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Abstract 

The main theme of this thesis is adaptive echo cancellation. Two novel indepen­

dent approaches are proposed for the design of long echo cancellers with improved 

performance. 

In the first approach, we present a novel structure for bulk delay estimation in 

long echo cancellers wh.ich considerably reduces the amount of excess error. The 

miscalculation of the delay between the near-end and the far-end sections is one 

of the main causes of th.is excess error. Two analyses, based on the Least Mean 

Squares (LMS) algorithm, are presented where certain shapes for the transitions 

between the end of the near-end section and the beginning of the far-end one are 

considered. Transient and steady-state behaviours, and convergence conditions 

for the proposed algorithm are studied. Comparisons between the algorithms 

developed for each transition are presented, and the simulation results agree well 

with the theoretical derivations. 

In the second approach, a generalised performance index is proposed for the 

design of the echo canceller. The proposed algorithm consists of simultaneously 

applying the LMS algorithm to the near-end section and the Least Mean Fourth 

(LMF) algorithm to the far-end section of the echo canceller. This combination re­

sults in a substantial improvement of the performance of the proposed scheme over 

both the LMS and other algorithms proposed for comparison. In this approach, 

the proposed algorithm will be henceforth called the Least Mean Mixed-Norm 

(LMMN) algorithm. 

The advantages of the LMMN algorithm over previously reported ones are two 

folds: it leads to a faster convergence and results in a smaller misadjustment error. 

Finally, the convergence properties of the LMMN algorithm are derived and 

the simulation results confirm the superior performance of th.is proposed algorithm 

over other well known algorithms. 
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Chapter 1 

Introduction 

1.1 Introduction 

Applications of digital signal processing (DSP) are currently abundant in the field 

of communications. They are expected to grow even more with the advent of 

digital communications and the availability of inexpensive DSP chips. 

The birth of the least mean squares (LMS) [lJ algorithm gave a greater promi­

nence to the adaptive filtering field. Since then, the increasing interest in this 

algorithm led to the development of now-well established algorithms related to the 

least squares (LS) [2J technique. The main reasons for this success of the LMS 

algorithm are its simplicity, its easy implementation, and its numerical robustness. 

Adaptive filtering is used to solve a variety of transmission problems. Can­

celling echoes [3J in voice and data communications and providing channel equal­

isation [4J are only a few examples. In the former application, adaptive echo can­

cellers are constantly invading telephone systems and have almost replaced echo 

suppressors which were originally designed to suppress echoes in speech. Also, 

their use for data echo cancellation gained a lot of attention since they were ca­

pable of providing high data rates between the transmitter and receiver, an area 

where the use of multiplexing generally proved to be an inefficient solution. 

1 



Chapter 1: Introduction 2 

However, a serious difficulty, unique to data echo cancellation, is the very large 

delay exhibited by the far echo returning from the far end of the circuit. This 

would entail implementing echo cancellers with a large number of tap coefficients 

if, for example, the far echo is delayed by some hundreds of milliseconds. 

A solution to this problem is the use of a bulk delay [5] which separates the 

echo canceller into two separate adaptive transversal filters, one for each end of the 

echo canceller. Unfortunately this delay is not accurately estimated, which leads 

to the adaptive algorithm not converging to the exact solution, and ultimately 

ending up with an uncancelled echo. 

To overcome this problem, transitions between the sections of the canceller, 

whose shapes are controlled by certain probability density functions (pdf) are 

proposed in this work. An enhancement in performance is obtained through the 

use of this technique. The trivial solution to this problem, of course, would be 

achieved by adding a certain number of coefficients in these regions. This, however, 

would result in adding extra computations. 

The new proposed scheme [6] is based on the LMS algorithm where a proba­

bilistic approach is used to analyse the modified LMS algorithm. Two different 

transitions between the near-end and the far-end sections of the echo canceller are 

used in this study. These consist of a sharp transition and a smooth one. The 

latter transition is chosen according to the uniform probability density function. 

Also, the performance of an adaptive filter is mainly governed by the algorithm 

used for updating its filter coefficients. Since adaptive filters primarily depend on 

the choice of the cost function used in the minimisation process, one can expect 

their respective performances to be different for different criteria. 

For example, the recursive least-squares (RLS) algorithm [7] is designed to min­

imise the sum of the squares of the errors (the difference between the desired and 

the estimated values). However, algorithms based on the least mean square error 

consist of minimising the square of the error, and those based on the mean fourth 

power of the error minimise the fourth power of the error. It is the latter crite-
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rion that gives the algorithm its name of the least mean fourth (LMF) algorithm 

[8J. Both the LMS and the LMF algorithms belong to the family of stochastic 

gradient-based algorithms [7J. 

As can be seen from the above mentioned algorithms, each cost function plays 

a key role in the performance of its corresponding algorithm. The structure used 

in implementing these algorithms is of importance as well. 

Since the LMS algorithm is only optimal if the input signal is white, its con­

vergence will be the fastest for this case only. However, if the input signal is not 

white, as is likely to be the case in real life applications, the convergence behaviour 

and speed of the LMS algorithm would differ from those of the ideal case. Newly 

developed algorithms [9], [10J based on a controlled combination of the LMS and 

the LMF algorithms are proposed, resulting in faster convergence rates and lower 

misadjustment errors. These are designed to minimise a single combined cost 

function. 

In this work, a new algorithm applied to long echo cancellers is proposed. It 

is different from that of [9J and [lOJ in the sense that we will have two distinct 

cost functions to be minimised, one for each section of the echo canceller. These 

consist of minimising the MSE in the near-end section of the echo canceller and the 

mean fourth-error (MFE) in its far-end section. This algorithm leads to a smaller 

minimum mean square error (MMSE) and a faster convergence compared to the 

standard algorithm, i.e., the LMS algorithm. 

Another possible configuration would involve exchanging the two cost func­

tions, that is applying the MFE to the near-end section and the MSE to the far-end 

section. This will also be investigated, and it will be shown that, unfortunately, 

this choice will result in a poor performance. 

This work then seeks to address the problem of improving the performance 

of stochastic gradient (SG) methods, while maintaining the relative simplicity of 

their implementation. Methods of increasing the convergence rate and simplifying 

the implementation of the adaptive filter used for echo cancellation, with little cost 
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in steady-state error, will be the focus of our work. The algorithmic modifications 

for each proposed scheme will be investigated. 

It should be noted that the computational requirements for the two proposed 

algorithms, as explained later, are not very demanding and hence are not pro­

hibitive as far as the implementation of these algorithms is ·concerned. 

1.2 Organisation of thesis 

This thesis investigates the performance of various algorithms for stochastic gra­

dient adaptive filters applied to long data echo cancellers. As mentioned before, 

the continuing need for adaptive filters in a wide variety of applications (especially 

communications, signal processing and control) is attracting much research into 

ways of improving their performance. The remainder of this thesis consists of six 

chapters. 

Chapter 2, concentrates on the commonly-used adaptive algorithms and their 

various structures. One of their main applications is in echo cancellation [11J. 

The investigation of echo cancellation techuiques is treated in Chapter 3. Dif­

ferences and similarities between echo cancellers in speech and data are reviewed. 

Some of the problems encountered in data echo cancellers are discussed and the 

suggested solutions are treated in Chapters 4 and 5. 

Chapter 4 deals with a possible solution to the bulk delay problem. The bulk 

delay is inserted between the near-end and the far-end sections of the echo can­

celler. If the performance of the standard algorithm, i.e., the LMS algorithm, is 

to be enhanced its structure then needs to be modified. To this end, two analyses 

are presented based on the use of transitional shaping across the bulk delay area. 

Sharp and smooth transitions are used for this purpose. An enhancement in per­

formance is obtained when the latter transition is used. The choice of the bulk 

delay coefficients is done according to the uuiform probability density function. A 

lower mean square error is obtained in this case. 
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The use of two different error norms in the same filter can also improve both 

the convergence speed and the steady state MSE. Our application of the LMS and 

the LMF algorithms to the near-end and the far-end sections of the echo canceller, 

respectively, results in a novel algorithm that will be henceforth called the least 

mean mixed-norm (LMMN) algorithm. A thorough analysis of this algorithm is 

reported in Chapter 5, where its convergence behaviour is also studied. 

The comparison between the LMMN algorithm and other algorithms reported 

in the literature is carried out in Chapter 6. Specifically, these algorithms are 

the LMS, the LMF, and the least mean fourth-square (LMFS) algorithms. The 

latter algorithm, i.e., the LMFS, is similar to our LMMN in that it is based on the 

minimisation of two cost functions. The LMFS, however, minimises the MFE in 

the near-end section of the echo canceller and the MSE in its far-end section. 

Finally, Chapter 7 summarises the main results obtained in this work and high­

lights some key problems which are yet to be investigated in the area of adaptive 

echo cancellation. 



Chapter 2 

Adaptive Filtering: Algorithms 

and Structures 

2.1 Introduction 

Adaptive systems are playing a vital role in the development of modern telecom­

munications. Also, adaptive systems proved to be extremely effective in achieving 

high efficiency, high quality and high reliability of around-the-world ubiquitous 

telecommunication services. 

The role of adaptive systems is wide spread covermg almost all aspects of 

telecommunication engineering, but perhaps most notable in the following context 

[12] of ensuring high-quality signal transmission over unknown and time varying 

channels. 

Interest in adaptive filters continues to grow as they begin to find practical real­

time applications in areas such as echo cancellation [11], channel equalisation [13], 

noise cancellation [14]-[15] and many other adaptive signal processing applications. 

This is due mainly to the recent advances in the very large-scale integration (VLSI) 

technology. 

The key to successful adaptive signal processing is understanding the funda-

6 
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mental properties of adaptive algorithms. These properties are stability, speed 

of convergence, misadjustement errors, robustness to both additive noise and sig­

nal conditioning (spectral colouration), numerical complexity, and round-off error 

analysis of adaptive algorithms. However, some of these properties are often in 

direct conflict with each other, since consistent fast converging algorithms tend to 

be in general more complex and numerically sensitive. Also, the performance of 

any algorithm with respect to any of these criteria is entirely dependent on the 

choice of the adaptation update function, that is the cost function used in the min­

imisation process. A compromise must be than reached among these conflicting 

factors to come up with the appropriate algorithm for the concerned application. 

After presenting, in Section 2.2, the common adaptive system configurations 

using adaptive filters, Section 2.3 will deal with a more explicit development of 

adaptive filters. Performance evaluation of the resulting algorithms using the 

properties of the finite impulse response (FIR) adaptive filter are also mentioned. 

Finally, Section 2.4 reviews the theory of adaptive algorithms used with these 

filters, including the least mean squares (LMS) algorithm. Also, the shortcomings 

of the LMS algorithm are discussed. 

2.2 Applications of adaptive filters 

Adaptive filtering has been successfully applied in such diverse fields as communi­

cations, radar, sonar, and biomedical engineering. Although these applications are 

indeed quite different in nature, nevertheless, they have one basic common feature: 

an input signal and a desired response are used to compute the error, which is in 

turn used to control the values of a set of adjustable filter coefficients. However, 

the main difference among the various applications of adaptive filtering arises in 

the manner in which the desired response is extracted. 

In this context, we may classify an adaptive filter into one of the four following 

categories: 
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2.2.1 System identification 

In tills first application, depicted in Fig. 2.1, the adaptive filter is used to provide a 

linear model that represents the best fit to the unknown system. Both the adaptive 

filter and the unknown system are driven by the same input. The error estimate 

is used to update the filter coefficients of the adaptive filter. After convergence, 

the adaptive filter output will approximate the output of the unknown system in 

an optimum sense. Provided that the order of the adaptive filter matches that of 

the unknown system and the input, z(n), is broad band (flat spectrum) tills will 

be acilleved by convergence of adaptive filter coefficients to the same values as the 

unknown system. 

The major practical use of tills structure in telecommunications is for echo 

cancellation [11], [16]-[17J. Typically, the input signal z(n) will be either speech 

or data. 

2.2.2 Inverse modelling 

In tills second class of applications, the function of the adaptive filter is to provide 

an inverse model that represents the best fit to the unknown system. Thus, at 

convergence, the adaptive filter transfer function approximates the inverse of the 

transfer function of the unknown system. As can be seen from Fig. 2.2, the desired 

response is a delayed version of the input signal. 

The primary use of inverse system modelling is for reducing the effects of in­

tersymbol interference (ISI) in digital receivers. This is achieved through the use 

of equalisation [13], [18J techniques. 

2.2.3 Prediction 

In this structure, the function of the adaptive filter is to provide the best prediction 

of the present value of the input signal from its previous values. The configuration 

shown in Fig. 2.3 is used for this purpose, where the desired signal, d(n), is the 
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Unknown 
. syslem 

I-------r----~ den) 

x(n) 

Adaptive 
filter 

ern) 
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Figure 2.1: Direct system modelling configuration of an adaptive filter. 

-' Delay I 
I I 

I + 
d(n) 

x(n) Unknown Adaptive -~) system filter 
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/ 

Figure 2.2: Inverse system modelling configuration of an adaptive filter. 

x(n) ---I.---+lDelay 
Adaptive 

filter 

+ d(n) 

y(n) 

Figure 2.3: Configuration of an adaptive filter as a predictor. 
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instantaneous value and the input to the adaptive filter is a delayed version of the 

same signal. 

This application is widely used in linear predictive coding (LPC) of speech 

[19J-[20J and in adaptive differential pulse-code modulation (DPCM) [21J. Another 

approach to prediction is given in [22J. 

2.2.4 Noise cancellation 

In this final class of applications, the adaptive filter is used to cancel unknown 

interference contained in a primary signal, as Fig. 2.4 depicts it. The primary 

signal serves as the desired response of the adaptive filter. This type of applica­

tion is used in adaptive noise cancellation [14J-[15]' and adaptive beamforming or 

adaptive array processing [23J. 

The principle operation of the adaptive filter in all the four cases is mainly 

the same, and for the purposes of further development only the case of system 

identification will be considered. Also, interest in this configuration is related to 

the type of application we are dealing with in this thesis, namely echo cancellation. 

2.3 Adaptive filters 

Adaptive filters are an important part of signal processing. They are generally de­

fined as filters whose characteristics can be modified to achieve desired objectives 

and accomplish this modification or adaptation automatically without user inter­

vention. Due to the uncertainty about the input signal characteristics, the designer 

then uses an adaptive filter which can learn the signal characteristics when first 

turned on and can later track changes in these characteristics. Adaptive algorithms 

are responsible for the learning process. 

A large number of algorithms for adaptive filters have been proposed. Indeed, 

adaptive filtering is an example of an optimisation problem and optimisation tech­

niques form an important part of mathematics [24J-[26J. The additional constraint 
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Figure 2.4: Configuration of an adaptive filter as a noise canceller. 
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in adaptive filtering is that many of the applications require this optimisation to 

be performed in real time and so the complexity of the computations must be kept 

to a minimum. 

In what is remaining of this section, different cost functions for adaptive filters 

are defined with some of the possible structures used in their implementation, and 

the expression for the optimum FIR filter in the mean square error (MSE) sense 

is given in terms of autocorrelation and crosscorrelation functions [27]. 

2.3.1 Cost functions 

Before proceeding to discuss any adaptive algorithm, it is necessary to discuss 

the performance measure (cost function) which is used in adaptive filtering. The 

adaptive filter has the general form shown in Fig. 2.5, where the FIR filter of order 

N is considered here. The filter output y(n) is given by 

N-l 

y(n) L C;(n)x(n - i) 

(2.1) 

where X(n) and C(n) are, respectively, the vector of the last N samples from the 

time series x(n) and the filter coefficients at sample n, defined as follows: 

XT(n) = [x(n),x(n-l), ... ,x(n - N + 1)]. (2.2) 
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Figure 2.5: General form of an adaptive filter. 

and 

CT(n) = [Corn), C,(n), ... , CN_,(n)], (2.3) 

where T denotes transpose. 

In general, adaptive techniques have been classified under two main categories. 

In one category, the cost function to be optimised in a running sum of squared 

errors is given by: 
n 

J(n) = L e2 (j), (2.4) 
j=O 

where the error e( n) is defined to be the difference value between the desired 

response d( n) and the output of the adaptive filter y( n), that is, 

ern) = d(n) - y(n). (2.5) 

The approach, defined by (2.4), is based on the method of least squares [2], [28J­

[29], which contains the whole class of recursive least squares (RLS) algorithms 

[7], [16], [30J-[32J. 

In the other category, the cost function to be optimised is a statistical measure 

~f the squared error, known as the mean squared-error (MSE) [33J. This cost 
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function is given by 

J(n) = E[e2(n)], (2.6) 

where E[ J denotes statistical expectation. This category contains the whole class 

of gradient algorithms, which includes the least mean-squared (LMS) algorithm 

[1], [7], [16J .. 

The two procedures described above for deriving adaptive algorithms differ 

in some respect on how their respective cost function is chosen. The theory for 

the Wiener filter is based on statistical concepts, while it is based on the use of 

time averages for the method of least squares. Also, least squares techniques and 

sto'chastic techniques have a number of differences in the way that they perform 

[34J. Among these differences are on the one hand the much longer time taken for a 

stochastic gradient algorithm to converge close to the optimum solution and on the 

other hand the much higher computational complexity in least squares algorithms. 

Nevertheless, the less computational complexity in the stochastic gradient methods 

make them much more attractive than their least squares counterparts. 

Recently, other minimisation criteria have emerged, in which adaptive struc­

tures are derived from minimisation of a class of functions of the form [8J: 

(2.7) 

where k is an integer constant. It is seen from (2.7) that when k = 1, the usual 

MSE criterion is obtained, while the mean fourth-error (MFE) results when k = 2. 

The cost functions, (2.4) and (2.6), are both convex with a unique minimum 

point. Accordingly, their use yields a unique solution for the coefficient vector of 

the FIR filter. Also, the minimisation function, (2.7), is a convex function, and 

therefore has no local minima. Hence, the use of a gradient based adaptation 

scheme for the convergence to the minimum can be applied. 

Finally, before stating the possible linear structures used in implementing adap­

tive filters, it is worth mentioning the properties of the cost functions. All the 

functions presented in this section and others not mentioned in this work should 
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be positive and monotonically increasing [35J for their corresponding algorithms 

to perform correctly. 

2.3.2 Structures 

A number of different linear structures for adaptive systems have been proposed, 

which may be subdivided into finite and infinite impulse structures. For the finite 

impulse response [36J-[38], the transfer function is realised by zeros only, as all 

the poles of the filter are located at the origin. In the case of the infinite impulse 

response (HR) [16], [39J filter, however, both poles and zeros are used to realise 

the transfer function. Examples of the FIR filter are the linear transversal filter 

depicted in Fig. 2.6, and the lattice filter [40J-[42J. The structure of the HR filter 

is shown in Fig. 2.7. However, difficulties associated with developing adaptive 

techniques for HR filter are considerable, because the filter is not unconditionally 

stable, as it has both poles and zeros in its transfer function. The danger is that 

the adaptive algorithm will choose a set of coefficients which may place poles 

outside the unit circle in the z-plane and so provoke an unstable response. These 

difficulties, hence, make the HR structure less attractive than the well established 

FIR one. 

