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ABSTRACT 

Shellfish waste obtained from seafood processing plants contains chitin, protein and 

calcium carbonate. Chitin is a versatile biopolymer with many applications. 

Conventionally, chitin is separated from calcium carbonate and protein by acid and 

alkali respectively. In this project, a biotechnological approach was applied to 

recover chitin from scampi (Nephrops norvegicus) waste using lactic acid bacteria 

(LAB) to produce lactic acid from glucose which lowers the pH of the mixture, thus 

preserving the waste from spoilage. The acid also dissolves the calcium carbonate 

and under these conditions native enzymes breakdown the protein (autolysis), thus 

affording a substantial amount of purification of chitin. LAB were isolated and 

identified from various shellfish waste fermentations. Studies on their acid-

producing ability revealed a few potentially good strains, identified as Lactobacillus 

paracasei, Lactobacillus plantarum and Pediococcus sp. The strain of Lactobacillus 

paracasei was used as a starter culture in the fermentation of shellfish waste in a 

horizontal rotating bioreactor in order to evaluate the feasibility of the process. The 

design of the bioreactor was such that it enabled separation of solid and liquid end 

products during fermentation. Several important fermentation parameters were 

studied including mode of rotation, concentration of glucose, temperature, rotation 

rates, loading capacity, type and particle size of waste. Partial purification of the 

scampi waste was achieved using both batch and fed batch operation, but in the 

latter, improved purification was achieved at the cost of increased glucose 

consumption and extended fermentation times. Whilst higher temperatures increased 

the rates of fermentation, higher rotation rates seemed to have the reverse effect. 

Mincing the waste helped to increase breakdown of protein whilst larger particles 

tended to undergo rapid spoilitge. Analysis of the chitin product enabled this method 

to be compared with the conventional method. The results obtained showed that this 

method is capable of saving large volumes of chemicals and besides producing 

chitin, the protein liquor by~product could also be used as an ingredient in an animal 

feed which is not possible by the conventional method. 

Keywords: Shellfish waste, lactic acid bacteria, lactic acid fermentation, chitin, 

horizontal rotating bioreactor, silage. 
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CHAPTER! 

INTRODUCTION 

1.1 Background to project. 

As more countries throughout the world produce shrimp for export, the seafood 

industry will face an escalating problem of how to dispose of shellfish waste 

(Meyers, 1986; Shahidi and Synowiecki, 1992). It is estimated that, nearly 2.6 

million metric tons of shrimp and prawns are landed annually, three quarters of 

which is of Asian origin (Csavas, 1988). However, nearly 35 percent of the raw 

shrimp catch is discarded as waste when processed into "head-less shell-on" 

products, whilst removing the shell further increases the waste production to 40 - 45 

percent (Subangsinghe, 1995). The environmental problems faced by the seafood 

industry over the years have resulted in efforts to find uses for these waste materials. 

Currently, most of the shellfish waste which is rich in chitin, protein, pigments, and 

flavour compounds is either incorporated into animal feed or is disposed of as waste. 

For many producers, the problem of utilisation of the waste is its sheer perishability 

under normal ambient conditions. Due to the extremely high levels of microbial and 

enzymatic activity in the head tissue, such material is extremely labile and subject to 

rapid decomposition. This is further complicated by factors of high temperature, 

such as are prevailing in the Asian producing countries, poor transportation and 

minimal cooling/icing facilities in the production areas. Therefore cheaper 

techniques of preservation must be sought if the shellfish waste is to be maximally 

utilised on a global scale. 

Chitin, a nitrogen-containing polysaccharide, forms a significant fraction of the waste 

products of the seafood industry. It is estimated that the processing waste of shrimp 

and prawn contains anywhere from 10 - 55 percent of chitin on a dry weight basis 

(Subangsinghe, 1995). Natural chitin is bound by protein and calcium carbonate, 

removable to a greater or lesser degree by different purification methods. Although 

chitin was first discovered by Henri Braconnot in 1821, research on chitin has only 

gained momentum in the last 25 years (Domard, 1996). This is because, in pure form 

(free of protein and calcium carbonate), chitin has very limited applications due to its 
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insolubility in water and many commercial solvents. Chemically treated, its uses are 

extended and the most widely used form, chitosan, is made by the chemical 

deacetylation of chitin. 

Over 200 current and potential applications of chitin, chitosan and other derivatives 

have been identified (Brzeski, 1987). Those with a relatively high market potential 

include applications such as seed treatment in agriculture, as a clarifier and a dietary 

fibre source in the food industry, as a retention aid and coating in the paper and 

textile industry and for treating drinking water and process water in the food industry. 

However, in spite of the diversity of applications, widespread industrial use of chitin 

is still limited mainly because of the high price for technical grade chitin and chitosan 

(Peter, 1995). The costs of purification of chitin from shellfish waste are such that 

normal commodity applications, especially in the food industry, are more 

economically met by other materials such as cellulose, alginates and starches (Knorr, 

1984). This situation has forced potential suppliers of chitin products to look at 

speciality markets where chitin's unique properties make it indispensable. Japan is 

considerably advanced in the technology and commercialisation of chitosan. The 

total global production of chitin and chitosan has been estimated at 1600 metric tons 

with Japan and USA as main producers (Brzeski, 1987). Other less important 

producers are India, Italy and Poland. 

Although the availability of chitin-rich species is considerable, there are practical 

difficulties in gaining access for commercial chitinlchitosan extraction. As most of 

the landings are sold without processing, or are processed by small or medium scale 

processing plants, the efficient collection of waste from such sources is difficult 

(Subangsinghe, 1995). The need for coordinated collection and transport of carefully 

collected waste from several sources would add considerably to the cost of the raw 

material. The seasonality of the resources and the geographical distribution of the 

processing industries in many countries are factors which can restrict the availability 

of a regular supply of raw material. The relatively bulky nature of waste and its high 

perishability can also make sourcing of raw material more difficult. Therefore, only 

waste produced at large scale processing facilities, would potentially serve as a 
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reliable, regular source of good quality raw material. However, in recent years, the 

seasonality problem of the traditional shellfish industry has been overcome by the 

steadily growing cultured shrimp industry, especially in Asian countries, where 

production has increased steadily and reached 600,000 metric tons by 1990 (Csavas, 

1993). 

At present, the traditional chitin purification process uses alternating acid and alkali 

treatment stages to remove, respectively, calcium carbonate and proteins. The 

disadvantages of this process are that it requires the use of hazardous, corrosive 

chemicals and generates relatively large volumes of aqueous wastes while discarding 

many useful components (Ornurn, 1992). In a brief analysis of the main costs of the 

process: transportation and handling, chemical treatment and generation of 

potentially polluting wastes (which would have to be treated before being discarded) 

have been identified as the most important factors determining the high price of 

chitin and chitosan products (Muzzarelli, 1990). Therefore, an alternative, simple 

method of purification that minimises added costs and pollution of the environment, 

would appear to offer interesting prospects for the seafood industry. 

Since the 1970's, research on chitin has increased progressively and is now 

widespread as can be seen from papers appearing in many international conferences 

held during the past 25 years (Pariser and Lombardi, 1989; Skjak-Braek et aI., 1989). 

However, research has mainly focussed on applications of chitin and chitosan and 

few changes have been made to the traditional purification methods. Recently, some 

workers have tried to improve the chitin purification method by using enzymes or 

proteolytic bacterial cultures, but this has proved to be either costly or time 

consuming (Shimara et aI., 1982; Gagne and Simpson, 1993). 

A biotechnological approach to chitin extraction from shellfish waste has been 

proposed by Hall and De Silva (1992). They worked with tropical waste on a 

laboratory scale and their approach was based on ensilation which has been applied 

to fishery waste products for many years. Ensilation is a process of preservation of 

material or waste material by the use of acids to prevent the growth of spoilage 
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organisms. During the process, enzymes naturally present in the viscera digest the 

proteins giving a liquid product which can be used as a constituent of an animal feed. 

Acid can be added or can be generated in situ by bacterial fermentation. In an added­

acid silage (normally containing formic, propionic and inorganic acids), the product 

must be neutralised before it can be fed to animals. In fermented-acid silage, acids, 

which are relatively expensive, are not needed as acid is generated during 

fermentation. The acid is normally lactic acid and the process involved is known as 

"lactic acid fermentation" due to the fermentative action of lactic acid bacteria. In 

the fermentation of shrimp waste, the lactic acid is produced, dissolves the calcium 

carbonate in the shells while the indigenous enzymes solubilise the proteinaceous 

material forming a protein-rich liquor which could be separated from the insoluble 

chitin (Hall and De Silva, 1992). If the protein could be recovered free of chitin, it 

could be an excellent ingredient for animal feed as feeds made from whole shrimp 

waste (heads, meat, viscera and hulls) tend to have a high fibre content, because of 

the presence of chitin, and low protein content. However, maximal utilisation of this 

waste requires a good quality material. 

This type of fermentation is the basis of many fermented sauces and pastes found in 

South East Asia such as belachan, trassi-udang and pla-ra in Malaysia, Indonesia and 

Thailand respectively (Jay, 1992; Steinkraus, 1996). Therefore it is a technology 

which is understood and acceptable to many people who could adapt it to an 

industrial process for the production of chitin and feed. Many small-scale shellfish 

enterprises could benefit from this method as it does not require expensive equipment 

or corrosive chemicals. The high ambient temperature in tropical countries is an 

advantage as the fermentation normally proceeds well between 25°C - 35°C. Thus, 

instead of tranferring highly perishable and bulky waste, the dried, chitin product 

obtained, could be easily collected and transferred to the main chitin and chitosan 

processing plants. The chitin product, which is partially purified from protein and 

calcium carbonate, requires only a very minimal acid and alkali wash, if necessary. It 

is a new technology worth considering especially in hotter countries where cooling 

facilities for preservation of waste material may be inadequate and the protein by­

products can be sun-dried. 
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Lactic acid bacteria (LAB) are naturally occurring in and on fish and shellfish but in 

low concentrations. If a source of carbohydrates is added, LAB will dominate the 

microbial flora within a short space of time (Jay, 1992). Nowadays, in fermented 

foods, a starter culture of LAB is added to initiate the fermentation. It is an 

advantage to use starter cultures which have been isolated from the products to be 

studied as these bacterial strains are well adapted to the conditions (Jepperson. 1993). 

LAB isolation from shellfish waste is therefore considered vital in this project. Vuyst 

and Vandamme( 1994a) listed several advantages of using lactic acid bacteria in 

industrial fermentations : 

i) they have been ingested throughout history, implying that they are non­

pathogenic 

ii) they do not form toxins or toxic products 

iii) they are microaerophilic and aerotolerant, requmng a simple fermentation 

process 

iv) they grow rapidly. requiring a short fermentation process 

v) they have been used in the food industry for years, implying that methods for 

their cultivation on a large scale already exist 

vi) they can ferment cheap substrates such as milk, whey. plant wastes and 

hydrolysed starch 

vii) their growth discourages spoilage and contamination with other 

microorganisms 

As with any fermentations. reactor design is a vitally important factor which 

determines the efficiency of the process. The fermentation of shellfish wastes may be 

considered a "solid state fermentation". as initially only minimal quantities of free 

water are present. A rotating horizontal bioreactor was considered particularly 

appropriate for this work as this type of reactor has been used in many solid state 

fermentations (Pandey, 1991). Since the fermentation products of the shellfish waste 

are in two phases, the insoluble chitin sediment and a liquified protein fraction, a 

bioreactor that could assist in the separation of these phases at the end of the 

fermentation was considered an important criterion. 
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1.2 Research objectives: 

The overall objectives of the project are divided as follows: 

I) Isolation of lactic acid bacteria 

a) To isolate lactic acid bacteria from different shellfish waste sources. 

b) Screening of isolates 

c) Identification of isolates 

11) Feasibility studies using a horizontal rotating bioreactor 

a) Waste pretreatment and characterisation studies 

b) Bioreactor modification and requirements 

c) Optimisation studies 

d) Comparison between chitin purification by fermentation and by conventional 

method. 
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2.1 Sources of chitin. 

CHAPTER 2 

LITERATURE REVIEW 

Currently all the chitin produced commercially is derived from the exoskeleton of 

crustaceans (mainly crab, shrimp and prawn) obtained as waste from the seafood 

industry. The amounts available are sufficient to meet the present demand for chitin 

and chitosan and commercial exploitation of other potential sources (mentioned later 

in this section) is unlikely to take place for some years (Roberts, 1992). 

2.1.1 Crustacea. 

The crustaceans have a segmental structure enclosed within an exoskeleton or cuticle 

composed mainly of chitin. They also have jointed appendages. All crustaceans 

have an enlarged forward portion of the exoskeleton called the carapace which covers 

the head and the thorax (Early and Stroud, 1982). There is considerable variation in 

the body form; in some species, for example, lobster and shrimp, the well developed 

abdomen situated behind the carapace gives a relatively large amount of tail meat. In 

other species, for example crab, the abdomen is greatly reduced giving no edible part 

at all; here the carapace dominates and yields a relatively large amount of brown 

meat, which consists of digestive gland and gonads (Early and Stroud, 1982). In 

some species there is considerable amount of meat in the claws and legs. The 

crustaceans increase in size by moulting, that is shedding the rigid exoskeleton 

periodically, to allow for growth. 

2.1.1.1 Classification of crustacea. 

The class Crustacea, under the Phylum Arthropoda of the Sub-kingdom Invertebrata, 

is grouped in eight sub-classes, each of which is divided into a number of orders. 

However, the majority of the larger and better known Cructacea belong to the sub­

class Malacostraca, and in particular to the order Oecapoda (Holthuis, 1980). 

The Oecapoda (meaning that they have ten feet) not only vastly exceeds any other 

orders of the Crustacea in the number of known species, in the range of their 
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structure, but also includes all the larger and more familiar examples of the class. 

This includes the commercially important prawns, shrimps, lobsters and crabs. 

Regrettably there is no biological definition of what is a prawn and what is a shrimp. 

The Oxford and Webster's dictionaries describe a shrimp as a small prawn or a prawn 

as a large shrimp. Consequently, both names, shrimp and prawn, are commonly 

used, frequently interchanged and equally valid (Ruello, 1976; Early and Stroud, 

1982). 

The classification of the Decapoda is somewhat complicated. The very numerous 

species and genera are arranged in some forty-six families, which again are grouped 

into superfamilies, infr-aorders or tribes, and sub-orders (Holthuis, 1980). For the 

sake of simplicity, however, it is convenient to subdivide these species into sub­

orders Natantia (prawns and shrimps) and Reptantia (crawfish, lobsters and crabs). 

Prawns and shrimps (Natantia) may be separated into two major tribes, Penaeidea 

and Caridea. Most of the world's commercial prawns consist of penaeid prawns of 

which there are more than 100 species and also many hundreds of carid species. 

Table 2.1 summarises the names of families included in the sub-orders Natantia and 

Reptantia (Holthuis, 1980). 

T bl 21 F T b I h a e . : ami les e ongmg to t e su b d N or er atanha an dR eptantJa 

Natantia Reptantia 

Penaeidae [ Penaeidea 1 Palinuridae 
Aristeidae " Astacidae 
Sicyoniidae " Paguridae 
Sergestidae " Cancridae 
Solenoceridae " Xanthidae 
Palaemonidae [ Caridea 1 Portunidae 
Pandalidae " Grapsidae 
Atyidae " Scyllaridae 
Crangonidae " Galatheidae 

Lithodidae 
Majidae 
Parastacidae 
Nephropsidae 
Geryonidae 
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The Tribe Penaeidea, which comprises most of the larger prawns of the tropical seas, 

can be generally recognised by having the first three pairs of legs provided with 

pincer claws and being nearly alike in size. The penaeid prawns inhabit three main 

regions in the tropical and subtropical oceans; (a) The Atlantic and Mediterranean, 

(b) Pacific America and (c) Indian and Pacific Oceans. Penaeus is the largest of the 

families of Penaeidea and it contains the greatest number of commercially important 

species of Natantia, among which are those that are economically of greatest value 

(Holthuis, 1980). Many of the larger species of Penaeus, which are common in the 

warmer seas and may reach the dimensions of smalllobsters, are used for food, are of 

considerable economic importance in India, Japan, and the Southern United States. 

Some examples are Penaeus caramote which is a common Mediterranean species 

highly esteemed for the table and Penaeus monodon (Figure 2.1a) more commonly 

known as "crevette" in France and "tiger prawn" in Malaysia and is of considerable 

commercial importance in Bangladesh, India and the South East Asia. In Malaysia 

and Thailand, Penaeus monodon, is fished in offshore waters, but is also obtained by 

pond fishing and inshore fishing in Malaysia, Singapore, Indonesia, Phillipines and 

Taiwan (Holthuis, 1980). 

