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SYNOPSIS 

The objective of the research is to study the design of and operating strategies 

for advanced tool flow systems in highly automated turning systems. A prototype 

workstation has been built to aid this process. The thesis consists of three main 

parts. In the fIrst part the current flexible manufacturing technology is reviewed 

with emphasis laid on tool flow and production scheduling problems. The 

'State-of-the-Art' turning systems are studied, to highlight the requirement of the 

computer modelling of tool flow systems. 

In the second part, the design of a computer model using fast modelling 

\algorithms is reponed. The model design has concentrated on the tool flow system I 

performance forecasting and improving. Attention has been given to the full 

representation of highly automatic features evident in turning systems. 

A number of contemporary production scheduling rules have been 

incorporated into the computer model structure, with the objectives of providing a 

frontend to the tool flow model, and to examine the tool flow problems 

interactively with the production scheduling rules. 

The user-interface of the model employs conversational type screens for tool 

flow network specifIcation and data handling, which enhances its user friendliness 

greatly. An effective, fast, and easy to handle data base management system for 

tool, part, machine data entries has been· built up to facilitate the model 

performance. 

The third part of the thesis is concerned with the validation and application of 

the model with industry supplied data to examine system performance, and to 

evaluate alternative strategies. Conclusions drawn from this research and the 

recommendations for funher work are fInally indicated. 
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CHAPTER 1 INTRODUCTION 

A Flexible Manufacturing Systems (FMS) can be defined as a group of CNC 

machine tools which are interconnected by automated material handling and tool flow 

systems, and supported by other auxiliary equipment. The whole system is under the 

control of ~ computer or a computer system which is capable of dynamic production 

scheduling, and part and tool routing. 

CNC lathes especially highly automated turning centres have been widely 

accepted by industry in batch manufacturing systems. Installations are evident in which 

both standalone work stations and multi-machine turning cells can be found 

accompanied with workpiece and tool handling systems automated or otherwise. The 

main subject of this thesis is to study the flow of tools within batch manufacturing 

systems for cylindrical part manufacture. 

Cutting tools are of crucial importance to an FMS. On one hand, they constitute a 

considerable percentage of the whole system investment, as an FMS may employ 

thousands of cutting tools. On the other hand, the efficient operating of a manufacturing 

system and its flexibility relies largely on the availability of tools. A tool management 

system assures that the correct tool is present at the right place, at an appropriate time, 

with the necessary information. It is essential that tool life be monitored, and tool 

exchanges forecasted accurately so as to maintain a proper level of tool inventory. 

FMSs are high capital intensive systems and their introduction should be carefully 

justified. The interaction of different areas of an FMS makes it complicated to plan and 

operate such that any decision making must examine the whole system instead of 

individual elements. Computer modelling of such a system is necessary, as the 

experimentationwith hardware is prohibitively expensive and alterations are difficult to 

implement •. 

The thesis commences, Chapter 2, with an extensive literature survey of flexible 

manufacturing concepts, its future trends and machining installations; the tool flow and 

production scheduling for such advanced manufacturing systems; and the modelling 

and scheduling techniques implemented for system design and evaluation. The 

developments in turning automation, discussed in Chapter 3, range from chuck jaw I 
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gripper exchanging, workpiece handling, to workpiece gauging, tool probing and 

exchanging. The installation examples of highly automated turning centres and the 

integration of such systems into batch manufacturing cells is also discussed. Live 

tooling facilities have increased CNC lathe capability significantly by incorporating 

secondary operations. The application of live tooling, and their accommodating and 

handling has been discussed in Chapter 4. It is then followed by the discussion of 

modular tool design, tool exchanging systems, and the tool presetting and preparation, 

in chapter 5. 

The level of complexity in turning automation and its associated tool flow 

management requires a framework for the analysis, selection, and evaluation of a 

suitable solution. A computer model has been built to aid this process. In Chapter 6 the 

basic modelling concept is presented. The algorithmic approach to tackle the tool flow 

complexity in terms of a large body of individual tool, part, and machine data, and 

order information has been discussed in the chapter. A structured representation of 

turning systems from individual machine primary tool storage to cell level secondary 

tool storage and central tool store organisation is presented in Chapter 7, which forms a 

generic tool flow configuration in terms hierarchy of tool storage, transportation, and 

exchange. The tool management framework is discussed in the chapter, which includes 

system configuration specification, the tool management strategy selection in the high 

level, and the operating strategies selection in the lower level. 

Chapter 8 presents tooling and operating activity flow in the individual machine 

together with the associated logic flow and the algorithmic representation of the 

activities. It is followed by the report of a comprehensive case study using published 

industrial data to examine a highly automated turning centre. 

The integration of individual CNC lathes into a turning cell and the modelling of , 
cell level tool and part flow is presented in Chapter 10 in the form of logic flow and 

algorithms. Chapter 11 discusses the modelling of central tool store activities which 

includes the planning of tool assembly and presetting, tool issue, assignment, returned 

tool disposal, and the tool component requirement. 

Heuristic dispatching production scheduling rules have been implemented for 

different system operating environments, which enables the studying of turning 

systems in a more balanced manner with regards to tool and part flow, see Chapter 12. 
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A case study of a currently operating CNC turning cell was carried out, with the 

data supplied by an industrial collaborator. The turning cell is fIrst studied subjected to 

the alternative operating strategies. The case study is then extended to examine 

alternative system designs and different levels of system automation. This process and 

the modelling results are presented in Chapter 13. 

The discussion of the user-interface of the comprehensive software is presented in 

Appendix IB. The detailed illustrations of relevant materials of the case studies are 

presented in Appendix lA and IT. 

The research project has been carried out with the close collaboration of several 

British companies supported by the ACME/SERC, and is strongly influenced by the 

! collaborator. It is intended to make a more substantial understanding of tool flow 

problems and the unique feature of turning automation. As a result of the project, a 

prototype software package has been made available for industrial use. 

Close collaboration has been maintained with a number of parallel research 

programs of the department during this project, especially I the project on tool flow 

management for prismatic part manufacturing and the LUT FMS Emulator, which are 

in themselves subjects of complementary theses. These have been discussed and cross 

referred throughout the thesis. 
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CHAPTER 2 LITERATURE SURVEY 

2.1 INTRODUCTION 

The scope of this literature survey is to give a review of the main topics of FMS 

related to the area of the project. 

The concept and planning of an FMS and its application fields are presented first. 

Currently operating systems have been reviewed with emphasis given to installation 

examples for the flexible manufacture of rotational parts, with tool flow network 

automated or otherwise. A cross· section of computer modelling and simulation tools 

for FMS design and evaluation has been given with particular emphasis being laid on 

the review of tool management modelling. Production scheduling problems have been 

discussed. 

2.2 FMS CONCEPTS 

The concept of the FMS has been rapidly developed and evolved from NC 

machines over the last 20 years [42]. 

The 1950s saw the introduction of Numerical Control (NC)machines. In 1960s 

NC technology reached a stage when they became reasonably reliable and productive, 

this along with the progress of computer industry led to the introduction of Computer 

Numerical Control (CNC) machines and Direct Numerical Control (DNC) systems. 

The first DNC system emerged in Japan, by the 1960s and in 1973, the first DNC was 

seen in Europe in Hungary. [250] [82]. 

A DNC system consists of a few or large number of NC machines which are 

integrated and operated by instructions received from the. control computer. With the 

development of tool, and workpiece handling systems, and the development of 

electronic industry, the first NC machining centre operating unmannedly was 

introduced in 1975, and this is believed to be the first major step towards FMS [250]. 

During the last 10 years the development of manufacturing industry has been 

dominated by FMS. Sutton, G. P.[282] forecasted that the FMS market was likely to 

be the only major segment of machine tools (except industrial robots) and FMS market 
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should grow between 20% to 30% per year. 

During the development of Flexible Manufacturing, the flexible machining system 

has received more attention and has more installations than any other types (Such as 

welding and assembly). Flexible machining systems will be the main topic through out 

the thesis. 

A functional layout of a flexible machining system is shown in Fig. 2.1. An FMS 

consists of a group of machine tools andlor production equipment interconnected by an 

automated material/tool handling system and all under the control of the computer [258]. 

Fig. 2.2 shows the typical elements of an FMS. Workpieces and tools are transferred by 

automatic handling equipment within the FMS. Workpieces are usually loaded onto 

pallets and transported to the machining queue. Production schedules are issued 

dynamically by the control computer. Tools are preset in the central tool store and 

distributed to the respective Flexible Machining Cell (FMC) or CNC machines. The data 

base management system records the information about tools, parts, machines, fixtures, 

etc. 

An FMS processes workpieces of different kinds simultaneously and randomly. 

The uniqueness of FMS lies in the random processing capability and bring together of 

the system elements (e.g work stations, material handling, etc.) to function as an 

integrated automatic system [77]. 

The flexibility of an FMS is constrainted by various sorts of limitations imposed 

on it. [103]. An absolute flexibility could be achieved, but the production will be 

. uneconomical, and the system could be of prohibitive price. 

A number of FMS defmitions representing different angle of view have been given 

by different researchers [42]. Some emphasise the automated workpiece of tool flow 

. feature [61, 63], some emphasise its random process capability [226]. An FMS may 

be defined as a 'computer-controlled configuration of semi-dependent workstations and 

a material handling system designed to efficiently manufacture more than one part type at 

low to medium volumes' [64]. 

Ranky defined an FMS as a system dealing with high level distributed data 

processing and automated material flow and storage system [250]. This definition 

emphases on the information processing and automation side of the system. 
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Sutton [282] specified an FMS as a system that allows random machining of a 

limited variety of related parts at costs that are substantially below what traditional 

method can achieve. 

An FMS of very large size is difficult to control and its initial investment is , 

extremely high. There is a trend to design the FMS as an integration of Flexible 

Manufacturing Cells (FMC). Each FMC can be viewed as a intelligent subsystem 

which can be run unmanned [134]. A host computer and a system level material and 

tool handling network will link the FMCs together. This makes the FMS easy to control i 

I 

. and feasibly to build up modularly [38, 20]. 

Fig. 2.3 presents a typical FMC where a small number of CNC machine tools are 

linked together, and the whole production process and material flow are controlled by a 

cell control computer. The control computer is of PC type and can be linked to the 

system computer via the LAN (Local Area Network) [107].· 

The multi-cell design with each cell being relatively simple is evident in industrial 

installations, which can be classified into two structure categories: parallel and flow line 

type multi-cells [3, 38]. The parallel cell approach, Fig. 2.5, aims to achieve 

Just-In-Time [243] production by producing all the components needed for assembly 

simultaneously. A comprehensive example of this type of design structure is the 

Yamazaki Worcester plant [211,130,129]. 

The flow-line, fig; 2.4, multi-cell design almost mimics a flexible transfer line. 

The holset multi-cell FMS [12, 307, 128] and AIMS of Rolls-Royce [260,13,47,48] 

are strong evidences of this type. 

The future factory will be developing towards the Computer Integrated 

Manufacturing (CIM) which involves planning and linking a variety of operating and 

management systems together to perform as a whole team [116, 255]. 

The concept of Computer Integrated Manufacture is shown in Fig.2.6 [94]. CIM 

is concerned with providing computer assistance, control and high level integrated 

automation at all levels of the company. elM covers the following activities [251]: 

(1). Analysis the market requirement, develops the product strategies and the 

concepts of FMSs. 
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(2). Component design and process planning. 

(3). Production scheduling and factory control. 

(4). Analysis feed back of certain selected parameters to improve the performance 

and the company's ability. 

CIM concentrates on information processing. The information within a company 

can be categoried as strategic, tactical and operational ones, fig. 2.7. The strategic 

information which concerns a company's long mn production strategies is relatively 

static but vague. The tactical information of a company usually needs to be updated in a 

month or a couple of weeks. It is reasonably accurate and predictable. In the operational 

level, all the information required for the manufacturing area should be generated. The 

information should be accurate and needs to be refined continually by taking the 

information fed back from the machining areas. 

Kanban system has been initiated by Japanese industries to keep tracks of orders 

! and the components of each order [243]. CIM systems can be built up by integrating all 

processes including marking, finance, design, scheduling, stock control, MRP 

(Material Requirement Planning) [279] and CAD/CAM. The CIM system concept is 

built on the core of a distributed management information system, often known as a 

Distributed Data Base Management System [251,252,317,206]. 

2.3 FMS ACQUISITION, DESIGN, PLANNING, AND 

APPLICATIONS 

Each FMS is user specified. Whether' it is applicable depends on the part types 

to be machined, their batch sizes and mix, and many other constraints. FMSs are far too 

complex and expensive to be built by the builder itself. At any stage of the development 

the involvement of the user is essential. 

When an FMS is being planned, initially decisions must be made on the following 

problems: 

(1). The product range problem; 

(2). The process planning problem: tools and operation allocation; 

(3). Machine capacity problem; 

(4). The transport problem; 

(5). The fixturing problem; 

(6). The pallet problem. 
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The whole process of planning starts with identification of the problem and 

comparison of a variety of alternative solutions [42].This results the most appropriate 

way of dealing with the problems such as the most suitable system configuration and 

the right operating strategies for the system selected. Through-out the whole process, 

simulations and modelling by computers will be necessary. 

The steps required to implement an FMS are recommended as fig. 2.8. Once a 

decision has been taken to install an FMS, the next step would be to choose the part 

types that would give the most profit by using such a system, after that, alternations of 

the system configuration and layout will be compared to select the most suitable one for 

the proposed production requirement. [64]. 

This whole process requires the extensive involvement of both the supplier and 

the user, fig. 2.9. [302,229]. 

A realistic method recommended for estimating the capacity required to complete 

all jobs by their due date was to load jobs according to the infinite capacity planning 

principle [87]. 

Before the operation of a FMS, the following problems have to 

be solved to set up the system: 

(1). Part type selection for the upcoming production period. 

(2). Machine grouping - partition the machines of similar types into groups so 

that each machine of a group can perfonn the same operations. 

(3). Production ratio problem - determine the part type mix ratios so that high 

system utilisation can be achieved. 

(4). Resource allocation - allocate the pallets and fixtures required for production. 

(5). Load cutting tools for operation. [275]. 

The selection of part types and the determination of production mixture can be 

carried out in a sequential way or in a constraint-directed approach. The former 

sequentially selects an item with the highest estimated probability of eventual success 

into the part group. This method considers the important factors such as potential 

utilisation of machines, the due date of a part type, the degree of sharing tools and the 

tool store capacity. Alternatively, the part group to be processed simultaneously and 

continuously can be fonned under the constraints of tool magazine capacity, due dates 
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of each part type, total processing time of each tool. [115]. Kusiak has built a 

mathematical model for grouping parts and fIxtures in an FMS [136]. 

A flexible part type selection and production ratio forming were suggested as 

when the production requirement for some part types have been finished or some 

production orders have changed, the new part types can be introduced if this input can 

help make the system more highly utilised. [275]. 

The criteria to evaluate a flexible manufacturing system varies, to name some 

typical ones: system productivity and reliability, the capability of self diagnostic and 

flexibility, W.I.P., product lead time, and system economics, etc. [318]. Different 

users may put different priorities to those criteria; 

FMSs, as mentioned before, are very capital intensive. Therefore it would be 

wise to develop such a system modularly and step by step, this is particularly true for 

smaller companies. Sheppard [270] suggested a three level approach for FMS 

implementation. In level!, which is the machining ceUlevel, the priority is to provide 

the capability to integrate the machines via automated material handling techniques and 

the potential to run the cell 'unmanned. : The second level is fully flexible 

manufacturing systems of 2 to 7 CNC machines. The major priority now is to provide 

sophisticate system control and management software to facilitate the schedules of 

parts, tools, fixtures, pallets, etc. and system monitoring and diagnostic package. The 

level 3 will be to build up a fairly large customised flexible manufacturing project. 

The most crucial philosophy, to design and implement an FMS, is to partition the 

! system both Hardware and Software, into modular functional units. By this way, not 

only can development of the modules proceed in parallel, but also it is easy to take new 

developments of the system layout concept into account so as to prevent the system out , 

of date, as a flexible machining system features a long lead time between design until : 

full production. The modular design concept is also fundameiual to resilience against -

failure. One example of modular system design is the pilot FMS SCAMP by 600 

Group. [312]. 

A well planned FMS should have the following features: the system control 

software such as production scheduling, part programming, tool and workpiece flow 

managing, should have a development facility to incorporate the new requirement that 

may rise. Both the electronic and mechanical hardware should be modular so that new 
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pans of same family can be accommodated with little change made to the manufacturing 

system. 

Kusiak [132, 134, 135] classified FMSs into 5 categories: 

(1). Flexible Manufacturing Module (FMM), Which is a unmanned workstation 

built around an CNC machine [82]. 

(2). Flexible Manufacturing Cell (FMC) which consists of several FMMs. 

(3). Flexible Manufacturing Group (FMG) which is a collection of FMCs and 

FMMs. 

(4). Flexible Production System (FPS) which is a integration of FMGs for 

fabrication, machining and assembly. 

(5). Flexible Manufacturing Line (FML) which is a set of dedicated machine 

tools. 

Fig 2.10 shows one way of the justification of different manufacturing systems. 

Traditionaljob shops consisting of individual machines have high level of manning and 

a large pan variety. Dedicated transfer lines have been used for mass production with 

limited component variety. Its application can be seen largely in automative industries. 

Unmanned workstation based on a single CNC machine tool offers flexibility and 

component variety. CNC lathes have been used largely in this form. An FMC 

consisting of a group of CNC machines can be either a intelligent stand alone 

manufacturing system or a building block for an FMS [7]. 

Flexible Transfer Lines (FTL) have found their position in high volume and 

reasonable high variety production [299, 129]. Cross has developed Flexible Transfer 

Lines to meet the high production requirements of the automative industry. One 

shortcoming of traditional transfer line is its synchronous nature which allows the part 

transfer only at the end of the slowest workstation cycle. Seeing this, Cross offers 

FTLs with non- synchronous transfer system which has the ability to queue and rapidly 

exchange pallets at the end of each individual machine cycle. Although a FTL could 

work in a one-off mode in an emergency situation, Cross pointed ou t that a physical 

minimum batch size for an flexible transfer line will be 40. In one of its FTL, 78 

component variants can be processed at a rate of 800 per hour [6]. 

2.4 FMS INSTALLATION EXAMPLES 

A full review of the current FMS installations over the world and its trends of 
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development is given by a United Nations publication [83]. The FMS systems are so 

numerous that it is impossible to list all of them in this thesis. Some of the typical and 

successful installation examples are reviewed as follows: 

The FMS of HOLSET Engineering Co., Hudderfield, has been designed to 

produce shaft and turbine wheel assemblies for diesel engine turbo-chargers. The 

system consists of 7 autonomous flexible machining cells. Each cell includes up to 4 

machine tools, served by a gantry robot. Transportation between cells are carried out by 

3 Scissors-lift AGVs, fig. 2.ll.The system is of flexible transfer line type. It works in 

a similar manner to that of a transfer line. Alternative routings need only be considered 

when there are machine breakdowns or preventive maintenance is to carried out. The 

assembly starts off as a forged shaft and a cast wheel. A few operations are performed 

on each of them (shaft and wheel) before they are welded together and further operation 

carried. It will undergo some 32 successive operations, mainly being turning and 

grinding, but also friction welding and heat treatment. 

Each cell is controlled by the local area controller. The controller is a Hackler and 

Koch model which incorporates two levels of control. The low level programmable 

Logic Controller is used to monitor the safety equipment, and the movement of AGV. 

The high level Micro Computer handles the production control, program selection and 

. AGV task assignment. The seven local area controllers are linked up to the host. 

'computer through a LOcal Area Network (LAN). 

The system produces 50 different component types for 5 frame sizes of turbo 

charger at a rate of 800 parts/day. [12, 307, 128]. 

AIMS (Advanced Integrated Manufacturing System) is a flexible manufacturing 

system formally opened at Rolls-Royce Plc. Derby, in January 1986. AIMS is an 

integrated grouping of versatile machine and processing cells that can manufacture a 

wide range of different disc components under the control of a host computer system. It 

comprises of 27 cells, each of them is in effect a mini-factory. 12 of 38 machine tools 

adopted are C~C machines. (Fig. 2. 12). The FMS is designed for a family of 35 part 

types. The parts are compressor wheels and turbine discs for RB211 family engines. A 

typical component would be subject to rim turning, profile turning, milling, drilling, 

broaching, post broaching turning, profile chamfering, grinding, magnetic crack 

detection, and Ultro-sonic cleaning. 
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The AIMS manufacturing strategies are: (1). Parts should be organised into 

family groups and production divided into cells; (2). Standardisation and rationalisation 

of tools, fIxtures, operation sequences, and reduce the set up time. Actually the cutting 

tools has been reduced from 2000 to 100 standard tool sets; (3). Incorporating the 

in-cycle inspection; (4). Integrating all manufacturing processes. 

The prime objectives of the project are to reduce the Work In Progress and to 

build up a economic one-off type manufacturing system.The complete facility is under 

the control of an IBM 8100 series linked to Rolls-Royce's main frame computer. Two 

DEC PDP 11/44 mini computers control work-flow, part handling, and tool kitting. 

The new machining technology involves a number of special 4- axis CNC turning 

centres which could turn both sides of a disc simultaneously. Quick change 'cassette' 

I tooling are introduced. Work is delivered to the cells by 8 Rolatruc AGVs in fully I 
made-up kit form, with everythingneeded: raw or partly machined workpieces, 

fIxtures, and a set of cutting tools. [260, 13,47,48]. 

A substantial example of the application of turning systems in the highly 

mechanised confIgurations is the Yamazaki Minokamo factory. The plant consists of 

Box Line, Frame Line, Spindle Line, and Flange Line, etc. Cylindrical components are 

grouped into 2 families. The long slender components are machined in the Spindle 

Line. The Flange Line is for the components with low ratio of length to diameter. 

The Flange Line consists of seven Slant Turn 40N Mill Centres and three 

machining centres. Workpieces are delivered to a station at the end of the line. In th-;I 

Spindle Line, there are 5 Slant Turn 40N ATC Mill Centres, one VQC-20/40 Vertical 

machining centre, and 2 CNC grinders. 

For these two lines, CNC lathes are equipped with live tooling facilities, thus, 

operations normally performed on a small machining centres can be carried out on the 

lathes, reducing handling and setting up time.For the Flange and Spindle lines 

workpieces are transported on universal disc-shape pallets carrying 6-10 workpieces. 

The AGVs bring loaded pallets from the setting up area to pallet station of each line. In 

either of the two lines, there is a rail guided vehicle transferring pallets between the 

pallet station and the workpiece table of each machine. Yamazaki's FLEX robots are 

mounted on each CNC lathe to load/unload workpieces. 
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A unique tool exchanging principle for the Box and Frame lines has been 

implemented where the whole magazine is exchanged. Each machining centre has a 

40-tool drum type magazine. And the magazines are detachable, normally there is one 

on the machine in use, and another one on a horizontal slide that extends along the side 

of the machine. Two drum magazines can be carried at the same time by the trolley 

transferring between the machine and the tool room where tools are changed manually. 

By doing this, huge variety of tools are transferred and exchanged into machines 

automatically. 

There is a main aisle in the plant for the distribution of workpiece across the plant, 

with spurs running logitudinally to various areas. The Minokamo plant produces 120 

CNC lathes and machining centres per month. [104, 212]. 

I_Yamazaki opened a highly automated flexible factory at Worcester U.K. in 1987. 

The plant employs 180 people and it outputs 100 CNC machines per month. There are 

good reasons that it can be viewed as a further development of the Yamazaki Minokamo 

plant. 

The plant is designed in multi-cell manner. (Fig. 2.13). The flexible machining is . 

. carried out in 3 cells. The large prismatic line produces large pans such as machine: 

beds. It consists of 3 Mazak YMS 40Q machining centres with 80 tool-magazine. 36; 

pallets holding workpieces are transported automatically by automated rail guided cans. 

The small prismatic pan line consists of 7 Mazak H25N Horizontal machining 

centres with 80 tool-magazine. Components for the gear-box etc. are transferred by 2 

automatic stacker cranes.The rotational parts line is of panicular interest as it uses 

turning systems with 'Live Tooling' to carry out conventional secondary operations 

rather than employing small machining centres. It comprises 3 Mazak ST40 ATC 

MillCentre lathes, each with a 80 tool magazine. The CNC lathes are fed by Mazak 

robots from 60 pallets of stacked components. The 40N ATe Millcentre tool turret 

features 2 tool positions, one for live tools and the other for stationary turning tools. 

The chain type tool magazine can store both rotational and conventional turning tools. 

The turning centres also offer the capacity of storing up to 15 sets of chuck jaws. 

The tool distribution highway carries tools on an overhead monorail using 

: random access order to replace tools directly into all machining centres and turning 

centres and to return worn tools. 
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Machined parts, purchased goods and assembled units are held in an automatic 

ware house and distributed to the assembly areas using 2 AGVs. Another two AGVs 

serve the raw materials and machined parts among the machining lines, painting area 

and the material centre. The main asile separate the machining and assembly areas of the 

factory. 

The whole plant has been controlled by a highly advanced CIM system_,fn \ 

central mM:: S/38 for total production and scheduling information control is linked to 3 

DEC Micro V AX FMS CPUs which control the on-line systems. The complete ClM 

ensures that manufacture requirement are fulfilled in an optimum time, with minimised 

inventory. [211, 15, 130, 14, 128, 44]. 

2.5 TOOL MANAGEMENT IN FMS 

2.5.1 Tool Management System Concept 

The introduction of CNC machines and the trend towards smaller batches flexible 

automatic manufacturing has made the tool management an increasingly important issue 

[45, 27]. CNC machines and flexible auxiliary equipment are a very expensive 

investment, which results their high cost per working hour. High machine loading is 

generally required to keep the manufacturing system cost effective. This calls for the 

availability of suitable cutting tools. The manufacturing system flexibility implies the 

following sides: 

Machine flexibility - Universal CNC machines for large variety of components; 
I--Route flexibility - A dynannc routing; -1 

Product flexibility - Machining a variety of products in random order; 

Design flexibility - Easy for design changing [40, 138]. 
- --- - -

All the aspects mentioned above rely more or less on tool availability and tooling I 

I system flexibility. Unmanned or less man power machining requires automatic tool I 

i flow and bigger tool storage capacity both on individual CNC lathe and the turning cell. 

, What's more, the cutting tools for CNC machines are relatively expensive, this, 

together with the bigger tool requirement results in the investment for tooling system a 

! fairly high percentage among the whole system cost. 

The development of cutting tool design has resulted in CNC lathe efficiency. On 

the one hand, new cutting tool materials which permits higher metal removing capacity 
and the indexable tool tips result -a shorter economic tool life, which has shortened 
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processing time. On the other hand, modular tool design ease the tool storage and 

handling greatly. The use of quick change tooling on CNC lathes has greatly reduced 

batch set-up time and the machine time lost when changing worn tools [58, 59]. 

A comprehensive tool management system ensures that the correct tool is 

presented at the right place in an appropriate time with the necessary information while 

keeping a lower tool inventory. 

The primary goal of a tool management system is to strike a balance between 

minimising tooling costs through proper design and inventory levels while maximizing 

revenue producing output. [96]. The problems that are faced with tool management 
- -

. systems are usually -not so much the technological ones but rather analytical and 

managerial ones such as when and what tools required, where and how to best organise 

preparation of tools and their information [280]. 

The management of tooling has to meet six basic requirements: 

(1). Machine based tool storage; 

(2). The ability to complete tool exchanging; 

(3). Tool identification; 

(4). Tooling selection and preparation; 

(5). Tool distribution; 

(6). Tooling standardization. [127]. 

The tool distribution usually has dominated tool management systems. A lot of research 

and developments have been carried out in currently running systems. 

Brohan suggested to build a tool management system for a whole machining shop 

or each section, centred around a tool file controlled by a tool file editor (Fig. 2.14). 

The tool file must be accessible by all departments concerned with cutting tools, e.g 

process planner, NC programmer, tool storage and purchasing, and the machine tool 

operator etc. By maintaining such a data file and the file editor updating information for 

each individual tool, the tool management can be carried out precisely and tool 

requirement can be forecasted with certainty. 

An efficient tool management system will feature - the following key elements: 

Advanced preparation of tools off-line and away from the machine; 

Tool control and identification - A control system keeps tracks of all tools, and 
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memory chip can be implemented to each tool to record down all the tooling 

information; 

Tool requirement planning and tool rationalisation - Its simplest form is to model 

tool list for each job, with sister tools according to the batch size. By sharing 

tools between batches, tool requirement can be reduced; 

Tool file for process planning and performance data feed back. [45, 46]. 

A live tool data base management system is essential. It should provide all the 

relevant documentation controlling the tooling and its uses, its cutting conditions, and 

components used on identity. It is the core for tool pre-setting, tool monitoring, 

automated tool supply and tool changing. [259]. 

A large number of cutting tools are usually required by a manufacturing system. 

A distributed data processing system employing computer networks, shared data bases, 

Iknown as distributed data management, is essential necessary not only for an efficient 

tool management but also for the manufacturing system as whole. Tool data flow 

concerns all the FMS managing process, right from the process plan and NC program 

generation to the process control system, stock control, tool assembly and maintenance. 

A tool data base management system should have the following features: (1). 

Flexible operation interface; (2). Compatibility: (3). Real time communication and 

updating; (4). Logical integrity and practical modularity; (5). Capable of performing 

distributed processes [253]. 

The information describing a cutting tool can be classified into four categories 

[43, 253, 254, 255]: 

(1). Real time data (Dynamic data): Tool position, tool life left, preset dimensional 

parameters, etc.; 

(2). Storage data: Physical appearance of the data in the data 

base. It represents the view of the tool data to the data base administrator and 

indicates where and how the data is actually maintained; 

(3). Static data: Usually a description of the tool type. It represents the data that 

do not change over a relatively long period of time, e.g. size of tool holder, 

tool materials etc.; 

(4). Programmatic data: Those data that concern the part programmer and process 

planner. 

These four categories of information describes a physical tool and corresponds to 4 
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level of tool management, fig. 2.15 [254]. Level 1 contains the real time data and 

represents a physical tool. Level 2 is of interest to a part programmer and describes a 

tool type. Level 3 and level 4 are for the central tool store controlling and used for tool 

assembly and disposal. A universal tool data structure was proposed by Eversheim 

[89]. 

2.5.2 Tool Management System Structure and Strategies 

Ber and Falkenburg outlined the tool management system as a range of integrated 

functions including tool monitoring, tool transportation, inventory management and 

purchasing. The tool me monitoring is carried out at each work station. Tool transport 

system delivers cutting tools following a predetermined tool changing schedule. In 

certain circumstances, the alternative route for tool transferring should be available. In 

the tool crib, tools are inspected, preset, and disposed or refurbished according to a 

predetermined tool refurbishment criteria. The tool requirement generation and tool 

inventory control is also one of the main function of the tool crib [40]. 

Bill and Hankis described the tool management system by recognising its major 

components [41, 101]: Tool room support, Tool allocation, Tool distribution, Faulty 

detection and Tool data flow. 

Four tool allocation strategies were suggested and examined: 

Bulk Exchange - Provide a copy of each tool needed for each job visiting the 

machine; 

Sharing tools in a frozen production window - Sharing common tooling between 

the workpieces in a frozen schedule, tool matrix are serviced at the end of the 

production period; 

Tool migration at the completion of a workpiece type - As workpiece types are 

completed, some tools can be removed, the removal of those tool permits the 

loading of new tools for the following workpieces. This concept allows sharing 

of tolls between the production windows; 

Resident Tools - The tools of high usage will be loaded to the magazines of the 

machines in the same group, and migration of tools will be carried out within the 

remaining pockets. This gives the flexibility to the processing capacity of 

machines in the group. Simulations were carried out to examine the tooling 

strategies on a specified FMS. 

Similar tool allocation Strategies were suggested by Tomek et al [289, 290]: 
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Batch of parts, group of tools; 

Several part batches, one group of tools: Based on group technology, a mix of 

parts is chosen and are served by a common tool storage; 

Common tool inventory shared by a group of machines: A group of identical 

machines is addressed. The most often required tools resident in all matrixes, 

individual tools are transported between tool room and machines, and among 

machines in the same group automatically on request. The latter is examined by a 

simulation module on 3 FMS installations for prismatic parts. 

Other tooling strategies have been suggested and implemented by Atket [33], 

MAST [25], Cuppan [74]. 

Comau has developed a tool management philosophy of classifying cutting tool 

priorities [43]: 

(1). Active part-program tools. 

(2). Active part-program sister tools. 

(3). Tools for next part-program. 

(4). Sister tools for next part-program. 

(5). Any other tools not covered by the fIrst four classes. 

To gain high availability of tools at low expenditure on time and costs concerns 

two fIelds, Le tool circulation in the machining system and tool disposition of central 

tool store. When organising the tool circulation, the following aspects should be 

considered: 

(1). System structure: Tools can either be stored centralized which implies high 

expenditure on transport; or each machine can have its own tool stock, 

which in turn results in- a large number of tools required. Machines can be 

I supported with tools related with actual production requirement (high 

expenditure on per-setting, transport, and setting up) or each machine can be 

loaded with a tool set-up for a relatively long machining period, and is 

complemented only if a tool is worn. 

(2). Capacity of primary tool storage, tool transporter and staff availability etc. 

(3). The capability of the system to incorporate the predictable events such as 

machine break down or tool premature failure. 

Two methods can be implemented for the tool disposition in central tool store, 

viz. tool disposition according to the demands of manufacturing orders; and tool 
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disposition based on the tool consumption in previous production periods. The former 

requires large effort to determine those demands but guarantees the maximum system 

flexibility and tool availability. The latter depends the experiences and usually causes a 

large tool stock if tool availability is to be ascertained. [292]. 

2.5.3 Tool Management Implementations 

Three hierarchical level of tool management were outlined by Happersberger, i.e. 

machine oriented tool logistics, manufacturing oriented and plant oriented tool logistics. 

[23]. The tool management of FERRARI AutomobiIi S.P.A [57] features a historical 

file which records each tool included in the FMS, with its assumed life and position in 

the system. The simulation module will establish the average quantity of tools required 

for a given production plan. A tool wear plan file contains the list per tool type to be 

prepared to the quantities quoted in the production time. Tools are assembled, preset 

and inspected in the tool room. The tool management program keeps on updating tool 

status and position, and provides all the technological tool data to the machines 

concerned. Machines will feed back the information including tool entrance, position 

change, tool exit and rejection to the central computer to update the tool file. (Fig. 

2.16). The whole tool management system is built around the tool room control. 

Lamb Co., Warren, Mich has implemented a Machine Information Centre (MIC) 

as a stand alone production control system. It includes a video screen with colour 

display and application software. When integrated into a manufacturing systems it will 

gather 'real time' data on all machine features, monitor the machine processing and tell 

an operator when to carry out tool exchange and display a list of tools which must be 

changed. [308]. 

JCB claimed that it has the most complete computerised tool management system 

installed. The tool management at machine and system level has been computerised to 

be integrated to the tool pre-setting area. Tool issue list to each machine is generated 

according to the work-to-list. What's more, the tool and tool component reorder is done 

directly through the computer link to the suppliers. [123]. 

The Nagoya plant (FAST) of Takoka Electric consists of 6 machining centres and 

4 Mazak NC lathes. It has been designed for 24 hours of unmanned operation. The 

total tool management system and flexible material handling reduces set-up time 

dramatically. [21]. 
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Heller has built up a PC based DNC system for tool management. On-line 

simulation technique was employed for tool requirement and exchange forecasting on 

individual machines [152]. 

2.6 Modelling and Simulating of FMS 

The FMSs are very sophisticated manufacturing systems. Operation of such a 

system involves complex activities and decision making. The experiments on hardware 

of it would be impossible. Some kinds of computer aided modelling are prerequisite 

both in the system designing stage and to improve the performance of a existing system 

installation. simulation models are also widely used to gain experiences before system 

instalment and forming the foundation of the production control software. There are 

many different kinds of decisions to be made, hence there are many different ways to 

model the same system, depending on emphasis given to different aspects. 

The key idea of modelling or simulating a system is to build up a model. The 

models which are assumed by each technique may differ in type, assumptions and 

system details. The essential features of any model are its ability to be manipulated and 

the time scale reduction. Although it is impossible to experiment a real system, a model 

may be used experimentally to predict a system behaviour for particular situation. When 

the computers are used, the modelling can be run much faster than the real system 

works. When modelling a FMS, it may be desirable to build up a mathematical model, 

as it can be solved by a existing mathematical method and gives a direct indication to the 

system performance. This requires the fact that the structure of a system is identical to 

some standard mathematical structure. However there are circumstances where a 

mathematical model cannot be found without over-simplifying the real system or the 

mathematical model itself is impossible to be solved in the current stage. In both cases 

models which represent the intemal working principle of a system, as well as the inputs 

and outputs, known as simulation models are required. [145]. 

Models can be classified into the following categories according to their 

application and modelling approaches [56, 124,302,281]: 

(1). Physical models, also called emulators, make use of hardware devices which 

are sufficiently similar to the real system in their characteristics. 

(2). 'Continuous simulation' models. These are usually built on an analogue 

computer. Packages examples are DYNAMO, CS MP. 

(3). Discrete simulation models. These models consider time and other variables 
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to be discrete. A simulation model takes the data used by the real system and 

through step by step duplication of changes that data would undergo as the 

real system operated, and transform it into output measures. 

(4). Computer Modelling. The models consist of modules representing the real 

system blocks. They are written in high level language. 

(5). Analytical models represents quantities and relationships as mathematical 

variables and expressions. The computer application in this area is mainly to 

solve the mathematical problem. Linear programming and Queuing theories 

are commonly used for building up such kind of models. [145, 273]. 

A classification of different modelling method and its application was done by Wang et. 

al. [302, 303]. 

The two main steps in designing and implementing an FMS are the general 

pre-study and dimensioning of the system; and detailed exploring the system. The first 

phase requires a great number of trials and iterations with different data and parameters, 

with an aim to optimise the main criteria and with a scarce level of details. The second 

one requires very detailed modelling and treats usually great quantities of data. The 

mathematical model are generally for the first step, based on 'average' criteria, but 

gives a main indication of what the system may perform, and offers the advantage of 

being quick for both execution time and the data input. Although some simple 

simulation models can be adopted for the first step evaluation, most of the simulation 

models are of high detail, and precision, but they are heavy both in time and memory 

occupation and diffIcult to be confIgured. [295]. One of the shortcoming simulation 

language is its diffIculty to handle large body of data. The modelling tool flow in 

individual tool level requires a powerful data handling mechanism which is not 

available in the current simulation languages [237]. 

There are cases where a high degree of accuracy is required for modelling special 

aspects of the hardware configuration, or some module(s) of a machining system 

requires more attention than the other parts. The computer modelling can be tailored to 

suit this requirement. These models usually consist modules written in high level 

language, e.g. FORTRAN, PASCAL, which can be built up to represent the desired 

hardware configuration. These models have the advantage of being able to deal with 

large amount of data for a specific aspect(s) of a machining system, quicker in 

processing and require a lower computer resource than a high level simulation model. 

The principles of its logical construction are easy to grasp due to to its modular design. 
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Kusiak has given a review of most of the modelling tools and techniques applicable 

forsolving FMS problems [135]. 

2.6.1 Analytical Models 

Mathematical models are generally adopted in the analytical stage. They have the 

major advantage of fast response, allowing rapid evaluation of different options in early 

stage of a project. The solutions to the models implemented are usually existing, so, 

less computation and programming effort are required. Their main disadvantages are 

the limited level of output provided, and the original system has been too simplified, 

consequently relatively lower level of accuracy. A lot of cases can be found where it is 

difficult to say which parameter(s) is required to be optimised. Mathematical models 
ignore the effects of the machine and buffer storage capacity, thus they can not model 

the blocking problem. However mathematical models are still valuable tools to give a 

general indication. [225]. 

The queuing network theory has been used as the basis for many analytical 

models. These types of model can in general provide approximate indications of the 

adequacy of practical systems, which may be sufficient as a preliminary solution. e.g 

CAN/Q, G.M.S and MV A models. 

CAN/Q (Computer Analysis of Networks of Queues) model is restricted by the 

following hypotheses: 

- The activity time are distributed according to an exponential distribution; 

- Each station has a infinite storage capacity (Le there are no blockage). [30]. 

MVA (Mean Value Analysis) is an alternative Queuing Network model providing 

steady state mean performance measures. It can model more detail features (e.g 

Multiple part classes) than CAN/Q model without loss of efficiency. But still, some 
of its assumptions make the model unrealistic foi most installations [302]. 

Some machining systems can be represented mathematically as Linear or 

Non-linear Integer Programs. The Mathemtical Programming concerns mainly the 

optimal collection of limited resource to complete activities subject to a set of 

constraints. The weakness of this approach is its inability to capture dynamic features 

of the machining system. 
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The Petri Nets theory pennits a dynamic, detenninistic model of machining 

system. Timed Petri Nets, in conjunction with certain modelling conventions appears to 

be quite useful modelling tools. Activities requiring many resources (e.g Machine 

tools, transporters, load/unload robot, cutting tools etc.) can be modelled. It can also be 

implemented to model activities with time durations (e.g processing times, 

transportation times, set- up times, etc.). However the Petri Nets theory is still 

inefficient to incorporate detailed system features such as fmite buffer storage size, and 

dynamic part routing. [302]. 

Maimon et al have built a mathematical model considering uncertainties such as 

facility unavailability or quality variance of raw materials for workload balancing [21]. 

Kimemia developed a mathematical model for the optimal part routing adopting a 

network flow optimisation approach. [97].A closed queue computer model for facility 

planning and layout of FMSs were built by Co et al [68]. 

Mathematical models have been built to examine production scheduling problems 

by Grunwald et al [98], O'Grady and Menon ,[231, 232], Pourbabai [241, 242], 

Radharamanan [247], Ramaw [249], Stecke [277, 278], and Whitney et al [310]. 

2.6.2 Simulation Models 

Simulation model can be used in detailed system exploring stage, or in the 

analytical stage. There are simple simulation models written in simulation language 

which are very efficient in use of computation time, and form a base of the development 

of detailed models. It is however, unlikely that a model of this type would be built, 

unless, it is envisaged that a detailed type model would be required at a later stage.The 

development of simulation technique and its application has been studied by Carrie 

[56], Rathmill [256], Griffin [97], Alting et al [5], Newman [229] and Wang [302]. 

Emulation models are the ultimate development of the simulation concept. They 

provide a detailed insight into the complete system, to such a extent that they can be 

used as the foundation for the control software of the finished installation. It is usually 

used for the fine-tuning of a system layout, and for the comparison of alternative 

production control strategies. As one would expect, large data handling, long 

computation time, and heavy computer equipment e.g mainframe or minicomputers, are 

normally required for a emulation model. [225,97]. 
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Simulation languages can be classified into different categories according to their 

simulation approaches to the real system: 

(1). Discrete-event, three phase system [62]. This is sometimes known as British 

approach. The 3 phases are: Phase 1, Time increment to reach the next future 

event; Phase 2, Scans through all the activities in progress, terminating those 

due to finish; Phase 3, Starts those events due to start. 

The language examples are E.C.S.L, SEE-WHY, SIMON. 

(2). Discrete-event, two phase systems. This is usually referred to as American 

approach. It is very similar to the 3-phase system, except that phase 2 and 

phase 3 are combined. Consequently, the processing is more efficient and 

quicker, but it does require significant preliminary analysis of the system. 

The well known languages are G.P.S.S, SLAM IT, etc. 

(3). Continuous systems. These languages use a process type description of the 

activities. e.g SIMULA. [225, 145,273]. 

ECSL (Extended Control and Simulation Language) models requires a detailed 

activity-queue diagram to form the basis of the programming of the simulation. [145, 

62, 56]. SLAM, marketed by Pristsker and associates is a general purpose simulator 

based on a system of queues and activities. It uses a high-level graphic language by 

which the creation of units (parts or information), the waiting of resources, activities 

and the distribution of units can easily be represented. SLAM is especially suitable for 

describing physical flows. It is widely accepted as a general purpose simulator to model 

and simulate production systems. [30,63]. The SIMULA has been developed for 

UNIV AC by Dahl and Nygaard. The basic syntax of SIMULA is the same as ALGOL, 

but new concepts have been included that make it easier to be used for simulation. The 

main feature of it is the ability to define a set of processes that operate in parallel and 

that through a routine of timing, called sequencing set, synchronised themselves on the 

system according to the physical activities that they represent. [295].A simulation 

model was built by Mojka using SIMULA [226]. 

PETRI uses simple networks of graphical primitives to model a system. It is 

better suited for representing operations. The advantage of PETRI is its small number 

of symbols: 

- Places, corresponding to a notion of state; 

- Transition,representing the passage from one state to another; 

- Arcs, linking places and transitions. [30]. 
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SIMAN language was developed by Pegden. It is a FORTRAN based language 

designed to run on mini computers as well as on large computers. A SIMAN model 

framework is built up of two basic components, i.e. the model itself and the 

experimental framework. It may be constructed to model discrete, continuous, and 

discrete-continuous systems [80, 236]. 

The GPSSJPC was specially created for ffiM/PC compatibles. It requires that a 

block diagram of the production process is established fIrst. Then the flow chart is 

assembled to represent the sequential relationship of the process and GPSS code can be 

written to communicate the flowchart to the computer. The GPSSJPC computer 

program can perform the simulation in monte-carlo fashion. [90]. 

General purpose simulation languages and packages are easy for implementation 

in the start but great program modifIcations are required to simulate a particular 

machining system. A lot of different dedicated simulation packages have been 

developed either by the system designer or by users, or by a software company, for a 

particular FMS installation or for a particular type of FMSs. Such a package requires a 

remarkable development time and specialist skills. [295]. 

Specialised simulators are implemented to certain types of production units or to a 

particular machining system. Renault Automation has developed a specialized 

simulator for material handling system called SAME/AGVS (Simulation Applied to 

Manufacturing Engineering for Automated Guided Vehicle Systems). The software 

allows the sketching a transport network and describing its technical characteristics. 

The control rules can also be specified as an input. SAME/AGVS allows the 

visualization of the behaviour of the material handling system. [30, 225]. 

Ferrari Automobili S.P.A, Italy [57] has incorporated a simulation module into its 

FMS software. The input to the simulation module includes the follows: 

- Data related to the processing equipment allows the definition of plant structure 

in terms of machines; 

- Part information, allows the definition of what is necessary for working each 

part; 

- Pallet confIguration; 

- Handling topology. 

It gives the outputs after a significant running: 

- Total processing time; 
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- Workload pattern for each machine; 

- List of tools to be inserted on each machine and total tool requirement; 

- Average number of parts waiting for a machine; 

- The required fIxtures, etc. 

Perera has examined the application and drawbacks of SIMAN and MAST and 

developed a data handling facility to be linked to a simulation model so that large 

amount of data concerning individual tools can be handled [236, 237]. 

The simulation model construction and implementation was studied by Abdin [2]. 

A event driven language Q-GERT was used to build a simulation model to test a 

number of production control rules for a FMS. [2]. A modular simulation system, 

MUSIK, was built by IPA and has been implemented to study a number of FMS 

installations. [304]. The five significant ACME/SERC founded simulation projects 

running currently have been reviewed by Waterlow [308]. ' 

A comprehensive simulation model was developed and implemented by Carrie et 

al to evaluate a 6 machine FMS producing heavy prismatic parts for mineral equipment 

in a Scottish engineering company. [52,54,55]. 

The most significant development in simulation is the graphical animation which 

displays movements of entities of the simulated system [239]. Two types of animating 

facilities are evident: 

- Graphical post-processor which reads the output file resulted form the 

simulation program and animates the entity movements; 

- Concurrent animating. 

The current trend is to display the animation concurrently with the simulation, so that 

the simulation and thus the animating process can be interrupted for user specification 

and to observe the consequence, e.g. SEE-WHY, HOCUS. 

Hurrion [116] and Griffin [97] discussed the link of OR models interactively to 

animated visual display facilities - known as 'Visual Interactive Modelling',--(}R1\FSIM 

of SEIMENS [193, 194] offers the animation facility for representing work and part 

flow. The colour icon system was developed for programming interface. It is possible 

to be used for on-line scheduling. CINEMA graphics can be used as a post-processor 

to SIMAN model building for work and tool flow animation. It can also be linked to 

FORTRAN, PASCAL, or C language models [150]. 
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The LUT suit of FMS design aids features a full range of simulation and 

modelling tools. The evaluation model provides rapid appraisal of system performance 

using average measures based on queuing theory. An emulation model generates 

detailed dynamic statistics. Specific patterns are emulated using animation, under 

system constraints and with defined operating rules. The emulation modules are 

processed in parallel. [39, 271]. Although in their early stages, the emulation model is 

under expansion to include the tool flow [223] and for multi-cell modelling [3]. A 

knowledge based model has been finished offering different modelling levels form 

analytical modelling through detailed part flow simulation, to the modelling of limited 

tool flow features interactively with part flow [302, 303]. A detailed tool flow model 

for prismatic part modelling has been finished and is under expanding to include 

multi-cell features and fixture flow. [37, 77]. All of the above mentioned research 

project has been carried out in collaborative interaction with this research work and are 

subjects of complementary theses. 

2.6.3 Specific Tool Flow Models 

Tool storage, transfer and control requires careful analysis and planning for each 

individual case in order to meet user- specific requirements. It is precisely in this area 

that many as yet unexpected productivity reserves exist [91]. The tool flow 

management presents a real challenge to the FMS designer in choosing the right level of 

automation and tooling system configuration to suit the needs of the FMS [125]. 

A mixed integer linear programming formulation has been formed for part 

grouping and tool allocation. It can examine the tool change-overs between part groups, 

when and how often a tool change over is done, and the assignment of tools and 

operations to various machines. However, the model ignores the precedence constraints 

and the sister tooling consideration. And it assumes that tool change over is done 

simultaneously. [248]. A mathematical model was built by Chakravrty for grouping 

parts with tool requirement similarity under the constraints of machining times, 

palleting availablity and tool requirement capacity. [61]. Rabinovich constructed a 

mathematical model to study the preparing and issuing of complete tool sets for a shift 
work. [246]. A formulation has been established by Kordysh [131] to decide the time 

of automatic change of tools from magazines. Optimal initial tool arrangement has been 

studied for machining centres by Crookall and Jamil [71, 72, 73] using simulation 

model, and by Vlasenkov using a mathematical model [298]. 
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Crite et al [70] have developed a detailed simulation model called PathSim using 

SLAM to analyse the perfonnance of an automatic tool handling system. PathSim 

allows the use of addressable type material handling devices for both the tool and part 

movement subsystems. PathSim concentrates on the study of the operating parameters 

particularly the use of different tool cart control algorithms. 

Two simulation programs have been written at Cranfield to study the tool 

exchange mechanisms of machining centres [122]. The Toolsim1 model is a single 

machine model with a choice of four modes of tool exchange being incorporated. 

Toolsim2 is an extension of Toolsim1 to allow secondary tool exchange mechanisms to 
be modelled. The two models require the specification of tool change requirement for 

each part as the input. Further extensions are made to the models by Hong [112] and 

Papagiorcopuls [234]. 

Hankis [101] has developed a simulation program to gauge the interface of the 

machine tool magazine with the spindle utilisation. This has been implemented at 

Cincinatti Milacron. 

El-Maraghy [86] has developed a general purpose simulator called FMS-SIM as 

well as an all encompassing simulation package called TOOLSIM for designing and 

evaluating automated tooling systems. The package is written in FORTRAN and 

produces statistical reports on utilisations, average length of queues and pans 

processed. 

The MAST system of Citroen Industries' examines the continuous, periodical, or 

the combination of the two, tool replenishment strategies. [25]. 

Carrie and Perera have built a simulation model which incorporates a expanded 

data base management system to overcome the shortcoming of the simulation language. 

The model was built to examine a Scottish installed FMS, which is capable of simulate 

tool storage, exchange, and transferring [55]. The following operation strategies were 

examined under the tool magazine capacity constraints: 

- The part selection for immediate processing; 

- The part releasing strategy; 

- The part routing strategy; 

- Operation assignment strategy. 

The FMS examined features high tool variety due to different part types. The initial tool 
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assignment strategy were evaluated considering the oversize tools. Both tool and part 

dominated systems were examined with the aim of reducing tool exchange [236, 54]. 

A three level modelling approach was adopted by Seliger [267]. A mathematical 

analytical model has been built to roughly estimate the FMS performance. A 

building-block-oriented simulation model MOSYS can then be implemented for 

evaluating the dynamic behaviours of those FMS concepts selected by the mathematical 

model. For specific task of designing FMS with integrated tool flow a parameterised 

simulation model TOSYS has been developed to examine the tool transportation 

performance. The constraints of the TOSYS is that it can not examine the tool flow 

system on individual tool level, thus only a hypothetic number of tool exchange can be 

evaluated. 

Hannam [104] developed a software called CADETS aimed at providing the 

designer with an interactive means of creating features which are related through the 

software to the tooling available to machine them. This computer assisted control of 

tooling thus tackles two aspects: control of tooling specified at the production planning 

stage and the control of tooling effectively specified by designers when they create 

geometry. 

Carmo Silva studied the tool requirements and tooling strategies at a lower 

aggregated level. [49]. Choi [66] has carried out a preliminary study on turning 
automation and the tool management system for cylindrical part manufacturing. Tool 

flow problems have also been studied by EI-Gomayel et al [85], MamaIis et al [139], 

Brohan [45,46], and Polstore [27]. 