The work of this thesis is, therefore, concerned with the linear transversal filter 

structure and the emphasis is on developing highly efficient algorithms for this well 

understood and often used structure. 

2.3.3 The FIR adaptive filter 

Assuming that the input sequence {x(n)} and the desired sequence {d(n)} are in 

wide sense stationary, the mean-square-error function, equation (2.6), can be more 

conveniently expressed in terms of the input autocorrelation matrix, R, and the 

crosscorrelation vector, P, between the desired response and the input components, 

I 

~ 
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as follows: 

J(n) = E[tf(n)] - 2CT(n)P + CT(n)RC(n), (2.8) 

where 

R = E[X(n)XT (n)], (2.9) 

and 

P = E[X(n)d(n)]. (2.10) 

It is clear from expression (2.8) that the MSE is precisely a quadratic function of 

the components of the tap coefficients. Thus, the shape associated with this MSE 

is hyperboloid. 

In general, for the linear transversal structure, the surface will be quadratic, 

when the MSE is used, with a single global minimum. The goal of an adaptive 

algorithm is to set the filter coefficients so as to obtain an operating point at this 

minimum, where the filter gives optimum performance. 

The point at the bottom of the performance surface corresponds to the optimal 

tap coefficients, Copt, or minimum MSE. The gradient method is used to cause the 

tap coefficients vector to seek the minimum of the performance surface. It is 

defined as 

8J(n) 
8C(n) 
8J(n) 8J(n) 

= [8Co(n)' 8C,(n)' 
- -2E[e(n)X(n)] 

2RC(n) - 2P. 

8J(n) y 
, 8CN _,(n) 

(2.11) 

To obtain the minimum MSE, the tap-coefficients vector C(n) is set to its 

optimal value, Copt, where the gradient is zero, that is, 

V' E[e 2(n)] = RCopt - P = o. (2.12) 

Under this condition, the optimum value is given by: 

(2.13) 
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where this is obtained under the assumption that the autocorrelation matrix R of 

the input signal is positive definite and hence non singular. Properties of the the 

autocorrelation matrix R of the input signal can be found in [7]. The minimum 

MSE , Jmin , is hence obtained by substitution of (2.13) in (2.8), thatis, 

Jmin = E[d2 (n)J - C!;"P. (2.14) 

The solution for Cop, involves inverting the input autocorrelation matrix R, 

hence, requiring precise knowledge of the second order statistics of the data, i.e., 

the autocorrelation matrix and the crosscorrelation vector. Unfortunately, it is 

the data sequences rather than their second order statistics that are available in 

practice. Alternatively, an iterative procedure may be used to determine Cop" This 

is the function of an adaptive FIR filter algorithm wruch has to find the optimum 

filter from available data rather than from the second statistics of the data [43J. 

Thus, an adaptive FIR filter can be defined as an algorithm which operates on the 

sequences {x(n)} and {d(n)} to form a time-varying impulse response C(n) which 

converges in the mean to Cop, as the number of iterations becomes very large, that 

is: 

lim E[C(n)] = Capt. 
n-too 

(2.15) 

2.4 Adaptive Algorithms 

In the previous section it was shown that the optimum tap coefficient vector for 

the adaptive FIR filter could be defined by the statistical properties of the input 

and desired signals. This implies that if these properties were known then the 

optimum tap coefficients could be obtained directly. However, it is unlikely to 

have an accurate measurement, they may be varying with time and the matrix 

inversion would require considerable amount of computations, specifically if there 

were a large number of coefficients. Practical adaptation algorithms usually in­

volve iterative techniques. The following gives the two most widely used adaptive 
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algorithms suitable for practical real time applications. These are the least mean­

squares (LMS) algorithm and the recursive least-squares (RLS) algorithm. The 

least mean fourth (LMF) algorithm is also highlighted. 

2.4.1 The LMS algorithm 

Probably the simplest iterative procedure is the method of steepest descent defined 

according to the following relation [7] 

. 1 
C(n + 1) = C(n) - '2p."V E[e 2(n)], (2.16) 

where p. is a positive number chosen small enough to insure convergence of the 

iterative procedure. 

Given that the gradient vector, "V E[e 2(n)], depends on both the input autocor­

relation matrix, R, and the vector P of crOss correlations, this makes the steepest 

descent difficult for determining the optimum tap coefficients. Instead, estimates 

of the gradient vector may be used. That is, the LMS algorithm for recursively 

adjusting the tap coefficient of the adaptive filter is expressed in the form 

C(n + 1) = C(n) + p.e(n)X(n). (2.17) 

The convergence behaviour of the LMS algorithm given in equation (2.17) is 

governed by the step size parameter p.. For a larger value of p., the convergence 

becomes faster, but it results in a larger residual error and is more prone to insta­

bility. Consequently, the tap coefficients will converge to their optimum values if 

p. satisfies the inequality [1], [44] 

2 
0< p. < -A-' 

~a~ 

(2.18) 

where A~az is the largest eigenvalue of R. The convergence condition, (2.18), can 

be derived in the following manner. Subtracting Cop! from both sides of (2.17) 

and then taking the expected value of the result, gives 

E[C(n + 1)] = [I - p.R]E[C(n)], (2.19) 
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where this is obtained under the assumption that the vectors X(n) and the coef­

ficient error vector t (n), defined as 

ten) = C(n) - Copt, (2.20) 

are independent [7], [45]. 

Equation (2.19) reveals that the algorithm will converge to the optimal value 

if all the eigenvalues of the matrix (I - pR) are less than unity, that is 

11-pA;j<1, i=0,1,···,N-1 (2.21) 

where it is assumed that the autocorrelation matrix, R, is positive definite with 

eigenvalues, Ai, hence, it can be factorised as 

(2.22) 

where A is the diagonal matrix of eigenvalues 

(2.23) 

and Q is the orthonormal matrix whose ith column is the eigenvector of R associ­

ated with the ith eigenvalue. The convergence of the algorithm is then obtained, 

which is basically (2.18)' and the time constant, Ti, associated with the eigenvalue, 

Ai, can be derived to give the approximated value: 

1. N Ti=-"t=O,l, ... , -l. 
P/li 

(2.24) 

Hence the longest time constant, Tmaz , is associated with the smallest eigenvalue, 

Amin' of the autocorrelation matrix R, that is 

1 
Tmaz = --,-. 

/-LAmin 
(2.25) 

Equations (2.18) and (2.25) can be combined to give the following result in terms 

of the eigenvalue spread (condition number)' ~::::, 

Ama:c 
Tma:c > --,-. 

2Amin 
(2.26) 
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Hence, from the point of view of convergence speed, the ideal value of the condition 

number is unity; the larger the value, the slower will be the convergence of the 

LMS algorithm. 

It is therefore concluded that the optimum signal for fastest convergence of the 

LMS algorithm is white noise, and that any form of colouring in the signal will 

increase the convergence time. 

Other developed adaptive schemes as well, all of which are LMS variants, e.g., 

the sign LMS [16], the normalised LMS (NLMS) [46], the leaky LMS [47], the 

variable step (VS) size algorithm [48], the block LMS (BLMS) [49], and many 

others, have been studied to enhance more the performance of the LMS algorithm 

for the desired application. 

The LMS algorithm can be regarded as being obtained from the general ex­

pression, (2.7), when the value k = 1. However, the least mean-fourth (LMF) 

algorithm [8], which is another modification to the general expression, is obtained 

when k = 2. This algorithm is presented next. 

2.4.2 The LMF algorithm 

The performance function of the LMF algorithm is based on the minimisation of 

the mean of the fourth power of the error, that is, setting k = 2 in (2.7) results 

the cost function for this algorithm: 

J(n) = E[e4(n)]. (2.27) 

The algorithm for recursively adjusting the tap coefficients, C(n), is expressed 

in the following form 

C(n + 1) = C(n) + 2JLe3 (n)X(n). (2.28) 

The sufficient condition for convergence in the mean for this algorithm can he 

shown to be given by [8]: 

2 
0< JL < 6>'mazE[w2 (n)]' (2.29) 
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where E[w 2(n)] is the variance of the additive noise w(n), Fig. 5.2 depicts this 

clearly, and A""", is the largest eigenvalue of R. 

Again, let the autocorrelation matrix R be positive definite with eigenvalues, 

Ai. Hence, the different time constants for the weights are defined by: 

1 . 
Ti = 6pE[w2(n)]Ai t = 0,1,···, N - 1. (2.30) 

As for the LMS algorithm, the largest time constant for this algorithm can be 

bounded by: 

(2.31) 

with the same conclusion obtained for the LMS algorithm; fast convergence only 

happens if the input signal is white noise. More details on this algorithm are given 

in Chapters 5 and 6. 

2.4.3 The RLS algorithm 

The LMS algorithm is widely used due to its comparatively easy implementation, 

lower order of complexity (only N operations (additions and multiplications) are 

required per update), and its well-established characteristics. However, the con­

vergence is slow for highly correlated signals. The RLS algorithm, as it is discussed 

next, however, does not exhibit this dependence behaviour. 

The RLS algorithm determines the coefficients that minimise the squared error 

summed over time [16], [50], i.e., 

n 

J(n) = L e2 (j). (2.32) 
;;:;;0 

Due to the fact that the values of the filter coefficients, that minimise the above 

cost function, are functions of all past inputs, the associated adapted algorithm 

will have an infinite memory. A more convenient way, to limit this infinite memory 

problem, is to introduce a weighting function, ')'( n), in the cost function so that 

recent data are given more weight than past data. The resulting new cost function, 
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that will replace that of equation (2.32), is defined as 

n 

J(n) = L e2(j)-y(n - j), (2.33) 
;;;;;:0. 

with weighting function -y( n) taken as an example, as follows: 

-y(n) = (1 - fJt, o<fJ<l: (2.34) 

The tap coefficients are adapted to minimise J(n). Taking the derivative of J(n) 

with respect to Ci(n), i = 0,1,··., N - 1, and setting it equal to zero, i.e., 

8J(n) 
8C(n) = 0, 

the following vector of the adaptive filter is obtained [28) 

C(n + 1) = C(n) + fJR-I(n)X(n)e(n), 

(2.35) 

(2.36) 

where R(n), the autocorrelation matrix of the input signal vector X(n), is found 

recursively 

R(n) = (1 - fJ)R(n - 1) + f3X(n)XT (n). (2.37) 

Comparing (2.36) with (2.17) we see that the simple scalar loop gain in LMS 

has been replaced with f3 times the inverse of R(n). The normalisation with 

R -I (n) offers more than the simple power normalisation in LMS; it normalises 

the adaptation in each eigenvector direction by the signal power in that direction. 

Thus the convergence becomes independent of both the signal type and power [51). 

The solution to the above equations, (2.36) and (2.37), would require a large 

number of computations per update. This algorithm requires approximately 2.5N2+ 
4N multiplications and additions per update [16), N being the number of tap coef­

ficients, significantly greater than the order of N for the LMS algorithm. Thus, as 

N increases, the number of operations increases in proportion to the square of the 

filter order. Hence, obtaining the optimum coefficient value involves computation 

of the inverse of the autocorrelation matrix and results in complex implementa­

tion. However, the advantage of this algorithm is fast convergence irrespective of 

the correlation characteristics of the input signal. 
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In contrast to the good feature of fast convergence observed with the RLS based 

algorithms, their computational complexities are still not attractive as those of the 

LMS algorithm. Moreover, instability problems are still annoying these algorithms. 

Also, it is interesting to note that if the input signal is white noise, the autocorre­

lation of the input signal may be evaluated as such R = CT~I, and if the step size p.. 

in (2.17) is chosen to be N~~ such that f3 = tin (2.36), the convergence properties 

of both the LMS and the RLS algorithms become approximately identical. Hence, 

in the work taken in this research, only the LMS and the LMF algorithms are 

considered in the development of new procedures used in the design of long echo 

cancellers. 

Ultimately, Fig. 2.8 shows a tree structure of the families of adaptive algorithms 

which have been suggested for all the cost functions presented in this work. 

2.5 Summary 

This chapter concentrated on basic ideas for which both adaptive filters and adap­

tive algorithms are made up. The issue of adaptive filtering is still and will remain 

a very active field of research for some considerable time. This is mainly due to 

the advances in the computing facilities that were not previously' available and to 

the need for such algorithms. 

The wide spread use of the least-demanding computing algorithm, i.e., the LMS 

algorithm, is with no doubt due to its both simplicity and relative performance. 

The RLS algorithm, for example, gives very fast convergence to the algorithm at 

the expense of very heavy computational loads, irrespective of the input signal 

statistics. However, things change when the input signal is white noise, and the 

convergence properties of the LMS algorithm, under certain circumstances, become 

comparable to or the same as those of the RLS algorithm. 

Both of these algorithms, and in general all algorithms, operate under different 

minimisation functions, which are the main reason for their different performances. 
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Adaptive filter algorithms 
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Figure 2.8: Tree structure for adaptive algorithm development. 
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While the next chapter treats echo cancellers in general, particular attention 

is made to some of the problems encountered when implementing long echo can­

cellers: In this work we propose new algorithms based on either a modification or 

a combination of the existing cost functions for stochastic gradient algorithms and 

that are implemented with the linear transversal filter, the FIR one, to enhance 

the performance of long echo cancellers in terms of their speed of convergence and 

steady state value. These proposed algorithms are treated in Chapters 4 and 5. 



Chapter 3 

Echo Cancellation Techniques 

3.1 Introduction 

Echoes are generated whenever part of a speech is reflected back to the source by 

the floor, walls, and other neighbouring objects. An echo is noticeable (or audible) 

only if the time delay between it and the speech exceeds a few tens of milliseconds 

[17J. 

As the result of impedance mismatches in telephone circuits, echoes are also 

generated. They arise in various situations in telecommunications networks and 

impair communication quality. Long-delay echoes are irritating, whereas shorter 

ones, called sidetones, are actually desirable and are intentionally inserted In 

telecommunications networks to make the telephone circuit seem alive [5J. 

Echoes with long delay are observed only on long-distance connections. To 

clearly understand the echo phenomenon, one is referred to Fig. 3.1 which illus­

trates a typical long distance telephone connection. It represents two two-wire 

segments at the ends, called the customer's loop, which connects a customer to 

the central office, and a four-wire carrier section (which might include satellite 

links). Two-wire circuits are bidirettionaJ whereas four-wire ones are made of two 

distinct channels, one for each direction. 

26 
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Echoes in the received signal are caused by impedance mismatches in the hybrid 

couplers which interface the two-wire and four-wire circuits. The hybrid is a device 

which provides a large loss around this loop without affecting imy loss in the two 

talker speech paths. Figure 3.2 shows the details of such a device which is required 

at each end of a communication link as shown in Fig. 3.1. A hybrid circuit is 

basically a bridge circuit where the balancing impedance is (ideally) to be kept 

equal to the impedance of the two-wire circuit at all frequencies, hence removing 

any impedance mismatch, and consequently any echo from the network. Since 

many different local loops have access to a given hybrid coupler, it is unlikely that 

a single fixed balancing impedance will always be satisfactory, and hence it should 

come as no surprise that a considerable amount of "leakage" and reflected signal 

energy may be generated by a hybrid coupler. 

The received echo generally consists of two components in either speech [3] or 

data [52] transmission applications. In speech communication, two components are 

observable: the "talker echo" which results in the talker hearing a delayed version 

of his or her own speech; and the "listener echo" where the listener hears a delayed 

version of the talker's speech. As for data transmission, the two components are 
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the near-end echo characterised by a short time delay (usually less than 20 ms), 

and the far-end echo that has a much lower level, but a longer time delay, that is 

a function of the transmission distance and varies from a few milliseconds to 600 

ms for a satellite link. 

Both the talker and the listener can suffer from echo problems. The talker 

echo can disturb the normal pattern of speech production, while the listener echo 

reduces intelligibility [53]. The severity of these effects is strongly dependent on re­

flection amplitude and the delay between the original signal and its echo. The echo 

is not audible if the delay is less than 20 ms; however, conversation is disturbed if 

the delay is more than about 100 ms [53]. 

To counteract this echo phenomenon, schemes must be developed to either 

completely eliminate it (the ideal requirement) or at least substantially reduce its 

adverse effect so as to achieve a transmission of good quality. 

One of the early methods used in speech communication to combat echoes was 

the use of a device called an echo suppressor [54], whose simplified version is shown 

in Fig. 3.3. It conceals echo by detecting when the distant customer is speaking 

and the near customer is silent. The signal from the near customer is then heavily 
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attenuated, so preventing echoes from being heard. This alternate-simplex mode of 

operation is enhanced by detecting when both customers are talking (double talk) 

and inserting a small loss in the send path [55J. Satisfactory operation depends on 

accurate speech detection to avoid clipping and utterance blocking [53J. 

Another technique that can be used for the same purpose is the use of an 

adaptive balancing hybrid [56], [57J. Ultimately, the most widely used of these 

schemes is echo cancellation [11] which is a rich body of algorithms derived from the 

powerful theory of adaptive signal processing and filtering [1], [7], [16]. Adaptive 

echo cancellers offer somewhat better call quality than suppressors on long delay 

circuits because they have greater signal transparency and fewer speech clipping 

effects [53]. 

Also, for high-speed full-duplex data transmission, it is necessary to use the en­

tire bandwidth continuously, rather than the frequency or time-division techniques 

employed at lower data rates. This achieved through the use of echo cancellation 

techniques. 

After discussing echo cancellation in both speech and data transmission in Sec­

tion 3.2, the filter structures suitable for echo cancellation are treated in Section 
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3.3. Adaptive algorithms for coefficients control will be covered in Section 3.4, 

while Section 3.5 will present"some of the problems encountered in echo cancella­

tion. 

3.2 Echo cancellers 

Echoes may be generated due to reflections from objects surrounding an acoustic 

source and, as such, are called acoustic echoes. They can also be generated in a 

telephone network and are, in this case, called telephone echoes. Echo cancellers for 

cancelling such echoes are called acoustic cancellers and telephone echo cancellers, 

respectively. Our discussion will mainly focus on telephone echo cancellers which 

are the prime concern of this work. However, topics discussed here can also be 

applied to other echo cancellers with some modifications 

Echo cancellation is a suitable area for the application of adaptive filtering. An 

adaptive echo canceller estimates the responses of an underlying echo-generating 

system in real time, in the face of unknown and time-varying echo path charac­

teristics [58], generates a synthesised echo based on the estimate, and cancels the 

echo by subtracting the synthesised echo from the received signal. 

In our analysis, it will be assumed that the echo path is linear, and therefore 

completely specified by its impulse response. Some older work in speech cancellers 

and some more recent progress in the theory of data cancellers have both extended 

echo cancellation techniques to nonlinear echo generation phenomena [59J-[61J. 

Echo cancellers are designed for both speech and data transmission. Since the 

treatments of both of these cancellers are quite different from one another, they 

will then be investigated separately. 

3.2.1 Echo cancellers in speech communication 

As previously mentioned, the listener echo and the talker echo are the main com­

ponents of the overall echo in speech communication. These are shown in Fig. 3.1 
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Figure 3.4: Structure of a voice telephone echo canceller. 

where the adaptive canceller is placed in the four-wire path near the origin of the 

echo. 