The tribe Caridea including the common prawns and shrimps of the British coasts is 

a large and highly diversified group. Its members may usually be distinguished by 

having only the first two pairs of legs provided with pincer claws. The Common 

Prawn (Leander serratus) of British coasts is a typical example of the Caridea. It is 

easily recognised by the great length of the sabre-shaped, saw-edged beak or rostrum 

which projects from the front of the carapace. Pandalus montagui is very much like 

the Common Prawn, but is a little smaller and is also known as the Aesop shrimp 

(Figure 2.1 b). In the North Eastern Atlantic region, the species is only fished 

commercially by Britain (Holthuis, 1980). Another commercially important caridean 

of the North Atlantic is Pandalus borealis which is commonly known as Pink 

Shrimp in Great Britain. There are many other kinds of Caridea even in British 

waters, while in the warmer seas their numbers are endless. In tropical countries, 

freshwater prawns of many kinds are abundant. The larger kinds belong to the genus 
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Palaemon. Palaemon rosenbergii (commonly known as "udang galah" in Malaysia 

and Indonesia) is well known for its large size and fine taste. In South East Asia 

experiments have been started to investigate the possibility of raising this species in 

ponds for commercial purposes. In Malaysia and Indonesia, the species is 

economically exploited on a considerable scale. 

The lobsters consist of three tribes, the Eryonidea, Scyllaridea and the Nephropsidea. 

The large Spiny Lobsters or Sea Crawfish (Palinurus vulgaris) is an example of 

Scyllaridea and is common on the Southern and Western coasts of British Isles. The 

tribe Nephropsidea includes the true Lobsters and the freshwater crayfishes. These 

are distinguished by having the first three pairs of legs provided with pincer-claws, 

the first pair being large and massive, the rostrum short and more or less flattened 

and the second antennae slender. The Common Lobster (Homarus gammarus) is 

well known (Figure 2.lc). The so-called Norway Lobster (Nephrops norvegicus) 

also called Dublin Bay Prawn or scampi (see Figure 2.ld), is chiefly caught in the 

North Sea, the North East Atlantic and the Mediterranean (Early and Stroud, 1982). 

It is distinguished by its long slender claws and large kidney-shaped eyes. When 

alive it is of an orange colour, beautifully marked with red and white. Closely allied 

to the Lobsters are the freshwater crayfishes inhabiting the rivers and lakes of the 

Northern and Southern Hemispheres respectively. 
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(a) Penaeus monodon (b) Pandalus montagui 

(c) Homarus gammarus (d) Nephrops norvegicus 

Figure 2.1: Different types of prawns and lobsters 
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2.1.1.2 Exoskeleton of crustacea. 

The crustacean exoskeleton, which functions as a support, protection, sites for 

attachment of muscles and organs and for locomotion, has played a significant role in 

the evolutionary success of this phylum (O'Brien et al., 1993). This is certainly true 

of the crustaceans which have become dominant members of the marine, aquatic, and 

terrestrial environments. The exoskeleton of crustacea consists of a multilaminate 

construction, the secretory products of a single layered epithelium (Neville, 1975). In 

general, it has four distinct layers, the epicuticle, exocuticle, endocuticle and 

membranous layer (Figure 2.2). The outermost layer, the epicuticle covers the whole 

body and provides a route for the excretion of various glandular products. It is the 

thinnest layer but is the most complex. It lacks chitin and is thought to be composed 

of tightly bound proteins, lipids, and calcium salts (O'Brien et al., 1993). It has been 

suggested that an important function of the epicuticle is to render the exoskeleton 

impermeable; this would not only prevent water loss, but solubilisation of exoskeletal 

components as well. Another function suggested is as an important mechanical 

barrier preventing invasion by parasitic fungi that degrade the cuticle of arthropods 

by chitinolytic and proteolytic activities (O'Brien et al., 1993). The exocuticle and 

endocuticle layers contain chitin and protein bound within a calcified matrix 

(O'Brien et al., 1993). The membranous layer is the innermost layer of the 

exoskeleton and is in contact with epidermal cells. It contains chitin and protein but 

is not calcified. The exoskeletons of crabs and lobsters have long since attracted 

attention as a source of raw material for chitin production as the dry arthropod 

exoskeleton contains from 25 to 72 % chitin (Skinner et aI., 1992). This value varies 

between species of the decapods. Where flexibility is required, the exoskeleton 

contains a higher proportion of chitin and its protein is easily solubilised while in 

species such as crabs which require rigid structures, the chitin content is low and the 

cuticular proteins are relatively insoluble. 

Only portions of the exoskeleton are hardened or sclerotized, for if it is uniformly 

hard no movement would be possible. The hardened body areas form a series of 

plates, or sclerites, between which the body wall is soft and flexible. This admirable 
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arrangement allows the development of exterior parts which serve for protection; it 

also gives rigidity while at the same time allowing great freedom of movement but 

must be periodically shed in a process known as ecdysis, or moulting to allow for 

growth. During the period prior to ecdysis, a moulting fluid containing chitinases 

and proteinases degrades the old exoskeleton while integumentary tissues synthesize 

epicuticle and exocuticle of the new exoskeleton which forms the soft shell of the 

recently exuviated crustacean (O'Brien et aI., 1993). 

Many decapods, especially those living in environments poor in calcium, reutilise the 

byproducts of the chitin and calcium salt degradation (Skinner, 1962). As soon as the 

new cuticle is formed, the arthropod breaks its way through the old one by expanding 

portions of the body (Goodnight et aI., 1964). Following ecdysis, synthesis of the 

new exoskeleton is completed by the deposition of the endocuticle and membranous 

layer followed by hardening of the proteins and precipitation of calcium salts. 

Non-CltitinOUS{===='=====~======= epicuticte --: 
Exocuticle 
(Heavily impregnated with 
stabilized lipid. Aromatically 
tanned OT c:l.lcified. lrretrie-

Usual time vable). Pore canals present ___ ----__ ---

ofecdys~ 

Endocuticle 
(often with daily growth 
layers. Can be re.absorbed) 

/Dl'oIQ\oIOIQIQrOYQ1QlOlo\Q11 

I 
Basement lamella Epidermal ceils 

(often with collagen) (ectodermal) 

Figure 2.2: The basic structure of the crustacean exoskeleton (after Neville, 1975). 
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2.1.1.3 Chitin. 

The outstanding success of crustaceans in adapting to numerous environments is due 

to two primary causes: the evolution of the structural material called 'chitin' and the 

utilisation of this chitin to form a movable protective skeleton. In the crustacean 

shell, chitin forms interesting composites with polypeptides or proteins, and an 

inorganic filler, calcium carbonate. Further, chitin is an important component of 

tendons and other stress-bearing fibrous portions of marine animals, where the chitin 

molecules adopt a highly oriented structure (Roberts, 1992). 

Active systems obviously exist for the synthesis and destruction of chitin, the relative 

and absolute amounts of which change during the life of the animal (Nicol, 1967). 

Chitin in the new cuticle is synthesized from sugars derived ultimately from glycogen 

reserves of the animal. In the epidermis, glucose molecules are aminated and 

acetylated, leading to the formation of chitin with the aid of an enzyme, chitin 

synthetase (Neville, 1975). The complete hydrolysis of chitin requires the activity of 

two enzymes in sequence. Chitinase converts the long chain chitin polymers into 

smaller oligosaccharides and chitobiose that are in turn hydrolyzed by chitobiase into 

N-acetyl-D-glucosamine (Jeuniaux, 1966). See section 2.2 for more detail on chitin. 

Chitin from animal sources usually occurs in association with protein which 

functions as a lower modulus (greater deformability) matrix surrounding the chitin to 

form a composite material (Neville, 1975). Composite materials which normally 

consist of a combination of a high tensile strength substance dispersed in a lower 

tensile strength matrix, are stronger than bulk samples of pure substances. This is 

explained by the fact that pure materials contain many structural defects and under 

tension, stresses focus on such defects. If instead a crack reaches a weaker, more 

deformable region, the stress is spread more evenly and the material survives 

(Neville, 1975). In nature other examples of such composite materials are wood, 

consisting of cellulose fibres in a lignin matrix and bone consisting of hydroxyapatite 

crystals in a matrix of collagen and mucopolysaccharide. Thus the cuticle 
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ultrastructure serves equally well for offence or defence; it has good impact 

resistance, tensile and compressive strength (Neville, 1975). 

2.1.1.4 Protein. 

The biological role of the exoskeletal protein is thought to be that of a defence 

mechanism against the action of chitinases (O'Brien et aI., 1993), and Neville (1975) 

has reported a membrane containing approximately 75 % chitin and 15 % protein that 

is resistant to the action of chitinases unless the protein is removed, after which the 

chitin is rapidly attacked. The epicuticular (outermost layer of the exoskeleton) 

proteins of crabs were much different from proteins in any other layers, having 

molecular weights ranging from 54 to 42 kDa (O'Brien et al., 1993) and is the only 

layer devoid of chitin. This kind of protein increases significantly during periods of 

proecdysis when the new exoskeleton is synthesized but little degradation of this high 

molecular weight protein from the old epicuticle occurs during moulting. In contrast 

to proteins of the epicuticle, many proteins in extracts of exocuticle, endocuticle and 

the membranous layer were of similar size, especially those smaller than 31 kDa. 

Moreover, the latter may be associated with chitin (O'Brien et al., 1993). Unlike the 

epicuticular proteins, these smaller proteins had been preferentially degraded during 

the moulting period. The extent of interaction between chitin and protein molecules 

differs within a given sample. Austin et al.(l981) reported that approximately 3-28 

% of total dry crab shells is accounted for by covalently bound protein (total protein 

12-73 %) and that protein residues remain with the chitin even after the most drastic 

alkali treatment. While the composite material structure of hard cuticles demands 

covalent bonds between chitin and protein, there are other situations where weaker, 

more labile, bonds are required. Hackman and Golberg (1958) introduced a sequence 

of extractions with aqueous solutions of increasing extractive power and noted the 

different percentages of bonding occurring within the molecule: 

a) cold water at pH 7.0 for 48 hours, removes soluble, unbound protein, 

b) cold 0.17M Na2S04 at pH 7.0 for 48 hours, removes protein bound by weak forces 

such as van der Waals' forces 

c) cold 7M urea at pH 7.0 for 48 hours, removes hydrogen-bound protein 
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d) cold O.OIM NaOH for 5 hours, removes electrostatically bound protein 

e) I.OM NaOH at 50 - 60°C for 5 hours, removes strongly bound protein, presumably 

covalently bonded to the chitin. 

It can be concluded from the above procedures that boiling with NaOH will ensure 

complete or almost complete removal of protein from chitin as this treatment disrupts 

the strongest covalent bond that might occur within the chitin-protein matrix. This 

result also suggested the existence of different kinds of protein bonding in the 

exoskeleton. 

Although many of the roles of the exoskeleton of crustacea are structural in nature, 

there are proteins within the exoskeleton whose functions are unrelated to structure 

but to enzymatic activities. During the proecdysial period for example, the old 

exoskeleton is permeated by proteinases that disrupt the protein-chitin-calcium 

components. Although not much is known about the specific proteinases active in 

the degradation of the crustacean exoskeleton, O'Brien and Skinner (1988) partially 

purified two sets of proteinases from Bermuda land crab. One set was active at 

alkaline pH while the other at acidic pH. Almost all the membranous layer proteins 

« 24 kDa) were hydrolysed by the alkaline proteases which are thought to play a 

more important role in the degradation of the exoskeleton than the acidic proteases 

(Skinner et al., 1992; O'Brien and Skinner, 1988). 

Another important enzymatic activity is that of chitinases, chitin-degrading enzymes. 

The enzyme is thought to be constitutive in nature, activated only during the 

proecdysis period and displayed optimal activity near pH 5.0, a value typical of 

chitinases in general (O'Brien et aI., 1993). Little is known of the mechanisms that 

control the degradation of the exoskeleton during the moulting period but cyclic 

changes in the pH of the extracellular matrix may be one means. The degradation of 

the cuticle by chitinases proceeded much more rapidly following exposure of the 

cuticle to proteinases than if the cuticle were exposed to chitinase alone. This fact 

suggests that chitin is shielded from chitinases by a protective covering of proteins. 

Since all the chitinases isolated from integumentary tissue exhibit activities with 
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acidic pH optima and the dissolution of calcium carbonate occurs under acidic 

conditions, it was suggested that the acidic proteinases are responsible for the 

degradation of the calcified layers while that with an alkaline pH optimum degrades 

the membranous uncalcified proteins (O'Brien et al., 1993). However, it must be 

remembered that the high molecular weight-epicutilar, tightly-bound proteins are 

least affected by all the above enzymatic processes and that may only be removed by 

the chemical means in part (e) above. 

2.1.1.5 Calcification of crustacea. 

Calcification as a means of stiffening cuticle is found in crustaceans and millipedes 

and in a very small number of insects. In crustaceans, calcification enables them to 

withstand considerable hydrostatic pressure and so to live in great depths of water. 

Calcium carbonate is the major inorganic constituent, others are magnesium 

carbonate and calcium phosphate Absolute values of inorganic constituents vary 

with age and species (Nicol, 1967). For example, shrimps contain 60 % ash while 

lobsters and crayfish show values around 74 - 78 % ash. 

Calcification of the cuticle takes place rapidly after the moulting period (Nicol, 1967) 

where calcium is reabsorbed from the environment and also from calcium stores 

within the body. The degree of calcification stands in inverse proportion to the 

amount of protein present in the cuticle. In newly formed cuticle prior to 

calcification, there are roughly equivalent quantities of chitin and protein. With 

progress of calcification the quantity of protein added to the cuticle decreases. 

Calcification thus replaces a large proportion of protein that would otherwise be 

needed for hardening the cuticle, and is an economical process in an environment 

rich in calcium (Nicol, 1967). 

2.1.2 Other sources of chitin. 

i) Fungal ferrnentations. 

This source of chitin seems to be quite promising for the future. The pharmaceutical 

industries of most countries already exploit fungal fermentation for the production of 

vitamin C and penicillin and large quantities of chitinous waste are produced (Nicol, 
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1991). The advantage of fungal chitin over crustacean sources is that, this source of 

chitin is consistent in composition, is available throughout the year and does not 

require a demineralisation step (Roberts, 1992), although it is usually present in 

association with other polysaccharides which must also be removed. 

ii) Squids and krill. 

The pens of squids contain between 30 - 35 percent chitin and largely free of 

minerals (Kurita et aI., 1991). So far, an application for ~-chitin from squid which is 

softer than a-chitin, has yet to be established (Kurita et al., 1994). Krill resembles a 

very small shrimp in appearance and has been the food of whales for centuries 

(Martin, 1979). Although krill contains chitin (25 percent dry basis), the primary 

product of the kriU industry is mainly protein which is destined for human 

consumption or is used whole for aquaculture (Nicol, 1991). After peeling, 85 

percent by weight remains as waste. It is expected that the krill catch will expand 

from its current levels and will dominate the total world crustacean production and 

would be a major potential source of chitin (Nicol, 1991). 

iii) Molluscs (clams and oyster shell). 

The use of clams and oyster shells is inhibited by the large quantities of inorganic 

material that must be removed, up to 90 % dry weight (Roberts, 1992). 

iv) Insects. 

Insects contain chitin but it is quinone tanned, which makes it difficult to extract and 

there is no consistant source (Nicol, 1991). 

v) Biotechnology. 

Currently, the chitin and chitosan industry is thriving by using cheap supplies of 

waste material. However, if demand increases in future, manufacturers could 

develop genetically engineered microorganisms to produce these useful molecules 

(Nicol, 1991). Some species of fungi produce up to 14 percent by weight of chitosan 

and this would eliminate the deacetylation step which at present makes chitosan 

nearly twice as expensive to produce as chitin (Crestini et al., 1996). Certain algae 

18 



produce pure chitin in the form of extracellular fibres which can be 10 to 15 percent 

of the dry weight of the cells, but these algae grow slowly under normal conditions. 

Advances in biotechnology may produce fast growing strains that retain large 

amounts of chitin (Nicol, 1991). 
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2.2 Chitin and chitosan. 

Chit in is one of the most abundant organic materials, being second only to cellulose 

in the amount produced annually by biosynthesis (Roberts, 1992). Chitin is an 

important structural component of the exoskeleton of crustaceans, molluscs and 

insects (Neville, 1975). It also makes up parts of the jaws and body spines of certain 

worms, but the occurrence of chitin in the plant kingdom is confined to fungi and 

some algae (Nicol, 1991; Roberts, 1992). Henri Braconnot was the first to describe 

chitin, as long ago as 1811 (Knorr, 1991). In 1859, a chemist called Rouget found 

that heating chitin with very concentrated sodium hydroxide converted it to a related 

and much more useful chemical, called chitosan (Roberts, 1992). This reaction 

removes some of the acetyl groups from the molecular chain, leaving behind 

complete amino (NH2) groups, making chitosan one the most versatile biopolymers. 

Chitosan also occurs naturally in the cell wall of some fungi (e.g. Mucor rouxii, 

Phycomyces blakesleeanus and Aspergillus niger) but its occurrence is much less 

widespread than is that of chitin (Simpson et aI., 1994). The criterion for 

distinguishing between chitin and chitosan is the solubility of the polymers in dilute 

aqueous acid: chitin is insoluble while chitosan forms viscous solutions. 