A complementary model to that described in this thesis but for highly automated 

batch manufacturing systems for prismatic parts has been developed by De Souza [77, 

37]. Two other parallel research programmes also consider tool flow at a lower level 

than that described in this thesis. A knowledge based model has been developed to 

consider both part and tool flow integration [302, 303]. This model considers tool flow 

at two levels. At the first level an infinite PTS capacity is assumed and no secondary 

tool store is present and hence no tool transfer or tool sharing is considered. At the 

second level the user is presented with an option either to manually input tools into the 

PTS or to generate and assign kits from an STS. The implementation of tool flow in the 

Emulator for part flow is under development [223]. 
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2.7 PRODUCTION SCHEDULING IN FMS 

Production scheduling concerns the sequence and assignment of particular job to 

processing resources. It was first encountered in conventional manufacturing systems 

[35, 69]. The production scheduling problem those systems has been tackled for single 

processor [34, 217, 311], parallel processing systems [95, 241], flow shops [31, 99, 

6], and job shops [65,76,115,231,264,313]. 

The part spectrum for an FMS features high variety and low batch size. Therefore 

the decisions of when a part should be loaded to which resource are complicated and 

should be made frequently. FMS scheduling not only presents all the difficulties 

associated with job shop scheduling, but also has a higher degree of complexity due to 

the tool and fIxture flow, material handling, etc. [81]. 

The scheduling on FMS can best be tackled in a multi-level, dynamic method: 

First, in a overall planning level, production requirement and machining system 

information can be taken from the ClM controller. The FMS loading plan can be 

worked out for a short-period of time allowing appropriate part mixture selection, 

lot-sizing and balancing. In the second level, which is the system operation level, the 

whole system and FMCs can be scheduled dynamically, incorporating the real time 

production requirement based on the system loading plan. [228, 250, 268]. 

Chan divided production scheduling into three levels, viz. part releasing, machine 

loading, and operation sequencing [62]. A similar approach was adopted by Chang 

[63]. 

2.7.1 FMS Loading Algorithms 

The loading problem can be specified as selecting a subset of jobs, and assigning 

their operations to the appropriate machines in the planning period under certain 

manufacturing constraints. The objectives of FMS loading varies, but the primary ones 

are system workload balancing and minimising job tardiness. When feasible, 

consecutive operations should be performed on the same machine to minimise the part 

movements. If the tool magazine capacity; pe.rmits, operations should be assigned to 

more than one machine to increase the part routing flexibility in real time. [53]. 



Some of the often recognised objectives of FMS loading are: 

(1). Balance the workload on each machine. 

(2). Minimise the total processing time by rationalise the tool -machine efficiency. 

(3). Minimise the number of movements of parts between machines. 

(4). Pool the operations with common tool requirements. 

(5). Unbalance the workload per machine for a system of groups of pooled 

machines of unequal sizes. 

Some of these objectives can be achieved by one FMS loading procedure. However, 

some of them may conflict in certain circumstances. [67, 274]. 

A heuristic loading algorithm was developed by Shanker et aI, which is attempted 

to balance the workload. By giving the overdue job a highest priority and let it be the 

loaded as soon as possible, this algorithm can be extended to achieve a good workload 

both for system balancing and minimising job tardiness. [268]. The job sequencing on 

the allocated machines can be solved dynamically by implementing dispatching rules. 

Efforts have been taken by Chung to incorporate multiple and conflicting 

objectives in one model. A heuristic algorithm was proposed which focuses on 

balancing the workload on machines. But it takes into consideration the rationalisation 

of part, tool, and machine combination, therefore the processing time is minimised. The 

heuristic algorithm that balances the workloads is 

stated as follows: 

Step I, arbitrarily select a machine; 

Step 2, For all candidate operations requiring the machine, load the operation 

which requires the shortest operation time to the machine. Tie-breaker: the 

operation with more required tools in the tool magazine of the machine will have 

a higher priority; 

Step 3, Repeat steps 1,2 for all machines; 

Step 4, Select the machine which has a lowest workload; 

Go to Step 2; 

Step 5, Stop if all parts have been loaded. [67]. 

A heuristic loading policy was proposed by Erschler et al [87] in order to 

minimise the part flow conflicts. The main basis of the procedure is to search for a 

sequence on the 'bottle-neck' machine which allows to schedule the parts on the other 

machines. This leads to a global solution that makes easy the flow of parts by limiting 

the waiting times in the buffers. This procedure can be used only in the case when all 
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parts visit the critical machine. 

2.7.2 FMS Scheduling Algorithms 

The efficient scheduling of FMS is complex. Most of the work done on the 

scheduling of FMS has relied on the investigating the effect of different heuristic 

dispatching rules. Various mathematical models have been developed, but very often 

they are either based on a over-simplified system, or too difficult to be implemented on 

the real systems. When the effect of tool availability of the system is also considered, it 

increase the complexity of the scheduling even further. [280]. 

The control and operation of FMS concerns the following aspects: 

- Part selection and product mix fonning according to the system capacity; 

- Part families will be allocated to machines with required tools under the 

constraints of tool magazine capacity and the limitation of pallets and fixtures. The 

objective of part allocation will be to maximise the tool sharing by parts and part 

sharing by tools. 

- In the operational level, part movements will be scheduled inside the FMS. 

A simple dispatching rule consisting of two steps was adopted by Chakravarty 

[60]: In Step 1, whenever a machine becomes free, the available list of parts waiting to 

be processed by tools available on the machine will be created. In Step 2, a 

determination is made as to which of parts from the available list has the highest 

percentage remaining processing time and that part is dispatched to the free machine. 

A mathematical model was developed by Sarin and Chen [261] to detennine the 

routings of the parts through the machines and to allocate appropriate cutting tools to 

each machine to achieve minimum overall machining cost. The assignment of 

operations and tools will be constrained by machine availability, sufficient tool life, and 

magazine capacity. Each operation is assigned to only one machine. The machining cost 

of an operation is assumed to depend upon the tool machine combination that processes 

it. The linear integer programming model developed assigns every operation of the 

parts and required tools to machines. Once the decision is made, the tools will stay with 

the assigned machines for the planning period. Thus the model cannot incorporate the 

tool flow effects. 

A production scheduling framework together with heuristic scheduling algorithms 
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has been developed by Kusiak [134, 135, 136], involving parts, tools, fixtures, 

pallets, and material handling elements. A mathematical model were developed by 

Afentakis for scheduling FMS operations to maximise throughput and minimise 

lead-time [4]. Shaw [269] developed a pattern-driven non-linear planning system for 

FMS scheduling. A queuing network model has been built by Seidmann to schedule the 

FMS under the constraint oflimited buffer capacity [263]. 

Iwata, et al have examined tooling within FMS from the view of production 

scheduling and have developed a programme to simulate this. The model allows the 

determination of schedules of machining and transporting pans, and of transferring 

cutting tools simultaneously, so as to minimise the makespan of production. [117, 118, 

119, 120]. 

A simulation model was developed by Denzle et al to evaluate the scheduling 

decisions for a dedicated FMS. The scheduling decisions were made in three levels: 

part loading, pan launching and pan routing. The pan loading decision can be made 

either based on order file or based on system status, or the combination of them can be 

used. The pan launching rule implemented was: Send the loaded pallet to that part's 

firs~ machining operation as soon as possible. The pan routing rule implemented was: 

When the previous operation has been finished, send the pan as soon as a can is 

available to the machine that can perform the next operation which has the least 

workload. Pan waiting in the machine buffer will be machined in a first come first 

served sequence. [78]. 

A simulation based approach for FMS scheduling was presented by Doulgeri et 

al. The simulation of the system activities and the scheduling decision making are 

carried out in two separate modules. At each decision point, the information of system 

status and pan detail is copied from the dynamic recording files. For each idle machine, 

a set of pans whose next operation can be performed on the machine will be formed. 

The suitable part from the choice set will be chosen according to the heuristic 

dispatching rules. The whole procedure will be repeated until all pans have been 

finished and a non-delay production schedule will be produced. [81]. 

A production scheduling rule for a job shop type FMS was developed by Abdin. 

The objectives of the algorithm were to obtain high machine utilisation, high production 

rate, minimum makespan and W-I-P, in both regular working conditions and when the 

system is subject to random occurrence of breakdowns. The problem was solved by a 
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discrete event simulation using SLAM H. The scheduling decision is taken in two 

levels, viz. machine slection and part sequencing on the selected machine, and 

transporter scheduling. The dispatching rule at a machine is: priority jobs are sequenced 

on the base of the SPT. [1]. 

Simulation experiments were carried out by Carrie et aI on a particular prismatic 

FMS consisting of 5 CNC horizontal machining centre and one special horizontal 

machining centre with a facing head on which back facing operations are processed. 

Among the 5 CNC machining centres, 2 are for rough operations, another 2 for 

semi-finishing, and one for finishing operations. Several part launching sequence rules 

were examined for the system, viz. 

(1). Random order; 

(2). Decreasing order of work content; 

(3). Increasing order of work content; 

(4). Decreasing order of work content when the content is greater than medium 

value and then increasing order; 

(5). Increasing and then decreasing order of work content (The medium of work 

content as turning point); 

(6). Alternating: The part with greatest work content followed by a part with least 

work content, then next pair and so on; 

(7). Part launch sequence for minimising tool changes - Similarity between each 

pair of parts on each machine is calculated as the ratio of tools common to both 

parts to the total number of tools used by either part; 

(8). Dynamic priority decision making -- Select parts from queues within the 

model so as to minimise the required tool change dynamically. [50,51, 52, 

54, 55]. 

A simulation model was built by Stecke [278] to examine a number of priority 

scheduling rules. Yamamoto and Nof studied the dynamic scheduling and the 

incorporating of machine breakdown in an FMS [316]. The application of simulation 

models for on-line production scheduling was also studied by Perera and Carrie [238]. 

A new technique for production scheduling is the OPT (Optimum Production 

Technology). It gives a complete prioritised schedule for each job of the bottleneck 

process. [98, 111]. 

The MOSES of NEL [179] facilitates graphically bar type display of 

work-schedule and the consequence of altering the position of a particular job. 
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The production control of Ferrari Automobili, S.P.A. [57] is built around 5 

software modules: 

(1). Routing Management Module - Determines the choice of which pallets to be 

allocated on the available machine. A pallet is selected depending on its priority; 

(2). Sequence Management Module - Sequence the transfer of pallets from one 

unit to another; 

(3). Display Module - Enables the monitoring of the production and the state of 

resources; 

(4). 'Operator' Module - Guides the load/unload station operations; 

(5). Resources Determination Module - It is activated during the production stage. 

It schedules and allocates tools, fixtures, and unfinished parts. 

Fig. 2.18 Shows the production control and scheduling of a company [262]. By 

planning prior to the machining period, a machine load plan is established so as to 

achieve uniform utilisation of machines and of their pertinent tools for a specific 

planning period. The results obtained will become the basis for sequence controlling of 

the manufacturing facility. The master computer will distribute the manufacturing 

orders to different machining stations. 

A new strategy of manufacturing control were realised by VUOSO, 

Czechoslovakia [290]. Groups of working stations instead of individual machines are 

addressed. For every group of work stations, a job queue is formed, and the selection 

of the most suitable job from the waiting queue is based on the following criteria: 

- Workpiece priority (Special cases, where workpiece must go through the system 

as fast as possible). 

- Minimum tool transportation action for machining operation on a given machine. 

(Best case is when all needed tools are present in the machine based tool store). 

- Effort to complete the present part. (That is in a case when 

a part is machined in two or more set-ups). 

Cluster analysis can be used to group components into families on the base of 

simil3dty in terms of machines or tools required. 

The cluster analysis technique can be implemented in 3 phases. Phase 1, The 

similarity measure between each pair of components will be calculated; Phase 2, 

Similarity coefficient matrix will be formed in which all pairs of components are related 

by their common properties; Phase 3, Operate the cluster analysis. In the hierarchical 
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process of clustering, two most similar components are clustered into a group, and the 

same process will be repeated until all objectives have been grouped into the cluster 

containing all components.The process and results of clustering can be represented by 

the use of the dendograms which is a graphical description of the hierarchical clustering 

process. [283]. 

Knight and Spurgean have applied cluster analysis technique to schedule 

production on the similarity of tooling required. By clustering the complete solution 

dendogram, turret tool set-ups can be formed. Each comprehensive set-up allows a 

variety of components to be produced without a tool change. By dedicate the most 

predominant tooling to positions on the turret and clustering parts on the remaining· 

positions, a large number of components can be machined with a minimum number of 

tool changes. [126]. 

A heuristic two level scheduling algorithm was developed by Kusiak, A. for a 

generalised system consisting of a Flexible Machining System and a Flexible Assembly 

System. In the aggregate level, the whole system can be viewed as a 2 machine 

flow-shop, comprising of the machining system and the assembly system, where the 

Johnson's rule or any other flow shop scheduling rules can be used. In the detailed 

level, each assembled product and single part will be given a priority index according to 

their positions in the aggregated schedule and the level in the assembly procedures. A 

job schedulability status will be defined reflecting the precedence constraints, 

pallet/fixture status, tool constraints, material handling system constraints, and if the 

batch is ready for scheduling, the job with highest priority will be processed providing 

its schedulability status allows it to be scheduled. [133]. 
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CHAPTER 3 DEVELOPMENTS OF TURNING SYSTEMS 

3.1 INTRODUCTION 

The use of turning machines in flexible machining does not lay emphasis so much 

on the automation of tool and workpiece flow as in the case of machining centres. 

Instead, the single machine has been highly automated equipped with tool and 

workpiece handling facilities and incorporated with complete machining capability. 

Highly automated stand·alone turning centres have been widely accepted for flexible 

machining. However, there are substantial examples where CNC lathes have been 

integrated into flexible machining systems. 

Highly automated turning requires the following system features to achieve 

maximum output and minimum downtime: (1). Tool and workpiece holding; (2). Tool 

presetting and component inspection; (3). Automatic machine loading and component 

transportation; (4). System monitoring; (5). System control and management 

information flow. [58, 106,286]. 

In this chapter, the current state of turning system design and utilisation is 

discussed in order to establish the nature of flexible turning and its tool flow 

requirements. 

3.2 OVERVIEW OF TURNING AUTOMATION DEVELOPMENTS 

The major developments around CNC lathes are summarised in fig. 3.1. There is 

a clear distinction between a CNC lathe in its basic form and a highly automated turning 

system. A turning system will typically have workpiece handling facilities; tool flow 

will be provided to give magazine support to tool turrets; Contact probes will be 

implemented for the in-process workpiece gauging and cutting tool measuring, and a 

CNC controller will carry out the automatic compensation; To make a universal turning 

system, C- axis control and power driven system in the tool turret have been provided, 

when live tooling is employed, to enable complete machining including secondary 

operation, e.g milling, off-centre drilling, etc., in one set-up. Workpiece 

loading/unloading between the spindle and the workpiece pallet eliminates operator 

involvement. Automatic chuck or chuck jaw changing and gripper exchanging will 

increase the system flexibility in terms of workpiece handling ability and the best 
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clamping effect can be achieved. The implementation of twin turrets CNC lathes 

increases the productivity even further. [141, 142,182, 148,202, 158, 151]. 

The modular design concept of CNC turning centres has features of a proven 

range of extensive options enable the machine to be customised to specific individual 

requirements using standard 'Building Block' modules. Economy in both purchase and 

production are thereby ensured. (Fig. 3.2). [203]. 

A company approach to build such a highly automated turning system is shown in 

fig. 3.3. [92,201,301]. 

The progress in CNC control and electronics technology has allowed the 

production of highly automated and yet mechanically simpler lathes. Transistor feed 

drives and thyristor controlled spindle drives eliminate the need for complex 

transmission systems. The use of servo drives has greatly simplified the turret driving 

mechanisms. [286]. 

The slant bed design has enabled removed metal to fall through the machine rather 

than to build up around the workpiece as it would on a conventional lathe. (Fig. 3.4) 

[213]. This structure design prevents the scratching of the fmished surface by the chips 

and increases the machining accuracy, as the accumulation of hot machined chips can 

thermally distort the lathe bed and affect turning accuracy. 

Twin turrets 4-axis CNC lathe has reduced the cycle time significantly by 

allowing a variety of turning processes to be carried out simultaneously. In the case of 

long bar turning, the use of two tools positioned in both sides of the workpiece can 

reduce the effect of cutting force in X-axis direction, and thus increases the turning 

accuracy. (Fig. 3.5) [19, 79, 153,214]. 

System monitoring is indispensable to ensure an improved machining quality and 

reliable operations for a unmanned turning system. Vision systems can be used to make 

sure that a right component is presented for automatic workpiece handling devices. 

Tool breakage needs to be detected. Machine overloading and cutting force monitoring 

have also become popular functions. [105,182]. 

Tool turrets have been used as a fundamental tool storage facility. A turret can 

typically have 6, 8, 10, 12 up to 18 or even more tool positions. But a turret with more 
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than 18 positions is likely to be arranged in two layers. Only two positions have been 

designed for Mazak 40N ATC Mill Centre (Fig. 3.6). It is claimed that this unique 

design has totally eliminated tool interface problems. [215]. Yamazaki has also made 

an optional turret on its Quick Turn CNC lathe. Based on the standard turret, two 

block-tool holders have been mounted on each position, offering maximum 24 tools; 

The large tool storage for permanent-set tools can meet the requirements of a wide 

variety of workpieces or longer period of unattended operation [217]. 

To prevent system failure, and to deal with situations when faults do happen, 

integrated diagnostic software and hardware is a must. Traub GmbH has developed a 

three stage diagnostic concept: 

First stage: The interactive online process monitoring is designed for the operator 

to permit the rapid location and rectification of operation faults and peripheral 

disruption; Second stage: Extended integrated diagnostic is provided. An additional 

diagnostic software pack is implemented in the control unit, the test program and the 

related results are displayed on the screen. This method enables faulty sub-assemblies 

to be located; Third stage: A full external diagnosis at the manufacturer's works 

enables faulty controls to be connected to a test computer. Individual elements can be 

tested and faults are located. [205]. 

3.3 AUTOMATIC CHUCK/JAW CHANGING AND GRIPPER 

EXCHANGING 

The Automatic chuck/Jaw Changing (ACJC) and Gripper exchanging are 

important developments to handle a variety of workpiece types with medium to small 

batch sizes. These features guarantee the achievement of the 4best workpiece clamping 

effect on a workpiece spectrum. 

Flexible turning systems impose the following requirements of work-clamping devices. 

(1). Automatic clamping; 

(2). Controllable clamping force; 

(3). Flexibility to clamp a wide diameter range; 

(4). The ability to hold first and second operation work. [127]. 

The first two requirements have been satisfied by the development of CNC lathes. 

However, the better operational characteristics cannot be attained over a wide diameter 

range ofworkpieces, and vice versa. [19, 32,142]. 
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Practical automatic chuck jaw changing systems differ on the construction of 

chuck itself and the jaw changing operation (Fig. 3.7 ). The fundamental difference is 

whether top jaws or master jaws are to be changed. 

For the top jaw change type, three jaws can be changed simultaneously, thus 

reduces the jaw change cycle time. This kind of jaw change is easy to handle, no 

special devices are required. Usually, a workpiece handling device (robot) can be 

adopted. The chuck jaw changing system can be equipped even after the machine tool 

installation. Fig. 3.8 shows an example of an automatic three top jaw simultaneous 

change system. It consists of the.chuck, jaws, magazine, and jaw changing robot or 

loader. [182]. Sequential master jaw change type requires a special jaw changing 

device. Jaws are changed sequentially, so, longer changing cycle time is generally 

required. But large number of jaw sets can be stored, relatively easier than in the 

three-jaw simultaneously change type. 

The automatic chuck jaw changing system of Yarnazaki Slant Turn 40N ATC Mill 

Centre features a high speed and accurate repeatability. The chuck jaw magazine has a 

capacity of 15 sets of chuck jaws and the adjacent jaw-set replacing takes only 45 sec. 

Traub has equipped its FHS2 with up to 6 sets of gripper jaws for the gantry type 

workpiece exchanger to facilitate both external and internal gripper respectively [198, 

201]. 

3.4 WORKPIECE HANDLING AND INSPECTION 

The primary objective of the development of turning systems has been to satisfy 

the need of the processing requirement with shorter machining times and shorter 

change-over times. As cylindrical components feature short cutting time the 

loading/unloading of workpiece and tool exchanging has come to constitute an higher 

percentage of total processing time than the prismatic parts. Thus significant gain can be 

achieved by automatic workpiece handling and part inspection both in terms of set-up 

time reduction and manning requirement saving. 

The flexible machining system requires the workpiece handling equipment to be 

simplified in resetting operations, freely programmable of movements and shorter 

change-over time requirement. Adequate handling capacity should be available so as not 

to limit the assortment of parts. [230]. 
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Overhead gantries, fig. 3.9 have been widely used for automatic workpiece 

loading and tool exchanging in an flexible turning installation. The modular designed 

gantries incorporate intelligence, the main carriage, insert arms, gripper and associated 

pallet equipment. The whole gantry is under the CNC control which gives much greater 

flexibility [140, 141, 142, 180]. Multi-axis intelligent robots have also been used to 

service one or more machines, gauging stations and conveyors in its standard form. 

[176,286]. 

SMT machine company has developed a Computerised Part Changing (CPC) 

system as its major step towards limited manpower production, fig. 3.10 [197]. 

An automated part changer should have the following features: 

(1). Logically integrated with and physically separated form the CNC lathe. It 

should be under the same control system as the lathe, but installed separately from 

the machine to avoid vibration; 

(2). Flexibility incorporating all the movement required and being able to handle a 

wide range of part geometry; 

(3). Shorter part changing time and higher system reliability. [195]. 

The integration of work piece load/unload system to the CNC turning centres has 

highly increased the system automation as it needs only supervision rather than 

continued support of a skilled operator (Fig. 3.11). [181]. This kind of unmanned 

workstation has also lent itself to system integration to form a fully automated flexible 

machining systems. 

Bar turning lathes have presented extra workpiece handling problems 

besides automated loading/unloading as has the chuck type workpiece turning. The 

spindle speeds which machines could actually achieve were limited by power chucking 

equipment for bar feeds. There are two types of bar guide system available: The 

oil-filled bar guide tube; and the roller systems with pliable rollers. The later provides 

the possibility of loading bars from the side of bar magazine and lends itself for further 

automation. A functional sequence of bar loading magazine of this principle is shown in 

fig. 3.12: a). Storage; b). Separation and injection; c). Pock-up and feed-out; d). 

Guiding; e). Introduction for parting off; f). Follow-up feed; g). Ejection residue. 

Roller bar guiding system can be further classified into two types with or without 

telescopic pusher for bar feeding. The roller guide system with telescopic pusher 
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normally results higher system rigidity and hence higher spindle speeds can be 

achieved. [204, 210]. 

The increasing demands for better product quality and the rising trend towards 

automation cells call for an efficient workpiece inspection system. The inspection 

process can be classified into two types: Extemal post process gauging; and internal in 

process gauging. The first one requires additional mechanisms and possibly a control 

system of its own, and a special means for data feed back. Since the data obtained are 

about the last finished component, it is normally one workpiece later in reaction for 

theCNC controller to incorporate the measured results. However, as the measuring 

process is carried out of the machining area and dedicated devices adopted, it generally 

results a higher accuracy. 

The second type - in-process gauging features being easy to implement and quick 

in response. The gauging probe is mounted in the tool turret. It is brought to touch the 

workpiece in the measuring operation. Probes can be stored in tool magazines and 

handled in the same way as the normal cutting tools. The in-process gauging does 

feature a relatively low precision, and the machine is kept idle during the measuring 

cycle. [142]. 

A in-process workpiece gauging system consists of three components: gauging 

probe, gauging parameter, and measured data processing. The gauging program are 

usually standard subroutines and are stored in the CNC control unit. [265]. 

KV tooling system has been designed to accept the Renishaw LP probe system 

for in-process workpiece gauging, fig. 3.13. The LP2 is a three dimension, touch 

trigger probe system. The connection between the rotating turret and the machine tool 

carriage can be made with inductive modules as shown in the figuration. [165, 185]. 

Typical examples of in process workpiece measurement is shown in fig. 3.14. [216]. 

3.5 TOOL GAUGING AND SYSTEM SUPERVISION 

Tool gauging probes have been installed in CNC lathes to measure the tool offset 

either when the tool is first entering the turret or after a certain period of tool usage 

[142, 185]. 



Fig. 3.15 shows a fully automated supervision system of a CNC lathe. The 

machine controller will programme a maximum limit of cutting time and record the 

accumulated tool life usage for each tool, if a predetermined tool life utilisation has 

reached, it will automatically have a sister tool from the tool turret to be engaged; 

Cutting force can be monitored during the turning cycle to make sure that a cutting tool 

is in good working condition; The electronic measuring equipment is connected to the 

CNC controller, and will carry out both in process and post process automatic gauging. 

It allows visual display of the workpiece shape, and allows automatic compensation of 

tool wear and tool offset. The component clamping control units provide improved 

safety to ensure that the workpiece is correctly clamped. [18, 196,315, 142]. 

The 'Tool Eye' of Yamazaki has automated the tool setting (Fig. 3.16). After a 

tool is exchanged into the turret, it will be brought into contact with the probe, and tool 

tip is measured. All essential tool dimension data are recorded in the CNC memory. 

The need to perform a trial cut, measure the diameter, and data editing is completely 

eliminated. The tool wear compensation facility will automatically monitor the tool wear 

and transmit data to the CNC controller for automatic compensation. If any tool 

breakage is found, a spare sister tool will be automatically selected or the operation will 

be suspended. [215]. 

Kennametal International offers MP4 and MP6 probes for tool setting on the 

lathes (Fig. 3.17). The probe is mounted on the head stock, thus the thermal influence 

due to the movement of tool setter is eliminated. Tools are brought to contact the probe 

in X and Z axis, measured dimension parameters are passed to the CNC control unit 

and will be processed there. [165]. 

Tool wear can also be judged through gauging the workpiece finished. If the 

tolerance (or surface finish) reached a certain level, a tool is set to be worn, and will be 

replaced by its sister tool. 

Tool probing has been widely equipped in CNC lathes of various manufacturers, 

e.g Dainichi [146], Heyligenstaedt [148], Nakamura [177,178], Mori Seiki [176]. 
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3.6 SINGLE MACHINE INSTALLATION EXAMPLES 

- Primary Tool Storage 

A substantial number of highly automatic turning systems can be seen in 

operation as a result of the state of the art technology being integrated within system 

development. 

The Warner and Swasey has built up a highly automated single machine turning 

ceIl around a WSC-8E7 CNC lathe. The whole system was built up by a modular 

approach. It includes sophisticated functions such as automatic workpiece handling, 

automatic gauging, visual part identification, process monitoring and quick chuck jaw 

change. The Sandvik Block Tooling System has been implemented for automatic tool 

exchanging. A special double arm changer is used for tool changing (Fig. 3.18). [187]. 

The Flexible Compact System for turning, driIIing and miIIing features a 

integration of 2 HElNEMANN CNC lathes. Both machines are serviced by the gantry 

portal robot with workpieces and tools. Hertel FTS tools are stored in 2 magazines 

offering a total capacity of 120 tool pockets. The disc type turrets have 12 tool positions 

with up to 6 positions for live tools. Tools are automatically gauged in the machine by a 

touch type probe to detect tool wear, tool breakage, and to verify the tool geometry. 

The touch-sensitive probe head for workpiece measurement is handled by the automatic 

tool changer like any other tools. When dimensions are measured, the nominal and 

actual dimensions are compared, and any offset of the tool is compensated for by the 

CNC controIler (Fig. 3.19). [157]. 

Fig. 3.20 shows a fuIly automated flexible turning cell with possibility to be 

integrated to a flexible machining system by automatic material transportation network. 

Workpieces are stored in paIlets. Both tool exchange unit and component handling 

gripper are installed on the sarne gantry. Hertel FTS 72-station tool magazine has been 

implemented to back up the two turrets for a longer period of unattendant production. 

The system is built up around the EMAG MSC22 Twin-spindle CNC lathes. 

Post-process component gauging system has also been integrated into the ceIl layout. 

[58]. 

A highly automated turning ceIl - NF250, DNC - was developed by Pittler. Both 

workpieces and tools are automated handled by a portal-mounted robot. Workpieces of 

chuck type are stored in separate paIlets from the shaft type workpieces. Block Tooling 



System is adopted, but tools are also stored in pallets rather than in a BTS tool 

magazine as in the normal cases. Probes for workpiece gauging have been used and 

handled as normal Block tools (Fig. 3.21). [187]. 

A bar turning cell is shown in Fig. 3.22. The bar magazine has a capacity of 100 

bars of 3.7 meter long. Bars are loaded to the stock tube automatically. Machined parts 

are collected into baskets by the component catcher. The baskets are transferred on the 

powered conveyer system. Sandvik BTS tooling system has been used for tool 

exchanging. The tool magazine has a capacity of 120 tools. A gantry is installed for 

ATC. The signal to indicate the tool changing can be obtained in different ways: a). 

After a predetennined cutting time for a tool; b). When a new part program is selected; 

c). When the cutting force of a tool is in excess of the predetermined limit. 

A tool is set after it has been changed into the turret by a touch trigger probe 

mounted on the head stock, and measured data will be stored in tool offset file in the 

CNC unit for use when the tool is required. 

A turret mounted Renishaw probe can be used to touch the various features on the 

component which are required to be measured. [285]. 

Other highly automated turning system examples of different suppliers are Traub 

[202, 198,200,201], Index [159], Heyligenstaedt [153], Heid [151, 26], Boeheringer 

[140], SMT [18, 197,315]. 

3.7 CELLULAR INSTALLATION EXAMPLES 

• Secondary Tool Storage 

Substantial evidence can be found that CNC turning machines have been 

integrated into flexible manufacturing cells. These can be highly automated cells with 

automatic tool and workpiece flow or a series of manually operated CNC turning 

centres. Quite often the manually supported turning cells can be found in batch 

manufacturing systems, where each machine is highly automated. But the part flow 

inside the manufacturing cell will be in the form of a part pallet transferred by 

operators. The tool flow to the machine will also be the manual operation [197, 153, 

141, 142, 151]. 

Perkins Engines of Peterborough has invested £6 million on its balancer units 

section. The new facility has rotary transfer machines, CNC lathes and grinders, gear 
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hobbing, deburring, and shaving units plus semi-automatic assembly machines. The 

whole production line operates on a 2-shift basis. Two similar balance weights are 

produced in high volume. 

The 4-machine turning cell are highly automated. It consists of 4 TI Herbert 

Churchill CTC4 CNC lathes, each with a gantry type overhead parts loader/unloader. A 

twin-strand parts conveyer links the cell to the outside. Work handling is fully 

automated, and operator intervention is restricted to tool changing. (Fig. 3.23) 

Operation sequences are identical for the two component types. (Fig. 3.24). The 

first machine carries all the rough turning on one side, and the second and third 

machine rough turn the remainder side of all components. The fourth machine does the 

finish turning. 

Perkins opted principally for tool changing on a 'No. of Cuts' per tool, because it 

claims that the monitoring through a specific parameter - e.g. cutting force - is not 

sensitive or consistent enough. Sandvik Block Tooling has been implemented on each 

CNC lathe. Every tool turret carries a duplicate set of tooling and the CNC program 

automatically shifts between tool sets on the cycle count basis. 

An FMC produces limited number of simpler component types (in this case two) 

in high volume calls for a cell controller with limited flexibility. The software 

engineering cost is therefore modest. In the Perkins turning cell, an Allen Bradley data 

highway has been adopted to transfer production and processing information to the 

central controller. [31]. 

Hitachi-Seiki has installed three FMCs in its FMS plant. Two of which are made 

up of machining centres for manufacturing box-type components for machine tools. 

The third line consists of 3 CNC lathes and a horizontal machining centre. (Fig. 3.25). 

The machining line was designed for 460 different gears. The high production 

variety calls for a complicated controlling software. The cell is run by a computer which 

chooses the part programs, workpieces and tools for a particular batches. WorIqlieces 

are transferred by a belt conveyer, each machine has a industrial robot to lift off the 

workpieces and place it in the machine chuck or fixture. 

Sandvik Block Tooling has been adopted for the tool supplying to the CNC 

lathes. A drum type Block Tool Magazine Holder has been installed at one end of the 
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manufacturing line. It holds 24 racks each with 5 cutting units. The lathe turrets haves 

six external and six internal tool positions and tool exchanging into turrets has been 

carried out by a tool exchanger moving along a gantry over the 3 lathes. [321, 187]. 

A diesel engine manufacturer Lister- Petter Itd. sited at Durley, UK, a Hawker 

Siddeley company, has developed a significant FMS known as FMS2. The FMS 

comprises 6 CNC four-axis lathe, flexible conveyer system and gauging equipment, 

and all under the control of an integrated computer network. Parts are scheduled by the 

analysis of bar size and specification and also the tooling condition of the individual 

machine to minimise tooling set up time. However the latest start date for a batch 
dominates other scheduling rules. 

The FMS was designed for producing over 160 different small turned parts and 

commenced production at the end of 1986. The bars are 3m in length and range 

between 8-55 mm in diameter. The finished components could be up to 200 mm. in 

length. One of the main purpose of this system was to minimise the number of separate 

operations [11]. 

UEF Garringtons has implemented a just in time FMS for die and forging tools. 

The system features a very high variety and very low batch size due to the 

characteristics of the production requirement -- No more than three may ever be needed 

at one time, with the frequency of repeat batches varying from once a month to once a 

year. 

The system incorporates 3 lathes, a five-axis mill centre, a co-ordinate measuring 

machine, in line electric-discharge machines (EDMS) and AGV transporting system. 

All except the EDMs are under the control of a DEC PDP 11/84 supervisory computer. 

Operators have to carry out loading/unloading and set-up tasks both at the stores/set-up 

area and at each machine. The supervisory computer will issue instructions to operators 

and provide Direct Numerical Control to both the AGV system and CNC machines. 

The DEC computer will schedule the product taking into account due date, machine up 

time, tool changes and chuck changes. [8]. 

The 600 Group has built up a flexible machining cell known as SCAMP 

(Six-hundred group Computer Aided Manufacturing Project) at the Colchester Lathe 

site in Essex. The project was supported by the British Government. It was proposed 

in 1978 and was operational by the end of 1982. It operated for the first and second 
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years as a showpiece of FMS technology. Since then it has reverted to normal 

production. The cell consists of four CNC lathes, a gear chamfering machine, a gear 

shaping machine, a cylindrical grinding machine and a hobbing machine. Eight Fanuc 

robots are employed to carry out load/unload operation and the whole system is served 

by a part pallet conveyer on which 150 individually coded pallets can be accommodated 

(Fig. 3.26). 

The system control computers download programs to the machine tools and 

robots, as well as schedule work through the system, and providing operators 

information on VDUs. 

The scheduling of work is done by the supervisory computers according to 

priorities determined by the operators. It is a computerised Gant Chart system. 

Operators key in data about workloads and use the VDU display to see the effects of 

their decision. Thus operators can alter the display until they get the best possible 

workload and schedule to suit their production target. 

Sandvik Block Tooling System has been implemented on two of the CNC lathes. 

On the other two CNC lathes, further powered turret has been adapted to 

facilitatesecondary operations. 

As soon as a machine tool has completed a component batch, the computer 

indicates to the operator that a new tooling set up is required and sends down the part 

program for the machine and associated robot. The operator then re-tools the machine 

for new component according to the displayed instruction on the VDU before 

authorising the machining process to commence. [10, 110, 312, 314]. A flexible 

turning cell consisting of three CNC lathe with automated tool and workpiece flow has 

been installed at SNECA factory in Corbeil, France, and has completed its test in Feb. 

1988. The turning cell produces mechanical parts for aircraft engines in batches varying 

from 5 to 12 in size. The production rate is'about 240 parts/month. [267]. 

The integration of CNC turning centres into turning cell can be seen in major plant 

installations: FAST of Takoka Electric [21], Yamazaki Minokamo spindle line and 

flange line [104, 212], Yamazaki Worcester rotation part line [14, 15, 129, 130,211], 

Fanuc motor factory [103,105], shaft line of Mitsubishi [22]. 
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CHAPTER 4 LIVE TOOLING AND SECONDARY OPERATION 

4.1 INTRODUCTION 

The live tooling facility is a significant development of CNC lathes. Secondary 

operation work on turning centres usually makes the use of a small machining centre in 

the machining system unnecessary. The time needed for drilling and milling etc. 

following the turning operation is often so short, that reloading work onto a machining 

centre is uneconomical. Machining in more than one set-up generally results a greater 

loss in accuracy accuracy relative to complete machining in a single set-up. What's 

more, the workpieces requiring secondary operations can be difficult to be fixtured onto 

a machining centre, which means a large effort in jig design and higher system 

investment. [203]. 

A investigation of various users of secondary operation CNC turning centres 

showed that all claimed 'the machines' main benefit lies in the ability to produce work 

completely at one set-up, to give short delivery times, reduced work in progress, 

improved work accuracy, and to avoid the need for multi-stage, first-off inspection.'. 

[222, 300, 92]. 

In this chapter the secondary operation applications, the incorporating of 

secondary operation capability into CNC turning centre design, and the storage and 

exchange ofIive tooling are discussed. 

4.2 TYPICAL SECONDARY OPERATIONS 

The accommodation of live tooling in the tool turret has offered secondary 

operation capabilities covering cross milling, drilling, tapping, pitch circle diameter 

drilling and keyway slotting applications, fig 4.1. Angled live tool heads perform 

operations such as cross drilling and milling at angles other than 90 to the centre line 

[146, 147, 148',210]. 

Churchill Two Series has a unique feature of Rear End machining. It consists of 

six-station secondary operation turret, behind the head stock, the rotary part-off arm, 

and turret mounted chuck which can operate in synchronisation with the main spindle 

71 



for support when parting-off. The turret mounted chuck incorporated with the 

secondary operation turret can carry out operations on the parted-off end/chucking end 

and eliminate the second set-up, when such machining operations are required. [172]. 

Secondary operations can be classified into the following types: [203, 210, 92, 

301]. 

(1). Drilling, tapping: Drilled and tapped holes can be made parallel to X or Z 

axis. Operations obliquely to the two main axes can be done by either a angled live tool 

or by adding an extra indexing control to the tool turret. (Fig. 4.2). 

(2). Milling with end-milling cutter: Grooves can be cut parallel to the X-axis, on 

faces, and outside the X-Z plane. (Fig. 4.2). [218]. 

(3). Milling with saw blades or side milling cutters. Slots can be cut either by 

straight slotting or plunge milling using saw blades. By clamping two saw blades in 

tandem, particular economy can be achieved. 

(4). Pick-up spindle for machining of the parting-off side. Pick up spindles can 

either be mounted in the turret like a live tool holder, and being driven like a rotating 

tool; or special tailstock can be equipped with a sub-spindle chuck. (Fig. 4.3). [219]. 

(5). Synchronous drive for thread milling and polygon tuming. Due to the precise 

synchronisation of the workpiece and the live tool, it is possible to produce flats on the 

workpieces. When very small threads are being machined, the maximum contouring 

. speed limits the spindle rotational speed. As a result, the workpiece cutting speed is 

often to low to chase a clean thread with the usual undercut against a shoulder. With the 

synchronisation of the spindle and thread miller, it is possible to achieve the resultant 

optimum cutting speed. 

4.3 TURNING CENTRE DESIGN AND LIVE TOOLING DRIVE 

MECHANISM 

The CNC turning centre for second operation must be especially designed to suit 

the unique requirements demanded by live tools. An additional control - C-axis control 

must be put for the spindle position control. In some cases a control axis for turret 

indexing must be added to carry out secondary operations at a angle other than 90 to the 

centre line [154, 175, 177, 178]. 
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The position control of the spindle can either be achieved by an indexing gear and 

peg at the rear end of the spindle, or by means of a third servo system (C-axis). [19, 

286]. 

v-
High pressure, high capacity coolant pumps are required. Thert-two types of live 

tool driving systems available: With tool shanks of big diameters (Normally >= 40 

mm),the driving force for rotating tools can pass through the shank without the stability 

of the tool holder being affected. When thinner tool shanks are adopted, or when high 

rotating power is required, external driving motors are usually added to the tool turret. 

The external driving type has the advantage of that the shank of the holder is not 

weakened and permits a considerably greater torque transimmision. [203]. 

When high cutting torque are required for secondary operations, a tool driving 

motor is often equipped to the turret. e.g 7.5 KW tool driving motor has been installed 

on the turret of Churchill Three Series CNC turning centre. (Fig. 4.4). [173]. 

A typical live tool driving mechanism through the main power supply system is 

shown in Fig. 4.5. [157, 159]. 

4.4 LIVE TOOLING EXCHANGING AND TOOL FLOW 

Live tool exchanging to the tool turret can either be operated manually or 

automatically. But the problem has been m~de much more complicated than that of 

CNC lathes for normal turning operations. Live tooling will normally be allocated in a 

number of specified p~sitions of a turret. SOIpe special designed live tools can not be 

handled in the same way as for normal tools. 

Special efforts have been taken to handle live tools automatically. To facilitate 

secondary operation, Sandvik has offered disc type tool magazines to store BTS 

rotating tools. The disc is randomly accessible, and can store live tools and normal 

turning cutters in any mix of varieties. The magazine is a compact unit which can be 

easily integrated into most CNC turning machines. (Fig. 4.6). Tool handling system 

and a typical exchanging operation process are shown Fig. 4.7 and Fig. 4.8. [190, 

191]. Chain type magazines have been widely used for storing live tooling and turning 

tools in any mix [18, 199,201,202,215,315]. 
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CHAPTER 5 TOOLING SYSTEMS FOR FLEXIBLE TURNING 

SYSTEMS - 'STATE OF THE ART' 

5.1 INTRODUCTION 

Significant progress has been made in the areas of cutting tool design, and the 

flow, storage and provision of cutting tools. New tool materials and tool design 

features have permitted higher cutting speeds. Modular tool concepts have enhanced 

tool standardisation and tool availability. Tool magazines have been integrated within 

CNC lathe designs. Automatic tool exchange between the magazine and the turret has 

I reduced machine idle time and eliminated manual involvement 

Central tool store functionality has allowed for total system tool flow management 

and provided a quick response to the production requirement. Advanced tool presetting 

devices and tool coding systems have removed tool preparation from the machining 

area, and facilitated the information flow in the manufacturing system for automated 

tool flow management 

In this chapter, new tooling design technologies with respect to modular tool 

concept have been discussed. Discussions on tool exchanging systems and central tool 

store functions have been presented. 

5.2 MODULAR TOOL DESIGN 

The development of flexible turning systems requires tooling systems of high 

flexibility to respond to complicated machining conditions. Considerations should be 

given to the tool with regards to strength and accuracy. Their constructions should be 

highly reliable so that they will have durability under various conditions. In addition to 

the cutting tool material development and index able inserts, modular tooling system is 

another important feature of cutting tool design and implementation for FMSs. [233]. 

The use of modular tooling systems has increased· the storage capacity of 

magazines and the availability of tools. It enhances the standardisation of tooling 

system design, and facilitates the central tool store tool component storage and 

assembly. 
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5.2.1 Sandvik - Block Tooling System 

Block Tool System (BTS) is a result of a long period of development of Sandvik 

Coromant. The project started in 1975 and the BTS was first shown in 1980. Since 

then it has been developed to cover various turning tool requirements (Fig. 5.1) and 

helps turn a modern lathe into an unmanned turning centre. [188]. 

BTS features high stability, repeatabiIity, and easy for clamping. With its high 

repetitive accuracy of coupling, measuring cut can be eliminated in most of the turning 

operations. [59].By implementing BTS to a CNC lathe, automatic tool exchange can be 

carried quickly and easily with high reliability. The BTS tool dimensions are basically 

corresponding to conventional tool holders. The extensive range of cutting and 

clamping units is complemented by a whole set up of tool magazines, grippers, probes, 

and tool monitors. Fig. 5.2 shows how the BTS can be integrated into a CNC lathe 

installation. [187, 188]. 

The rotating magazine holder provides tool storage capacities from 60 to 240 

cutting units (Fig. 5.3). Each rack holds up to 10 cutting units of same type and can 

only be accessed from the top of a rack. [189]. 

BTS features a unique coupling and clamping unit. The turret tool clamping can 

have an option of being manually, semi- automatically, and automatically operated. The 

manual clamping device (Fig. 5.4) is designed for easy operation. It requires short 

clamping stroke and Iow tightening torque.The automatically clamping units (Fig. 5.5) 

are compact and reliable, with the drawbar spring produces a positive clamping force, 

even if the machine power fails. The release of cutting units is done by actuating a 

piston through a independent closed circuit of hydraulic system. [188]. 

BTS also offers a disc type random access tool magazine design for rotating tools 

to be stored mixed with normal turning units. 

5.2.2 Hertel - Flexible Tooling System 

-

The Hertel Flexible Tooling System (FTS) offers a great variety of cutting tools 

including live tooling (Fig. 5.6). It has a unique feature of being used on machining 

centres as well as on turning systems. [154, 156]. 
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FrS is based on Rirth coupling which gives both a high level of accuracy and 

excellent torque transmission (Fig. 5.7). The clamping/releasing of cutting heads is 

carried out by a drawbar actuating the collet. This design features high safety and is 

easy to be automated. The automatic tool change is achieved by a torque motor which 

takes the hydraulic supply from the machine tool main power system. [58]. 

The FrS is easy to be integrated into a CNC lathe installation (Fig. 5.8). Rertel 

produces standard drum type magazine of 60 and 120 tool pockets. A twin shuttle type 

magazine of 120 tool positions (2 * 60-station magazines) is also available which 

allows one magazine to be serviced for the next part family while the other one is being 

used for present processing. FrS magazine is fully random accessible, offering a 

greater flexibility. [58, 155]. 

5.2.3 Krupp Widia • Widax Multiflex and Rotaflex Tool System 

Multiflex and Rotaflex tool system were developed to permit manual or, fully 

automatic tool changing. The whole system automation components includes cutting 

heads and tool holders; tool locking mechanism; tool exchange gripper and magazine; 

tool gauging and monitoring facilities; and workpiece gauging system.The Multiflex 

tool system was designed for turning tools and Rotaflex was designed for live tooling 

and tools for machining centres. 

The tool locking is actuated by a hydraulic motor through the drawbar. The 

center-piece of the Widax tool system is its coupling mechanism. It features a 

cylindrical shank with a plane contact surface, which can be manufactured simply and 

accurately. The connection between the cutting head and the holder guarantees a 

positive engagement which results a high accuracy and rigidity (Fig. 5.9). 

Automatic tool exchange between tool turret and magazines is carried out by a 

exchange gripper (Fig. 5.10). Tool magazines have capacities generally between 24 to 

120 positions. Live tools have been included as well as internal and external turning 

tools. [137, 166, 284, 167]. 

4.2.4 Kennametal • KV Tooling System 

KV tooling system features a stub-length, tapered shank, which is compact and 

rigid. It can be used with a wide variety of turning tools (Fig. 5.11). The self-centring 
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characteristics of the tapered shanks make it easy for tool changing. Through-the- tool 

coolant is provided on all KV turning tools. KV tooling system has a variety of locking 

system designs to suit the requirements of different automation levels. 

There are two clamping system designs for automatic tool change, viz. Ball Lock 

Turret Unit Assembly (TUA) and VD! Clamping Units (Fig. 5.12). For the TUA, 

clamping force is generated by the spring washers, releasing is activated by a hydraulic 

cylinder pushing the drawbar. In the VDI Clamping Units, locking/unlocking is done 

by rotating the torque nut with a hydraulic or electrically operated torque motor. The 

automatic clamping units will generate a positive clamping force even though the main 

machine power fails. [165]. 

KV tooling system is designed to remove the tool gauging and set-up to the 

central tool store, thus to reduce the machine idle time due to the tool changing and 

set-up. 

5.3 TOOL EXCHANGING SYSTEMS 

Tool turrets have been used as the basic tool handling device through out the 

history of the NC lathe. With the development of automation technology and the CNC 

lathe itself, the Automatic Tool Changing (ATC) into the tool turret is introduced to 

expand the machine based tool storage capacity for the following reasons: 

(1). Worn tool replacement. Tool life of a turning tool is quite short, a large 

number of tools are required to carried out a longer period unmanned operation; 

(2). Tool exchange due the changing of part type; 

(3). Secondary operation on a CNC turning centre features a big variety of live 

tools required. A tool magazine is necessary for handling drilling, milling, tapping, and 

end milling tools. [182, 142, 18,315]. 

In some installations turrets are automatically changed as whole stores. The 

workpiece loading gantry accommodates the carriage used for changing the turret. This 

tool changing method provided considerably shorter changing times per tool than the 

individual tool exchange. 

TI Machine Tools has developed a turning centre around its Churchill HC 4/15. 

The Block Tooling System has been adopted. The magazine can store up to 120 tools. 

tools requiring critical dimensions can be datumed using Renishaw touch trigger probes 
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mounted on the headstock. tool change can be automatically initiated from a signal 

derived by monitoring component count, tool cut time, or main motor power 

consumption. Two in-process probes are used for component measuring. (Fig. 5.13). 

[174, 187]. 

INDEX GSC 65 Twin turrets CNC turning centre has been installed with two 

gantry type robots. One is dedicated for automatic workpiece handling, the other one is 

for automatic tool changing. The unique feature of the system is that two tool 

magazines have been equipped to back up the tool turrets. (Fig. 5.14). [158, 159]. 

Yamazaki has designed chain type magazines for its Slant Turn 40N ATC. The 

standard 30-tool magazine has 15 pockets for turning tools and other 15 for live tools, 

however, any combination of the arrangement would be possible. (Fig. 5.15). Optional 

magazines of 60, 80 tools are also available to facilitate a even bigger tool storage 

capacity. (Fig. 5.16). [215]. 

The magazine support to tool turret is becoming a common feature of turning 

centre design by different manufacturers: e.g the Traub machines which feature chain 

type tool magazines for live tooling and turning tools alike [202, 92, 301]; SMT [18, 

315], HEID [153, 26], etc. The State-of-the-Art tooling systems for cylindrical part 

batch manufacturing has been studied by Zhang and Bell [324]. i 

5.4 CENTRAL TOOL STORE FUNCTIONS AND TOOL PRESETTING 

The Central Tool Store (CTS) is one of the important area to be considered for 

automated tool control [108]. A comprehensive CTS management system will enable a 

machining system to increase productivity, reduce tool inventory costs and machine 

down time while giving shop floor management the important aid to monitor the activity 

and relationship of tooling to the actual production of parts. 

The key issues associated with CTS are: 1). Inve'ntory control of tool assembly 

components; 2). Inventory control of tool component assembly instructions; 3). 

Inventory control of tools; 4). Maintenance of the tool data; 5). Initiation of tool 

assembly build up; 6). Determining and disposal of the tool assemblies returned from 

the machines. [101]. 
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The objectives of the control system for tool cribs include the following: 

(1). Reduce the machine waiting time for tools; 

(2). Prevent tool shortage; 

(3). Know the tool location and tooling condition; 

(4). Identify obsolete and overstocked tools; 

(5). Monitoring. [240]. 

The tool preparation and servicing is carried out in the CTS. Three tool servic~\ 
priority levels were envisaged by Knight [127]. 

Level 1: Tools for the next schedule of workpieces or a tool has reached its 

planned life. This level would have the lowest priority. It is the main function of 

the CTS. 

Level 2: The non-previously advised tool requirements caused by machine failure 

or change of schedule. 

Level 3: Tool preparation for emergency such as tool premature failure. This level 

will have the highest priority. 

A Micro based software system was developed by ISIS Informatics Limited to 

carry out automatic tool store management. It is centred on a tool data base management 

system with a variety of interface to ease tool inventory management. It makes the 

quantity of the tooling and their locations be known. It will also issue instructions to the 

tool store keeper of what to do with a returned tool. (Fig. 5.17). [163, 164]. 

Devlieg Microbore has developed a comprehensive central tool store management 

system. The system is based on a IBM personal computer. It is divided into several 

main sections: 

(1). Tool data sheet which displays graphical representations of tools as well as 

part lists or assembly sheets. Tools can be created graphically by calling existing 

components from the data base. Dimensional data will be input. The tool 

assembly can be broken down into its components to aid the operator in the actual 

tool assembly; 

(2). Set up sheet has been designed to entail all information required to use the 

tool. It will be sent out with tools to the machine; 

(3). Data management allows the access to the data base; 

(4). On line mode. The tool management system has the capability to retrieve and 

send data between the Devlieg tool pre-setting system. 
-

The description of tools, tool components, crib contents, tool numbers and dimensions 
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can be displayed on a CRT screen in the tool crib area. [96, 149]. 

The tool room of Ferrar Automobili, Italy [57] is the heart of its tool management. 

i The main operations includes: 

(1). Tool assembly - A list of tools to be assembled -with its assemOly 

components is displayed. The tool assembly file is updated after the completion of 

each tool assembly. Bar code is written to the tool by a bar coding device. 

(2). Tool presetting - Tools to preset and the information about the parameters for 

presetting are presented. The measured value is automatically received. 

(3). Tools returned are inspected, and bar codes are updated following a 

instruction. 

The primary goal of a presetting system within a tool management system is to 

provide properly set tooling and tooling information to machine tools to promote 

maximum machine up time.The tool presetting information flow in a manufacturing 

system can adopt one of the following fashions, viz. integrated tool presetting system 

and bar coding system, fig. 5.18. The former features a integrated data base which 

stores the tool information such as tool and cutter code, planned tool life and life 

consumption, tool off-set, and tool position and status [43]. The preset tool information 

will be entered into the the data base automatically through the tool presetting terminal 

and downloaded to the machine CNC controller when the tool enters the machine 

[201]. 

The evolution in the field of electronic optics has made the bar coding possible. In 

compared with the old system of mechanical encoding, bar codes can store a large 

amount of information in a limited space without having to add mechanical plates to the 

tool. It also has a high reliability in data recording and easy for reading/writing. 

The presetting process includes setting, pre-machine inspection and measurement, 

tool labelling, and dimension information transmission. The pre-machining inspection 

controls the quality of the cutting edges of tools, the condition and the quality of the 

ground surfaces on the shanks or mounting surfaces of the tool. Tool dimension 

parameters are then set/or measured. Tooling is then labelled with the necessary 

information and grouped, transported to machines. [96]. 