A block diagram of the adaptive canceller is shown in Fig. 3.4. The synthetic 

echo, y'(n), is generated by passing the reference signal (i.e., speaker A's speech) 

through the adaptive filter that ideally matches the impulse response of the echo 

path. Thus, the transversal filter generates an estimate y'(n) of the echo, given by 

N-l 

y'(n) = L Ci(n)x(n - i), (3.1) 
i=O 
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where {Ci(n)} is the estimated echo-path impulse response sample, z(i) is the 

input sample to the ith-tap delay, and N is the number of tap coefficients typically 

of order 256 [17J. While passing through the hybrid, the speech from speaker A 

results in the echo signal y( n). This echo, together with the speech from speaker 

B, r(n), constitutes the desired response for the adaptive filter. The canceller error 

signal is obtained as follows: 

((n) - y(n) - y'(n) + r(n) 

- e(n) + r(n). (3.2) 

The error signal, e(n), is used to control the adjustments to the adaptive filter 

coefficients, according to some specified adaptive schemes, in order to continuously 

improve the echo estimate y' (n). 

Ideally, the system should eventually converge to the condition ((n) = r(n). 

The effect of this ideal condition on the echo cancellation is naturally of some 

concern. Convergence of echo to zero, however, is not an adequate criterion of 

performance for a system of this sort [17], because this is possible only if y(n) 

is exactly representable as the output of a fixed-tap filter. A better performance 

criterion would be the convergence of the filter's impulse response to the response 

of the echo path. 

In any case, it is easy to see that the echo canceller can effectively eliminate 

the echo under double-talk conditions, which is not the case in echo suppressors. 

During double talk, the signal at the output port of the hybrid contains both the 

far echo and the speech signal from the talker at the other end of the circuit. After 

the synthesised echo is subtracted from the hybrid output signal, the remaining 

signal is basically the speech signal. 

During double-talk situation, the adaptation scheme must either stop or the 

updating step size is reduced. Otherwise the coefficients rapidly diverge from 

their optimum values. Appropriate control of adaptation is therefore vital for 

satisfactory performance. 
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It is noteworthy that a voice echo canceller cancels the echo for the remote tele­

phone user. The advantage of such an arrangement is that, because the canceller 

is close to the source of the echo, the delay between the echo and the reference 

signal is short. Therefore, the delay line of the echo canceller can also be short. 

3.2.2 Echo cancellers in data transmission 

The same echoes encountered in speech transmission would be observed on the 

telephone network if an attempt is made to transmit data signals through this 

network. 

Echoes arise only in full-duplex data transmission, where the data signals are 

transmitted in both directions of the network simultaneously. These echoes result 

from the interference between the data signals transmitted in one direction and 

those flowing in the opposite direction. However, the echo phenomenon is not 

present in half-duplex data transmission, where transmission exists only in one 

direction, since there is no receiver at the transmitting end to be affected by the 

echo. 

Because the telephone network typically provides only a two-wire connection 

to each customer premise due to the high cost of copper and other related matters, 

full-duplex data transmission over a common media has arisen in two important 

applications [3]. 

The first application is digital transmission over the subscriber loop, in which 

the basic voice service as well as data services are provided over the two-wire 

subscriber loop. This is an important characteristic of the well-known integrated 

services digital network (ISDN). 

The second application is in voiceband data transmission where the basic cus­

tomer interface to the network is often the same two-wire subscriber loop. 

These two applications have many differences depending on the type of problem 

to be overcome. For the digital subscriber loop, the bandwidth of the medium, 
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Figure 3.5: Echo cancellers at station locations for data transmission. 
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consisting of a pair of cables, is relatively wide and baseband transmission [62J is 

used. The voiceband data transmission, while requiring a lower speed than the 

subscriber loop transmission, uses pass band transmission [63], i.e., modulates a 

carrier with the data stream, which makes the bandwidth relatively limited. 

Isolation of the two directions of transmission in full-duplex data transmission 

is obtained only if echo cancellers are used at both end of the data sets [63J. Figure 

3.5 illustrates the placement of the echo canceller for full-duplex data transmission. 

The transmit and receive directions are separated, at each data set, by the use of 

a hyhrid, which will provide a virtual four-wire connection during communication. 

As in the case of voice transmission, this procedure would synthesise a replica of 

the echo which is subtracted from the received signal to give an error signal. This 

error is then used in the update of the taps of the adaptive echo canceller. The 

adaptation issue will be addressed in Section 3.4. 

Two-wire full duplex digital transmission can be realised by frequency-division 

multiplexing (FDM). However, the lowest transmission rate and hence the longest 

range is obtained by the use of adaptive echo canceller. An echo canceller will also 

provide the best bandwidth efficiency and consequently minimum interference with 
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other services in the telephone network [64J. 

Special problems are associated with echo cancellation for full-duplex data 

transmission. Among them is the very large delay which can be exhibited by the 

distant echo. This requires implementing echo cancellers with at least 4000 taps 

if the distant echo is delayed by 600 ms or more when a satellite link is included 

'in the four-wire circuit [17J. 

The solution for this problem is to provide a bulk between the near-end and 

far-end sections of the echo canceller, as illustrated in Fig. 3.6. This approach will 

considerably reduce the number of coefficients of the filter. 

Input signal 
Near-End delay 

line 1------l.~.1 Bulk delay 

'---,.-----,--' 

I Coefficients I 

y(n) 

Figure 3.6: Echo canceller with bulk delay. 

Far-End delay 
line 

x x 

Echo cancellers in data transmission are classified as either voice-type [65J or 

data-type (data-driven) cancellers [66J. In the first configuration, the echo canceller 

gets its input from the output of the transmitter whereas in the second one the 

data symbols are the input to the echo canceller. Figures 3.7 and 3.8 show both 

of these configurations, respectively. In both of these realisations, the subtraction 
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Figure 3.7: Voice-type echo canceller. 
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Figure 3.8: Data-type echo canceller. 
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of the echo estimate can be implemented in three different ways [62]. 

The main advantage of data-driven echo cancellers [66] over the voice-type ones 

[65] is that the tap signals can be binary, thus reducing multiplications to additions 

and subtractions. Moreover, transmission data rates can be as high as 4800 bits/s 

in the former canceller whereas only up to 2000 bits/s in the latter one. Also, 

data-driven echo cancellers are always stable, whereas voice-type cancellers can 

become unstable [67]. 

Mueller's configuration [66], which is a symbol-rate baseband canceller, requires 

synchronisation of received and transmitted sequences. Weinstein's proposal [63] 

eliminates this synchronisation requirement by achieving the necessary cancellation 

in the passband at a sampling rate which is greater than the Nyquist rate, and it 

is for this reason that they are called Nyquist cancellers. 

Another realisation that lends itself to an easy implementation is the look-up 

table approach [64], which is a special case of the distributed arithmetic adaptive 

filter [16]. A property of this adaptive filter realisation is that the look-up table 

places no constraint on the type of echo path response, other than its time duration. 

Therefore, any nonlinearity in the transmitter, line interface, or echo-canceller 

digital to analogue (D / A) converter is also modeled. The analysis of this memory­

based approach, when it is jointly adapted with a linear transversal echo canceller, 

is given in [61]. 

In all of the previously-mentioned configurations, there are some fundamental 

parameters that control the complexity of the echo canceller. Among them are 

the number of echo canceller taps, the maximum echo signal level, the minimum 

received signal level, and the required signal-to-uncanceled echo ratio [68]. 

Although echo cancellers designed either for speech transmission or data trans­

mission would ultimately achieve the purpose they are designed for, namely echo 

cancellation, there are significant differences to be briefly described in the following 

section. 
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3.2.3 Differences between speech and data echo cancellers 

As previously mentioned, there are implementational differences that are worth 

mentioning in connection with speech and data echo cancellers. The first difference 

to point out is that in data transmission,. an echo canceller is placed at each 

data set whereas in speech transmission an echo canceller i. part of the telephone 

network. The second difference is that, in data transmission, the transversal filter 

is a combination of two adjustable transversal filters separated by a bulk delay 

whereas only one transversal filter is required for speech transmission. Finally, 

there are other significant issues related to synchronisation, timing recovery, and 

equalisation which interact with data echo cancellation and which do not exist in 

speech cancellation [69]. 

Also, with the usual long wordlengths required for the tap values, a speech 

echo canceller has to perform a large number of complicated multiplications and 

store long wordlength values. Even in their simplest form speech echo cancellers 

are more difficult to implement than their data-driven counterparts [68]. 

Unlike data-echo cancellers where during initialisation, some training data are 

sent, speech echo cancellers cannot be trained perfectly for various reasons, one 

of which is that some residual echo will often remain. Further reduction of the 

residual echo is achieved by using techniques such as centre clipping [5]. A detailed 

explanation of the operation of these techniques can be found in [70]. 

The echo rejection requirements for voice echo cancellers are not as high as 

those for the data echo cancellers. This would have required the former cancellers 

to accurately estimate the echo path, as it is done with the latter ones. 

The design of an echo canceller requires a knowledge of the echo delay and 

duration with reference to the position of the echo canceller in the network [68]. 

Speech echo responses can have delays as long as 20 ms and very. oscillatory .tails 

with significant energy up to 30 ms beyond the start of the echo. This is in 

contrast to the echoes experienced in speech-band data transmission, where the 
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band limitation of the data signal causes the echo tails to die away more quickly. 

3.3 Filter structures 

Various filter structures of practical importance can, in general, be modelled by 

the following rational transfer function 

A(z) 
H(z) = B(z)' (3.3) 

which can be realised in three possible ways, depending upon the forms of A( z) and 

B(z). These three different realisations are based on either the all-zero transfer 

function (B(z) = constant), or the all-pole one (A(z) = constant), or a combina­

tion of both, i.e., the pole-zero transfer function. Whereas the first realisation is 

nonrecursive, the second and the third are recursive ones. Hence, in practice, only 

these two types of realisations will be implemented. 

In telecommunications, almost all current applications use linear finite impulse 

response (FIR) architectures, where the filter output is a weighted sum of present 

and past inputs. The transfer function for such architectures are of the all-zero 

type. However, real world transfer functions have both poles and zeros, and there­

fore realised in recursive forms. Nonetheless, FIR architectures are popular for 

several reasons. They are inherently stable as no feedback is involved and are 

more easily analyzed than their recursive counterparts, which can go unstable 

because of their reliance of feedback processing. 

Other configurations can be used to implement the structure of an echo can­

celler. The choice of one of these configurations is dictated by many parameters, 

such as the amount of computations involved, the stability of the structure itself, 

and the convergence rate. These structures have one thing in common which is 

the estimation of the echo path characteristics. 

The major drawbacks of FIR structures is that as the echo duration becomes 

longer, the number of taps increases proportionally and the convergence speed 
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decreases. To overcome this, other adaptive structures were investigated to reduce 

complexity and improve performance, such as the infinite impulse response (HR) 

structure [71], the lattice structure [3J, and the frequency-domain structure [51], 

[72J. 

The estimation of the transfer function of the echo path by an HR involves 

a combination of poles and zeros and is very suitable in implementing an echo 

canceller when the number of taps required by an FIR structure is very large. 

However, stability tests are required to keep the poles inside the unit circle and 

this will make the convergence speed very slow. Although the potential of HR 

filters seems to be great, much more study is needed before they become practical 

[12J. 

Another pronusmg approach is to convert signals from the time domain to 

the frequency domain using the discrete Fourier transform (DFT) [36) and carry 

out the required echo cancellation in the frequency domain [72). In this domain, 

convolution for a block of time-domain signals simply becomes coefficient multipli­

cation, substantially reducing the structure complexity. In the frequency-domain 

structure, echo cancellation is carried out in every frequency bin. 

- The convergence rate for an FIR filter depends on whether the signals are 

correlated (coloured) or un correlated (white), in which case, it is faster. This 

can be a serious problem for FIR filters with voice, and hence coloured, inputs, 

particularly when a large number of taps is required. 

To decorrelate the input signal, so that its final replica is formed from a sum of 

uncorrelated signals, the lattice filter is used so that rapid convergence is obtained. 

The weighted sum of signals obtained at each stage of the lattice gives the echo 

replica. The weights are adapted as for the FIR filter. 
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3.4 Adaptive mechanisms 

The two most widely used algorithms, already mentioned in Section 2.4, for adap­

tive filters are the least mean-squares (LMS) and the recursive least-squares (RLS) 

algorithms. These are used to estimate the echo path in an echo canceller structure 

[50], and out of the two, the LMS algorithm is the most widely used. 

For reasons of practical usefulness and interest to our work, in this section, 

emphasis will be placed only on the LMS algorithm . For more clarification, the 

adaptation rule of the LMS algorithm is reproduced here, 

C(n + 1) = C(n) + ,..e(n)X(n). (3.4) 

Although the simplicity and easy implementation of the LMS algorithm make 

it the predominant learning method used in echo cancellers, the undesirable de­

pendence of its convergence rate on input statistics has prompted much research 

into alternatives that converge less dependently on such statistics. 

To see the effect of the input statistics on the convergence of the echo canceller, 

let us consider the following. The error signal, that is the residual or uncancelled 

echo, is given by the following form: 

ern) = y(n) - y/(n) 
N-I 

= L [hi - Ci(n)]:c(n - i), (3.5) 
i=O 

where H = [ho, hi,···, hN-,f and C(n) = [Corn), CI(n),.··, CN-I(n)f are the 

coefficient vectors of the echo path and the echo canceller, respectively. The input 

signal is denoted by X(n) which is assumed to be a zero-mean, independent and 

identically distributed sequence. 

Our objective is to minimise /1:, the power of the error, which is given by: 

/1; = E[e2(n)] 

_ E[y2(n)] - 2CT(n)P + CT(n)RC(n) (3.6) 
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where R is the autocorrelation matrix of the input, and P is the cross correlation 

vector between the desired response and the input components. 

The optimal coefficients, Cop" are found by setting the first derivative of 17; 

. with respect to each coefficient to zero. This gives: 

(3.7) 

If it is assumed that the input signal is white, then R = 17;1 and P = 17;H where 

17; is the power of the input signal and I is the identity matrix. The optimal 

solution, in (3.7), is obtained in its simplest form: 

Cop, = H, (3.8) 

that is, the optimal solution is the impulse response of the echo path. 

However, in cases where the input signal is not white, which is the case in real 

life applications, the power spectrum Sz(J) of the input signal will not be flat, 

hence Cop, will therefore not be equal to H which affects the residual echo. To 

analyse this effect, let us write the error power as: 

N-l 

17~ E{[ L (h; - C;(n)]x(n - i))2]) 
i=O 

(3.9) 

where C(n) is the coefficient error vector. Using some algebraic manipulations, 

the above equation is rewritten in the following form: 

(3.10) 

where D(J) is the Fourier transform of C(n). Clearly if Sz(J) is very small or 

zero at any frequency or range of frequencies, there will then be no control on the 

frequency response error at that particular frequency or range of frequencies. To 

avoid this situation from happening, randomising the input signal will cure the 

problem temporarily. 
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Randomising the input signal is like performing a whitening process on it. For 

adaptive data echo cancellers, their input signal is a sequence of data symbols 

which are randomised by a scrambler before transmission. As a result of this 

process, randomisation improves the convergence of the echo canceller [73J, since, 

as it has been shown, the adaptive filter has the best convergence when the input 

signal is white. 

The choice of the step size /lo, in equation (3.4), is also of some concern. This 

has always been a trade off between fast convergence and large mean square error 

(MSE) at the output of the echo canceller since a smaller /lo will slow down the 

convergence rate at the expense of small steady-state MSE. 

A common technique used in designing echo cancellers is to use different step 

sizes at different stages of the training. That is, at the initialization process, 

/loop, is used to achieve the fastest convergence. When the echo canceller is close 

to convergence, the algorithm switches to a smaller /lo to reduce the steady-state 

MSE. 

Finally, the performance of the LMS algorithm depends not only on the step 

size, /lo, but also on the filter length, N, the signal to noise ratio, and nonlinearities 

in the echo path. 

3.5 Problems encountered in echo cancellation 

There are several problems encountered in the design of an echo canceller. Some 

of these problems are frequency offset, finite wordlength effects, fast-initialization 

process or start up, combination of echo cancellation and equalisation, and the 

exact estimation of the delay between the near-end and far-end sections in data 

echo cancellers. 

In each of these problems, further research is needed to improve the perfor­

mance of the echo cancellers. 

The work addressed in this dissertation looks at ways of improving the effect 
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of the wrong estimation of the bulk delay. This consists of applying transitional 

shaping between the near-end and the far-end sections of the data echo canceller. 

An enhancement in performance is achieved through the use of a modified version 

to the LMS algorithm. 
. 

Also, the application of the LMS and the LMF algorithms to the near-end 

and the far-end sections, respectively, can improve the convergence rate, that is 

the start up, and the steady-state value as well. This is another modification to 

the standard LMS algorithm which is usually applied to both sections of the echo 

canceller. 

Details of these two approaches are investigated in later chapters. 

3.6 Summary 

Echo cancellers have become a reality in the telephone system. This is primarily 

due to the advance in the very large-scale integration (VLSI) technology. The first 

fully integrated single-chip adaptive echo canceller chip was developed in 1978 [74 J. 
Echo cancellers for telephone circuits and data transmissions have now reached a 

low-cost realisation by using VLSI technology. 

Today, there exists a rich body of technical literature on different aspects of 

echo cancellation. This chapter coverS limited but fundamental material on this 

topic. 



Chapter 4 

Adaptive Echo Cancellation 

Using Statistical Shaping 

4.1 Introduction 

Echo cancellation [3J, [17J is a major application of adaptive noise cancelling tech­

niques [14J-[15J which are of importance in telecommunications. The primary ob­

jective of an echo canceller is to counteract a common but undesirable phenomenon 

in the telephone network, namely echo. The purpose of an echo canceller is, then, 

to compensate for this distortion by synthesising and subtracting a replica of the 

echo from the returned signal. 

The theoretical basis for echo cancellers is in the field of adaptive filtering [1], 

[7], [16J. This field has been extensively studied for the past few decades, and 

practical adaptive echo cancellation was well conceived as well [1lJ. Adaptive 

digital filtering is required to obtain a good echo replica in the face of unknown 

and time-varying echo path characteristics [58J. 

Echoes are only significant in full-duplex data transmission, where the data 

signals are transmitted in both directions of the network simultaneously. These 

echoes result from impedance mismatches in the hybrid couplers which interface 

45 
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the two-wire and four-wire circuits. 

A serious difficulty which is unique to echo cancellation at station locations is 

the very large delay which can be exhibited by the distant echo, which returns 

from the far end of the circuit. This would in return require implementing echo 

cancellers with at least 4000 taps if the distant echo is delayed by 600 ms or more, 

for instance when a satellite link is included in the four-wire circuit [17J. 

This problem is dealt with by splitting the transversal filter into two adjustable 

transversal filters separated by a bulk delay [5J as shown in Fig. 4.1. The bulk delay 

is estimated at the beginning of the operation, but unfortunately not precisely. 

Thus, the adaptive algorithm does not converge to the exact solution, resulting in 

an excess error (uncancelled echo). 

Many ways can be used to overcome this problem. In a situation where a 

rational function is a good approximation of the echo path transfer function, a 

recursive filter might be an alternative. Unfortunately, the stability of the recursive 

filter is usually a critical problem [16], [75J-[77J. In addition, the error surface may 

be multi modal, making conventional gradient adaptation algorithms problematic 

[77J. 