2.2.1 Structure and chemical properties. 

2.2.1.1 Chitin. 

Chemically, chit in IS poly[P-(1 ~4)-2-acetamido-2-deoxy-D-glucopyranosel (Fig 

2.3a). It is structurally similar to cellulose (Fig 2.3c), except that the C2-hydroxyl 

group of cellulose is replaced by an acetamido group, and this similarity in structure 

is reflected in the similar roles played by the two polymers in nature, both acting as 

structural and defensive materials (Roberts, 1992). In a small number of residues the 

acetyl group may be missing, leaving glucosamine, so that the chitin chain as a whole 

may be positively charged (Neville, 1975). 

Chitin has a highly ordered, crystalline structure as evidenced by X-ray diffraction 

studies (Roberts, 1992). It has been found in three polymeric forms, !X-, p- and "/­

chitin, which differ in the arrangement of the chains within the crystalline region. In 

a-chitin the chains are antiparallel, in P-chitin, they are parallel, and in ,,/-chitin, they 
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are mixed parallel and anti parallel orientations. The existence of these three 

polymorphic forms is related to the diversity of function: a-chitin is normally found 

where extreme hardness is required, as in the arthropod cuticle, and is frequently 

associated with sclerotised protein or inorganic materials or both, whereas the ~ and '/ 

-chitin are found where flexibility and toughness are required such as in the squid pen 

(~-chitin) and '/-chitin in its stomach lining (Roberts, 1992). 

Chitin is insoluble in water and in ordinary organic solvents such as alcohol 

(Muzzarelli, 1977; Knorr, 1984; Omum, 1992; Roberts, 1992). However, it is 

soluble in strong mineral acids and in anhydrous formic acid, but insoluble in alkali. 

Its high degree of crystallinity enables chitin to be cast into films or membranes 

(Muzzarelli, 1977). It forms complexes with transition metal ions but to a much 

lesser extent than chitosan and adsorbs dyes mainly through an ion exchange 

mechanism. It also adsorb proteins and enzymes possibly through a non-covalent 

bonding (hydrogen bond or Van der Waals forces). Pyrolysis of chitin at high 

temperatures (about 900°C) produces a number of flavour compounds such as butyric 

acid (butter flavour) and pyrazines which contribute significantly to the characteristic 

flavour of toasted and roasted foods (Simpson et aI., 1994). 

2.2.1.2 Chitosan. 

Chitosan is a poly[~-(l~4)-2-amino-2-deoxy-D-glucopyranosel (Figure 2.3b), made 

either by chemical or by biological means which remove the acetyl groups from 

chitin, leaving a polymer with varying levels of free amine groups capable of forming 

strong hydrogen bonding and ionic interaction. Chitosan is thus not a precise 

chemical species, but a polymer with varying levels of free amine groups. The free 

amine group gives chitosan its primary properties useful in application development. 

In both fungi and invertebrates, there are varying degrees of deacetylation (Roberts, 

1992), giving a continuum of structure between chit in (fully acetylated) and chitosan 

(fully deacetylated). 

Unlike chitin, chitosan is readily soluble in most dilute organic acids, such as formic 

and acetic acid, and its salt is soluble in water thus finding wider applications in 
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industry than chitin (Simpson et ai., 1994). However, chitosan is also insoluble in 

organic solvents and alkali (Roberts, 1992). At acidic pH, chitosan is a linear 

polyelectrolyte with a high charge density of -NH3+, making it a high positively­

charged polyelectrolyte, thus is able to attract negatively charged particles (e.g. 

proteins, anionic polysaccharides, nucleic acids). Chitosan is able to form complexes 

with transition metal ions (e.g. Cu, Co and Ni) through the free amine group and is 

also able to adsorb dyes mainly through an ion exchange mechanism. Chitosan can 

also be modified by derivatisation, producing polymers with enhanced performance. 
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Figure 2.3: The structure of (a) chitin, (b) chitosan and the structurally related 

polysaccharide (c) cellulose 
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2.2.2 Purification of chitin. 

Chitin as obtained from crustacean waste IS closely associated with proteins, 

inorganic material (mainly calcium carbonate) pigments and very small amounts of 

lipid. Therefore in general, the purification of chitin consists of two basic steps: I) 

deproteinisation or protein separation, and 2) demineralisation or the removal of 

minerals (Muzzarelli, 1977). Deproteinisation can be carried out either chemically or 

enzymatically and demineralisation is purely an acid-based reaction. 

2.2.2.1 Chemical methods. 

The general scheme for preparing chitin and chitosan from shellfish waste is 

summarized in Figure 2.4. The demineralisation process is most frequently carried 

out by treatment with HCI and the deproteinisation process usually by treatment with 

NaOH or KOH. The order in which these two steps are carried out has varied with 

different workers and some of the conditions used can be seen in Table 2.2 and 2.3 

(Roberts, 1992). The choice of processing conditions may be governed to some 

extent by the purpose for which the chitin is required. For example, ultrapure 

chitosan is generally required for medical purposes and pharmaceuticals whilst for 

industrial applications, such as waste water treatment, agriculture and metal recovery, 

the quality requirements are not as stringent (Sandford, 1988). Partial deacetylation 

and depolymerisation of the chitin chain does occur during these two processes 

(Muzzarelli, 1977). However, since chitin is usually converted to chitosan, partial 

deacetylation during the deproteinisation step is not a disadvantage whereas 

depolymerisation affects the viscosity of the final product (Muzzarelli, 1977). 

The main disadvantage of using the traditional chemical purification method is that 

these procedures not only require disposal of waste liquors (containing calcium 

chloride) or solids for which no market can be found (Roberts, 1992), it also requires 

high energy input (temperatures in the region of 90°C) for the deproteinisation stage. 

Hydrochloric acid is also a relatively expensive reagent. Apart from these adverse 

environmental aspects of the traditional treatment of waste shells, the process does 

not allow for the recovery of other added-value"products such as protein and 

pigments (see section 2.3). If the protein is recovered, it has to be neutralised before 
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being used as an animal feed ingredient. Furthermore, protein becomes racemated by 

alkali treatment and as such it is not nutritionally valuable (Vieira et aI., 1995). The 

processing plant also requires special tanks to avoid corrosion by the chemicals 

employed. 

Dried and pulverised solid waste 

t 
Demineralisation 

(with formic acid, HCI or EDTA) 

t 
Washing and drying 

t 
Deproteinisation 

(with NaOH) 

t 
Washing and drying 

t 
Decolourisation 

t 
Washing and drying 

t 
Chitin 

t 
Deacetylation with NaOH 

t 
Chitosan 

Figure 2.4: General scheme for preparation of chitin and chitosan (Simpson et al., 

1994). 
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Table 2.2: Conditions employed for deproteinisation of chitin-containing waste 

materials (after Roberts 1992) • 
Material source NaOH Temperature Number of 

concentration(M) (·C) treatments 
Shrimp 0.25 65 I 
Crab 0.5 65 I 
Prawn i 0.125 lOO I 

ii 0.75 lOO I 
Krill 0.875 90-95 I 
Crab 1.0 80 I 
Crab 1.0 100 I 
Lobster 1.0 lOO 5 
Crab 1.0 lOO 3 
Lobster 1.25 80 - 85 2 
Crab 1.25 85 - 90 3 
Prawn 1.25 lOO I 
Crab 1.25 lOO I 
Crab 2.5 room temp. 3 
Lobster 2.5 lOO I 

Table 2.3: Conditions employed for demineralisation of chitin-containing waste 

materials (after Roberts 1992) • 
Material source HCI concentration Temperature 

(M) ("C) 

Shrimp 0.275 RT 
Shrimp 0.5 ns 
Krill 0.6 RT 
Crab 0.65 RT 
Crab 1.0 RT 
Crab 1.0 RT 
Prawn 1.25 RT 
Crab 1.57 RT 
Lobster 1.57 RT 
Prawn 1.57 20 - 22 
Crab 2.0 RT 
Lobster 2.0 RT 
Crab 11.0 -20 

ns=not stated. RT= room temp. 
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2.2.2.2 Biological methods. 

Deproteinisation can also be carried out by enzymatic methods. The harshness of the 

chemical method as well as the environmental and safety implications of this 

technique, has prompted researchers to find alternatives. Two methods of 

biologically removing protein from shellfish waste exist: 1) proteolytic bacteria 

which can secrete extracellular proteases into the medium or 2) by using added 

proteolytic enzymes. 

The first method has been adopted Shimahara et al. Cl 982) and makes use of 

proteolytic bacterial cultures of Pseudomonas maltophilia. This species was found to 

be highly proteolytic but neither chitinolytic nor chitin deacetylating. The system 

adopted, however, had a very high water to solid ratio (99: 1) and is therefore not 

economically attractive for the production of a low-cost deproteinised chitin (Healy 

et al., 1994). The extent of removal of protein using this strain varied with the 

species of crustacea and with the carapace of Penaeus japonicus giving the best 

result. Although samples were incubated for up to 240 hours at 30°C, no further 

decrease in protein content occurred after 72 hours even if the chitin was transferred 

to a freshly innoculated batch. This indicates that the residual protein, ranging from 

1 % to 7 % approximately, is inaccessible to the proteinase involved (Roberts, 1992). 

In the second method, Takeda and Abe (1962) added proteolytic enzymes such as 

tuna proteinase, papain or a bacterial proteinase for removal of protein from shell 

material. This treatment resulted in chitin containing 5 % protein. Although the 

enzymatic method does not cause any depolymerisation and deacetylation of chitin, 

complete elimination of protein could not be attained. Furthermore, the use of 

enzymes results in increased costs particularly if purified preparations are employed. 

Recent work by Hall and De Silva (1992) described an interesting and promising 

application of the ensilation technique to the purification of chitin from shellfish 

waste. Ensilation is simply the use of acid conditions to prevent the growth of 

spoilage organisms and has been applied to trash fish for many years (Raa and 

Gilberg, 1982). Acid conditions can be produced by the addition of mineral or 
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organic acids or can be generated in situ by bacterial fermentation as demonstrated by 

Hall and De Silva (1992) using a commercial inoculum, "Stabisil". The production 

of acid by lactic acid bacteria lowers the pH and allows the indigenous proteases in 

the shellfish waste to initiate autolysis and carry out the breaking down of protein 

from the waste. At the same time, the acid conditions dissolve calcium carbonate, 

which is analogous to the demineralisation step in the traditional chitin recovery 

process. Thus, the lactic acid fermentation, besides acting to preserve the raw 

material, also partially purifies the chitin from protein and calcium carbonate. The 

advantage of the lactic acid fermentation is that, this method preserves indigenous 

enzymes which initiates the protein breakdown from the waste as well as removing 

the minerals. Vieira et at. (1995) reported that protein hydrolysed enzymatically has 

desirable functional properties compared to those treated by chemicals. They 

employed proteases such as papain, pepsin and a fungal protease (Aspergillus niger) 

to hydrolyse meat obtained from lobster heads (Panulirus laevicauda) and found that 

the the hydrolysate possessed a distinct, pleasant smell which could lead to its use as 

a flavour enhancer, as well as a protein supplement. 

2.2.2.3 Characteristics of purified chi tin. 

The purity of chitin varies enomously depending on the procedures adopted and the 

source material (Muzzarelli, 1977). Even chitin from the same animal varies in the 

length of its molecular chain, its crystallinity, and in the number of acetyl groups 

present on the chain (Nicol, 1991). Table 2.4 shows the characteristics of chitin 

reported by several workers. 

Table 2.4: Characteristics of chitina prepared from various sources 

Specification Shrimpb Crabb Tiger shrimpc Crawfishd 

Moisture 3.00 0.60 4.89 0.1 

Ash 0.09 0.10 0.54 not determined 

Lipid 0.00 0.00 0.49 not determined 

Chitin not determined not determined 97.04 not determined 

Total nitrogen not determined not determined 6.77 not determined 

Corrected nroteine 2.32 0.49 0.75 not determined 

Chitin nitrogen 6.29 6.42 6.65 7.01 
a_ D- .. c_ - % dry wt. baSIS, - Shahldl & Synowleckl, 1991, - Sophanodora & Hutadllok, 1995, 
d = No et al., 1989, e = corrected protein calculated as (total N - chitin N) x 6.25 
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The chitin nitrogen of the four examples quoted in Table 2.4 all differ from the 

theoretical value of 6.89 % for chitin (CgHI3NOs). No et al. (1989) reasoned that 

protein might still be present even after vigorous acid and alkali treatment, resulting 

in high values for chitin nitrogen content of 7.01 %. Deacetylation, if it occurs 

during purification process will increase the nitrogen content to a maximum of 8.69 

% for pure chitosan (C6H"N04). Commercial chitin is normally sold as flakes or as 

a fine powder with a moisture content < 10 %, ash < 2 %, and de acetylation > 15 % 

(Ornum, 1992). 

2.2.3 Production of chitosan. 

A Japanese company claimed to be the world's first to produce chitosan industrially 

in 1971 and in 1986, a total of fifteen companies in Japan were producing chitin and 

chitosan (Hirano, 1988). These products are supplied in the form of flakes, powders, 

beads, fibres, sheets and films. In Japan, consumption of chitosan was mainly for 

flocculants, cosmetics, feeds and foods with an increasing amount being used in the 

biotechnology industry. 

Chitosan can be made by treatment of chitin with hot concentrated sodium hydroxide 

solution (40 - 50%) for 30 minutes under nitrogen gas to reduce chain cleavage 

(Bough et al., 1978). Chitin is first treated with very strong NaOH (Figure 2.4) to 

hydrolyze the N-acetyl linkage, then rinsed, pH adjusted and dewatered. At this 

stage, the chitosan can be dried to give what is called 'flaked chitosan'. This is a 

coarse mesh product whose particle size can be reduced by milling to give a finer 

mesh powder. Increasing the temperature or the strength of the sodium hydroxide 

solution removes more acetyl groups. Commercial chitosan is typically 70 % - 80 % 

deacetylated (Kurita, 1986; Ornum, 1992). 

2.2.4 Applications. 

The challenge for the future of chitin and chitosan is its market development. There 

are numerous potential applications of chitin and chitosan, but questions remain over 

the cost-effectiveness of chitosan versus alternative materials and technologies 

(Ornum, 1992). However, chitin and its derivatives today appear as substances of 
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much greater significance and relevance than would have been believed ten years 

ago. Most of the applications discussed below are still largely experimental with 

only a few commercial products in the marketplace. Several countries, including the 

US, Japan, Norway, Italy and India, already have chitinlchitosan plants based on 

shellfish waste as their source (Nicol, 1991). The little that they produce is used 

primarily by the pharmaceutical industry and in the treatment of waste waters. 

However, chitin and chitosan have several interesting characteristic features which 

makes them suitable for use as an industrial material (Knorr, 1984, Simpson et al., 

1994). These are that: 

i) they represent a major component of biomass which is biologically 

reproducible 

ii) they are biodegradable, breaking down slowly to harmless carbohydrates, 

carbon dioxide and water 

iii) they are bioc6mpatible not only in animal but also in plant tissues 

iv) they are non-toxic biopolymers 

v) they can be fabricated into gels, beads, fibres, colloids or film 

vi) they have amino and hydroxyl groups which are chemically modifiable 

2.2.4.1 Applications of chitin. 

Chitin itself has relatively few applications compared to chitosan, its most familiar 

derivative, which has many current and potential uses in several industries. 

Compared to chitosan, chitin has a lower degree of deacetylation, i.e. a lesser number 

of free amine groups which are greatly responsible for most of the reactivities of 

chitin and chitosan and thus their applications. The applications of chitin are 

discussed under the various properties of chitin. 

i) Complex formation with metal ions. 

Since the adsorption of metal ions is reported to depend upon the amine group of the 

molecule, it is expected that pure chitin will not complex with metal ions (Roberts, 

1992). Studies on the interactions in a solution of D-glucosamine and N-acetyl-D­

glucosamine with Cu(II) ions, using potentiometric and spectroscopic techniques, 
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revealed that N-acetyl-D-glucosamine did not complex with Cu(II) ions (Roberts, 

1992). It is therefore expected that chitin will not have a major application in areas 

where complexation with metal ions is required. If chitin does complex with metal 

ions at all, it will do so to a much lesser extent than chitosan, and possibly does so 

through any available free amine groups that might exist throughout the biomolecule. 

ii) Adsorption on chitin. 

a) Adsorption of dyes. 

It is reported that the adsorption of dyes takes place through an ion exchange 

mechanism, through both the amino and acetyl amino group on chitin (Roberts, 

1992). Because of its high capacity for anionic dyes, chitin has been proposed as an 

adsorbent of dyehouse effluent and a detailed study has been reported (McKay et al., 

1982). 

b) Adsorption of proteins. 

Chitin is able to adsorb proteins through non-covalent bonding, either via Van der 

Waals forces or by hydrogen bonds (Roberts, 1992). These proteins, once adsorbed, 

can be released by various chemicals depending upon the bonding formed. This 

ability of chitin to adsorb proteins has been made use of in affinity chromatography 

where wheat germ agglutinin was purified on a chitin column and this approach has 

also been extensively used for purification of lysozyme (Roberts, 1992). A major 

market for chitin and chitosan is the water purification industry, where the 

biodegradable polysaccharides can serve as flocculents. 