A typical tool presetting machine is shown in Fig. 5.19. In most of the cases, tool 

offset values measured require no further correction in the machine before tools are 
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automatically loaded into the tool turret. [192]. 

Kennametal tool presetting system is based on a two co-ordinate measuring 

machine (Fig. 5.20). Tools will be inserted to the adapter, and their images will be 

displayed on the screen. A micro-computer based controller electronic system ensures 

rapid and accurate measurement and data processing, with necessary interface. [165]. 

Sandvik: Coromant has developed a coding system for BTS cutting units using 

read/write EEPROM data carrier. (Fig.S.21). The pre- measured tool dimensions and 

its identification is stored in the magnetic chip. When a tool is called by a machine, its 

recorded data can be automatically downloaded into the machine CNC unit before tool 

changing. [192]. 

5.3 TOOLING SYSTEMS OF MACHINING CENTRES 

Machining centres have been integrated widely into the highly automated FMS 

design. Automatic tool changing was one on the first problems to be solved in the 

machining centre design [17,144,168,287]. The tool flow in a flexible manufacturing 

system for prismatic parts has been evolved form the expensive hardware solution as in 

Yamazaki Minakamo which employing a whole drum type magazine exchange [104, 

213], to the sophisticated software management solution as in Yamazaki Worcester 

where a tool exchange highway was built to transfer single tools promptly to 

destinations [14, IS, 129, 130,211]. 

There is a clear trend that a complex intelligent tool management module being 

integrated into the machine tool controller. Wemer's machining centre design allows a 

set of tools to be exchanged quickly for each job exchange. The chain type magazine 

has been divided into a variably overlapping storage and changing areas as well as fixed 

areas for standard and worn tools. Tools are replaced in the respective areas after their 

use in the spindle. The provision of the respective areas by movement of the magazine 

takes place parallel to machining time. 

The tool flow to a machining centre of Okuma features a transported magazine on 

a AGV to supply tools to machine equipped magazine [183]. 
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CHAPTER 6 COMPUTER MODELLING APPROACH 

6.1 INTRODUCTION 

In this chapter, the scope of the research is presented. The reader is introduced to 

the algorithmic modelling approach to different level of turning automation and the 

comprehensive model (Turning Model) built. The Turning Model is then compared 

with the prismatic part tool flow model to highlight the unique feature of cylindrical part 

manufacturing. 

6.2 RESEARCH TASK 

The research covers the study and modelling of highly automated batch 

manufacturing systems for cylindrical components, with emphasis on the tool flow 

problem. A comprehensive computer model has been built to aid this process. The 

objective of the model building is such that it should be capable of representing 

advanced turning systems, evaluating different tool flow system design and operation, 

and forecasting system performance. The operating pattern of turning systems should 

be able to be predicted by the Turning Model. This work includes several major subsets 

of research and software writing as follows: 

(1). Turning automation study and computer model (Turning Model) building for 

highly automated turning systems. The work is targeted at the design and 

operation of tool flow systems for flexible turning ranging from highly automated 

turning centres to multi-machine cells with varying design of automation. 

(2) Build a framework for fast and effective tool flow system design and 
c 

evaluation. Design and implement effective algorithms for computer building. 

(3). Evaluate alternative tooling strategies for a specified tool flow system and , 
explore the nature of tool flow problem in turning systems. 

(4). IncorPorate a production scheduling facility so as to provide a sequenced 

production requirement file for the tool flow model as well as to examine the tool 

flow problem interactively with the production s,cheduling algorithms. See the 

following sections for production scheduling module and refer to Chapter 12 for 

algorithm descriptions. 



(5). Write and implement a data base management system to ease the input and 

handling of cutting tool, workpiece, and turning centre data for running the 

model. The principle of design and the implementation of the data base 

management system has been described in Appendix lB. 

(6). A major feature of the Turning Model is its user friendly interface, so that it 

can be handled easily with reduced communication effort. The Turning Model is 

of CNC machine MDI menu driven type. A conversational type screen interface 

has been developed and implemented for all the modules of the computer model 

(Ref. to Appendix lB). 

(7). Provide a prototype modelling software suitable for industrial uses. 

(8). Algorithmic approach has been implemented for manning pattern prediction, 

which may be regular or irregular. See Chapter 9 for its implementation. 

(9). Case studies based on industrial data have been carried out both for a single 

machine highly automated turning system (Chapter 9) to examine turning 

automation features in details, and a multi-machine turning cell to evaluate 

different design and operating strategies (Chapter 13). 

6.3 THE ALGORITHMIC MODELLING APPROACH 

The algorithms deal with scheduling and timing of the chain of events and form 

the basis for the modelling of tool flow systems. 

Algorithmic approach has been adopted for model building, which incorporates 

the following features: Firstly, it requires very short computer running time. A typical 

CNC turning cell of 5 machines can be modelled of 3 shift work with a run time of 

average 15 minutes on a enhanced IBM/AT workstation. With the software being 

implemented on a powerful SUN 386i, the run time is expected to be reduced even 

further. Thus once the data base has been set-up, a rich number of runs can be carried 

out to examine different system configuration and operating strategies; Secondly, it is 

possible to focus on the detailed modelling on particular activities; Thirdly, the time 

related system operating pattern can be obtained with reasonable, confidence. -



The Turning Model writing has been emphasised on tool allocation and flow. The 

modelling work has concentrated on the following aspects: the forecasting of tool 

requirements and warning of tool exchanging; reducing delay due to tool unavailability 

and improving reliability of tool information; reducing tool exchange effort and tool 

inventory level through a well organised tool flow control. (Fig. 6.1). 

The Tool Flow Model which is the main stream model of the Turning Model set 

will give a substantial understanding and solutions to the tool flow problem - not only 

to the technological ones of how to store, transport, and handle tools, [41, 101, 122, 

245], but also to analytical and managerial problemssuch as when and where the tools 

will be required, and how to best organise the tool flow [96, 149,240, 163, 164]. 

Different tool arrangements [71, 72, 73], assignments [41, 101, 126], and 

storage strategies [126, 280, 290] have been implemented in the Tool Flow Model 

(Ref. to Chapter 8). 

Further algorithms have been developed for scheduling the event chain of 

machining, part and tool transportation and exchanging, and the manning involvement 

for turning system operating. For the formulation of algorithms, several different kinds 

of activities and their associated time intervals should be specified: the set- up, part 

loading/unloading between spindle and part pallet/magazine, tool exchanging time 

between turret and magazine, magazine and turret index time, chuck jaw and gripper 

exchange time, tool and part exchange time to and from a machine. Some of the above 

activities can be carried out while the machine is in processing, e.g. tool picking up 

from the magazine and transferring to the waiting position for tool exchanging with 

turret, and tool returning from turret to be replaced to magazine. Some of the activities 

should be done when machine is not in operation, e.g. set-up, part loading/unloading 

to/from spindle, chuck jaw changing, and tool turret indexing. Some of the activities 

may be carried out either when the machine is in operating or is being set-up according 

to the system design, e.g. tool magazine set-up or change over, pallet exchange or part 

magazine set-up. 

The model will not tackle the detailed part palletization, storage, etc., inside the 

turning cell. [42, 229, 244]. The workpiece flow in the turning system modelled will 

be relegated to the processing according to a scheduled work-list. 
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The Turning Model will not be constrained to a particular installations [280, 290, 

289, 291, 320]. It is based on the generalised tool flow network (Ref. to Chapter 7). 

The algorithms permit rapid configuration and reconfiguration of a selected level of tool 

flow automation. 

The use of this algorithmic approach provides a powerful tool to design, control 

and operating tooling systems in a particular manner. General purpose discrete event 

simulation and analytical models have not been used as the large body of data 

concerning tooling and tool flow activities are required to be recorded, manipulated and 

output The model works on definite time related data other than the normal statistical 

based outputs obtained form simulation. This approach, unlike simulation, is not 

strictly time synchronised based on next event or minimum time incremental. Instead, 

the time increment is detennined by major activities when a individual machine is due to 

be interactive with cell level work and tool flow. Back trace timing algorithms have 

been used to get the time related outputs. This simplified approach allows the user to 

focus on particular areas of concern, as well as provides time related outputs with 

respect to work and tool flow, manning requirement patterns which can be employed 

for predicting purpose. Once subject to interpretation combined with user's experience, 

the time related outputs can act as the base for adjusting work flow and manning 

schedule so as to achieve certain pattern. 

Detailed emulation [229] of the whole machining system was not chosen, which 

reduces the complexity of the model but calls for the manipulation of large body of data 

with specific concern at high speed, and simplifies the model set-up requirement put to 

a user. However, a detailed emulation model of part and tool flow is under 

development by a parallel research project which is a subject of a complement thesis 

[223]. The output of which is expected to be able to examine the nature of dual flow, 

and to fine tune tool and part flow interactively in a complicated system. The Turning 

Model should represent the turning automation as having been reviewed in the previous 

chapters in details and can be used to examine the unique features of tool flow 

incorporating tuming tools and live tooling for cylindrical component manufacture. 

The primary objective of the algorithmic approach is to generate tooling 

requirements by scheduling and sequencing the activities of machining and 

transportation and exchange of parts and tools efficiently and economically according to 

specified decision rules and strategies in order to evaluate the relative merits of these 

particular operating strategies or to evaluate alternative tool flow network designs. 
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6.4 TURNING MODEL OVERVIEW 

An overview of the model configuration is shown in Fig. 6.2. The configuration 

consists of a number of modules embedded within the user interface viz. the data input 

module, the work flow scheduler and a output module. these modules provide inputs 

necessary to drive the modelling algorithms which were discussed previously. A data 

collection facility retrieves the outputs from the modelling and organises the results into 

categories in a way which is meaningful and easy to interpret. 

6.4.1 The User Interface 

The user interface is based a on menu driven conversational structure which is 

closely related to the operation of a tool flow network for a specified level of 

automation. The interface is based on a software design now commonly found in 

machine controllers which employ automatic programming functions. The essence of 

this conversational language is the ability to prompt and assist the user by leading him 

through the required steps by asking the questions in the correct sequence and 

indicating the correct key to press. The user is asked to specify the manufacturing 

system parameters to describe the configuration, the machines, the transporters, the tool 

stores and the tool handling system. The user input is supported by an interactive 

database which contains information on machines, tools, parts, and configurations. 

This data base allows the user to retrieve or query data within the data files or 

alternatively, to input the data interactively through the user interface. As will be 

discussed in the next section, part flow will be scheduled according to heuristic priority 

dispatching rules which can be selected in the input process, or a pre-scheduled 

work-to-list will be accepted. 

Considerable detail involving complex relationships between the system elements 

has been built into the tool flow model through the use of rules and strategies. The 

intention of this detail is to reproduce as accurately as possible, the real operating tasks 

to be performed within the turning system, see Chapter 8, 10, 11. 

The model has the ability to record considerable amounts of user specific data 

on the operation of turning systems, tool and tool flow systems. Once subjected to a 

comprehensive analysis, those outputs can be employed to improve the overall tool 

flow system performance. The model can be subjected to a multi-run, thus a particular 

tool flow system can be modelled for several periods, and a comprehensive tool 

101 



inventory and requirement can be interrogated to permit the determination of the tool 

handling capacities. 

The model essentially tests out the acceptability of lathe solutions and offers a 

facility for the tuning the system perfo=ance. By varying emphasis on the ""rules and 

strategies the model could be forced to behave in a particular manner so as to allow the 

user to improve or design the overall perfo=ance and operation subject to his own 

experience. The results obtained from the model, see Fig. 6.3, typically include tool 

transfer schedules, through times, tooling requirement, tool life analysis, transient 

capacities, tool exchange forecasts, manning patterns, and finally the utilisations. The 

model is implemented on a state-of-the-art SUN 386i workstation which offers the very 

latest in 'multi-window' technology. This not only permits several models to be run 

simultaneously, but also allows the user to view and edit inputs and outputs side by 

side. This computing facility enhances computing power significantly and permits a 

large number of data entities to be considered. 

6.4.2 Production Scheduling Module 

Some basic loading and scheduling functions complement the tool management 

package to provide a balanced prototype modelling facility. 

Pan flow can be introduced either by inputting a pre-scheduled work-to-list, or 

through the built-in production schduling rules. The fo=er requires a work-to-list to be 

specified in sequence in the input process. Besides the possibility of acceptting a user 

specified schedule, it offers the flexibility to be linked to other production schedulers, 

e.g the EMULATOR [229] of the parallel research project 

When chosen to use the built in production scheduler, the specified production 

requirement is assigned to individual machines through the workload assignment 

module followed by either External or Internal scheduling algorithms according to the 

user specification, viz. 

a). External algorithms: schedule parts according to order and part characteristics, 

e.g Earliest Due Date (EDD), Shortest Processing Time (SPT), [35, 69,78], etc. 

b). Internal algorithms: schedule parts according to tool requirements and tool 

exchange effort [280, 289, 290, 291, 320]. 

A Computer Assisted ClusterAnalysis (CACA) module has been developed in the 
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group by DeSouza[77] which can supply a short range schedule to the Turning Model. 

The CACA module analyses the operations of each machine in a group to find tool 

families of parts which can be machined one after the other using the same tooling. 

Operation of such a manufacturing system is designed according to the concept of tool 

family scheduling. This strategy provides each machine with the flexibility to produce 

any individual part that is included in the tool cluster set. The tooling configuration of 

any primary tool store is thus managed on the basis of cluster sets rather than individual 

tools. 

6.5 COMPARISON OF THE TURNING MODEL WITH TOOL FLOW 

MODEL FOR PRISMATIC PARTS 

A comprehensive tool flow model has been built in the research group by De 

Souza, which is the subject of a complementary thesis [77]. This section is to give a 

brief comparison of the Turning Model with the prismatic tool flow model. Attention is 

focused on two areas: different features of the flexible machining systems for prismatic 

parts and for cylindrical parts; and the different areas that the two models tackled. 

Processing of prismatic parts features long operation time, longer tool life, and 

very small batch size. A machining centre is not so complicated as a highly automated 

turning centre with respect to tool and part flow. But the integration of machining 

centres into cells and multi-cell installations is highly advanced. 

The fixture flow, part palletization, and the storage of palletised parts in the cell 

level and machining centre buffer level requires careful modelling. Whereas for 

cylindrical parts, a number of items can be stored in a pallet and a number of pallets can 

be stacked beside a turning centre. 

~-

Most cylindrical components feature relatively shorter cycle times. It is more 

common to see batches oflarge size (up to 50 or even more). Turning systems usually 

operate on supervised mode but not fuIIy automated. Single turning centres have been 

highly automated, and equipped with automatic part loading/unloading robots 

[181, 195,230, 286], Automatic chuck Jaw Changing (AJC) [182, 215] and gripper 

exchanging, and Automatic Tool Changing (ATC). (Ref. to Chapter 3, 4). Power 

driven mechanism and C-axis has been added to give a CNC lathe secondary operation 

capability which eliminates the requirement of second operation set-up. Tool flow 

problem is more complicated with the introduction of live tooling (Ref. to Chapter 5). 
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The turning tool life is commonly monitored on the basis of engagement time, or 

number of cuts [30, 291, 230]. Tool lives are shorter, the tool exchange cycle time is 

relatively longer compared with machining centres, which increases the part cycle time. 

Tool magazines can be of very big size [58,189,155] to fulfill the tool requirement for 

long period of unmanned operation. Thus an even larger body of data entities are 

required to be handled by the Turning Model in tenns of tool inventory, and operation 

spectrum for a modelling period of the same length. 

These unique features, each of which is a subject of algorithmic representation, 

have been incorporated into the model design (see Chapter 8). 

With regard to the model structure, the following differences can be drawn: The 

Turning Model has incorporated a production scheduling facility to provide a balanced 

design aid. It is planned that the scheduling module can be employed to provide 

scheduled work lists for the tool flow model for prismatic parts. 

The Computer Aided Cluster Analysis (CA CA) module for tool and part 

clustering has been developed as part of prismatic tool flow model. It can also provide a 

short range schedule for the Turning Model. 

Algorithms for manning pattern prediction have been incorporated in the Turning 

Model, since the manually supported turning cells are widely used. 

The prismatic tool flow model is not so centred on individual machines as the 

Turning Model is. Instead a multi-cell structure is adopted, which can incorporate the 

Turning Model for hybrid facility modelling, see next next section. 

6.5 MODELLING OF HYBRID FACILITIES 

The Turning Model can be incorporated into the tool flow models for prismatic 

parts manufacture [77] to model a mix of facilities where machining centres and turning 

centres are present in hybrid cells or a cylindrical part cell is in parallel with a prismatic 

part cell. In such cases the turning centres will be represented in a simplified artificial 

machining centre fonn in the prismatic tool flow model for long time system 

perfonnance prediction followed by detailed Turning Model or prismatic part modelling 

to evaluate the system operation in details and CNC lathe acceptability and to fine tune 

the turning facility perfonnance. 
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CHAPTER 7 TOOL FLOW SYSTEM CONFIGURATION 

AND TOOL MANAGEMENT FRAMEWORK 

7.1 INTRODUCTION 

The Turning Model handles highly automated machining cells for cylindrical parts 

with a great detail of tool flow. The part flow side has been concentrated on the 

scheduling of part movement inside turning cells. The two interactive aspects are linked 

up by tool flow management strategies. 

A structured approach for generic representation of tool flow configurations is 

presented in this chapter, in tenns of hierarchical tool storage, issue, and transportation, 

based on the survey of current tooling systems in the previous chapters. This generic 

representation, together with its associated tooling strategies, provides the basis for the 

algorithmic computer model building, see the later chapters. A framework for tool flow 

system design and operating strategy evaluation is presented, which employs the built 

computer aid - Turning Model. 

7.2 TOOL FLOW SYSTEM CONFIGURATION 

The tool flow network defined makes use of a tool transportation system 

inter-linking a hierarchy of tool stores where tool exchanges take place (Fig. 7.1, 7.2). 

(Ref. to Chapter 2, 3, 4, 5). 

The network has been defined hierarchically in 3 levels: the central tool storage 

and tool issue, turning cell level, and single turning centre level. It has been recognised 

to consist of the following essential elements: [14, 129, 122,291,320,244,93]. 

1). Central tool storage. 

2). Factory level tool transportation and distribution. 

3). Cell secondary tool storage and control. 

4). Cell level tool transportation. 

5). Individual machine based tool storage and tool exchanging. 

7.3 CENTRAL TOOL STORE 

The Turning Model deals with the Central Tool Store (crS) activities in full detail 
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which involves the following aspects (Fig. 7.3): tool preparing, issue and returned tool 

disposal. New tools are prepared according to the production requirement and 

distributed to the turning cell; Tools returned from the turning cell are assessed, 

refurbished and disposed. Reusable and refurbished tools will re-enter the circulation. 

[40,41,57, 101]. 

Tools are refurbished according to the specific criteria [93]. Live tooling will be 

re-ground. Turning tools with indexable inserts will be reconditioned with a fresh tip 

present. Tools (both live tooling and turning tools) that are not required will be 

disassembled so that the tool parts can be used for the assembling of other tools. 

Tools will be assembled and preset in crs according to the production schedule 

(Ref. to Chapter 11), and issued to respective individual machines [59]. 

The outputs of the Turning Model with respect to the CTS will include the 

requirement of tool assembly, preset"and disposal; tool issue list and the total tool 

component requirement for the production period which can be employed for the 

forecasting of tool components inventory and purchasing for the planning period. [41, 

46,77]. 

7.4 CELL SECONDARY TOOL STORAGE 

A turning cell consists of one or a number of CNC turning centres [10, 186, 

312]. (Fig. 7.4). (Ref. to Chapter 3).The tool flow activities modelled in the cell level 

include the tool supply, exchange and transportation between the cell Secondary Tool 

Store (STS) and individual turning centres.The cell Secondary Tool Store (STS) 

supplies tools to all the machines inside the turning cell [lOO, 122]. A STS is used for 

either one of the following two modes: 1). as a transient tool buffer linking an FMC to 

the crs; 2). or, as a major tool store with big capacity to hold all the tools required by 

the turning cell for a planned production period. 

Tools are stored in numbered positions in the STS. [157,187,321,322]. STS 

capacity has to be specified as number of tools that it can handle. STS capacity in the 

industrial installations features a big range. A STS of a small turning cell usually has 

the capacity between 120 up to 240 [157, 187, 321]. As far as the software is 

concerned, there is no limit for the maximurn STS capacity that can be modelled. 
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A cell tool transporter of user specified capacity links the STS (if any) to 

respective turning centres. It transfers tools from the cell's STS to a machine's primary 

tool store at specified stages of machine's schedules. [84, 126]. 

Turning cells are more likely to be less mechanised compared with machining 

centres, where highly automated turning centres work independently rather than highly 

mechanically integrated. Or, although the machines are integrated in terms of workpiece 

flow, the tool flow inside the cell still features operator intervention for tool exchanging 

[8, 10, 11,31, 104]. To represent this situation, the tool transportation in the cellleve1 

can be either automated [15, 211], or manually [309]. 

The system transportation network links the system central tool store to respective 

cells' STSs. New tools are transferred from the crs to the respective STS, worn tools, 

if any, are loaded into the transporter and returned to the crS. [14, 15, 129, 130, 

211]. 

It is assumed that the same time interval is required for the tool transporter to 

travel from the STS to any machines in the turning cell. No inter-machine tool exchange 

is allowed [77]. 

7.5 TURNING CELL CLASSIFICATION 

Three types of multi-machine turning cells have been classified: 

(1). Manually Supported Turning Cell, fig. 7.5: work flow to the cell is carried 

out automatically through the factory level workpiece flow system. Workpiece 

loading/unloading between each machine spindle and part pallet is done automatically, 

e.g by a machine equipped industrial robot [176, 286], or gantry type workpiece 

exchanger [140, 141, 142, 180]. 

The manning involvement includes tooVmagazine exchange to the machine, and 

workpiece pallet exchanging between the machine workpiece buffer and the cell buffer; 

The industrial iristallations fallen into this category are: Traub [92, 201], SMT [153, 

197], etc. 

(2). Manually Operated Turning Cell, fig. 7.6: each machine requires a operator 

for pallet exchanging, tooVmagazine exchange, during the set-up period of a batch, and 
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workpiece loading/unloading during the processing of a batch. The NGL CNC turning 

cell presented in Chapter 13 is a typical example of this type of installation. 

(3). Highly Automated Turning Cell, fig. 7.7:. the tool/magazine exchange, part 

pallet exchange, and workpiece loading/unloading are all performed automatically, e.g. 

Fanuc Motor Factory [105, 107], Yamazaki Rotational Line [15, 44, 211], FAST of 

Takoka [21]. 

7.6 TURNING CENTRE 

7.6.1 Basic Features 

Individual CNC lathes feature machine based tool storage for normal turning 

operations under the supervision of operators for part handling, etc. (Fig. 7.8). 

Two types of machine based tool storage configurations have been recognised: 

(1). Turning centres with single or double tool turrets [203,213,214,215,286]. 

The Tool Flow Model can handle tool turrets of up to 16 (or even more) 

positions. Tooling features such as modular tool design [156, 188, 284] can be 

modelled. The tool turret(s) is defmed as the basic tool store. 

(2). The tool turret backed up with the tool magazine. Such a magazine which 

supplies tools to the tool turret of one machine is defined as the Primary Tool 

Store (PTS). Tool magazine capacities usually range from 30 to 150. [58, 156, 

157,165,166,187,188,215]. The maximum PTS capacity limit has been set to 

240 tool positions [188, 189]. 

Bar turning CNC lathe can be modelled. The extra features of a bar machine are 

its bar storage magazine and bar guide system. Two type of bar guide systems has been 

recognised: 1). Oil-fllled bar guide tube; 2). Roller systems with pliable rollers. [204, 

285]. 

7.6.2 Highly Automated Turning Centre Features 

In addition to the basic features mentioned above, it is intended to model turning 

centres with the following advanced features (Fig. 7.9): 
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(1). Automated chuck jaw changing, and gripper exchanging [127, 215]. The 

selection of a set of chuck jaw is according to the component diameter range that it can 

handle. The number of chuck jaw sets implemented in practice range from 3, 6, up to 

15 [182,215,300]. The maximum sets of chucks has been set to 15. 

The handling of automatic gripper exchanging in the computer model works in the 

same principle as the automated chuck jaw changing, with each set of grippers being 

specified with the minimum and maximum workpiece diameter that it can 

accommodate. 

(2). Automatic tool gauging [165, 196,215]. The process of the tool presetting 

and tool wear compensation by head-stock mounted tool probes can be modelled. The 

tool gauging time is regarded as part of set-up time. 

(3). In process workpiece measurement, the storage and exchange of contact 

probes have been incorporated into the Tool Flow Model design. The probe storage and 

exchange is modelled in the same way as cutting tools, but with very long tool life. 

Particular turret positions can be specified to accept probes. [165,216,265,285]. 

(4). The storage and exchanging of both turning tools and live tooling. Turret 

positions with power driven mechanism have to be specified to accommodate live 

tooling. [157, 173,203,286]. 

The following PTS features have been incorporated into the Turning Model 

design: 

(1). Tool magazines for turning tools only. [188, 189]. 

(2). Tool magazines which can store both turning tools and live tooling. [58, 106, 

190, 191, 215]. 

(3). A tool magazine for turning tools plus a tool magazine for live tooling. 

The PTS (if any) of a turning centre is linked to the cell's secondary tool store by 

the cell tool transportation mechanism. 

Tool spectrum includes the nonnal turning tools, live tooling [190, 191], and 

turret mounted contact probes for workpiece measurement [165, 216, 265, 285]. 

Turning tools are further classified into external and internal operation tools. 
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7.7 TOOL MANAGEMENT FRAMEWORK 

The essential role of tool management is the timely scheduling of tools to satisfy a 

short to medium term manufacturing task. A framework for tool management is shown 

in fig. 7,10. The first phase is to specify the manufacturing system configuration and its 

associated level of tool and part flow automation appropriate for the manufacturing 

requirement. As will be seen in the case study of Chapter 14 the turning centre 

automation features bear the direct and the most significant relationship with respect to 

number of machines required, tool issue requirement and tool inventory, and manning 

pattern for tool and part flow. 

The second phase involves the definition of tooling strategies which includes the 

specification of tool management strategy in the high level and tool storage and issue 

strategies in the lower, operational level. The tooling strategy selection in different level 

influences each other, see below sections. The determination of the turning system 

configuration and tool management strategy often dictates a certain choice of tool 

storage and issue strategies which interact amongst themselves. 

The third phase will be the implementation of the modelling technique to test out 

the tool flow system installation or a new proposed system design, and to provide an 

appropriate tool flow management solution for a turning system to fulfill a certain 

production requirement 

There are several factors involved when considering the form of tool management 

system to implement or to replace in a flexible machining installation. These are total 

tool inventory, tool requirements, the transfer network, the tool flow solution, the 

production volume, the part mix and last but not least, the cost. 

The total tool inventory is by far the most important factor, as it is the substantial 

reduction of this inventory that most tool management systems seek to achieve. The 

efficiency of a tool management system is often judged against the number of captive 

tools versus the cost of holding and maintaining this tool inventory. In the case of 

turning systems the number of captive tools at cdl and machining level is the major 

factor in determining the total tool inventory and the cost of the solution. 

While the presence of live tooling requires careful planning and design of tool 

flow and handling at individual machine level, the cost of live tooling inventory may 
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only show in the central tool store with regards to tool component requirement and tool 

preparing effort, see Chapter 11. 

The transport function at celllevel is also a major feature of any tool management 

systems. The pattern of supply and return of tools is of particular importance. A 

number of solutions exist resulting in either irregular, periodic or regular patterns of 

supply and manning. The solutions, some of which are cheap but clever, and others 

which are expensive in hardware often reflect the level of software control inherent in 

the system [211, 301]. 

7.8 HIGH LEVEL TOOL MANAGEMENT STRATEGIES 

The tool flow system can be operated under one of the two types of tool 

management strategies: viz. tool oriented and workpiece-oriented tool management [77, 

292}. 

(1). Tool oriented system a 'fixed cluster' of tools is used for the whole 

production period. A worn or broken tool will be substituted by its sister tool, but no 

new tool type will be introduced during the production period. [245,291,320]. 

Groups of tools can be formed to produce certain types of parts. The control of 

tool flow will be addressed to tool groups rather than individual tools. This gives the 

flexibility to the turning centre to produce any individual part within the tool group, as 

long as the tool group is present. The acrual control of tool flow has been greatly 

simplified and it offers greater system reliability. But this strategy does require 

complicated software for tool group forming. Large tool requirement may result due to 

the duplication of tools between tool groups. [169, 170, 171]. 

A statistical method - Cluster Analysis can be employed to cluster the tool groups 

[77, 126, 283, 293]. A Computer Assisted Cluster Analysis (CA CA) software has 

been written in the research group by De Souza to form tool and part families for tool 

oriented systems [77], which is implemented in the Turning Model when required. 

(2). Workpiece oriented tool management: It requires supplying of tools according to 

the requirement of each part operations [47,48,280]. Tools are scheduled to a machine 

according to its work-schedule. Tool sharing can be achieved but complicated 

software is required in terms of tool issue, transportation, setting-up, etc. [292]. 
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It has been decided to model turning systems under the workpiece oriented strategies 

(unless specified as tool oriented) as this is the case when complicated tool flow 

management is required. 

7.9 TOOL STORAGE STRATEGIES 

Tool storage strategies are determined by the turning system configuration and 

individual turning centre design. It bears direct relationship with tool issue strategy as 

will be discussed in next section. Tool storage strategies fall in either of the two 

categories: 

(1). Decentralised: individual machine based stores (the turret and magazine) hold 

most/all of the tools for a production period. [43, 101,259]. 

(2). Centralised: Cell secondary tool store or central tool store holds most of the 

tools required by the whole turning cell. [41, 101,290,291,320]. 

The decentralised tool storage strategy may result in large tool inventory of the 

cell and requires large tool magazine capacity. But it puts less requirement on tool 

transportation inside the turning cell once the tool magazine has been filled up. 

The tool transporter may be a gantry robot which transfers a single tool at a time, 

or tool exchange device which handles a package of tools. 

The centralised tool storage strategy requires a large cell level secondary tool store 

capacity (STS), tool saving may be achieved by permitting tool sharing across 

individual machines, but only at the expense of extensive tool exchange effort between 

the STS and individual machine magazines. This strategy requires a tool transporter 

with bigger capacity, high movement speed, or more than one transporters for the 

FMC, otherwise, the tool transportation may become the bottleneck of production. 

Cylindrical component manufacturing features shorter part cycle time, shorter tool 

life, and big tool variety (including live tooling), larger batch size (around 50), which 

results in larger tool requirement. Tool transporters may be used extensively both for 

new tool type exchanging and for worn tool replacement. 

7.10 TOOL ISSUE STRATEGIES 

Tool issue deals with allocating and distribution of tools to operations on respective 
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turning centres. The selection of tool issue strategy reflects the form of tool 

management required. The solutions adopted range from kitting through to the issue of 

single tools. The selection of tool issue solution bears a direct relationship to the pattern 

of supply and return of tools within a cell and thus on the selection of the tool 

management strategy in the high level and the selection of tool storage strategy 

mentioned above. 

The selection of an appropriate tool issue strategy is dependent upon a number of 

parameters other than the tool management category, see fig. 7.11. The interaction and 

specification of these parameters will suggest a suitable tool issue strategy. The 

selection of machine, local tool storage (whether tool magazine, tool turret, or block 

tooling system) and local tool store capacity is a primary factor in determining the 

method of tool issue. The part mix, complexity of machining and the certainty of visits 

of specified parts to specified machines, are secondary features. The local part buffer, 

number of operations per part and the operation or tool usage times would also almost 

certainly dictate the method of tool issue as would 'the tool flow network, whether 

automated or otherwise. Last but by no means the least as an influencing factor, is cost 

which bears a direct relationship with all the other factors. 

Following the specification of turning system configuration and tool management 

and storage strategies, tool issue strategies fall in one of the two categories: 

(1). Tool issue for next production period; 

(2). Tool issue for next batch. 

7.10.1 Tool Issue for Next Production Period 

This category of strategies recognises common tooling between workpieces or 

several part batches in the same production period [25, 33, 41, 74, 101]. Tools which 

are so identified are not duplicated in the machine based tool stores (magazine and 

turret) for each part type. It thus has a tendency to lessen the total tool inventory. The 

tool magazine is serviced only once at the beginning of a production period which may 

consist of a number of batches or a number of pallets of a same batch if the batch size is 

large. The constraints of this strategy category is the tool magazine capacity. Two types 

of magazine service strategies are evident: 

(1). Complete magazine exchange; 

(2). Partial magazine service. 
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7.10.1.1 Complete Magazine Exchange 

Before the start of next production period, a tool magazine newly filled with tools 

for next period will be exchanged with the tool magazine for the previous period.Thisis 

a common practice where the whole magazine, especially block type magazine, can be 

exchanged [95, 188, 189]. 

This strategy recognises the tool sharing between part operation of the same 

period, but ignores the possible tool sharing between successive production periods. It 

facilitates tool flow automatio since tool exchange to a machine can be done in a short 

time provided that the preset tools have been filled in a tool magazine and ready for 

exchange when required. The strategy is more suitable for larger batch manufacturing 

which is a unique feature of tuming manufacturing [103, 105] and calls for unmanned 

processing. 

7.10.1.2 Partially Serviced Tool Magazine 

At the end of a production period, only worn tools will be removed form the tool 

magazine, and new tools required for next period will be loaded. It recognises tool 

sharing both among batches of the same production period and between the successive 

periods. The strategy suits the manufacturing of a variety of batches of smaller size. In 

such a case, large variety of tools will be required with each tool being used for a 

shorter time period thus it can be used for next period. The strategy is a feasible 

solution for tool flow when the tool magazine can be serviced during the machine is in 

operation, otherwise long time delay will be likely due to tool exchange. A number of 

manufacturers have offered such turning centres suiting this tool issue strategy to 

facilitate low batch size I big variety ofworkpiece manufacturing [14, 77. 101]. 

7.10.2 Tool Issue for Next Batch - continuously Replenishment 

Migration of tools at the completion of a workpiece type permits tools to be 

provided, replenished, and re-circulated to machines continuously as required by work 

flow and not periodically at the end of a fixed number of batches or pallets as in the tool 

issue for next period strategies. In this category of tool issue strategies the production 

period is not affected by the tool magazine capacity. As a batch is completed several 

tools may become candidates for removal from the machine. This removal permits to 
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loading of tools required for other workpieces. This category of strategies allows the 

ability to respond to unexpected situations which may arise during the production. 

However, the decision logic concerning the set of tools to leave the machine based tool 

stores and new tool issue list becomes more sophisticated which can only be 

determined by modelling. A number of tool issue strategies of the category have been 

incorporated in the turning model design: 

(1). Tool Kitting; 

(2). Differential Tool Kitting; 

(3). Single Tools. 

7.10.2.1 Tool Kitting 

Tools are issued in kit for each batch visiting each machine. When the present 

batch is still in processing, the tools for the next batch will be kitted. The tool kit will be 

transported to the machine before the finish of the present one, and will be exchanged 

with the used tool kit. This strategy guarantees maximum tool availability, and tool 

transporters will be called only once for each batch, if the transporter capacity is 

sufficient to handle the largest tool kit. [46, 101, 289, 290, 294]. The strategy may be 

justified when a chain type magazine (or tool pallet) which has a limited number of tool 

positions but can handle the mixture of turning and live tooling, is implemented. 

7.10.2.2 Differential Tool Kitting 

Tools are issued in kit for each batch, but common tools can be shared between 

tool kits in the same machine. Tool transporter will transfer the tools that are not 

available in the tool magazine and the tool turret to the machine for the next batch. This 

strategy goes one step further than the tool kitting concept. Tool requirement can be 

reduced, because of the sharing of tools between part types. But the tool flow model 

software has to decide which tools should leave and which tools should be retained in 

the machine after the completion of a batch. [46, 101,289,290,291,320]. 

7.10.2.3 Single Tools 

Tools are issued to a machine individually when a tool requirements arise. Tools 

can be shared in the machine by all the part types. This strategy requires a relatively 

simple software, but the tool tansportation system may be kept busy for assigning 

tools. It is only feasible when most of the tools are available in the the machine based 

tool stores [77]. This is true when a turning centre has been equipped with large 

capacity tool magazine, which can hold the tools required for a shift or even longer 

operation [182, 188, 189]. 
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CHAPTER 8 TOOL FLOW MODEL· SINGLE MACHINE 

8.1 INTRODUCTION 

This chapter presents the Turning Model in single machine level. As having been 

indicated in Chapter 7 that the Turning Model is designed to represent turning systems 

in full detail. Both the basic turning automation features such as turret and magazine 

tool storage and exchange, and the highly automated features, e.g chuck jaw changing, 

gripper exchanging, secondary operation and live tooling exchange, have been highly 

regarded in the model design. The modelling of twin-turret/spindle turning centres have 

also been discussed. 

8.2 OVERVIEW OF SINGLE MACHINE MODEL 

The activity diagram of a fully automated CNC turning centre has been shown in 

Fig. 8.1. When a new batch arrives, a suitable set of chuck jaws (if required) is 

exchanged to the spindle [2151, and at the same time a proper set of grippers is 

exchanged to the workpiece exchanger. Each batch item will be loaded into the 

machine, and at the same time a suitable tool will be indexed to the machining position, 

then the cutting operation can be performed. 

If a required tool is not present in the turret, a suitable tool will be indexed in the 

PTS and exchanged to the turret after the completion of the previous operation [158, 

174, 1871. After all operations have been finished on the machine, the component is 

unloaded. The whole process will be repeated for all the batch items. Once the whole 

batch has fmished its processing, it will leave the machine for further operation on other 

machines or for storage. 

A turning centre's PTS is linked to the cell's STS through the cell level tool 

transportation mechanism (Ref. to Chapter 7). Tools required are transferred to the'PTS 

by the tool transporter, and exchanged with the used tools [1221. The same transporter 

is employed to return the used tools back to STS, worn tools are then returned to the 

CTS for refurbishment. 

The logic flow diagram of a single machine is shown in Fig. 8.2. 
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8.3 CHUCK . JAW CHANGING AND GRIPPER EXCHANGING 

Automatic chuck jaw storage and exchanging can be modelled. Time required to 

exchange a set of chuck jaws should be specified. Two types of automatic chuck jaw 

changing process can be modelled: 1): only the 3 top jaws are changed, 2). the chuck 

assembly exchanges as a whole (Ref. to 3.3). [127, 182, 215]. Chucks Uaws) are 

stored in the jaw magazine or pallets. It is anticipated that other kinds of component 

clamping device, e.g collet, can be modelled in the same way as chuck jaws [127]. 

Fig. 8.3 shows the logic flow of chuck jaw changing. Part types of different 

chucking end diameter may require different jaw sets to achieve the best clamping 

feature according to machine specifications. If a new part type will be loaded for 

processing, a check will be made to see if the set of jaws in the chuck can handle the 

workpiece, if not, a suitable set will be found in the jaw magazine, and the selected set 

will be exchanged to the chuck. The first set that can incorporate the workpiece 

chucking end diameter will be selected. Part loading and machining can then proceed. 

The chuck jaw selection criterion is diameter range. Each set of jaws is specified 

with an application range in terms of minimum and maximum chucking end diameter of 

the component that can be handled. 

Algorithm 8.1, CHUCK JAW EXCHANGING 

'Terminology': 
dmaxc: The maximum diameter that the chuck jaw set c can handle. 

dminc: The minimum diameter that the chuck jaw set c can handle. 

di~: Chucking end diameter of part type i. 

J: {jl j = 1 ...... CNo} index of chuck jaw magazine position. 

C: {cl c = 1 ...... CNo} index of jaw set. 

CNo: No. of jaw sets I chuck jaw magazine positions. 

Magj: The No. of the chuck jaw set in magazine position j. 

Cma&: The magazine position No. occupied by jaw set c. 

Magj = Arc(CmagC>. 

Cin: The jaw set No. in the machine spindle. 
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Pi : Processing time of order i 

'Pi: Previous process time of order i up to date. 

'Algorithm' 

Step 1. c = Cin. 

If dm1lXc >= dia;, >= dminc then 

the jaw set in the spindle is usable, terminate 

Else go to step 2. 

Step 2. j = 1. 

2.1). c = magj. 

If dmaxc >= dia;, >= dminc then 

go to step 3 

Else go to 2.2 

2.2). if j < CNo then 

j = j + 1, go to step 2.1 

Step 3. Pi = 'Pi + Chuck jaw exchange time. 

Cmagc =Cin. 

Cin = c. Terminate. 

The gripper exchanging is modelled in the same principle as chuck jaw changing, fig. 

8.4. 

8.4 CUTTING TOOLS 

Each tool is given a unique number, and the tool type that it belongs to (FfNt>. 
/ 

Tools are used and assigned to operations according to their tool types. Tools of the 

same type are defined as sister (duplicate) tools. [84, 245, 169]. Three tool status 

(Tstatust ) values have been defined to force tool behaviour and their transfer inside the 

turning cell: 
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'F' (Free), Le the tool can be used anywhere in the system; 

'R' (Reserved), Le the tool is reserved for a particular tool kit; 

'W' (Worn), Le, a tool (tip) is defined as worn, if its percentage tool life 

utilisation has reached the maximum permissible percentage life utilisation, which 

is a predetermined value specifying to which extent that the tool can be used. [43, 

245, 320]. 

Two 'tool life criteria' can be implemented to determine if a tool is worn. 

Tool Worn Criterion 1: 

If accumulated percentage life utilisation has reached the maximum permissible 

limit, the tool is worn; 

The tool life value of each cutting tool consists of [77]: 

(1). The tool life equation and/or the tool life constants to give a specific tool life 

in a specific cutting condition for a particular workpiece material. 

(2). 'Operation tool life', Le the length of time the tool will last for, in the 

condition of the tool operation. This is dependent upon such factors as cutting depth, 

cutting speed, and feed rate, etc. Taylor equation can be used to calculate the tool life 

[59]. 

(3). 'Operation tool life used', Le the length of time required for the tool to last to 

complete the tool operation. 

(4). 'Percentage operation tool life used': calculated as: 

(Operation tool life used) I (Operation tool life ) 

(5). 'Percentage tool life used': calculated as the summation of all tool operations 

'percentage operation tool life used'. 

(6). 'Percentage available tool life' for this tool calculated as: 

current tool life allocation - (percentage operation tool life used). 

A new tool has a current tool life allocation of 100%, and is progressively updated. 
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(7). 'Maximum permissible life utilisation' defined as a certain limit that a tool can 

be used. A tool is 'worn' if 

Percentage tool life used >= Max. permissible life utilisation. 

Tool Worn Criterion2: 

If the total cutting time of the tool has reached the maximum permissible limit, the 

tool is defmed as worn: 

(1). Tool engagement time of operation j of part i: Pij' 

(2). Total tool engagement time of tool t 

TTt = 'TTt + Pij' 

'TTt : Tool engagement time up to the operation. 

(3). 'Maximum permissible life utilisation' (TTmaxJ is defined as a certain limit 

that tool t can be used. 

A tool is 'worn' if 

As tool life utilisation for turning systems are most often based on tool cutting 

time in actual industrial practice [31, 196, 291, 320], the Turning Model is selected to 

function on the' criterion 2 '. 

In the tool flow pattern where the turning tools' inserts can be indexed at 

machines, the insert will be indexed for a fresh tip and the percentage life utilisation will 

be set back to zero, providing that a new tip is available. Tool 'worn' status will be set 

to false. 

8.5 TOOL EXCHANGE BETWEEN TURRET AND PTS 

The flow chart of tool exchanging between turret and PTS is illustrated in fig. 8.5. 

Tool life is recorded by keeping tool files for tools in the machine. Before an 

operation is commenced, a check is carried out to see if a tool of the type required by 

the operation is present, and if the tool life left is sufficient to complete the operation. 

After each operation, the additional cutting time will be increased to the appropriate 

accumulated used tool life. 
, 

TTt = TTt + Pij' 
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If the accumulated tool life utilisation reaches a certain limit. the tool is considered as 

worn. [31. 230. 245]. 

Before an operation is started. the turret position containing the tool required will 

be indexed to the machining position. Tool indexing time will be added to the part 

processing time. 

Algorithm 8.2. TOOL INDEX TIME CALCULATION 

Pij= Processing time of operation j of part i. 

'PiJ Processing time of operation j. order i up to the .date. : 

n': Previous turret machining position. 

n: New turret machining position. 

Itime: Turret index time per position. 

Tposits: No. of positions of the turret. 

If In - n'l <= (Tposits div. 2) then 

Pij = 'Pij + In - n'l * Itime 

Else 

Pij = 'Pij + { (Tposits div. 2) - In - n'l) * ltime. 

(The turret takes the shortest indexing path). 

If a tool required is not available in the turret. a suitable tool will be exchanged to 

an appropriate position of the turret. and the tool leaving the turret will be replaced back 

into the PTS. 

Algorithm 8.3, LOCATING TOOL IN TURRET 

Tenninology: 
MTpostm: Turret capacity of machine m; 

n: turret position No.; 

TStock(n): Tool No. in turret position n. 
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Step 1. n = 1, t = TStock(n). 

Step 2. Check Tool: 

If FfNt = TIypei,j then go to 2.1 

Else go to Step 3; 

2.1). If TStatust = 'F' then go to 2.2 

Else go to Step 3; 

2.2). If TIt + Pij <= Tmaxt then 

Locate tool t for operation j of part i, tenninate 

Else 

TStatust = W', go to Step 3; 

Step 3. If n < MTpost", then 

n = n + 1, 

t = TStock(n), go to Step 2 

Else 

No suitable tool in turret, locate tool in PTS, 

(if applicable, Ref. Algorithm 8.4 ). 

Algorithm 8.4, LOCA TB TOOL IN PTS 

The locating of a tool in the PTS is carried out in the same way as for the turret, 

except that n is defined as PTS position, tools in PTS (pStock(n» will be checked 

with the capacity limitation of the PTS as MPpost",. 

A tool leaving the turret for PTS will be decided by the following criteria (the 

priority decreases as the No. increases): 

Tool Leave Criterion 1 : 

A tool in the position that is required for some other use has to be transferred to 

the PTS to vacate the turret position. Turret positions have been specified as 

positions for external or internal operation tools, or for live tooling [158, 173, 

196, 203]. (Fig. 8.6). It is possible to specify one position to accept different 
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tools as is the case when modular tooling system is used. 

1PN: Turret position set dedicated to tool type N, 

N = lE (external tool), I (internal), L (Live tooling)}. 

Nt: The classification of tool t; 

When tool t is to be exchanged into turret, a check is carried out to see if there is a 

empty position n ENt, and TStock(n) = 0, 

if there is, then turret position for new tool P2 = n 

else, P2 = 1PNt(I), 

Tool leave turret TTleave = TStock(P2). 

Tool Leave Criterion 2: 

A 'Worn' tool (TStatust = 'W') will be put back to PTS so as to be transferred to 

the CTS for refurbishment. 

Tool Leave Criterion3: 

A 'Free' tool (TStatust = 'F') will be put back into the PTS in order to be 

transferred back to the STS so that it can be used by other machines when tools 

can be shared between different tool kits. 

Tool exchanging between the PTS and the turret will be carried out by the 

Automatic Tool exchanger (ATC). Turret and PTS indexing time are required to be 

specified. Tool exchanging time between the PTS and the turret has been divided into 3 

parts, viz, time required to load the A TC from the PTS, ATC transfer time to cover the 

distance between the PTS and the turret, and tool exchange time between the ATC and 

the turret. [158, 174, 187]. 

While the machine is in operation, the tool required for the next operation is 

searched, retracted into the ATC gripper, and transferred to the exchange position. On 

completion of the previous cutting operation, the tool leaving the turret (if any) is 

indexed into the exchange position, the ATC will take the old tool out of turret, insert 

the new tool into the appropriate position. The used tool will be replaced back to the 

PTS while the machine is performing the new operation. 
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Algorithm 8.5, TOOL EXCHANGING BETWEEN TURRET AND PTS 

Step 1. Position Exchange: 

TTIeave: Tool No. leaving the turret; 

PI: Position that holds the tool leaving turret; 

TTnew: New tool No. from PTS; 

P2: Turret accepting new tool; 

P3: PTS position that holds the new tool; 

TStock(Pl) = 0; 

TStock(p2) = TTnew; 

PStock(P3) = TTIeave; 

Step 2. Tool Exchanging time Calculation: 

r1: PTS ready time; 

r2: Turret ready time; 

T1 = rl - r2 (ifrl > r2); 

= 0 (Otherwise). 

Time increase due to tool exchange 

T = Tl + Tool transfer time + toolloadlunload time; 

Having received the required tool, the turret will be indexed to the machining 

position, the set up and cutting operation can then proceed. 

8.6 DISTRIBUTED TOOL STORAGE BETWEEN TURRET AND PTS 

The tool exchange between the turret and the PTS features a long cycle time, 

which may increase the part cycle time even further [158,174, 187]. The tool storage 

strategy for the turret is thus that tools required by the batch should be arranged as far 

as possible into the turret. Worn tools, or tools not required by the batch should be 

replaced into the PTS for storage. 

8.7 TOOL FLOW PATTERNS 

Two tool flow patterns have been recognised in the model (Fig. 8.7): 
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(1). Live tooling and other turning tools with fixed cutting inserts will be 

transferred back to crs for refurbishment and regrinding. For turning tools with 

indexable inserts, e.g. external and internal turning tools, when one tip has been 

worn, the operator of the machine can index the insert, makes a new tip present, 

and the tool can be used again on the machine. This pattern can be seen in the 

partially manned manufacturing systems, where the tool gauging facility has been 

equipped in the turning centre for tool presetting when a new tip has been 

indexed for machining [215]. 

(2). Both live tooling and turning tools will be transferred back to CTS for 

refurbishment and readjustment. The application area of this pattern can be found 

in the highly automated turning systems. The modular tooling system also adopts 

this pattern (Ref. to 4.2). 

8.8 TWIN TURRET/SPINDLE TURNING CENTRES 

Algorithms have been developed to represent the operating of twin turret /spindle 

turning centres. Turning centres have been classified into the following basic types: 

single turret - single spindle, twin turret - single spindle, and twin turret - twin spindle. 

The last two types are modelled on the basis of the first one but with their unique 

features. 

Tool supply from PTS to turret will take one of the following two patterns: 

two PTSs - two turrets: each PTS supplying tools to one turret, in such a case the 

tool exchanging between each pair of turret and PTS can be modelled in the 

similar way as that for single turret - single spindle machine. 

One PTS - two turrets: the PTS holds tools for the whole machine, tool 

exchanging between turrets and the PTS will be scheduled in the first come first 

served mode. 
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8.8.1 Twin Turret - Single Spindle Turning Centre 

By allowing two tool carriage to operate at same time, productivity can be almost 

doubled. Two tools working on both sides of a bar type component can increase the 

fmished workpiece quality by reducing X -axis force. 

Operations that are performed together by both turrets are represented in one 

operation block. Each block is described by the operations of each turret with 

associated tools. The processing time of each block is calculated as: 

Pb = Max (PI,b, P2,b)' 

The total processing time of one item is Pb. (Fig. 8.8). 

The tooling set up for each turret for a particular block consists of tool exchanging 

time between the PTS and the turret (if required), insert indexing, if applicable. 

Then 

Let: 

Pi,T,bj : Processing time on turret T of block b, operation j of part i (Ref. to the 

previous sections for processing time calculation); 

J: {jl j = 1,2 ... No of operations in block b} 

Tooli,T,bj: Associated tool; (Ref. to 8.5 for tool location). 

T: Turret designation, T = 1,2; 

IXt = I, if tool t in PTS, 

= 0, if tool t in turret. 

2Xt = 1, if tool t requires tip indexing, 

= 0, otherwise. 

Texch: Tool exchanging time between turret and PTS; 

Tindex: Insert index time; 

Tooling set-up time for turret T: 

Si,b,T = (IXt * Tech) + (2xt * Tindex) G E J) 

t = Tooli,T,bj; 
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Tooling set up time for the machine: 

Si,b = Max (Si,b,T) 

Processing time of block b of part i on turret T: 

Pi,T,b = L Pi,T,bj 

Processing time of block b of part i: 

Pi,b = Max (Pi,T,b) + Si,b; 

(T= 1,2) 

(j E J) 

(T= I, 2) 

8.8.2 Twin Turret • Twin Spindle Turning Centres 

In addition to the increased productivity by operating simultaneously on 
two workpieces, the twin spindle turning centre requires less work floor space [79]. 

The processing and tool exchanging on each turret / spindle is carried out in the same 

way as the single turret - single spindle turning centres (Ref. to the previous sections). 

The machine available time after the current allocated workpieces, fig. 8.9: 

Tavai = Tavai + Max (Pi,s) (s = I, 2) 

Pi s: The processing time of workpiece i on spindle s. , 
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CHAPTER 9 MODELLING OF A HIGHLY AUTOMATED 

SINGLE MACHINE TURNING SYSTEM 

9.1 INTRODUCTION 

The work presented here is the application of the Turning Model to a single 

machine cell based on : realistic industrial practices. The purpose of the work was to 

illustrate the capability of the Turning Model and the implementation of it when 

modelling a highly automated turning centre. The user interface of the software is 

introduced and demonstrated by putting the Turning Model through actual runs (Ref. 

to Appendix 1B for details) with an aim to provide a guideline for using the software. 

9.2 SCOPE OF THE STUDY 

It . is planned to model a highly automated system in the single machine level 

with the automated features as discussed in Chapter 3 and 4. The modelling of 

automatic tool exchange between the tool magazine and the turret, tool flow to and from 

the machine, live tooling and secondary operation, automatic chuck jaw changing, and 

gripper exchanging, will be illustrated using of the algorithms developed in Chapter 8 

(fig 9.1). A Traub installation has been chosen for the modelling purpose (fig. 9.2, 

9.3, 9.4). 

