 April 2012. 
[26] <http://www.fipa.org/repository/aclspecs.html>, Cited 30 April 2012. 
 

0
50

100
150

1 9 17 25 33 41 49 57 65 73 81 89 97 10
5

11
3

En
er

gy
 (W

h)
 

Time (minute) 

50% breakdown Fixed system