Since enzymes are proteins, chitin provides a good supporting material for 

immobilisation of enzymes either through covalent bonds or via physical adsorption 

(Roberts, 1992). Amylase immobilised on chitin showed almost the same digestion 

rate for raw corn starch and gelatinised potato starch as did the free enzyme and is 

reported to be suitable for recycling (Roberts, 1992). Chitin also provides a solid 

support system for immobilisation of glucose isomerase (Stanley et al., 1976), 

lactase, a-chymotrypsin, and acid phosphatase (Stanley, et al., 1975) by reaction with 

gluteraldehyde. 
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iii) Other uses of chitin. 

Chitin has been used in a bioconversion scheme to produce yeast single-cell protein 

(Cosio et al., 1982; Sabry, 1992). The authors used shrimp shell chitin waste 

pretreated with acid and alkali. The pretreated chitin was then mixed with chitinase 

to hydrolyse the chitin to the monomer N-acetyl glucosamine which served as the 

substrate for production of single-cell protein (SCP) which has been shown to be an 

acceptable component of aquaculture feed formations (Cosio et al., 1982). Perhaps 

the greatest potential application of chitin is in paper manufacture. Addition of chitin 

increases strength, water retaining capacity and makes the paper easier to print on 

(Nicol, 1991). Paper that incorporates chitin has greatly improved wet strength - an 

advantage for disposable nappies, shopping bags and paper towels. Any move 

towards the general use of chitin in paper manufacture would require a huge increase 

in chitin production. To date most applications make use of either purified chitin or 

chitosan and its various derivatives. These applications have been made possible due 

to our present understanding of the underlying chemical mechanisms that might 

occur, as already explained above. However, an interesting application of a partially 

purified chitin has been reported by Coughlin et al. (1990) in using crab shell waste 

to purify electroplating wastewater. They excluded the normally-used 

deproteinisation step but instead applied a minimal deacetylation treatment of only a 

few minutes to develop chitosan at the outer periphery of the shell particles without 

substantially converting the interior regions of the particles. This is indeed 

interesting because if partially purified chitin can find a role in the future this may cut 

tremendously the cost of production of chitin, including more highly purified forms. 

2.2.4.2 Applications of chitosan. 

Since both existing and potential uses of chitosan have been thoroughly reviewed by 

Skjak-Braek et at. (1989), only a brief survey of the main areas of applications will 

be given here. 

i) Waste water treatment. 

The principal use of chitosan has been as a 'flocculating agent' for clarification of 

industrial effluent and other waste products, e.g. sludges from breweries, sewage 
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works, stick water from processing plants, slaughterhouses (No and Meyers, 1989) 

and as chelator of toxic (heavy and radioactive) metals (Knorr, 1991, Hansen and 

Illanes, 1994). One of the earliest uses of chitosan was to purify waste water from 

the processing of shellfish (Nicol, 1991). A study of one crawfish processing plant in 

Lousiana in 1989 showed that chitosan derived from the waste could be used to 

remove 97 percent of the solids suspended in waste water (Nicol, 1991). No and 

Meyers (1989) used crawfish chitosan as a coagulant in the recovery of organic 

compounds from seafood processing streams. Their results showed that chitosan was 

found to be superior to synthetic polymers in reducing the turbidity of crawfish 

wastewater. If chitosan were used to recover protein solids from the food processing 

industry, the chitosan-protein coagulant could be directly included in animal feed. It 

is estimated that only 0.05 to 0.1 % of chitosan will be present in animal diets when a 

chitosan-protein coagulant is used and that this small amount of chitosan has no 

adverse effects on the nutritional value of proteins and is non-toxic to livestock. 

Japanese firms such as Kurita Industries sell chitosan as a flocculant (Nicol,199l), as 

does the Norwegian company Protan, which recommends it for the clarification of 

swimming pools and spas as it flocculates microbes and removes metals (Nicol, 

1991). 

iii) Medical care. 

Higher technology applications 10 the medical field include use as a blood 

anticoagulant, in wound healing and in artificial kidney membranes (Muzzarelli, 

1983). Chitosan beads have been used as a biocompatible matrix to deliver drugs 

(Hirano, 1988). Chitosan has also been shown to be suitable as an eye bandage 

material and may even have utility as a contact lens material (Hirano, 1988). 

Chitosan can be made into strong fibres that may have use as suture material and as a 

wound dressing (Muzzarelli, 1977). Chitosan is also said to have cholesterol­

lowering ability (Hirano, 1988) and to have potential for use as dietary fibre 

(Simpson et aI., 1994). 
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iv) Cosmetics. 

Chitin was first used in cosmetics in 1969 (Nicol, 1991). Chitosan has proved to be 

an excellent raw material for the synthesis of customised polymers for all kinds of 

purposes in the field of cosmetics (Lang and Clausen, 1988). In Japan, chitosan and 

carboxymethylchitin (CM-chitin) have been approved as ingredients for hair and skin 

products (Hirano, 1988). CM-chitin is soluble in water and its aqueous solution is 

viscous and moisture retaining. This property is essentially similar to that of 

hyaluronic acid present in human skin. The products synthesized on the basis of 

chitosan are suited as film-forming agents for setting lotions, blow-dry lotions, hair 

sprays and nail vanishes, humectants for skin cosmetics, thickening agents for gels 

and emulsions, substantive polymers for shampoos and hair conditioners as well as 

other hair and skin care preparations. Clear solutions form clear films that adhere to 

skin or hair, primarily due to chitosan's cationic character. Several cosmetic products 

containing chitosan are on sale from Wella in Germany and now in Japan (Nicol, 

1991). 

v) Agriculture. 

This area of application is one of the most recent and promising (Hansen and Illanes, 

1994). Chitosan appears to have multiple physiological effects. Chitosan can act as 

a fungicide, growth enhancer, and protective agent for plants and trees (Sandford, 

1988). Ramachandran Nair et aI., (1986) has also reported prolonged ripening period 

of fruits like mangoes and bananas by surface coating. 

vi) Biotechnological uses. 

Due to its non-toxic nature, biocompatibility, variety of useful forms, and its unique 

properties, chitosan is used commercially to immobilized enzymes and cells. 

Chitosan mixed with alginate has been used in the preparation of membranes for the 

encapsulation of tissue and bacterial cells (Rodriguez-Sanchez and Rha, 1981). The 

biological material remained viable and protected by a membrane fully permeable to 

nutrients and metabolic products. 
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vii) Food industry. 

In the food processing industry, there exist three key future applications of chitinous 

polymers (Bough, 1977; KnOIT, 1984; Ramachandran Nair et aI., 1986, KnOIT, 1991, 

Hansen and Illanes, 1994): 

a) As an agent for treatment of food processing wastewater. The chelating properties 

of chitosan prove advantageous in removing heavy metals, dyes, pigments and 

proteins (mentioned in detail in part i). 

b) As a functional ingredient to improve texture. Chitosan can be used as a food 

thickener, adhesive and gel-forming agent for the production of sauces, ice cream and 

fruit juices. It can also be used as an emulsifier because of its ability to bind water 

and fat. 

c) As a new polymer for improving packaging materials. Based on the fact that 

chitosan has film forming properties and that chitosan degrading microorganisms are 

abundant, use of chitosan polymers as packaging materials provide protection for the 

environment. 
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2.3 Shellfish wastes. 

In general, the shellfish industry discards up to 60 % of the shellfish waste which 

includes parts such as the heads (cephalothorax), claws (including the inner meat), 

shells and adhered meats (Hansen and lilanes, 1994). This waste material contains 

many valuable components, among the most prominent of which is the chitin. The 

extraction and uses of chitin have been covered in section 2.2. Other useful 

components are the protein, enzymes and pigments. Today, finding uses for these 

waste components is gaining in popularity as a means to improve profitability in the 

seafood industry. 

2.3.1 Composition of shellfish waste. 

2.3.1.1 Chitin, protein and calcium content. 

The high protein content reported in shellfish waste actually comes from the adhered 

meat, meat in the claws and protein from the head. In additon, the exoskeleton also 

contains a small amount of protein besides calcium carbonate and chitin. The 

composition of shellfish waste in terms of chitin, protein and calcium carbonate as 

reported by various workers is given in Table 2.5: 

T bl 25 T . I al a e . . I YPlca v ues 0 c Itm, protem an f h' . c ClUm content 0 d al . s e IS fhllfih wastes 
Source of waste Chitin (%) Protein (%) Calcium References 

(%) 

Crawfish 14.2 32.2 18.1 Chen & Meyers, 1983 
Shrimp shells 27.2 22.8 11.1 Barratt & Montano, 1986 
Shrimp heads 11.1 53.5 7.2 Barratt & Montano, 1986 
Crawfish 15.9 35.8 12.3 No el al., 1989 
Shrimp 17.0 41.9 ns Shahidi & Synowiecki, 1991 
Shrimp 21.4 27.9 16.0 Sabry, 1992 

ns = not stated 

The protein if recovered is an excellent ingredient for animal feed. Shrimp siJages 

have been prepared by the addition of organic acids (Barratt and Montano, 1986). 

The acid conditions allow the enzymes to breakdown protein forming a liquid protein 

(silage). The liquid silage can be mixed with other substances such as malt wastes, 

rice husk, corn, bananas and other carbohydrate-rich substances. Once dried, it could 

be included in formulations in poultry, cattle as well as shrimp-feeding. 
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2.3.1.2 Enzymes. 

The shellfish wastes contain many valuable enzymes, either from the digestive 

system in the viscera which includes proteases and carbohydrate-degrading enzymes, 

the muscles or from chitin metabolism (O'Brien et a!., 1993, Hansen and Illanes, 

1994). All these enzymes play a role in the growth of crustacea. However, during 

processing of seafood, many of these valuable enzymes may be discarded as wastes 

or are washed away in the processing wash water (Hansen and Illanes, 1994). 

Enzymes from marine organisms are reported to have unique properties such as 

having high molecular activity at low temperatures (Simpson and Haard, 1987) and 

have many applications in the food industry (Haard and Simpson, 1994). 

Olsen et a!. (1990), was able to recover four types of enzyme from the effluent of the 

shrimp processing plant which were: alkaline phosphatase, hyaluronidase (a 

carbohydrate-degrading enzyme), acetylglucosaminidase and a chitinase. Another 

study on the proteolytic enzymes in grass shrimp (Penaeus monodon) revealed the 

existence of trypsin-like and chymotrypsin-like enzymes (Jiang et aI., 1992). 

Crustacea and other invertebrates have generally been considered to be able to 

hydrolyse protein with an enzyme complement similar to that of vertebrates except 

for the lack of a peptic enzyme (Vonk, 1960). The lack in pepsinolytic activity in 

crustacea has also been reported by Baranowski et al. (1984). It has also been 

suggested that crabs and amphipods use catheptic and tryptic enzymes whereas 

shrimps and barnacles have only catheptic components (De Villez and Buschlen, 

1967). The existence of cathepsins has also been reported by Jiang et a!. (1992). 

However, trypsin from fish tends to be stable in alkaline medium and very unstable 

in acidic conditions whereas trypsin from mammals is most stable in an acidic 

medium (Haard and Simpson, 1994). Cathepsins from different aquatic species 

display maximum activity over a broad pH range, from pH 3.5 to pH 8.0 (Haard and 

Simpson, 1994). If shrimp wastes are to preserved by a lactic acid fermentation it 

would therefore be expected that the enzymes that might be active during autolysis of 

waste protein are mostly those that are active at acidic conditions. To date, no such 

data has been published. The enzymes involved in chitin metabolism have been 

covered in section 2.1.1.4. 
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2.3.1.3 Pigments. 

The exoskeleton of crustaceans contain carotenoid pigments, mainly astaxanthin, 

which is suitable for incorporation into fish feed for aquaculture of salmonid species 

(Guillou et al., 1995). The presence of carotenoid pigments (astaxanthin) in fish feed 

influences the red colouration of salmonid fish flesh and favours consumer 

acceptability of the product (Bough, 1977, Meyers and Bligh, 1989). The benefit of 

using pigments in diets of broiler chicken has also been reported (Chawan and Gerry, 

1974). The pigments are said to impart desirable coloration to egg yolks in laying 

hens and quails. The isolation of carotenoids from shellfish wastes in a suitable form 

for fish feeding can be achieved by oil extraction (Chen and Meyers, 1982). It has 

also been reported that ensiling crawfish waste with mixtures of acids, results in an 

increase in the concentration of astaxanthin extracted compared to the non-ensiled 

product (Chen and Meyers, 1983; Guillou et aI., 1995). In addition, the acid also 

removed 70 percent of the calcium carbonate in the shells and reduced spoilage. 

2.3.2 Spoilage of shellfish. 

Microbiological spoilage of foodstuffs results in the production of ill-smelling 

compounds and in chemical changes which result in the formation of toxic 

compounds (Hobbs, 1982). In fish, most of the undesirable odour and flavour 

changes associated with spoilage result from bacterial action on the soluble, low 

molecular weight, components of fish muscle (Hobbs, 1982). Compounds produced 

by bacteria that are typical of spoilage include trimethylamine, which has a 

characteristic "fishy" or ammoniacal smell, sulphur compounds which give a smell of 

bad eggs, indole which gives faecal smells, and carbonyl compounds which give 

rancid or fruity smells. The occurrence of microorganisms associated with spoilage 

in seafood such as shrimp, oysters, and clams depends greatly on the quality of the 

water from which these animals are harvested. Assuming good quality waters, most 

of the organisms are picked up during processing (Jay, 1992). Not all the bacteria 

thus acquired are able to produce these changes; spoilage odours and flavours are 

produced in the main by Pseudomonads (Hobbs, 1982). Many of the organisms from 

fresh fish have also been reported on crustaceans, with Pseudomonads, 

Acinetobacter-Moraxella, and yeast spp. being predominant on microbially spoiled 
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crustacean meats (Jay, 1992). The presence of higher quantities of free amino acids 

in particular and of higher quantities of nitrogenous extractives in crustacean meats 

in general makes them quite susceptible to rapid attack by the spoilage flora (Jay, 

1992). Initial spoilage of crustacean meats is accompanied by the production of large 

amounts of volatile base nitrogen, which includes ammonia, dimethylamine and 

trymethylamine. Total volatile nitrogen (TVN) which can be obtained by steam 

distillation of samples has been employed in Australia and Japan for testing shrimps 

where a maximum level of acceptable quality in products is 30 mg TVNIlOO g (Cobb 

and Vanderzant, 1985). 

However, these changes in the nitrogenous compounds may also be the result of its 

own autolytic activity (Cobb et al., 1973). Shrimp has been reported to have a higher 

content of free amino acids than fish and contain cathepsin-like enzymes that rapidly 

break down proteins (Early and Stroud, 1982; Jay, 1992). It is suspected that a release 

of the digestive enzyme from hepatopancreas occurs upon death of the prawn and 

catalyzes muscle degradation that causes the prawn meat to exhibit a mushy texture 

after cooking (Baranowski et al., 1984). 
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2.4 Lactic acid preservation. 

Lactic acid fermentation is one of the oldest preservation techniques used in the food 

industry (Table 2.6). It represents a low-cost method for preparing food and feed 

products with enhanced storage properties (Table 2.6) and also reduces the need for 

refrigeration or other energy-intensive operations (Platt; 1987; Gould, 1989). Lactic 

acid fermentations are also becoming more popular due to a trend towards more 

natural, less additive-based preservation techniques (Gould, 1989). The organisms 

that are associated with this type of fermentation, the lactic acid bacteria, have had an 

important role in preserving foods, preventing food poisoning, and indirectly feeding 

the hungry on every continent (Platt, 1987). Some of the most important nutritional 

and therapeutic effects ascribed to these bacteria can be summarised as follows 

(Vuyst and Vandamme, 1994a): 

i) improvement of the nutritional quality of food and feed, e.g. lysine enrichment 

of fermented cereals 

ii) stimulation of the overall metabolism by producing vitamins e.g. folic acid 

iii) stabilization of the intestinal microflora, excluding colonization by pathogenic 

bacteria such as Staphylococcus aureus, Salmonella spp., Shigella spp. and 

enteropathogenic E. coli strains, via adhesion to the intestinal wall and 

competition for nutrients 

iv) protection against intestinal and urinary tract infections, e.g. by production of 

antibacterial substances 

v) decreased risk of colon cancer by detoxification of carcinogenic compounds 

and toxic substances 

vi) tumour suppression via an aspecific stimulation of the immune system to 

produce macrophages 

2.4.1 Lactic acid bacteria. 

Lactic acid bacteria (LAB) are typically described as Gram-positive, non-sporing, 

catalase negative, microaerophilic cocci or rods. They are strictly fermentative with 

lactic acid as the major end product of hexose fermentation, thus giving the name to 

the group (Ingram, 1975). They are generally associated with habitats rich in 
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carbohydrate, such as various food products (dairy products, fennented meat and 

vegetables, fruits, silage and beverages) but some are also members of the normal 

flora of the respiratory, intestinal and genital tracts of humans and animals (Hammes 

and Vogel, 1995). LAB do not require oxygen for growth, are resistant to inhibition 

by carbon dioxide, nitrite and smoke, are able to grow at relatively high salt 

concentrations and can tolerate lower pH values than the Gram-negative bacteria 

(Egan, 1983). LAB constitutes what may be. termed the 'natural flora' of many 

spontaneous food or feed fermentation processes, in addition they may also be 

deliberately incorporated as starter cultures (Steinkraus, 1996). 
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Table 2.6: Major Food Preservation Technologies 

Objective Factor Mode of achievement 

Slowing down or Lower temperature Chill storage 
inhibition of microbial 
growth 

Inactivation 

Freeze and frozen-storage 

Reduced water activity Drying and freeze drying 
Curing and salting 
Conserving with added sugars 

Decreased oxygen Vacuum and nitrogen-packaging 

Increased carbon dioxide Carbon dioxide-enriched 'controlled 
atmosphere' storage or modified 
atmosphere packaging 

Acidification 

Alcoholic fermentation 

Use of preservatives 

Heating 

Ionising irradiation 

Addition of acids 
Lactic or acetic fermentation 

Brewing 

Addition of preservatives: 
-inorganic (e.g. sulphite, nitrite) 
-orgamc (e.g. propionate, sorbate, 
benzoate, parabens) 
-antibiotic (e.g. nisin, pimaricin) 
Pasteurisation 
Sterilisation 

Radurisation 
Radicidation 
Radappertisation 

Restriction of access Decontamination 
of microorganisms to 

Treatment of ingredients (e.g. with 
ethylene oxide) 

foods 

Aseptic processing 

Adapted from Gould (1989). 
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2.4.1.1 Classification. 