A number of runs have been conducted to study the tool flow and the operating of 

system when a complex of mix of small batches are sequenced for processing by the 

built-in production scheduler (Ref. to Chapter 12). A mix of pre-scheduled work-to-list 

of increased batch sizes is then fed through the model to examine the turning system 

performance. The study is then furthered to explore the nature of over-medium sized 

production for a long period and to examine the effect of altering tool life limit on tool 

magazine change-over and their complements. 

For each major run the following outputs have been extracted: 

- Tool requirements, tool life utilisation, and the frequency of tool usage. 

- The effect of tooling strategies on magazine complements and tool requirement; 
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- Machine schedules and activities; 

- Manning pattern including part and tool fllow for operating such a highly 

automated system. 

Due to the lack of infonnation, certain output options e.g tool component 

requirement (inserts, shanks, holders) are not demonstrated. But the capability of the 

Model in such aspects will be illustrated in the multi-machine cell case study, and the 

outputs will be subject to comprehensive analysis. 

9.3 DESCRIPTION OF THE HIGHLY AUTOMATED 

SINGLE MACHINE TURNING SYSTEM 

A highly automated turning system has been set up for the modelling 

experiments. The automatic features and the relevant data is based on TRAUB TNA 

480 turning centre with Flexible Handling System 2 (FHS2). (Fig. 9.1,9.2,9.3). [92, 

198, 201, 300, 301]. 

The CNC turning centre handles workpiece and tool exchange automatically. 6 

sets of chuck jaws and gripper jaws enable the machine to handle workpieces ranging 

from 10 to 180 mm in diameter. The automatic chuck jaw changing features 3 top jaws 

being exchanged simultaneously in 3 sec. The 60 position chain type tool magazine can 

accommodate turning tools, live tooling, and special tools e.g. probes in any mix. It 

can be serviced while the machine is in operation thus reduces the machine set-up time. 

Two workpiece magazines of 40 stations plus 5 empty positions for part circulation 

have been installed. While one magazine is in use, the the other one can be set-up for 

next batch. The workpiece exchanger is dedicated to loading raw parts and replacing the 

finished ones. Its double grippers can swap the raw/finished part in 2 sec. time. The 

tool exchange gantry is employed both for tool exchange between tool magazine, and 

for chuck jaw changing. The relevant data of the single machine cell is listed in Fig. 

9.2. 

5 part types have been derived from TRAUB machining proposals from the 

company's literature for modelling the purpose, fig. 9.5. [198, 199, 200, 203]. A 

complex spectrum of operations are required by the 5 part types: externaVinternal 

turning, off centre drilling, key way milling, flat milling and polygon turning. The 

process planning infonnation of a typical part type is shown in fig. 9.8. (Ref. to 
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Appendix lA for detailed part description and processing planning information). 

A total number of 28 tool types are required, including turning tools, drills, live 

tooling and contact probes (Fig, 9.9) [300]. 

The handling of the machine, part, tool information for the modelling purpose, 

and the Turning Model set-up is demonstrated by illustrating the conversational type 

screens in Appendix lB. 

9.4 SYSTEM OPERATING AND STRATEGIES 

9.4.1 Tooling Strategies 

The following tooling strategies have been modelled through out the case study 

(The framework of tooling strategy selection has been discussed in chapter 7): 

(1). Differential Kitting,. Tools are issued to the tool magazine in kits for each 

batch. Only the extra required tools that are not available in the machine based tool store 

are contained in a kit. Common tools can be shared between tool kits. 

(2). Complete Magazine Exchange: Before the start of next production period, a 

newly filled tool magazine will be exchanged to the machine. The tools contained in a 

magazine will be all that are required for the whole production period. A production 

period- is defmed as the time required for the production of a integer number of pallets 

which requires the number of tools up to the magazine capacity. This is a common 

practice where the whole magazine can be exchanged [95, 188, 189]. 

(3). Partially Serviced Tool Magazine: At the end of previous period, only the 

worn tools will leave the machine, and new tools required for the next period will be 

loaded. It is a feasible practice as adopted by the Traub machine, when a operator is 

available for tool exchanging into the magazine while the machine is in operation. 

Otherwise, a long delay due to magazine re-set- up will happen. [14,77, 103]. 

9.4.2 Production Scheduling Strategies 

As will be seen in Chapter12, the user interface of the Turning Model with 

regards to the production scheduling has been structured in such a way that it is 
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possible to feed the built-in production scheduler with the process and order 

information to produce a work-list for tool flow modelling, or to accept a pre­

scheduled work-to-list. These alternative ways of scheduling the batches for machining 

were examined: 

(1). Production scheduler: Scheduling batch by the built in production scheduling 

module. The scheduling rules implemented was (SPT), i.e when a part magazine is 

empty, sequence the batch which requires the shortest processing time to be loaded to 

the magazine. Part processing at the machine will be first come first served. 

(2). Pre-scheduled work-to-list: Batches are given in sequenced order for 

machining. It was decided to model this case in the purpose of both to examine the cell 

performance when the cell is used for increased batch size production; and to illustrate 

the Turuing Model's ability of taking the scheduled work-to-list from other production 

scheduler, e.g. the Emulator of the LUT FMS Design software suit [229]. 

9.4.3 Manning Operation of the System 

The operator involvement for the cell operation is assumed to be carried out in the 

following steps: 

Set-up Period 

Step 1: Load the first scheduled batch to the first part magazine; Load tools for the batch 

to the tool magazine; Start machine processing. 

Step 2: While the machine is processing the first batch, Load the second scheduled 

batch to the second part magazine; Load the extra required tools by the batch to 

the tool magazine. 

Step 3: At the completion of the processing of all the parts in a magazine, the machine 

will process parts from the other magazine. The operator is required to unload 

parts from the finished magazine and load the next scheduled batch. Load tools 

required by the batch to the tool magazine. 

Step 4: Repeat Step 3, until the last batch for the shift is loaded, go to Step 5. 

Step 5: When the machine has started processing the second last batch of the shift, 

unload the fmished magazine; uuload worn tools; Load the first scheduled batch for the 

next period to the empty part magazine; Load tools required by the second period. 
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Period After Magazine Change-over 

Step 6: At the completion of the last batch of the previous period, the machine will start 

the processing of the flrst batch of the second period. The operator is required to 

unload the fmished part magazine; load the second scheduled batch to the empty 

magazine. 

Step 7: On the completion of each magazine, unload the flnished part magazine,load 

the next scheduled batch, while the machine is processing parts from the other 

magazine. 

Step 8: Repeat Step 7, until all batches are loaded. 

Step 9: On completion of the second last batch of the period, unload the batch. 

Step 10: On completion of the last batch, unload the batch, and all the tools from the 

machine. 

9.4.4 Average Time for Manning Operation 

The following parameters were specifled for analysis and modelling: 

Load/unload time per part item to/from the part magazine: 0.5 min. 

Time required to load a tool to the tool magazine: 1 min. 

Time required to unload a tool from tool magazine: 0.5 min. 

The tool and information flow of the modelled turning system if of the type 

'integrated tool information flow' as discussed in Chapter 5 (flg. 5.18).It is assumed 

that tools are assembled and preset in the central tool store, and are loaded by the 

machine operator to the machine tool magazine. The preset tool data are stored in the 

preparation data file, and are linked up to the machine CNC controller through the cell 

, computer. When loading a tool into the tool magazine, the operator simply inputs the 

No. of the tool to the set-up terminal, all the relevant data of the tool will be loaded 

from the data base automatically. (Fig. 9.4) [92, 201, 300, 301]. 

9.5 MODELLING THE PROCESSING OF SMALLER BATCHES 

UNDER THE PRODUCTION SCHEDULER (RUN 1 . 3) 

Run I, 2, and 3 were planned to model the single machine cell when it is 

subjected to a complex small batch part mix production (Fig. 9.6). The built in 
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production scheduler was employed for batch sequencing. (Ref. to 9.4.3). The whole 

production process was divided into two periods according to the tool magazine 

pockets required. Run 1 modelled the set-up period of the system. Differential Kitting 

strategy was implemented for tool issuing. After the fIrst part magazine and its 

associated tool kit has been loaded, the machine can start processing while the part and 

tool magazine can be set- up for rest of the batches. 

Run 2 and 3 are continuous runs following Run 1 to model different magazine 

service strategies between the two periods. Run 2 represents a complete replenishment 

of the machine based tool store. The Complete Magazine Exchange tooling strategy has 

been adopted. At the end of the fIrst period the tool magazine will be exchanged with a 

newly fIlled tool magazine with required tools for the next period. Run 3 modelled a 

partial magazine service. 

9.5.1 Machine Utilisation 

The break down of the machine utilisation (Fig. 9.10, 9.12) shows that the 

machine is fully utilised featuring high percentage of cutting time. This is due to that the 

part and tool magazine can be set up whilst the machine is in operation. The fact that in 

the fIrst period, tools are loaded into magazine in kits for each batch allows the machine 

to commence processing as soon as possible, without waiting for the whole magazine 

to be fIlled. The two part magazine design allows the machine to process parts for one 

magazine when the other one is being loaded / unloaded for the next batch. 

9.5.2 Manning Pattern 

The operator involvement including tool magazine set-up and part magazine 

service. During the fIrst period (Run I), the operator is required for part load/unload to 

the part magazine between batch change over and loading tools for each batch. For the 

second period (Run 2 and 3), the operator is dedicated mainly for batch change over 

and unloading all the tools at the end of the period, fig. 9.11 9.13. 

/ 

9.5.3 Tooling Requirement And Tool Magazine Service 

The required number of tools for each run is given in (Fig. 9.18). The output 

shows that the magazine service is required between the two periods due to the 
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magazine capacity constraints. 

The first period (Run 1) requires a total number of 46tools. If the whole magazine 

is exchanged for the second period, 48 new tools are required (Run 2), which indicates 

a total number of 94 tools for the whole production period are necessary. 

If at the end of the first period only worn tools are unloaded and extra tools 

required are loaded (partially Magazine Service), a total number of 72 tools are required 

for the whole production period (Run 3), which results of saving of over 1/3 of the 

total tool requirement due to tool sharing between the two periods. This is due to the 

following two reasons: 

(1). The batch sizes are small (5 - 40), and large number of the tools are not used 

up to the tool life limit during the first period (Ref. to Appendix 1 C). 

(2). The batches of the same part types are repeated between the two periods, thus 

the tools of the same types are required, which results a high possibility of tool 

sharing. 

9.6 MODELLING THE PROCESSING OF A PRE-SCHEDULED 

WORK-TO-LIST (RUN 4 - 6) 

Run 4, 5 and 6 were planned to model the processing of the 5 part types 

according a work-to-list with increased batch sizes compared with Run 1 - 3, fig. 9.7. 

The purpose of the process was to illustrate the ability of the model to accept a 

pre-scheduled work list from other' production scheduler, and to examine the system 

performance under such a production requirement. The whole production is divided 

into two periods due to the tool magazine capacity constraints. 

Run 4 modelled the first period with the differential kitting being implemented. 

Run 5 and 6 modelled the successive period with complete magazine exchange and 

partial magazine service respectively. 

9.6.1 Machine Utilisation 

The break down of the machine total processing time into cutting, part and tool 

set-up time is shown in Fig. 9.14, 9.16. High percentage of total processing is 

dedicated for metal removal due to the unique feature of being able to set-up while it 

is in cutting. 
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9.6.2 Manning Pattern 

The manning activities for each situation are shown in Fig. 9.15,9.17, which are 

in the similar pattern to Run 1 - 3. But as 'PART2' and 'PART4' requires 3 and 2 part 

magazines (magazine size = 40) respectively, the operator is also required for part 

magazine set up during the processing of the batches. This is due to the particular 

design of the turning cell, which indicates that when larger batches are to be processed, 

e.g. 40 and over, a cell layout as discussed in Chapter 3 (Fig. 3.22 [58]) which 

employs stacked type part pallet will be more appropriate, as there will be no manning 

requirement for part magazine set-up during the batch processing. 

9.6.3 Tooling Requirement And Tool Magazine Service 

The tool requirement for each Run is given in (Fig. 9.18). 46 tools are required 

for the first period (Run 4). Run 5 indicates that a new magazine of 58 tools is 

required, when the complete magazine exchange strategy is to be implemented. Thus a 

total number of 104 tools are required for the whole period. 

If the partially serviced tool magazine strategy which allows tool sharing between 

the two periods is implemented, as the particular machine is operated, a total number of 

102 tools are required, i.e. only 2 tools are saved out of 102 . 

This is due to: 

(1). When batches are bigger, tools are used up to the tool life limit, which 

makes tool sharing between shift less possible; 

(2). Tools of different types are required by the two period, which reduces the 

chance of tool sharing even further, fig. 9.18. 

Considering the sheer amount of manning requirement for the magazine service 

for tool loading and unloading, it is concluded that when batches of bigger sizes are to. 

be manufactured, the whole magazine exchange be.tween shifts willbe more appropriate 

to reduce both manning requirement and tool management effort. The block type tool 

magazine and hence the tooling system as discussed in Chapter 5 should be used [156, 

188, 189]. 
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9.7 MODELLING THE PROCESSING OF INCREASED BATCH SIZE 

FOR A LONG PERIOD (RUN 7 • 8) 

9.7.1 Overview 

A large batch (600) of a typical workpiece (PARTS) has been modelled. (Fig. 

9.19). The purpose of this process is to explore the nature of over-medium sized 

I production which is a common practice in cylindrical component manufacturing [103, 

105] and to study the effect of altering the tool life on the frequency of magazine over 

and magazine complements. 

Run 7 modelled the case where 50% maximum permissible tool life is specified. 

Relaxed permissible tool life limits were specified for Run 8. It was assumed that the 

life limit has been restricted to 30% for two turning tools (1'2, T6); and for two live 

tooling (Tl7, T21), the permissible tool life has been relaxed to 80% due to the change 

to the process planning. (Fig. 9.20). 

9.7.2 Discussion of the Results 

The manning pattern for work flow and tool magazine exchange for the two Runs 

are shown in Fig. 9.21, 9.22 respectively. It is assumed that the operator is required 

for pallet change over, and after a integer number of pallets of parts have been 

processed, the tool magazine change over is required. 

It was assumed that 0.5 min. is required for the operator to load/unload a part 

into/form the pallet; 10 min. for tool magazine exchange. 

As the machine has two workpiece magazines, the machine can fly for processing 

parts form one pallet while the other one is being set-up. The machine has to stop while 

the magazine is exchanged. 

For Run 7, a total number of 3 magazines is required for the processing of the 

whole batch, with the magazine complements of Sf tools. As for the Run 8, 4 tool 

magazine exchanges are required due to the change of tool life limits. The first 3 

magazines contain 49 tools, and 40 for the magazine No. 4 as the number of part pallets 

left is less than the previous ones. (Fig. 9.23]. 
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9.8 MANNING PATTERN PREDICTION FOR 
MULTI-MACHINE TURNING CELLS 

As having been discussed in Chapter 7, the turning cell can be classified into 3 

types, viz, Manually Supported Turning Cell, fig. 7.4, Manually Operated Turning 

Cell, fig. 7.5, and Highly Automated Turning Cell, fig. 7.6. 

The algorithm approach the the manning pattern of a multi- machine turning cell 

will find its application in the manually supported cell, As for the manually operated 

cell, a operator is required for each machine as long as the machine is in operation. And 

no manning requirement is required by a highly automated cell. 

Although not as precise as a discrete event simulation, the algorithm approach indicates 

the manning pattern across all the machines of a cell in a fast and efficient way. By 

altering the work schedule to individual machines, different manning patterns can be 

achieved for the user to experiment. 
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Fig. 9.1 
Single Machine Model 
Loqic Flow Diaqram 

Workpiece 
Exchanger 

Tool. Chuck Jaw 

MIC data: (Required by the Model) 
Turret Capacity: 14 
Turret Index l1me: 0.5 sec. / posit. 
Tool Magazine Capacity: 60 
Magazine Index TIme: 0.5 sec. / posit. 
Gantry Transfer Time: 2 sec, 
Tool Exch. Time 

Turret - Gripper: .3 sec. 
Gripper - Magazine: .3 sec. 

Part Load/Unload TIme: 1 sec. 
Workpiece Magazine Capacity: 40 
No. of Chuck Jaw Sets: 6 
No. of Gripper Sets: 6 
Chuck Jaw Exchange Time: .3 sec. 
Gripper Exchange Time: 3 sec. 

Chuck Jaw / Gripper Application Range 

Set No. 1 2 3 4 5 6 
orkp'iece 10 20 40 50 90 130 

Dia. (mm) 30 40 60 1 0 140 180 

Fig. 9.2 LUT-FMS 

Synthetic Lathe Data 
RESEARCH 

GROUP 
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Part Set-up Total Cutting Chuck. End 

Type 
Time/Item Time/Item Diameter 
(min.) (min.) (mm) 

Part1 1 4 90 

Part2 0.5 3.12 90 

Part3 1 2.47 50 

Part4 1.2 4.24 120 

Part5 1 2.71 24 

Fig. 9.5 Single MiC Modelling LUT - FMS 
- Part Spectrum Research Group 

Run 1 Run 2, 3 

Part Type Batch Size Part Type Batch Size 

Part1 5 Part1 40 

Part2 25 Part2 10 

Part3 40 Part3 5 

Part4 20 Part4 15 

Part5 15 Part5 22 

Batches will be sequenced according to SPT. 

Fig. 9.6 LUT - FMS 
Batch Mix For 2 Shifts Product. Research Group 

Run 4 Run 5, 6 

Part Type Batch Size Part Type Batch Size 

Part1 40 * 1 Part3 40 * 1 

Part2 40 * 3 Part4 40 * 2 

Part5 40 * 1 

Batches are listed in sequence for processing. 

Fig. 9.7 LUT - FMS 
Multi-shift Work-to-List Research Group 
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Part Type: Part 1; Material: BS080M30; 

'0' 

~ t < 

" .fo, ~ 
~ 

~ '" • ~ . 
zJ 

~ 
L.... __ , ~T6 -------'----, 0 

l,... __ ._-. j;J T5 

~ T8 
L_~. 0 T7 

~~~r----'--~'L " T3 

.~ 
I - .-". ...r-'-'- L. r--'-. . -~B L~TlZ \ 

-
1 

Op. No. Op. Description Cutting Time 
(mm.) 

Tool 
Type 

1 Rough Turning 0.5 T5 
2 Finish Profiling 0.5 T6 

.3 Drilling 0.6 T1 
4 Boring 0.6 T7 
5 Finish Boring 0.5 T3 
6 Milling 1 T8 
7 Drilling 0.2 T10 
8 Inspection 0.1 T12 

Fig. 9.8 
Synthetic LUT-FMS 

[JRAUaJ RESEARCH 
Workpiece Information GROUP 
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Tool Tool* 
Tool Description Life 

Type (min.) 
T1 Drill 16 
T2 Drill 16 
T3 Borinq Bar 30 
T4 Thread Chaser 20 
T5 External Turninq Tool 30 
T6 External Turning Tool 30 
T7 Borina Bar 30 
T8 End Miller 20 
T9 Parting-off & Grooving Tool 30 

T10 Drill - Live 16 
T11 Drill 16 
T12 Probe 100 ** 
T13 Borinq Bar 30 
T14 Gun Drill 16 
T15 Tap 10 
T16 Drill - Live 16 
T17 Circular Saw Blade 20 
T18 Profiling Tool 30 
T19 Grooving & Parting-off Tool 30 
T20 Thread Chaser 20 
T21 Polyqon Turninq Tool 30 
T101 Drill 16 
T202 External Turning Tool 30 
T303 Boring Bar 30 
T404 Grooving Tool 30 
T707 Thread Chaser 20 
T808 Internal Profiling Tool 30 
T1010 Internal Profiling Tool 30 
T1212 Internal Thread Chaser 20 

* Max. % Permissible Tool Life = 50% 
** Durable Tool 

Fig. 9.9 LUT-FMS 
Tool Information RESEARCH 

GROUP 
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Run 1 
Clock Time (0 - 457) 

Cutting Part (M/C) Tooling Idle Total Processing 
TIme Set-up TIme Set-up TIme TIme TIme 

317 107 33 0 457 

Run 2 
Clock Time (457 - 941) 

Cutting Part (M/C) Tooling Idle Total Processing 
TIme Set-up TIme Set-up TIme TIme TIme 

320 121 43 0 484 

Fig, 9,10 
Mach~~e Utilis~)tion 

LUT - FMS 

Run 1, 2 Research Group 

~ (£):@ ~ 
Second Shift 

IC»@ @ ® :® @@ 
Work Flow Iirt'-r' 1 -.-_. . -.::: _. __ . 
It06gazinE~ lJ 0' ..... r---' _. __ . +, . -_ .. r- -.- _. __ .- ,-1--
E:xchange '--- 1--__ -' 

0 

Run 1 

No. Description 
1 Load 'Portl' &: Tools 
2 load 'PART5' &: Tools 

3 Unlood 'PAfl.l1' 
Load 'PART2' & Tool. 

4 ~~~~a~,,;;~~T5~ Tool. 

5 Unload 'PART2' 
Load 'PART3' & Tool. 

6 
Unload 'PART4' 
Load 'PARTY 
For Second Period 

, 
:500 TIme (min,) 1000 

Run 2 
oc ,me No. Description Clock me 

, 's 
0 11 7 Magazine Exchange 457 467 
11 29 

37 56 6 
Unload 'PARTY. Load 'PART2' 467 502 
Unload 'PARTY. Load PART4' 

98 127 9 Unload 'PART2', load 'PARTS' 525 541 

193 237 10 Unload 'PART4', Load 'PART1' 612 639 

11 Unload 'PARTS' 699 710 
310 323 

12 Unload 'PART1' & All the Tools 911 941 

Fig, 9.11 
Manning Pattern 

(Run 1, 2) 

LUT - FMS 
Research Group 
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Run 1 
Clock Time (0 - 457) 

Cutting Part (M/C) Tooling Idle Total Processing 
TIme Set-up TIme Set-up TIme TIme TIme 

317 107 33 0 457 

Run 3 
Clock Time (457 - 945) 

Cutting Part (M/C) Tooling Idle Total Processing 
TIme Set-up TIme Set-up TIme TIme TIme 

320 120 48 0 488 

Time Unit: min. 

Fig. 9.12 
Mach~~e UtilisWion 

LUT - FMS 
Run 1, 3 Research Group 

~ Mo~ozln. Seovl.. ([) ,@ ~ 
Second, Shift 

I@ @ @ \® l ® @ @ 
Work Flow m ~ Et ._. . r--._. 

t~~hange . _.-t. e.-.' r·--·l 1-· r-. f--.-_.- .-1-
--1 , '-- '---- '--___ --' 

0 

Run 1 

No. n , 
2 _ood PART5' To.ol. 
3 ~;~~a pk"¥i~ '" Tool. 
4 ~~~':t"~pk'i!~.:s", Tool. 

5 ~~~d~1'.4'i§:2~ Tool. 

6 ~~~:~~~~::~f:o~~m Tool. 

:500 TIme (min.) 1000 

Run 3 

~ No. Description Clock Ime 

7 Unload 'PART3', Load 'PART2' 457 482 

37 58 
8 Unload 'PART3', Load PART4' 482 492 

9 Unlood 'PART2', Load 'PARTS' 515 531 
98 127 

10 Unload 'PART4', Load 'PART1' 601 628 
193 237 

11 Unload 'PARTS' 688 699 

310 357 12 Unload 'PART1' '" All the Tool. 897 945 

Fig, 9,13 
Manning Pattern 

(Run I, 3) 

LUT - FMS 
Research Group 
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Run 4 
Clock Time (0 - 705) 

Cutting Part (M/C) Tooling Idle Total Processing 
Time Set-up Time Set-up Time Time Time 

518 142 45 0 705 

Run 5 
Clock Time (705 - 1501) 

Cutting Part (M/C) Tooling Idle. Total Processing 
Time Set-up Time Set-up Time Time Time 

538 210 48 0 796 

lime Unit: min_ 

Fig_ 9_14 _ _ 
Machine Utilisation 

LUT - FMS 
(Run 4, 5) Research Group 

ill Second Shift <ID Thlrd Shift Fourth Shift , , , 
~ @ @: ® ~ ®: ® @:@ 

Work Flow tT"r ---- --- t-- --- io---- -:---- ----- --t ---
~~Ogl~zine Jll____ --- 1- --- ,---- -1----- ----- --+, ---, , , 
Exchange - 4-- - ~ , '----l-' 

o 500 Time (min_) 1000 1500 
. 

Run 4 Run 5 

No_ Description 
1 Load 'Port l' & Tools 
2 Load 1 st Mog. of -PART2- &. Tools 

3 Unload 'PART1' 
Load 2nd MaQazine of -PART2-

4 Unload 1st Magazine of -PART2-
Load 3rd Magazine of -PART2-
Unload 2nd Magazine of -PART2-

5 Load -PARTY 
For Next Period 

Clock-.!!me 
No. Description lock ,me 

InIS 

0 38 6 Tool Magazine Exchange 705 715 
38 86 Unload 3rd Magazine of 'PART2' 715 7 Load 1.t Maaazine of -PART4- 755 
247 287 

Unload 'PARTY 861 901 
399 439 8 Load 2nd Magazine of -PART4-

9 Unload 1.st Magazine of -PART4-
load 'PARTS' 1090 1130 

552 592 10 Unload 2nd Magazine of -PART4- 1314 1334 
11 Unload -PART5- &. All the Tools 1471 1501 

Fig_ 9_15 
Manning Pattern 

(Run 4, 5) 

LUT - FMS 
Research Group 
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Run 4 
Clock Time (0 - 705) 

Cutting Part (M/C) Tooling Idle Total Processing 
Time Set-up Time Set-up Time Time Time 

518 142 45 0 705 

Run 6 
Clock Time (705 - 1521) 

Cutting Part (M/C) Tooling Idle Total Processing 
Time Set-up Time Set-up Time Time Time 

538 210 68 0 816 

Time Unit: min, 

Fig, 9,16 , , 
Machine Utilisation 

LUT - FMS 
(Run 4. 6) Research Group 

Magazlno Service <D Second Shift , Third Shift Fourth Shift 
I I I I 

~ @ @: ~ ® (l): ® ®:® 
WO~ AO·1Ii ---- --- If -- -t-- ----- jr Too ____ ___ .1_ ,_ _ _____ ,___ _____ __.L ___ 

Exchange : : : 
'-- --- , , , 

0 500Time (min,) 1000 1500 

Run 4 Run 6 

No, Descrlptlon Clo~ 'me No, Description Clock ,me 
Inlm 

1 Load 'Portl' 8< Tools 0 38 
6 Unload 3rd Magazine of 'PART2' 70S 74S 2 Load 1st Mog, of 'PART2' 8< Toois 38 86 Load 1st Magazine of 'PART4' 

3 Unload 'PARTl' 
247 267 7 Unload 'PART3' , 8S2 692 Load 2nd Magazine of 'PART2' Load 2nd MagaZine of 'PART41 

4 Unload 1 st Magazine of 'PART2' 399 439 8 Unload 1st Magazine of 'PART4' 1081 1121 Load 3rd Moooz1ne of 'PART2' Lood 'PARTS' 
Unload 2nd Magazine of 'PART2' 

9 Unload 2nd Mogozine of 'PART4' 1311 1331 S &: Worn Tools SS2 667 
~~d",:~J:'<~ Tools 10 Unload 'PARTS' 8< All the Tools 1468 lS21 

Fig, 9,17 LUT - FMS 
Manning Pattern 

(Run 4, 6) Research Group 
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No. of Sister Tools Required 

Tool Run 3 Run 6 
Run 2 Extra. Tools Run 5 Extra. Tools 

Type Run 1 (New 
Req'd Run 4 Req'd 
(Partially (New (Partially 

Magazine) Serviced Magazine) Serviced 
Magazine) Magazine) 

T1 1 4 3 4 0 0 

T2 2 2 2 0 4 4 

T3 1 2 1 2 0 0 

T4 1 1 0 1 0 0 

T5 4 3 3 19 0 0 

T6 7 5 4 6 11 10 

T7 1 2 1 2 0 0 
T8 3 6 5 10 4 4 

T9 1 1 0 0 1 1 

T10 1 1 1 1 0 0 

T11 1 1 0 0 1 1 

T12 1 1 0 1 1 0 

T13 2 1 0 0 2 2 

T14 1 1 1 0 1 1 

T15 1 1 0 0 1 1 

T16 1 1 0 0 1 1 
T17 1 1 0 0 1 1 
T18 2 1 0 0 2 2 

T19 1 1 0 0 1 1 

T20 1 1 0 0 1 1 

T21 2 2 1 0 3 3 

T101 3 2 2 0 10 10 

T202 1 1 0 0 1 1 
T303 1 1 1 0 3 3 
T404 1 1 0 0 1 1 
T707 1 1 0 0 1 1 
T808 1 1 1 0 4 4 

T1010 1 1 0 0 2 2 

T1212 1 1 0 0 1 1 

Total 46 48 26 46 58 56 

Fig. 9.18 LUT-FMS 
Sister Tool Requirement RESEARCH 

GROUP 
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Part Type: PART5 (Ref. to Fig. 1 A.5); 
Quantity: 600; 
Pallet Size: 40; 
Set-up TIme/Item: 1 (min.). 

Op. No. Op. Description Cutting Time 
(min.) 

Tool 
Type 

1 Facing 0.01 T202 

2 Profiling 1 T6 

3 Drilling 0.5 T2 

4 Chamfering 0.05 T11 

5 Threading 0.01 T20 

6 Polygon Turning 1 T21 

7 Drilling 0.01 T16 

8 Milling Flat 0.08 T17 

9 Partinq-off 0.05 T9 

Fig. 9.19 
Part Specification LUT - FMS 

(Run 7, 8) Research Graup 

Max. Permissible 

Live Tooling 
% Life 

Tool Type Tool Description Tool Life 
[Y/N] ? (min.) Run 7 Run 8 

T2 Drill N 16 50 30 

T6 Enternal Turning Tool N 30 50 30 

T9 Parting-off & Grooving Tool N 30 50 50 

T11 Drill N 16 50 50 

T16 Drill - Live Y 16 50 50 

T17 Circular Saw Blade Y 20 50 80 

T20 Thread Chaser N 20 50 50 

T21 Polygon Turning Tool Y 30 50 80 

T202 External Turning Tool N 30 50 50 

Fig. 9.20 
Tool Life Specification LUT - FMS 

(Run 7, 8) Research Group 
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--- --- -- --- --- --- --- --- --- --- --- --- --- --- ----
Work 
Flow 

Mogazine --- --- ---- --- --- --- --- --- ---- ~-- --- --- --- --- ---
Exchonge 

0 1000 2000 
Time (min.) 

Part Type: 'PART5'; 
Quantity: 600; 
Max. Permissible Tool Life: 50%. 

Fig. 9.21 LUT - FMS Manning Pattern 

(Run 7) Research Group 

Work --- --- --- --- --- --- --- ---- --- --- --- --- --- --- - --- . 
Flow 

Magazine --- --- -_. f---- --- --- --- --- -- --- --- --- --- --- ----
Exchange 

0 1000 2000 
Time (min.) 

Part Type: 'PART5'; 
Quantity: 600; 
Relaxed Tool Life Limit. 

Fig. 9.22 LUT - FMS Manning Pattern 

(Run 8) Research Group 
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Part Type: 'PARTS'; Magazine Complements 
Quantity: 600; 

Tool Ufo Urnit: 507.; (Run 7) Relaxed Tool Life Limit; (Run 8) 
Magazine No. 1 - 3; Magazine No. 1- 3 Magazine No. 4 

Tool Type No. of Sister Tool Type No. of Sister Tool Type No. of Sister 
Tools Tools Tools 

T2 13 T2 18 T2 14 

T6 15 T6 18 T6 14 

T9 1 T9 1 T9 1 

Tl1 2 T11 1 T11 1 

T16 1 T16 1 T16 1 

T17 2 T17 1 T17 1 

T20 1 T20 1 T20 1 

T21 15 T21 7 T21 6 

T202 1 T202 1 T202 1 

Total No. of Tools: 51 Total No. of Tools: 49 Total No. of Tools: 40 

Fig. 9.23 LUT - FMS 
Summary of Magazine Complements 

Research Group 

MIC No. First Shift Second Shift Third Shift ru ---- --

~T 
-- -t-- -----

-~[ 
Work Flow 

4 ---- -- - -- -- - -- ----- Tool/Mogozine 

i 
Exchange 

'-- - -
---- --- --- ---- --- ____ I --- ---- Work Flow 

3 ---- --- --- ---- --- ---- --- ---- --- ---- Tool/Magazine 
Exchange 

'--

- --------- - - ----
~~~~~~~~~~~~~~~~~~ 

Work Flow 

2 - -- -- --- - "-1----- Tool/Mogazlne 
Exchange 

------------ ----

---- --- --- ---- --- --- --- --- --- ---- Work Flow 

1 ---- --- --- ---- --- 1---- --- ---- 1---- ---- Tool/Magazine 
Exchange 

'--

0 500 TIme (min.) 1000 

Fig. 9.24 LUT - FMS 
Indication of Cell Manning Pattern Research Group 
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CHAPTER 10 TOOL FLOW MODEL· MULTI-MACHINE 

10.1 INTRODUCTION 

This chapter describes the tool flow model in multi-machine turning cell level. As 

being indicated in Chapter 7 the tool flow model for a turning cell of a mix of turning 

centres has been concentrated on the cell tool storage, tool transportation and tool 

exchanging between STS and individual machines. The implementation of the tooling 

strategies have been discussed in detail in this Chapter, as one of the main implications 

of the Tool Flow Model will be the evaluation of the tool issue, assignment, and 

storage strategies for a specified tool configuration. 

10.2 OVERVIEW OF CELL LEVEL ACTIVITIES 

The multi-machine turning cell model is built up on the basis of single machine 

models. The individual machines are linked up by the cell level tool flow and part 

control strategies, with their PTSs being backed up by the cell Secondary Tool Store 

(STS). 

The activity diagram of a turning cell is shown in fig. 10.1. New tools are 

transferred from CTS to STS and exchanged with tools leaving the turning cell. Before 

the current batch has finished its processing, the tools required for the next one will be 

issued from the STS to the machine's PTS. On completion of the current batch, tools 

leaving the PTS will be exchanged with tools for the new batch, and the used ones will 

be transported back to STS. [244, 289, 290, 291]. The logic flow chart of multi­

machine tool flow model is shown in fig. 10.2. 

10.3 Nomenclature 

n: position No.; 

Stock2(n): The content of STS position n; 

Stock3(n): The content of CTS position n; 

t: Tool No.; 

Posit,: The position No. occupied by tool t; 

Lt = 1, if tool t is live tooling; 

= 0, otherwise. 
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Tt = I, if tool t is turning tool; 

= 0, otherwise. 

TStatust = W', if tool t is worn; 

'R', if tool t is reserved; 

'P', if tool t is free. (Ref. to 8.3). 

IXt = I, when all tips have been used for Tool Flow Pattern 1, or, the current tip is 

worn out for Tool Flow Pattern 2. 

= 0, otherwise. 

2Xt = I, if tool t is required; 

= 0, otherwise. 

TR: Tool returned list from STS to CTS, 

size (TR) <= Transporter capacity; 

TI: Tool issue list from CTS to STS; 

size (Tl) <= Transporter capacity; 

SC: STS capacity; 

TranT1: Transfer time between STS and CTS. 

CUNLT: CTS tool unload time; 

CLT: CTS tool load time; 

SUNLT: STS tool unload time; 

SLT: STS tool load time; 

10.4 TOOL EXCHANGE BETWEEN CTS AND STS 

The logic flow chart of tool exchange between CTS and the cell STS is shown in 

fig. 10.3. If any machine requires tools from the STS, the required tools will be 

searched for in the secondary store. If the desired tools are not found, they will be 

searched for in the CTS, thus the CTS tool issue list will be formed (Ref. to fig. 7.3) 

[41]. 

Tools not required and worn tools will be returned to CTS (Fig. lOA) and 

disposed. The returned tool list will include the live tooling which requires 

refurbishment, turning tools with one or all tips (if applicable) worn out, and tools 

which are not required any more for the production period. 
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Algorithm 10.1, i TOOL RETURNING TO CTS LIST 

Step 1. n = 1; 

Step 2. t = Stock2(n); 

2.1). If Lt = 1 and TStatust = 'W' then 

Add tool t to TR, go to Step 3 

Else go to Step 2.2; 

2.2). If Tt = 1 and lXt = 1 then 

Add tool t to TR, go to Step 3 

Else go to Step 2.3 

2.3). If 2Xt = 1 then 

Add tool t to TR, go to Step 3, 

Else go to Step 3; 

Step 3. Ifn <= SC then n = n + I, go to Step 2 

Else Tenninate. 

Algorithm 10.2, TOOL EXCHANGING BETWEEN STS AND CTS 

Step 1. Load Transporter with New Tools from CTS: 

For t := 1 to Size(TI) do 

Begin 

n:= Positt; 

Stock3(n) := 0; 

End; 

Step 2. Unload Tools from the STS: 

For t := 1 to Size(TR) do 

Begin 

n := Positt; . 

Stock2(n) := 0; 

End; 

Step 3. Load STS with New Tools: 

For t := 1 to Size(TI) do 

Begin 

Search the fIrst empty position n; 

Stock2(n) := t; 

Positt:= n; 

End; 
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Step 4. Replace Tools Returned to crS: 

For t := 1 to Size(fR) do 

Begin 

Search the fIrst empty position n; 

Stock3(n) := t; 

Posi1t:= n; 

End; 

Step 5. Update Make-span (M) and How Time (Fj): 

M = M' + 2 * TranT + CUNLT + SUNLT + SLT + CLT; 

F = F' + TranT + CUNLT + SUNLT + SLT; 

M': Previous make-span up to date; 

F': Previous flow time up to date; 

Step 6. Update Transponer Utilisation (TU): 

TU = TU' + 2 * TranT + CUNLT + SUNLT + SLT + CLT; 

TU': Transponer utilisation up to date; 

10.5 TOOL ISSUE AND EXCHANGE BETWEEN PTS AND STS 

The tool issue to individual machines follows either the tool kitting concept or the 

single tool concept (Ref. Chapter 7). In the fonner case the tool list will be the tool kit. 

When single tool issue strategy is adopted, the following algorithm is implemented to 

fonn the tool issue list (TI2) to individual machines: 

Algorithm 10.3, STS TOOL ISSUE TO INDIVIDUAL MACHINES 

Let: 

Xj,pj,m = 1, if operation j of order i, pallet p, is assigned to machine m; 

= 0, otherwise; 

j E J (Set of operations of pan i); 

Step 1. J = 1; 

Step 2. If Xj,pj,m = 1 then 

Locate Single Tool t for operation j 

(Ref. to Chapter 8 for Algorithm 8.3 and 8.4), 

go to 2.1 

Else go to 3 
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2.1). If tool t is not in turret or PTS then 

Add to TI2, go to 3 

Else go to 3; 

Step 3. If j < No. of operations of part i then 

j=j+ l,gotoStep2 

Else go to Step 4; 

Step 4. Repeat the same procedure for all batch items, with the continuous. _ update of 

tool life consumption. The final result will be the Tool Issue List to machine m. 

Once tools for a CNC lathe are transferred to its PTS, they are exchanged with the 

tools leaving the PTS (if any), at the appropriate point in the machining cycle. The tool 

file for the machine will be updated with new tool identifications and the relevant data. 
Tools, which have been decided as to be removed, will be returned form the PTS to the 

cell's Secondary Tool Store (STS). [41, 46]. (Fig. 10.5). The tool transfer and 

exchange time will be taken into the calculation of part processing time and transporter 

utilisation. 

If tool requirements from several machines arise in the same time, or in a short 

time interval, the service of respective PTS will be operated on a First Come First 

Served (FCFS) base, the tie-breaker will be the machine number. 

The tool issue and exchanging to individual machines solves one of the most 

important parts of the machine loading problem which is one of the three phases of 

production scheduling and control problem of the Turning Model. (Ref. to Chapter 12). 

The selection of tooling strategies has been discussed in chapter 7. 

10.6 INITIAL TOOL POSITION ARRANGEMENT 

Initial tool arrangement into different tool stores is possible (39, 40, 41). Tools 

can be assigned initially, before running the model, into specified positions of tool 

stores (CTS, STS, PTSs, and turrets). Thus a specific initial system status can be 

modelled. 

Alternatively, all tools can be assumed to be in the CTS at the beginning of 

modelling period, thus the effort of inputting the initial tool arrangement can be 

eliminated. 
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It has been decided to assume that all the tools are stored initially in the CTS 

sequentially according to the tool numbers, unless the user is willing to input his own 

specified initial tool arrangement. 

10.7 OBTAIN TIME RELATED RESULTS 

The algorithmic approach differs form the discrete event simulation in that it is not 

based on minimum time incremental. Instead, the 'major activity time incremental is 

used. The 'major activity' is defined as the event which causes a machine to be 

interactive with outside facilities, e.g cell level tool and part flow. With in the time 

interval between 'major activities' the model handles the events of tool and part 

exchange and machining in the machine level and keeps the records of a event start and 

fmish time, fig. 10.6. At the end of each 'major activity' a check is carried out to back 

trace other major activities that should have happened since last time update for all the 

machines in the cell. The machine which has the earliest start will be chosen, and will 

be modelled for its detailed event activities. 

This approach is not time synchronised, but is time related and the outputs can be 

obtained with reasonable level of accuracy, as it is considered that the event happened 

during the 'major activity' intervals will not effect the cell level decision making 

concerned with tool and part flow and manning requirement. 

It is only when cell level tool and part transfer is required, the comparison of the 

requirement time of each machine and its status at the time point is carried out. The 

machine with its earliest requirement time will be served. 

This modelling approach reduces the run time by cutting the comparison loops for 

machine level activity event. 

The manning operation of each machine is based on the earliest start time. No 

constraints of manning resource is considered. Thus the approach assumes that no 

delays will be caused by the unavailability of operators. It predicts the manning 

requirement density and forms the base for fme tuning the manning pattern. 
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CHAPTER 11 TOOL FLOW MODEL 

- CENTRAL TOOL STORE ACTIVITIES 

11.1 INTRODUCTION 

This Chapter presents the Tool Flow Model with respect to Central Tool Store 

(CTS) activities. It handles the CTS in the following aspects: tool issue planning, 

returned tool disposal, tool assemble and preset, and tool part requirement planning. As 

having been indicated in Chapter 7, the CTS model has been devoted in two folds: the 

modelling of tool handling and the forecasting of tool preparation and tool part 

inventory control, fig 11.1. 

11.2 NOMENCLATURE 

lList: Tool issue list of CTS; 

lList(n): The tool No. of the nth tool in the tool issue list; 

SRList: Returned tool list to CTS; 

SRlist(m): The tool No. of mth tool in the returned tool list; 

RecList: Recondition tool list; 

RecList(l): The tool No. oflth tool in the Recondition tool list; 

AList: 

Alist(l): 

PList: 

Tool assembly list; 

The tool No. of Ith tool in Alist; 

Tool Presetting list; 

PList(m): The tool No. of mth tool in PList; 

TRList: Tool requirement list; 

TRList(n): The tool No. of nth tool in TRList; 

TPRList: Tool part requirement list; 

Stock2(n): The tool No. contained in position n of STS; 

EITt: Expected tool usage; 

TMax,: Maximum permissible tool life of tool t; 

FrNt: Functional tool No. (Tool type) oftool t; 

Pij: Cutting time of operation j of part i; 

ITypeii Tool type required by operation j of part i; 

Tips,: No. of usable tips of tool t; 

TipUsed,: No. of tips used of tool t; 
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Nt = E, if tool t is a external op. tool (Including probes); 

= I, If tool t is a internal op. tool (Including probes); 

= L, if tool t if a secondary op. tool; 

lXt = 1, if tool tis available; 

= 0, otherwise; 

2X t = 1, if tool t is preset; 

= 0, otherwise; 

3Xt = 1, iftool t is required later; 

= 0, otherwise; 

11.3 TOOL ISSUE PLANNING 

Tools are issued to the turning cell according to the production schedule. Tools 

are issued either for the next manufacturing period (e.g, one shift), or for the next 

batch. The former matches centralised tool storage strategy (Ref. to Chapter 7), where 

tools for the planned period are stored in the machine based tool stores (most likely, 

block type tool magazines), and are replenished at the end of the period. Tool sharing 

is allowed: across all batches visiting the machine, fig. 11.1. 

The latter is aimed to suit the decentralised tool storage strategy, accompanied by 

tool issue strategy of kit concept, for, more automated turning systems with frequent 

tool flow. The tool issue planning solves the FMS loading problem with regard to the 

tooling side (Ref. to Chapter 12). 

Tool issue list for the next manufacturing period is generated by referring to the 

production requirement for the period. Tools of the same type required by each 

operation, with sufficient life is added to the issue list, fig. 11.2. In such a case, the 

tool leave machine list will be the contents of machine based tool stores. 

Algorithm 11.1, TOOL ISSUE FOR NEXT MANUFACTURING PERIOD 

Step 1. Initialise tool issue list lList. 

Step 2. n = 1; 

2.1). t = IList(n); 

If FTNt = TTypei.i 

Else go to 2.3; 

then go to 2.2 
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2.2). If ETIt + Pij <= TMaxt then go to 4 

Else go to 2.3; 

2.3). If n < Size(IList) then 

n=n+ l,got02.l 

Else 

go to Step 3; 

Step 3. Add tool t (FfNt = TIypei) to IList; 

n = Size(IList) + 1; 

IList(n) = t; 

go to Step 4; 

Step 4. Update expected tool life utilisation; 

ETTt = ETIt ' + Pij; 

(ETIt': Previous ETIt) 

go to Step 5; 

Step 5. If all operations finished then 

go to Step 6 

Else j = j + I, go to Step 2; 

Step 6. Repeat Step 2 - 5 for all items of all batches. 

The STS tool issue list to a machine for the next batch is worked out by 

comparing the tools required by the batch with the machine based tool store contents, 

which is then compared with the STS contents. The required tools which are not in the 

STS will form the tool issue list for the next batch [41] (Fig. 11.3). 

Algorithm 11.2, TOOL ISSUE FOR NEXT BATCH 

Step 1. Initialise IList; 

Step 2. Generate tool requirement List (TRList) of the machine. 

(Ref. to Chapter 10). 

Step 3. Check the STS Contents: 

IList = TRList - Intersection(TRList, STock2); 

11.4. TOOL ASSEMBLE AND PRESETTING 

Tools are assembled and preset in the CTS according to the tool issue 

planning.The tool issue list compared with the CTS contents and the gauged tool file 
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works out the tools to be assembled and preset list. Tools not available are assembled 

and the un-gauged tools are preset (if applicable) for entering the turning cell. [57, 96, 

101,127, 149, 163, 164] (Fig. 11.4). 

Algorithm 11.3, TOOL ASSEMBLE AND PRESET 

Step 1. n = 1; 

Step 2. t = IList(n); 

2.1). If IXt = 0 then 

Add tool t to Alist, 

Add tool t to PList, go to 3 

Else go to 2.2; 

2.2). If 2Xt = 0 then 

Add tool t to PList; 

Go to 3; 

Step 3. If n < Size(IList) then 

n=n+1,got02 

Else Stop. 

11.5 TOOL PART REQUIREMENT PLANNING 

The tool assembly has been considered to consist of the following parts: the 

insert, the shank, and the tool holder (if applicable) for mounting into the turret. 

The requirement of tool parts come from two sources: the insert requirement for 

tool recondition, and the requirement of various parts for tool assembly. By referring to 

the tool assembly data base which gives the tool part requirement for each tool type, 

combined with the tools to be prepared list, the tool part requirement can be produced 

.[96, 101,149]. (Fig. 11.5). 

Algorithm 11.4, TOOL PART REQUIREMENT 

Step 1. Tool Part Requirement due to Tool Conditioning: 

1.1). Tool recondition list (REcList) is the sub-set of Returned tool list (SRList), 

which contains tools satisfying TStatust = W', 

where t = SRList(m) (m = 1...Size(SRList)). 
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1.2). I = 1; 

1.3). t = RECList(1); 

If Nt = 'L' then go to 1.4 

Else 

If TipUsec4 = Tipst then 

Add to TPRList, goto 1.4; 

1.4). If I < Size(RECList) then 

1=1+1, 

go to 1.3 

Else go to Step 2; 

Step 2. Tool Part Requirement due to New Tool Assembly: 

2.1). I = 1; 

2.2). t = AList(1); 

If tool parts required by tool t available in TPRList then 

go to Step 3 

Else go to 2.3; 

2.3). Add to TPRList, go to 3; 

Step 3. If I < Size(AList) then I = I + 1 then 

go to 2.2 

Else stop. 

The tool part requirement planning can be used either to give the detailed 

information including of time and tool components to facilitate the CTS tool assemble 

and recondition for the immediate manufacturing, or, to give an aggregate forecast of 

CTS tool part inventory and purchasing for a medium to long planning period. 

11.6 RETURNED TOOL DISPOSAL 

A tool returned from the machining area is assessed, if it is reusable, it will be 

preset for re-entering the circulation. [40, 41, 57, 101]. The logic of this process of 

handling is presented with the flow chart in fig. 11.6. Live tooling regrindable will be 

refurbished [93]. Turning tools with index able inserts will be reconditioned with a 

fresh tip presented. Tools not required will be disassembled and the tool record will be 

erased from the tool file. 
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Algorithm 11.5, RETURNED TOOL DISPOSAL 

Step 1.1 = 1; 

Step 2. t = SRList(l); 

I[3Xt = 1 then 

go to Step 3 

Else 

disassemble tool 1, 

go to Step 6; 

Step 3. If TStatust = W' then 

go to Step 4 

Else add to PList, 

go to Step 6; 

Step 4. If Nt = 'L' then 

Refurbish tool t, add to PList, go to Step 6 

Else 

go to Step 5; 

Step 5. If Tipusedt = Tipst then 

exchange tip, 

go to Step 6 

Else 

index tip, 

go to Step Step 6; 

Step 6. If 1 < size(SRList) then 

1 = 1 + 1, 

go to Step 2 

Else Stop. 
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CHAPTER 12 PRODUCTION SCHEDULING 

IN THE TURNING MODEL 

12.1 INTRODUCTION 

As has been indicated in Chapter 6 that the production scheduling functions have 

been added with an aim to examine the production scheduling rules interactively with 

tool flow management systems. No attempt is made to develop optimal scheduling 

rules, but the production module has been incorporated to maximise the efficiency of 

the modelling; and to schedule the part flow with the objective for tool saving by 

making use of the tool flow model. 

This chapter presents the workload assignment algorithms and two types of 

sequencing algorithms, i.e External and Internal scheduling algorithms, for two types 

of production environments. 

The incorporating of the production scheduling front-end into the Turning Model 

structure has been summarised in fig. 12.9. 

12.2 OVERVIEW OF THE PRODUCTION SCHEDULING MODULE 

The control and operation of FMS embraces the following aspects: part type 

selection, machine grouping, production ratio determination, and resource loading and 

part sequencing. [261,263, 268, 275]. The whole process can be classified into the 

following steps [60]: 

(1). The tactical step: Level 1, aggregate plan, the capacity limit as a function of 

the product mix must be incorporated. The objective of this plan is to minimise total 

cost composed of inventory and storage cost. Level 2, part (orders) are assigned to 

machine groups (machines) [351, with the objective of maximising tool-machine 

efficiency under the constraints of technical capability of machine tools. This is the field 

where the Computer Aided Cluster Analysis module of the research group [77] can be 

used where the tool clusters and part families are fonned. thus maximising the tool 

sharing by parts and part sharing by tools by loading the machines with the tool clusters 

that are required the most by part families. The output of this level is the master 

schedule for the planning period. 
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(2). The operational step, level 3, launching parts into the system and routing 

parts on the machines is determined at this level. The production scheduling module of 

the thesis has been concentrated at this level. The part flow is relegated to scheduling of 

part routing and sequencing. Part palletisation, storage, and transportation are not 

modelled. [88, 263]. The production scheduling process has been carried out in a 

modularised way: launching parts into the system, loading and pallet allocation, and the 

sequencing of operations on machines, fig. 12.1. [35,42,50,78,268]. 

12.3 TERMINOLOGY AND PERFORMANCE 

EVALUATION MEASURES 

The nomenclature and terminology used through the scheduling problem in this 

chapter is set out as below. [60, 67, 133,268]. 

I: (i I i = 1,2 ... L), the index set of parts (orders). 

J : (j I j = 1, 2 ... Mi), the index set of operations of part type i. 

K : (k I k = 1,2 ... N), the index set of machines. 

T: (t I t = 1,2 ... Q), the index set of tools. 

!l;.j : the set of machine that can perform operation j of part i. 

aij is a sub set of K. 

Qi: Order quantity of order i. 

P ALC;: Pallet capacity for part type i. 

PALNi: No. of pallets for order i. 

P ALLp: No. of items in pallet p of order i. 

p = 1,2 ... PALNi 

Xi,p,j,k = 1, if operation j of pallet p of order i is assigned to machine k; 

= 0, otherwise. 

Yi,pj = 1, if operation j of pallet p of order i is assigned. 

= 0, otherwise. 

lXi,p = 1, if the previous operations of pallet p of order i has been assigned; 

= 0, otherwise. 
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2XLp = I, if pallet p of order i is ready; 

= 0, otherwise. 

A order is defined as a batch of items of the same part type which requires a set of 

operations. 

Pi,pj': the processing time of op. j of all items of pallet p, order i. 

PLj,k: the summation of processing time of op. j of items performed on machine k, 

order i. 