Another way would be by adding a certain number of coefficients in the end 

of the near-end section and at the beginning of the far-end section. This, however 

will end up adding additional computations to the algorithm. A compromise 

to the previous mentioned methods is the use of transitions instead, where the 

coefficients are chosen according to a certain probability density function (pdf). 

The advantages of this new approach is less mean square error at the output of 

the echo canceller, and less misadjustment. 

Another point worth mentioning is that this is new proposed algorithm will 

not have an increase in complexity over the other algorithm. An enhancement in 

performance is obtained over the one that would be represented by all coefficients 

present in the transition bands. 
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Figure 4.1: Structure of an echo canceller with bulk delay. 
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The new proposed study is based on the the least mean-squares (LMS) algo­

rithm where a probabilistic approach is used to analyze the modified LMS algo­

rithm. Two different transition bands are used in this study. These are a sharp 

transition and a smooth transition. The latter one is chosen according to the 

uniform pdf. 

This analysis presents a complete derivation of the algorithm where it identifies 

the largest eigenvalue in either the sharp transition or the smooth transition. It 

generalises previous works on echo cancellation [3], [17], as well. In the analysis, 

it will be assumed that the echo path is linear, and therefore completely specified 

by its impulse response. 

During the derivations which follow, the convergence in the mean and in the 

mean square are examined and the time constant of the algorithm and bounds on 

the convergence factor are obtained for each transition. The excess error due to 

the use of the first approach, namely the one based on the sharp transition, is also 

evaluated. 

4.2 Algorithm development 

The most widely used adaptive algorithm for adaptive filters is the LMS algorithm 

[1 J. In this algorithm, the tap coefficients are adapted to minimise a certain cost 

function. For simplicity, this algorithm will be described for the adaptive FIR 

filter in Fig. 4.2. 

As can be seen from Fig. 4.1, that a bulk delay is inserted between the near­

end section and the far-end section of the canceller to reduce the number of taps 

considerably. One could interpret this situation as if the coefficients are distributed 

with a certain probability density function (pdf). It is clear that one can say that 

those belonging to the delay section (DS) have probability one of being zero, and 

probability zero when outside DS. That is 
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Figure 4.2: FIR filter. 
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P(Ci(n) = 0) = 1, i E DS, (4.1) 

and 

P(Ci(n) i 0) = 0, i E DS. (4.2) 

This is clearly a un.iform pdf, which is depicted in Fig. 4.3. Then, one can 

think of the output of the canceller at the nth iteration instant being equal to: 

y(n) = CT(n)WX(n), ( 4.3) 

where the filter coefficients are given by: 

( 4.4) 

and T denotes the vector transposition operation. The reference input samples to 

the adaptive FIR filter are given in vector form by: 

(4.5) 

and 

W = diag(l, ... , 1, 0, ... ,0,1, ... ,1) (4.6) 

is an N x N diagonal matrix present in the computation of the output to select 

the coefficient identified as present or absent. The number of l's in the upper and 

the lower part of this matrix corresponds to the number of coefficients not equal 

to zero. That is 

P(Ci(n) = 0) = 0, i rt DS, (4.7) 

and 

P(Ci(n) i 0) = 1, i rt DS. ( 4.8) 

The coefficients vector can be written in the following format 

CU(n) 

C(n) = 0 (4.9) 

Cl(n) 
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Figure 4.3: Probability density function of the tap coefficients belonging to the 

bulk delay. 
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where CU(n) and Cl(n) designate the portions of the coefficients belonging to the 

near-end and the far-end sections of the canceller, respectively. The delay section 

is the part of the echo canceller where the coefficients are zeros, and that is why it 

is indicated in equation (4.9) by a zero-vector. Therefore, the total active number 

. of coefficients in the calculation· of the output of the canceller is (N - D), where N 

is the total number of coefficients and D is the number of coefficients being zero. 

In most practical instances the adaptive process is oriented towards minimising 

the mean-square value (MSE), or average power of the error signal. The perfor­

mance index for the MSE criterion, denoted J(n), is defined as 

J(n) = E[e2(n)], (4.10) 

where e( n) is the error between the output and the desired value of the canceller 

given by 

ern) = y(n) - d(n). (4.11) 

The mean-square-error function can be more conveniently expressed in terms 

of the input autocorrelation matrix 

R = E[X(n)XT(n)], ( 4.12) 

and the crosscorrelation vector 

P = E[X(n)d(n)], ( 4.13) 

between the desired response and the input components, as follows: 

J(n) = E[~(n)l- 2CT(n)WP + CT(n)WRWC(n). (4.14) 

It is clear from this expression that the MSE is precisely a quadratic function of 

the components of the tap coefficients. Thus, the shape associated with this MSE 

is hyperparaboloid, and then the algorithm used will seek the bottom of the error 

surface to get to the optimal value. 
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4.2.1 The optimal solution 

The point at the bottom of the performance surface corresponds to the optimal 

tap coefficients, Cop<, or minimum MSE. The gradient method is used to cause 

the tap coefficients vector to seek the minimum of the performance surface. The 

gradient of the performance criterion is defined as 

BJ(n) 
V' J(n) = BC(n)" (4.15) 

To obtain the minimum MSE, the tap-coefficients vector C(n) is set to its 

optimal value, Cop" where the gradient is set to zero," that is, 

( 4.16) 

The minimum MSE associated with this optimal value is found to be 

Jmin = E[cf(n)] - C:!;"WP. ( 4.17) 

4.2.2 The updating scheme 

Due to its simplicity and ease of implementation, the LMS algorithm [1], which is 

used recursively to update the tap coefficients of the adaptive filter, is the most 

widely used algorithm. The adaptation number, called the step size, used in this 

algorithm must be chosen small enough to ensure convergence of the iterative 

procedure. 

The update relation for the the LMS algorithm is derived from the following 

steepest descent type weight update equation: 

1 -C(n + 1) = C(n) - 2JlV' J(n), (4.18) 

where Jl is the adaptation gain or step size, and V J(n) is the instantaneous esti­

mate of the gradient of the error norm J(n) evaluated at the current value of the 

weight vector C(n). 
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Differentiation of equation (4.10) with respect to ern) yields the recursion 

equation used in the update of the proposed algorithm: 

C(n + 1) = C(n) - jLe(n)WX(n)' (4.19) 

where the step size parameter jL is used in the iterative process to control the 

convergence of the algorithm, and W is the matrix defined by (4.6). The proposed 

algorithm defined by (4.19) will update only those coefficients defined by (4.7) and 

(4.8), that is, only those present in the computation of the output. 

The choice of the step size parameter, and the convergence behaviour of the 

algorithm are investigated in the next section, where the sharp transition is used. 

A similar study for the algorithm, where the smooth transition is used instead, 

will be presented in Section 4.4. 

4.3 Convergence behaviour of the algorithm when 

using the sharp transition 

This section will deal with the convergence of the above stated algorithm when the 

sharp transition is used. The convergence in the mean and the convergence in the 

mean square are both analyzed and for each, bounds on the step size parameter 

are obtained. The convergence time constant of the algorithm is also obtained. 

The convergence of the algorithm in the sense of the mean is first studied. 

4.3.1 Convergence in the mean 

In this section, the convergence of the algorithm in the mean is presented. The 

value of the error defined in (4.11) and the output y(n) in (4.3) are substi·tuted in 

equation (4.19) to get the following: 

C(n + 1) = [I - jLWX(n)XT(n)W]C(n) + jLWX(n)d(n). (4.20) 
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Define now 

C(n) = C(n) - Cop, (4.21) 

to be the coefficient error vector at the nth iteration. 

Subtracting Cop. from both sides of (4.20) and ~aking use of (4)1), equation 

(4.20) becomes 

C(n + 1) = [I - J.LWX(n)XT(n)WJC(n) 

+J.LWX(n)d(n) - J.LWX(n)XT(n)WCop •. (4.22) 

Under the fundamental assumption [7], X(n) and C(n) are independent, so that 

taking the expectation of both sides of the above equation, and using (4.12) and 

(4.13), equation (4.22) becomes 

E[C(n + I)J = [I - J.LWRWJE[C(n)J + J.LWP - J.LWRWCop'. ( 4.23) 

The value of Cop, defined in (4.16) is substituted in (4.23) to get the following 

result 

E[C(n + I)J = [I - J.LWRWJE[C(n)J. (4.24) 

Equation (4.24) reveals that the algorithm will converge to the optimal value if all 

the eigenvalues of the matrix (I - J.L WRW) are less than unity. 

To be able to evaluate the mean value in (4.24), all that is needed is to compute 

the value ofWRW. Since W is a diagonal matrix, it can be written in the following 

format 

100 

W= 0 0 0 

001 

( 4.25) 

where 1 is the identity matrix whose length depends upon the length of the cor­

responding part of the filter (i.e., the near-end and the far-end of the canceller). 
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The same partition can be done for the autocorrelation matrix R, 

RII RI2 RI3 

R = R21 R22 R 23 

R31 R32 R33 

56 

( 4.26) 

where each R.;j(l :::; i :::; 3,1 :::; j :::; 3) has dimensions equal to the corresponding 

entry of the matrix W in (4.25). 

The product WRW is found to be equal to the following 

WRW= 

RII 0 RI3 

000 

R31 0 R33 

( 4.27) 

If the canceller is designed in such a way to make the number of coefficients in 

the near-end and the far-end parts of the canceller equal, then Ri3 would be equal 

to R31 and equation (4.27) is transformed to the following 

WRW= o 0 0 

Ri3 0 R33 

( 4.28) 

Since the canceller is mainly composed of three components, the near-end and 

the far-end sections, and the bulk delay between these two elements, one then can 

use (4.9) so that (4.24) can be expressed as 

CU(n + 1) I-pRII 0 -pR13 CU(n) 

E 0 0 I 0 E 0 ( 4.29) 

Cl(n + 1) -pRi3 0 1- pR33 Cl(n) 

From the above solution, we see that we have two equations to deal with, wh.ich 

are 

( 4.30) 

and 

( 4.31) 
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Because of this coupling between these two equations, one would have to find a 

compromise for p., the step size, so that convergence will take place. 

Equations (4.30) and (4.31) can be set up in a matrix form as follow 

E ( ~U(n + 1) ) 
C I (n+1) 

= . ([ I 0 J -p. [R~I RI3 J) E (~~(n)) ,(4.32) 
o I RI3 R33 C (n) 

where it is clear that the step size, p., depends on the largest eigenvalue of the 

following matrix 

A = [Rll RI3]. 
Ri3 R33 

( 4.33) 

From here we can tell that at steady state the following will happen, provided 

the right step size has been chosen, 

C(n) -t 0, (4.34) 

that is 

C(n) = Copt. (4.35) 

From this point we can argue that CU(n) and Cl(n) approach zero, then we have 

2 o < p. < -).-, 
ma~ 

( 4.36) 

w here ).ma~ is the largest eigenvalue of A. 

As a special case (a mathematical interest), when the matrix R!3 is equal to 

0, that is, the near-end and the far-end sections are uncorrelated, the step size 

reduces to the following 

2 
O<p.< , 

max [Ama:Z:l 1 1 Ama:z:33] 
( 4.37) 

where ).ma~ll and ).ma~33 are the largest eigenvalues of Rll and R33, respectively. 

4.3.2 Convergence in the mean square 

The convergence behaviour of the algorithm in the mean square is studied next. 
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Define the following measure 

On = E[IJC(n)1J2], ( 4.38) 

where IJ.IJ denotes the Euclidean norm, then 

EflIC(n + 1)II'J = E[CT(n + I)C(n + I)J. ( 4.39) 

It follows from (4.19) that 

( 4.40) 

Under the often-made assumption [78J-[79J that the input signal sequence {x;} 

is an independent and identically distributed Gaussian random sequence with zero 

mean and variance u;, the derivation of (4.40) is obtained as follow. Consider the 

following expression 

E[e(n)XT(n)C(n)J = J(n) - Jm;n (4.41 ) 

evaluated in [80J. Then, taking this result into account one can derive an expression 

for the second term of equation (4.40), given by 

E[e(n)XT(n)WC(n)J = J(n) - Jm;n. ( 4.42) 

The third term of the right-hand side of equation (4.40) is readily evaluated, 

given that 

XT(n)WX(n) = IJX(n)1I' - L x~, 
iEDS 

and from previously 

Eflle(n)11 2J = J(n), 

then we can write the following 

E[e2(n)XT (n)WX(n)J Eflle(n) 1J2IJX(n) 1J2J - E[IIe(n)1J2 L x~l 
- NJ(n)u; - DJ(n)u; 

= (N - D)J(n)u;. 

iEDS 

( 4.43) 

( 4.44) 
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Equation (4.40) becomes, when (4.44) is inserted, . 

(4.45) 

Substituting equation (4.42) into (4.45), this will result in the following expression: 

( 4.46) 

At convergence when IIn+! reaches IIn' the value of the step-size is found to be 

2(1- ~) 
/l- = (N - D)u;' (4.47) 

When [J(n) - Jmin] is approximated by u;,lIn [81], equation (4.46) becomes 

( 4.48) 

The stability of the algorithm is guaranteed if: 

( 4.49) 

which is satisfied if : 

( 4.50) 

The step size for fastest convergence is obtained by minimising the left hand side 

of (4.49) with respect to /l- and setting the result to zero. It is found to be 

1 
(4.51) 

/l-qpt = (N - D)u;,' 

4.3.3 The steady MSE 

When condition (4.50) is satisfied, the output MSE converges to a steady-state 

value [81] which is obtained by letting n -t 00 in (4.46). It is given by 

(4.52) 

For small value of /l- we have 

(4.53) 
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Substituting (4.51) into (4.53) we find that the steady-state MSE associated with 

the optimum step-size is: 

( 4.54) 

with Jmin defined by (4.17). 

4.3.4 The misadjustment factor 

The average excess MSE is [J(n) - JminJ. The ratio of this to Jmin can be regarded 

as a misadjustment factor M. It is given by 

M _ p.(N - D)O'; 
- 2 - p.(N - D)O';,' 

(4.55) 

The misadjustment in the case when the optimal step size p.up' is employed can be 

obtained by substituting (4.51) into (4.55); the result is simply 

( 4.56) 

4.3.5 The time constant of the algorithm 

It can be seen from equation (4.48) that convergence is exponential and the time-

constant is: 
1 

r=- . 
In{1 - 2p.O';' + p.2(N - D)O';} 

( 4.57) 

When p. = p.ap', the minimum time constant is 

1 
( 4.58) Tmin = -Zn{1- (N:D)}' 

4.4 Convergence behaviour of the algorithm when 

using the smooth transition 

So far, only the case where the order of the system to be identified is less than that 

of the adaptive filter is considered. No problem occurs when the order of the adap­

tive filter is larger than that of the system to be identified. In practice, however, 
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they usually do not coincide. To overcome this difficulty, the algorithm developed 

so far is studied again for the case when smooth transitions are introduced into 

equations (4.1) and (4.2) in the hope that convergence to the exact echo's impulse 

response will take place. 

The idea of introducing smooth transitions rather than sharp ones in the devel­

opment of the proposed algorithm is due to the fact that often the calculation of 

the delay between the near-end canceller and the far-end canceller is not correct, 

hence one or more coefficients in the part of the impulse response identified as zero 

are in fact non-zero. In this case, excess error is introduced, as will be shown later 

in the derivations, and thus the algorithm does not converge to the optimal value. 

The types of possible transitions between the zero and nonzero parts of the 

impulse response could be sharp or smooth. Figure 4.4 depicts these transitions. 

Other transitions with different shapes could be used as well. This type of tech­

nique is identical to the one used in designing low-pass FIR filters when the sam­

pling method [36] is used. Adding more samples in the transition band, which 

exists between the passband and the stopband, enhance the performance of the 

filter much better than if no samples are present in this band. 

Moreover, the coefficients in the transition bands are distributed according to 

a certain pdf, that is, the probability of a coefficient to be present in the transition 

band is equal to its cumulative density function. For the coefficients at the end of 

the near-end canceller, these are defined as follows 

0::; f(i)::; 1, i = 1,··· ,nI, ( 4.59) 

whereas for those at the beginn.ing of the far-end canceller, they are defined in the 

following way 

0::; g(i)::; 1, i = 1, ... ,n2' (4.60) 

The functions specified in (4.59) and (4.60) characterise the near-end and far­

end transition bands, respectively. The numbers nl and n2 are the numbers of 

coefficients in their respective transition bands. 
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The output of the canceller at the nth instant defined by (4.3) is also used, 

here, with the modification made to W as defined by 

W = diag(I, ... , 1,f(I), ... ,f(nd,O, ... ,0,g(I), ... ,g(n2),I, ... ,1), (4.61) 

Figure 4.4: Sharp and smooth transitions. 
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and the the coefficient vector can be written in the following format 

CU(n) 

C/U(n) 

C(n) = 0 (4.62) 

C'l(n) 

Cl(n) 

where CU(n) and Cl(n) designate the portions of the coefficients belonging to the 

near-end and the far-end sections of the canceller, respectively. The DS is the 

section where the coefficients are zeros, and this is why it is indicated in equation 

(4.62) by a zero-vector, whereas C/U(n) and C'l(n) are the coefficients in the near­

end and far-end transition bands, respectively. 

4.4.1 Convergence in the mean 

Similarly as has been done in the section of the convergence of the algorithm in 

the mean as presented with the sharp transition, the following result is obtained 

E[C(n + I)J = [I -I'WRWJE[C(n)J. ( 4.63) 

Equation (4.63) reveals that the algorithm will converge to the optimal value if all 

the eigenvalues of the matrix (I - I'WRW) are less than unity. 

To be able to evaluate the mean value in (4.63), all one needs is to compute the 

value of WRW. Since W is a diagonal matrix, it can be written in the following 

form 

1 0 0 0 0 

0 F 0 0 0 

W= 0 0 0 0 0 (4.64) 

0 0 0 G 0 

0 0 0 0 1 

where 1 is the identity matrix whose length depends upon the length of the corre­

sponding part of the filter (i.e., the near-end and the far-end of the canceller), and 
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F and G are both nl x nl and n2 x n2 diagonal matrices, respectively, defined by: 

F = diag(J(l), 1(2), ... , l(nJ)), (4.65) 

and 

G = diag(g(1),g(2), ... ,g(n2))' ( 4.66) 

The elements of the diagonal matrix F are decreasing as i increases from 1 to nI, 

whereas the elements of G are increasing as i increases from 1 to n2· 

The same partition can be done for the autocorrelation matrix R, 

RI! Rn RI3 RI4 RI6 

R21 Rn R 23 R24 R 2S 

R= R31 R32 R33 R34 R3S ( 4.67) 

R41 R42 R43 R.4 R.s 

RSI RS2 RS3 RS4 RS6 

where each R.;j(l ::; i ::; 5,1 ::; j ::; 5) has dimensions equal to the corresponding 

entry of the matrix W in (4.64). 