The classification of LAB into the different genera is largely based on morphology, 

mode of glucose fermentation, growth at different temperatures, steric 

configuration of the lactic acid produced, ability to grow at high salt concentrations, 

and acid or alkaline tolerance (Ingram, 1975). The genera that, in most respects, fit 

the general description of the typical LAB as they appear in the latest edition of 

Bergey's Manual are Aerococcus, Lactobacillus, Leuconostoc, Pediococcus, and 

Streptococcus. However, recent taxonomic revisions of these genera suggest that 

the LAB now comprise the following genera (Axelsson, 1993, Vuyst and 

Vandamme, I 994a, Holzapfel and Wood, 1995): 

Table 2.7: The different genera of lactic acid bacteria 

Current Former Morphology 

Enterococcus Streptococcus coccus 
Lactococcus Streptococcus coccus 
Streptococcus sensu stricto Streptococcus coccus 
Vagococcus Streptococcus coccus 

Camobacterium Lactobacillus rod 
Lactobacillus rod 

Pediococcus coccus 
Tetra~enococcus Pediococcus coccus 

Aerococcus coccus 
Leuconostoc coccus 

With the advent of new sophisticated tools for identification and classification 

methods, further revisions are to be expected especially with regard to the genera 

Lactobacillus, Leuconostoc, and Pediococcus (Axelsson, 1993). 

LAB exhibit an enormous capacity to ferment different carbohydrates through several 

different pathways, principally to generate energy, and in the process they produce 

weak acids as byproducts, into the environment (Vuyst and Vandamme, 1994b). 

However, LAB are also able to adapt to various conditions and change their 

metabolism accordingly and this may lead to significantly different end-product 
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patterns (Axelsson, 1993). The levels and relative proportions of these fermentation 

end-products which accumulate in the microbial environment depend on the species 

of the organism(s) involved, the chemical composition of the environment, and the 

physical conditions encountered during the fermentation process (Lindgren & 

Oobrogosz, 1990). The following section describes briefly the more common 

fermentation pathways and how a simple sugar such as glucose is fermented to 

produce their end products, which forms the basis of classification. 

There are two major pathways for hexose (e.g. glucose and fructose) fermentation 

occurring within LAB (Axelsson, 1993). Under normal conditions, i.e., excess sugar 

and limited access to oxygen, glucose is fermented via the Embden-Meyerhof 

pathway or Glycolysis, mainly to lactic acid (Figure 2.5) and this metabolism is 

referred to as a "homolactic fermentation". Those LAB that use the glycolytic 

pathway are then termed the "homofermentative LAB" and this is due to the presence 

of the constitutive enzyme, Fructose diphosphate aldolase (FOP). 

The other main pathway, known as the pentose phosphate pathway (Fig 2.5), leads to 

the formation of C02 and ethanol in addition to lactic acid and is referred to as 

"heterolactic fermentation" and those that use this pathway as "heterofermentative 

LAB". This pathway is used by those LAB that possess the constitutive enzyme, 

phosphoketolase. 

In theory, homolactic fermentation of glucose results in 2 moles of lactic acid and a 

net gain of 2 ATP per mole of glucose consumed. Heterolactic fermentation gives 1 

mole each of lactic acid, ethanol, and C02 and 1 mole of ATP per mole of glucose. 

Thus, the production of carbon dioxide gas is a typical characteristic of 

heterofermentative LAB. 

However, it should be noted that glycolysis may lead to a heterolactic fermentation 

under certain conditions and that some LAB regarded as homoferrnentative, use the 

pentose phosphate pathway when metabolising certain substrates. Hence the 

existence of a third group, the "facultatively heterofermentative LAB". These 
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bacteria resemble the obligately homofermentative LAB in that they possess a 

constitutive aldolase, but the synthesis of phosphoketolase is inducible by the 

presence of pentoses, resulting in a heterolactic fermentation. These LAB are thus 

homofermentative with regard to hexoses and heterofermentative with regard to 

pentoses (Axelsson, \993). 
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Figure 2,5: Carbohydrate metabolism in homofermentative and heterofermentative lactic acid bacteria (Vuyst and Vandamme, 

1994b). 



There are several compounds other than glucose that are degraded by the glycolytic 

pathway, although in general two or three special reactions are needed to bring the 

compound into the pathway. Hexoses, other than glucose, such as mannose, 

galactose, and fructose are fermented by many LAB via the glycolytic pathway. 

Fermentation of disaccharides such as lactose has also been reported by strains of 

Lactococcus lactis and Lactobacillus casei (Axelsson, 1993). The fermentation of 

other disaccharides such as cellobiose, melibiose and trehalose requires a specific 

transport system and hydrolases before the monosaccharide can enter the common 

pathways (Axe Is son, 1993). Fermentation of pentoses IS possible III 

heterofermentative and facultative LAB and fermentation· of pentoses, unlike the 

fermentation of glucose, leads to the formation of equimolar amounts of lactic acid 

and acetic acid (Axelsson, 1993). Other minor pathways are also used by certain 

species leading to the production of diacetyl, acetoin, and hydrogen peroxide 

(Axelsson, 1993). 

Table 2.8 shows the groupings of LAB according to their metabolic capabilities. The 

genus Lactobacillus contains species which can be placed in all three categories and 

only the more well-characterised species have been included (Schleifer and Ludwig, 

1995). 

Table 2.8: Metabolic categories of LAB 

Obligately Facultatively Obligately 
homofermentative heterofermentative heterofermentative 

Lb acidophilus Certain Lb a Lb. brevis 
Lb. delbrueckii Enterococci Lb. buchnerii 
Lb. helveticus Lactococci Lb. Jennentum 
Lb. salivarius Pediococci Lb. reuteri 

Streptococci Leuconostocs 
Tetragenococci 
Camobacterium 
Vagococci 

a = Lb. casei, Lb. curvatus, Lb. plantarum and Lb. sake, Lb. paracasei, Lb. 

pentosus. 
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The ability of different LAB to produce different end products is especially 

important in fermented foods, as these fermentation end products produce changes 

to taste and texture of the substrate, besides preserving its shelf life. 

2.4.1.2 Methods of Isolation of LAB. 

In lactic acid fermentation, isolation of potential LAB from the food source to be 

fermented is an important step towards achieving a successful fermentation 

processes (Jepperson, 1993; Tanaka et al., 1994). Strains for investigation are 

selected when present in large numbers in the product which shows no sign of 

spoilage and gives a rapid drop in pH. The advantage of using these bacterial 

strains will be their known ability to grow well in the products to be fermented. 

However, considerable problems exist in counting and isolating LAB. This is 

because they give poor growth on most ordinary laboratory culture media, with 

very little surface growth on any medium. Many strains of LAB form only pin­

point colonies on media such as Plate Count Agar (Egan, 1983). On other nutrient 

media they may fail to grow aerobically or may be overgrown by other organisms. 

Evans and Niven (1951) developed All Purpose agar with Tween (APT) for the 

isolation of Lactobacillus viridescens. However, this medium is non-selective, but 

supports good growth of LAB (Kitchell and Shaw, 1975). De Man, Rogosa and 

Sharpe (MRS) agar (De Man et al., 1960), pH 6.0 - 6.5, which was originally 

developed for the cultivation of lactobacilli of dairy origin, is widely used and has 

been used to enumerate LAB from vacuum-packed bacon (Kitchell and Shaw, 

1975). At present, these two agars are widely used with LAB (Kandler and Weiss, 

1986; Collins et al., 1989a; Vignolo et aI., 1993). 

2.4.1.3 Methods of identification of LAB. 

At genus level. LAB can be divided into rods and cocci. Tetrad formation is used 

as a key characteristic in the differentiation of the cocci. Another important 

characteristic used in the differentiation of LAB genera is the mode of glucose 

fermentation under standard conditions, i.e., non limiting concentrations of glucose 

and limited oxygen availability. Under these conditions, LAB can be divided into 
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two groups: homofermentative, which convert glucose almost quantitatively to 

lactic acid, and heterofermentative, which ferment glucose to lactic acid, 

ethanol/acetic acid, and C02 (Sharp, 1979). A summary of the differentiation of 

the LAB genera is shown in Table 2.9. 

At species level. Classification at species level is somewhat more difficult to 

achieve. The classical biochemical characterization is important for a preliminary 

classification as well as learning about the properties of the strains. Some of the 

characteristics listed in Table 2.9 are useful also in the classification at species 

level. The fermentation behaviour on different carbohydrates can be conveniently 

carried out using the API kit system. However, with this kit, certain species are 

more easily recognised but others may need more sophisticated tools, based on a 

molecular approach. New tools for classification and identification of LAB are 

under development and the most promising ones are nucleic acid probing 

techniques, partial rRNA gene sequencing using the polymerase chain reaction, and 

soluble protein patterns. These developments will almost certainly become an 

important aid in the classification of LAB, as exemplified by the descriptions of 

new genera (Collins et ai, 1989b). 

2.4.2 Preservative components of LAB. 

One of the earliest food biopreservation methods recognised by our ancestors was the 

ability of weak organic acids, produced by LAB, to reduce spoilage and extend the 

life of many foods. These acids reduce the pH of foods to the extent that undesirable 

microorganisms present in the raw materials, or introduced during subsequent 

handling, either fail to multiply or do so at a reduced growth rate. In addition, some 

strains of LAB also produce other inhibitory substances although in much smaller 

amounts. These include hydrogen peroxide, diacetyl and bacteriocins which have 

potential to inhibit a variety of other microorganisms (Daeschel, 1989; Vuyst and 

Vandamme, 1994b). 
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Table 2.9: Differential characteristics of lactic acid bacteria"(from Axelsson, 1993). 

Rods Cocci 

Lac(oc. 
Characteristic Carnob. Laccob. Aeroc. En/erae. Vagoc. LeucOIL Pedioc. Streptae. Tetragenoc. 

Tetrad formation + + + 
C02 from gluroseb 

± + 
Growth at lOoC + ± + + + + ± + 
Growth at 45°C ± + ± ± 
Growth in 6.5% NaCl NOd ± + + ± ± + 
Growth in 18% NaCI + 
Growth at pH 4.4 NO ± + ± ± + 

v. Growth at pH 9.6 + + + 0 
Lactic acidc 

L O,L,OL< L L L 0 L, OL< L L 

a +, Jniitive; _, negative; :t., res~nse varies between species; ND, not determined. 
b-rest for homo- or heterofermenlation of glucose; negative and positive denotes homofcrmentalivc and hctcrofcrmenlative. respectively. 
cConl'iguration of lactic acid pnxJuced from glucose. 
dNo growth in 8% NaCl has been reportoo. 
eproduction of D·, L-, or DL-Iactic acid varies between species. 



In this section, the preservative components of LAB are divided into two types, 

fermentation end products and bacteriocins and are considered separately. 

2.4.2.1 Fermentation end products. 

i) Organic acids. 

The major metabolite of LAB is lactic acid which is primarily responsible for the 

lowering of environmental pH. In addition to lactate, other organic acids are also 

formed, for example acetic acid, formic acid and succinic acid (Schleifer and 

Ludwig, 1995). The high amounts of weak acids produced by these bacterial genera 

reduce the pH of the environment considerably and inhibit or reduce the growth of 

many bacteria, including those that cause food spoilage and foodborne diseases 

(Earnshaw, 1992; Ray and Sandine, 1992; Mayra-Makinen and Bigret, 1993), Gram 

negative bacteria being the most susceptible to the inhibitory effect of lactic acid 

(Ray and Sandine, 1992). 

The antimicrobial effects of the organic acids are produced through the 

destabilisation of different functional and structural components of cells (Ray and 

Sandine, 1992). Their antimicrobial action appears to be the result of the ability of 

the undissociated weak organic acid molecules to penetrate the bacterial plasma 

membrane (Adams and Hall, 1988). The lipid bilayer membrane of bacteria is quite 

permeable to lipophilic acetic, propionic and lactic acids and this facilitates their 

diffusion into the cytoplasm. The internal pH of the bacteria being relatively 

alkaline, and the acids being highly soluble in the internal aqueous environment, the 

undissociated molecules will dissociate, producing protons and anions. The 

buffering capacity of the cytoplasmic materials will tend to prevent reduction of 

internal pH by neutralising some protons. When protons exceeding the buffering 

capacity are produced, they are transported out through the membrane-bound proton 

pumps, thus depleting the energy reserves. As the energy reserve is limited, proton 

extrusion through proton pumps stops, causing a lowering of iritemal pH, which in 

turn denatures proteins and destabilises other structural and functional components of 

cells and interferes with viability and growth (Ray and Sandine, 1992). Thus, the 

antimicrobial effect of the weak acids is principally produced by the undissociated 
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molecules through the acidification of cytoplasm, destruction of the transmembrane 

proton motive force, and loss of active transport of nutrient through the membrane. 

The antimicrobial effect of a weak organic acid depends upon the dissociation 

constant (pKa value) and the pH of the external medium (Vuyst and Vandamme, 

1994b). For example acetic acid (pKa = 4.74) is generally a more effective inhibitor 

than lactic acid (pKa = 3.85) at the same pH value, since a greater proportion would 

be undissociated (A dams and Hall, 1988; Davidson and Hoover, 1993, Vuyst and 

Vandamme, 1994b). The antimicrobial efficiency of weak acids also increases as the 

pH is reduced. The majority of spoilage bacteria and pathogens that are present in 

meat mixes are inhibited more effectively by the rapid attainment of low pHs by the 

use of starter cultures (Adams et aI., 1987). In general, fermentative bacteria such as 

lactic acid bacteria, have thc ability to grow and survive at a lower pH than do the 

respiring bacteria (Ray and Sandine, 1992). 

ii) Hydrogen peroxide. 

Hydrogen peroxide (H20 2) is generated by different mechanisms by certain 

lactobacilli during growth (Mayra-Makinen and Bigret, 1993). Many fermentative 

bacteria, including lactic acid bacteria produce hydrogen peroxide as a mechanism 

for protecting themselves against oxygen toxicity (Daeschel and Penner, 1992). In 

the presence of oxygen, lactic acid bacteria produce hydrogen peroxide through 

electron transport via flavin enzymes (Figure 2.6). Thus hydrogen peroxide may be 

synthesized from NADH, pyruvate, and even lactate by NADH oxidase, pyruvate 

oxidase and lactate dehydrogenase respectively (Vuyst and Vandamme, I 994b). The 

observation of hydrogen peroxide production and accumulation was most often 

associated with the lactobacilli in contrast to the other lactic genera (Daeschel and 

Penner, 1992). For example, Lactobacillus bulgaricus and Lactobacillus lactis 

inhibited the growth of Staphylococcus aureus (Davidson and Hoover, 1993) and 

inhibition of Pseudomonas spp. by Lactobacillus plantarum (Vuyst and Vandamme, 

I 994b ). Hydrogen peroxide is an effective antimicrobial by virtue of its oxidising 

potential. The mechanism is thought to be of the generation of a toxic hydroxyl 

radical which is very active and will react and damage essential cellular components 

such as membrane lipids and DNA (Daeschel and Penner, 1992). However, since 
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lactic acid bacteria are catalase negative (i.e. unable to remove hydrogen peroxide) 

there will be accumulation of hydrogen peroxide in the growth medium of such 

bacteria which will eventually reach autoinhibitory levels. 

NAOH + H' + H,O, 
NAOII rcro~;da.., 

NAO'+2H,0 

p ... ,uvah, ,",un.., 
pyruvate + phosphate + O2 . Tf'I'.I"'AD acetyl·phosphate + CO2 + H20 Z 

a·glycerophosphate + 0, 
u·gh'~"r0l"h"~,,hnl" .. ,id".., 

. dihydroxyacetone·phosphate + H,O, 

lactate + O2 pyruvate + H,O, 

Figure 2.6: Enzymes of lactic acid bacteria involved in oxygen metabolism (from 

Vuyst and Vandamme, 1994b). 
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iii) Carbon dioxide. 