PAINi , 
2-

p=! 
(Pi,j,k * XLp,ik) 

Cycle time (Pi}: The time required to perform operation j on one item of the batch. 

Processing time (Pij '): The time required to complete operation j of all items of order i. 

By the defmition, 

Pij' = PLj * Qi' 

Total processing time (Pi ) is the time it will take to fmish order i. 

~ p, , = 2- 2-
J'=! I,J ke K je 1 

PAINi 
P. 'k = 2- 2-

~~ p=l je 1 

, 
p, . 

I, P,J 

Pallet processing time (lPi,p): The time required to complete pallet p of order i. 

IPi,p = (E P ij ) * PALNi (jeJ) 

Ready or Launch Time (rp ): The time that pallet p is available for processing. 

Waiting Time (Wi,p,j): The time that the pallet p of order i should wait before the 

commence of operationj. 

Total waiting time of order i: 

PAINi 
Wi = 2-

p=l 
2- w, , 
'1 ~P,J Je 
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Flow Time or Manufacturing Interval of order i (Fj) is defined as the time that job i 

spends in the manufacturing system. It is also called Shop Time. 

Make Span or Throughput Time (M) is the sum of the processing times of all orders. 

Completion Time (q) : The time point at which all the operations of the the order i have 

been fmished. 

Due Date (d;) is the dead-line when the processing of the order should be completed. 

Lateness of job i: L; = Ci - d;. 

Tardiness of order i: Ti = max (Lj,O). 

Earliness E;. = max(O, -Lj } 

Lateness, Tardiness and Earliness are three different ways of comparing the 

completion time of the job with its desired time, where, Tardiness considers jobs 

finished later than their due date, Earliness considers jobs completed earlier than their 

due dates, Lateness considers the different between the completion time and the due 

date of a job, be it completed earlier or later. [35,69,253]. 

The average or maximum of completion times, flow times, lateness or tardiness are 

regular measures. A regular measure is defined as a value to be minimised that can be 

expressed as a function of the completion times, and which increases only if at least one 

of the completion times increases. The weighted averages, combination of average and 

maximum of those measures also falls into this category. [69]. 

12.4 PART LAUNCHING AND PRODUCTION ENVIRONMENT 

Two types of part launching and production environments have been 

recognised: 

A). 'Static-Flow' type production (Fig. 12.2): All parts to be processed must be 

available when they required. In other words, it is assumed that the part launching 

process does not effect the system operation or pallets are available at the start of the 

modelling period [42], no parts are permitted to leave and re-enter during the 

production period. 
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This assumption is intended to represent isolated turning cells of unmanned 

operations, where parts are prepared for the shift or 2 or 3 shifts of unattended 

operation. At the end of the period, new parts will be palletised, and tools will be 

replenished. 

B). 'Stochastic-Interrupted' Production (Fig. 12.3): Parts are permitted to arrive 

during the period of system operation. Some of them may leave temporarily for outside 

operation and re-enter the system again. [11, 35]. This assumption is extremely true 

when modelling a manufacturing cell which has interactions with outside facilities for a 

long period, where parts are transferred to and from other manufacturing cells, or, a 

turning cell of attended operation, where palletised parts are launched in the appropriate 

time intervals. 

Additional parameters need to be specified for this situation: The first parameter (ri) 

would be when a new batch is ready to enter. The second parameter would be in the 

specification of the operation, after which completed, the part may leave the system 

temporarily for processing elsewhere, or for temporary storage. The third parameter 

would be specified as an interval of time between departure and re-entering into the 

system (IPi,p)' At re-entry the part processing will be treated as per original with 

appropriate delay. 

This facility also offers the flexibility to accept the part launching sequence 

generated by other software [42, 268, 275], e.g. the Emulator of the LUT-FMS group 

[229]. 

12.5 WORKLOAD ASSIGNMENT AND PALLET ALLOCATION 

In the cylindrical components manufacturing, turning centres can be formed into 

groups. Each group may consist of one or several machines which are capable of 

processing the same operations providing the required tools are available. Alternative 

routing is possible, i.e a operation may be given a choice of machines for processing. 

[53,67,274]. Specific loading algorithms have been implemented to assign parts to 

individual machines. 

The loading problem involves the determination of the allocation of operations 
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and associated cutting tools of a set of orders among the machines subject to the 

technical and capacity constraints. [50, 276]. In general any solution of the loading 

problem must comply with the following constraints: 

(1). Each operation and its associated tool must be assigned to at least on 

machine. 

(2). A operation can only be assigned to a machine that can process it, providing 

that the required tools present. 

(3). The selected machine must have sufficient capacity. 

(4). Tools required for the entire set of operations assigned to any machine must 

not exceed the capacity of machine based tool store. [261,268]. 

The allocation of tools has been a most important issue in the loading problem, 

loading of tools involved in constraints 1 and 2, which have not been considered or not 

with accuracy by the loading algorithms in the available literatures, have been dealt with 

in full detail by tool issue, exchange, and storage strategies both for workpiece and tool 

oriented systems as having been presented in the previous chapters. 

The tool magazine capacity constraint has been considered with accuracy and 

reality as opposed to the assumptions made by other authors which either assume' that 

tools cannot be shared by different batches or that tool flow is not permitted. The tool 

flow model presented in the previous chapters has tackled this issue in the following 

aspects: 

(1). when turning centres have been equipped with magazines of big capacity 

which will be serviced only at the end of each shift, the machine based tool store 

capacity will become a hard constraint, that it should be able to hold tools for the whole 

period. Tool sharing is permissible between different batches, which will rationalise the 

tool life utilisation. 

2). When tool flow is permitted for turning centres with tool magazine of limited 

capacity, e.g chain type magazine both for live tooling and stationary turning tools, tool 

magazine becomes a 'soft constraint', that it should be of reasonable size to contain 

tools between tool exchange periods. 

The loading problem presented in this Chapter has been concentrated on workload 

assignment and batch splitting. Heuristic algorithms have been implemented with the 

intended objectives of workload balancing, minimisation of movement from machine to 
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machine, thus maximisation of the production rate and/or system utilisation. [53, 67, 

268,275,276] 

Algorithm 12.1, WORKLOAD ASSIGNMENT AND BATCH SPLIT 

(Fig. 12.4, 12.5). 

Step 1. Orders are sequenced in a increasing order of processing (operation) time. Le if 

Pi < Pi' then order i comes fIrst than order i'. 

Step 2. Split orders into pallets. 

The No. of pallets required by order i: 

PALNi = Integer part of [(Qi /PALCi)+ 0.5] 

The No. of items contained in pallet p of order i: 

PALtp = PALC;, P = 1, ... PALNi - 1; 

PALi.p=Qi-(pALNi - 1) * PALCi, p=PALNi. 

Step 3. Select the machine with least workload. 

If WorkLoadk = min(L L L (P'i,p,j * Xi,p,j,k)) (kEK iEI PEP jEJ) 

then machine k is selected. 

Workloadk: the work contents assigned to machine k: 

workloadk = L L L (P'i,pj * Xi,pj,k) = L L Pij,k ( iE I pE P jE J ) 

Step 4. Assign pallet to machine k. (Fig. 12.5). 

4.1). Select the pallet in the order of sequenced orders formed in Step 1 and 2; 

4.2). For the select pallet p of order i, 

If Yi,p,j = 0 (i E I, pE P, jE J) 

and k Ea·· 1,J 

and 1Xi,p = 1 

then The suitable pallet has been found, go to 4.6 

Else go to 4.3 

188 



4.3). If all operations of the pallet have been tried and no suitable op. has been 

found for machine k then 

go to 4.4 

Else increase operation No., go to 4.2 

4.4). If all pallets have been tried 

then go to 4.5 

Else 

select the next pallet p form the sequenced orders formed in Step 1 and 2, 

go to 4.2; 

4.5). If no more operation requires machine k then 

delete machine k from K, go to Step 3, until K is empty (all pallets have 

been assigned) 

Else 

delete machine k temporarily until the next assignment has been made, go 

to Step 3; 

4.6). If operation j, pallet p, order i have been loaded to machine k 

then 

Xi,p,j,k = 1 

While G + 1 <= j' <= Mi) and (k E ai,j') do 

Begin 

Xi,pJ',k = 1 

j'=j'+1 

End; 

If j' < M;. then lXi ,p = 1; 

go to Step 3 until all operations have been assigned. 

Step 1 sequences orders according to their processing times. The order with the 

shorter processing time will receive the higher priority in the workload assignment 

sequence. Step 2 makes batch split and overlapping possible. Each pallet wilI hold 

items up to its capacity, unless for the last pallet of a order, which will contain items left 

by the previous pallet. 

The key issue of the algorithm is to find the machine with the least workload 

assigned so far and allocate operations of a suitable pallet to it. Pallets will be tried 

according to the sequence of orders formed in Step 1. The first pallet that can be 

processed by the machine wilI be assigned provided that its previous operations have 
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been allocated. All the consecutive operations that can be processed on the same 

machine will be kept together to reduce the pallet movement. 

If all operations that require the machine have been assigned then the machine will 

eliminated from the list. If no operations can be assigned to the machine due to the 

previous operation constraint, then the next machine in the increasing order of 

workload will be selected for pallet assignment. 

12.6 OVERVIEW OF BATCH SEQUENCING ALGORITHMS 

Batch sequencing in the Turning Model has been conducted in two alternative 

ways, viz. external scheduling (Production scheduler) and internal scheduling 

(,Next-step' scheduler). (Fig. 12.9). The external scheduling algorithm offers the 

possibility both to accept the scheduled work-list from other production schedule 

generator, or to schedule the work flow according to the heuristic priority rules 

proposed for the purpose of enhancing the Turning Model efficiency. The internal 

scheduling algorithm is intended to enhance the tool flow model to incorporate 

scheduling of parts to match the selected suitable tooling strategies under the criteria of 

tool requirement and tool exchanging. 

The purpose of the model enhancement is to examine the tool flow interactively 

with production scheduling, to gain a more realistic understanding of the tool 

management problem. 

12.7 EXTERNAL PRODUCTION SCHEDULING 

- Production Scheduler 

The external scheduling module is built separately from the tool flow modelling 

module. Besides meeting the requirement of the Turning Model, it also gives the 

flexibility to change the scheduling rules, so that different algorithms can be 

implemented without changing the mainstream tool flow module. As having been 

indicated in Chapter 6 (Fig. 12.9), the external production scheduling module has been 

built with the following two options: the production scheduler which employs the 

built-in heuristic dispatching rules, and mechanism to accept the pre- scheduled 

work-list. 

To use the production scheduler, a production requirement file (Le. A part file) is 
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necessary specifying the batch size, due date, number of operations, cutting and 

setting-up time, tool type and machine required by each operation, etc. Specific orders 

are selected and assigned to individual machines by the Workload Assignment Module 

introduced in Algorithm 12.1. Then the assigned pallets on each machine is sequenced 

under the machine availability and previous operation constraints, to facilitate the Tool 

Flow Model (Fig. 6.2). 

Alternatively, a user can choose to use the production scheduling rules reviewed 

in the previous sections [60, 81,250,261,268,280], or any other rules of his own 

preference, e.g the Emulator by the FMS group of the parallel research project [229], to 

schedule the part flow and to take the scheduled work-list as the input for running the 

tool requirement and tool flow modules directly. (Fig. 12.9). In such a case, the tool 

flow model will be implemented as a module for overall system performance 

modelling. The method to accept data from other production scheduling mechanism is 

via ASCII formatted files. 

Two heuristic rules have been built in the Production Scheduler: the earliest due 

date (EDD) [1, 35, 65, 69], and shortest processing (operation) time [2, 43, 137, 142, 

144]. The production Scheduler is operated on a non-delay mode [35, 69, 78]. (Fig. 

12.6). No preference has been given to these two type of rules. The choice has been 

left to the user to sequence the pallet flow in terms of work contents or the due date. 

ALGORITHM 12.2, PRODUCTION SCHEDULER 

Step 1. Priority Sequencing. 

1.1). When SFT is selected, Sequence pallets according to work contents, i.e: 

IflP· <= lp., ,then l.p l,p 

pallet p of order i, comes earlier than pallet p', order i'; 

1.2). When EDD is selected, Sequence pallets according to their due date, i.e: 

If di <= di' then 

Pallets of order i come earlier than pallets of order i'. 

The tie-breaker is SFT; 

Step 2. Find the first available machine k with : 

MavaiTk = Min (MavaiTk); (kEK) 

MavaiT k: Available time of machine k; 
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(ieI jeJ) 

go to Step 3; 

Step 3. Locate Pallet; 

Try pallets from the list formed in Step 1. The first one which satisfies: 

ri <= MavaiT k 

2X· = 1 l,p 

X. 'k= 1 I,P.]. 

is selected, pallet located. 

If pallet located go to Step 5 Else go to Step 4; 

Step 4. If no more op. requires machine k 

then delete machine k from K, go to Step 2, until K is empty (all pallets have 

been assigned) 

Else delete machine k temporarily until the next sequence has been made, go 

to Step 2; 

Step 5. Update pallet processing time, 

Update machine available time, 

Delete operations of the pallet from the waiting list, 

Go to Step 6; 

Step 6. Pallet Entry and Leave (fig. 12.7): 

6.1). If pallet enters the cell, insert waiting list, 

go to 6.2; 

6.2). If pallet requires to leave for outside operation, then update pallet available 

time, go to step 2; 

Goto step 7; 

Step 7. If all pallets fmish operation.then stop 

Else go to Step 2; 

The Production Scheduler will always find the fIrst machine available, and then 

search through the sequenced part me in order to see if there are any parts requiring the 

machine. If there are, the machine will be scheduled with the first batch that is ready for 

scheduling under the constraint of precedence. The same procedure will be repeated 

until all the parts have been scheduled [35, 69, 78]. 
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A machine will not be kept on idle as long as there are some batches available, 

that is the scheduling of parts is based on the earliest start time (EST) - Non-delay 

processing. 

For pallets which require outside operations later on, a temporary due date 

(di,p') is assigned to it, taking into the consideration of the possible delay, in order to 

meet the required due date of the batch: 

, Ml 
d~p = d. - [( 2: P .. ) * PALN.] * f 

1 • " I, J 1 
J=J 

f: Safety factor: f = 0, 1, 1.1, 1.2 1.3; 

j': The operation which should be performed outside the cell. 

When f = 0, it is assumed that the due date assigned to a batch was assigned 

considering the characteristics of the part and cell situations, thus the outside operation 

will not influence the part sequence procedure. The safety factor cannot be too big, as 

the expediting of one pallet means the possible delay of the others. 

12.8 INTERNAL PRODUCTION SCHEDULING 

- 'Next-step' Scheduler 

When the external priority has not been (or is not necessary) assigned to orders, 

e.g when modelling a short period, that the meeting of due date is not necessary during 

the period, the internal production scheduling model can be implemented. It is built as 

part of the Tool Flow Model (Fig. 12.9) and is run dynamically to sequence the next 

batch into the machine when a machine finishes the processing of the previous one -

'Next-step' Scheduler. The 'Next-step' scheduler aimes to minimise the tool 

requirement and tool exchange effort, it makes use of the result of tool flow modelling 

and tool life recording up to the stage. 

The input to the Next-step scheduler can either be from the workload assignment 

module, or from the Computer Assisted Cluster Analysis of the research group which 

gives the preferred tool clusters and the associated part families in which case each tool 

cluster set may be treated as a tool kit dedicated to a part family as opposed to a part 

type; [77]. 
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Two scheduling rules have been incorporated: the Least Tool Requirement, or the 

Highest Tooling Similarity. Both of them examine the tool tools present in the machine 

based tool stores and the tools required from the STS. 

The Least Tool Requirement works out the tools that need to be exchanged to the 

machine by comparing tools that are available at the machine and the total tool 

requirement of a batch. The batch which requires minimum number of tools from STS 

for processing will receive a highest priority. 

The Highest Tooling Similarity is based on the similarity measure which is 

defmedas: 

Similarity = (Common tools that are present in the machine based tool stores) 

divided by (Total number of tools required by the batch) 

The batch that has the highest similarity will be selected. [48,52,54, 126,261,290]. 

The former aims to reduce the tool requirement and tool exchange between PTS 

and STS for the introduction of each part type (batch). The machine down time due to 

the tool exchanging can also be reduced. The latter emphasises the sharing of tools 

between the previous part types that have already been processed by the machine. It is 

expected that by introducing the part which has the highest similarity with respect to the 

tools present in the tool magazine and tool turret, the total tool requirement for the 

machine and consequently the whole cell will be reduced. 

Algorithm 12.3, NEXT-STEP SCHEDULER 

Step 1. Select the fIrst available machine k; 

Step 2. Form the waiting list P' for machine k: 

P' contains all pallets which satisfIes 

X i•p•j •k = 1 

2x. = 1 l.p 

1X. = 1; l.p 

Step 3. Let: 

. Tip E T: total tool requirement by pallet p; 
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T2kE T: Total tool contents of the machine based tool stores. 

TIpE T: Tools out of Tlp that are available at the machine; 

TIp is the inter-section of Tlp and T2k. 

T4p E Tp: Tools that need to be transferred to machine k forpalletp. 

T4p = Tlp - TIp; 

Ref. to Chapter 8 for the calculation of Tlp, T2k, T3p' T4p. 

Step 4. Sequence pallet to machine: 

4.1). When Least Tool Requirement is implemented: 

Pallet p is selected if 

(PEP') 

4.2). When the Highest Similarity is implemented, 

Pallet p is selected if 

( pEP') 

where Sp = Size(T3~ I Size(Tl~; 

Step 5. If T4t = 0 then go to Step 6 

Else Tool exchanging to the machine go to Step 6; 

Step 6. Machining and update data. 

Pallet entry and leave (Ref. to section 12.7). 

Repeat step 1 to 6 until all operations have been finished. 

The logic flow of 'Next-step' scheduler is shown in fig. 12.8. For each machine 

in the cell, if there are parts that require it, and if the machine is not loaded, the most 

suitable part type will be introduced to the machine according to either of the criteria 

selected. 

If all the tools required by the batch are in the tool magazine or the tool turret, the 

machine will commence the operation. Otherwise, tool requirement will be issued to the 

STS. Tools required will be transferred from STS to the respective PTS, tool exchange 

to the magazine will be carried out, and the processing of the batch can be started. [54, 

126, 290]. 

The 'Next-step' scheduler also works on the basis of local- optimum manner -
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only the batches ready for the next step is considered - that is a machine will always 

start operation as early as possible - on the non-delay mode. [35,69,78]. 

The best tool issue strategy to suit the 'Next-step' Scheduler is the differential 

kitting concept, of which the essence is to share tools across batches. The Least Tool 

Requirement algorithm can be used when the tool kitting concept has been 

implemented with the objective to reduce the tool exchanging effon and the conflict 

between tool requirement across individual machines. 
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CHAPTER 13 MODELLING OF A MULTI·MACHINE 

CNC TURNING CELL 

13.1 INTRODUCTION 

The work reported here is the result of a case study carried out with data supplied 

by a British company Normalair Garrett Ltd. (Thereafter referred as NGL). The 

purpose of the study is to examine the performance of the 5 machine CNC turning cell 

operation, and to evaluate the alternative designs with the aid of the Turning Model. 

The result reported in this chapter represents a number of significant runs for 

major stages of evaluating. The whole process is supported by a rich number of runs 

which are not reported due to the length of the thesis. This is only made realistic by the 

short running time of the Turning Model. 

13.2 SCOPE OF THE CASE STUDY 

The supplied data is fITst subjected to a number of comprehensive runs to examine 

the installed 5 machine CNC turning cell, by applying a number of production 

scheduling strategies and tooling strategies. 

The total required batches are then doubled to evaluated the system performance 

when large number of batches are put through. 

The case study is then extended to examine the consequence of eliminating the 

under-utilised machine (proved in the previous steps), by shifting the workload of 
machine 5 to machine No. 4 which is of the same type as the eliminated machine. 

The modelling result indicates that a large percentage of machine processing time 

is spent for part and tooling set-up. This due to the fact that: 

(1). Different chuck jaws are required for different batches, a substantial length of 

time is required for the operator to set-up the machine with the right jaw sets; 

(2). The machine operator is required for tool presetting and tool unloading froml 

mounting to the tool turret, which results long tooling set-up time. 
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It is therefore appropriate to study the alternative system design by adopting 

highly automated machines with highly automated features including Automatic 

ChuckJaw Changing (ACJC) and equipped with tool magazines. 

As will be discussed in the turbine cell description and production scheduling 

strategy sections, most of the batches require processing by the supportive machines 

out of the CNC turning cell. This fact, as can be seen from the modelling process, 

effects the system perfonnance to a large extent It was therefore planned to evaluate the 

system perfonnance when there is no part exit/re-entry. 

The overview of the case study is given in fig. 13.8. 

The manning patterns (as having been discussed in the single machine case study 

in Chapter 9) are given to accompany the outputs for a number of major runs to predict 

the manning requirement of the modelled CNC turning cell. 

The tool and tooling requirement were worked out for each run for a number of 

tooling strategies. This includes the tool presetting and exchanging required to fulfill the 

production, and the tool component requirement for the Central Tool Store (CTS) 

inventory control. 

13.3 TURBINE CELL DESCRIPTION 

The turbine cell is a dedicated workshop for bar and chuck type components for 

turbine assemblies. It consists of a group of 5 Index CNC lathes supported by a 

number of NC and conventional machines. It has been required to model the 5 Index 

machine CNC turning cell, with the tooling back up by the tool set-up area (CTS). The 

interaction between the CNC turning cell and the outside machines has been fully 

represented with regards to the part flow out and in the CNC turning cell. 

The CNC turning cell consists 3 Index GU610 CNC lathes, a GE42 and a GE65 

(thereafter referred as machine No. 1 - 5), (Fig. 13.1). The GU610 has the ability of 

machining bars of up to 65mm and chuck parts of up to approximately 200mm in 

diameter. The crown turret with 12 tool stations pennits the use of 12 internal and 

external tools. The tool driving attachment of the turret allows up to 6 live tooling being 

accommodated. (Fig. 13.2). GE42 and GE 65 has the 42 and 65 mm bar machining 

capacity respectively. Both of them can turn chuck parts of up to 200mrn in diameter. 

External and internal turning tools can be arranged in their 14 station turret in any order. 
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With C-axis control facility and the tool driving mechanism attached to the turret, the 

GE 42 and GE 65 can carry secondary operations by accommodating up to 7 live 

tools. (Fig. 13.3 and 13.4). [160, 161, 162]. 

13.4 COMPONENTS AND PRODUCTION REQUIREMENT 

11 part types have been given for the case study. The part spectrum includes 

turbine wheel, exducer, compressor impeller, impeller fan axial, and exducer for 

cooling turbine (Ref. to Appendix 2A). The processing of of these components inside 

the CNC turning cell is assigned to one of the 3 groups Le BLN (3 GU610 machines), 

BLK (GE65), BLM (GE42). The tool operations performed in the CNC cell ranges 

between 2 to 14. (Fig. 13.3). All the components require the machining inside the CNC 

turning cell and operations out the CNC cell e.g milling, turning, grinding, deburring, 

inspection and balancing, etc. (Fig. 13.4). 

A typical part routing is given in fig. 13.5. Before entering the CNC turning cell 

to the machine GU610-1, the part requires operations on machine BLA. Then 11 tool 

operations including turning, boring, and central drilling will be performed on GU610-

1, after which the part leaves the CNC turning cell for outside operations on machines 

PNE and BLA. In the due time, the batch wi11leave the CNC turning cell for deburr, 

inspection and final boring and will be returned to compressor room. (Fig. 13.6). 

13.5 PRODUCTION SCHEDULING STRATEGIES 

As having been discussed in Chapter 12, the production scheduling algorithm 

adopts a 3 step approach, Le, part launching, work load assignment, and batch 

sequencing. 

13.5.1 Part Launching 

The part launching and production environment of the modelled CNC turning cell 

is of typical stochastic interrupted type as defined in Chapter 12 (12.2).4 part types 

require outside operation before entering the CNC turning cell and 6 part types require 

exit and re-entry to the CNC cell during its total processing in the turbine cell. The 

launching rule adopted was: a batch can only enter the CNC turning cell when 

its previous operations have been finished out of the cell. 
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13.5.2 Workload Assignment 

The fact that 3 GU610 CNC turning centres are pooled into a group indicates that 

the workload for the 3 machine should be balanced among each individual one. Two 

alternative rules have been implemented for assigning work load to individual 

machines: 

(1). Workload Assignment Rule 1: The machine with the least workload of the 

group will be assigned with the batch that has the maximum work-content that can be 

performed by the machine. 

(2). Workload Assignment Rule 2: The machine with the least workload of the 

group will be assigned with the batch that has the minimum work-content that can be 

performed by the machine. 

13.5.3 Batch Sequencing 

Assigned batches will be sequenced by one of the following rules: 

(1). Sequencing Rule 1: When a machine is available, the ready batch which 

requires the longest time interval between its exit and re-entry later on during its 

processing will be sequenced first. For batches with the same amount of outside 

operation time, the one with shortest processing time will be sequenced fIrst; 

(2). Sequencing Rule 2: No priority is given to batches that require, exit/re-entry. 

Shortest Processing Time (SPT) is employed for sequencing: i.e the batch which 

requires the shortest processing time among all the batches waiting for an available 

machine will be sequenced first; 

(3). Sequencing Rule 3: When a machine is available, all the batches waiting for 

the machine are listed, the batch which requires least number of tools to be exchanged 

to the machine will be sequenced first. This rule is implemented with the combination 

of differential Kitting strategy which will be described in Tooling Strategy section. 

It is aimed to maximise the tool sharing between successive tool kits. Among these 3 

sequencing rules, the first 2 are the function of External Production Scheduler; and the 

sequencing rule 3 is the function of the Next-step Scheduler (Ref. to Chapter 12). 
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13.5.4 List of the Scheduling Strategies 

6 production strategies have been resulted by combining the 2 workload 

assignment with the 3 sequencing strategies (Fig. 13.9): 

Scheduling Strategy 1: workload assignment rule 1 combined with sequencing rule 1,' 

Scheduling Strategy 2: workload assignment rule 2 combined with sequencing rule 1 " 

Scheduling Strategy 3: workload assignment rule 2 combined with sequencing rule 2,' 

Scheduling Strategy 4: workload assignment rule 1 combined with sequencing rule 2,' 

Scheduling Strategy 5: workload assignment rule 1 combined with sequencing rule 3,' 

Scheduling Strategy 6:. workload assignment rule 2 combined with sequencing rule 3,' 

13.6 TOOLING AND TOOLING STRATEGY 

13.6.1 Tooling Strategies 

3 tooling strategies have been implemented to suit different system designs and 

automation levels, and to examine the tooling requirement under the adopted strategies: 

(1). Kitting: tool kits are issued to a machine to accompany each batch. When the 

processing of a batch is finished, the tool kit in the machine will be exchanged with the 

new kit for next batch. The used kit will then be transferred back to the tool presetting 

area and disposed of. No tool sharing between kits are permitted. 

This is the tooling strategy implemented by NOL. During the tooling set-up 

period for each batch, the operator is required to prepare tools in the kits, unload tools 

in the old kit, and mount the tools in the new kit to the machine tool turret. It is 

specified that 15 min. is required for each tool preparing and exchange. The machine is 

not in operation during this tooling set-up time. 

(2). Differential Kitting: Tools are assigned in kits for each batch, but common 

tools can be shared between successive tool kits. A tool kit contains only tools that are 

not available in the machine. Tool saving can be achieved, but it requires tool life 

management in the machine CNC controller and system controlling computer to record 

tool life usage across different batches, and to recording tooling off-set. It is only 

advisable on highly automated machines with tool magazine equipped. 
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(3). Complete Tool Magazine Exchange: Tools for a production period are stored 

in the magazine up to the magazine capacity. After the completion of the processing of 

the period, the whole magazine will be exchanged for the next period. 

The framework for tool management and tooling strategy selection is discussed in 

chapter 7. 

13.6.2 Tool Component Requirement 

A cutting tool consists of 3 main parts: cutting unit, shank (if applicable), and the 

tool holder. The cutting unit for external turning tools and boring tools is the indexable 

insert, for drilling and tapping tools is the tool itself. Drilling and tapping tools do not 

have a shank. 

The tool holders according to DIN69880 permit quick tool change and assure 

highly accurate axial and radial location. A typical tool is shown in Fig. 13.7. 

Tools are assembled, reconditioned, and preset in the tool presetting area (CTS). 

I It is assumed that used tools will be disposed of in either of the following two way: 
i __ 

(1). Tools of the type required later will have its index able insert indexed, 

presenting a new tip. Cutting tools without indexable inserts will refurbished. 

(2). Tools not required will be disassembled, so that the tool component can 

be used for other tool assembling and reconditioning. 

Cutting units are regarded as consumable. A indexable insert is regarded as worn 

out after all its usable tips have been used. A cutting tool without indexable inserts e.g 

dill, tap, are wo~_out if it ~~s been reground for a specified number of times. Special 

tools, e.g probes, are classified as cutting tools, but treated as durable, i.e, they can be 

used for tool assembling for any number of times. 

Tool shanks and holders are regarded as durable. 

A cutting tool is an assembly of tool components, and is referred to a individual 

tool No .. Once being disassembled, the tool assembly will no longer exist. Whereas a 

tool component refers to fixed item, which unless being worn out, can be used by 

different tool assemblies. 
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The tool part requirement planning works out the total number of items required 

for each item Ld for inserts, shanks, and holders respectively to fulfill the required tool 

assembling and reconditioning. The logic flow and the algorithms for tool part planning 

was discussed in Chapter 11. 

13.7 SYSTEM PERFORMANCE EVALUATION CRITERIA 
AND NOMENCLATURE 

The following definition of machine activity times have been employed for the 

system performance evaluation purpose: 

The total processing time of a machine is defmed as the time interval between the 

machine starts processing . the first batch and the stage that the last batch has been 

finished. It is broken down into cutting time, which is the time a machine is actually 

doing the metal removal; part set-up time, which is the time for batch set-up and part 

loading/unloading; tooling set-up time, which the time that a machine spent for tool 

presetting, exchanging, and turret indexing; and the machine idle time, which is the 

sum of the time that a machine spent during its total processing period waiting for 

batches to fmish their previous operations before they can be sequenced to the machine. 

The longest total processing time of individual machines is defined as the 

throughput time of the turning cell. 

Total idle time of the cell is defined as the sum of machine idle time of all 

machines in the cell. 

The throughput time is used as the most important criterion for cell performance 

evaluation. The total idle time is meaningful only when examining the waste of the cost 

of manpower and equipment. 

Nomenclature: 

MS,(: Throughput of the CNC turning cell under scheduling strategy s, tooling strategy 

t; 

IT m,s,(: total idle time of machine No. m under scheduling strategy s, tooling strategy 

t; 
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TITs,t' total machine idle time of the cell under scheduling strategy s, tooling strategy t; 

TITs t = L ITm SI; , , , 
s: Scheduling strategy index; s:= 1,2,3,4; Ref. to fig. 13.9.1 for the description of 

these strategies. 

t: Tooling strategy index; t:= 1,2,3; representing kitting, differential kitting, and 

complete magazine exchange respectively, fig. 13.9.2. 

m := machine index; 

In the NGL CNC turning cell m:= 1,2, 3, 4, 5; represents machine GU61O-1, 

GU61O-2, GU61O- 3, GE65, GE42 respectively; 

And in the synthetic highly automated cell 

m := 1, 2; represents synthetic turning centre 1 & 2; 

13.8 MODELLING OF THE 5 MACHINE CNC TURNING CELL 

4 Runs (Run 1 - 4) have been completed to model the CNC turning cell 

installation. NGL supplied machine, tool, and workpiece data were used to conduct 

modelling experiment under 4 scheduling strategies. Tooling strategy adopted was 

kitting (Strategy 1) as being implemented by NGL. It was specified that 15 min. is 

required for preparing and exchange a tool into machine turrets. A machine is not in 

operation during the part loading/unloading, and tool exchange. The following results 

have been obtained: 

13.8.1 MACHINING HISTORY AND ACTIVITIES 

13.8.1.1 Modelling Results 

The summarised machine utilisation under the modelled 4 scheduling strategies 

(thus the number of Runs) is shown in Fig. 13.10. 

It has been illustrated clearly that each machine spends long time for set-up, only 

a very short time has been employed for metal cutting. This is mainly because that the 

high accuracy and value of the parts dictates a long machine set-up time for each batch. 

Secondly, each tool requires 15 min. for assembling and presetting, which is carried 

out by the machine operator. If the required tools were assembled and preset by a 

dedicated tool preparing operator, great gain could be achieved with regards to reduced 

machine setting-up time. 
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Machine GU610-2, GE65, GE42 feature a long idle time waiting for suitable 

pallets. For GU61O-2, this is because that no pallets are available for operation. While 

for GE65 and GE42, since only one batch has been assigned to each machine, the 

machine is kept idle when the batch is away form the CNC turning cell for outside 

operation. 

According to the definition, the throughput time of the CNC turning cell under 

the four production scheduling strategies are: 

M1•1 = 1436 min. 

M2,l = 1346 min. 

M3•1 = 1812 min. 

M4•1 = 1829 min. 

The total idle time of the CNC turning cell under Scheduling Strategy 1 is: 

TIT1.1 = L ITm,I,1 = 0 + 129 + 0 + 135 + 700 = 964 (min.); 

Similarly, the total idle time under scheduling strategies 2 to 4 are: 

TIT2•1 = 946 min. 

TIT3•1 = 1420 min. 

TIT4•1 = 1456 min. 

13.8.1.2 Discussion on the Cell Throughput Time 

From the modelling results, the following conclusion can be drawn: 

The scheduling strategies (1 and 2) which consider the outside operation 

requirement when sequencing the batches certainly result a better system performance 

both for the throughput time and total idle time over the scheduling strategy 3 and 4 

which ignores the exit/re-entry effect in the later stage. 

Scheduling strategy 2 is the the best among the 4 strategies with a minimum 

throughput time and the least total machine idle time (1346 min. and 964 min. 

respectively). 

13.8.2 CELL TOOL REQUIREMENT 

Assuming each tool has a 30 min. total tool life of which up to 50% can be used. 

i.e the maximum permissible tool life is 15 min. For the given list of 11 batches 
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(Fig.13.3), a total number of 110 tools are required. As all tools are transferred back to 

tool set-up area for refurbished, a tool is regarded as 'worn' if the current tip has been 
used up to the limit. A tip is defined as 'worn' if its accumulated engagement time has 

reached 15 min., or under 15 min., but will exceed if the next operation is carried out. 

All of the 4 scheduling strategies require the same number of tool assemblies 

(111), this is due to the fact that the tool kitting strategy is implemented (Ref. to 

sections 13.5, 13.6). But the tool components required for tool assembling and 

refurbished are expected to be different due to the components sharied, as will be 

discussed in the next section. 

13.8.3 TOOL COMPONENTS REQUIREMENT 

Tool part requirement forms the base for both the short term modelling to facilitate 

tool assembling and presetting, and the medium to long term period for forecasting of 

tool room inventory control and part purchasing. The tool parts have been classified as 

consumable: inserts and cutters; and durable: shanks and holders. A consumable part 

has the predetermined number of indexable tips (for inserts) or number of permitted 

regrinds (drills, taps), after which the part cannot be used. A durable part can be shared 

across tool assemblies. 

The total requirement of inserts (cutters), shanks, and holders for each control 

strategy are given in the table and Fig. 13.25. 

The strategy that requires less tool inserts in sequence are (with the required 

number of inserts in bracket following each strategy): 

Scheduling Strategy 1 (74), Scheduling Strategy 3 (77), Scheduling Strategy 4 

(78), Scheduling Strategy 2 (84). 

The strategy that requires less tool shanks in sequence are (with the required number of 

shanks in bracket following each strategy): 

Scheduling Strategy 1 (43), Scheduling Strategy 3 (54), Scheduling Strategy 2 

(56), and Scheduling Strategy 4 (56). 

The strategy sequence that requires less number of holders are: 

Scheduling Strategy 1 (66), Scheduling Strategy 3 (67), Scheduling Strategy 2 

(71), Scheduling Strategy 4 (79). 

The strategies producing the overall better tooling requirement performance are (in 

sequence): Scheduling Strategy I, 3, 2, 4. Strategy 2 is better than 4 due to the fact that 
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although more inserts are required by scheduling strategy 2, it is well compensated by 

the smaller tool holder requirement, due to the high cost of tool holders. 

13.9 MODELLING THE PRODUCTION OF 

INCREASED NUMBER OF BATCHES 

Run 5 and 6 were planned to examine the system performance when the 

production requirement is doubled. Production scheduling strategies I and 2 were 

selected because that in the Run I - 4 these two strategies performed better than the 

other 2 strategies. 

The throughput time of the CNC turning cell under respective scheduling 

strategies and tooling strategies are: 

M1;1 = 2567 min. (Run 5); 

MZ,l = 2678 min. (Run 6). 

These are not the double that the throughput time of Run I and 2 which adopted the 

same tooling and scheduling strategies, although the time saving in not significant. 

In this case production scheduling strategy I performed better than scheduling 2 

with respect to the throughput time, which is in contrary to Run 1 and 2. It also proved 

that scheduling strategy 1 requires less tool assemblies and tool components than 

scheduling strategy 2, which is in synonymous with Run 1 and 2. It can be concluded 

that scheduling strategy 1 results in better overall performance than strategy 2. It is also 

observed that the performance of the scheduling strategies is production requirement 

dependent. 

In both Run 5 and 6 the idle times of machine No. 1 - 4 are 0, which means that 

when large number of batches are put through, the effect of out of cell operation is 

reduced. Machine No. 5, however, still features long idle time (509 min. in both runs), 

which means that the outside operation effects the machine performance to a large 

extent, although decreased compared to Run 1 & 2. (Fig. 13.11). It is also noticed that 

both machine 4 and 5 feature short total processing times, fig. 13.11. 

13.10 EXTENDED CASE STUDY - 4 MACHINE CELL DESIGN 

. The previous 6 runs showed that machine 4 and 5 are under utilised, fig. 13.10, 

13.11. According to the machine manufacturer's specification, these two machines, 
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GE42 & GE65, are of the same type. And in NGL's case they have the same 

processing capability. It has therefore been decided to eliminate machine 5 from the cell 

layout by shifting the production requirement of the machine to machine 4, and to 

examine the consequence. 

The result proved that for the given 11 batches with their associated processing 

information, this is an appropriate approach. 

In this cell design the 'tool kitting' strategy, fig. 13.9.2, was adopted according 

to NGL practice. Scheduling strategy 1 & 2 were selected for their better performance 

in the previous runs. 

The throughput time under these strategies are: 

M11 = 1436 min. (Run 7); , 
M2 1 = 1346 min. (Run 8); , 

These are equal to the result of Run 1 and 2. This is due to the fact that the 

throughput time are decided in these runs by machine 3 and 1 respectively, thus the 

eliminating of machine 5 has not increased the turning cell's throughput time. 

Same as in the 5 machine cell case (Run 1 - 4), scheduling strategy 2 resulted a 

shorter through time than scheduling strategy 1; and scheduling strategy 1 requires less 

tool assemblies and tool components, fig. 13.25. This is because that the difference 

between these two strategies are th.eir workload assignment rules, fig. 13.9.1, which 

effects only the workload among the GU610 (BLN) group consisting of machine 1 - 3. 

And the shifting of workload of machine 5 to machine 4 does not effect the workload 

distribution on machine 1 - 3. 

The manning pattern of the 4 machine turning cell under one combination of the 

production scheduling strategy and tooling strategy (Run 8) shows that as the machines 

are manually operated, one operator is required for each machine except when the 

machine is idle (Fig. 13.13). 

13.11 EXTENDED CASE STUDY 

• 2 HIGHLY AUTOMATED MACHINE TURNING CELL 

13.11.1 Cell Design 

212 



The case study is extended to examine an alternative system design using 2 highly 

automated CNC turning centres. This extension is planned due to the fact that the 

previous runs showed that very large percentage of processing time has been engaged 

for setting-up and the actually cutting time of each machine is very low. This is caused 

by the following 2 reasons: 

(1). Each batch requires different chuck jaws to fulfill the processing 

requirements and the high accuracy of the parts required results long part set-up 

time; 

(2). The tools required are assembled and preset by the machine operator. The 

machine is idle during the tooling set-up periods. 

It is therefore appropriate to study the possibility of employing highly automated 

machines with the automated features including tool magazine support and automated 

chuck jaw changing. It is assumed that 2 machines of the type studied in chapter 9 has 

been employed, fig. 9.2. 

For these 2 highly automated machines tooling strategies differential kitting and 

complete magazine exchange can be implemented as each machine has a tool magazine. 

In this cell, it is assumed that tools are assembled I disassembled, and preset in 

the tool presetting area by dedicated tool preparing staff. It is assumed that 30 min. is 

required for a tool magazine exchange and 15 min. for a tool kit exchanging. A machine 

is assumed to be not in operation when its tool magazine is being serviced. 

13.11.2 Results Discussion 

The'throughput time of the two machine cell under different scheduling and tooling 

strategies are: 

M1,2 = 965 min. 

M2,2 = 965 min. 

M1,3 = 980 min. 

M2,3 = 980 min. 

The results proved that the two highly automated machine can fulfill the 

production requirement specified for the original 5 machine cell design (Run 1 - 4) with 

a reduced throughput time. This conclusion of course needs to be examined by the 
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technical feasibility and economical acceptance, which is out of the scope of this thesis. 

A further examine of the results showed that under the same tooling strategy, whether 

'differential kitting' or 'complete magazine exchange', the two scheduling strategies 

requires the same throughput time: M 1 2 = M2 2; M 1 3 = M2 3. This because that in , , , , 
all the situations the throughput time is determined by the total processing time of the 

fully loaded machine, fig. 13.14. 

The idle time, however, is different under different strategies: 

I IT1.1.2 = 175 min.; IT2,I,2 = O. 

IT1,2,2 = 0; 

IT1,I,3 = 295 min.; 

. IT 1,2,3 = 0; 

IT2,2,2 = 106 min. 

IT2;1.3 = O. 

IT2.2.3 = 240 min. 

The scheduling strategy 2 resulted less idle time than the strategy 1 under the two 

tooling strategies respectively, which means that the under utilised machine can finish 

processing earlier for other uses, if applicable. 

The tooling strategy 2 'differential kitting' performs better than strategy 3 

'complete magazine exchange' with respect to the length of throughput time required, 

although the difference is very small. 

The tool/ tool component requirement under tooling strategy 2 is less than tooling 

strategy 3 under the two scheduling strategies respectively, fig. 13.25. This is because 

that when 'differential kitting' is adopted, tools can be shared between the two 

machines, but at the expense of tool flow. 

When differential kitting is implemented one man is required to look after the two 

machines for both work and tool flow. And there are occasions that a extra man is 

required for support, unless the machine 1 is to be delayed, which is feasible in this 

case as this machine is not fully utilised, fig. 13.15. 

When complete magazine exchange is adopted one man is required to attend the 

two machines except in the initial set-up period for tool magazine exchange. And the 

manning requirement is so Iow that from time to time the operator is available for some 

other miscellaneous work, fig. 13.16. 
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13.12 MODELLING OF THE 4 MACHINE CELL 

WITH NO PART EXIT/RE.ENTRY 

So far, the previous runs have been dedicated to the particular production 

requirement of stochastic-disturbed' type, see Chapter 12, with batches exit/re-entry the 

CNC turning cells during their processing. It is decided to model the stand-alone 

turning cells with no out of the cell operations. The control experiment (Run 7 & 8) 4 

machine cell design is adopted. The NGL part data with outside operation being 

eliminated is used for the modelling purpose. 

Two runs (Run 13 & 14) have been conducted, using production scheduling 

strategies 3 & 4. The scheduling strategies 1 & 2 are not applicable in this cell as there 

is no outside operation requirement any more. 

The results showed that the throughput time under the 2 scheduling strategies are 

of the same level as with the control experiment (Run 7 & 8, fig. 13.8), although with 

some variance. Run 14 adopting scheduling strategy 4 resulted the longest throughput 

time. The reason for this is that the workload distribution across different machines is 

less balanced in this case. The machine idle time is 0 for all the machines, Le no time 

has been spent to wait for batches, as a result some of the machines finish process 

much earlier than others, e.g machine 1 of Run 14, fig. 13.17, which can be used for 

other tasks. 

The comparison of the results of Run 13 and 14 showed that production 

scheduling strategy 3 performed better than strategy 4 with regard to both shorter 

throughput time and less tooling requirement, fig. 13.25. 

One operator is required for each machine for both tooling and part set-up, fig, 

13.18. 

13.13 TWO HIGHLY AUTOMATED MACHINE CELL 

WITH NO PART EXITIRE·ENTRY 

Six runs (Run 15 - 20) have been carried out to examine the cell performance, 

with outside operation being eliminated. The machine cell is as for Run 9 - 12. The 

production requirement and part processing planning of Run 9 -12 were used with 

outside operation time being set to O. (Fig. 13.8). 
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Scheduling strategy 5 & 6 were also examined, besides other scheduling 

strategies, as there is no there is no outside operation required and the highly automated 

machine design permitting tool sharing between batches. 

The comparison of tooling strategy 2 'differential kitting with tooling strategy 3 

complete magazine exchange showed that the latter is better with regard to shorter 

throughput time requirement, fig. 13.19, 13.20, and less manning involvement for tool 

and part flow, fig. 13.21, 12.22. However, when complete magazine exchange is 

adopted more set-up effort is required in the tooling preset area to fill the tool 

magazines. 

The comparison of the individual scheduling strategies showed that strategy 3 and 

6 are better than strategy 4 and 5 respectively. Scheduling strategy 3 and 6 adopt the 

workload assignment strategy of 'assigning the batch with the longest work contents to 

the available'; while scheduling strategy 4 and 5 adopt the workload assignment 

strategy of 'assigning the batch with the least work content to the available machine'. 

In this production situation, the former produces a better workload balance between the 

two machines. 

Scheduling strategy 5 and 6 which considers tool requirement between different 

batches result less tooVcomponent requirements, although the saving is not significant. 

13.14 EXAMINE THE EFFECT OF TOOL LIFE LIMITS 

The effects of relaxing the limit of permissible percentage tool life utilisation has 

been examined. Four runs have been conducted. Run 21 and 22 were planned to 

examine the effect of this relaxation in the 4 Index machine cell. Run 8 has been used as 

the control. The relaxing of the tool life limits of the 2 highly automated machine cell 

has been examined by Run 23 and 24 based on Run 10. 

13.14.1 Effects of Tool Life Limit Relaxation 
in the 4 Index Machine Cell 

As having been specified for Run 8, the tool life limit was set to 50%, fig. 13.8, 

i.e. once a tool's accumulated life utilisation has reached 50% of its life unit, the tool is 

regarded as worn, Ref. to Chapter 8 for tool life limit discussion. Run 22 examined the 

effect of increasing this limit to 65%. The result showed that the saving of 9 items of 

tool assemblies and inserts, and 8 items of shanks and holders has been achieved. A 
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further increase of the limit up to 80%, Run 21, showed that a further saving of 3 items 

of tool assemblies and inserts and 2 items of shanks and holders respectively have been 

resulted. The effects of those relaxation individual tools types have been listed in fig 

13.23, 13.24. 

The results showed that under this particular condition of cell design and 

production requirement the increase of tool life limit for 50% to 65% resulted more 

tooVtool components savings than the further increase form 65% to 80%. 

13.14.2 Effects of Tool Life Limit Relaxation in 

the 2 Highly Automated Machine Cell 

Similar to the process of the previous section, Run 23 and 24 were planned to 

examine the effects of increasing tool life limit up to 80& and 65% respectively, based 

on Run 10 with the tool life limit of 50%. 

The results showed that the relaxing of tool life limit form 50% (Run 10) to 65% 

(run 24) decreased the tooVtool component requirement by 9 for tool assemblies, 4 for 

inserts, 5 for shanks, and none for holders. Further increasing of this limit form 65% 

to 80% resulted the tooling saving of 9 for tool assemblies, 8 for inserts, 6 for shanks, 

and 7 for holders. 

These results showed that under this particular manufacturing condition, the 

increase of tool life limit form 65% to 80% produced more tooling saving than the 

increase form 50% to 65%, although the difference is not significant, fig. 13.25. 

It has been noticed that this result is .. contrary to that of the 4 Index machine cell 

of the previous section. The explanation to this is that there is no apparent, simple 

mathematical relations between the extent of relaxation of tool life limit and the number 

of tooling saving that can be achieved, due to the complexity of tool flow and the large 

number of tooVtool components involved. One conclusion which is obvious is that the 

increase of tool life limit will certainly result tooling saving. 
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5-machine CNC Turning Cell 

ITool Presetting Area I 
, ___ [ ______ __ 1.. _ __ __ __* * 
, ' 

MIc : Index Index Index: Index Index 
1.0 :+' GU610-1 GU610-2 GU610-3: GE42 GE65 

(Group): i (BLN) (BLN) (BLN): (BLM) (BLK) 
MIC -.L ----,---------2-------'-3--' 4 5 
No. ------------------------.------------------------

NGL 

NGL 

Outside Machining 

e.g. Turning, Milling, Grinding, Bench Work, etc. 

LUT - FMS Fig. 13.1 
Turbine Cell Configuration Research Group 

"'-~'"'.,,-,-,""''''"--''-,) 

1 

Machine TvPe GU610 
Mic GrouD BLN 
Turret Positions 12 
Turret Index Time 0.6 sec. / Position 
Max. Turnina Diameter 210mm 

Fig. 13.2 

Machine Description 

LUT-FMS 
RESEARCH 

GROUP 
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Assigned No. of 
Port Type 

MIC Group Tool Op.s 
Quontity 

1067J012 BLM 12 10 

1067J022 BLN 11 10 

1066J012 BLN 12 10 

1066J042 BLN 12 10 

1095J022 BLN 13 1 

1095J032 BLN 13 1 

1095J052 BLN 14 1 

1112J010 BLN 2 10 

1112J012 BLN 9 10 

1112J022 BLK 11 10 

1112J062 BLN 12 5 

Fig. 13.3 LUT - FMS 
NGL Turbine Cell Part List Research Group 

Outside CNC Turning Outside CNC Turning 
Port Type Mochining Cell Mochining Cell 

1067J012 • • • 
1067J022 • • • • 
I066J012 • • • • 
1068J042 • • • 
1095J022 • • • 
1095J032 • • • 
1095J052 • • • 
1112J010 • • 
1112J012 • • 
1112J022 • • • 
1112J062 • • 

NGL Fig. 13.4 LUT - FMS 
Turbine Cell Part Routing Research Group 
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Part 1.0: 1088J012 Description: Compressor 
Material: Costing 203697-3 

MIC Set-up Op. 
Operation Description Tool 

(Group) Time Time Type (min. 

BLA 1H30M 4 NC Turn 

1.4 Rouah Face & Turn TU01 
0.2 C/Drill DR01 

GU610 45M 0.9 Drill 0.4331 DR07 
-1 0.5 Finish Face & Turn TU02 

(BLN) 
3.1 Finish Bore to SKT.2 B003 
0.3 Rouah Face TU01 

1H45M 0.1 ROUQh C/Bore DR08 
0.1 Finish Face to SKT.3 TU02 
1.2 Finish C/Bore B003 

(rN~) BNA 6HOM 4 NC Mill 

BLA 1H30M 11 Bore, Face, Reset 
& Face 

GU610 0.8 RouQh&Finish to FKT.7 TU06 
-2 3H 1.2 Rouah MIC Profile TU01 
(BLN) 0.5 Finish Profile as SKT.8 TU07 

Bench 15M 25 Deburr 

Inpection 3H Inspection, Balance Overspeed 

BLA 2H30M 11 Bore 

ABB 1H Balance 

Fig. 13.5 LUT-FMS 
NGL Part Routing RESEARCH 

GROUP 

Surface HONE I MAHO I [:J I+CY~·lj.J~p.·"j ~·I·WG·I·"" ~~rspeed Gringer 
(SGE) (AHB) (VMH) (ELD) ;.cE!I,A~" (BAD) .. :::." .:: ~:~~ 

... , ~. ,... ., . .' . 

~ [:J c::J"if~'~;'~:~:\'" . ./j ./ 
(EGE) CGN BLN : '(BLN) ..... . .. : .... ~ , 

: "" .. ' ; Tool 

I ~U6\O-31 c:J11 ~E42)';l::~::-::lt3 J .... Setting 
Matrix I Area . 