The product WRW·is then found to be equal to the following 

RI! RI2F 0 RI4G R ls 

FR2I FR22F 0 FRI4G FR2S 

WRW= 0 0 0 0 0 ( 4.68) 

GR.I GR.2F 0 GR44G GR.s 

RSI RS2F 0 RS4G Rss 

Since the canceller is mainly composed of three components, the near-end and 

the far-end sections, and the bulk delay between these two sections, one then can 



Chapter 4: Adaptive Echo Cancellation Using Statistical Shaping 

use (4.62) in (4.63) to get: 

C"(n + 1) 

CI"(n+ 1) 

E 0 
• I 

C' (n + 1) 

Cl(n + 1) 

= ( 1:- /L WRW ) E 

C"(n) 
. " C' (n) 

o 
• I -

C' (n) 

Cl(n) 
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( 4.69) 

Equation (4.69) can be further simplified if expressed in a vector form as in the 

following: 

C"(n + 1) C"(n) 

E 
CI"(n + 1) (I -/LA)E CI"(n) 

• I = 
(:tl(n) C' (n + 1) 

(4.70) 

Cl(n + 1) (:I(n) 

with 

Rll R12F R14G R 15 

A= 
FR2l FR22F FR14G FR25 

GR4l GR.2F GR.4 G GR45 
(4.71) 

R5l R52F R54G R55 

where it is clear that the step size, /L, depends on the largest eigenvalue of A. 

It therefore follows that, at steady state, the following will be obtained, pro­

vided the right step size has been chosen, 

C(n) --+ 0, (4.72) 

or equivalently 

C(n) = Copt, (4.73) 

where Copt is still defined by Copt = [WRWJ-1WP, and W is given by (4.61). 

This happens if the step size is chosen to be: 

2 
0< /L < -A-' 

maz 
(4.74) 
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where >'m= is the largest eigenvalue of A. 

If we now consider a practically-motivated assumption that the near-end and 

the far-end sections are uncorrelated, (4.71) reduces to the following 

(4.75) 

with 

(4.76) 

and 

(4.77) 

and the corresponding step size is found to be 

(4.78) 

where >'m.zl and >'m.z2 are the largest eigenvalues of Al and A2, respectively. 

4.4.2 Convergence in the mean square 

Here, too, for the convergence in mean square of the algorithm, it can be shown, 

following the derivation of the algorithm in the mean square section with the sharp 

transition, that 

(4.79) 

Under the often-made assumption [78]-[79] that the input signal sequence {Xi} 

is an independent and identically distributed Gaussian random sequence with zero 

mean and variance eT;, the derivation of (4.79) is obtained as explained in the 

following. Consider the following expression 

E[e(n)XT(n)C(n)] = J(n) - Jmin ( 4.80) 
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evaluated in [80J. Then, taking this result into account one can obtain an expres­

sion for the second term of equation (4.79), given by 

E[e(n)XT(n)WC(n)J = J(n) - Jmin . (4.81 ) 

The third term of the right-hand side of equation (4.79) is readily evaluated. 

Given that 

nl n;a 

XT(n)WX(n) = IIX(n)1I2 - L z~ + .EU(i) -1)z~ + .E(g(i) -1)z~, (4.82) 
iEDS i=l 

we can then write the following 

E[e2(n)XT(n)WX(n)J = E [lIe(n)112[IIX(n)1I2 - i~S z~ + t,U(i) - l)z~ 

+ ~(9(i) - I)Z71] 

= (N - D)J(n)u; 
nl n2 

+[.E f(i) + .E g(i) - nl - n2JJ(n)u;. (4.83) 
i=l i=1 

Inserting (4.83) in (4.79) yields: 

nl n, 
+ll[N - D + .Ef(i) + .Eg(i) - nl - n2JJ(n)u;. (4.84) 

1=1 i=1 

Given the expression of (4.81) and using it in (4.84), the following is obtained: 

nl n, 

+JL2[N - D + .E f(i) + .Eg(i) - nl - n2JJ(n)u;. (4.85) 
1=1 i=1 

In the limit when On+! reaches On, the value of the step size is found to be 

2(1 - ~(~)) 
JL - (4.86) 

- [N - D + L:i;l f(i) + L:i~l g(i) - nl - n2Ju~· 

When [J(n) - JminJ is approximated by u;On [81J, (4.85) becomes 

nl n, 

On+! = {I - 2JLu; + JL2[N - D + .E f(i) + .Eg(i) - nl - n2JU:}On 
i=1 

( 4.87) 
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For the expression in (4.87) to converge, it is required that 

( 4.88) 

Hence, for convergence, the step size p"has to satisfy: 

( 4.89) 

The step size which provides the fastest speed of convergence"to the corresponding 

steady-state MSE is obtained by setting the derivative of the expression in the left 

hand side of (4.88) to zero, that is, 

1 
(4.90) 

or one-half the maximum step size. 

4.4.3 The steady state MSE 

When condition (4.89) is satisfied, the output MSE converges to a steady-state 

value obtained by letting n ~ 00 in (4.85), given by : 

( ) 
Jmin 

J 00 = 1 I [N D + "n, f(·) + "n, "(.) ] 2· - 'ilL - L...i=l Z. L...i=l 9 t - nl - n2 U'z 
(4.91) 

For small values of p, we have the following approximation : 

( 4.92) 

Substituting (4.90) into (4.92) we find that the steady-state MSE associated with 

the optimum step-size is given by: 

( 4.93) 

with Jmin = E[If!(n)] - C~tWP, and W defined by (4.61). 
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4.4.4 The misadjustment factor 

The average excess MSE is (J(n) - Jmin ). The ratio of this error to the Jmin can 

be regarded as a misadjustment factor M. It is given by 

M = It[N - D + ~i':l f(i) + ~i':l g(i) - nl - n2]O'; .. _ 
2 - It[N - D + ~i'!l f(i) + ~i;1 g(i) - nl - n2]O'; 

(4.94) 

In the case when the optimum size It""" is employed the misadjustment can be 

obtained by substituting (4.90) into (4.94). This results in the worst misadjustment 

value of: 

( 4.95) 

4.4.5 The time constant of the algorithm 

It can be seen from equation (4.87) that the convergence is exponential and the 

time-constant is: 

1 
T = -In{l _ 21tO'; + 1t2[N - D + ~i'!l f(i) + ~i;1 g(i) _ nl _ n2]u!}' (4.96) 

When It = It""", the minimum time constant is 

1 
( 4.97) Tmin = 

Table 4.1 su=arises and compares all the results found when using the sharp 

transition as compared to those obtained when using the smooth one. 

4.5 Excess mean square error 

Before we see that excess error has been introduced to the algorithm, let us first 

see that, in fact, there is no potential for bias. 

Define e( n) to be the following value 

ern) = ern) - eopt 

- [C(n) - C"",,]TWX(n). ( 4.98) 
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Table 4.1: Comparison of the algorithm for sharp and smooth transitions. 

Sharp transition Smooth transition 

2 2 
!Lmaz (N D)cr~ [N -D+ L~~, f(i)+ L~~' .(i)-n,-n,)u~ 

Il-"", I I 
(N-D)u; [N -D+ L:~, f(i)+ L:~, .(i)-n, -n,]u; 

T 
-I -I 

In{1-2JJD'~+~2 (N -D)uH In{I-2",,;+,,' [N -D+ L:~~, f(i)+ L:~,;, g(ij-n,-n,],,!} 

Tmin 
-I -I 

In{l- (N~D)} In{1 ri.
1
". } !N-D+ Li~l/(,)t L.:i~1.(·)-nl-n2J 

M ,,(N -D),,; ,,[N -D+ L~~ f(i)+ L~'I .(i)-n, -n,],,; 
2-,,(N-D),,~ 2-,,[N -D+ ~;~, f(i)+ i:~, .(i)-n,-n,],,; 

M~~I-lopt 1 1 
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Taking the expectation of both sides of the above equation, then 

E[e(n)] = E [[C(n) - Cop,]TJ W E[X(n)]; ( 4.99) 

Since {Xi} is an i.i.d Gaussian random sequence with zerO mean as mentioned 

earlier, the result is simply 

E[e(n)] = O. (4.100) 

This therefore indicates clearly that there is no potential for bias. In this case, 

there should therefore be additional excess error introduced. To check the validity 

of this statement let us do the following. 

Subscripts "u" and "s" will be used in this part of the derivation to distinguish 

between the sharp transition and the smooth transition, respectively. 

Recall that the minimum MSE associated with the optimum value, Copt,., when 

using the smooth transition is found to be 

J min,. = E[cf'(n)] - C~t,. W.P. (4.101) 

Similarly, the corresponding value derived for the sharp transition is given by 

( 4.102) 

Subtracting equation (4.101) from equation (4.102), leads to : 

Jmin,u = Jmin,. + [C~t,.W. - C~t,uWu]P. ( 4.103) 

Since W. can be written in terms ofWu , equation (4.103) then becomes 

nl n, 

+ L f(i)Ciopt"Pi + L9(i)Ciopt,.h (4.104) 
i=l 

This result shows that excess error has been introduced to the algorithm when 

using the sharp transition defined in section 4.3. The amount of excess error is 

clearly seen through the second, the third, and the fourth terms on the right hand 

side of (4.104). 
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Ultimately it has been shown that the algorithm when using the smooth transi­

tion over the sharp one will end up with less excess mean square error; hence good 

echo cancellation is realised with the algorithm using the smooth transition. Sim­

ulation results support this statement, as will be shown in the simulation results 

section. 

4.6 Computational complexity 

A question which might be asked at this stage is : which transition outperforms 

the other one in terms of computational effort? The order of computations can 

be explained as follows. Suppose that n, and n2 coefficients are missing in the 

near-end and the far-end sections of the canceller, respectively. When the sharp 

transition is used to compute the output of the canceller and no errors are made in 

the bulk delay, (N - D -1) additions and (N - D) multiplications are needed for 

this purpose. Furthermore (N - D - n, - n2 - 1) additions and (N - D - n, - n2) 

multiplications are needed to compute the output of the canceller when the sharp 

transition is used with errors in the bulk delay defined by the number of coefficients 

n, and n2. Now, if the smooth transition is used, the number of additions (adds) 

needed is: 

(N - D - n, - n2 - 1) < adds < (N - D - 1), ( 4.105) 

and the number of multiplications (muls) is: 

(N - D - n, - n2) < muls < (N - D). ( 4.106) 

This is due to the fact that since the coefficients in the smooth transition, which 

have been selected using the uniform pdf, are either present or not present, not all 

of them contribute in the computation of the output, and hence lead to the number 

of additions and multiplications bounded by (4.105) and (4.106), respectively. 

Ultimately, a compromise between computational complexity and performance 

is observed when using either of the transitions. 
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Table 4.2 summarIses the computational complexity of the algorithms with 

different transitions. 

4.7 Simulation results 

In the simulations presented in this section, the signaling is binary (2:; = ±1) and 

the arbitrarily chosen sampled impulse response is shown in Fig. 4.5. The additive 

noise was simulated as a uniformly random process with zero mean, and the signal 

to noise ratio is 30 dB. The optimal step-size parameters obtained from (4.51) and 

(4.90) are used in all the simulations, and the learning curves obtained are the 

average of 200 runs. 

The coefficients missed in the near-end section of the echo canceller start from 

.the end of the impulse response and go to the left, while those missed in the far­

end start from the beginning of the impulse response and go to the right. We will 

continue with to this notation during the remainder of this work. 

Figure 4.6 shows good agreement between the theoretical and the experimental 

learning curves when a sharp transition is used and no error is made in the bulk 

delay. Figure 4.7, however, shows the closeness of the learning characteristics of 

the simulation and the theoretical results when four coefficients in each of the 

near-end and the far-end sections of the canceller have been missed and using the 

smooth transition. The uniform pdf is given to the smooth transition. 

Figure 4.8 through Fig. 4.13 depict the amount of mean square error obtained 

for the two types of transitions, against the number of missed coefficients in the 

transition bands of the echo canceller. The sharp transition has been used in Fig. 

4.8 through Fig. 4.10, while in Fig. 4.11 until Fig. 4.13 the smooth transition was 

used. The coefficients in the transition bands were distributed uniformly, that is 

using the uniform pdf, when using the smooth transition. 

To validate the theoretical derivations, in each of these figures, the experimental 

result is plotted against its theoretical counterpart. 
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Table 4.2: Computational complexity of the algorithms with different transitions. 

Number of additions Number of multiplications 

The sharp transition 
N-D-1 N-D 

with no errors 

The sharp transition 
N - D - n, - n2 N - D -n,- n2 

with errors 

< (N - D -1) < (N - D) 
The smooth transition and and 

> (N - D - n, - n2 - 1) > (N - D - nl - n2) 
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Figure 4.8 and Fig. 4.11 correspond to the near-end of the canceller alone, while 

Fig. 4.9 and Fig. 4.12 correspond for the far-end of the canceller only. Similarly, 

Fig. 4.10 and Fig. 4.13 are the result of the near-end and the far-end combined 

together. It can be seen from the figures plotted for the smooth transition that the 

number of missed coefficients start with 1, while they start with 0 when the sharp 

transition is used. The reason behind it that they start with 0 when the sharp 

transition is used means that nO coefficient was missed. But, this is not the case 

for the smooth transition, since it is a matter of whether a coefficient is present or 

not. 

One observes that in all the figures presented the simulation results are in quite 

close agreement with the theoretical predictions. 

Now if we compare the figures obtained when usmg the sharp transition to 

those obtained when using the smooth transition, we can draw the conclusion 

that the amount of mean square error is much less than when using the smooth 

transition. That is, the value obtained when using the smooth transition gives 

less mean square error to the algorithm. This clearly supports the theoretical 

derivations. 

4.8 Summary 

A probabilistic study was suggested for the study of the newly proposed algorithm. 

It was shown that coefficients belonging to the delay section and those not belong­

ing to this section were assigned a probability value depending on their presence 

or absence in these sections. 

The study was carried out, in this chapter, evaluated the performance of the 

proposed algorithm. The performance of the algorithm has been studied for two 

transitions, a sharp transition and a smooth one. For both of these transitions, 

steady-state and transient behaviour were investigated, as well as a comparison 

between the algorithms developed for each transition. 
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Also, an analytical expressIOn has been also given for the amount of excess 

mean square error when using the sharp transition over the smooth transition. 

Finally, simulation results are found to agree well with the analysis, and the 

algorithm presented reasonable complexity as far as the computational burden is 

concerned. 



Chapter 4: Adaptive Echo Cancellation Using Statistical Shaping 77 

1 r-----,------r----_.------r-----.------r~--_.----_. 

0.8 -

0.6 

0.4 

0.2 t-

-0.2 v 

-0.4 

-0.6 L---__ _L ____ ~L_ ____ ~ ____ ~ ______ ~ _____ ~, ____ _L ____ ~ 

o 20 40 60 80 100 120 140 160 
Coefficients 

Figure 4.5: Impulse response of the channel. 
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Figure 4.11: MSE versus the number of missed coefficients in the near-end section 
of the canceller when using the smooth transition. 
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Figure 4.12: MSE versus the number of missed coefficients in the far-end section 
of the canceller when using the smooth transition. 
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Chapter 5 

Adaptive Echo Cancellation 
Using Least Mean Mixed-Norm 
Algorithm 

5.1 Introduction 

The performance of an adaptive filter depends mainly on the algorithm used for 

updating the filter weights. Since adaptive filters depend mainly on the choice of 

the cost function used in the minimisation of the process, one can expect their 

respective performances to be different. 

Based on the choice of the minimisation function, these adaptive schemes can 

then be either simple or cumbersome, and stable or unstable. The recursive least­

squares (RLS) algorithm [7J is designed to minimise the sum of squares of the 

output. This, however, will end up requiring infinite memory since the values of 

the filter coefficients are functions of all past inputs. To overcome this burden, a 

forgetting factor must be introduced into the algorithm, so that recent data are 

given greater importance than the old data. This modification will end up with an 

exponentially weighted sum of squares at the output having a finite memory and 

the corresponding algorithm will be named the exponentially weighted RLS [15J. 

The RLS algorithm is closely related to Kalman filter theory. The derivation 

of the Kalman filter [82J-[83J is based on modelling a linear dynamical system by 

forming a pair of equations, namely a state equation describing the motion of the 

86 
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system, and a measurement equation describing the observation process. Even 

though system-based Kalman filters converge faster than their RLS counterpart 

[84], they still require heavy computations. A solution to this problem is to use 

fast RLS algorithms [7J. 

Fast'RLS algorithms offer' the improved convergence properti~s or"fe~i-squares 

algorithms by exploiting the so-called shifting property that is encountered in 

most sequential estimation problems. Depending on the type of filter structure 

employed, three different classes of fast algorithms may be identified. The first 

class is the transversal filter-based fast algorithms with two sub-classes, the fast 

Kalman algorithm [30], and the fast transversal filters (FTF) algorithm [31J-[32J. 

The second class is the lattice predictor-based fast RLS algorithms [85J-[88], and 

finally the third class is the QR decomposition-based least-squares algorithms [89J­

[90J. 

In all the above mentioned algorithms, the effect of the statistics of the signal 

on the convergence of the algorithm is not observed. However, algorithms based 

on the least mean squares (LMS) algorithm [lJ are sensitive to the eigenvalue 

spread of the input signal. But, contrary to other algorithms, their complexity is 

much lower which is why they are widely used. The LMS algorithm consists of 

minimising the square of the error. In [8J the least mean fourth (LMF) algorithm 

was suggested where it arose as a special case of the more general family of steepest 

descent algorithms [7J with 2k error norms, k being a positive integer. 

Being structurally simple and computationally efficient, the LMS algorithm has 

been widely used in system identification [91J, equalisation [13], noise cancellation 

[14], and echo cancellation [17J. Its performance is now well understood, by means 

of independence theory [1], [45J. 

Since echo cancellers [17J are part of these adaptive filters, adaptive algorithms 

are used to update their tap weights, and depending on the choice of both the cost 

function and the structure used, their respective performance will differ from one 

choice to another one. 
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It is known that the LMS algorithm is optimal only if the input signal is 

white, and consequently its convergence time will be the shortest in this case. 

Recently developed algorithms [9], [10J based on a combination of the LMS and 

the LMF algorithms are proposed. These are designed to minimise one single 

controlled-mixed cost function. They result in fast convergence rates and s·maIl 

misadjustment errors. 

In this work, a new algorithm applied to long echo cancellers with two sections, 

the near-end and the far-end sections, is proposed. This is depicted in Fig. 5. L It 

is different from that of [9J and [10J in the sense that it will minimise two distinct 

cost functions, i.e., one for each section of the echo canceller. This consists of 

minimising the MSE in the near-end section of the echo canceller and the MFE 

in its far-end section, and it will be henceforth called the least mean Inixed-norm 

(LMMN) algorithm. As can be seen from Fig. 5.1, the proposed scheme takes 

advantage of the structure of the echo canceller. 

The LMMN algorithm leads to a lower minimum mean square error, hence 

results in less misadjustment, and a faster convergence compared to the one ob­

tained by the standard algorithm, i.e., the LMS algorithm when applied to both 

sections of the echo canceller [3], [16], [17], [92J. 

However, as it will be later discussed in the derivations, the LMMN algorithm 

relies on the variance of the noise as it is the case for the LMF algorithm. It 

happens that if this value is not the actual one, the algorithm would deviate from 

reaching the optimum solution. Since this value, in general, is not known a priori, 

suggests then, that it should be estimated close to its range. This parameter and 

related ones will be investigated in detail in the next chapter. 