The preservative effect of carbon dioxide-enriched atmosphere on plant products has 

been known since 1917 and was first put into commerciai use in 1928 (Jay, 1992). 

Since then it has been used to prevent fungal rotting in stored fruits. Carbon dioxide 

is also inhibitory to bacterial growth. Gram-negative bacteria are more sensitive to 

carbon dioxide than Gram-positive, with pseudomonads being among the most 

sensitive and the LAB and anaerobes being the most resistant (Jay, 1992). The use of 

carbon dioxide to preserve other food products has also been reported and these 

include, meat carcasses, vacuum packed meat, fish and shellfish products (Jay, 

1992). Although carbon dioxide has long been known to be an inhibitor of certain 

microorganisms there is still no clear understanding of how inhibition is achieved 

(Dixon, and Kell, 1989). 

iv) Diacetyl. 

Citrate fermentation produces diacetyl (2,3 butanedione), a common property 

amongst lactococci (Lactococcus lactis) and lactobacilli (Lactobacillus brevis)and 

leuconostocs (Leuconostoc cremoris) and is an attribute of dairy starter cultures 

which confers a desirable buttery flavour in certain products (Earnshaw, 1992; Ray, 

1992). The compound has long been known to be inhibitory and Jay (1992) reported 

that 200 Ilglml diacetyl inhibits yeasts and Gram-negative bacteria. However, the 

effective concentration for diacetyl is too high for it to play a major role in natural 

preservation or as an added biopreservative (Davidson and Hoover, 1993). Its role 

in the combination of inhibitors produced by LAB, however, is undoubtedly 

important (Ray, 1992). 

2.4.2.2 Bacteriocins. 

Bacteriocins are microbially produced proteins with a lethal effect on other, often 

closely related bacteria (Eamshaw, 1992). Lactic acid bacteria have been found to 

produce a variety of such compounds, many of which have been isolated and 

characterised (Vuyst and Vandamme, 1994b). The most widely known is nisin, a 

polypeptide produced by strains of Lactococcus lactis. Nisin is perhaps one of the 

best natural preservatives and has been proven to be non-toxic (Frazer et at., 1962). 
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In the UK, nisin is now permitted as a preservative in certain foods, ego cheese and 

clotted cream, and canned foods (Eamshaw, 1992; Jay, 1992) where it is known to 

effectively prevent the growth of Clostridium botulinum spores and Listeria 

monocytogenes (Mayra-Makinen and Bigret, 1993). Nisin has a narrow spectrum of 

inhibitory activity affecting only Gram-positive bacteria including lactic acid 

bacteria, streptococci, and bacilli. It does not generally inhibit Gram-negative 

bacteria, yeast, or moulds (Davidson and Hoover, 1993). Commercial production of 

nisin started in 1950s and it is currently available under the trade name Nisaplin 

(Earnshaw, 1992). 

Although not so intensely studied, and not used as food preservatives, many other 

lactic bacteriocins have also been described, for example, diplococcin produced by 

Lactococcus lactis ssp. cremoris, lactocin by Lactobacillus sp., pediocin by 

Pediococcus sp. and plantaricin by Lactobacillus plantarum (Earnshaw, 1992). 

Mechanisms controlling the synthesis and production of bacteriocins are generally 

unknown, however, it can be hypothesised that they are produced under conditions of 

ecological stress to function as a survival mechanism (Eamshaw, 1992). In the 

coming decade it is likely that progress in bacteriocin research will result in a whole 

generation of food preservatives and processing aids that provide economic and safe 

alternatives to the current range of chemical preservatives. 

2.4.3 Applications of lactic acid fermentation (LAF). 

Fermented foods have been produced for hundred of years by the use of LAB. 

Historically, the primary role of LAB in fermented foods was one of preservation. 

With the advent of modern processing and preservation techniques, their modified 

role is now to provide variety in the food supply. They carry out this function by 

altering the flavour, texture, and appearance of raw commodities in a desirable way 

(Platt, 1987; Davidson and Hoover, 1993; Steinkraus, 1996). Most of these 

fermentations have been spontaneous due to indigenous LAB or have been initiated 

by the addition of small portions of already fermented products known as "back 

slopping". Nowadays the production of fermented foods is generally much more 

55 



11 

industrialised using commercially produced starter cultures. Products which have 

low concentrations of naturally occurring LAB such as fish and shellfish, will require 

the addition of starter cultures to ensure successful preservation (Jepperson, 1993). 

Nonetheless, the following conditions have to be met if optimization of the LAF is to 

be obtained (Deschamps, 1993): 

i) rapid anaerobiosis 

ii) the use of strains with high acidification capacity such as homofermentative 

ones 

iii) concentration of starter cultures must be high enough to balance and compete 

with the endogenous microflora (usually 105 to 108 cfu/ml or g) 

iv) decreased water activity 

v) maintenance of temperature suitable for the microorganisms 

vi) control of the nutritional requirements or accessibility to fermentable sugars by 

the LAB which may be obtained by adding fermentable sugars, enzymes, 

growth factors (vitamins or amino acids) or mixing. 

The applications of LAF are widely distributed ranging from food to animal feed 

production. Most of the fermentations are conducted to preserve fresh, surplus 

commodities and to increase shelf life and flavour while others make use of LAF to 

preserve and upgrade waste products to produce suitable ingredients for animal feeds. 

Some may involve one particular strain of LAB while others may be fermented by a 

series of LAB. Some of the main applications of LAF are shown in Table 2.10: 

T bl 210 A r a e \pplIcatlOns 0 fl achc aCl ermentatlOn. 
Substrate Products References 
Fish silage Animal Feed Beddows, 1985; Wyk & Heydenrych, 1985; 

Lindgren & Pleje, 1983; 
Dairy products Fermented Food Mavra-Makinen & Bigret, 1993 
Fish Fermented Food Twiddy et al., 1987 
Meat Fermented Sausages Egan, 1983; Vignolo et al., 1993 
Plant Straw Animal Feed Hrubant, 1985; Woolford, 1985; 

Tanaka et at., 1994 
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2.4.4 Lactic acid fermentation of shellfish waste. 

Shellfish waste, produced via various commercial processing operations, comprises 

mainly heads and claws, is rich in chitin and protein and contains a substantial 

amount of calcium carbonate. The heads may contain many active and useful 

enzymes if the waste is kept in a well preserved state. Traditionally such by products 

are usually discarded or kiln-dried into a meal for use into a variety of livestock and 

aquaculture diets (Meyers and Benjamin, 1987). 

The adoption of LAF to shellfish waste in an attempt to purify chit in is a unique 

example of the application of LAF processes. This is because, in the fermentation of 

shellfish waste, the production of acid will have a dual effect on the substrate: that of 

preserving the waste material by lowering the pH, and of dissolving the calcium 

carbonate, thus enabling a certain degree of purification of the chitin solids. The acid 

conditions also promote the indigenous enzymes to break down proteinaceous 

material from the waste, forming a protein-rich liquor (Hall and De Silva, 1992). 

These two main processes, i.e. the removal of calcium carbonate and protein from the 

shellfish waste represent the two main processes involved in the traditional chitin 

purification industry (Simpson et al., 1994). These processes which are traditionally 

carried out by a chemical method, utilise large amounts of acid and alkali which are 

discarded as effluents from the process. By using the biological approach of LAF in 

a solid state fermentation, it is envisaged that this method of purification or partial 

purification will reduce the use of vast amounts of corrosive chemicals and by­

products such as the protein liquor could be recovered. 

Pioneering work on LAF of shellfish waste for chitin recovery has been initiated by 

the Food and Biotechnology Group at Loughborough University and has produced 

some encouraging results with tropical species, Peneaus monodon (Hall and De 

Silva, 1992). In this process, glucose and LAB were added to minced waste in a 

closed container, and a rapid acidification occurred bringing the pH down to 5.0 

within 48 hours. The acid environment preserved the waste, and allowing indigenous 

enzymes to solubilise the protein, forming a protein-rich liquor in a relatively short 

time. The lactic acid also dissolves the calcium carbonate from the waste, producing 
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copious amounts of carbon dioxide. The carbon dioxide-rich environment further 

helps to reduce spoilage and stimulates growth of LAB (Jay, 1992). The protein 

liquor can be sun-dried and used as an animal feed ingredient and the chit in can be 

recovered for further processing. 
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2.5 Bioreactors in solid state fermentation. 

Solid state fermentation (SSF) is one of the oldest, and remains one of the most 

economical, methods of producing and preserving foods (Steinkraus, 1983; 

Tangerdy, 1985). Such processes have been used extensively in Oriental and African 

countries for the production of fermented foods, starter inocula for fermented brews, 

mushrooms, dough fermentations, silages and compost. In recent years, a new 

awareness of the importance of biological materials as renewable resources for the 

production of energy and feed, and as an important source of chemical feedstocks has 

revived the interest in this most ancient form of fermentation (Tangerdy, 1985). 

Substrates traditionally fermented in the solid state include a variety of agricultural 

products, such as rice, wheat, millet, barley, corn and soya beans as well as non 

traditional substrates which include agricultural, forest and food-processing wastes. 

2.5.1 Definition of a solid state fermentation. 

The term "solid-state fermentation" is generally defined as any fermentation process 

in which the moist, water-insoluble solid substrate is fermented by microorganisms 

in the absence of excess water (Mitchell and Lonsane, 1992). While Hesseltine 

(1972) simply used the term SSF to describe any fermentation in which the substrate 

is not liquid, Aidoo et al. (1982) in their review reserved the term "solid-state 

fermentation" for any fermentation that takes place on solid or semisolid substrate or 

that occurs in a nutritionally inert solid support which provides some advantage to 

the microorganisms with respect to access to nutrients. The term cannot be applied 

to fermentation on solid materials suspended in a liquid phase or to fermentation in 

media comprising a high concentration of insoluble particles (Durand and Chereau, 

1988). SSF are distinguished from submerged fermentations (SF) by the fact that 

microbial growth and product formation occur at or near the surfaces of solid 

materials with low moisture contents. This kind of growth on solid surfaces is a 

characteristic of fungi that decay organic matter, food and feed materials, and of 

some bacteria involved in composting and ensilation (Tangerdy, 1985). 
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2.5.2 The advantages and disadvantages of a solid state fermentation. 

Several papers have reviewed the numerous economical and practical advantages of 

SSF over SF (Hesseitine, 1972; Lonsane et aI., 1985; Mitchell and Lonsane, 1992). 

The advantages of SSF include the following: 

i) fermentation vessels remain small, since little water is used and the substrate 

is concentrated. 

ii) low moisture reduces the problem of contamination. 

iii) conditions for growth are similar to those in natural habitats. 

iv) aeration is facilitated by spaces between substrate particles and particle 

mixing. 

v) product yields may be much higher than those III liquid media and are 

reproducible. 

vi) products may be incorporated directly into animal feeds. 

vii) relatively low level of technological complexity and corresponding low capital 

investment. 

viii) reduced energy requirement. 

ix) low wastewater output. 

x) elimination of foam problems. 

On the other hand, Lonsane et al. (1985) and Durand and Chereau (1988) point out 

some of the limitations that may be encountered in SSF such as: 

i) difficulties in fermentation control (heat build-up, control of moisture level of 

substrate, control of aeration). 

ii) lack of microbiological knowledge relating to the physiological and growth 

mechanisms on solid materials. 

iii) types of organisms are limited to those which can grow at reduced moisture 

levels (fungi, some yeasts and bacteria). 

iv) lack of technological knowledge of suitable equipment even at the laboratory 

scale. 

v) problems in scaling-up. 
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Some of these problems such as i) and v) may be overcome by using an appropriate 

bioreactor. Although many SSF involve the use of fungi and yeasts, bacteria such as 

the LAB have been used in many SSF processes. 

2.5.3 Factors affecting the design of a bioreactor. 

In any fermentation processes, the bioreactor provides the environment for the 

growth and activity of the microorganisms which carry out the biological reactions. 

An ideal fermenter should have several characteristics; in particular the material of 

construction should be non-toxic and able to withstand hydraulic and pneumatic 

pressures (Pandey, 1991) and it should not be affected by chemical corrosion. There 

should be proper arrangements for aeration/agitation, with sampling, charging and 

discharge ports. Although there are numerous designs for industrial ferrnenters using 

liquid or submerged fermentations (SF), only limited developments have been made 

in processes using SSF. Process parameters are crucial in the design of SSF 

bioreactors. Mitchell et aI., (1992) described some of the important considerations as 

follows: 

i) whether mixing is required and how it will be achieved. 

ii) the degree of aeration necessary. 

iii) the substrate type and its properties and further handling of products. 

iv) sterilisation and the prevention of contamination. 

v) the mode of process operation. 

In this section, those considerations that are considered relevant to the 'lactic acid 

fermentation' are further elaborated, based on other SSF processes. 

2.5.3.1 Agitation. 

SSF processes can be divided into three groups based on the mixing regime that is 

used: static, periodically agitated and continously agitated. The requirement of 

agitation in SSF systems is governed by the type of process, reactor design and the 

product concerned. For example, tray fermentations are usually carried out in static 
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conditions while the production of aflatoxins, and enzymes are greatly enhanced in 

agitated systems (Lonsane et aI., 1992). Processes involving filamentous organisms 

will require the use of intermittent rather than continous agitation to prevent damage 

and disruption of mycelial attachment to solids. 

In general, agitation facilitates the maintenance of homogeneous conditions, 

preventing any localised changes within the bioreactor, especially with respect to the 

temperature and the gaseous environment (Mitchell et al., 1992). In addition, 

agitation facilitates the uniform distribution of any additives which may be 

introduced during the process. Depending on the substrate properties, agitation may 

prevent or encourage the agglomeration of solids. In periodically agitated SSF, the 

agitation serves to replenish the interparticle spaces with fresh air. The frequency of 

mixing required depends on the substrate properties such as particle size and shape. 

It also governs the rate of growth of organisms and the associated production of 

metabolic heat. Shear forces in SSF are complex and are therefore difficult to 

characterize and this might explain why relatively few studies have been devoted to 

this area. 

In SSF, where the substrates are either solid or semi solid in nature, paddle impellers 

which work well with liquids, are unable to provide sufficient mixing of the 

substrates. Paddle impellers are largely rotational and fail to provide top to bottom 

mixing (Godfrey, 1985). For this reason, more complex design such as the helical 

ribbon (see Figure 2.7a) and helical screw (see Figure 2.7b) which are generally used 

in mixing highly viscous liquids (Godfrey, 1985), were adopted by various workers. 

These types of mixers can also minimize the deleterious effects of mixing. A 

promising design is the helical screw fermenter, used by Tangerdy (1985) for batch 

and continous fermentation of wheat straw by Chaetomium cellulolyticum. The 

impeller used was a combination of helical screw and helical ribbon (see Figure 

2.7c). This configuration apparently avoids compacting the substrate and does not 

damage the mycelia by shearing and provides a thorough mixing. Helical screws can 

also be used horizontally (refer Figure 2.7d) and in this way, instead of moving the 

substrate from bottom to top, it merely relocates the substrate from one end to the 
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other (Edwards, 1985). The balance between the advantageous and the 

disadvantageous effects of mixing will differ in different substrate-microorganism­

reactor SSF systems. In any case, agitation should only be provided as necessary, 

and periodic agitation is usually sufficient (Mitchell et al., 1992). 

(a) Helical ribbon 

(c) Combination of helical ribbon & screw 

_draft 
tube 

(b) Helical screw with draft tube 

Cd) Helical ribbon mounted 

horizontally 

Figure 2.7: Different types of mixers 
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2.5.3.2 Mode of reactor operation. 

Most SSF applications involve batch culture (Mitchell et aI., 1992). Effective 

implementation of fed-batch or continuous techniques at large scale will require the 

application of automated solids-handling techniques. Continuous processes are 

usually stirred tanks where fresh substrate is mixed homogenously in with cultured 

substrate with equal amounts of this mixture removed at an outlet. These processes 

are obviously only possible in agitated systems. 

2.5.3.3 Substrate Type. 

In general, substrates for SSF are relatively unprocessed agricultural products or by 

products. For many processes substrates are chosen because they are cheap, or 

because they would otherwise be discarded as wastes (Mitchell et al., 1992). For 

SSF at the rural level the production site is usually situated close to the source of the 

substrate to minimise transportation costs. 

Pretreatment may be necessary in SSF in order to convert the raw substrate into a 

form suitable for use. Besides size reduction, by either grinding, rasping or 

chopping, other pretreatments may include cooking, supplementation with nutrients 

or chemical or enzymatic hydrolysis of the polymeric substrate (Mitchell et al., 

1992). Particle size of substrate is extremely important since it affects the surface 

area to volume ratio of the particle and the packing density within the substrate mass. 