(RGL) BLN BLK ~ BLM·,..... "ePNE}' 

OVEN I DRILLS .. ' ~ 
(ASR) Ilnspectioh I I Compre';sor I (DBD) 

I BGN I (CTA) 
Room 

................................ : Routing of 1 088JO 12 

NGL Fig. 13. 6 Turbine Cell Layout LUT- FMS 
With Typical Port Routing Examples Research Group 
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TOOL DESCRIPTION 

Tool Type: TU11 
Tool Descri¥tion ICo.pany 1.0: 
Rotational 001 [VNl ? .... : N 

Insert (Cuttinq Unit) Inforlation: 
Insert Ty¥e ••••••••••• : CNHS120408 K68 
Assiqned 001 Life Unit: 30.00 Kax. Per.issible S Tool Life: 50.00 
Percenta!e Life Used •• : 0.00 No. of Indexable Tips/Reqrinds: 4 
Ho. of T ps Used ••••• : 0 

Shank Inforlation: 
Shank Tlpe •••••••••••• : KCLNR2020 H12 
Externa I Internal Tool [E/11: E Shank Size ..... : 

Holder Inforlation: 
Holder Type ••••••••••• : W633000400 

Continue: Edit Data Entry Hard cops: 
<Enter> <Ctrl-8> <Shift-Prt c> 

NGL 
Fi 9 . 1 3. 7 A T y pie a I 
Tool Information 
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Quit: 
<Esc> 
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RESEARCH 

GROUP 



Data Specification Tooling Schedule. 
Run Strategy Strategy 
No. & (Ref. to (Ref. to Comments 

System Design Fig. 13.9.2) Fig. 13.9.1 

1 1 - NGL data plus synthetic - - NGL part data 
2 - NGL 5 M/C cell design 2 scheduling strategies 

- - 11 part types 1. Kitting 

3 - 50% permissible tool life 3 
-

4 4 

5 - NGL system design 1 - Increased No. of batches 
- - Original part mix • 2 1. Kitting - Scheduling strategy 1 & 2 proved 

6 2 better than 3 & 4 

7 - NGL part data 1 
- Control Experiment 

- - 4 Index M/C cell 1. Kitting - M/C 4 & 5 under-utilised 

8 - 50% permissible tool life 2 
- M/C 4 & 5 of same type 

Che~ck what-if Mic 5 is eliminated 

9 - NGL order requirement 
2. Differential 1 - 2 highly auto. M/C cell 

- 2 M/C cell - Control ex~. part data with reduced - - Auto. Chuck Jaw Kitting part & too ing set-up time 
10 Changing (ACJC) M/C 2 - Differential kitting proved tool - - Tool magazine added /tool component saving over kitting 
11 - 1/4 control expo part 3. Complete 1 - Differential kitting applicable only 

- set-up time Magazine when tool magazine equipped 
12 - Synthetic data Ref. to Exchange 2 

- Tooling strat. 3 reduces 
Fig. 9.2 tool exchanging interfere 

13 - Control expo data with 3 - Stand alone cell with no interaction 

- no exit/re-entry 1. Kitting 
with outside M/Cs 

- 4 Index M/C cell - Scheduling strategies 1 &2 
14 4 not applicable 

15 3 
- - Control expo part data - Stand-alone cell 

16 outside op. time of 0 
2. Differential 4 - Control expo part data with reduced 

- - 2 highly auto. M/C cell part & tooling set-up time 

17 
- Synthetic data ReI. to Kitting 

5 - Scheduling strategy 5 & 6 examined 
Fig. 9.2 , -

18 6 

-
19 3. Complete 3 

f-- Magazine 

20 Exchange 4 

21 - Control expo part data - Permissible tool life - 80% 
- 4 Index M/C cell 2 - Sche. Strat. 2 of best in control expo 

I-- 1. Kitting 
22 

- Increased/ decreased 
2 - Permissible tool life = 65% permissible tool life limit 

23 - 2 highly auto. M/C cell 
2 - Permissible tool life = 80% 

I--
- Control expo part data 2. Differential 

with reduced set-up time 
24 - Increased/ decreased Kitting 

2 - Permissible tool life = 65% 
permissible tool life limit 

Fig. 13.8 LUT-FMS 
Overview of RESEARCH 

Modelling Experiment GROUP 
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Mic Batch Batch Additional 
No. Op. Outside Batch Tool 

Workload TIme Op. TIme Req. for MIC 
Workload Least Shortest - -

1 
Assign. Rule 

Sequencing - - Longest -Rule 

Workload Least Longest -Assign. Rule -
2 

Sequencing 
Rule - - Longest -
Workload Least Longest -Assign. Rule -

3 
Sequencing 
Rule - Shortest - -
Workload Least Shortest -Assign. Rule -

4 
Sequencing 
Rule - Shortest - -
Workload Least Shortest - -

5 
Assign. Rule 

Sequencing 
Rule - - - Least 

Workload Least Longest - -
6 

Assign. Rule 

Sequencing 
Rule - - - Least 

Fig. 13.9.1 LUT-FMS 
Production Scheduling RESEARCH 

Strategy List GROUP 

No. Description 

1 . Kitting A tool kit consisting of 011 the tools 
for 0 botch is issued to 0 Mic 
accompany the port botch. 
Successive kits ore exchanged 
at the completion of each botch. 

. 2. Differential Only tools not ovailable in the MIC 

Kitting 
ore contained in 0 kit. 
Tools can be shared between tool kits 

3. Complete All tools required for the production 

Magazine Exchange period by 0 MIC are stored in the 
MIC based tool store (magazine). 

Fig. 13.9.2 LUT - FMS 
Tooling Strotegy List Research Group 
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Run No.: 1; M/C Cutting Port (M/C) Tooling Idle Total Processing 
TIme Set-up Time Set-up TIme Time TIme 

1 192 600 422 0 1214 
Schedule. 2 172 630 406 129 1337 
Strat.: 1; 

3 175 795 466 0 1436 
4 86 165 166 135 552 

Tooling 
5 132 280 211 700 1323 Strat.: 1; 
Throughput Time: 1436 

Run No.: 1; M/C Cutting Port (M/C) Tooling Idle Total Processing 
TIme Set-up TIme Set-up TIme TIme TIme 

1 205 660 481 0 1346 
Schedule. 2 130 750 406 0 1286 
Strat.: 2; 

3 205 615 407 111 1338 
4 86 165 166 135 552 

Tooling 
5 132 280 211 700 1323 Strat.: 1; 

Throuqhput Time: 1346 . 

Run No.: 3; M/C Cutting Port (M/C) Tooling Idle Total Processing 
Time Set-up Time Set-up Time TIme TIme 

1 205 660 481 0 1346 
Schedule. 2 130 750 406 0 1286 
Strat.: 3; 

3 205 615 407 585 1812 
4 86 165 166 135 552 

Tooling 
5 132 280 211 700 1323 Strat.: 1; . 

Throughput Time: 1812 

Run No.: 4; M/C Cutting Part (M/C) Tooling Idle Total Processing 
Time Set-up TIme Set-up TIme Time Time 

1 192 600 422 0 1214 
Schedule. 2 172 630 406 621 1829 
Strat.: 4; 

3 175 795 466 0 1436 
4 86 165 166 135 552 

Tooling 
5 132 280 211 700 1323 Strat.: 1; 

Throuqhput Time: 1829 

TIme Unit: min. 

M/C No.: 
1: GU610 - 1; 2: GU610 - 2; 3: GU610 - 3; 4: GE65; 5: GE42. 

Fig. 13.10 LUT-FMS 
Machine Utilisation RESEARCH 

(Run 1 - 4) GROUP 
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Run No.: 5; M/C Cutting Part (M/C) Tooling Idle Total Processing 
lime Set-up lime Set-up lime lime lime 

1 315 1425 782 0 2522 
Schedule. 2 391 1260 888 0 2539 
Strat.: 1; 

3 374 1365 918 0 2657 
4 172 330 332 0 834 

Tooling 
5 264 560 423 509 1756 Strat.: 1; 

Throughput lime: 2657 

Run No.: 6; M/C Cutting Part (M/C) Tooling Idle Total Processing 
lime Set-up lime Set-up lime lime lime 

1 363 1350 858 0 2571 
Schedule. 2 350 1425 903 0 2678 
Strat.: 2; 

3 367 1275 828 0 2470 
4 172 330 332 0 834 

Tooling 5 264 560 423 509 1756 Strat.: 1; 
Throughput lime: 2678 

lime Unit: min. 

M/C No.: 
1: GU610 - 1; 2: GU610 - 2; 3: GU610 - 3; 4: GE65; 5: GE42. 

Fig. 13.11 LUT-FMS 
Machine Utilisation RESEARCH 

(Run 5 - 6) GROUP 
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Run No.: 7; M/C Cutting Part (M/C) Tooling Idle Total Processing 
TIme Set-up TIme Set-up TIme TIme TIme 

Schedule. 1 192 600 422 0 1214 
Strat.: 1; 2 172 630 406 129 1337 

3 175 795 466 0 1436 
Tooling 4 218 445 377 283 1323 
Strat.: 1; Throughput TIme: 1436 

Run No.: 8; M/C Cutting Part (M/C) Tooling Idle Total Processing 
TIme Set-up TIme Set-up TIme TIme TIme 

Schedule. 1 205 660 481 0 1346 
Strot.: 2; 2 130 750 406 0 1286 

3 205 615 407 111 1338 
Tooling 4 218 445 377 283 1323 
Strat.: 1; Throughput TIme: 1346 

TIme Unit: min. 

M/C No.: 
1: GU610 - 1 ; 2: GU610 - 2; 3: GU610 - 3; 4: GE65. 

NGL 
Fig. 13.12 LUT - FMS Machine Utilisation 

(Run 7, 8) Research Group 

MiC 

GE65 - Man Req'd 

Base Une ------------------ - --- ---- -------------_. 
GU610-3 Man Req'd 

Base Line --------------------- - --------- ---------------
Man Req'd 

GU610-2 

Base Line --------------------------------- ---------______ 0 

Man 
GU610-1 

Req'd 

8ase Une ------------------------------------------------_. 
0 1000 2000 

Time (min.) 

NGL 
Fig. 13.13 Manning Pattern LUT - FMS - 4 Mic Cell 

(Run No. 8) Research Group 
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Run No.: 9; M/C Cutting Port (M/C) Tooling Idle Total Processing 

Schedule. 
Time Set-up Time Set-up Time Time Time 

Strot.: 1; 1 330 320 140 175 965 

Tooling 2 428 300 127 0 855 

Strot.: 2; Throughput Time: 965 

Run No.: 10; M/C Cutting Port (M/C) Tooling Idle Total Processing 

Schedule. 
Time Set-up Time Set-up Time Time Time 

Strot.: 2; 1 345 330 125 0 800 

Tooling 2 413 290 156 106 965 

Strot.: 2; Throughput Time: 965 

Run No.:ll; M/C Cutting Port (M/C) Tooling Idle Total Processing 

Schedule. 
Time Set-up Time Set-up Time Time Time 

Strot.: 1; 1 330 320 35 295 980 

Tooling 2 428 300 37 0 765 

Strot.: 3; Throughput Time: 980 

Run No.:12; M/C Cutting Port (M/C) Tooling Idle Total Processing 

Schedule. 
Time Set-up Time Set-up Time Time Time 

Strot.: 2; 1 345 330 36 0 711 

Tooling 2 413 290 37 240 980 

Strot.: 3; Throughput Time: 980 

Time Unit: min. 

Fig. 13.14 LUT-FMS 
Machine Utilisation RESEARCH 

(Run 9 - 12) GROUP 
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MIC 

2 

1 

o 

MIC 

500 
lime (min.) 

Work Flow 

Tool '-H' ~~ Exchange 

MIC Idle 
Work Flow 

. __ ._Tool 
Exchange 

1000 

Fig. 13.15 Manning Pattern 
- 2 Mic Cell; Tooling Strat.: 2 

LUT - FMS 
Research Group 1 

Work Flow 
,.-'- ,....- r'--' .--'- _.- .- -'-'-'5 2 1-.- i-.- '--' f---.- -.- .- __ . __ . __ . . Tool Magazine 

___ !-,!~_~d!.:'__ Exchange 

Transport. Req'd 
Work Flow 

'--'--' '-'- '--'- .. '-'--''-- -_._-.-_. __ ._-
1 !-Jf-._-. 1--.- f-._. 1--'--' 

11 

. __ . Tool.Magazine 
Exchange 

0 500 
lime (min.) 

1000 

Fig. 13.16 Manning Pattern LUT - FMS 
- 2 Mic (Tell; T~)ling Strat.: 3 

Run 12 Research Group 

228 



Run No.:13; M/C Cutting Part (M/C) Tooling Idle Total Processing 
Time Set-up Time Set-up Time Time Time 

Schedule. 1 189 570 347 0 1106 
Strat.: 3; 2 185 660 466 0 1311 

3 166 795 466 0 1427 
Tooling 4 218 445 348 0 1011 
Strat.: 1; Throughput Time: 1427 

Run No.:14; M/C Cutting Part (M/C) Tooling Idle Total Processing 
Time Set-up Time Set-up Time Time Time 

Schedule. 1 206 420 332 0 958 
Strat.: 4; 2 168 810 481 0 1459 

3 166 795 466 0 1427 
Tooling 4 218 445 348 0 1011 
Strat.: 1; Throughput Time: 1459 

Time Unit: min. 

Fig. 13.17 LUT - FMS Machine Utilisation 
(Run 13 - 14) Research Group 

MiC 
Man Req'd 

4 
Base Une -----------------------------------------

Man Req'd 

3 
Base Une ----------------------------------- -----

Man Req'd 

2 ___________ ~~s:_~~~ ______________ 
--------

Man Req'd 

1 
Base Une --------------------------- -------------

0 1000 2000 
Time (min.) 

Fig. 13.18 Mannin(, Pattern LUT - FMS - 4 MiC Cell without xit/Re-entry 
(Run 13) Research Group 
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Run No.:15; M/C Cutting Part (M/C) Tooling Idle Total Processing 
TIme Set-up TIme Set-up TIme TIme TIme 

Schedule. 
1 353 341 95 789 Strat.: 3; 0 

Tooling 2 405 278 82 0 765 
Strat.: 2; Throughput TIme: 789 

Run No.: 16; M/C Cutting Part (M/C) Tooling Idle Total Processing 
TIme Set-up TIme Set-up TIme TIme TIme 

Schedule. 
1 456 281 Strat.: 4; 96 0 833 

Tooling 2 301 339 80 0 720 
Strat.: 2; Throughput TIme: 833 

Run No.: 17; M/C Cutting Part (M/C) Tooling Idle Total Processing 
TIme Set-up TIme Set-up TIme TIme TIme 

Schedule. 
1 456 281 96 833 Strat.: 5; 0 

Taoling 2 301 339 80 0 720 

Strat.: 2; Throughput TIme: 833 

Run Na.: 18; M/C Cutting Part (M/C) Tooling Idle Total Processing 
TIme Set-up TIme Set-up TIme TIme TIme 

Schedule. 
1 353 341 95 789 Strat.: 6; 0 

Tooling 2 405 278 81 0 764 
Strat.: 2; Throughput TIme: 789 

TIme Unit: min. 

Fig. 13.19 LUT-FMS 
Machine Utilisation RESEARCH 

(Run 15 - 18) GROUP 
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Run No.:19; M/C Cutting Part (M/C) Tooling Idle Total Processing 
Time Set-up Time Set-up Time Time Time 

Schedule. 
1 353 341 35 Strat.: 3; 0 729 

Tooling 2 405 278 36 0 719 
Stra!.: 3; Throughput Time: 729 

Run No.:20; MIC Cutting Part (MIC) Tooling Idle Total Processing 
Time Set-up Time Set-up Time Time Time 

Schedule. 
1 Stra!.: 4: 456 281 37 0 774 

Tooling 2 301 339 35 0 675 
Stra!.: 3; Throughput Time: 774 

Time Unit: min. 

MC 

2 

o 

MC 

2 

o 

Fig. 13.20. ... 
M~rhlne Utillsai~on 

Run 19 - 20 

500 
Time (min.) 

Fig. 13.21 Manning Pattem 

LUT - FMS 
Research Group 

Work Flow 

Work Flow 

T~~ 
Exchange 

1000 

- Stand-alone Cell: Tooling Stra!. 2 
LUT - FMS 

Research Group Run 15 

500 
Time (min.) 

Fig. 13.22 Manning Pattem 

Work Flow 

. __ Tool Mcgazine 
Exchange 

Work Flow 

.-- Tool Magozine 
Exchange 

1000 

LUT - FMS 
Research Group 

- Stand-alone Cell: Tooling Stra!.: 3 
Run 19 
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No. of Sister Tooling Required 

4 Index MIC Cell 
Schedule. Strat.: 2 

2 Highlr. Auto. Mic Cell 
Schedu e. Strat.: 2 

Tooling Strat. : 1 Tooling Strat. : 2 
% Permissible Tool Life % Permissible Tool Life 

Tool 50% 65% 80% 50% 65% 80% 
Type (Run 

8) 
(Run 
22) 

(Run 
21 ) 

(Run 
10) 

(Run 
24) 

(Run 
23) 

TUOl 20 18 17 18 14 11 

TU02 16 13 13 11 9 7 

TU03 1 1 1 1 1 1 

TU04 1 1 1 1 1 1 

TU05 3 2 2 2 2 2 

TU06 1 1 1 1 1 1 

TU07 2 2 2 1 1 1 

TU08 4 2 2 4 2 2 

TU09 2 2 2 1 1 1 

TU10 1 1 1 1 1 1 

TUll 1 1 1 1 1 1 

TU12 1 1 1 1 1 1 

TU13 2 2 1 2 2 1 

TU14 1 1 1 1 1 1 

TU15 1 1 1 1 1 1 

TU16 1 1 1 1 1 1 

TU17 1 1 1 1 1 1 

TU18 1 1 1 1 1 1 

TU19 1 1 1 1 1 1 

TU20 1 1 1 1 1 1 

TU21 1 1 1 1 1 1 

8001 1 1 1 1 1 1 

8002 7 7 7 5 5 3 

Fig. 13.23 LUT-FMS 
Effect of % RESEARCH 

Permissible Tool Life GROUP 
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No. of Sister Tooling Required 

4 Index Mic Cell 
Schedule. Strat.: 2 

2 Highlr. Auto. Mic Cell 
Schedu e. Strat.: 2 

Tooling Strat. : 1 Tooling Strat. : 2 
% Permissible Tool Life % Permissible Tool Life 

Tool 50% 65% 80% 50% 65% 80% 
Type (Run 

8) 
(Run 
22) 

(Run 
21) 

(Run 
10) 

(Run 
24) 

(Run 
23) 

B003 4 3 2 4 3 2 

B004 2 2 2 1 1 1 

B005 2 2 2 1 1 1 

B006 1 1 1 1 1 1 

B007 1 1 1 1 1 1 

B008 1 1 1 1 1 1 

B009 1 1 1 1 1 1 

B010 1 1 1 1 1 1 

DR01 3 3 3 1 1 1 

DR02 1 1 1 1 1 1 

DR03 2 2 2 1 1 1 

DR04 2 2 2 1 1 1 

DR05 3 3 3 2 2 2 

DR06 1 1 1 1 1 1 

DR07 1 1 1 1 1 1 

DR08 1 1 1 1 1 1 

DR09 2 2 2 1 1 1 

DR10 2 2 2 1 1 1 

DR11 1 1 1 1 1 1 

DR12 3 3 3 2 2 2 

DR13 1 1 1 1 1 1 

DR14 2 2 2 2 2 2 

DR15 2 2 2 2 2 2 

Total 111 102 99 89 80 71 

Fig. 13.24 LUT-FMS 
Effect of % RESEARCH 

Permissible Tool Life GROUP 
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Run Data Specification Tool. Sched. Throughput Tool/Tool Component Req. 
No. & Strat. Strat. Time (min.) Tools Inserts Shanks Holders Cell Design 

1 1 1436 111 74 47 66 - - NGL 5 Mic 
2 Cell 2 1346 111 84 56 71 

- 1 
3 3 1812 111 77 54 66 

-
4 4 1829 111 78 56 79 

5 - NGL 5 Mic 1 2657 222 137 89 99 
- Cell; 1 

6 - Part Kit * 2. 2 2678 222 139 89 103 

7 - 4 Index MIC 1 1436 111 76 48 64 
- 1 

8 Cell 2 1346 111 87 57 70 

9 1 965 88 74 50 71 
f- 2 

10 - 2 High Auto. 2 965 89 70 46 55 
r-- MiC Cell. 11 1 980 95 95 68 95 
r-- 3 
12 2 980 97 97 70 97 

13 - 4 Index MIC 3 1427 108 95 65 85 
r-- Cell; 1 

14 - No Exit/Reentry 4 1459 108 97 69 90 

15 3 789 97 82 56 77 
r--

16 4 833 95 83 53 79 r--
- 2 Highly Auto. 

2 
17 5 833 95 79 53 68 

r-- Mic Cell; 

18 
- No Exit/Reentry 6 789 97 77 52 69 

I--
19 3 729 97 97 70 97 

r-- 3 
20 4 774 95 95 68 95 

21 - 4 Index MIC 2 1293 99 75 47 60 
I-- Cell; 1 

22 - Relaxed Tool Life 2 1308 102 78 49 62 Limit. 

23 - 2 Highly Auto. 2 964 71 58 35 49 
I-- MIC Cell; 2 

24 - Relaxed Tool Life 
2 964 80 66 41 55 Limit. 

Fig. 13.25 
LUT-FMS 

Summary of Outputs 
RESEARCH 

GROUP 

234 



CHAPTER 14 CONCLUDING REMARKS 

14.1 INTRODUCTION 

'This chapter presents a critical review of the research work. The merits of the 

algorithmic modelling approach are discussed. 

14.2 THE FRAMEWORK OF TOOL FLOW SYSTEM EVALUATION 

The literature survey of chapter 2 indicated the requirement of tool flow 

management and studied the various modelling media and FMS models. The study of 

turning automation developments ranging from tooling support, chuck jaw changing to 

secondary operation facilities, see chapter 3 and 4, and the study of tooling system for 

turning systems, chapter 5, has provided the impetus for studying the unique features 

i of tool flow systems for cylindrical part manufacturing. 

The algorithmic modelling approach has been adopted to study the tool flow 

problems in detail and with relegated features representing the system operation with"/..----·­

regard to part flow, and the manning pattern of turning systems with various levels of 

automation, chapter 6. The framework has been built up which allows fast and efficient 

evaluation of the design of and operating strategies for tool flow systems for tool flow 

management in batch manufacturing systems for cylindrical components, chapter 7. 

14.3 GENERIC REPRESENTATION OF TOOL FLOW SYSTEMS 

The generic representation of tool flow systems, chapter 7, provides the capability 

of evaluating a broad range of flexible turning systems operating under a whole host of 

strategies and rules. In most of the cases this is sufficient to examine and explore 

alternative rules and strategies for turning systems with varying level of automation. 

The part flow has been represented in a limited scope by the production scheduling 

facility. Although at its earlier stage, the modelling of tool and part flow interactively in 

the full scale is under development in a complementary project [223]. 

14.4 THE ALGORITHMIC APPROACH 

The algorithmic approach' focused on turning automation and tool flow. The 

power of the approach lies in its ability to handle the large body of data required to 
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define individual tool status and activities in a efficient and fast way. The algorithmic 

approach is not synchronised. Instead scan and back trace of major activities are 

implemented. Computer run time has been reduced by cutting the comparison loops. 

The resultant run time is shorter than that required by simulation for a similar number of 

entities. 

The primary objective of the approach is to examine tool flow problems. The 

secondary features derived from the use of the model, including manning requirement 

and machine utilisation, which is time related, complements the main stream tool flow 

modelling and has produced a balanced modelling tool. The time related outputs feature 

of the model can be used to evaluate a turning system performance in general to gain a 

quick view of the modelled system, but can generate misleading data. The secondary 

outputs can be much more dependent by dividing a longer production period into a 

number of successive runs. With each one modelling a shorter period, intermediate 

results have been obtained, thus overcoming the limitations of the model, i.e that the 

outputs can only be accessed at the end of a run. By doing so, a turning system can be 

evaluated almost as accurately as a time synchronised approach. The algorithms for 

manning operation modelling is based on earliest start time and is under the assumption 

that a man is available when required. 

The Turning model at the single machine level handles a full scale of turning . 

automation including turret tool storage and location, magazine tooling support and tool 

exchange, chuck jaw and gripper exchanging. Full range of tools can be incorporated, 

including external / internal turning tools, live tooling, and contact probes. The machine 

set-up can be modelled both to calculate the machine utilisation, and to examine the 

manning involvement, chapter 7, 8. A case study has been carried out for a highly 

automated machine centre illustrate the model capability. The machine has been 

modelled both for small batch and larger batch production, chapter 9. 

The modelling of cell level activities, chapter ID, incorporates a full range of tool 

assignment, issue, storage and transfer strategies. The operating of turning cells of 

categories range from manually operated, manually supported, to highly automated 

cells can be modelled. 

The Turning Model at the central tool store (CTS) level models the CTS tool 

issue, tool preparation, and disposal. The tooling inventory control features both tool 

assembly requirement planning and the inventory control of tool components, i.e 
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inserts, shanks, and holders requirement to fulfIll the production requirement. 

14.5 THE PRODUCTION SCHEDULING FRONT END 

The primary objective of production scheduling front end, chapter 12, is not to 

examine the effectiveness of the scheduling function, but to complement the tool flow 

management package to provide a adequate modelling facility. However, through the 

multi-machine case study, chapter 13, it has been found that the scheduling strategies 

effect the system performance and tooling requirement significantly. Similarly the 

tooling strategies have significant influences on manning patterns, besides their 

influence on tooling requirement. 

Efforts have been taken to build the production scheduling module to suit 

different production environments, viz. static- flow and stochastic-interrupted cells. A 

number of heuristic priority rules considering either work contents, outside operation 

requirement, or tool exchange requirement, have been applied in different level of the 

scheduling processes. 

14.6 THE USER INTERFACE 

Conversational screens have been built to enhance the user friendliness of the 

software, Appendix IB. The user is guided by the screens through the process of data 

input, tooling system configuration, ·production scheduling and tooling strategy 

selection, model running, and the output obtaining. The objective of the user-interface 

building is that it is possible for a user new to the software to set-up the model in a 

short time and to examine a specific turning installation, and to obtain the results easily. 

The user interface is very dependent on workstation specifications. 

14.7 THE WORKSTATIONS 

The model has been mounted on a extended version of IBM PC-AT until recently, 

which is efficient to model a turning cell for a shorter production period. The current 

implementation of the software onto a more powerful SUN 386i workstation with the 

capability for emulating DOS and the more powerful UNIX environment has offered 

the scope of a full range of enhancements to the proto type software. The run time can 

be reduced by both its powerful processor and its multi-window facility. The multi­

window feature allows the several runs to be carried out concurrently, thus the results 
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can be compared. It also allows the viewing of inputs and accessing of outputs side by 

side. More important is its reliability as the IBM version of the software relies largely 

on the RAM disc and the experience showed that the reliability of the RAM disc is 

effected severely by the heat of the extended run time which is inevitable when model 

the production of longer period. The multi-window and parallel processing capability of 

the SUN 386i has opened a wide scope for the software enhancement, see chapter 16. 

14.8 THE CASE STUDIES 

The single machine case study, chapter 9, has illustrated the modelling capability 

in a full scale with regard to the turning automation features. It has proved that the 

tooling requirement and the tooling strategy performance depends very much on the 

features such as production requirement, part process planning, part tyPe mix, and 

batch sizes. 

The multi-machine case study, chapter 13, has proved that the scheduling 

strategies affect both the system performance and the tooling requirement, so do the 

tooling strategies. The scheduling strategies which consider the turning cell production 

environment, Le the part exit/re-entry have resulted significant shorter throughput times 

than others. The effectiveness and the performance of the scheduling strategies and 

tooling strategies are very much production requirement and tooling system dependent. 

The density of manning requirement is effected to a significant extent by the tool issue 

strategies. 

The break: down of tool assemblies into tool components has been an efficient 

forecasting tool for central tool store inventory control. 

The two case studies has also proved that the altering of permissible tool life 

utilisation limit affects the tool requirement. The relationship between the tool life limit 

changing and the tool requirement variation is system dependent, and no apparent 

mathematical relationship has been found. The multi-machine cell case study has also 

proved that the Turning Model can be employed for turning system configuration 

evaluation with respect to number of machines required and the associated automation 

levels, although it is the secondary feature of the model. 
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CHAPTER 15 CONCLUSIONS 

15.1 INTRODUCTION 

This chapter presents the conclusions drawn from the modelling exercises and the 

case studies. 

15.2. THE ALGORITHMIC MODELLING APPROACH 

The algorithmic modelling approach based on generic representation of tool flow 

networks has been proved to be an adequate, fast, and efficient modelling tool both for 

system design and operation. Turning systems ranging from a single machine to a 

multi-machine cell and the central tool store can be modelled. The algorithmic approach 

has focused on specific areas with greater detail rather than the normal statistic results. 

Besides its efficiency for the management of both tool flow and tool component 

requirement, the secondary features of the model has proved to be a quick tool for 

turning system performance evaluation and manning pattern prediction. 

15.3 THE PROTOTYPE SOFTWARE 

The model has proved to be efficient as it allows short computing times. The user 

interface has made the the tool flow system configuring and re-configuring, and 

tooling strategy selection easy to handle. Thus a large number of runs can be conducted 

to examine the alternatives and the consequences, as having been done in the case 

studies, which is almost prohibitive for other simulation tools. 

15.4 THE PRODUCTION SCHEDULING FACILITY 

The production scheduling module which is capable of both scheduling the 

work-flow for different production environments, chapter 13, and accepting a user 

specified pre-scheduled work-to- list, chapter 9, has been proved to be a useful 

expansion to the main stream tool flow model, and has enhanced the Turning Model 

efficiency by producing the work flow schedules. However it will be strenthened in the 

future by the addition of the Computer Aided Cluster Analysis. 
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15.5 THE CASE STUDIES 

The experience gained through the case studies showed that in many companies, 

collecting the data can prove to be a mammoth task. In most manually 

operated/supported turning cells the tool life utilisation limits are set up by the operator 

according to his own experience. 

The areas of tool flow that requires particular attention are tool preparation, tool 

life limit specification, individual tool tracking, and tool components inventory control. 

Significant throughput time saving can be achieved by organising the tool assembling 

and presetting activities effectively. 
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CHAPTER 16 FURTHER WORK 

16.1 INTRODUCTION 

It is recommended that further work be carried out in the following areas. 

16.2 MANNING OPERATION MODELLING 

The manning requirement modelling, although the secondary objective of the 

model, has been seen as an important complements. Algorithms need to be developed 

for production schedule altering and man assignment under the constraint of limited 

man power resource to achieve a certain manning pattern, based on the outputs that can 

be obtained fonn the current modelling approach. 

16.3 IMPLEMENTATION OF THE SOFTWARE ON SUN386i 

The mM PC/AT version of the software features frequent file read/write form/to 

the disc, which is inevitable for the 64K limit of the compiler. To exploit the full 

advantage of the Sun 386i processing capability, the iarge array organizer is suggested 

as the disc read/write slows down the processing speed, and it is suggested that the 

screen message writing during the model mnning be eliminated as the screen access on 

the Sun environment is slow. 

A even further enhancement to the software is recommended to use the Sun 

386i's multi-processing capability, so that the modelling of multi-machines and tool 

store activities can be carried out in high speed by parallel processing. 

16.4 INCORPORATE THE CACA MODULE IN FULL SCALE 

Although the stand alone Computer Aided Cluster Analysis (CACA) developed 

by a complementary project in the research group can provide a short range production 

schedule with regard to part and tool clusters to the model, the effect of the 

tool-oriented rules and strategies on the actual flow of work and tool flow requires to be 

considered in more detail particularly within dynamic scheduling environments. 

16.5 ANIMATED TOOL EXCHANGING AND TRANSFERRING 

The application of a animation post processor, e.g SIMAN/ClNEMA could 

provide a helpful aid to the interpretation of outputs from the model. 
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APPENDIX lA 

WORKPIECE INFORMATION 
FOR THE SINGLE MACHINE CASE STUDY 

(Supplement to Chapter 9) 
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Part Type: Part 1; Material: BS080M30; 

Op. No. Op. Description Cutting Time 
(min.) 

Tool 
Type 

1 Rough Turning 0.5 
2 Finish Profiling 0.5 
3 Drilling 0.6 
4 Boring 0.6 
5 Finish Boring 0.5 
6 Milling 1 
7 Drilling 0.2 
8 Inspection 0.1 

Fig. 1A.1 S th t' yn e IC 

Workpiece Information 
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Part Type: Part2; Material: BS080M30; 
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Op. No. Op. Description Cutting Time Tool 
• (mm.) Type 

1 Rough Turning 2 T5 
2 Finish Profiling 0.5 T6 
3 Key-way Milling 0.5 TB 
4 Thread Chasing 0.02 T4 
5 Inspection 0.1 T12 

ttRAUe 
Fig. 1A.2 

Synthetic LUT-FMS 
RESEARCH 

Workpiece Information 
GROUP 
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Part Type: Part3; Material: AI-CuMgPb F37; 

T11 

(k 

~ 
T2 

~ " .--. 

r13 

V~~-:-·-T18) 
l ~ \ ~ ,--

r- ~ Tl5 
\ ~ 

~///~ 

Op. No. Op. Description Cutting Time Tool 
(min.) Type 

1 Turning and Facing 1 T6 
2 Drilling 0.2 T14 
3 Drilling 0.2 T2 
4 Tapping 0.02 T15 
5 Chamfering 0.05 T11 
6 Boring 0.5 T13 
7 Profiling 0.4 T18 
8 Grooving 0.1 T19 

ITRAUbj 
Fig. 1A.3 

Synthetic LUT-FMS 
RESEARCH 

Workpiece Information 
GROUP 
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Part Type: Part4; Material: X 12CrNiS 188 

~N76 FormA 

Q~509 F 1 x 0,4 17 

32 

, 
".> -, 0- T101 

~212 

Tl2 

Op. No. Op. Description Cutting Time Tool 
(min.) Type 

1 Profiling 0.3 
2 Facing 0.1 
3 Drilling 1 
4 Grooving 0.1 
5 Rough Boring 0.5 
6 Finish Boring 0.7 
7 Thread Chasing 0.02 
8 Profiling 0.9 
9 Key-way Milling 0.5 

10 Threading 0.02 
1 1 Inspection 0.1 

Fig. 1A.4 S th t· yn e IC 

Workpiece Information 
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Part Type: Part5; Material: BS230M07; 

Op. No. 

1 
2 

3 
4 
5 
6 
7 
8 
9 

-~ --t--
~ I'

mi
l T2 

Op. Description Cutting Time Tool 
(min.) Type 

Facing 0.01 T202 
Profiling 1 T6 

Drilling 0.5 T2 

Chamfering 0.05 T11 

Threading 0.01 T20 

Polygon Turning 1 T21 

Drilling 0.01 T16 

Milling Flat 0.08 T17 

Parting-off 0.05 T9 

Fig. 1A.5 

Synthetic 

Workpiece Information 

LUT-FMS 
RESEARCH 

GROUP 
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APPENDIX IB USER INTERFACE 

IB.I INTRODUCTION 

This Appendix presents the user-interface of the Turning Model. The 

conversational screens designed and implemented for data inputting, model running and 

output accessing are illustrated. Explanation are presented for each stage and screens, 

with the pU1Jlose of gniding users to the use of the software. 

IB.2 OVERVIEW 

The Turning Model consists of Data Base Management, Scheduling and Tool 

Flow Model, and Output Access modules. The entering of each module is led by the 

main menu (Fig. lB. 1). After the completion of a module, the main menu is resumed, 

until an Exit action is selected. 

Select 1,2,3 from the main menu to enter the Data Base Management System for 

machine, workpiece and tool respectively, where the user can input, view, edit, and 

select data entries for modelling. The data records input through this module will be 

stored in relevant data files, which will in turn be extracted by the main stream model 

for tool flow modelling. 

Choice 4 and 5 on the main menu should be selected in sequence to run the main 

stream model for scheduling batches and model the tool flow activities. 

Select 6 to access the detailed outputs gained from the tool flow model. Large 

body of data concerning part and tool activities can be recorded, which once subjected 

to the analysis, together with the user's experience, can be employed to improve the 

total turning cell performance for an existing or proposed installation. 

Select 7 to exit from the Turning Model. 
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lB.3 DATA BASE MANAGEMENT SYSTEM 

lB.3.l DATA BASE MANAGEMENT SYSTEM OVERVIEW 

The data base management system has been configured into three modules (Fig. 

12.2), for machine, part, tool respectively. It has been built in such a way that: 

(1). Once the machine, tool, and workpiece information has been input into the 

data base, it is possible to run the main stream model (choice 4, 5 on the main menu) 

any number of times to examine the alternative system operating strategies, e.g tooling 

strategies, scheduling strategies, and the effects of altering system parameters, e.g. tool 

transporter capacity and transferring time, without changing large body of data of 

individual tools, parts, and machines. 

(2). The Machine, Workpiece, and Tool data base management modules can be 

run in any sequence and for any number of times, so that the machine, part, tool 

information can be changed individually without touch the rest. 

(3). Once the data have been input, it is possible to edit any individual data entry 

without requiring the need of input the whole data record again. 

(4). It is possible to take company supplied data directly through a IBM-AT 

formatted disk, provided that the data is compiled into the ASCII File in the specified 

format. 

lB.3.2 Principle of the Data Searching 

The data management works on the principle of storing data and recording the 

search code (key) of each data record in two separate files. Access -to data is done by 

searching the desired search code in the code file. Once the search code has been found, 

the data position in the data base can be located, and the data can be accessed. In such a 

way, the data searching can be done much faster than actually searching the data record 

in the data base. Thus the data handling can be performed much more efficiently and 

quickly. 
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IB.3.3 DATA ENTRY 

- CNC Turning Centre Data Base Management Module 

Select I on the main menu, fig. lB. I to enter this module, and the module menu 

will follow, fig. IB.2. 

Inside the machine data management module, the machine information can be 

viewed, input, and edited. 

The List function (option I) allows the data entries already in the database to be 

accessed sequentially. 

The Find function (option 2) allows a data record of the specified search code to 

be found in the data file and the relevant information will be displayed on the screen. 

The Search function (option 3) locates a data record on the base of partially input 

search code. If option 2 or 3 is entered, a prompt window will appear on the screen 

asking the user to input the desired i.d code, fig. IB.3. 

The Next (option 4) and Previous (option 5) functions allow the succeeding or the 

proceeding data record of the current one to be accessed and viewed. 

The Edit function (option 6) allows the user to edit a exiting data record. 

Following the selection of this option, a window, fig. IB.3 will appear on the screen 

asking the i.d code of a machine record to be edited. Type the i.d code of the intended 

machine record, the information related to this code will be displayed on the screen, 

data fields can then be updated. Press <Ctrl-B> keys simultaneously to move the cursor 

one field back, or <Enter> to move the cursor to the next field. Edit the data on the 

desired field, press <Enter> when fmish editing. 

The Add function (option 7) allows the user to add to the data base a new part 

record. The machine data entry screens will follow, and the useris led by the cursor for 

data inputting. 

The Delete function (option 8), will delete a data record form the data base. 

Following the selection the prompt window, fig. IB.3 will appear on the screen 

allowing the user to input the intended record i.d, type in the machine i.d code and the 

related data will be deleted. 
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Option 9 is selected when the index (key) file of the data base if damaged 

accidentally. 

These options can be selected by entering either the option number or the first 

letter of the option, e.g L for List, F for Find, in the choice field. 

Machine information specified include tool turret and magazine capacity and 

indexing time. Tool exchanging times between turret, magazine, and the automatic tool 

exchanger are also required (fig. !BA). 'MIC Group' is the group Ld in a 

manufacturing cell that the machine belongs to. It correspondences to the MIC Group' 

specification in the part routing information of the part data base module. The 'PTS 

Capacity' is the number of tools that the machine's tool magazine (if any) can 

accommodate. 'No. of Racks' and 'PositslRack' are for block type tool magazine 

description. Input number of racks and positions per rack when the block type 

magazine is implemented. Tool exchange time between magazine and A TC, between 

ATC and turret are the times (in min.) required for tool exchange between the tool 

exchanger and the turret, and the time required for tool exchanging between the 

automatic tool exchanger and the magazine respectively. ATC transfer time between 

magazine and turret is the tool exchanger transfer time I journey between the tool 

magazine and the tool turret. The rest of the data fields in the screen are self explained 

straightforward. 

The turret position can be specified to accept different kinds of tools (Fig. lB.S), 

viz positions to accept external and internal tools, and positions for live tooling. The 

same position can be specified for different uses, i.e. to accept several or all kinds of 

tools. This limitation makes the computer model more realistic, as positions of a turret 

can be designed to accept all kinds of tools e.g. modular tooling system; Or, different 

positions for different tools e.g. turret design for Index and Yamazaki Slant Turn 40N 

(Ref. to Chapter 4). 

Input number of positions of the turret designated for accommodating live 

tooling, and specify these position numbers. The similar process applies to external and 

internal operating tools. Input number of positions for internal operating tools in the 

field 'No. of positions for internal turning tools (Shank Size 1)" and input these 

position numbers in the following fields; unless the turret is designed in such a way that 

the internal operating tools are further classified into different holder size categories, in 

which case the turret positions for internal turning tools should be specified for 'shank 
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size I' and 'shank size 2' respectively. This pan is correspondence to the tool data 

entry fields of 'shank size' and 'external/internal operating tools'. 

In the tool flow computer model, whenever a new tool is exchanging to the turret, 

a check will be carried out to see if the required position is available, if not, the tool in 

the desired position has to leave the turret to allow the new tool to enter. 

The chuck jaw specification screen, fig. lB.6, will follow the machine 

information and turret specification screens. Input the jaw set application range in terms 

of minimum and maximum workpiece chucking end diameter in respective fields, and 

the screen will be repeated for a number of times according to number of jaw sets 

implemented. 

The same process applies to the gripper specification screen, fig. lB.7. 

Input 'ID' or 'Q' in the data base menu, fig. lB.8, when finish this module and 

the main menu will be resumed. 

lB.3.4 DATA ENTRY· Workpiece Data Base Management Module 

This module works in on the same principle as the machine module. Select 2 in 

the main menu, fig. IB.9, the pan database menu the option menu will follow, fig. 

lE.lD. 

Enter either the number or the first letter of a panicular option to list all the 

existing data entries, to find or search a particular data entry, to view the previous or 

next data record, to edit or delete a data entry, or to input a new data record. When 

options 2, 3, 7 or 8 is selected the prompt window, fig. lB.ll will appear which 

allows the user to type in the specific pan Ld code. 

The information recorded in the data base for a workpiece includes its pan Ld., 

description and number of operations. The order information such as batch size and due 

date is also included, fig. lB.12. 

Input number of tool operations required for the part type in 'No. of 

operations/item' field. Input the order quantity in terms of number of component 

required in the 'Quantity' field. Input the pallet size in terms of number of component 

per pallet in 'pallet capacity' field. Input the earliest time that the batch is ready to enter 
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the cell when the cursor is in 'Order Earliest Available time' field. All the other data 

entry field is self- explained by the screen. Press <Ctrl-B> keys simultaneously to go 

one field back, or press <Enter> to go to the next field. 

For each operation of a part, the process planning information should be input. 

These data will include the set-up and cutting time of the operation, tool type required, 

and the machine group that the operation has been assigned to, fig. IB.l3. 

When 'Add' a part data entry, the information for fields 'Order No.', 'Pan Ld', 

'Op. No.' will appear automatically on the screen to remind the user. Input the 

'Machine Group' field is correspondence to the 'MIC Group' field in the machine data 

specification screen (fig. IBA). After each data record display or update, the part 

database menu, fig. IB.14, will appear. Select a desired option, or enter '10' or 'Q' to 

exit this session and return to the main menu. 

IB.3.S DATA ENTRY - Tool Data Base Management Module 

Select 3 on the main menu, fig. IB.lS, to enter the Tool data management 

module. 

This module works in the similar way as the machine and workpiece data 

management module, in which tool information can be input, accessed and displayed, 

updated, and new tool data can be added to the tool data base (fig. IB.16). 

The description of a cutting tool has been broken down into four sections: the 

general information concerning the tool assembly as a whole, cutting unit description, 

shank description, and the holder description. (fig. IB.!7). 

The cutting record includes the insert Ld. type (Ld), and its usage information. 

Tool life unit needs to be specified. A certain limit can be set as the maximum 

permissible tool life to control the tool life utilisation. It is defined as a certain 

percentage of the usable tool life that can be used. Once the accumulated tool life has 

reached the limit, the tip is regarded as worn. 

The tool shank information concerns the type and size, external or internal tool. 

These information will be required when modelling the tool exchanging into tool turret. 

As the turret positions can be designed to accept certain tool categories of certain sizes. 
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Input 1 at the 'Shank size' field, unless the internal operating tools are further classified 

into two shank types, in which case input 1 or 2 according to shank classification. It is 

correspondence to the machine turret position specification. 

The holder (if any) is the part which links the tool shank to the turret. 

A physical tool will consist of a cutting unit (insert) and its shank and holder (if 

any). This information will be employed for efficient central tool store assembly and 

inventory control. Ref. to fig. 13.5 for a typical tool description. 

Tools can be classified as tools with index able inserts, and tools without 

indexable tips. The former will typically include external and internal turning tools, 

threading and grooving tools, and some drilling tools. The later will include drilling, 

tapping, and milling tools. 

Modular tooling systems can be described by this classification. Contact probes 

can be described in the same way, except that a probe will have a very long life unit. 

This data record structure allows different flow pattern for turning system to be 

modelled. Tools can be specified to be refurbished in the central tool store; or tools with 

indexable tips are indexed for a new tip at machines, tools without indexable insert 

(mainly live tooling) will be transferred back to CTS for refurbished. 

At the end of the session enter '10' or 'Q' in the module menu, fig. IB.IS, to 

return to the main menu. 

IB.4 PRODUCTION SCHEDULING FRONT END 

Select 4 in the main menu, fig. lB.19, to enter the production scheduling module. 

The workload assignment strategy selection screen will follow, fig. IB.20. 

The workload assignment strategy 1 will assign the first available machine with 

the batch of maximum work-content that can be processed by the machine; The 

workload assignment strategy 2 will assign the first available machine with the batch 

of minimum work-content that can be processed by the machine. Enter either 1 or 2 in 

the choice field. The workload assignment strategy selection screen will be followed by 

the batch sequencing strategy screen. 
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Sequencing strategy 1 sequence the batch with the longest outside operation time 

(time interval between the batch exit and re-entry) first; Sequencing strategy 2 

sequence the batch with the shortest operation time to be machined first; Sequencing 

strategy 3 is going to be used in combined with the 'differential kitting strategy. It 

sequence the batch that requires the least tool exchanged to the machine to be processed 

first. 

Enter I, 2 or 3 in the choice field where the cursor will flash. A detailed 

discussion of the production scheduling and the related strategies have been presented 

in chapter 12 and 13. 

After these two strategy selection screens, the batches will be scheduled. Upon 

the completion of the scheduling module the prompt screen, fig. lB.22 will appear. 

Press <Enter> to resume the main menu. 

IB.S TOOL FLOW MODEL 

Select 5 on the main menu, fig. lB.23 to run the tool flow model. 

The user-interface of the main stream Tool Flow Model facilitates the tool flow 

network specification and tooling strategy selection. A user will be guided by screens to 

input his decisions and specifications, and to run the model. Fig. lB.24 is the prompt 

screen, press <Enter> to proceed. 

Fig. lB.25 shows the tool flow network specification. Number of machines 

should be input. Detailed machine information will be loaded automatically from the 

machine data base (Ref. to fig.lB.2). Secondary Tool Store capacity (if applicable) is 

specified as number of tool compartments. If the cell hasn't a STS, input 0 for the STS 

capacity. 

Tool transporter description screen is illustrated in fig. IB.26. Type AGV for 

automated tool transporter, or MAN if a manual cart(s) is used. For the transporter 

capacity, input the number of tools that can be transferred in one time. In case of single 

tool exchange, the transporter capacity is 1. While for tool kit exchange, the transporter 

capacity should be no less than the biggest kit size. Transportation time matrix between 

major tool stores should be input (in min.s). 
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Tool issue strategy selection screen (fig. IB.27) allows the user to select one of 

the 3 strategies: 

Select 1 to adopt the tool kitting concept, where a kit of tools accompanying the 

scheduled batch to the machine is issued. When arrive at the machine, the new kit will 

replace the previous one. Select 2 to adopt the differential kitting concept, which is 

based on the kitting concept but allows sharing of tools between successive kits. Select 

3, if tools are stored in the tool magazine for a production period, at the end of the 

period the whole magazine is exchanged. Ref. to chapter 7 for tooling strategy 

discussion. 

Tool flow pattern selection screen, fig. IB.28, is to facilitate the modelling of a 

tool flow system incorporating live tooling: 

Select 1, if all worn tools will be transferred back to the CTS for refurbishment; 

Or select 2, if the living tooling will be transferred back to the CTS for regrinding and 

turning tools with indexable inserts will have their inserts indexed at machines. The 

second option will usually require the machine mounted tool presetter, while for the 

first option, all tools will be preset in the CTS away from machines. 

The time required to unload/unload a component between the spindle and the 

pallet should be specified for each machine (fig. lB.29). This screen will be repeated 

for all the machines. The machine Ld code will appear automatically on the screen to 

prompt the user. 

The initial tool arrangement specification screens, fig. IB.30, allows the user to 

model different start conditions: 

Select 1 to model a user specified initial tool arrangement pattern; 

Select 2 to assume that all tools are stored sequentially in the central tool store; 

Select 3 to start the modelling (run) based on the tool status and tool store 

contents of the last run. In this case it is assumed that worn tools of the last run 

have been sent back to the CTS for refurbishment. 

When option 1 is chosen, the screens shown in fig. lB.3I, IB.32 will appear in 

turn to allow the user to input tool numbers against the pocket numbers in turret and the 

PTS respectively for each machine. The user is led by the curser to go through all the 

turret and magazine pocket numbers. The machine Ld code, the turret capacity or the 
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PTS capacity will appear on the screen to prompt the user. 

The manning operation time specification screen, fig. IB.33 allows the user to to 

input the respective manning involvement times. Tooling exchange time is the time 

required for tooling service to the machine. When 'tool kitting' has been adopted input 

tool exchange time per kit; When 'differential kitting strategy is implemented input tool 

exchange time per tool; When 'complete magazine exchange strategy has been selected 

input the magazine exchange time. 

Input 'Y' is the machine can be in operation while the tool magazine is serviced, 

'N' otherwise. 

Input pallet exchange time and input 'Y' or 'N' to to specify if the machine can be 

in operation while part pallets are exchanged. 

The reminding screen, fig. IB.34, will appear following the input screens, press 

<Enter> to run the tool flow model. 

At the end of the modelling, the prompt screen, fig. lB.35, will appear press 

<Enter> to resume the main menu. 

IB.6 OUTPUT MODULE 

The output module can only be selected after the completion of the modelling 

modules, and can be run any number of times. 

Select 6 on the main menu, fig. lB.36, the output menu, fig. IB.37 will follow. 

The output options range from the specific to more general information. It is open to the 

user for his interpretation and judgement. The options can be selected in any sequence 

for any number of times. The following describes a general interpretation, but by by no 

means the sole one, to the listed options . 

. Select 1 on the output menu, fig. IB.37, to view the finished work schedule 

details, fig. IB.38. The machining requirement of the batch is echoed from the data 

base. The start, finish, and processing time of the batch ,and thus the occupation time 

to the assigned machine by the batch is displayed. The machine idle time spent waiting 

for the batch is also displayed. 
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Select 2 on the output menu, fig. IB.39, to get the summarised machine 

utilisation of each machine in the cell. The activity times, displayed for each individual 

machine, include total cutting time, part and tooling set-up time, the total processing 

time of the machine and the total idle time of the machine spent for waiting either tools 

or pallets during its occupied period. (fig. lB.40). 

The longest machine total processing time makes the through time of the cell for a given 

order. 

Select 3 on the output menu, fig. 41, for manning pattern. This will include 

information as the start point and the time interval of a manning operation and the 

description of the operation.(fig. lB.42). 

Select 4 on the output menu, fig. lB.43 to get the final tool status after the 

modelling period, fig. lB.44. This includes the general information such as tool type 

and life unit (in min.s), echoed from the data base, and finished tool status: percentage 

tool life used, number of tips used, frequency of usage, and if a tool is worn. The 

location of the tool after the production period is given in terms of which store and 

which position it is in. On this screen, in the 'store' column, 'C' represents Central tool 

store, 'S' represents Secondary tool store, 'P' represent Primary tool store (magazine), 

and 'T' represents tool turret. 

Select 5 on the output menu, fig.1B,45 to view the final store contents. The 

output illustrates for every machine ,the tool held in each pocket of the turret (fig. 

lB,46) and magazine (fig. lB,47). After the last machine's tool store contents have 

been shown, the user is led to the cell secondary tool store contents (if applicable), fig. 

lB.48, which will be followed by the output menu. 

Select 6 on the output menu, fig. 1B,49 to obtain the tool kit assignment details 

for each batch which gives the tool numbers in the kit assigned to a machine to fulfill 

the tooling requirement by the machine to process the scheduled operations of the 

batch. When tool issue strategy 'complete magazine exchange' has been adopted, the 

tool magazine content will be shown. 

Tool components requirement planning for tool assembly and refurbishment 

forms the base for the crs inventory control for the planning period. When run the 

model for a medium to long period, it dictates the purchasing of holders, shanks and 

inserts. 

258 



Select 7 on the output menu, fig. IB.51 to access the insert requirement to fulfill 

the production requirement, fig. lB .52. The information is given in the form of total 

numbers of items required for each insert type (Ld). 

Select 8 on the output menu, fig. lB.53 to get the tool shank requirement. This 

includes total number required for each shank type and the number of tools using the 

shank type, fig. lB.54. 

Select 9 on the output menu, fig. lB.55, to obtain the tool holder requirement, 

fig. lB.56, which is given in the form of total number of holders required for each 

type, and the number of tools requiring the holder type. 

Inserts are regarded as consumable, which means a insert is thrown away after its 

tips has been worn out, whereas, shanks and holders can be shared accross tools, that 

is they are durable. 

Select 10 on the output menu, fig. lB.57 to obtain the summarised sister tooling 

requirement, fig. lB.58, for each tool type required for the modelled period. The 

detailed tooling status of individual tools is given in option 4. 

Select lion the output menu, fig. lB.59, to get the workload pattern of the 

turning cell, fig. lB.60, which is a graphic illustration of the data form information 

which can be obtained from option 1. 

Select 0 in the output menu, fig. IB.61 to resume the main menu. 