In the next section the algorithm is derived. Section 5.3 deals with the conver­

gence of the algorithm, while the simulations performed to support the theoretical 

derivations are presented in the next chapter along with the algorithms used for 

comparIson. 
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Figure 5.1: Echo canceller with new updating scheme. 
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5.2 Derivation of the algorithm 

Echoes are generated in telephone circuits as the result of impedance mismatches 

in these circuits. They arise in various situations in telecommunications networks 

and impair communication quality. To counteract this echo phenomenon, tools 

must be developed to either completely eliminate it, the ideal requirement, or at 

least substantially reduce its adverse effects so as to achieve transmission of good 

quality. Echo cancellation techniques [3] are used for this purpose. The purpose 

of an echo canceller is, then, to compensate for this distortion caused by echoes, 

by synthesising and subtracting a replica of it from the returned signal. 

the LMMN algorithm will be used to update the tap coefficients of the echo 

canceller using the new proposed cost functions. The algorithm will be described 

for the adaptive finite impulse response (FIR) filter. 

Since we have two sections, the near-end and the far-end sections, it is conve­

nient to define a vector notation for the filter coefficients 

(5.1 ) 

where T denotes the vector transposition operation and subscripts Nand F rep­

resent the near-end section and the far-end section of the canceller, respectively. 

Identically to (5.1), the reference input samples to the adaptive FIR filter is given 

by: 

The output of the canceller at the nth instant is given by: 

y(n) = C~(n)XN(n) + C~(n)XF(n) 
_ CT(n)X(n). 

5.2.1 The proposed performance functions 

(5.2) 

(5.3) 

In the course of the analysis, the following assumptions are made for the perfor­

mance analysis: 



Chapter 5: Adaptive Echo Cancellation Using LMMN Algorithm 91 

• The noise w(n) is independent of the input signal X(n), both of zero mean, 

and Xi has variance u;. 
• The input process X( n) is an independent, identically distributed Gaussian 

random variable. This is a fairly restrictive assumption and under this assumption 

the autocorrelation matrix R = E[X(n)XT(n)J becomes R = u;1. 

• The weight error vector, as will be defined later, is independent of the input 

X(n); this is a consequence of the fundamental assumption [7J. 

In most applications in data transmission the second mentioned assumption 

above will be valid, since mostly the data signals that are used in the canceller are 

statically independent [78J. 

In most practical instances, the adaptive process is oriented towards minimising 

the mean-square value (MSE). In this work the proposed performance criteria, are 

defined, respectively, for the near-end section and the far-end section as: 

e( n) is the error given by: 

IN(n) = E[e2(n)], 

Jp(n) = E[e4 (n)], 

e(n) = d(n) + w(n) - y(n), 

(5.4) 

(5.5) 

(5.6) 

where din) is the desired value, y(n) is the output of the adaptive system, and 

w(n) is the additive noise, Fig. 5.2 depicts this clearly. 

It is worth noticing that when the absolute val·ue of the error is less than one, 

the fourth power and its gradient are less than those of the square. However, the 

situation reverses when the absolute value of the error is greater than one. One 

would expect that the LMF algorithm can quickly become unstable and diverge. To 

overcome this situation, a rescue condition must be used to prohibit the algorithm 

from doing so. 
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Figure 5.2: Block diagram of adaptive system identification. 
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5.2.2 Analysis of the error surfaces 

The error functions can be more conveniently expressed in terms of the input 

autocorrelation matrix of the near-end 

the input autocorrelation matrix of the far-end 

RF = E[XF(n)X~(n)], 

the cross correlation vector of the near-end 

and the cross correlation vector of the far-end 

as follows: 

PF = E[XF(n)d(n)], 

IN(n) = E[d2 (n)] + E[w 2(n)] - 2C~(n)PN - 2C~(n)PF 

+C~(n)RNCN(n) + C~(n)RFCF(n), 

which can be written in the following format: 

where 

P = [ :: ] , 

and 

R = [RN 0 ]. 
o RF 

(5.7) 

(5.8) 

(5.9) 

(5.10) 

(5.11) 

(5.13) 

(5.14) 
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It is clear from (5.12) that the MSE is precisely a quadratic function of the compo­

nents of the tap coefficients, and the shape associated with it is hyperparaboloid. 

The adaptive process will be continuously adjusting the tap coefficients, seeking 

the bottom of this hyperparaboloid . 

. It can be shown as well that the error-function for the far-end section, taking 

into considerations the assumptions stated above, can be set into the following 

h(n) = E[d'(n)] + E[w4 (n)] 

_4CT (n)E[X(n)d"(n)] 

+6{E[d2(n)]- 2CT(n)P + CT(n)RC(n)}E[w 2(n)] 

+6CT (n)E[X(n)XT (n)cf(n)]C(n) 

_4CT (n)E[X(n)CT (n )X(n)XT(n)d(n)]C(n) 

+CT (n)E[X(n)XT C(n)CT (n)X(n)XT(n)]C(n). (5.15) 

The above expression shows that indeed the error-to-the-power-four will have a 

global minimum since the latter one is a convex function. 

As in the near-end section, the adaptive process will continuously seek the 

bottom of the error-function of the far-end section. 

5.2.3 The optimal solution 

The point at the bottom of the performance surface corresponds to the optimal 

tap coefficients, COP" or minimum MSE. The gradient method is used to cause 

the tap coefficients vector to seek the minimum of the performance surface. The 

gradient of the performance criterion for the near-end section is defined as 

V'JN(n) _ 8JN(n) 
8CN (n) 

- -2PN + 2RNCN(n). (5.16) 

To obtain the minimum MSE, the tap-coefficients vector C(n) is set to its 

optimal value, Cop" where the gradient is set to zero, that is, for the near-end 
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section it is found to be: 

and for the far-end section it is obtained by setting the following: 

8h(n) 
8Cp(n) 

95 

(5.17) 

(5.18) 

to zero and solving for Cp"P'. Since JF(n) is function of CF"P' in the fourth 

power, this will result in a gradient in a power of three of C P"P" hence will make 

it cumbersome to solve (5.18) and find an explicit value for CF"P'. It will be 

taken as stated above that since Jp( n) is a convex function will have then a global 

minimum, thus the updating scheme will continuously search for this value until 

(5.18) is approximately zero. 

The minimum achievable MSE associated with these optimum values is found 

for the near-end section to be: 

JNmin = E[d2 (n)] + E[w2(n)] - C"£."P,PN 

-2C~(n)Pp + C~(n)RpCp(n). (5.19) 

The far-end section value, Jpmin , can be obtained as well when CFopI found from 

V'h(n) = 0 is substituted for Cp(n) in (5.15). 

5.2.4 The updating scheme 

Based on this motivation, the LMMN algorithm for recursively adjusting the tap 

coefficients of the NE canceller, CN(n), and those of the FE canceller, Cp(n), is 

expressed in the following form 

(5.20) 

(5.21 ) 

These expressions are obtained by differentiating the instantaneous gradient vec­

tors V IN(n) and V Jp(n) with respect to CN(n) and CF(n), respectively, and 
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replacing them in the recursive relation which uses the steepest descent method 

[7J. The convergence properties of this algorithm are controlled by the step sizes 

/1-1 and /1-2 . The step sizes are chosen small enough to ensure convergence of the 

iterative procedure and produce less misadjustment error. 

The choice of /1-1 and /1-2, and the convergence behaviour of the new adaptive 

algorithm are investigated in the next section. 

Finally, Table 5.1 illustrates the mathematical description of the LMMN algo­

rithm. 

Table 5.1: The mathematical description of the LMMN algorithm. 

Adaptive filter y(n) = C~(n)XN(n) + C~(n)XF(n) 

Error equation e(n) = d(n) + w(n) - y(n) 

CN(n + 1) = CN(n) + /1-le(n)XN(n) 
Adaptive Control Equations 

CF(n + 1) = CF(n) + 2p2e3(n)XF(n) 

CN(O) = 0 
Initialization 

CF(O) = 0 
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5.3 Convergence behaviour of the LMMN algo­

rithm 

This section deals with the convergence of the above stated algorithm. The con­

vergence in the mean and the convergence in the mean square are analyzed and 

bounds on the step size parameter are obtained for the near-end and the far-end 

sections. Expressions for the time constants of the algorithm and the misadjust­

ment factor are also obtained. The convergence of the algorithm in the sense of 

the mean is first studied. 

5.3.1 Convergence in the mean 

Examining the mean behaviour of (5.20) under the above stated independence 

assumption, the value of the error defined in (5.6) and the output yen) in (5.3) are 

substituted in equation (5.20) to get the following: 

. T 
CN(n + 1) = [I - JllXN(n)XN(n)]CN(n) + JllXN(n)d(n) 

-JllXN(n)X~(n)CF(n) + JllXN(n)w(n). (5.22) 

Now define 

(5.23) 

to be the weight error vector at the nth iteration. 

Subtracting CNopt from both sides of (5.22) and making use of (5.23), equation 

(5.22) becomes 

CN(n + 1) = [I - JllXN(n)X~(n)]CN(n) + JllXN(n)d(n) 

-JllXN(n)X~(n)CNopt - JllXN(n)X~(n)CF(n) 

+JllXN(n)w(n). (5.24) 

Taking the expectation of both sides of the above equation and using the fact that 

X N (n) and X F ( n) are uncorrelated (even though the presence of correlation in 
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X( n) considerably complicates the analysis, it is known that for other algorithms 

the influence of correlation in the input on the convergence is not very large [44 J), 

using the assumption that the input signal and the noise are independent (both of 

zero mean), and taking advantage of the independence assumption [7], it can be 

shown that equation (5:24) becomes-

(5.25) 

When the value of C Nopt defined in (5.17) is substituted in (5.25), the following 

result is obtained 

(5.26) 

Equation (5.26) reveals that the algorithm will converge to the optimal value if all 

the eigenvalues of the matrix (1 - 1'-1 RN) are less than unity. 

It therefore follows that, at steady state, the following will be obtained, pro­

vided the right step size has been chosen, 

(5.27) 

or equivalently 

(5.28) 

where this happens if the step size is chosen to be: 

2 
0<1'-1 < A ' 

Nmaz 
(5.29) 

where ANmaz is the largest eigenvalue of RN. 

Similarly, as was done for the near-end section, equation (5.21) for the far-end 

section will look like 
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CF(n + 1) == CF(n) + 2p2XF(n)[w3(n) - 3w2(n)X~(n)CF(n) 

-3w2(n)X~(n)CN(n) + 3w(n)X~(n)CF(n)C~(n)XF(n) 

+3w( n )X~( n)C N( n )C~( n )XN( n) 

+6w( n )X~( n)C F( n) C~( n )XN( n) 

T' T' • T -3XN( n )CN (n )XF( n)C F( n)C F( n )XF( n) 

-3X~( n )CF( n )X~ (n)C N( n )C~ (n )XN( n) 

- X~( n)C F( n )X~( n)C F( n )C~( n )XF( n) 
T' T' • T - XN( n)C N( n )XN( n)C N( n)C N (n )XN (n)J, (5.30) 

where CF(n) is the weight error vector of the far-end section, defined to be: 

(5.31) 

The analysis of equation (5.30) will be limited to the relatively simple case of 

small deviations from the Wiener solution when the weight error vectors CN(n) 

and CF{n) are close to zero [8J. Hence the impact of terms which include high 

powers of CN(n) and CF(n) can he neglected in this equation. Thus, when this 

assumption is considered, equation (5.30) appears as follows: 

• 2 T' 
CF(n + 1) == [I - 6P2W (n)XF{n)XF(n)JCF(n) 

-6p2w2(n)XF(n)X~(n)CN(n) + 2p2w3(n)XF(n) 

+ 12p2W( n )XF (n )X~( n)C F( n )C~ (n )XN( n). (5.32) 

Taking the expectation value of the above equation, under the assumption that 

the measurement noise is independent with the input signal, both of zero mean, 

and also the error weight vectors and the input signal are independent of each 

other, results into the following: 

(5.33) 
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where E[w 2 (n)] is the measurement noise power. In addition to the assumption 

used to derive (5.33), it was also assumed that for small values of 1'2, w(n) is 

independent of CF(n). Other works [93]-[94] when minimising the mean square 

error none of the above assumptions are used. 

It can be shown, using the same procedure of [8], that the adaptation process 

will cause the convergence E[CF(n)] -+ 0, that is, the algorithm defined by (5.21) 

will provide an unbiased estimate of the optimal solution. 

Equation (5.33) states that the algorithm will converge to the optimal value if 

all the eigenvalues of [I - 61'2E[w2(n)]RF] are less than unity. This happens if the 

step size 1'2 is chosen to be in the following range: 

2 
0< 1'2 < 6AFmaz E [w2(n)]' (5.34) 

where AFm= is the largest eigenvalues of R F . 

Convergence of the mean is contingent, of course, on compliance with conditions 

(5.29) and (5.34). In practice these conditions might be difficult to check. However, 

we can bound the largest eigenvalue of the input positive definite autocorrelation 

matrix by its trace (tr), that is, 

(5.35) 

and 

(5.36) 

and therefore sufficient conditions for convergence in the mean of the new adaptive 

algorithm are: 

(5.37) 

and 
2 

0< 1'2 < 6N2(T~E[w2(n)]' (5.38) 

where NI and N2 are the lengths of the NE the FE cancellers, respectively. 

As can be seen from equations (5.37) and (5.38) that convergence in the mean of 

the LMMN algorithm takes place if both ofthese sufficient conditions are satisfied. 
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If, however, these conditions are not fulfilled, the algorithm, then, will not converge 

to a steady state value, probably it will diverge. 

It is interesting to note the dependence of 1'2 on the variance of the noise, that 

is, E[w2 (n)]. If the value of E[w2 (n)] is the actual one, the algorithm will converge 

to the optimal value; however, if E[w 2(n)] is smaller than the actual value the 

algorithm will not converge and instability might happen. Note that if E[w 2(n)] 

is larger than the actual one, the algorithm will converge to a steady state value, 

since this value keeps 1'2 in the range given by (5.38). The effect of E[w 2 (n)] on 

the convergence of the algorithm will be treated in the simulations. 

5.3.2 Convergence in the mean square 

The general conditions stated in the above derivations are cumbersome to ap­

ply, so we wish to present a simplified version of the above conditions on the 

assumption that, in addition to statistical independence of {X( n)}, the elements 

x; are independent and identically distributed (i.i.d). The simplification due to 

i.i.d assumption further enables us to establish optimum rate of convergence and 

optimum adjustment gain. 

To examine the convergence behaviour of the mean square of the weight er­

ror vector and thus determine the misadjustment of the algorithm, we define the 

following measure 

(5.39) 

where 11.11 denotes the Euclidean norm, then 

(5.40) 

Using this result for the near-end section of the canceller, it follows from (5.20) 

that 

T • 
= In + 2p, E[e(n)XN(n)CN(n)] 

+p~ E[e2(n)X~(n)XN(n )]. (5.41 ) 
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Under the often-made assumption [78], [79J that the input signal sequence {Zi} 

is an independent and identically distributed Gaussian random sequence with zero 

mean and variance u;, and independent of the noise, the derivation of (5.41) is 

obtained as follows. 

To solve equation (5.41), let's see the second term of the right hand side of 

this equation. Substituting for the error and using the above assumptions, the 

following is obtained: 

E[e(n)X~(n)CN(n)J - E[e(n)X~(n)CN(n)J - E[e(n)X~(n)CN"".J 

- E[(d(n) + w(n) - C~(n)XN(n) - C;':(n)XF(n)) 

*X~(n)CN(n)J - E[(d(n) + w(n) - C~(n)XN(n) 

- C;':( n jxF( n) )X~( n )CNop.] 

2C~(n)PN - C~(n)RNCN(n) - C~op.PN 

( 5.42) 

The third term of the right-hand side of equation (5.41) is readily evaluated. 

Given that 

and (5.4) we can then write the following 

E[e2(n)X~(n)XN(n)J E[lIe( n) 1121IXN(n)112
J 

Inserting (5.42) and (5.44) in (5.41) yields: 

I'n+l = I'n + 2JLl {J Nmin - J N( n)} 

+JL~ Nlu;JN(n). 

In the limit when I'n+l reaches I'n, the value of the step-size is found to be 

(5.43) 

(5.44) 

(5.45) 

(5.46) 
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Since e( n) can be expressed as: 

(5.4 7) 

and by making use of the assumption that eopt, XN(n), and XF(n) are mutually 

independent [14], [95], it can be shown that 

(5.48) 

This leads to equation (5.45), after some manipulations, to becoming: 

(5.49) 

where On is defined as 

(5.50) 

It is observed from equation (5.49) that the FE section is coupled to the NE section, 

this is shown in the term containing On of the right hand side of this equation. This 

does not stop the algorithm to converge to the optimal solution if the right step 

size is used so that the term pertaining to On will vanish completely. This will 

happen of course as will be seen next when the derivations show values of /1-1 that 

must be chosen for the convergence to take place. 

Hence, the above expression, i.e., (5.49), to converge, it is required that 

(5.51) 

the term containing On in the right hand side of (5.49) must vanish as well, that 

IS, 

(5.52) 

and assuming that /1-1 is chosen small [1], [14], [95J such that the last term in (5.49) 

vanishes. 
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The above condition imposed on the factor of !In will be satisfied if 1-'1 is chosen 

to satisfy (5.52). Accordingly, for convergence to take place in the mean-square 

sense, the step size 1-'1 has to satisfy: 

(5.53) 

a safe choice for 1-'1 is therefore any value in the interval 

(5.54) 

As can be seen from (5.54), the factor of !In in (5.49) will be almost always zero if 

1-'1 is chosen in this range. 

Proposition 1 If E[x 2
] is chosen much larger than ~, IN=in, then the last term 

of (5·49) will always vanish. 

Proof: Let 
2 

the last term in (5.49), i.e., 

4JN=in 
N, E[x 2] 

0, 

(5.55) 

(5.56) 

since E[x2
] is much larger than ~, IN=in' • 

In practice, this is always a valid assumption, since the energy of the signal is 

. much larger than the optimal value of the error. 

Finally, the step size that provides the fastest speed of convergence to the 

algorithm is obtained by setting the derivative of the expression in (5.51) to zero, 

that is, 
1 

(5.57) 

or one-half the maximum step size. 
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Before encting up this treatment of the NE section, it is worth noticing that the 

bound (5.54) imposes a much narrower upper bound than (5.29) on PI, since these 

are found for the convergence in the mean square and in the mean, respectively. 

Now, let us come to the treatment of the far-end section after we have seen the 

convergence in the mean square of the near-end section. The derivation is based 

on the fundamental assumption that CN(n), CF(n), XN(n), XF(n}, and w(n) are 

independent random variables. It follows, then, from (5.21) that 

C~(n + l)CF(n + 1) - C~(n)CF(n) + 41'2e3(n)X~(n)CF(n) 

+41L~e6(n)X~( n)XF(n). (5.58) 

The above equation will look like the following when the value of the error is 

inserted in it: 

- C~(n)CF(n) + 41'2 [w(n) - C"£.(n)XN(n) 

( 
-C~(n)XF(n) r X~(n)CF(n) + 41'~ [w(n) - C"£.(n) 

*XN(n) - C~(n)XF(n)rX~(n)XF(n). (5.59) 

The expectations of both sides of the above equation are taken under the 

assumption that CF(n) is given, then obtain conditional expectation of both sides 

of (5.59). Since w(n) was assumed to be independent of CN(n), CF(n), XN(n), 

XF(n), and to have zero odd moments, all the terms on the right-hand side of 

(5.59) which include odd power of w(n) will vanish under expectation. 