In SSF the microorganism is introduced onto the particle surface and therefore 

initially attacks the exposed substrate. The surface area to volume ratio determines 

the fraction of the substrate which is initially accessible to the microorganism. This 

fact becomes very important especially when the substrate is to be preserved by the 

fermentative action of the microorganism. The particle size will also affect how the 

substrate packs together, and therefore the void fraction. Loose packing is essential 

in aerobic SSFs to enable the interparticle diffusion of oxygen (Mitchell et aI., 1992). 

However, particle size reduction is costly, so the largest size which allows an 

acceptable fermentation is the probably the best and this will vary for different 

systems. 
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2.5.4 General types of bioreactors used in SSF. 

2.5.4.1 Tray bioreactors. 

Tray fermenters are the simplest of all types of fermenters and may be wooden, 

metallic or plastic (Pandey, 1991; Mitchell et al., 1992). The bottom part is 

perforated in such a way that it holds substrate and allows aeration of the 

undersurface of the substrate. Usually, trays are arranged one above the other with a 

suitable gap between trays. The fermentation is carried out in a chamber where a 

controlled humidity atmosphere is created. The temperature of the fermenting 

substrate is controlled by circulating warm or cool air as necessary. A typical tray 

arrangement can be seen in Figure 2.8a. 

Traditionally, most SSFs are conducted in shallow trays and the use of Soy Sauce 

Koji in the far East goes back possibly 3000 years (Pandey, 1991). Miso, a 

fermented food in Japan, China, Taiwan, the Philippines, Indonesia and in the Orient 

has also traditionally been prepared in shallow pans. Tempeh is yet another 

important solid-state fermented food used in Indonesia, New Guinea and Surinarn 

and is prepared traditionally in shallow trays (Pandey, 1991). 

Tray fermenters, however, need a large operational area, are labour intensive and this 

design does not lead readily to mechanical handling (Mitchell et al., 1992). The 

substrate also requires separate sterilisation/cooking and these fermenters are 

therefore characterized as being of high cost (Pandey, 1991). 

2.5.4.2 Drum bioreactors. 

Drum bioreactors basically consist of a drum-shaped container mounted horizontally 

on a system of rollers which act both as support and as a rotating device (Figure 

2.8b). The drum is rotated around its central axis to cause a tumbling motion of the 

substrate. Alternatively, a clock mechanism can be used for periodic rotation of the 

drum and a low rate of rotation (1 - 15 rpm) is usually applied (Lonsane, et aI., 

1985). The kind of container used depends upon the volume of the fermentation that 

is to be carried out. These range from laboratory scale Fernbach flask (Pandey, 

1991), to cement mixers for large scale work (Lonsane et aI., 1985). Improvements 
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have been made by providing internal baffles (Kargi and Curme, 1985) or by 

sectioning the fermenter into three or four parts (Hesseltine, 1977). Growth of the 

microorganisms in this type of bioreactor is considered to be rapid and more uniform 

than in tray fermenters (Pandey, 1991). One disadvantage, apart from handling 

difficulties with large-size drums, was the aggregation of substrate particles into 

balls. 

2.5.4.3 Column or packed bed bioreactors. 

This consists of a glass or plastic column enclosed at both ends (Figure 2.8c). Small 

columns can be placed in waterbaths for temperature control while larger columns 

can be water jacketed (Pandey, 1991). The column is filled with the substrate and 

supported on a perforated plate through which air is admitted as shown in Figure 2.8c 

(Mitchell, et al., 1992). Column fermenters have most commonly been used in 

laboratory studies (Pandey, 1991; Castaneda et al., 1992). 

The advantage of packed bed bioreactors is that they remain relatively simple while 

allowing better process control than is possible with trays (Mitchell et aI., 1992). 

However, difficulties may arise when emptying the final product from the bioreactor 

(Lonsane et al., 1985). 

2.5.4.4 Stirred bioreactors. 

Stirred bioreactors are of two mam types depending on whether the axis of the 

bioreactor is horizontal or vertical. Horizontal stirred bioreactors (Figure 2.8d) are 

quite similar to rotating drum bioreactors except that the mixing is provided by an 

internal scraper or paddles, rather than by rotation of the body of the bioreactor 

(Mitchell et al., 1992). Vertical stirred bioreactors are often subjected to forced 

aeration. They differ from packed bed bioreactors by the fact that they are agitated, 

and this may be either continous or intermittent (Mitchell et aI., 1992). 

Viesturs et al. (1981) conducted a SSF of wheat straw by Chaetomium ceIlulolyticum 

and Trichoderma lignorum, using a horizontal Plexiglas cylinder with paddlelike 

stirrers. The fermenting mass was mixed initially with the stirrers for 1 minute, 
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thereafter, the stirrers were intermittently switched on for 1 second, for a full rotation. 

They compared SSF with SF using shake flask cultures, and noted that SSF is as 

efficient as SF but the added advantage of using SSF was that the solids content in 

SSF was ten times greater than in SF. 

Durand and Chereau (1988) used a pilot-scale vertical stirred bioreactor for protein 

enrichment of sugar beet pulp. The reactor had a capacity of one ton and consisted of 

a reactangular box kiln, built of stainless steel. There were three vertical screws 

which moved the pulp forward and backward along the entire length. 
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(a) Typical koji room for industrial scale operation with tray bioreactors. Key: I. Koji room; 2. Water 
valve; 3. Germicidal UV tube; 4. Humidifier; 5. Air blower; 6. Filter; 7. Air blower; 8. Air heater; 9. 
Air filter; 10. Air blower; 11. Air inlet; 12. Air outlet; 13. Air circulation loop; 14. Tray holders; 15. 
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(b) Typical large scale design for a rotating drum bioreactor. Key: 1. Air inlet; 2. Rotating joint; 3. 
Coupling; 4. Air line nozzles; 5. Air line; 6. Rollers; 7. Rotating drum; 8. Moist solids; 9. Rim. 

Figure 2.8: Bioreactor designs in solid state fermentation. 
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(c) Typical laboratory-scale packed bed reactor. Key: I. Stainless steel mesh; 2. Glass wool; 3. Filter 
paper disc; 4. Cotton wool; 5. Flange; 6. Air inlet; 7. Water; 8. Humidifier; 9. Moist solids. 
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(d) Typical design for a stirred horizontal bioreactor. Key: I. Air inlet; 2. Port for probes; 3. Water 
jacket; 4. Paddles; 5. Air outlet; 6. Motor; 7. Vessel body; 8. Moist solids; 9. Central shaft. 

Figure 2.8: Bioreactor designs in solid state fermentation. 
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CHAPTER 3 

MATERIALS AND METHODS 

3.1 Microorganisms (lactic acid bacteria). 

All lactic acid bacteria (LAB) used in the fermentation experiments were isolated in 

the Food and Bioprocessing laboratory (Loughborough University) from the various 

fermented shellfish waste sources mentioned below (3.2.1). 

3.2 Materials. 

3.2.1 Shellfish waste. 

Whole frozen prawns from Thailand and India were purchased from a local market, 

and their heads, claws and shell were removed by hand. The waste (all components 

other than the meat) from these tropical prawns was used to isolate lactic acid 

bacteria. 

For the chitin purification studies, scampi (Nephrops norvegicus) waste containing 

the heads and claws, obtained from Norfish Ltd., Sunderland, was used. Frozen 

waste was minced using an industrial mincer (model E 4522, Hobart, Southgate, 

London) with a mincer plate having holes of 6.0 mm diameter and was stored in 

approximately 1.0 kg amounts in plastic bags at - 20°C until required. 

3.2.2 Media for lactic acid bacteria. 

For the isolation of lactic acid bacteria, commercial MRS (Oxoid, Unipath Ltd., 

Basingstoke, Hants) and APT (Difco, Michigan, USA) broths were used (see 

Appendix 3.1 for preparation and content of broths and agar plates). 

3.3 General methods. 

3.3.1 Isolation and screening for potential LAB from shellfish waste. 

LAB was isolated from fermented shellfish waste as described below. As the 

isolated strains were intended to be used as a starter culture in the fermentation of 

shellfish waste, isolation from a successfully fermented waste will ensure that well 

acclimatised strains are obtained (Jepperson, 1993). 
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Isolation. Slightly thawed waste (10.0 g) was minced with a domestic mincer 

(Model N70S, Salter, Kent) and thoroughly mixed with 10 % (w/w) glucose. The 

mixture was incubated at 30°C in a lightly screw-capped Universal bottle to allow 

release of any gas that might be evolved during fermentation and so prevent the 

bottles from cracking. When the pH had dropped to a pH of S.O or less, samples of 

the silage were taken and a serial dilution made with sterilised PBS (Sigma). A rapid 

pH drop within 24 to 48 hours was taken as an indication of a good fermentation 

(Hall and De Silva, 1992). Aliquots of 0.1 ml of each dilution were spread onto APT 

and MRS agar plates. Both plates were incubated aerobically as well as under 

enriched carbon dioxide gas sealed in a plastic bag, at 30°C for between 24 and 48 h. 

Small, isolated whitish colonies, typical of LAB (Collins et al., 1989a) were 

randomly subcultured from plates containing less than 300 colonies, into APT and 

MRS broth (3.0 mI in bijou bottles) and the broths incubated at 30°C for between 24 

and 48 hours. The bacteria were then purified by plating on APT or MRS agar 

depending on which of the two broths they grew best in. Isolates which were Gram­

positive and catalase - negative rods or cocci (Sharpe, 1979) were taken as LAB and 

were further screened and identified. Several replicates of an 18 hour pure culture 

(MRS broth) were distributed in sterile Eppendoff tubes containing IS % glycerol 

(Kandler and Weiss, 1986) and were kept as stock culture at - 20°C. Several working 

cultures on MRS slants were also prepared and kept at 4°C and were subcultured 

every two months from a newly opened stock culture in order to preserve activity. 

Screening. This experiment was conducted to screen for potential strains on the 

basis of its ability to ferment extract of sterile scampi broth (Hall et al., 1994). To 

prepare the inoculum, purified LAB strains from agar slants were grown in MRS 

broth (3.0 mL) and incubated at 30°C for 24 h. The bacteria was sub-cultured (2 % 

v/v, inoculation) into MRS broth (10.0 mL) and incubated for 18 - 24h and this 

culture served as the inoculum for the screening experiment. Sterilised aqueous 

extract (IS.0 ml) of scampi waste (see Appendix 3.2 for preparation of scampi 

extract) containing 2 % glucose (v/v) was inoculated (2 % inoculation) with the LAB, 

lightly screw-capped and incubated at 30°C in a water bath for 48 hours. 
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Measurements of pH were taken regularly throughout the fermentation period and 

strains which showed the lowest pH within 48 hours were chosen and identified. 

3.3.2 Identification of lactic acid bacteria. 

Identification of LAB was done using a series of biochemical tests (Collins et aI., 

1989a) and the determination of the carbohydrate fermentation pattern with API 50 

Lactobacillus Identification System (API, Bio-Merieux, Basingstoke) was conducted 

according to the manufacturer's instructions. 

3.3.2.1 Morphological and biochemical observations. 

i) Preparation of inoculum. 

Inoculum was prepared as in screening (page 71). The cells were harvested by 

centrifugation and resuspended in physiological saline and this served as the 

inoculum for all the biochemical tests requiring liquid cultures unless otherwise 

stated. All test broths were made with 2 % (v/v) inoculation (Mauguin and Novel, 

1994). 

ii) Hot loop test for C02 production. 

Gas production from glucose using the hot loop test was determined as described by 

Sperber and Swan (1976). Cultures were grown in APT broth and incubated at 30°C. 

After 24 hours, a heated (red hot) inoculating loop was plunged immediately into the 

culture. Gas evolution in a positive culture is usually copious but occasionally only a 

small stream of bubbles observed. Negative cultures were retested after an additional 

24 hours of incubation. The production of gas differentiates between 

homofermentative and heterofermentative LAB. 

Hi) Ammonia production from arginine broth. 

Cultures were incubated in arginine broth (see Appendix 3.3 for preparation and 

content of media) at two glucose concentrations, 0.05 % and 2 %, w/v (Mauguin and 

Novel, 1994) for 24 to 48 hours. A brown or orange colouration produced when a 

few drops of Nesslers Reagent (I: I) were added indicated hydrolysis and a positive 

arginine degradation. 
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iv) Salt tolerance: growth in 4 % and 6.5 % NaCI. 

Salt tolerance was used to differentiate among the cocci. The ability to grow in the 

presence of NaCl was tested in MRS broth containing 4 and 6.S % NaCl (w/v). 

Growth was monitored during the incubation period of three to four days at 30°C. 

v) pH tolerance: growth at pH 9.6 and 4.4. 

Growth at pH 4.4 and 9.6 was determined in sterile MRS broth. The broth was 

prepared without phosphate and pH adjusted appropriately before autoclaving. Most 

pediococci are more acid tolerant than the morphologically similar aerococci and 

growth at pH 4.4 can differentiate these two genera. 

vi) Growth at temperatures 10°C, 15°C and 45°C. 

Growth at lOoC, lSoC and 4SoC were observed using MRS broth (Collins et al., 

1989a). The temperatures of the broths were appropriately adjusted before 

inoculations. Results were read after 48 hours and for growth at lOoC, the results 

were read after an incubation period of up to 7 days. 

vii) Morphology, Gram reaction and catalase test. 

The morphology of the bacteria was observed with wet unstained preparations from 

an 18 hour culture in APT and MRS broth under a light microscope (Olympus, 

Tokyo). Rod-shaped cells were either that of Lactobacillus or Camobacterium while 

all other genera have a spherical shape. Tetrad formation indicated cell division in 

two planes belonging to the genera Aerococcus, Pediococcus or Tetragenococcus and 

was distinguished from all other cocci. Gram stain was determined according to 

Collins et al. (l989a). For the catalase test, a few isolated colonies from MRS plate 

were smeared on a clean slide with a sterile inoculating loop. A few drops of 

hydrogen peroxide were added over the smear and covered with a cover slip. 

Effervescence indicated the presence of catalase (Collins et aI., 1989a). 

3.3.2.2 API 50 CHL kit system. 

The API SO CHL (Bio-Merieux, Basingstoke) gallery allowed the simultaneous study 

of the fermentation of 49 sugars and sugar derivatives and was a quick way to 
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categorise and identify LAB. The gallery consisted of 50 microtubes containing a 

defined amount of dehydrated substrate (except the first one which acts as control) 

and was filled with the 50 CHL medium previously inoculated with the organism to 

be identified. The fermentation of the sugars were indicated by a colour change in 

the tube and was due to the anaerobic production of acid being detected by a pH 

indicator included in the 50 CHL medium. The results obtained made up a 

biochemical profile of the organism which was used in conjunction with a manual to 

identify the organism. 

To prepare the inoculum and the API strips. Two to three well isolated colonies 

from MRS plate (18 hours) were transferred into 2.0 ml sterile water, mixed well and 

this served as the inoculum. The API 50 CHL medium was inoculated with 0.5 ml of 

this inoculum. When distributing the inoculated API 50 CHL medium into the tubes, 

the pipette tip was placed gently against the side of the tube to avoid the formation of 

bubbles. The tubes were then overlayed with mineral oil to ensure anaerobic 

conditions, placed in an incubation tray and incubated at 30°C. Observations were 

made after 6 to 48 hours and the results compared to a standard strip. 

3.3.3 Determination of pH and total titratable acidity (TTA) 

pH. The liquor sample (2.0 ml) was pipetted into a 5 ml glass sampling bottle and 

stirred with a small magnetic follower. The pH was measured using a small standard 

gel pi as electrode (BDH Ltd., Poole, Dorset) of 3.0 mm diameter. 

TTA. Using the same sample as above, TTA was measured by titrating the sample 

against 0.1 M NaOH to a final pH of 8.0 as the end point (Adams et aI., 1987). The 

normal phenolphthalein indicator was not used to mark the end point for the titration 

as the brownish colour of the liquor made observation of any colour change difficult. 

Assuming that all acid was lactic acid, then 1.0 ml of 0.1 M NaOH was equivalent to 

0.009 g lactic acid (90 g/mol). Therefore, the percentage of acid is calculated as : 

[ Titrant x 0.009 I 
% ITA (w/v) = x 100 

Volume of sample 

74 



3.3.4 Determination of the moisture content (M) 

Moisture content was determined by accurately weighing approximately 1 - 2 g of the 

sample (W) in a silica dish of known weight (D) and the sample dried in an air oven 

at lO5°C for 16 hours (AOAC, 1980). After cooling in a dessicator for I hour, the 

weight of the dried sample and dish (Y) was taken and the moisture content 

calculated as : 

[W· (y. Dj] 
% M (w/w) = x 100 

w 

The same symbol (W) was applied in section 3.3.5. 