Select 7 in the main menu, fig. lB.62, to quit the Turning Model. 
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HIC Grou~ •••••••• I MICl 

Turret Capacity : 14 Turre Index Tile (per position) : 0.0083 

PTS Capacity: 60 No. of Racks: 0 Posits/Rack: 0 PTS Index Time: 0.0083 
Hodular Tooling Systel: M Secondary Operation HIC (I/M) : I 

Tool Exchange Tile between ATC & Turret ••••• : 0.0500 
between Magazine & ATC ••• : 0.0500 

ATC Transfer Tile between Magazine & Turret •• : 0.0333 

Sets of Chuck Ja.s Ilplelented ••••••••••••• : 6 
Tile Required to Exchange a set of Chuck Jaw8 : 0.050 

Sets of Grip~ers for Vorkpiece Handling ..... : 6 
Tile Require to Exchange a Set of Grippers : 0.050 

Continue: Edit Data Entry: Hard Copy: Quit: 

"-
<Enter> <Ctrl-B> <Shift-PrtSc> <Esc> 

FIg. lB.~ LUT - FMS 
Machine Description Research Group 
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, ...... 
TURRET POSITION SPECIFICATION 

Ho. of positions suitable for sec. op. tools ......... :14 
Position Ho.s Specification: 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 

No. of positions suitable for external working tools •••• :14 
Position Ho.s Specification: 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 

Ho. of positions for internal working tools (Shank size 1): 14 
Position Ho.s Specification: 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 

Ho. of positions for internal working tools (Shank size 2): 0 
Position No.s Specification: 

Continue: Edit Data Entry: Hard Copy: Quit: , <Enter> <Ctrl-B> <Shift-PrtSc> <Esc> 

Fig. 1 B.5 LUT - FMS 
Turret Position Specification Research Group 

r ...... 

CHUCK JAW SPECIFICATION 

Jaw Set No. : 1 
Chuck Jaw Application Range: 

Min. Workpiece Dia.eter •••••••••• : 10.00 

Max. Vortpiece Dialeter •••••••••• : 30.00 

Continue: Edit Data Entry: Hard Copy: Quit: 

" 
<Enter> <Ctrl-B> <Shift-PrtSc> <Esc> 

./ 

Fig. 1 B.6 LUT - FMS 
Chuck Jaw Set Specification Research Group 
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/ " GRIPPER SPECIFICATION 

Gripper Application Range: 
Gripper Set No. : 1 

Kin. Vortpiece Dialeter •••••••••• : 10.00 

Max. Workpiece Dialeter •••••••••• : 30.00 

Continue: Edit Data Entry: Hard Copy: Quit: 

<Enter> <Ctrf-B> <Shift-PrtSc> <Esc> 
...I 

Fig. 1 B.7 LUT - FMS 
Gripper Set Specification Research Group 

/ "I 
MACHINE DATABASE MODULE - Enter Choice: 

1. Ust Machine Records Sequentially 

2. Find a Record by Machine 1.0 Code 

3. Search on Partial Machine 1.0 Code 
4. Next Record 

5. Previous Record 

6. Add to Machine Database 

7. Edit a Machine Record 

8. Delete a Machine Record 

9. Rebuilt Index Files 

10. Quit 

Choice: 11 

Continue: Edit Data Entry: Hard Copy: Quit: 

" 
<Enter> <Ctrf-B> <Shift-PrtSc> <Esc> 

Fig. 1 B.B LUT - FMS 
MACHINE DATABASE MODULE - MENU Research Group 
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I' "'I 

TURNING MODEL - MAIN MENU 

I 
DATA BASE MANAGEMENT I Modelling Modules 

Input. Edit. View. Select: I 4. Pallet Assign. & Scheduling. 
1. Machine Data Entry. I 5. Run the Tool Flow Model. 
2. Workplece Data Entry. I 6. View Outputs. 
3. Tool Data Entry. I 

7. Exit. 

Choice: 2 

Continue: Edit Data Entry: Hard Copy: Quit: 

'-
<Enter> <Ctrl-B> <Shift-PrtSc> <Esc> 

.I 

Fig. 1 B.9 LUT - FMS 
MAIN MENU Research Group 

r 
WORKPIECE DATABASE MODULE - Enter Choice: 

....... 

1. List Part Records Sequentially 

2. Find 0 Record by Part 1.0 Code 

3. Search on Partial Part 1.0 Code 

4. Next Record 

5. Previous Record 

6. Add to Workpiece Database 

7. Edit 0 Port Record 

B. Delete a Part Record 

9. Rebuilt Index Files 

10. Quit 

Choice: 6 

Continue: Edit Data Entry: Hard Copy: Quit: 

<Enter> <Ctrl-B> <Shift-PrtSc> <Esc> 
./ 

Fig. lB.l0 LUT - FMS 
WORKPIECE DATABASE MODULE - MENU Research Group 
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/ " 

Please Input 1.0 Code: 

Continue: Edit Data Entry: Hard Copy: Quit: , <Enter> <Ctrl-8> <Shift-PrtSc> <Esc> 
~ 

Fig. 1 B.ll LUT - FMS 
Prompt Screen Research Group 

/' ..... 
PART INFORKATION 

Order No. : 1 

Part 1.0 Code 11 ••••••••••• : PARTl 

Part Description ••••••••••• : SYNTHETIC 

No. of Operations/Ite •••••• : 8 

Quantity • I ••• I ••••••••••• : 5 Pallet Capacity ••• : 5 

Chuck End Dialeter ••••••••• : 90.00 Due Date . 0.00 •• I • • •••• • 

If the order enters the systel during the planning period, specify: 

Order Earliest Available Ti •• : 0.00 

Continue: Edit Data Entry: Hard Copy: Quit: 
<Enter> <Ctrl-8> <Shift-PrtSc> <Esc> 

~ 

FIg. 1e.12 LUT - FMS 
Port Information Research Group 

265 



r "' ROUTING INFORHATION 

Order No. : I Part I.D : PART! Hachine Group : H/CI 

Op.No. . I . 
Operation Description ••••• : ROUGH TURNING 

Set-up Tile • 1.00 . ...... . ... . 
Cutting Time . 0.50 ............ . 
Tool Type Required 11 •••••• : TS 

Secondary Operation [Y/NI 1 : N 

N.B: For outside processing, input 'OutsideH/C' for Hachine Group. 

Continue: Edit Data Entry: Hard Copy: Quit: 

" 
<Enter> <Ctrl-B> <Shift-PrtSc> <Esc> 

./ 

Fig. 1B.13 LUT - FMS 
Routing Information Research Group 

/' 
WORKPIECE DATABASE MODULE - Enter Choice: 

, 
1. List Part Records Sequentially 

2. Find a Record by Part 1.0 Code 

3. Search on Partial Part 1.0 Code 

4. Next Record 

5. Previous Record 

6. Add to Workpiece Database 

7. Edit a Part Record 

8. Delete a Part Record 

9. Rebuilt Index Files 

10. Quit 

Choice: 11 

Continue: Edit Data Entry: Hard Copy: Quit: 

" 
<Enter> <Ctrl-B> <Shift-PrtSc> <Esc> 

FIg. 18.14 LUT - FMS 
WORKPIECE DATABASE MODULE - MENU Research Group 
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r ...... 

TURNING MODEL - MAIN MENU 

I 
DATA BASE MANAGEMENT I Modelling Modules 

Input. Edit. View. Select: I 4. Paliet Assign. &: Scheduling. 
1. Machine Data Entry. I 5. Run the Tool Flow Model. 
2. Workpiece Data Entry. I 6. View Outputs. 
3. Tool Data Entry. I 

7. Exil 

Choice: 3 

Continue: Edit Dota Entry: Hard Copy: Quit: 

" 
<Enter> <Ctrl-B> <Shift-PrtSc> <Esc> 

..I 

Fig. 1B.15 LUT - FMS 
MAIN MENU Research Group 

TOOL DATABASE MODULE - Enter Choice: 
..... 

1. List Tool Records Sequentially 

2. Find a Record by Tool 1.0 Code 

3. Search on Partial Tool 1.0 Code 

4. Next Record 

5. Previous Record 

6. Add to Tool Database 

7. Edit a Tool Record 

8. Delete a Tool Record 

9. Rebuilt Index Files 

10. Quit 

Choice: 6 

Continue: Edit Data Entry: Hard Copy: Quit: 

" 
<Enter> <Ctrl-B> <Shift-PrtSc> <Esc> 

./ 

Fig. lB.16 LUT - FMS 
TOOL DATABASE MODULE - MENU Research Group 
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r "I 
TOOL DESCRIPTION 

Tool Type: TU01 
Tool Descri¥tion IColpany I.D: 
Rotational Dol IY/N) 1 •••• : H 

Insert (Cuttinq Unit) Information: 
Insert Ty¥e ••••••••••• : CNKS120408 [68 
Assiqned 001 Life Unit: 30.00 Kax. Perlissible S Tool Life: 50.00 
Percenta1e Life Used •• : 0.00 Ho. of Indexable Tips/Reqrinds: 4 
Ho. of T ps Used ••••• : 0 

Shank Information: 
Shank Trpe •••••••••••• : KCLNR2020 H12 
Externa I Internal Tool [Ell): E Shank Size • I. I. : 0 

Holder Information: 
Holder Type ••••••••••• : V633000200 

Continue: Edit Data Entry: Hard Copy: Quit: 

<Enter> <Ctrl-B> <Shift-PrtSc> <Esc> 
.I. 

Fig. lB.17 LUT - FMS 
Tool Description Research Group 

r 
TOOL DATABASE MODULE - Enter Choice: 

"'I 

1. List Tool Records Sequentially 

2. Find a Record by Tool 1.0 Code 

3. Search on Partial Tool 1.0 Code 

4. Next Record 

5. Previous Record 

6. Add to Tool Database 

7. Edit a Tool Record 

B. Delete a Tool Record 

9. Rebuilt Index Files 

10. Quit 

Choice: Q 

Continue: Edit Data Entry: Hard Copy: Quit: 

"-
<Enter> <Ctrl-B> <Shift-PrtSc> <Esc> 

Fig. lB.18 LUT - FMS 
TOOL DATABASE MODULE - MENU Research Group 
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/' """I 

TURNING MODEL - MAIN MENU 

I 
DATA BASE MANAGEMENT I Modelling Modules 

Input. Edit, View, Select: I 4. Pallet Assign. & Scheduling. 
1. Machine Data Entry. I 5. Run the Tool Flow Model. 
2. Workpiece Data Entry. I 6. View Outputs. 
3. Tool Data Entry. I 

7. ~it. 
Choice: 4 

Continue: Edit Data Entry: Hard Copy: Quit: 

<Enter> <Ctrl-B> <Shift-PrtSc> <Esc> 
.I 

Fig. 16.19 LUT - FMS 
MAIN MENU Research Group 

/' 

""" 
Workload Assignment Strategies 

1. Assign botch with max. workcontent 

to the available MIC; 

2. Assign botch with min. workcontent 
to the available MIC. 

Choice: 1 

Continue: Edit Data Entry: Hard Copy: Quit: 

" 
<Enter> <Ctrl-B> <Shift-PrtSc> <Esc> 

--I 

Fig. 18.20 LUT - FMS 
Workload Assignment Strategy Selection Research Group 
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, ...... 

Batch Sequencing Strategies 

1. Longest Outside Operation lime; 

2. Shortest Operation lime; 

3. Least Tool Requirement. 

Choice: 1 

Continue: Edit Data Entry: Hard Copy: Quit: 

\.. <Enter> <Ctrl-B> <Shift-PrtSc> <Esc> 
~ 

Fig. 1 B.21 LUT - FMS 
Batch Sequencing Strategy Selection Research Group 

, -..... 

All Batches Scheduled 

Return to Main Menu ... 

Continue: Edit Data Entry: Hard Copy: Quit: 

<Enter> <Ctrl-B> <Shift-PrtSc> <Esc> 
./ " 

Fig. 1 B.22 LUT - FMS 
Prompt Screen Research Group 
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r '" 
TURNING MODEL - MAIN MENU 

I 
DATA BASE MANAGEMENT I Modelling Modules 

Input, Edit. View, Select: I 4. Pallet Assign. & Scheduling. 
1. Machine Oata Entry. I 5. Run the Tool flow Model. 
2. Workpiece Oata Entry. I 6. View Outputs. 
3. Tool Oata Entry. I 

7. Exit. 

Choice: 5 

Continue: Edit Data Entry: Hard Copy: Quit: 

'-
<Enter> <Ctrl-B> <Shift-PrtSc> <Esc> 

./ 

Fig. 18.23 LUT - FMS 
MAIN MENU Research Group 

/" ....... 

TOOL FLOW MANAGEMENT IN BATCH MANUFACTURING SYSTEMS 
FOR CYLINDRICAL PARTS 

- Data Input Screens 

Continue: Edit Data Entry: Hard Copy: Quit: 

'-
<Enter> <Ctrl-B> <Shift-PrtSc> <Esc> 

~ 

Fig. 18.24 LUT - FMS 
Tool Flow Model - TItle Screen Research Group 
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/ 

"'" 
SYSTEM CONFlGURAnON 

Please Input: 
No. of Machines In the Cell: 1 

Planning Horizon (min.): 480 
Secondary Tool Store Capacity: 0 

Continue: Edit Data Entry: Hard Copy: Quit: 

'-
<Enter> <Ctrl-B> <Shift-PrtSc> <Esc> 

./ 

Fig. lB.25 LUT - FMS 
SYSTEM PARAM fiR Research Group 

"I 

TRANSPORTAnON SYSTEM SPECIFICAnON 

Pleose Specify: 
Transporter Description: MAN 
Transporter Capacity: 25 
Average Transfer TIme between CTS '" STS: 0 
Average Transfer TIme between STS '" PTSs: 5 

TIme Unit: Min. 

Continue: Edit Data Entry: Hard Copy: Quit: 

'- <Enter> <Ctrl-B> <Shift-PrtSc> <Esc> 
./ 

Fig. lB.26 LUT - FMS 
TRANSPORTATION SYSTEM DESCRIPTION Research Group 
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r ...... 

TOOUNG STRATEGY SELECTION 

1. KITTING - Issue a Tool Kit for Each Batch; 

2. DIFFERENTIAL KITTING 
- Tools Issued in Kits, Tool Sharing between Kits Permitted; 

3. Complete Magazine Exchange 

Strategy Selected: 3 

Continue: Edit Data Entry: Hard Copy: Quit: 

" 
<Enter> <Ctrl-8> <Shift-PrtSc> <Esc> 

./ 

Fig. 1B.27 LUT - FMS 
TOOUNG STRATEGY SPECIFICATION Research Group 

r "I 
TOOL FLOW PATTERN SELECTION 

1. All Tools Are Transfered Back to CTS for Refurbishment; 

2. Turning Tools with Indexoble Inserts Are Adjusted 
at M/Cs for New TIps; 
Live Tooling back to CTS for Refurbishment. 

Flow pattern Selected: 1 

Continue: Edit Data Entry: Hard Copy: Quit: 

"- <Enter> <Ctrl-8> <Shift-PrtSc> <Esc> ./ 

Fig. 1B.28 LUT - FMS 
TOOL FLOW PATIERN SELECTION Research Group 
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r ..... 

PART LOAD/UNLOAD TIME SPECIFICATION 

Machine 1.0 Code: M/Cl; 

Please Specify: 

Time Required to Load a Part (min.): 0.017 
Time Required to Unload a Part (min.): 0.017 

Continue: Edit Data Entry: Hard Copy: Quit: 

" 
<Enter> <Ctrl-B> <Shift-PrtSc> <Esc> ./ 

Fig. 1 B.29 LUT - FMS 
AVERAGE TIME FOR PART LOADING/UNLOADING Research Group 

r ..... 

INmAL TOOL ARRANGEMENT SPECIFICATION 

1. Arrange Tools between Tool Stores; 

2. Assume All Tools Are in CTS; 

3. Extra Run on Tool Status of Last Run; 

Selection: 2 

Continue: Edit Data Entry: Hard Copy: Quit: 

<Enter> <Ctrl-B> <Shift-PrtSc> <Esc> 
~ 

Fig. lB.30 LUT - FMS 
INITIAL TOOL ARRANGEMENT Research Group 
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/ "\ 
Tool Arrangelent for the Turret 

H/C id : M/C1 Turret Capacity: 14 
Please Arrange Tools: 

Position 1 2 3 4 5 6 7 8 

Tool No. 0 0 0 0 0 0 0 0 

Position 9 10 11 12 13 14 15 16 

Tool Ho. 0 0 0 0 0 0 0 0 

If not applicable input O. 

Continue: Edit Data Entry: Hard Copy: Quit: 

"-
<Enter> <Ctrl-B> <Shift-PrtSe> <Ese> 

~ 

Fig. 18.31 LUT - FMS 
Initial Tool Arrangement - Turret Research Group 

r Initial Tool Arrangement - Magazine "'I 

MIC Id: M/Cl PTS Capacity: 60 
Please Arrange Tool: 

Pocket Tool Pock.t Tool Pocket Tool Pocket Tool ~ocket Tool 
No. No. No. No. No. No. No. No. o. No. 

1 -

Continue: Edit Data Entry: Hard Copy: Quit: 

<Enter> <Ctrl-B> <Shift-PrtSe> <Ese> 
'-

Fig. 18.32 LUT - FMS 
Initial Tool Arrongement - Magazine Research Group 
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, ...... 

Manning TIme Specification 

Please Specify: 

Tooling Exchange TIme (min.) : 10 

Is Mic in Op. During Tool Exchange [Y IN] ? N 

Pallet Exchange TIme (min.) : 10 

Is Mic in Op. During Pallet Exchange [Y IN] ? Y 

Continue: Edit Data Entry: Hard Copy: Quit: 

"- <Enter> <Ctrl-B> <Shift-PrtSc> <Esc> / 

Fig. 1 B.33 LUT - FMS 
Manning Operation TIme Specification Research Group 

;' 

""" 

RUN THE TOOL FLOW MODEL ... 

Continue: Edit Data Entry: Hard Copy: Quit: 

"-
<Enter> <Ctrl-B> <Shift-PrtSc> <Esc> 

.I 

Fig. 1B.34 LUT - FMS 
Prompt Screen Research Group 
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/ " 

Tool Flow Modelling Finished 

Press <Enter> to Continue ... 

Continue: Edit Data Entry: Hard Copy: Quit: 

" 
<Enter> <Ctrl-B> <Shift-PrtSc> <Esc> 

./ 

Fig. 1 B.35 LUT - FMS 
Prompt Screen Research Group 

/ "" 
TURNING MODEL - MAIN MENU 

I 
DATA BASE MANAGEMENT I Modelling Modules 

Input. Edit, View, Select: I 4. Pallet Assign. & Scheduling. 
1. Machine Data Entry. I 5. Run the Tool Flow Model. 
2. Workplece Data Entry. I 6. View Outputs. 
3. Tool Data Entry. I 

7. Exit. 

Choice: 6 

Continue: Edit Data Entry: Hard Copy: Quit: 

" 
<Enter> <Ctrl-B> <Shift-PrtSc> <Esc> 

./ 

Fig. 1 B.36 LUT - FMS 
MAIN MENU Research Group 
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/ 

'\. 

/ 

'\. 

MODEL OUTPUT 

1. Finished Work Schedule; 
2. Machine Utilisation; 
3. Manning Pattem; 
4. Tool Requirement and Final Tool Status; 

5. Final Tool Store Contents; 
6. Tool Kit Requirements/Magazine Complements 
7. Insert Requirement Planning; 

8. Tool Shank Requirement: 

9. Tool Holder Requirement; 
10. Sister Tooling Requirement; 

11. Workload Pattem; 

O. Exit. 

CHOICE: 1 

Continue: Edit Data Entry: Hard Copy: 
<Enter> <Ctrf-8> <Shift-PrtSc> 

Fig. 18.37 

Output Menu 

"ODEL OUTPUT 

OPERATION DETAILS: 
Order No.: 1 Part 1.0 : PARTl 
Operation Operation Set-up 

No. Description Tile 
1 ROUGH TURNING 1. 00 
2 FINISH PROFILE 0.00 
3 DRILLING 0.00 
4 BORING 0.00 
5 FINISH BORING 0.00 
6 KILLING 0.00 
7 DRILLING 0.00 
8 INSPECTION 0.10 

Kachine I.D : M/C1 
Batch No.: 1 

Cuttinq Tool I.D 
Tile 

0.50 T5 
0.50 T6 
0.60 T1 
0.60 T7 
0.50 T3 
1.00 T8 
0.20 T10 
0.00 Tl2 

...... 

Quit: 

<Esc> 
..I 

LUT - FMS 
Research Group 

Sec. Op 
[I/NJ ? 

N 
R 
N 
N 
N 
I 
I 
N 

No. of Itels in the Batch: 5 Processinq Tile of the Batch: 26.98 
Start Time of the Batch : 10.50 Finish Tile of the Batch •• : 37.48 
"/C Idle Tile due to Vaitinq for the Pallets: 0.00 

Continue: 

<Enter> 

Fig. 18.38 

Hard Copy: 

<Shift-PrtSc> 

Model Output - Batch Processing Information 
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Quit: 

<Esc> 

LUT - FMS 
Research Group 



MODEL OUTPUT 
-..... 

1. Finished Work Schedule: 
2. Machine Utilisation; 

3. Manning Pattern; 
4. Tool Requirement and Final Tool Status; 
5. Final Tool Store Contents: 
6. Tool Kit Requirements/Magazine Complements 
7. Insert Requirement Planning: 

8. Tool Shank Requirement; 

9. Tool Holder Requirement; 
10. Sister Tooling Requirement; 
11. Workload Pattern; 

O. Exit. 

CHOICE: 2 

Continue: Edit Data Entry: Hard Copy: Quit: 

"-
<Enter> <Ctrl-B> <Shift-PrtSc> <Esc> 

Fig. 18.39 LUT - FMS 
Output Menu Research Group 

~ ...... 
MACHINE UTILISATION 

Machine I.D Cutting Part (MIC) TOOl1nl Idle Total Processing 
The Set-up Tile Set-Up T le Tile Tile 

HICl 317 108 32 0 457 

Continue: Hard Copy: Quit: , <Enter> <Shift-PrtSc> <Ese> 
~ 

Fig. 18.40 LUT - FMS 
Model Output - Machine Utilisation Research Group 
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r 
MODEL OUTPUT 

'\ 

1. FInished Work Schedule; 
2. Machine Utilisation; 
3. Manning Pattern; 
4. Tool Requirement and Final Tool Status; 

5. FInal Tool Store Contents; 
6. Tool Kit Requirements/Magazine Complements 
7. Insert Requirement Planning: 

8. Tool Shank Requirement; 
9. Tool Holder Requirement; 

10. Sister Tooling Requirement: 

11. Workload Pattern; 

O. Exit. 

CHOICE: 3 --
Continue: Edit Data Entry: Hard Copy: Quit: 

"- <Enter> <Ctrl-B> <Shift-PrtSe> <Ese> 
~ 

FIg. 18.41 LUT - FMS 
Output Menu Research Group 

r "'I 
Manning Pattern 

M/C No. 

Work Flow 

~ 
r· ,-.,...._.-, . _. r--.-_.- .-

1 r' I-'~ =r .- r-. -. r--'--' - .. 1:0oh xc ange 
~L-J _ '--

0 
TIme (min.) 1000 

Continue: Hard Copy: Quit: 

\. <Enter> <Shift-PrtSe> <Ese> 
~ 

Fig. 18.42 LUT - FMS 
Model Output - Manning Pattern Research Group 
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~ MODEL OUTPUT 
...... 

1. Flnlshed Work Schedule; 
2. Machine Utilisation; 
3. Monning Pattern: 
4. Tool Requirement and Final Tool Status; 

5. Flnal Tool Stare Contents; 
6. Tool Kit Requirements/Magazine Complements 
7. Insert Requirement Planning: 

8. Tool Shonk Requirement: 

9. Tool Holder Requirement; 
10. Sister Tooling Requirement: 
11. Workload Pattern; 

O. Exit. 

CHOICE: 4 

Continue: Edit Data Entry: Hard Copy: Quit: 

'-
<Enter> <Ctrl-B> <Shift-PrtSc> <Esc> 

./ 

Flg. 1 B.43 LUT - FMS 
Output Menu Research Group 

"'I 
MODEL OUTPUT I FIHAL TOOL STATUS 

Tool Tool Life Life Usaqe Tips Vorn "/C Store Rack Posit. 
Ro. Type Unit Used IS) Freq. Used Ho. Ro. 

1 75 30.00 48.33 11 0 Y 1 P 0 20 
2 76 30.00 48.33 17 0 Y 1 P 0 17 
3 Tl 16.00 18.75 5 0 H 1 P 0 16 
4 T7 30.00 10.00 5 0 H 1 P 0 15 
5 T3 30.00 8.33 5 0 R 1 P 0 19 
6 T8 20.00 50.00 15 0 Y 1 P 0 21 
7 TIO 16.00 6.25 5 0 H 1 P 0 26 
8 Tl2 100.00 0.00 50 0 H 1 T 0 14 
9 7202 30.00 7.17 35 0 R 1 T 0 1 

10 T2 16.00 49.38 17 0 Y 1 P 0 41 

Continue: Hard Copy: Quit: 

'- <Enter> <Shift-PrtSc> <Esc> 
./ 

Flg. 1 B.44 LUT - FMS 
Model Output - Flnal Tool Status Research Group 
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/ "" MODEL OUTPUT 

1. finished Work Schedule; 
2. Machine Utilisation; 
3. Manning Pattern; 
4. Tool Requirement and Final Tool Status; 
5. Final Tool Store Contents; 

6. Tool Kit Requirements/Magazine Complements 
7. Insert Requirement Planning; 

8. Tool Shank Requirement; 
9. Tool Holder Requirement; 

1 O. Sister Tooling Requirement: 
11. Workload Pattern; 

O. Exit. 

CHOICE: 5 

Continue: Edit Data Entry: Hard Copy: Quit: 

<Enter> <Ctrl-B> <Shift-PrtSc> <Esc> 
./ 

Fig. 16.45 LUT - FMS 
Output Menu Research Group 

/ ....., 
MODEL OUTPUT: TURRET CONTENTS 

The Turret Capacity: 14 Machine 1.0 : M/C1 

Position 1 2 3 4 5 6 7 8 

Tool Ho. 9 36 41 37 11 44 45 40 

Position 9 10 11 12 13 14 15 16 

Tool Ho. 46 29 30 32 31 8 0 0 

Continue: Hard Copy: Quit: , <Enter> <Shift-PrtSc> <Esc> 
./ 

Fig. 16.46 LUT - FMS 
Final Turret Contents Research Group 
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/ '\ 
PTS CONTENTS 

Machine 1.0 Code: M/C1 PTS Capacity: 60 

Poct Tool Poct Tool Poct Tool Poct Tool Poct Tool Pock Tool Poct Tool 
No. No. No. No. No. No. No. No. No. No. No. No. No. No. 

1 0 11 0 21 6 31 18 41 10 51 0 
2 0 12 0 22 20 32 21 42 35 52 0 
3 0 13 0 23 22 33 26 43 42 53 0 
4 0 14 0 24 17 34 33 44 38 54 0 
5 0 15 4 25 12 35 24 45 39 55 0 
6 0 16 3 26 7 36 16 46 43 56 0 
7 0 17 2 27 14 37 23 47 0 57 0 
8 0 18 13 28 15 38 25 48 0 58 0 
9 0 19 5 29 28 39 34 49 0 59 0 

10 0 20 1 30 19 40 27 50 0 60 0 

Continue: Edit Data Entry: Hard Copy: Quit: 

\.. <Enter> <Ctrl-B> <Shift-PrtSc> <Esc> .) 

Fig. lB.47 LUT - FMS 
Final Tool Magazine Contents Research Group 

/ 
- '" STS CONTENTS 

STS Capacity: 100 

Poet Tool Poct Tool Poct Tool Pock Tool Poet Tool Pock Tool Poct Tool 
No. No. No. No. No. No. No. No. No. No. No. No. No. No. 

1 0 11 0 21 0 31 0 41 0 51 0 61 0 
2 0 12 0 22 0 32 0 42 0 52 0 62 0 
3 0 13 0 23 0 33 0 43 0 53 0 63 0 
4 0 14 0 24 0 34 0 44 0 54 0 64 0 
5 0 15 0 25 0 35 0 45 0 55 0 65 0 
6 0 16 0 26 0 36 0 46 0 56 0 66 0 
7 0 17 0 27 0 37 0 47 0 57 0 67 0 
8 0 18 0 28 0 38 0 48 0 58 0 68 0 
9 0 19 0 29 0 39 0 49 0 59 0 69 0 

10 0 20 0 30 0 40 0 50 0 60 0 70 0 

Continue: Hard Copy: Quit: 

'- <Enter> <Shift-PrtSc> <Esc> 
.) 

. 

Fig. 1 B.48 LUT - FMS 
Final Secondary Tool Store Contents Research Group 
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, 
MODEL OUTPUT " 

1. finished Work Schedule; 
2. Machine Utilisation; 

3. Manning Pattern; 
4. Tool Requirement and Final Tool Status; 
5. Final Tool Store Contentsj 

6. Tool Kit Requirements/Magazine Complements 
7. Insert Requirement Planning: 

8. Tool Shank Requirement; 
9. Tool Holder Requirement; 

, O. Sister Tooling Requirement; 

11. Workload Pattern; 

O. Exit. 
CHOICE: 6 --

Continue: Edit Data Entry: Hard Copy: Quit: 

"-
<Enter> <Ctrl-B> <Shift-PrtSc> <Esc> 

.) 

Fig. 1B.49 LUT - FMS 
Output Menu Research Group 

, 
Tool Kit / Magazine Complements " 

Kit / Magazine No. : 1 

Tool No.s: 

1, 2, 3, 4, 5, 6; 

Continue: Hard Copy: Quit: 

"-
<Enter> <Shift-PrtSc> <Esc> 

..J 

Fig. 1 B.50 LUT - FMS 
Tool Kits Requirement / Magazine Complements Research Group 
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I' 

"-

MODEL OUTPUT '\ 

1. finished Work Schedule; 
2. Machine Utilisation; 
3. Manning Pattern; 
4. Tool Requirement and Final Tool Status; 
5. Final Tool Store Contents; 
6. Tool Kit Requirements/Magazine Complements 
7. Insert Requirement Planning: 

8. Tool Shank Requirement; 

9. Tool Holder Requirement: 
10. Sister Tooling Requirement: 

11. Workload Pattem; 

O. Exit. 
CHOICE: 7 --

Continue: Edit Data Entry: Hard Copy: Quit: 

<Enter> <Ctrl-B> <Shift-PrtSe> <Ese> 
./ 

Fig. 18.51 LUT - FMS 
Output Menu Research Group 

TOOL PART REQUIREMENT - INSERT 

Insert Identity Insert Indentity Insert Identity Ho. 
s 

Continue: 
<Enter> 

Fig. 18.52 

Hard Copy: 
<Shift-PrtSe> 

Model Output - Tool Insert Requirement 
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Quit: 

<Ese> 

LUT - FMS 
Research Group 



/ 
MODEL OUTPUT 

1. Flnished Work Schedule: 
2. Machine Utilisation: 

3. Manning Pattern; 
4. Tool Requirement and Final Tool Status; 

5. Flnol Tool Store Contents: 
6. Tool Kit Requirements/Magazine Complements 
7. Insert Requirement Planning; 

8. Tool Shank Requirement; 

9. Tool Holder Requirement: 
10. Sister Tooling Requirement: 

". Workload Pattern: 

O. Exit. 

CHOICE: 8 

Continue: Edit Data Entry: Hard Copy: 

<Enter> <Ctrl-B> <Shift-PrtSe> 

Fig. 1 B.53 

Output Menu 

TOOL PART REQUIREMENT - SHANK 

Shank Identity 

NKLCR2020 H12 
NER2020 83 

Continue: 

<Enter> 

Flg. 1 B.54 

Shank Identity 

Hard Copy: 

<Shift-PrtSe> 

Model Output - Tool Shank Requirement 
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'" 

Quit: 

<Ese> 

LUT - FMS 
Research Group 

Quit: 

<Ese> 

LUT - FMS 
Research Group 



/ 
MODEL OUTPUT "" 

1. finished Work Schedule; 
2. Machine Utilisation; 
3. Manning Pattern: 
4. Tool Requirement and Final Tool Status; 
5. Final Tool Store Contents; 
6. Tool Kit Requirements/Magazine Complements 
7. Insert Requirement Planning: 

8. Tool Shonk Requirement: 

9. Tool Holder Requirement; 
10. Sister Tooling Requirementj 

11. Workload Pattem; 

O. Exit 

CHOICE: 9 --
Continue: Edit Data Entry: Hard Copy: Quit: 

"- <Enter> <Ctrl-B> <Shift-PrtSe> <Ese> 
~ 

Fig. 1 B.55 LUT - FMS 
Output Menu Research Group 

t' ...., 

TOOL PART REQUIREMENT - HOLDER 

Holder Identity No. Use. Holder Identity No. Use. 
Freq. Freq. 

V633000200 32 104 
N632102000 23 SO 
W633000400 6 10 
W632112000 23 24 
V632100300 4 6 
V632210200 12 24 
N632100000 3 4 

Continue: Hard Copy: Quit: 

"-
<Enter> <Shift-PrtSe> <Ese> 

~ 

Fig. 1 B.56 LUT - FMS 
Model Output - Tool Holder Requirement Research Group 
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I' 
MODEL OUTPUT "" 

1. finished Work Schedule; 
2. Machine Utilisation; 

3. Manning Patternj 
4. Tool Requirement and Final Tool Status: 

5. Final Tool Store Contents; 
6. Tool Kit Requirements/Magazine Complements 
7. Insert Requirement Planning; 

8. Tool Shank Requirement: 

9. Tool Holder Requirement; 
10. Sister Tooling Requirement: 
11. Workload Pattern; 

O. Exit. 
CHOICE: 10 --

Continue: Edit Data Entry: Hard Copy: Quit: 

\. <Enter> <Ctrl-B> <Shift-PrtSc> <Esc> 
~ 

Fig. 1 B.57 LUT - FMS 
Output Menu Research Group 

r 
"" Sister 1001inq Requirelent 

Tool Identity No. Tool Identity No. Tool Identity No. 
s B B 

Tl 1T1l 1 121 2 
T2 2 112 1 T101 3 
T3 1 T13 2 1202 1 
T4 1 T14 1 T303 1 
T5 4 115 1 1404 1 
T6 7 116 1 1707 1 
17 1 T17 1 T808 1 
T8 3 T18 2 T1010 1 
T9 1 119 1 11212 1 
110 1 120 1 

Continue: Hard Copy; Quit: 

\.. <Enter> <Shift-PrtSc> <Esc> 
~ 

Fig. 1 B.58 LUT - FMS 
Model Output - Sister Tooling Requirement Research Group 
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MODEL OUTPUT "'I 

1. finished Work Schedule; 
2. Machine Utilisation; 
3. Manning Pattern; 
4. Tool Requirement and Final Tool Status; 
5. Final Tool Store Contents; 
6. Tool Kit Requirements/Magazine Complements 
7. Insert Requirement Planning: 

8. Tool Shank Requirement; 

9. Tool Holder Requirement; 
10. Sister Tooling Requirement; 

1 1. Workload Pattem; 

o. Exit 

CHOICE: 11 --
Continue: Edit Data Entry: Hard Copy: Quit: 

"- <Enter> <Ctrl-B> <Shift-prtSe> <Ese> 
./ 

Flg. 1 B.59 LUT - FMS 
Output Menu Research Group 

r ~ 
Workload Pattern 

MIC No. 

1 1 11 11 11 1 1 1 

0 TIme (min.) 1000 

Continue: Hard Copy: Quit: 

'-
<Enter> <Shift-PrtSe> <Ese> 

./ 

Flg. 18.60 LUT - FMS 
Model Output - Workload Pattem Research Group 
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, 
MODEL OUTPUT 

....... 

1. Finished Work Schedule; 
2. Machine Utilisation: 

3. Manning Pattern: 
4. Tool Requirement and Final Tool Status; 

5. Final Tool Store Contents; 
6. Tool Kit Requirements/Magazine Complements 
7. Insert Requirement Planning: 

8. Tool Shank Requirement; 
9. Tool Holder Requirement: 

10. Sister Tooling Requirement: 

11. Workload Pattern; 

O. Exit. 

CHOICE: 0 

Continue: Edit Data Entry: Hard Copy: Quit: 

" 
<Enter> <Ctrl-B> <Shift-PrtSe> <Ese> 

./ 

Fig. 16.61 LUT - FMS 
Output Menu Research Group 

r -...., 

TURNING MODEL - MAIN MENU 

1 
DATA BASE MANAGEMENT .1 Modelling Modules 

Input, Edit, View, Select: 1 4. Pallet Assign. &: Scheduling. 
1. Machine Oata Entry. 1 5. Run the Tool Flow Model. 
2. Workpiece Data Entry. 1 6. View Outputs. 
3. Tool Data Entry. 1 

7. Exit. 

Choice: 7 

Continue: Edit Data Entry: Hard Copy: Quit: 

" 
<Enter> <Ctrl-B> <Shift-PrtSe> <Ese> 

~ 

Fig. lB.62 LUT - FMS 
MAIN MENU Research Group 
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APPENDIXIC 

DETAILED SAMPLES OF TOOLING OUTPUT 

FOR THE SINGLE MACHINE CASE STUDY 

(Supplement to Chapter 9, Run No. 1) 

291 



HODEL OUTPUT I FINAL TOOL STATUS 

Tool Tool Life Life Usage Tips Worn HIC Store Rack Posit. 
No. Type Unit Used III Freq. Used No. No. 

1 T5 30.00 48.33 11 0 Y 1 P 0 20 
2 T6 30.00 48.33 17 0 Y 1 P 0 17 
3 Tt 16.00 18.75 5 0 H 1 P 0 16 
4 T7 30.00 10.00 5 0 H 1 P 0 15 
5 T3 30.00 8.33 5 0 N 1 P 0 19 
6 T8 20.00 50.00 15 0 Y 1 P 0 21 
7 T10 16.00 6.25 5 0 N 1 P 0 26 
8 T12 100.00 0.00 SO 0 N 1 T 0 14 
9 7202 30.00 7.17 35 0 N 1 T 0 1 

10 T2 16.00 49.38 17 0 Y 1 P 0 41 

Continue: I Hard Copr= I Quit: 
<Enter> <Shift-Pr Se> <Esc> 

MODEL OUTPUT I FINAL TOOL STATUS 

Tool Tool Life Life Usage Tips Worn HIC Store Rack Posit. 
No. Type Unit Used III Freq. Used No. Ho. 

11 TU 16.00 17.19 SS 0 H 1 T 0 5 
12 T20 20.00 0.75 15 0 N 1 P 0 25 
13 T21 30.00 46.67 14 0 Y 1 P 0 18 
14 Tl6 16.00 0.94 IS 0 N 1 P 0 27 
IS T17 20.00 6.00 IS 0 N 1 P 0 28 
16 T9 30.00 2.50 15 0 R 1 P 0 36 
17 T6 30.00 50.00 27 0 Y 1 P 0 24 
18 m 30.00 3.33 1 0 R 1 P 0 31 
19 14 20.00 2.50 25 0 N 1 P 0 30 
20 T5 30.00 46.67 7 0 Y 1 P 0 22 

Continue: Hard COPG Quit: 
<Enter> <Shift-Pr c> <Esc> 

MODEL OUTPUT I FINAL TOOL STATUS 

Tool Tool Life Life Usage Tips Worn MIC Store Rack Posit. 
No. Type Unit Used III Freq. Used No. No. 

21 T8 20.00 50.00 20 0 Y 1 P 0 32 
22 15 30.00 46.67 7 0 Y 1 P 0 23 
23 15 30.00 33.33 5 0 N 1 P 0 37 
24 T6 30.00 49.67 17 0 Y 1 P 0 35 
25 Tl010 30.00 20.00 20 0 . R 1 P 0 38 
26 Tl01 16.00 50.00 8 0 Y 1 P 0 33 
27 T404 30.00 6.67 20 0 H 1 P 0 40 
28 T303 30.00 33.33 20 0 N 1 P 0 29 
29 T808 30.00 46.67 20 0 N 1 T 0 10 
30 Tl212 20.00 2.00 20 0 N 1 T 0 11 

Continue: Hard Copr= Quit: 
<Enter> <Shift-Pr Se> <Esc> 
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MODEL OUTPUT I FINAL TOOL STATUS 

Tool Tool Life Life Usaqe Tips Worn HIC Store Rack Posit. 
No. Type Unit Used (s) Freq. Used No. No. 

31 T707 20.00 2.00 20 0 M 1 T 0 13 
32 T8 20.00 37.50 15 0 N 1 T 0 12 
33 Tl01 16.00 50.00 8 0 Y 1 P 0 34 
34 T101 16.00 25.00 4 0 N 1 P 0 39 
35 T6 30.00 48.67 15 0 Y 1 P 0 42 
36 T14 16.00 50.00 40 0 H 1 T 0 2 
37 T15 10.00 8.00 40 0 H 1 T 0 4 
38 Tl3 30.00 50.00 30 0 Y 1 P 0 44 
39 T18 30.00 49.33 37 0 Y 1 P 0 45 
40 Tl9 30.00 13.33 40 0 N 1 T 0 8 

Continue: Hard CoPt= Quit: 
<Enter> <Shift-Pr Se> <Esc> 

MODEL OUTPUT I FINAL TOOL STATUS 

Tool Tool Life Life Usaqe Tips Worn MIC Store Rack Posit. 
No. Type Unit Used (l) Freq. Used Mo. No. 

41 T2 16.00 47.50 38 0 R 1 T 0 3 
42 T6 30.00 46.67 14 0 Y 1 P 0 43 
43 T6 30.00 46.67 14 0 Y 1 P 0 46 
44 Tl3 30.00 16.67 10 0 M 1 T 0 6 
45 T18 30.00 4.00 3 0 N 1 T 0 7 
46 T6 30.00 3.33 1 0 N 1 T 0 9 

Continue: I I Hard COPli Quit: 
<Enter> <Shift-Pr c> <Esc> 
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APPENDIX2A 

WORKPIECE INFORMATION 

FOR THE MULTI·MACHINE CASE STUDY 

(Supplement to Chapter 13) 
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NGL 

NGL 

Part I.D: 1087J012 Description: Turbine Wheel 
Material: Impact Extrusion 204002-1 

MIC 
(Group) 

GE42 

(BlM) 

Outside 
MiC 

GE42 
(BLM) 

Out.ldo 
Mic 

Sot-up 
TIme 

ISatch 

30M 

60M 

5M 

2H 

IH30M 

Fig. 2A.l 

Operation Description 

Balance; 

Workpiece Information 

Part I.D: 1087J022 Description: Exducer 
Material: Casting 203095-3 

MIC 
Set-up Op. 

lime TImo 
(Group) 

ISatch 
litem Operation Description 
(min.) 

~/~side M C 15M 12 Dress 

0.8 Rouah Face & Turn 
0.2 r. Irldll 

GU610 75M 0.6 Drill 0.4331 , , >Oni.h Fn," tn "KT.' 

(BlN) 1.1 Finish Bore & Chamf. 
0.3 Rouoh Face 

IHI5M 0.1 Rouoh MIC 
0.1 Finish Face to SKT.2 
1.? Finish MiC tn "KT.? 

Outside IH45M 5 Bore & F' aee; MiC 

GU610 0.8 Rouah & Finsh C/Bore 
(BlN) 45M 1.2 Rouah & Finish Profile 

NfeC Tum: 
Cean; 

Out.lde lH20M 27 Deburr: 
MIC Inspecllon, Balance: 

Borej 

Fig. 2A.2 

Workpiece Information 
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Tool 
Type 

LUT-FMS 
RESEARCH 

GROUP 

Tool 
Type 

TUOI 
nRn" 
DR04 
T11n? 

B002 
TUOI 
DR05 
TU02 
nRnR 

B002 
TU02 

LUT-FMS 
RESEARCH 

GROUP 



Part I.D: 1088J012 Description: Compressor 
Material: Casting 203697-3 

MiC 
Set-up Op. 

Tool TIme TIme 
(Group) IBatch 

litem Operation Description Type 
(min.) 

~~~side M C lH30M 4 NC Turn 

1.4 Rough Face & Turn TUOl 
0.2 C/Drill OROl 

GU610 45M 0.9 Orill 0.4331 OR07 
0.5 finish Face & Turn TU02 

(BLN) 
3.1 Finish Bore to SKT.2 B003 
0.3 Rouah Face TUOl 

lH45M 0.1 Rouah Cl Bore DROB 
0.1 Finish Fac. to SKT.3 TU02 
1.2 Finish C/Bore B003 

Outside 15 
NC Mill; 

MiC 7H30M Bore, Face, Reset 
& Face. 

GU610 0.8 Rouah&Finish to FKT.7 TU06 

(BLN) 
3H 1.2 Rough M/C Profile TUOl 

0.5 Finish Profile as SKT.S TU07 

Oeburr; 
OutsIde 6H45M 36 Inspection, Balance; 
MiC Bore; 

Balance. 

Fig. 2A.3 LUT-FMS NGL Workpiece Information RESEARCH 
GROUP 

Part I.D: 1088J042 Description: Turbine Wheel; 
Material: Casting 203832-3 

Set-up Op. 
MiC Time Time Tool 

(Group) IBatch litem Operation Description Type (mIn.) 

2.1 Rouah Face & Turn TUOl 
0.2 C/Orill OR03 

GU610 15M 0.9 Orill 0.4331 OR04 
O.S Finish Face & Turn TU02 

(BLN) 
2.1 Finish Bore to SKT.1 8002 
0.6 Rouoh Face TUOl 

2HOM OA Rouah C/Bor. OROS 
0.1 Finish Face to SKT.2 TU02 
0.6 Finish C/8ore B002 

Outside lH30M 8 Bore 
MiC 

CUB10 0.9 Rouah Face & Turn TU02 

(BLN) 
4SM 0.9 Finish Face&Turn to SKT.5 TUOS 

2.7 Rouoh Profile TUOl 

Oeburr; 
Outside lH3SM 66 Inspection, Balance; 
MiC Bore; 

Slance, Clean. 

Fig. 2A.4 LUT-FMS NGL Workpiece Information RESEARCH 
r,ROUP 
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Part 1.0: 1095J022 Description: Wheel, Second Stage 
Material: Casting 8011.38-3 

M/C 
Set-up Op. 

Tool Tlme Tlme 
(Group) /Batch litem Operation Description Type 

(mIn.) 

~~~side M C 60M 6 Grind. 