The conditional expectation of (5.59) obtained in the vicinity of the optimal 

solution, i.e., all high powers of CF(n) can be neglected, to find 

E[C~(n + l)CF(n + l)/CF(n)] = C~(n)CF(n) - 121'2E [w2(n)C~(n)XF(n) 

*X~(n)CF(n)/CF(n)J +41L~E [{w6(n) 

+ 15w4
( n )C~( n )XF( n )X~( n) C F(n)} 

(5.60) 
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To be able to evaluate the above expression, one additional approximation is 

used, which is: 

(5.61) 

This is a legitimate approximation since in general N2 is a large number. Hence, 

equation (5.60), after using this assumption, appears in the following form: 

E[C~(n + l)CF(n + l)/CF(n)] = C~(n)ACF(n) 

+4/1~E[w6(n)]E[X~(n)XF(n)], (5.62) 

where A is defined by: 

A = 1- {12/12E[w2(n)] + 60/1~N2U;E[w4(n)]} E[XF(n)X}(n)]. (5.63) 

When the autocorrelation matrix RF is substituted for E[XF(n)X~(n)] in the 

above equation, the following is obtained: 

(5.64) 

As can be seen from (5.62), the algorithm converges in the mean square sense if 

and only if the eigenvalues of the matrix A are less than one in magnitude. 

The kurtosis for the zero mean variable noise, w( n), is defined as: 

6 E[w4 (n)] 
Kw = E2[w2(n)] ' 

and will be used in the following derivation. 

(5.65) 

Proposition 2 The algorithm defined by (5.21) will converge in the mean-square 

sense if /12 is chosen to be in the following range: 

E[w2 (n)] 
o < /12 < 5N2u;E[w4 (n)] (5.66) 

and "w > ;0 I where "w is the kurtosis of the noise. 
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Proof: First, since the autocorrelation matrix RF is assumed to be positive 

definite, all the eigenvalues of the matrix A will have absolute values smaller than 

one, that is 

).Fi is the ith eigenvalue belonging to R F . Inequality (5.67) is satisfied if and only 

if 11-2 satisfies (5.66). 

Second, the following inequality 

(5.68) 

where ).Fmaz is the largest eigenvalue in the autocorrelation matrix R F , is valid if 

the discriminant of the following inequality is less than zero, 

(5.69) 

so that any value of 11-2 will verify (5.69), and tills is true only if the kurtosis of the 

noise is greater than 1
3
0' which is always true for any pdf, since its minimal value, 

Itw = 1, is obtained for the binary symmetric distribution and its maximal value, 

Itw = 00, is obtained for the Cauchy distribution [95]. 

In tills last derivation the approximation ).Fmaz = N2u; was used. • 
Stability condition (5.66) turned out to be quite robust and to provide a better 

approximation of the stable range of the step size 11-2 than (5.34). 

Ultimately, the optimal step size that gives the fastest convergence in the mean­

square sense for the algorithm is found to be: 

E[w 2 (n)] 
(5.70) 

Tills is found by setting the derivative of the expression on the left hand side of 

the inequality (5.67) to zero. 
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Table 5.2: The main parameters of the LMMN algorithm. 

Near-End Section Far-End Section 

Cost function IN(n) = E[e2(n)] JF(n) = E[e4(n)] 

J.Lmaz 
2 2 

ANrno&!(RN) 6E[w'(!'))>'p_ •• (Rp ) 

pmaz 
2 E[w'(nll 

N1u; 5N,,,~E[w'(n)) 

J1.opt 
1 E[w'(n)) 

Nl(T~ lON, .. ~E[w·(n)) 

Ti 
1 1 

", >'N;(RN) 6",E[w' (n))>.p;(Rp) 
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The fisrt term of the right hand side equation of the above equation is given by: 

(5.76) 

since the algorithm minimises E[e2(n)J for the near end section of the echo can­

celler; whereas in the far end section of the canceller, the algorithm is minimising 

E[e4 (n)], then the second term of (5.75) is evaluated using the result in [8J 

N E[C2 ( )JE[ 2( )J = 2p2N2E[w
6
(n)JE[x

2
(n)J 

2 F. n x n 3E[w2(n)J· (5.77) 

Substituting (5.76) and (5.77) into (5.75), the misadjustment factor is found to 

be: 
M _ p I N,JNm.n E [x 2(n)J 2p2 N 2E [w6(n)JE[x 2(n)J 

- E[w2 (n)J + 3{E[w2 (n)JY (5.78) 

Expressing the misadjustment factor using (5.71) and (5.72) yields: 

M = JNm' n ~ ~ E[w
6
(n)J ~ ~ 

E[w2(n)J .=1 TN. + 9{E[w2(n)]p .=1 TF.· 
(5.79) 

It is clear from the above expression that the misadjustment factor is a function 

of the moments of the noise, and hence it is expected that the performance of the 

algorithm depends On these parameters. 

5.4 Summary 

A new adaptive scheme for echo cancellation has been introduced. It consists of 

minimising both the mean square and the mean fourth criteria over the near-end 

and the far-end sections of the echo canceller, respectively. The derivations consist 

of obtaining bounds On the step sizes for the recursion relations used to update 

the tap coefficients in the near-end and the far-end sections. Other parameters of 

useful importance are also obtained. It is also shown that the step size for the far­

end section happened to be sensitive to the power of the noise. These factors are 

going to be investigated when the new updating scheme is going to be evaluated 

to other algorithms in the next chapter. 



Chapter 6 

Performance of the Least Mean 

Mixed-Norm Adaptive Algorithm 

6.1 Introduction 

This chapter addresses the issue of comparing the performance of the algorithm 

developed in the last chapter with that of the three other algorithms, denoted 

by algorithm I, Il, and Ill. Algorithm I is the well-known LMS algorithm based 

on the minimisation of the MSE, i.e., JJ(n) = E[e 2(n)J. Algorithm II is based 

on the minimisation of the mean fourth error (MFE), i.e., J2(n) = E[e4(n)J. As 

for algorithm Ill, it is based on the minimisation of two functions, a MFE for 

the near-end section of the canceller, i.e., JN3 (n) = E[e4 (n)], and a MSE for its 

far-end section, i.e., JF3 (n) = E[e 2 (n)J. The latter algorithm will be called the 

least mean fourth-square (LMFS) algorithm. In a wide variety of applications, 

the LMS algorithm has become a benchmark against which all algorithms are 

compared. This is due to both its simplicity and relative performance. 

Note that algorithm In is another proposition we are suggesting. Thus, the 

comparison is in fact against two existing algorithms, i.e., the LMS and the LMF 

algorithms and two proposed ones, which are the LMMN and the LMFS algo-

III 
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rithms. 

In our companson of our own algorithm with the three algorithms, we will 

concentrate on important parameters, such as the convergence perfonnance, the 

speed of convergence, and the effect of the variance and distribution of the noise 

on their behaviour. 

It is well known, as will be shown later, that the performance of the LMS 

algorithm is insensitive to the variance of the noise, but not to its distribution 

[8J. Also, the LMS algorithm only outperforms other related algorithms when the 

distribution of the noise is Gaussian [8J. 

As mentioned in the previous chapter, the performance ofthe LMMN algorithm 

depends on the variance of the noise. To overcome this difficulty, it will be shown 

that in general the algorithm converges to the optimum solution whenever this 

value is equal or greater than the actual value. Values closer to the actual value 

of the noise variance give satisfactory results, in the sense that the algorithm 

converges to a steady state value closer to that obtained by the actual value of 

the variance of the noise. The simulation results performed on different channels 

confirm these facts, that is, the dependence of the algorithm upon the variance of 

the noise. 

Also the distribution of the noise is another factor that can affect the con­

vergence of the algorithm. In general, it is found that regardless of whether the 

distribution of the noise is uniform or Gaussian, the difference between their cor­

responding steady state values is only minor. 

Another point worth mentioning is the stability of algorithms containing terms 

of the form E[e4(n)J. It is clear that if the absolute value of the error is less than 

one, the fourth power of the error is less than that of its square, however, the 

situation reverses if the absolute value of the error is greater than one. Unless a 

rescue condition is incorporated in this type of algorithm, it can quickly become 

unstable. In general a very small step size is employed to avoid instability. 

In the next three sections, the algorithms used for comparison with the LMMN 



Chapter 6: Performance of the LMMN Adaptive Algorithm 113 

one are presented and no derivations are included. Section 6.5 analyses in detail 

the computational complexity of the four algorithms, while Section 6.6 contains 

the results of their simulation. 

-6.2 Convergence behaviour of algorithm I 

The following notation is used throughout the analysis of algorithm I, Il and Ill. 

The error e(n) between the desired value, d(n), and the output of the canceller 

is given by: 

e(n) = d(n) - y(n) + w(n), (6.1) 

where y(n) is the output of the unknown system and w(n) is the additive noise, 

as depicted in Fig. 6.l. 

The autocorrelation matrix of the input signal is defined in the following man-

ner: 

R = E[X(n)XT(n)], (6.2) 

which can be put in the following form 

(6.3) 

where RN and RF are the autocorrelation matrices of the near-end and the far-end 

sections of the echo canceller, respectively. Both of RN and RF are assumed to 

be positive definite matrices [7J. 

For the subsequent analysis, it will be assumed that the input X(n) is indepen­

dent of the noise w( n), and that both are symmetrically distributed around zero. 

This implies that all odd moments of X( n) and w( n) are zero [96J. 
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Figure 6.1: System considered for the adaptive system identification. 
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6.2.1 The performance function 

When minimising the mean square error (MSE) at the output of the echo canceller, 

the corresponding cost function is used: 

(6.4) 

. 6.2.2 The updating scheme 

The equation for recursively adjusting the tap coefficients, C(n), of the canceller 

known as the LMS algorithm [1J is given by: 

C(n + 1) = C(n) + l'e(n)X(n). (6.5) 

In all three algorithms, the derivation of the updating scheme is obtained by dif­

ferentiating the instantaneous gradient vector with respect to their corresponding 

tap coefficients and replacing them in the recursive relation which uses the steepest 

descent method [7J. 

The convergence of all three algorithms is controlled by the choice of their 

respective step size, as shown in the next section for algorithm 1. 

The mathematical description of algorithm I is illustrated in Table 6.1, where 

all the pertinent parameters to the algorithm are detailed. As indicated in this 

table, for the initialization of the algorithm, it is customary to set all the initial 

values of the weights of the filter equal to zero. 

6.2.3 Convergence in the mean 

The sufficient condition for convergence in the mean of the adaptive algorithm can 

be shown to be: 

(6.6) 

where NI and N2 are the lengths of the near-end and the far-end cancellers, re­

spectively, and 0'; is the power of the input signal. 
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Table 6.1: The mathematical description of algorithm I. 

Adaptive filter y(n) = CT(n)X(n) 
. -

Error equation ern) = d(n) + w(n) - y(n) 

Update Equation C(n + 1) = C(n) + JLe(n)X(n) 

Initialization C(O) = 0 

From (6.6) it can be seen that the adaptation constant does not depend upon 

the variance of the noise. Also. the adaptive algorithm will converge to the opti­

mum solution as the number of iterations approaches infinity and JL is set within 

the range given by (6.6). 

6.2.4 Time constants of the algorithm 

Let the auto correlation matrix R defined by (6.3) be positive definite. Accord­

ingly. there will be different time constants for the weights. given by the following 

expressIOn: 
1 

Ti = --;-. i = 1.2 •...• N, + N2 • 
JLAi 

(6.7) 

where Ai is the ith eigenvalue of R. They will be all equal if all the eigenvalues 

of R are all equal as well. When the input process is an independent, identically 

distributed Gaussian random process. then all time constants are equal as all 
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eigenvalues are equal in this case. 

6.2.5 The misadjustment factor 

In view of the fact that, in steady-state, the weight error .vectors are uncorrelated 

[1], [95], the misadjustment factor M can be expressed by [14): 

M = J.L.tr(R). (6.8) 

The relationship between the step size and the misadjustment is clearly observed 

in the above expression. Since speed of convergence and misadjustment lead to 

conflicting requirements on the step size a compromise must then be reached. In 

general, to ensure convergence of the iterative procedure and produce less misad­

justment error a small step size is chosen. 

Finally, substituting (6.7) in (6.8) yields: 

(6.9) 

6.3 Convergence behaviour of algorithm 11 

Algorithm II is probably best known in the literature as the least mean-fourth 

(LMF) algorithm [8). It is briefly described in subsequent sections. 

6.3.1 The performance function 

The performance function for this algorithm is based on the minimisation of the 

mean of the fourth power of the error, and is expressed by: 

(6.10) 
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6.3.2 The updating scheme 

The algorithm for recursively adjusting the tap coefficients, C(n), is expressed in 

the following form 

C(n + 1) = C(n) + 2I'e3 (n)X(n). . (6.11) 

This algorithm is expected to be more complicated than the LMS algorithm, (6.5), 

because of the higher power of e(n) involved in the computation of (6.11). This 

algorithm is also expected to be very sensitive to the value of the error, espe­

cially if the absolute value of the latter is greater than one. Differences in their 

computational burdens will be clarified in Section 6.5. 

Finally, Table 6.2 summarises the mathematical description of algorithm II. 

Table 6.2: The mathematical description of algorithm H. 

Adaptive filter y(n) = CT(n)X(n) 

Error equation e(n) = d(n) + w(n) - y(n) 

Update Equation C(n + 1) = C(n) + 2I'e3 (n)X(n) 

Initialization C(O) = 0 



Chapter 6: Performance of the LMMN Adaptive Algorithm 119 

6.3.3 Convergence in the mean 

The sufficient condition for convergence in the mean of algorithm II can be easily 

derived along lines similar to those used for the LMMN algorithm. Specifically, it 

can be shown that: 

(6.12) 

where E[w 2(n)] is the variance of the itoise. This value affects the convergence 

behaviour of the algorithm if it is not equal to the actual value. But, in general if 

the value of E[w2 (n)] is greater than the actual value it will enable p. to be in the 

range given by (6.12), only values less than the actual value will make p. greater 

than the upper bound of (6.12), which is not desired. 

6.3.4 Time constants of the algorithm 

Again, let the autocorrelation matrix R be positive definite. Hence, there will be 

different time constants for the weights, given by the following expression 

Ti = 6JlE[w~(n)]Ai' i = 1,2, ... , N, + N2 , (6.13) 

where Ai is the ith eigenvalue of R. As in the LMS algorithm, the time constants of 

this algorithm will be equal only if the input signal is an independent, identically 

distributed Gaussian process. 

6.3.5 The misadjustment factor 

In view of the fact that, in steady-state, the weight error vectors are uncorrelated, 

the misadjustment factor M can in this case, be shown to be expressed by: 

M = 2p.(N, + N2 )E[w6 (n)]E[x 2 (n)] 
3{E[w2(n)JF . 

(6.14) 

Combining (6.13) and (6.14) yields: 

E[w6(n)] N.+N, 1 

M = 9{E[w2(n)]p ~ Ti (6.15) 



Chapter 6: Performance of the LMMN Adaptive Algorithm 120 

Both of the above expressions indicate that the algorithm is dependent upon the 

statistics of the noise, that is on the distribution of the noise. Unlike for the LMS 

algorithm, the performance of this algorithm will therefore be affected by the noise 

statistics. 

6.4 Convergence behaviour of algorithm III 

This algorithm is based on two different cost functions, namely one for the near­

end and one for the far-end sections of the canceller. The assignment of the cost 

functions is done in an opposite way to that of the LMMN algorithm. 

6.4.1 The performance function 

The cost function used for the near-end section is given by: 

JN3 (n) = E[e4 (n)J, (6.16) 

and for the far-end section by: 

( 6.17) 

6.4.2 The updating scheme 

Based on this motivation, the algorithm for recursively adjusting the tap coeffi­

cients, CN(n), of the NE section of the canceller and those of its FE section, i.e., 

C F( n), is expressed in the following form: 

CN(n + 1) = CN(n) + 21L1e3(n)XN(n), 

CF(n + 1) = CF(n) + 1L2e(n)XF(n), 

(6.18) 

(6.19) 

where ILl and 1L2 are the step sizes for the near-end and the far-end sections, 

respectively. 

Table 6.3 lists the key equations in the mathematical description of algorithm 

Ill. 
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Table 6.3: The mathematical description of algorithm Ill. 

Adaptive filter y(n) = C~(n)XN(n) + C~(n)XF(n) 

Error equation e(n) = d(n) + w(n) - y(n) 

CN(n + 1) = CN(n) + 2fLle3(n)XN(n) 

Update Equations 

CF(n + 1) = CF(n) + fL2e(n)XF(n) 

CN(a) = 0 

Initialization 

CF(a) = 0 
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6.4.3 Convergence in the mean 

The sufficient conditions for convergence in the mean of algorithm HI are given 

for the near-end and the far-end sections, respectively, by: 

2 
0< /1-1 < 6Nl u;E[w2 (n)J' (6.20) 

and 

(6.21) 

Here, too it can be seen that instability might occur if the value of the noise 

variance, E[w2 (n)], is smaller than the actual value. 

6.4.4 Time constants of the algorithm 

Assume that the weight vectors for the near-end and the far-end sections are close 

to their optimal values, and R be positive definite. Accordingly, there will be 

different time constants for the weights, given by the following expressions for the 

near-end and the far-end sections, respectively, 

TNi = [ !( )] \ , i = 1,2, ... , NI, 6/1-IE w n ANi 
(6.22) 

and 
1 

TF"=-- i=l,2, ... ,N2' 
• /1-2 AFi' 

(6.23) 

where ANi and AFi are the ith eigenvalues of RN and R F, respectively. 

6.4.5 The misadjustment factor 

The misadjustment factor M can be derived in exactly the same way as was done 

for the LMMN algorithm in the previous chapter. This gives the following result: 

M _ 2/1-INIE[w6(n)]E[x2(n)] /1-2N2JFminE[x2(n)) 
- 3{E[w2(n)]}2 + E[w2(n)] 

(6.24) 
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Expressing the misadjustment factor using (6.22) and (6.23) yields: 

M = E[w
6
(n)] ~ ~ + hm;n I: 2... 

9{E[w2(n)]}3 ;=1 7"N; E[w2(n)] ;=1 7"F; 
(6.25) 

Here, too, the misadjustment factor is a function of the moments of the noise, and 

hence its performance will depend on the statistics of the noise. 

Table 6.4 summarises all the important parameters for the three algorithms. 

Note that some of the parameters listed in this table were not derived in this 

chapter. The first step size p'maz is obtained for the convergence of the algorithm 

in the mean, whereas the second step is obtained for the convergence in the mean­

square. The step size that gives the fastest possible convergence is labeled p.opt. 