O.S Rounh Face &: Turn TUO' 
n? C/Drill I'tRM 

GU610 1.4 Drill 0.4331 DR10 
60M 9.4 Rouoh Profile TUOS 

(BLN) 
0.4 Rough Bore B004 
2.6 finish Profile TU09 
0.4 Finish Bore to SKT.2 B005 
2.7 Rough Face &: Turn TUOl 
S.6 Rough Profile TUOS 

2H45M 0.4 Rough Bore &: C/Bore B004 
2.5 Fil'tlsh Prof,le to SKT.3 TU09 
0.5 Finish Bore &: C7Bore B005 
0.7 Form UICut to SKT.3 TUl0 

Turn: 
Outside Clean: 

5H 44 Balance: 
MIC Overspeed, Inspection: 

Turn: 
Inspection: 

Fig. 2A.5 LUT-FMS NGL Workpiece Information RESEARCH 
GROUP 

Part 1.0: 1095J032 Description: Turbine Wheel 
Material: Casting 8011.38-.3 

M/C Set-up Op. 
Tool Tlme Tlme 

(Group) 
IBotch 

litem Operation Description Type 
(mIn.) 

~~~side 
M C 60M 6 Grind. 

O.S Rounh Face & Turn TUOl 
In? ('In,'" DR09 

GU610 1.4 Drill 0.4331 DR10 
60M 9.5 Rouoh Profile TUOS 

(BLN) 
0.3 Rough Bore B004 
2.6 Finish Profile to SKT.2 TU09 
0.4 Finish Bore to SKT.2 B005 
2.7 Rouoh Face &: Turn TUOl 
9.5 Rouoh Profile TUOS 

2H45M 0.3 Rough Bore B004 
0.7 FInish Profile TU09 
3.6 Finish Bore B005 
0.4 Finish face TU02 

Turn: 
Outside Cleon; 

5H30M 49 Balance: 
MIC Overspeed, Inspection; 

Turn: 
Inspection: 

Fig. 2A.6 LUT-FMS NGL Workpiece Information RESEARCH 
GROUP 

297 



Part 1.0: 1095J052 Description: Impeller; 
Material: Casting 801414-3 

M/C 
Set-up Op. 

Tool TIme TIme 
(Group) IBatch litem Operation Description Type 

(min.) 

2.0 ROUQh face & Tum TU11 
10.3 C/Drill DROl 

60M 0.6 Finish Face & Turn TU12 
1.0 Drill Throuoh DR11 

GU610 8.5 MIC Recess TU13 

(8LN) 
6 MIC 80re & Chamf. 8010 

1.0 Rouah face & Turn TU11 
0.9 Finish face & Tum TU12 

2H30M 12.3 MIC Recess TU13 

0.2 M/C Chamf. 8010 

Outside 1H30M 5 MIC 80re to 0.7852" Dia. 
M/C 

0.8 Rough M/C face & C/80r< 8006 
GU610 0.9 Finish M/C C/80re 8007 
(8LN) 45M 

1.3 Rough face & 0/0 TU14 

0.9 Finifh face & 0/0 TU15 

Bore; 
Trun; 

Outside 3H15M 72 Deburr & 81end All Radii: 
MIC Inspection, Balance; 

Overspeed: 
Turn; 
Inspection; 

Fig. 2A.7 LUT-FMS 
NGL Workpiece Information RESEARCH 

GROUP 

Port 1.0: 1112J01 0 Description: Turnbine Wheel; 
Material: Casting 571748-3 

M/C 
Set-up Op. 

Tool TIme TIme 
(Group) 

/Batch litem Operation Description Type 
(min.) 

GU610 
2.0 Rough Tum Profile TU01 

(8LN) 
30M 

0.3 Finish Tum Profile TU02 

Oeburr, 
Inspection, Balance; 

Outside 1H45M 36 Clean; 
MIC Treatment: 

Inspection; 

NGL 
Fig. 2A.8 LUT-FMS 

Workpiece Information RESEARCH 
GROUP 
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Part 1.0: 1112J012 Description: Exducer; 
Material: Casting 571748-3 

MIC 
Set-up Op. 

Tool TIme TIme 
(Group) ISotch litem Operation Description Type 

(min.) 

0.7 Rough Foce TU04 

0.3 Centre DR12 

lH15M 1.7 Finish Foe. TU02 

1.1 Finish 80r. & Chamf. 8002 

GU610 
0.6 Drill DR14 

(8LN) 0.6 Rough MiC DR15 

0.6 Finish MiC 8008 
2H15M 

0.2 Finish Face 8002 

0.7 Fin ish Profile TU16 

Turn; 

Outside 
Oeburr; 

6H35M 45 Inspection: 
Mic Clean; 

Crock Detect. 
FInal Inspection; 

Fig. 2A.9 LUT-FMS 
NGL Workpiece Information RESEARCH 

GROUP 

Part 1.0: 1112J022 Description: Turbine Wheel 
Material: Impact Extrusion (202154-5) 

MIC 
Set-up Op. 

Tool TIme TIme 
(Group) ISatch litem Operotion Description Typ. 

(mIn.) 

1.6 ROUQh Turn TUOl 
0.4 Centre DR12 

30M 0.3 Drill ThrouQh DR14 
GE65 O.R Finish Turn TIJ02 
(8LK) 1.5 ROUQh Turn TUOl 

60M 
0.4 Finish Turn TU02 
0.2 Bore & Chamf. 8002 
1.1 Rough Turn TUOl 
0.5 Rough C/80r. DR15 

~/;side 
M C 

lH30M 10 N/c 80re: 

GE65 
lH15M 1.6 Finish Turn TU02 

(8LK) 0.2 Finish C/80r. 8009 

Turn; 
Drill: 

OutsIde Deburr: 
lH5M 40 Inspedlon: MIC Clean; 

Inspection: 

Fig. 2A.l0 LUT-FMS 
NGL Workpiece Information RESEARCH 

GROUP 
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Part I.D: 1112J062 Description: ImpeUer 
Material: Casting 571258-5 

M/C 
Set-up Op. 

Tool TIme TIme 
(Group) IBotch 

litem Operation Description Type 
(min.) 

1.0 Rough Face & Turn TUOl 
0.3 Centre DR12 
0.9 Drill Through DR13 

3H15M 0.2 Finish Face & Turn TU07 
0.6 Rough Reces. & CIBore TU17 

GU610 0.7 Finish Recess TU18 

(BLN) 0.5 Finish Bore & Chamf. B002 

2.7 Rough Face & Spigot DR05 

1.0 Rough Reces. & Spigot TU19 
3HOM 

0.6 Finish Reces. & Spigot TU20 

0.2 Form U/Cut In Spigot TU21 

1.2 Chamf. & Bore B002 

Turn: 
Outside 

Oeburr; 
lH50M 37 Inspection, Balance; 

MIC Clean: 
Treatment; 
Inspection 

Fig. 2A.l1 LUT-FMS 
NGL Workpiece Information RESEARCH 

GROUP 
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APPENDIX2B 

TOOLING INFORMATION 
FOR THE MULTI-MACHINE CASE STUDY 

(Supplement to Chapter 13) 
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TOOL DESCRIPTION 

Tool Type: TU01 
Tool Descri¥tion IColpany 1.0: 
Rotational 001 [Y/NI 1 •••• : N 

Insert (Cutting Unit) Inforlation: 
Insert Ty¥e ••••••••••• : CNHS120408 [68 
Assigned 001 Life Unit: 30.00 Max. Peraissible S Tool Life: 50.00 
Percentate Life Used •• : 0.00 Ro. of Indexable Tips/Regrinds: 4 
Ro. of T ps Used ..... : 0 

Shank Inforlation: 
Shank TIpe •••••••••••• : KCLNR2020 H12 
Externa I Internal Tool [E/II: E Shank Size ..... : 0 

Holder Inforlation: 
Holder Type ••••••••••• : W633000200 

Continue: Edit Data Entry Hard CoU: .1 
1 

Quit: 
<Enter> <Ctrl-B> <Shift-Pr c> <Esc> 

TOOL DESCRIPTION 

Tool Type: TU02 
Tool Descri¥tion IColpany 1.0: 
Rotational 001 [Y/NI 1 •••• : N 

Insert'(Cutting Unit) Inforlation: 
Insert Ty~e ••••••••••• : CNMP120404 [68 
Assigned 001 Life Unit: 30.00 Max. Per.issible S Tool Life: 50.00 
Percentate Life Used •• : 0.00 No. of Indexable Tips/Regrinds: 4 
No. of T ps Used ••••• : 0 

Shank Inforoation: 
Shank TIpe •••••••••••• : MCLNR2020 H12 
Externa I Internal Tool [E/II: E Shank Size .. , .. : 0 

Holder Inforlation: 
Holder Type ••••••••••• : V633000200 

Continue: Edit Data Entry Hard CoU: I Quit: 
<Enter> <Ctrl-B> <Shift-Pr c> <Esc> 

TOOL DESCRIPTION 

Tool Type: TU03 
:0 Tool Descri¥tion IColpany 1.0: 

Rotational 001 [Y/RI 1 .... : R 

Insert (Cutting Unit) Inforlation: 
Insert Ty~e ••••••••••• : RCT8253 

Max. Perlissible S Tool Life : 50.00 Assigned 001 Life Unit: 30.00 
PercentaIe Life Used •• : 0.00 Ro. of Indexable Tips/Regrinds: 4 
Ho. of T ps Used ••••• : 0 

Shank Inforlation: 
Shank Trpe •••....••.•. : 
Externa I Internal Tool [E/I1: 1 Shank Size ..... : 1 

Holder Inforlation: 
Holder Type ••••••••••• : W632112000 

Continue: Edit Data Entry Hard Co~r Quit: 
<Enter> <Ctrl-B> <Shift-Pr c> <Esc> 
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TOOL DESCRIPTION 

Tool Type: TU04 
Tool Descri~tion IColpany 1.0: 
Rotational 001 [f/NI ? •••• : N 

Insert (Cuttinq Unit) Infor.ation: 
Insert Ty¥e ••••••••••• I CNKP120408 [68 
Assiqned 001 Life Unit: 30.00 Max. Per.issible I Tool Life: 50.00 
percentate Life Used •• : 0.00 No. of Indexable Tips/Reqrinds: 4 
Ro. of T ps Used ..... : 0 

Shank Infor.ation: 
Shank TIpe •••••••••••• : HCLNR2020 H12 
Externa I Internal Tool [E/II: E Shank Size ••••• : 0 

Holder Inforlation: 
Holder Type ••••••••••• : V633000200 

Continue: Edit Data Entry Hard Co~l' 
I 

Quit: 
<Enter> <Ctrl-B> <Shift-Pr c> <Esc> 

TOOL DESCRIPTION 

Tool Type: TU05 
Tool Descri¥tion IColpany I.D: 
Rotational 001 [f/NI ? •••. : N 

Insert (Cuttinq Unit) Inforlation: 
Insert Ty¥e ••••••••••• : [NUXii0302R15 [68 
Assiqned 001 Life Unit: 30.00 Max. Per.issible I Tool Life: 50.00 
Percentate Life Used •• : 0.00 No. of Indexable Tips/Reqrinds: 4 
No. of T ps Used ••••• : 0 

Shank Inforlation: 
Shank TIpe •••••••••••• : HKLCR2020 H12 

0 Externa I Internal Tool [E/II: E Shank Size ..... · · 
Holder Inforlation: 
Holder Type ••••••••••• : V633000200 

Continue: Edit Data Entry Hard Co~S' Quit: 
<Enter> <Ctrl-B> <Shift-Pr c> <Esc> 

TOOL DESCRIPTION 

Tool Type: TU06 
Tool Descri¥tion IColpany I.D: 
Rotational 001 [Y/HI ? •••• : N 

Insert (Cuttinq Unit) Inforlation: 
Insert Ty¥e ••••••••••• : DHMP150404 K68 
Assiqned 001 Life Unit: 30.00 Max. Per.issible I Tool Life: 50.00 
Percentate Life Used •• : 0.00 No. of Indexable Tips/Reqrinds: 4 
No. of T ps Used ..... : 0 , 

Shank Inforlation: 
Shank TIpe •••••••••••• : KDJNR2020 HiS 
Externa I Internal Tool [E/II: E Shank Size •• I I • · 0 · 

Holder Inforlation: 
Holder Type ••••••••••• : V633000200 

Continue: IEdit Data Entry Hard COfS: Quit: 
<Enter> <Ctrl-B> <Shift-Pr c> <Esc> 

303 



TOOL DESCRIPTION 

Tool Type: TU07 
Tool Descri¥tion ICo.pany I.D: 
Rotational 001 [f/NI 1 •••• : H 

Insert (Cuttinq Unit) Inforlation: 
Insert Ty¥e ••••••••••• I DHMPI50404 K68 
Assiqned 001 Life Unit: 30.00 Max. Perlissible S Tool Life: 50.00 
Percentare Life Used •• : 0.00 Ro. of Indexable Tips/Reqrinds: 4 
Ho. of T ps Used ••••• : 0 

Shant Inforlation: 
Shant TIpe •••••••••••• : MDJHR2020 HI2 
Externa I Internal Tool [E/II: E Shant Size ..... : 0 

Holder Inforlation: 
Holder Type ••••••••••• : V633000200 

Continue: Edit Data Entry Hard Co~r Quit: 
<Enter> <Ctrl-B> <Shift-Pr c> <Esc> 

TOOL DESCRIPTION 

Tool Type: TU08 
Tool Descri¥tion IColpany I.D: 
Rotational 001 [I/NI 1 .... : N 

Insert (Cuttinq Unit) Inforlation: 
Insert Ty¥e ••••••••••• : NG451L [68 
Assiqned 001 Life Unit: 30.00 Max. Perlissible S Tool Life: 50.00 
percentare Life Used •• : 0.00 No. of Indexable Tips/Reqrinds: 4 
Ro. of T ps Used ..... : 0 . 

Shant Inforlation: 
Shant TIpe •••••••••••• : AC65171 
Externa I Internal Tool [E/II: E Shant Size ..... : 0 

Holder Inforlation: 
Holder Type ••••••••••• : V633000200 

Continue: Edit Data Entry Hard Co~~: Quit: 
<Enter> <Ctrl-B> <Shift-Pr c> <Esc> 

TOOL DESCRIPTION 

Tool Type: TU09 
Tool Descri¥tion ICo.pany I.D: 
Rotational 001 [I/NI 1 •••• : N 

Insert (Cuttinq Unit) Inforlation: 
Insert Ty~e ••••••••••• : NG451L K68 
Assiqned 001 Life Unit: 30.00 Max. Perlissible S Tool Life: 50.00 
Percentare Life Used •• : 0.00 No. of Indexable Tips/Reqrinds:·4 
No. of T ps Used ..... : 0 

Shant Inforlation: 
Shant TIpe •••••••••••• : AC65171 
Externa I Internal Tool [E/II: E Shant Size •• t I I : 0 

Holder Inforlation: 
Holder Type ••••••••••• : V633000200 

Continue: Edit Data Entry Hard cOP~: Quit: 
<Enter> <Ctrl-B> <Shift-Prt c> <Esc> 
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rOOL DESCRIPTION 

Tool Type: TU10 
Tool Descri~tion IColpany I.D: 
Rotational 001 [Y/NI 7 •••• : H 

Insert [Cutting Unitl Inforlation: 
Insert Ty¥e ••••••••••• : HCT12628 
Assigned 001 Life Unit I 30.00 "ax. Perlissible S Tool Life: 50.00 
Percentate Life Used •• : 0.00 Ho. of Indexable Tips/Regrinds: 4 
Ro. of T ps Used ••••• : 0 

Shant Inforlation: 
Shant Trpe •••••••••••• : HER2020 H3 
Externa I Internal Tool IE/II: E Shant Size .. , .. : 0 

Holder Inforlation: 
Holder Type ••••••••••• : V633000400 

Continue: Edit Data Entry Hard Co~r 
! ! 

Quit: 
<Enter> <Ctrl-B> <Shift-Pr c> <Esc> 

TOOL DESCRIPTIOH 

Tool Type: TUl1 
Tool Descri~tion IColpany I.D: 
Rotational 001 [Y/HI 7 •••• : R 

Insert (Cutting Unitl Inforlation: 
Insert Ty¥e ••••••••••• : CNMS120408 [68 
Assigned 001 Life Unit: 30.00 "ax. Perlissible S Tool Life: 50.00 
Percentate Life Used •• : 0.00 Ho. of Indexable Tips/Regrinds: 4 
Ho. of T ps Used ••••• : 0 

Shant Inforlation: 
Shant TIpe •••••••••••• : "CLHR2020 H12 
Externa I Internal Tool [E/II: E Shant Size ..... : 0 

Holder Inforlation: 
Holder Type ••••••••••• : V633000400 

Continue: Edit Data Entry!. Hard Co~~: Quit: 
<Enter> <Ctrl-B> <Shift-Pr c> <Esc> 

rOOL DESCRIPTION 

Tool Type: rU12 
Tool Descri~tion IColpany I.D: 
Rotational 001 [Y/HI 7 •••• : H 

Insert (Cutting Unitl Inforlation: 
Insert ry¥e ••••••••••• : CNHS120408 [68 
Assigned 001 Life Unit: 30.00 "ax. Per.issible S Tool Life: 50.00 
Percentate Life Used •• : 0.00 Ho. of Indexable Tips/Regrinds: 4 
Ho. of T ps Used ..... : 0 

Shant Inforlation: 
Shant T{pe •••••••••••• : "CLNR2020 H12 
Externa I Internal Tool [E/II: E Shant Size . . . .. . 0 . 

Holder Inforlation: 
Holder Type ••••••••••• : W633000400 

Continue: IEdit Data Entry Hard Co~~: I Quit: 
<Enter> <Ctrl-B> <Shift-Pr c> <Esc> 
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TOOL DESCRIPTIOB 

Tool Type: TU13 . 
Tool Descri¥tion IColpany I.D: RECESS TOOL 
Rotational 001 [Y/B] ? •••• : B 

Insert (Cutting Unit) Inforlation: 
Insert Ty~e ••••••••••• : MCT12450 
Assigned 001 Life Unit: 30.00 "ax. Perlissible S Tool Life: 50.00 
Percentale Life Used •• : 0.00 10. of Indexable Tips/Regrinds: 4 
Ro. of T ps Used ••••• : 0 

Shank Inforlation: 
Shank trpe •••••••••••• : 
Externa I Internal Tool [Ell): E Shank Size ..... : 0 

Holder Inforlation: 
Holder Type ••••••••••• : 1632210200 

Continue: Edit Data Entry Hard CoU: Quit: 
<Enter> <Ctrl-B> <Shift-Pr c> <Esc> 

TOOL DESCRIPTIOM 

Tool Type: TU14 
Tool Descri~tion IColpany I.D: 
Rotational 001 [Y/Sl 1 •••• : B 

Insert (Cutting Unit) Inforlation: 
Insert Ty;e ••••••••••• : CNKP120404 [68 
Assigned 001 Life Unit: 30.00 "ax. Perlissible S Tool Life: 50.00 
Percentale Life Used •• : 0.00 Mo. of Indexable Tips/Regrinds: 4 
Ro. of T ps Used ••••• : 0 

Shank Inforlation: 
Shank TIpe •••••••••••• : "CLRR2020 H)2 
Externa I Internal Tool [Ell): E Shank Size . 0 .... . . 

Holder Inforlation: 
Holder Type ••••••••••• : 1633000400 

Continue: Edit Data Entryl. Hard CoU: I Quit: 
<Enter> <Ctrl-B> <Shift-Pr c> <Esc> 

TOOL DESCRIPTIO! 

Tool Type: T01S 
Tool Descri¥tion ICoopany I.D: 
Rotational 001 [Y/B) 1 •••• : M 

Insert (Cutting Unit) Inforlation: 
Ineert Ty¥e ••••••••••• : CRKP120404 K68 
Assigned 001 Life Unit: 30.00 "ax. Per.iesible S Tool Life: 50.00 
Percentale Life Ueed ".: 0.00 Bo. of Indexable Tips/Regrinds: 4 
Ra. of T ps Used ••••• : 0 

Shank Inforlation: 
Shank TIpe •••••••••••• : "CLNR2020 B12 
Externa I Internal Tool [Ell): E Shank Size ..... : 0 

Holder Inforlation: 
Bolder Type ••••••••••• : 1633000400 

Continue: Edit Data Entry Hard CoU: Quit: 
<Enter> <Ctrl-B> <Shift-Pr c> <Esc> 
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TOOL DESCRIPTIOR 

Tool Type: TU16 
Tool Descri~tion IColpany 1.0: 
Rotational 001 [Y/HI ? ••.• : H 

Insert (Cutting Unit) Inforlation: 
Insert Ty~e ••••••••••• : CHHP120404 [68 
Assigned 001 Life Unit: 30.00 Max. Per.issible I Tool Life: 50.00 
Percenta~e Life Used •• : 0.00 Ho. of Indexable Tips/Regrinds: 4 
Ro. of T ps Used ••••• : 0 

Shank Inforlation: 
Shank TIpe •••••••••••• : MCLRR2020 H12 
Externa I Internal Tool [E/II: E Shank Size ••••• : 0 

Holder Inforlation: 
Holder Type ••••••••••• : V633000200 

Continue: Edit Data Entry Hard Co~: Quit: 
<Enter> <Ctrl-B> <Shift-Pr c> <Esc> 

TOOL DESCRIPTION 

Tool Type: TU17 
Tool Descri~tion IColpany 1.0: 
Rotational 001 [Y/RI ? .••• : H 

Insert (Cutting Unit) Infor.ation: 
Insert Ty¥e ••••••••••• : HG330L [68 
Assigned 001 Life Unit: 30.00 Max. Per lis sib le I Tool Life: 50.00 
percenta~e Life Used •• : 0.00 Ho. of Indexable Tips/Regrinds: 4 
Ho. of T ps Used ••••• : 0 

Shank Infor.ation: 
Shank TIpe •••••••••••• : HODHER2525-M3 
Externa I Internal Tool [E/II: I Shank Size ..... : 1 

Holder Inforlation: 
Holder Type ••••••••••• : V633000200 

Continue: IEdit Data Entryl. Hard Co~: Quit: 
<Enter> <Ctrl-B> <Shift-Pr c> <Esc> 

TOOL DESCRIPTION 

Tool Type: TU19 
Tool Descri¥tion ICo.pany 1.0: 
Rotational 001 [Y/RI ? •••• : H 

Insert (Cutting Unit) Inforlation: 
Insert Ty~e ••••••••••• : RG330L [69 
Assigned Dol Life Unit: 30.00 Hax. Per.issible I Tool Life: 50.00 
Percentate Life Used •• : 0.00 Ra. of Indexable Tips/Reqrinds: 4 
No. of T ps Used ••••• : 0 

Shank Inforlation: 
Shank TIpe •••••••••••• : KODNEG2525-H3 
Externa I Internal Tool [E/I1: I Shank Size ..... : 1 

Holder Inforlation: 
Holder Type ••••••••••• : V633000200 

Continue: Edit Data Entryl Hard Co~: 
I I 

Quit: 
<Enter> <Ctrl-B> <Shift-Pr c> <Esc> 
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TOOL DESCRIPTION 

Tool Type: TU19 
Tool Descri¥tion ICo.pany I.D: RECESS TOOL 
Rotational 001 [Y/NI ? •••• : H 

Insert (Cutting Unit) Inforlation: 
Insert Ty¥e ••••••••••• : NCT11912 
Assigned 001 Life Unit: 30.00 Kax. Per.issib1e I Tool Life: 50.00 
Percenta~e Life Used •• : 0.00 No. of Indexable Tips/Regrinds: 4 
Ho. of T ps Used ..... I 0 

Shant Inforlation: 
Shank TIpe •••.•••••••• : 
Externa I Internal Tool [Ell): I Shant Size ..... : 1 

Holder Inforlation: 
Holder Type ••••••••••• : W632210200 

Continue: Edit Data Entry Hard co~r I I Quit: 
<Enter> <Ctrl-B> <Shift-Pr c> <Esc> 

TOOL DESCRIPTION 

Tool Type: T020 
Tool Descri¥tion IColpany 1.0: RECESS TOOL 
Rotational 001 [Y/N) ? •••• : H 

Insert (Cutting Unit) Inforlation: 
Insert Ty¥e ••••••••••• : HCT11912 
Assigned 001 Life Unit: 30.00 Kax. Perlissible I Tool Life: 50.00 
Percenta~e Life Used •• : 0.00 No. of Indexable Tips/Regrinds: 4 
Ho. of T ps Used ••••• : 0 

Shant Inforlation: 
Shank Tlpe ••••.••••.•• : 
Externa I Internal Tool (Ell): I Shant Size •• I •• : 1 

Holder Inforlation: 
Holder Type ••••••••••• : V632210200 -

Continue: Edit Data Entry Hard co~r Quit: 
<Enter> <Ctrl-B> <Shift-Pr c> <Esc> 

TOOL DESCRIPTION 

Tool Type: T021 
Tool Descri¥tion ICo.pany 1.0: FORK TOOL 
Rotational 001 [Y/N) ? •••• : N 

Insert (Cutting Unit) Inforlation: 
Insert Ty¥e ••••••••••• : NC711073 
Assigned 001 Life Unit: 30.00 Kax. Per.issible I Tool Life: 50.00 
Percenta~e Life Used •• : 0.00 Ho. of Indexable Tips/Regrinds: 4 
Ho. of T ps Used ••••• : 0 

Shant Inforlation: 
Shank TIpe •.•••••.•••. : 
Externa I Internal Tool [Ell): E Shant Size ", .. : 0 

Holder Inforlation: 
Holder Type ••••••••••• : V632102000 

Continue: Edit Data Entry Hard Co~~: Quit: 
<Enter> <Ctrl-B> <Shift-Pr c> <Esc> 
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TOOL DESCRIPTIOH 

Tool Type: BOOl 
Tool Descri¥tion IColpany 1.0: 
Rotational 001 IIINI 1 •••• : N 

Insert (Cutting Unit) Inforlation: -
Insert Ty¥e ••••••••••• : EPMM060204 
Assigned 001 Life Unit: 30.00 Max. Perlissible I Tool Life: 50.00 
Percenta~e Life Used •• : 0.00 Ho. of Indexable Tips/Regrinds: 4 
Ho. of T ps Used ••••• : 0 

Shant Inforlation: 
Shant T{pe •••••••••••• : STELLRAM E015-YOSR 
Externa I Internal Tool IE/II: I Shant Size •• I •• : 1 

Holder Inforlation: 
Holder Type ••••••••••• : V632ll2000 

Continue: IEdit Data Entryl. Hard COt~: I Quit: 
<Enter> <Ctrl-B> <Shift-Pr c> <Esc> 

TOOL DESCRIPTION 

Tool Type: B002 
Tool Descri¥tion ICo.pany 1.0: 
Rotational 001 IIINI 1 •••• : H 

Insert (Cutting Unit) Inforlation: 
Insert Ty¥e ••••••••••• : EPMM060202 X20 
Assigned 001 Life Unit: 30.00 Hax. Perlissible I Tool Life: 50.00 
percenta~e Life Used •• : 0.00 No. of Indexable Tips/Regrinds: 4 
No. of T ps Used ••••• : 0 

Shant Inforlation: 
Shant T{pe •••••••••••• : STELLRAK E015-Y08R 
Externa I Internal Tool IE/I1: I Shank Size • I • I • : 1 

Holder Inforlation: 
Holder Type ••••••••••• : V632l02000 

Continue: Edit Data Entry Hard Cou: Quit: 
<Enter> <Ctrl-B> <Shift-Pr c> <Esc> 

TOOL DESCRIPTION 

Tool Type: B003 
Tool Descri¥tion ICo.pany 1.0: 
Rotational 001 IIINl 1 •••• : H 

Insert (Cutting Unit) Infor.ation: 
Insert Ty~e ••••••••••• : EPHM060202 [20 
Assigned 001 Life Unit: 30.00 Hax. Perlissible S Tool Life: 50.00 
Percenta~e Life Used •• : 0.00 Ho. of Indexable Tips/Regrinds: 4 
Ho. of T ps Used ••••• : 0 

Shant Inforlation: 
Shant Trpe •••••••••••• : STELLRAH E015Y08R 
Externa I Internal Tool IE/II: I Shant Size ..... : 1 

Holder Inforlation: 
Holder Type ••••••••••• : V632ll2000 

Continue: Edit Data Entry Hard Cou: 
I 

Quit: 
<Enter> <Ctrl-B> <Shift-Pr c> <Esc> 
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TOOL DESCRIPTION 

Tool Type: B004 
Tool Descri¥tion IColpany I.D: 
Rotational 001 IYINI ? •••• : N 

Insert (Cuttinq Unit) Inforlation: 
Insert Ty¥e ••••••••••• : CPGK060208 K68 . 
Assiqned 001 Life Unit: 30.00 Kax. Perlissible S Tool Life: 50.00 
percentate Life Used •• : 0.00 No. of Indexable Tips/Reqrinds: 4 
No. of T ps Used ••••• : 0 

Shank Inforlation: 
Shank T{pe •••••••••••• : S12M-SCLCR-06 
Externa I Internal Tool IE/I1: I Shank Size I •• I. : 1 

Holder Inforlation: 
Holder Type ••••••••••• : V632210200 

Continue: Edit Data Entry Hard Co~: Quit: 
<Enter> <Ctrl-B> <Shift-Pr c> <Esc> 

TOOL DESCRIPTION 

Tool Type: BOOS 
Tool Descri¥tion IColpany I.D: 
Rotational 001 IYINI 1 •••• : N 

Insert (Cuttinq Unit) Inforlation: 
Insert Ty¥e ••••••••••• : KHUX110302 K68 
Assiqned 001 Life Unit: 30.00 Kax. Perlissible S Tool Life: 50.00 
Percenta~e Life Used •• : 0.00 No. of Indexable Tips/Reqrinds: 4 
No. of T ps Used .....: 0 

Shank Inforlation: 
Shank TIpe •••••••••••• : S12K-NKLCR-l1 
Externa I Internal Tool IE/II: I Shank Size .... . . 1 . 

Holder Inforlation: 
Holder Type ••••••••••• : i632210200 

Continue: IEdit Data Entry Hard CO~~: Quit: 
<Enter> <Ctrl-B> <Shift-Pr c> <Esc> 

TOOL DESCRIPTION 

Tool Type: B006 
Tool Description IColpany I.D: 
Rotational Tool IIIHI 7 •••• : H 

Insert (Cuttinq Unit) Inforlation: 
Insert Type ••••••••••• : CPGK060202 [68 
Assiqned Tool Life Unit: 30.00 Kax. Per.issible S Tool Life: 50.00 
Percentaqe Life Used •• : 0.00 Ho. of Indexable Tips/Reqrinds: 4 
Ho. of Tips Used ••••• : 0 

Shank Inforlation: 
Shank Type •••••••••••• : S12K-SCLPR-06 
External I Internal Tool IE/II: I Shank Size 

Holder Inforlation: 
Holder Type ••••••••••• : 1632210200 

Continue: IEdit Data Entry I Hard Copy: I 
<Enter> I <Ctrl-B> . I<Shift-Prtsc> 
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TOOL DESCRIPTION 

Tool Type: B007 
Tool Descri¥tion IColpany 1.0: 
Rotational 001 II/N) 1 •••• : N 

Insert (Cutting Unit) Inforlation: 
Insert Ty¥e ••••••••••• : CPGK060202 [68 
Assigned 001 Life Unit: 30.00 Kax. Perlissible I Tool Life: 50.00 
Percentale Life Used •• : 0.00 No. of Indexable Tips/Regrinds: 4 
No. of T ps Used ••••• : 0 

Shan~ Inforlation: 
Shan~ TrPe •••••••••••• : S12K-SCLPR-06 
Externa I Internal Tool [Ell): I Shan~ Size ..... : I 

Holder Inforlation: 
Holder Type ••••••••••• : V632210200 

Continue: Edit Data Entry Hard Co~r Quit: 
<Enter> <Ctrl-B> <Shift-Pr c> <Esc> 

TOOL DESCRIPTION 

Tool Type: B008 
Tool Descri¥tion ICo.pany 1.0: 
Rotational 001 [I/N) 1 •••• : R 

Insert (Cutting Unit) Inforlation: 
Insert Ty¥e ••••••••••• : EPHH060202 [20 
Assigned 001 Life Unit: 30.00 Max. Perlissible I Tool Life: 50.00 
Percenta~e Life Used •• : 0.00 No. of Indexable Tips/Regrinds: 4 
No. of T ps Used ••••• : 0 

Shan~ Inforlation: 
Shan~ Trpe •••••••••••• : STELLRAH EOI5-Y08R 
Externa I Internal Tool [Ell): I Shan~ Size · 1 ..... · 

Holder Inforlation: 
Holder Type ••••••••••• : W632102000 

Continue: Edit Data Entry Hard Co~: 
1 

Quit: 
<Enter> <Ctrl-B> <Shift-Pr c> <Esc> 

TOOL DESCRIPTION 

Tool Type: B009 
Tool Descri¥tion IColpany 1.0: 
Rotational 001 [I/N) 1 •••• : N 

Insert (Cutting Unit) Inforlation: 
Insert Ty¥e ••••••••••• : YNMP160404 I68 
Assigned 001 Life Unit: 30.00 Kax. Per.issible I Tool Life: 50.00 
Percentale Life Used •• : 0.00 No. of Indexable Tips/Regrinds: 4 
Ho. of T ps Used ••••• : 0 

Shant Information: 
Shant Trpe •••••••••••• : S16K-PVXHR-16 
Externa I Internal Tool [Ell): I Shank Size · 1 ..... · 

Holder Inforlation: 
Holder Type ••••••••••• : W632210200 

Continue: Edit Data Entry I. Hard Co~: 1 I Quit: 
<Enter> <Ctrl-B> <Shift-Pr c> <Esc> 
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TOOL DESCRIPTION " 

Tool Type: BOIO 
Tool Descri~tion IColpany I.D: 
Rotational 001 [Y/NJ 1 •••• : N 

Insert (Cuttinq UnitJ Inforlation: 
Insert Ty¥e ••••••••••• : KNUXII0305LI5 [68 
Assiqned 001 Life Unit: 30.00 Hax. Perlissible 1 Tool Life: 50.00 
Percenta~e Life Used •• : 0.00 No. of Indexable Tips/Reqrinds: 4 
No. of T ps Used ..... : 0 

Shank Inforlation: 
Shank TrPe •••••••••••• : S12K-NKLNR-11 
Externa I Internal Tool [E/II: I Shank Size ..... : 1 

Holder Inforlation: 
Holder Type ••••••••••• : V632210200 

Continue: Edit Data Entry Hard Cou: Quit: 
<Enter> <Ctrl-B> <Shift-Pr c> <Esc> 

TOOL DESCRIPTION 

Tool Type: DROI 
Tool Descri~tion IColpany I.D: 
Rotational 001 [Y/NI 1 •••• : N 

Insert (Cuttinq Unit) Inforlation: 
Insert Ty¥e ••••••••••• : HO.5 C/DRILL 
Assiqned 001 Life Unit: 30.00 Hax. Permissible I Tool Life: 50.00 
Percenta~e Life Used •• : 0.00 No. of Indexable Tips/Reqrinds: 9 
No. of T ps Used ••••• : 0 

Shank Inforution: 
Shant Tlpe .'" ••.•••••• : 
Externa I Internal Tool [E/II: I Shank Size ... .. . 1 . 

Holder Inforlation: 
Holder Type ••••••••••• : V632112000 

Continue: Edit Data Entry Hud Cou: I I Quit: 
<Enter> <Ctrl-B> <Shift-Pr c> <Esc> 

TOOL DESCRIPTION 

Tool Type: DR02 
Tool Descri¥tion IColpany I.D: 
Rotational 001 IY/NJ ? •••• : H 

Insert (Cuttinq Unitl Inforlation: 
Insert Ty¥e ••••••••••• : IlK" DRILL 
Assiqned 001 Life Unit: 30.00 Hax. Permissible 1 Tool Life: 50.00 
percenta~e Life Used •• : 0.00 Ho. of Indexable Tips/Reqrinds: 9 
Ro. of T ps Used ••••• : 0 

Shank Information: 
Shank TrPe 11 •••••••••• : 

Externa I Internal Tool [E/II: I Shank Size ..... : 1 

Holder Inforlation: 
Holder Type ••••••••••• : V632112000 

Continue: Edit Data Entry 1< Hud CoU: ! I Quit: 
<Enter> <Ctrl-B> <Shift-Pr c> <Esc> 
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TOOL DESCRIPTION 

Tool Type: DR03 
Tool Descri¥tion ICo.pany I.D: 
Rotational 001 [f/MI 1 •••• : N 

Insert (Cutting Unit) Inforlation: 
Insert Ty¥e ••••••••••• : MO.5 C/DRILL 
Assigned 001 Life Unit: 30.00 Max. Perlissible S Tool Life: 50.00 
Percenta~e Life Used •• : 0.00 No. of Indexable Tips/Regrinds: 9 
Mo. of T ps Used ••••• : 0 

Shank Inforlation: 
Shank TIpe •••••••••• ,. : 
Externa I Internal Tool [E/I1: I Shank Size ..... : 1 

Holder Information: 
Holder Type ••••••••••• : V632102000 

Continue: Edit Data Entry Hard Co~S: Quit: 
<Enter> <Ctrl-B> <Shift-Pr c> <Esc> 

TOOL DESCRIPTION 

Tool Type: DR04 
Tool Descri¥tion ICo.pany I.D: 
Rotational 001 [f/NI 1 •••• : N 

Insert (Cutting Unit) Inforlation: 
Insert Ty¥e ••••••••••• : IlMH DRILL 
Assigned 001 Life Unit: 30.00 Max. Perlissible S Tool Life: 50.00 
Percenta~e Life Used •• : 0.00 No. of Indexable Tips/Regrinds: 9 
No. of T pB Used ••••• : 0 

Shank Inforlation: 
Shank Trpe ............ : 

Shank Size Externa I Internal Tool [E/I1: I ••• I • 
. 1 . 

Holder Inforlation: 
Holder Type ••••••••••• : V632102000 

Continue: Edit Data Entry Hard Cops: Quit: 
<Enter> <Ctrl-B> <Shift-Prt c> <Esc> 

TOOL DESCRIPTION 

Tool Type: DR05 
Tool Descri¥tion ICompany I.D: 
Rotational 001 mMl 1 .... : M 

Insert (Cutting Unit) Inforlation: 
Insert Ty¥e ••••••••••• : 3/4" SLOT DRILL 
Assigned 001 Life Unit I 30.00 Max. Perlissible S Tool Life: 50.00 
Percenta~e Life Used •• : 0.00 No. of Indexable Tips/Regrinds: 9 
No. of T ps Used ..... : 0 .. 

Shank Inforlation: 
.. Shank TIpe • to ...... I •• : 

Externa I Internal Tool [E/11: I Shank Size ..... : 1 

Holder Inforlation: 
Holder Type ••••••••• :. : V632l02000 

Continue: Edit Data Entry Hard Co~: Quit: 
<Enter> <Ctrl-B> <Shift-Pr c) <Esc> 
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TOOL DESCRIPTION 

Tool Type: DR06 
Tool Descri¥tion ICompany 1.0: 
Rotational 001 [Y/NI ? •••• : H 

Insert (Cutting Unit) Information: 
Insert Ty~e ••••••••••• : EPKK060202 [20 
Assigned 001 Life Unit: 30.00 Max. Per.issible S Tool Life: 50.00 
Percenta~e Life Used •• : 0.00 Ho. of Indexable Tips/Regrinds: 4 
No. of T ps Used ••••• : 0 

Shank Inforlation: 
Shank TIpe •••••••••••• : STELLRAK EOlS-YOSR 
Externa I Internal Tool [E/II: I Shank Size ..... : 1 

Holder Inforlation: 
Holder Type ••••••••••• : V632l02000 

Continue: Edit Data Entry Hard Co~r Quit: 
<Enter> <Ctrl-8> <Shift-Pr c> <Esc> 

TOOL DESCRIPTION 

Tool Type: DR07 
Tool Descri¥tion ICompany 1.0: 
Rotational 001 [I/NI ? .... : H 

Insert (Cutting Unit) Inforlation: 
Insert Ty¥e ••••••••••• : llKM DRILL 
Assigned 001 Life Unit: 30.00 Max. Per.issible S Tool Life: 50.00 
Percenta~e Life Used •• : 0.00 Ho. of Indexable Tips/Regrinds: 9 
Ho. of T ps Used ••••• : 0 

Shank Inforlation: 
Shank Trpe •••••••••••• : 
Externa I Internal Tool [E/II: I Shank Size ..... : 1 

Holder Inforlation: 
Holder Type ••••••••••• : V632ll2000 

Continue: Edit Data Entry Hard cO~l: Quit: 
<Enter> <Ctrl-8> <Shift-Pr c> <Esc> 

TOOL DESCRIPTIOH 

Tool Type: DROS 
Tool Descri¥tion ICompany 1.0: 
Rotational 001 [Y/HI ? .••. : H 

Insert (Cutting Unit) Inforlation: 
Insert Ty¥e ••••••••••• : 3/4" SLOT DRILL 
Assigned 001 Life Unit: 30.00 Kax. Perlissible S Tool Life: 50.00 
percenta~e Life Used •• : 0.00 Ho. of Indexable Tips/Regrinds: 9 
Ho. of T ps Used ••••• : 0 

Shank Inforlation: 
Shank TrPe ••••••••••.. : 
Externa I Internal Tool IE/II: I Shank Size ..... : 1 

Holder Inforlation: 
Holder Type ••••••••••• : V632ll2000 

Continue: Edit Data Entry Hard Co~: Quit: 
<Enter> <Ctrl-8> <Shift-Pr c> <Esc> 
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TOOL DESCRIPTION 

Tool Type: DR09 
Tool Descri¥tion IColpany I.D: 
Rotational 001 IYINI 1 •••• : N 

Insert (Cutting Unit! Inforlation: 
Insert Ty¥e ••••••••••• : BO.5 CIDRILL 
Assigned 001 Life Unit: 30.00 Kax. Permissible S Tool Life: 50.00 
percenta~e Life Used •• : 0.00 Ho. of Indexable Tips/Regrinds: 9 
Ho. of T ps Used ••••• : 0 

Shant Inforlation: 
Shank TIpe .•••••••••.• : 
Externa I Internal Tool [E/II: I Shant Size ..... : 1 

Holder Information: 
Holder Type ••••••••••• : V632100000 

Continue: Edit Data Entry Hard Co~: Quit: 
<Enter> <Ctrl-B> <Shift-Pr c> <Esc> 

TOOL DESCRIPTION 

Tool Type: DHI0 
Tool Descri¥tion IColpany I.D: 
Rotational 001 [Y/NI 1 •••• : N 

Insert (Cutting Unit! Inforlation: 
Insert Ty¥e ••••••••••• : 3/4" DRILL(GUHRINGl 
Assigned 001 Life Unit: 30.00 Kax. Per.issible S Tool Life: 50.00 
Percenta~e Life Used •• : 0.00 No. of Indexable Tips/Regrinds: 9 
Ho. of T ps Used ••••• : 0 

Shant Inforlation: 
Shank TIpe ••••••••.••• : 
Externa I Internal Tool [E/II: I Shant Size ..... : 1 

Holder Inforlation: 
Holder Type ••••••••••• : V632100300 

Continue: . IEdit Data Entry Hard c~n: I I Quit: 
<Enter> <Ctr1-B> <Shift-P c> <Esc> 

TOOL DESCRIPTION 

Tool Type: DR11 
Tool Descri¥tion IColpany 1.0: 
Rotational 001 [VHI 1 "" : N 

Insert (Cutting Unit! Inforlation: 
Insert TY¥6 ••••••••••• : 19.05KK T/SDRILL 
Assigned 001 Life Unit: 30.00 Kax. Per.issib1e S Tool Life: 50.00 
Percenta~e Life Used •• : 0.00 No. of Indexable Tips/Regrinds: 9 
No. of T ps Used "". : 0 

Shant Inforlation: 
Shank TIpe ••.•••.••••. : 
Externa I Internal Tool [E/II: I Shant Size '" .. . 1 . 

Holder Inforlation: 
Holder Type ••••••••••• : V632100300 

Continue: Edit Data Entry Hard COPl: Quit: 
<Enter> <Ctr1-B> <Shift-Prt c> <Esc> 
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TOOL DESCRIPTION 

Tool Type: DRl2 
Tool Descri¥tion ICo.pany I.D: 
Rotational 001 [Y/Nl 1 •••• : R 

Insert (Cutting Unit) Infor.ation: 
Insert Ty¥e ••••••••••• : BS5 CENTRE DRILL 
Assigned 001 Life Unit: 30.00 Max. Perlissible S Tool Life: 50.00 
Percenta~e Life Used •• : 0.00 No. of Indexable Tips/Regrinds: 9 
No. of T ps Used ••••• : 0 

Shank InforMation: 
Shank TIpe •••..••.•.•• : 

Shank Size I Externa I Internal Tool IE/Il: I ..... · · 
Holder Information: 
Holder Type ••••••••••• : V632102000 

Continue: Edit Data Entry Hard Co~: I Quit: 
<Enter> <Ctrl-B> <Shift-Pr c> <Esc> 

TOOL DESCRIPTION 

Tool Type: DRl3 
Tool Descri¥tion ICompany I.D: 
Rotational 001 IY/Nl 1 •••• : N 

Insert (Cutting Unit) Infor.ation: 
Insert Ty¥e ••••••••••• : 13.3MK DIA. DRILL 
Assigned 001 Life Unit: 30.00 Max. Permissible S Tool Life: 50.00 
percenta~e Life Used •• : 0.00 No. of Indexable Tips/Regrinds: 9 
No. of T ps Used ••••• : 0 

Shank Information: 
Shank TIpe .••••••••••. : 

Shank Size Externa I Internal Tool IE/Il: I ..... · I · 
Holder Infor.ation: 
Holder Type ••••••••••• : V632102000 

Continue: Edit Data Entry Hard Co~: Quit: 
<Enter> <Ctrl-B> <Shift-Pr c> <Esc> 

TOOL DESCRIPTION 

Tool Type: DRl4 
Tool Descri¥tion ICo.pany I.D: 
Rotational 001 IY/Nl 1 •••• : R 

Insert (Cutting Unit) Inforlation: 
Insert Ty¥e ••••••••••• : DRILL (592726) 
Assigned 001 Life Unit: 30.00 Max. Perlissible S Tool Life: 50.00 
Percenta~e Life Used •• : 0.00 No. of Indexable Tips/Regrinds: 9 
No. of T ps Used ••••• : 0 

Shank Infor.ation: 
Shank TIpe ••.•••••.•.. : 
Externa I Internal Tool IE/I1: I Shank Size ..... · I · 

Holder Infor.ation: 
Holder Type ••••••••••• : V632102000 

Continue: Edit Data Entry Hard Co~: Quit: 
<Enter> <Ctrl-B> <Shift-Pr c> <Esc> 
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TOOL DESCRIPTION 

Tool Type: DR15 
Tool Descri¥tion ICompany 1.0: 
Rotational 001 [fiN) 1 •••• : R 

Insert (Cutting Unit) Information: 
Insert Ty¥e ••••••••••• : SLOT DRILL (982461) 
Assigned 001 Life Unit: 30.00 Kax. Permissible S Tool Life: 50.00 
Percentale Life Used •• : 0.00 Ho. of Indexable Tips/Regrinds: 9 
No. of T ps Used ..... : 0 

Shant Inforlation: 
Shant Trpe ......... ,.. : 
Externa I Internal Tool [Ell): I Shank Size • I I.' . 1 . 

Holder Inforlation: 
Holder Type ••••••••••• : V632102000 

Continue: Edit Data Entry Hard CO~l: I Quit: 
<Enter> <Ctrl-8> <Shift-Pr c> <Esc> 
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APPENDIX 2C 

DETAILED SAMPLES OF TOOLING OUTPUT 

FOR THE MULTI-MACHINE CASE STUDY 

(Supplement to Chapter 13, Run No. 1) 
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MODEL OUTPUT I FINAL TOOL STATUS 

Tool Tool Life Life Usaqe Tips Worn MIC Store Rack Posit. 
No. Type Unit Used (1) Freq. Used 90. No. 

1 TUIl 30.00 10.00 2 0 M 0 C 0 17 
2 DR01 30.00 1.00 1 0 M 0 C 0 18 
3 TU12 30.00 5.00 2 0 N 0 C 0 19 
4 DRll 30.00 3.33 1 0 M 0 C 0 20 
5 TU13 30.00 28.33 1 0 Y 0 C 0 21 
6 B010 30.00 6.00 2 0 M 0 C 0 22 
7 TU13 30.00 41.00 1 0 N 0 C 0 23 
8 TU01 30.00 47.33 10 0 Y 0 C 0 1 
9 DR12 30.00 13.33 10 0 M 0 C 0 2 

10 DR14 30.00 10.00 10 0 M 0 C 0 3 

Continue: Hard Co pr Quit: 
<Enter> <Shift-Pr Sc> <Esc> 

MODEL OUTPUT I FINAL TOOL STATUS 

Tool Tool Life Life Usaqe Tips Worn "'C Store Rack Posit. 
Mo. Type Unit Used m Freq. Used No. Mo. 

11 TU02 30.00 40.00 20 0 M 0 C 0 4 
12 B002 30.00 6.67 10 0 N 0 C 0 5 
13 ORIS 30.00 16.67 10 0 M 0 C 0 6 
14 TU01 30.00 47.00 10 0 Y 0 C 0 7 
15 TU01 30.00 45.67 10 0 N 0 C 0 8 
16 TU01 30.00 16.67 5 0 N 0 C 0 35 
17 DR12 30.00 5.00 5 0 H 0 C 0 36 
18 DR13 30.00 15.00 5 0 H 0 C 0 37 
19 TU07 30.00 3.33 5 0 M 0 C 0 38 
20 TU17 30.00 10.00 5 0 M 0 C 0 39 

Continue: I I Hard Co pr I I Quit: 
<Enter> <Shift-Pr Sc> <Esc> 

"ODEL OUTPUT I FIMAL TOOL STATUS 

Tool Tool Life Life Usaqe Tips Worn MIC Store Rack Posit. 
Ho. Type Unit Used (1) Freq. Used Mo. Mo. 

21 TU18 30.00 11.67 5 0 N 0 C 0 40 
22 B002 30.00 28.33 10 0 H 0 C 0 41 
23 DR05 30.00 45.00 5 0 H 0 C 0 42 
24 TU19 30.00 16.67 5 0 M 0 C 0 43 
25 TU20 30.00 10.00 5 0 N 0 C 0 44 
26 TU21 30.00 3.33 5 0 H 0 C 0 45 
27 TU01 30.00 48.67 6 0 Y 0 C 0 24 
28 TU02 30.00 49.33 26 0 Y 0 C 0 25 
29 DR01 30.00 6.67 10 0 H 0 C 0 26 
30 DR02 30.00 23.33 10 0 M 0 C 0 27 

Continue: Hard COPf I Quit: 
<Enter> <Shift-Pr Sc) <Esc) 
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MODEL OUTPUT I FINAL TOOL STATUS 

Tool Tool Life Life Usaqe Tips Worn MIC Store Rack Posit. 
No. Type Unit Used (l) Freq. Used Mo. No. 

31 TU03 30.00 6.67 10 0 N 0 C 0 28 
32 B001 30.00 16.67 10 0 N 0 C 0 29 
33 TU01 30.00 48.67 6 0 Y 0 C 0 30 
34 TU01 30.00 48.67 6 0 Y 0 C 0 31 
35 TU01 30.00 48.67 6 0 Y 0 C 0 32 
36 TU01 30.00 48.67 6 0 N 0 C 0 33 
37 TU02 30.00 7.33 4 0 M 0 C 0 34 
38 TU01 30.00 45.00 10 0 Y 0 C 0 9 
39 0203 30.00 6.67 10 0 N 0 C 0 10 
40 DR04 30.00 30.00 10 0 M 0 C 0 11 

Continue: I Hard COPr' J I Quit: 
<Enter) <Shift-Pr Sc) <Esc) 

MODEL OUTPUT I FINAL TOOL STATUS 

Tool Tool Life Life Usaqe Tips Worn "/C Store Raet Posit. 
No. Type Unit Used (S) Freq. Used Ho. Mo. 

41 TU02 30.00 20.00 20 0 M 0 C 0 12 
42 B002 30.00 45.00 10 0 Y 0 C 0 13 
43 DR05 30.00 13.33 10 0 M 0 C 0 14 
44 TU01 30.00 45.00 10 0 M 0 C 0 15 
45 B002 30.00 45.00 10 0 M 0 C 0 16 
46 TU01 30.00 11.67 2 0 M 0 C 0 56 
47 DR09 30.00 0.67 1 0 N 0 C 0 57 
48 DR10 30.00 4.67 1 0 M 0 C 0 58 
49 TU08 30.00 31.67 1 0 Y 0 C 0 59 
50 B004 30.00 2.00 2 0 M 0 C 0 60 

Continue: Hard Copr: Quit: 
<Enter) <Shift-Pr Sc) <Esc) 

MODEL OUTPUT I FIMAL TOOL STATUS 

Tool Tool Life Life Usaqe Tips Worn "/C Store Rack Posit. 
No. Type Unit Used (l) Freq. Used No. Mo. 

51 TU09 30.00 11.00 2 0 N 0 C 0 61 
52 B005 30.00 13.33 2 0 N 0 C 0 62 
53 TU08 30.00 31.67 1 0 H 0 C 0 63 
54 TU02 30.00 1.33 1 0 M 0 C 0 64 
55 TU01 30.00 50.00 17 0 Y 0 C 0 46 
56 DR01 30.00 6.67 10 0 N 0 C 0 47 
57 DR07 30.00 30.00 10 0 M 0 C 0 48 
58 TU02 30.00 20.00 20 0 N 0 C 0 49 
59 B003 30.00 43.00 6 0 Y 0 C 0 50 
60 DR08 30.00 3.33 10 0 N 0 C 0 51 

Continue: Hard Copu Quit: 
<Enter) <Shift-Pr C) <Esc) 
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MODEL OUTPUT I FINAL TOOL STATUS 

Tool Tool Life Life Usaqe Tips Vorn "/C Store Rack Posit. 
No. Type Unit Used IS) Freq. Used No. Mo. 

61 B003 30.00 43.00 6 0 Y 0 C 0 52 
62 B003 30.00 43.00 6 0 Y 0 C 0 53 
63 TU01 30.00 6.67 3 0 M 0 C 0 54 
64 B003 30.00 14.33 2 0 H 0 C 0 55 
65 TU02 30.00 48.00 9 0 Y 4 T 0 1 
66 B009 30.00 6.67 10 0 N 4 T 0 2 
67 TU02 30.00 5.33 1 0 M 4 T 0 3 
68 TU01 30.00 50.00 20 0 M 0 C 0 71 
69 DR03 30.00 6.67 10 0 M 0 C 0 72 
70 DR04 30.00 20.00 10 0 M 0 C 0 73 

Continue: I I Hard Cop~ I I Quit: 
<Enter> <Shift-Pr c> <Esc> 

"ODEL OUTPUT I FINAL TOOL STATUS 

Tool Tool Life Life Usage Tips Vorn "/C Store Rack Posit. 
No. Type Unit Used IS) Freq. Used No. No. 

n TU02 30.00 40.00 20 0 H 0 C 0 74 
72 B002 30.00 36.67 10 0 M 0 C 0 75 
73 DR05 30.00 3.33 10 0 H 0 C 0 76 
74 DR06 30.00 10.00 10 0 H 0 C 0 77 
75 TU01 30.00 46.67 10 0 M 0 C 0 65, 
76 TU02 30.00 23.33 10 0 M 0 C 0 66 
77 8006 30.00 2.67 1 0 M 0 C 0 67 
78 8007 30.00 3.00 1 0 M 0 C 0 68 
79 TU14 30.00 4.33 1 0 M 0 C 0 69 
80 TU15 30.00 3.00 1 0 H 0 C 0 70 

Continue: Hard Cop~ Quit: 
<Enter> <Shift-Pr c> <Esc> 

MODEL OUTPUT I FINAL TOOL STATUS 

Tool Tool Life Life Usaqe Tips Vorn KIC Store Rack Posit. 
No. Type Unit Used m Freq. Used Ho. Mo. 

81 TU04 30.00 23.33 10 0 N 1 T 0 1 
82 DR12 30.00 10.00 10 0 N 1 T 0 2 
83 TU02 30.00 45.33 8 0 Y 1 T 0 3 
84 8002 30.00 43.33 20 0 H 1 T 0 4 
85 DR14 30.00 20.00 10 0 H 1 T 0 5 
86 ORIS 30.00 20.00 10 0 H 1 T 0 6 
87 8008 30.00 20.00 10 0 H 1 T 0 7 
88 TU16 30.00 23.33 10 0 H 1 T 0 8 
89 TU02 30.00 11.33 2 0 H 1 T 0 9 
90 TU01 30.00 11.67 2 0 H 0 C 0 81 

Continue: I Hard Copr Quit: 
<Enter> <ShUt-Pr Se> <Esc> 
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KODEL OUTPUT I FINAL TOOL STATUS 

Tool Tool Life Life Usaqe Tips Vorn K/C Store Rack Posit. 
No. Type Unit Used m Freq. Used Ho. No. 

91 DR09 30.00 0.67 1 0 R 0 C 0 82 
92 DR10 30.00 4.67 1 0 M 0 C 0 83 
93 TU08 30.00 31.33 1 0 Y 0 C 0 84 
94 8004 30.00 2.67 2 0 M 0 C 0 85 
95 TU09 30.00 17.00 2 0 M 0 C 0 86 
96 B005 30.00 3.00 2 0 M 0 C 0 87 
97 TU08 30.00 28.67 1 0 R 0 C 0 88 
98 TUlO 30.00 2.33 1 0 H 0 C 0 89 
99 TU06 30.00 26.67 10 0 M 0 C 0 78 

100 TU01 30.00 40.00 10 0 N 0 C 0 79 

Continue: Hard Cop~ Quit: 
<Enter> <Shift-Pr c> <Esc> 

KODEL OUTPUT I FINAL TOOL STATUS 

Tool Tool Life Life Usaqe Tips Vorn K/C Store Rack Posit. 
Mo. Type Unit Used m Freq. Used Mo. No. 

101 TU07 30.00 16.67 10 0 H 0 C 0 80 
102 TU02 30.00 30.00 10 0 N 3 T 0 1 
103 TU05 30.00 30.00 10 0 M 3 T 0 2 
104 TU01 30.00 45.00 5 0 Y 3 T 0 3 
105 TU01 30.00 45.00 5 0 M 3 T 0 4 
106 B002 30.00 20.00 10 0 M 2 T 0 1 
107 TU02 30.00 50.00 5 0 Y 2 T 0 2 
108 TU02 30.00 50.00 5 0 M 2 T 0 3 
109 TU02 30.00 30.00 10 0 M 5 T 0 1 
110 TU05 30.00 45.33 8 0 Y 5 T 0 2 

Continue: Hard Cop~ Quit: 
<Enter> <Shift-Pr c> <Esc> 

MODEL OUTPUT I FIRAL TOOL STATUS 

Tool Tool Life Life Usaqe Tips Vorn KIC Store Rack Posit. 
Mo. Type Unit Used (I) Freq. Used No. No. 

111 TUOS 30.00 11.33 2 0 M 5 T 0 3 

Continue: I Hard Cop~ I Quit: 
<Enter> <Shift-Pr c> <Esc> 
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TOOL COMPONENTS REQUIREMENT 

(Supplement to Chapter 13, Run No. 1) 
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Insert Identity 

CNMSI2040B K6B 
NO.5 C/DRILL 

T/SDRlLL 

~~~!~l!~~!y?Ll~ K6B 

Continue: 
<Enter> 

TOOL PART REQUIREMENT - INSERT 

Insert Identity 

<nll'II1'J.OU~U~ X68 

Hard Copy: 
<Shift-PrtSc> 

TOOL PART REQUIREMENT - SHANK 

Shank Identity No. Use. Shank Identity 
Freq. s 

MCLNR2020 HI2 21 42 STELLRA" EOl5YOBR 
SI2K-mRR-ll I I NKLCR2020 HI2 
STELLRA" EOI5-YOBR 5 10 SI2K-SCLPR-06 
KDJNR2020 HI2 I 2 KDJNR2020 HIS 
KODNER2525-K3 I I HER2020 B3 
KODNEG2525-K3 I I 
SI6"-PYXNR-16 I I 
AC65171 3 6 
S12K-SCLCR-06 I 2 
SI2"-RKLCR-ll I 2 

Continue: Hard COPG 
<Enter> <Shift-Pr c> 

TOOL PART REQUIREMENT - HOLDER 

Holder Identity 

W633000400 
W632112000 
W632100300 
W632210200 
W633000200 
W632102000 
W632100000 

Continue: I 
<Enter> 

No. Use. Holder Identity 
s Freq. 

2 5 
12 12 
2 3 
B 12 

27 52 
14 25 
I 2 

I Hard Copy: I 
<Shift-PrtSc> 
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No. 
s 

4 
3 
2 
I 
I 

Quit: 
<Esc> 

Use. 
Freq. 

4 
3 
2 
I 
I 

Quit: 
<Esc> 

No. Use. 
s Freq. 

I Quit: 
<Esc> 
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