6.5 Computational complexity 

If N1 and N2 are the number of coefficients used in the near-end and the far-end 

sections of the echo canceller, respectively, then the total number of operations 

(additions and multiplications), required to update each algorithm, is shown in 

Table 6.5. 

As it can be observed from this table, all the algorithms requrre the same 

number of additions. However, the number of multiplications differ from one al­

gorithm to another, but in general they are close to each other. The LMMN 

algorithm requires only three extra multiplications per update over the LMS algo­

rithm (Algorithm I). This is an acceptable price to pay for the LMMN algorithm 

if its performance is going to be superior to that of the LMS algorithm. 

This number of three extra multiplications per update can be reduced to only 

three multiplications for the whole update. From equation (6.5) it is observed 

that the LMS algorithm uses the p.e( n) in updating its coefficients. This term is 

calculated once and used by all the coefficients. However, the LMMN algorithm 

uses the term 2p.e3 (n), equation (5.21), to update the coefficients in the far-end 

section. Hence, it is evaluated only once for the update of all the coefficients in 
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Table 6.4: Main parameters for the LMS, the LMF, and the LMFS algorithms. 

Algorithm I Algorithm II Algorithm III 

(LMS) (LMF) (LMFS) 

Near-End Far-End 

Section Section 

Cost function J, (n) = E[e2(n)] J2(n) = E[e4(n)] JN3(n) = E[e4(n)] Jp3 (n) = E[e2(n)] 

11-= •• 2 2 2 2 
'_ •• (Rj 6EI"'(njl'_ •• (Rj 6Etw2ln~1>'N_ •• (RN } .\F ..... ulRr) 

11-= •• 2 
lN1+N:I!)v; 

E!"'\n)/ 
5(N1 +N2 }u:E"w:i(n)J 

E!"'/nl1 2 
5NIU!E~tlJ .... (nn N 2 tT! 

p..", 
1 EltD'~nl] E\w 2 !nll 1 

{N1 +N2 }Q'! lO(Nl +N2 }u;E[w 4 (n}] lON10"! E[to4 ln)1 N;U; 

T, 1 1 1 1 
~,,(R) 6~E[tD'{nn>'i{RJ 61l1 E [w'{nJ]>'Ni{RN J Il:r X1"i{R r } 
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the far-end section. Consequently, only 3 multiplications for the whole update are 

added to the computational load of the LMMN algorithm as compared to that of 

the LMS algorithm. 

Specially designed processors can reduce tlUs computational burden further, 

and hence the total execution time. 

Table 6.5: Computational complexity of the LMS, the LMF, the LMFS, and the 

LMMN algorithms. 

Algorithm Additions Multiplications 

LMS algorithm NI +N2 2NI + 2N2 

LMF algorithm NI+N2 5NI + 5N2 

LMFS algorithm NI+N2 5NI + 2N2 

LMMN algorithm NI+N2 2NI + 5N2 

6.6 Simulation results 

The basic digital transmission system considered for the adaptive system identi­

fication is shown in Fig. 6.1. The input signal is binary (Xi = ±1) and of unit 
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power with a broadband power spectral density, such that a unique solution will 

exist. The additive noise was simulated by a uniformly distributed white random 

process with zero mean and a variance of -30 dB. 

In comparing the performance of the LMMN algorithm to other three algo­

rithms, three different channels are considered. These are adequately modelled by 

the following transfer function: 

1 
H(z) = 1- az-I' lal < 1. (6.26) 

This gives an exponentially decaying response HT = [ho, hI, ... , hN _ I). Channels 

1,2 and 3 are characterized by a = 0.1, 0.8, and -0.4 in (6.26), respectively. These 

channels have been carefully chosen to demonstrate the performance ofthe LMMN 

algorithm. All of the three channels have one zero at the origin and one pole at 

"a". The first channel, with a pole at a = 0.1, will have a fast decaying impulse 

response, in the sense that the far-end section will not be as effective as the near­

end one. The second channel is different from the first channel in that its impulse 

response takes a long time to vanish. Hence, its near-end and far-end sections will 

be equally important. The main difference between these two channels is therefore 

in the effectiveness or lack of it far-end section. Finally, channel 3 has an impulse 

response that decays in an oscillatory fashion, [60], hence having a far-end section 

with an equally oscillating effectiveness. They are all of practical interest since 

they are good models for real channels. All of these channels were chosen to have 

a unit gain for a white noise input, i.e., z=f:;;1 hl = 1. This is convenient for the 

computation of both the variance of the additive noise and the step size of each 

algorithm. Note that all the three channels are modelled as having a near-end 

section, a far-end section, and a bulk delay inserted between them. 

The unknown system was chosen to have a near-end section, a far-end section, 

and a bulk delay section. The number of coefficients in the near-end and the far­

end sections was equal to 50. The bulk delay section was chosen to have a span 

time equal to that of the near-end and the far-end sections and with no arithmetic 
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operations allowed in it. The total number of active coefficients in the unknown 

system is then equal to 100. 

The performance measure most appropriate to echo cancellation problem con­

sidered here is the normalized weight error norm: 

where C{ n) is the impulse response of the adaptive system at iteration n, and Cop. 

is the impulse response of the unknown system. This performance measure was 

estimated in all the simulations by averaging over an ensemble of 50 runs of the 

adaptive system. The adaptive filter was initialized with a zero impulse response 

vector, in all runs. The number of coefficients used in the adaptive system was set 

equal to that of the unknown system. 

The step sizes for the LMS algorithm, the LMF algorithm, the LMFS algorithm, 

and the LMMN algorithm were chosen so that the respective time constants of 

these algorithms approximately correspond to 100 samples. These step sizes are 

found from equations (6.7), (6.13), (6.22), (6.23), (5.71), and (5.72), respectively. 

6.6.1 Performance of the LMMN algorithm 

One of the ways algorithms are typically compared is by examining their conver­

gence rates. The convergence performance of all four algorithms is illustrated in 

Figures 6.2, 6.3, and 6.4, for channels 1, 2, and 3, respectively. The LMMN al­

gorithm clearly outperforms the other three. The second best in performance is 

the LMS algorithm. The LMF and the LMFS algorithms resulted in the worse 

performance. However, the LMFS algorithm is relatively better than the LMF al­

gorithm. It is not surprising, if the LMF algorithm is malfunctioning in this kind 

of application, it is expected that the LMFS algorithm would behave the same 

. way, since it is a derivative of the LMF algorithm. The cost function of the LMFS 

algorithm for the far-end section will not do any good if the total algorithm for 

the near-end section is not functioning properly. 
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Figure 6,2: Learning curves for the four algorithms for channel 1. 
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With reference to both the LMMN algorithm and the LMS algorithm, it is 

important to note that the former algorithm is a derivative of the latter algorithm 

as far as the near-end section is concerned. The far-end section removes more 

of the noise in the weights, ending up with a better performance than the LMS 

algorithm. Minimising the square of the error in the far-end section does not result 

in much improvement over minimising its fourth power, when the near-end section 

is based on the minimisation of the square of the error. 

The new updating algorithm (i.e., the LMMN algorithm) provides, on the av­

erage, about 2.6 dB less weight noise than the LMS algorithm does. The reduction 

in noise level in the weights was reached when minimising the fourth power of the 

error was applied to the far-end section, and minimising the square of the error 

in the near-end section. The usual way is to minimise the square of the error on 

both sections of the canceller, as is done in the LMS algorithm. 

Also, the close agreement between theory and experiment is depicted in Figures 

6.5, 6.6, and 6.7, for channels 1, 2, and 3, respectively. The theoretical curve is 

obtained as follows: equations (5.71) and (5.72) define the time constants of the 

algorithm. Since the input signal is a binary sequence drawn from a white random 

process generator, its eigenvalues are all equal [35J. Consequently, all the time 

constants of the weights in the near-end section are equal and so are those of 

the far-end section. Since the convergence of each coefficient decays exponentially 

with its corresponding time constant, the average of all these decays results in the 

theoretical curve. 

The LMMN algorithm converges faster than the LMS algorithm in two respects: 

when the convergence rates are given the same time constant, and when both 

algorithms converge to the same steady state value. This is depicted in Figures 

6.8, 6.9, and 6.10, for channels 1, 2, and 3, respectively. As indicated by these 

curves, the convergence time for the LMS algorithm is twice that of the LMMN 

algorithm. 
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Figure 6.10: Learning curves for the LMMN and the LMS algorithms with the 

same steady state value used for channel 3. 
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The overall superiority of the LMMN algorithm over all others is no doubt due 

to its structure. 

6.6.2 The effect of the noise variance 

The better performance obtained by the LMMN algorithm over the others from 

both the misadjustment error and the convergence time points of view, is due to 

the fact that the noise variance is exactly known. However, this better performance 

cannot be guaranteed when the value of the noise variance used differs from the 

actual one. Unlike for the three algorithms (i.e., the LMF, the LMFS, and the 

LMMN), the noise variance is a parameter that is irrelevant to the LMS algorithm. 

Since the effect of this parameter on the performance of the LMMN algorithm 

is important, proper care must therefore be given to it in order for the algorithm 

to converge tci the optimum solution or as close as possible to it. 

In general this value is not known a priori, and therefore as can be seen from 

the convergence factor of the far-end section derived previously in the last chapter 

and reported here again 

2 
o < /l2 < 6N2 CT;E[w2 (n)]' (6.27) 

that theoretically speaking if E[w 2 (n)] is greater than the actual value, conver­

gence happens since this value keeps /l2 in the range given by (6.27). However, if 

E[w 2(n)] is smaller than the actual value, /l2 will be larger than the upper bound 

of (6.27), hence instability might occur and the algorithm does not converge to 

the optimum solution. Indeed the simulations showed that the whole algorithm 

becomes unstable for very small values of E[w 2(n)], even if /ll (the step size for 

the near-end section) is kept to within its range given by equation (5.54). 

Figures 6.11, 6.12, and 6.13 depict the effect of the noise variance on the con­

vergence behaviour of the LMMN algorithm, for channels 1,2, and 3, respectively. 
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It is clear, from these figures, that when the value of the noise variance is equal 

to or greater than 10, the algorithm converges to the optimum solution. If a lesser 

value is used the algorithm will converge to some other non-optimal value. 

Since the actual value of the noise variance is 1000, it is clear from these 

figures that as predicted by theory that when the noise variance is much greater 

than 1000 or close to it, the convergence of the algorithm to the optimum solution 

is always guaranteed. However, if this value is very small, the algorithm first does 

not converge to the optimum solution, and second instability is likely to happen. 

Using lesser value than 1000 for the noise variance will lead to both a lack of 

convergence and a likely instability of the algorithm. 

In general a very large number for the noise variance can be safely used. 

6.6.3 The effect of the nOIse distribution 

It is known that when the noise distribution is Gaussian, the LMS algorithm 

outperforms the LMF algorithm [8J and its higher order versions based on the 

minimisation ofthe cost function E[e2k(n)], k being an integer greater than or equal 

to 2. However, the situation reverses when other noise distributions (e.g., uniform, 

sine wave, square wave) are used, i.e., the performance of the LMS algorithm 

deteriorates compared to that of the LMF algorithm and its higher order versions. 

Since the LMMN algorithm is a hybrid algorithm, i.e, it uses the LMS algorithm 

for the near-end section of the echo canceller and the LMF algorithm for its far­

end section, its performance will be affected by the noise distribution. Figures 

6.14, 6.15, and 6.16, depict the effect of the noise distribution on the convergence 

behaviour of the LMMN algorithm, for channels 1, 2, and 3, respectively. 

For simplicity, the misadjustment factor (5.79) for the LMMN algorithm can 

be written in the following form 

(6.28) 
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Figure 6.15: Effect of noise distribution on the convergence behaviour of the 

LMMN algorithm for channel 2. 
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Figure 6.16: Effect of noise distribution on the convergence behaviour of the 

LMMN algorithm for channel 3. 
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When the noise distribution is uniform, it can be easily verified that the mis­

adjustment factor for this algorithm is given by: 

M = p,N, E~~~:)JE[:z:2(n)J + 2.6p2N2E[w2(n)JE[:z:2(n)J. (6.29) 

In the case of a Gaussian distribution, this factor becomes: 

(6.30) 

The values of E[w6 (n)J and E[w2(n)J have been both evaluated [97J for the uniform 

and Gaussian distributions, respectively, and substituted in (6.28) to obtain (6.29) 

and (6.30), respectively. 

As can be seen by (6.29) and (6.30), the uniform distribution is expected to 

give a lower misadjustment error than its Gaussian counterpart. The experimen­

tal results support this expectation. An average improvement of 1.7 dB in the 

normalized weight error norm is obtained with the uniform distribution. 

6.6.4 The rescue condition 

As was mentioned earlier, algorithms containing the term E[e4 (n)J are expected 

to be de stabilized if the absolute value of the error is greater than or equal to 

one. To prevent this from happening, a rescue condition is included. During the 

simulation of the LMMN algorithm, equation (5.5), was set as if it were minimising 

the following cost function for the far-end section: 

(6.31) 

where f3 is set to 1 when the absolute value of e(n) becomes greater than or equal 

to 1, and zerO otherwise. This will preserve the stability of the algorithm. 

6.7 Summary 

A new adaptive scheme for echo cancellation has been introduced. It was shown 

. that minimising both the mean square criterion and the mean fourth one over 
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the near-end and the far-end sections of the echo canceller, respectively, leads to 

superior performance compared to all 3 algorithms, including the commonly-used 

LMS algorithm. It was also shown that the LMMN algorithm presented an extra 

three multiplications per update compared to the LMS algorithm; 

It was first shown that the LMMN algorithm outperforms all other three al­

gorithms as far as both the convergence behaviour and speed of convergence are 

concerned when these are given the same time constant and the same steady state 

value, respectively. 

It was then observed that the LMMN algorithm was dependent upon both the 

noise variance and distribution. Whereas the LMS algorithm is dependent upon 

the noise distribution only. The expected performance of the LMMN algorithm 

for a uniformly distributed noise was confirmed by simulation. 

Finally, since the actual value of the noise variance is usually not known a 

priori, it is shown that a choice of a large value for the noise variance, tends to 

safeguard both the convergence to the optimal solution (or close to it) and the 

stability of the algorithm. 



Chapter 7 

Conclusion 

7.1 Achievements of the work 

In tills thesis, new algorithms for long data echo cancellers are proposed. The 

development of these algorithms was confined to the class of stochastic gradient 

algorithms only. 

These algorithms are designed to improve the performance of the steady state 

behaviour of the LMS algorithm, i.e., reducing its misadjustment error, or its 

convergence speed, i.e., shortening its start up procedure. Two novel approaches 

were considered for these purposes. 

In the first approach, the proposed algorithm was designed using a modifica­

tion to the LMS algorithm. It was shown that the new algorithm improved the 

performance of the standard LMS algorithm when the delay between the near-end 

and far-end sections of the echo canceller is not accurately estimated. Such an 

inaccuracy in the bulk delay is known to adversely affect the performance of the 

algorithm, thus resulting in a large misadjustment error. 

The suggested algorithm compensates for this miscalculation. The approach 

proposes a shaping for the transitions at the end of the near-end and at the begin­

ning of far-end sections. Two transitions were considered in tills work, i.e., a sharp 

148 
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transition and a smooth one. In the latter transition, the uniform probability den­

sity function was assigned to the coefficients belonging to these locations. It was 

shown in the thesis that a substantial enhancement in performance is observed 

when this type of shaping is considered. Our algorithm therefore exhibits more 

robustness to the misadjustment error than does the LMS algorithm. 

Moreover, the steady state and transient behaviours were also investigated, and 

the simulations results were found to be in a close agreement with the theoretical 

analysis. Also, the computational complexity of our algorithm compares well with 

that of the LMS. 

In the second approach, a new adaptive scheme for echo cancellation was intro-

. duced, namely, the least mean-mixed norm (LMMN) algorithm. It was shown that 

minimising the mean square criterion and the mean fourth one over the near-end 

and the far-end sections of the echo canceller, respectively, leads to superior per­

formance. However, reversing the order of the two minimisation criteria resulted in 

a poor performance of the resulting algorithm called the least mean fourth-square 

(LMFS). 

The LMMN algorithm was compared to the LMS, the LMF and the LMFS 

algorithms. The LMMN algorithm outperformed all three of them in terms of 

convergence behaviour and speed. Next to the performance of the LMMN algo­

rithm was that of the LMS. The LMS algorithm outperformed the LMF and the 

LMFS algorithms. 

It was then observed that the LMMN algorithm was dependent upon both the 

noise variance and distribution. In this case it was suggested that the noise variance 

should be large to safeguard both the convergence to the optimal solution and the 

stability of the algorithm. Recall that the LMS algorithm, however, is dependent 

only upon the noise distribution. 

The expected performance of the LMMN algorithm for a uniformly distributed 

noise was confirmed by simulation. 

Finally, from a computational viewpoint, it was shown that the LMMN algo-
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rithm presented only three extra multiplications per update compared to the LMS 

algorithm. 

Another minimisation criterion was also proposed [98] to enhance the perfor­

mance of the adaptive echo canceller. In [98], a mixed controlled-error-norm was 

proposed. It consists of minimising the following cost function: 

J(n) = -QE[e~(n)] + (1 + Q)E[e~(n)], 

where e,(n) and e2(n) are the errors between the desired value and the outputs 

of the near-end and the far-end sub cancellers, respectively, and Q is the mixing 

parameter. However, only a minor improvement was obtained from this modifica­

tion. 

7.2 Summary of main contributions 

The main contributions to the work carried out in this thesis can be summarised 

as follows: 

• A development of a statistical analysis for long data echo cancellers. 

• Novel statistical treatment of the bulk delay area of the adaptive echo can­

celler and the proposition and study of transitions. 

• Development, analysis, and simulation of new mixed error-norms algorithms 

(LMMN and LMFS) using two different cost functions, one for each section of the 

echo canceller. 

• Evaluation of the computational complexity of the proposed algorithms and 

their comparison with other well known algorithms. 

7.3 Suggestions for further work 

During the investigation of adaptive echo cancellers using the mixed norm ap­

proach, it was observed that both the LMMN and the LMS algorithms outper­

formed the LMFS algorithm. We can argue that when the MSE is applied to the 
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near-end section of the echq canceller and either the MFE or the MSE is applied 

to its far-end section, the performance of the resulting algorithm is better than 

that of the algorithm using the MFE in the near-end section of the echo canceller 

and either the MFE or the MSE in its far-end section. 

A possible suggestion, then, would be to look at algorithms with the MSE is in 

the near-end section of the echo canceller and any other cost function of the form 

E[e2k (n)], with k ~ 3, applied to its far-end section. 

Also, the application of other algorithms used for long echo cancellers with dif­

ferent shaping than the ones given in this thesis, is worthy of further investigation. 

Moreover, further investigations on how to improve the cost function defined 

in [98J such that an enhancement is provided to its corresponding algorithm needs 

to be pursued. 

Other directions for further research include: 

• The use of higher order statistics for the design of echo cancellers. A related 

work for noise cancellation has recently been reported in [99J. 

• Evaluation of the robustness of the proposed schemes in nonlinear and time 

varying environments. 

• Design of HR-based echo cancellers using the proposed algorithms. 
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