3.3.5 Determination of calcium content (pearson, 1976). 

To determine the calcium content the dried sample from the moisture content was 

used. The sample was charred over a bunsen burner in a fume cupboard to remove 

most of the fumes. After charring, the silica dish plus the contents, was placed in a 

muffle furnace at 550°C for 2 hours or until completely free from black carbon 

particles. After cooling, the ash was carefully moistened with distilled water before 

adding 5.0 ml of diluted hydrochloric acid (I: I dilution) to avoid vigorous frothing 

during the addition of acid. The silica dish was then placed on a boiling water bath 

until the contents were completely dried. A further 5 ml acid and 5 ml distilled water 

were added and warmed before filtering the solution into a 50 ml volumetric flask 

and making up to the mark with distilled water. The sample was further diluted (V) 

if necessary, before reading the absorbance at 422 nm (for Calcium) using an atomic 

absorption spectrophotometer (Model I lOO B, Perkin Elmer, Norwalk, U.S.A.) with 

air/acetylene flame. The program was in the "run" mode which gives readings of 

concentration (C) in mgIL. A series of calcium standards (I, 2, 3, 4, and 5 mgIL) 

were used to prepare a standard curve. The percentage of calcium in the sample was 

then calculated as : 

C (glml) 50 (V) 
% Ca (w/w) = x x 100 

1000 x 1000 W 

1 % Calcium = 2.5 % Calcium carbonate 
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3.3.6 Determination of Kjeldahl total nitrogen (TN) of the chitin sediment and 

the liquor. 

The Kjeldahl method for determining TN involved first heating the sample with 

concentrated sulphuric acid (digestion). An added catalyst accelerated the reaction. 

The oxidation caused the nitrogen to be converted to ammonium sulphate. After 

making alkaline with concentrated sodium hydroxide solution, the ammonia was 

distilled into excess of boric acid and is estimated by titration. 

Digestion. Estimation of total nitrogen content of the chitin sediment was made 

using the Btichi (323, 435, 412) Kjeldahl System (Btichi Laboratoriums-Technik, 

Switzerland). Dried sample (0.2 - 1.0 g) was accurately weighed and transferred to 

the digestion tube containing concentrated sulphuric acid (9.0 - 15.0 ml) and two to 

five tablets of catalysts (K2S04 + CUS04) and was digested until the solution turned 

green or light green in colour (about 30 to 60 minutes). The digestion tube and the 

contents were cooled slightly before being transferred to the distillation unit. 

Distillation. The program on the distillation unit was preset to allow automatic 

addition of distilled water for dilution and concentrated NaOH (32 %) to neutralise 

the mixture which turned black before distilling. If the solution did not turn black, 

more NaOH was added manually using a push button on the unit. The distillate was 

collected in 60.0 ml of Boric acid (2 %, w/v) containing methyl red and bromocresol 

indicator for 3 minutes (see Appendix 3.4 for the preparation of Boric acid). The 

distillate was titrated against 0.1 M HCI (standard solution) until a greyish end point 

was observed. The blank containing no sample (or filter paper where used) was 

determined and the titre deducted from the sample titre. The percentage nitrogen was 

then calculated as : 

14.01 X {sample titre - blank titre} x Molarity of acid 
% Total Nitrogen (w/w) = 

weight ofsample(g) x 10 

0,14 x {sample titre - blank titre} 
or % Total Nitrogen = 

weight of sample(g) 
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To determine total nitrogen content of the liquor, 1.0 g sample of the liquor was used 

with 2 catalyst tablets and 9.0 ml sulphuric acid. Percentages of TN of liquor were 

calculated as above and expressed as either wet or dry weight basis. The percentage 

of protein of the liquor was then calculated as TN x 6.25. 

3.3.7 Determination of chitin nitrogen (eN). 

Chitin nitrogen was also estimated by the Kjeldahl method, but after the sample had 

been acid and alkali treated (Black and Schwartz, 1950). A 250 ml beaker containing 

1.0 g (dry weight) or 2.0 g (wet weight) sample was placed on a boiling water bath 

with 100.0 ml of 5 % NaOH solution for 1.0 hour, with occasional stirring to remove 

the protein. After filtering through a Buchnel funnel with a filter paper (general 

purpose) and washing thoroughly with distilled water, the deproteinised sample was 

replaced in the water bath with 50.0 ml of 1.0 M HCI solution for 1.0 hour to remove 

calcium carbonate. The decalcified sample was again filtered and washed. During 

the filtration process, care had to be taken to avoid losses of material by using a 

slightly bigger-sized filter paper than the Buchnel funnel and gently pressed at the 

side to improve suction. In addition, in order to avoid losses of material, the filtered 

sample was transferred together with the filter paper into the Kjeldahl digestion tube. 

The filter paper was free from nitrogen and therefore did not affect the nitrogen 

determination. The rest of the procedure was the same as in the total nitrogen 

determination in 3.3.6. The percentage of chitin nitrogen was calculated as below 

and the percentage of chitin in the sample calculated by multiplying CN by 14.5, 

assuming that pure chitin has 6.89 % nitrogen (No et al., 1989). 

0.14 x Titre 
%CN = 

Weight of sample (g) 

% Chitin = % eN x 14.5 

3.3.8 Determination of corrected protein. 

Corrected protein was obtained by subtracting CN from TN and multiplying by 6.25, 

assuming that protein has 16 % nitrogen (Jay, 1992). 
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3.3.9 Determination of total soluble protein nitrogen (SPN). 

During autolysis meat and visceral protein liquefy and total visceral nitrogen 

comprises both soluble and insoluble fractions. Soluble nitrogen is composed of 

both soluble protein and simpler nitrogen products such as free amino acids and 

volatile nitrogen bases like ammonia. To determine total soluble protein and non 

protein nitrogen (3.3.10), the liquor was first centrifuged at 3000g for 20 minutes to 

remove any insoluble fractions. 

Total soluble protein (SP) was determined using the Bio-Rad reagent (Hempstead, 

Hertfordshire). Five protein standard solutions containing 0.2 to 1.0 mg/ml were 

prcpared from a frozen bovine serum albumin (Sigma) standard stock solution (2.0 

mg/m!). The liquor sample (0.5 ml, and weights taken, Mx) was appropriately 

diluted with distilled water (to contain about 0.1 - 1.0 mg/m! protein) to a final 

volume, V x. In clean test tubes, 5.0 m! of Bio-rad reagent (previously diluted with 4 

parts of distilled water) was added to each of 0.1 ml of standards, sample and a blank 

(distilled water). The mixtures were thoroughly mixed using a vortex mixer and left 

to settle for 15 minutes. The absorbance of standards and sample were read at 595 

nm using a UV!VIS spectrophotometer against the blank. The concentration of the 

protein (mg/ml) was deduced from a protein standard curve (see Appendix 3.5). The 

percent soluble protein was then calculated as: 

% SP = 
conc (mglml) x V x 

1000 x Mx (g) 

Also, % SPN = % SP 16.25 

x 100 

3.3.10 Determination of non protein nitrogen (NPN). 

Total soluble visceral nitrogen comprises protein and non-protein components. As a 

preliminary to the measurement of non protein nitrogen, residual undigested protein 

and soluble protein were removed from the samples by precipitation following the 

addition of 20 % (w/v) trichloroacetic acid (Adarns et aI., 1987). The NPN was then 

determined by the Kjeldahl method of the supematant liquid. 
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2.0 g of liquor (N) was mixed with 4.0 ml trichloroacetic acid (20 %) using a vortex 

mixer and centrifuged at 3000g for 15 minutes. The supematant was pipetted and its 

volume measured (v). An aliquot of the supematant (3.0 ml) was used and the 

nitrogen content determined by the Kjeldahl method. The percentage NPN was 

calculated as: 

0.14 x Titre x (v) 
%NPN = 

3.0 x N 

3.3.11 Determination of glucose content by Somogyi-Nelson Method. 

Glucose content was determined according to the method of Somogyi and Nelson 

(Pearson. 1976). The method is based on the reaction of cuprous oxide with 

arsenomolybdate reagent, which is prepared by reacting ammonium molybdate 

«NH4)6M07024) and sodium arsenate (Na2HAs07) in sulphuric acid. Oxidation of 

cupric to cuprous by reducing sugars, with concomitant reduction of the 

arsenomolybdate complex, produces an intense blue-coloured solution (due to the 

reduced arsenomolybdate) that is very stable. The absorbance of this solution was 

determined at either 510 nm. Sodium sulphate was included in the reaction mixture 

to minimise the entry of atmospheric oxygen into the solution, which would cause 

reoxidation of cuprous oxide. The calibration curve depends to some extent on the 

sugar being estimated, so the method is not suitable for the determination of a 

complex mixture of reducing sugars. Protein must be removed before proceeding 

with the determination, and this was carried out using zinc hydroxide as the protein 

precipitant to give a neutral protein-free solution. 

Precipitation. Any interfering material such as protein was first removed by adding 

1.5 ml distilled water to 0.1 ml sample (diluted beforehand, if necessary), followed 

by 0.2 ml Barium hydroxide and 0.2 ml Zinc sulphate solution. The mixture was 

thoroughly mixed and centrifuged at 3000g for 20 minutes. The supernatant was 

used for the glucose analysis. 
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Colour development. Five glucose standard solutions containing 20 to 100 Jlglml 

were prepared from a glucose standard solution (Sigma) of I mg/ml. 1.0 ml of 

Copper reagent (see Appendix 3.6) was added to each of 1.0 mI of the supernatant, 

standard solutions and blank (distilled water), in a capped test tube, mixed well and 

heated in a boiling water bath for 15 minutes. The tubes were cooled in cold water. 

Arsenomolybdate reagent (1.0 ml) (see Appendix 3.7) was added to the solution with 

vigorously shaking. When effervescence has ceased, the blue colour (indication of 

the presence of reducing sugar) was diluted to a final volume of 10.0 ml. 

Absorbance was read at 510 nm against the blank. The concentration of glucose was 

obtained from a glucose standard curve (see Appendix 3.8), multiplying 

appropriately by the dilution factor. Normally at (t = 0), the sample required 30 - 50 

times dilution, after which time no dilution was usually necessary. 

conc. in liquor (t = n) 
Thus, % sugar left (I = n) = X 100 

conc. in Jiquor(1 = 0) 

where t::: time 

3.3.12 Detection of lactate by Gas liquid chromatography. 

Samples were centrifuged at 11,000 rpm for 20 minutes prior to methylation to 

remove microbial cells. Aqueous samples were prepared at concentrations within the 

range 0.5 % to 1.0 % of the acid volume. 

Methylation procedure. The technique employed for the methylating the samples 

was that of Drummond and Shama (1982). 2 ml sample were combined with 2 ml 

methanol and 0.75 ml 50% (v/v) aqueous sulphuric acid in screw capped glass bottles 

that were subsequently incubated in a water bath at 50°C for 30 min. After cooling, 1 

ml of deionised water and 0.5 ml chloroform were added to each tube for extraction 

by vigorously shaking for 5 min. 

Chromatographic procedure. A gas chromatograph (series 304, PYE Unicam) 

equipped with flame ionisation detector was used. 1.0 JlI quantities of the methylated 

acids in chloroform were injected onto a capillary column (S.G.E., 25QC3IBPI-0.5). 

The column temperature was programmed as follows: a delay of 1 min at 80°C 
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followed by an increase to 130°C at the rate of 12.5°C/min. Injector and detector 

temperatures were 225°C and 250°C respectively. The helium carrier gas flow was 

25 mI/min. 

3.3.13 Determination of particle size distribution in minced waste. 

In order to evaluate the effect of particle size upon the fermentation processes, an 

experiment was conducted to determine whether there existed any significant 

differences in the composition of particles produced if scampi and tropical waste 

were minced with different sized mincer plates. 

Batches of frozen scampi waste (about 500 g, wet weight) were minced using one of 

3 different mincer plates having hole diameters of 3, 6 or 10 mm and each minced 

waste was designated as "3", "6" and "10" respectively. The waste was centrifuged 

at 17,000 rpm at room temperature for 30 min and the weight of liquid and solid 

fractions were taken. The dried solid fraction (l05°C overnight) was sieved for 15 

minutes using a sieve shaker (Fritsch) with 6 different sieve sizes. The weight of 

each particle size fraction obtained after sieving was taken and its percentage per 

total solid waste used calculated. Each fraction was analysed for chitin, total 

nitrogen and calcium content. Similar treatment was done with tropical waste and 

the product analysed and compared. 

3.4 Fermentation parameters. 

a) Bioreactor. 

The horizontal rotating basket bioreactor is shown in Figure 3.1. It comprised a 

lightweight stainless steel cylindrical shell (23.0 cm long and 12.5 cm diameter) 

covered with a double layer of mesh to form a cylindrical basket. The outer, stainless 

steel, mesh had an aperture of 2 mm and the inner polyester mesh, an aperture of 0.9 

mm. An axial shaft, supported in PTFE bearings, ran the length of the basket 

permitting it to rotate freely inside a glass outer casing (QVF Glass, 29.5 cm long and 

15.5 cm diameter). The shaft was connected via a speed-reducing gear box to a fixed 

speed electric motor capable of delivering a torque of 52 foot-pounds. With this 

arrangement, the basket rotated at 20 rpm. Two circular stainless steel plates were 

used as end closures for the glass outer casing and these were bolted in place. Water 
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tight seals at the end plates were provided by PTFE end gaskets. The end plates were 

supplied with ports for sample withdrawal, liquid additions and gas removal. The 

maximum charge of scampi waste (wet weight) which could be loaded into the 

basket was approximately 2.0 kg. This design of bioreactor enabled the liquid 

released during fermentation to fill the annular gap between the basket and the glass 

casing and thereby keep the contents of the basket wetted. The electric motor was 

activated via a timer. For the batch fermentations (see section 3.4.1), a simple 24 

hour electronic timer was used which had a fixed minimum "time on" of 10 minutes. 

In order to achieve a shorter level of agitation a purpose-built electronic timer with 

greater variations in the time "on" and "off" facilities ( in seconds, minutes and 

hours ), was used in all other experiments. 

b) Preparation of inoculum. 

Lactobacillus paracasei, strain A3 was used in all the fermentations described in this 

section. To prepare the starter culture, a loop of cells from a slope of MRS agar was 

transferred into 3.0 ml of sterile MRS broth (Unipath Ltd., Basingstoke, Hants) and 

incubated at 30°C for 24 hours. To prepare the inoculum for the fermentation, a 2 % 

inoculation (v/v) with the starter culture was made with sterile MRS broth and was 

incubated statically at 30°C for 24 hours. Inoculum prepared in this way had an 

approximate cell count of 108 cfu/m!. 

c) Preparation of scampi waste. 

All the scampi waste used was minced using a mincer plate with 6 mm diameter 

holes unless otherwise stated. The minced waste was partially thawed in a 

microwave oven (Deltawave rn, Toshiba, defrosting mark 3) for 4 to 6 minutes. All 

preparations were performed without delay and while the waste was still slightly 

frozen to prevent spoilage taking place. The charge of waste used was determined in 

this slightly thawed condition in all the experiments. Preliminary investigation 

revealed that 1.0 kg charge of waste was found suitable to effect sufficient contact 

between sediment in the basket and the liquor and was used in all experiments. 

82 



83 



3.4.1 Batch fermentations. 

Three similar runs were carried out according to the following procedures. Earlier 

studies by Hall et at. (1994) had revealed the importance of adding sufficient glucose 

and of using a large enough inoculum, therefore in this work the minced scampi 

waste (1.0 kg) was thoroughly mixed with 10 % (w/w) glucose and 10 % (v/w) of the 

prepared inoculum, to give a cell concentration of 108 cfu/g waste. The semi-solid 

mixture was transferred to the basket bioreactor and the entire bioreactor placed in a 

temperature controlled enclosure maintained at 30°C. Rotation of the basket was set 

to provide 10 minutes continuous operation every 6 hours. During the first 

experiment, agitation was set for 7 days but in the following two experiments, it was 

set for first 3 days only, to prevent the liquor from foaming. The gas vent was 

connected to a Dreschel bottle approximately half filled with water to provide a slight 

gas overpressure in the bioreactor relative to the surroundings. 

Small a1iquots of the liquor produced during fermentation were taken Via the 

sampling port using a syringe, every 6 hours during the day. The pH and TT A of the 

liquor were determined immediately after sampling. Other liquid samples were kept 

frozen at - 20°C until required. These samples were analysed for TN, SPN, NPN, 

moisture and calcium content. Total weights of the liquor (W sam) taken during the 

fermentation were noted. The fermentation was terminated when the pH started to 

rise to a value of 6.0, after which time, the protein-rich liquor was poured into a glass 

beaker and the weight taken (Wtot) and the chitin sediment was scraped out from the 

basket. The final liquor was analysed for TN, SPN, NPN, glucose, moisture and Ca 

content. It was noticed that the sediment still contained some liquor and to totally 

remove the adhering liquor, a small proportion of the wet sediment was placed in a 

circular muslin cloth, placed in a 20 ml screw-capped bottle and was centrifuged at 

3000g for 30 minutes. During centrifugation, the muslin cloth facilitated the 

separation of liquor and chitin sediment. The total weight of the liquor (W cent) and 

sediment obtained through centrifugation was noted and the sediment analysed for 

TN, CN and Ca content. The total weight of liquor obtained after centrifugation 

(W cent) was added to the (Wtot) and (W sam) to obtain total weight of liquor. From 

the moisture content determinations of liquor, sediment and silages, the total dried 
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weights of these fractions were obtained. These data were used to construct mass 

balances. 

3.4.2 Variation in the glucose addition. 

Theoretically (see Appendix 4.2), the addition of 10 percent glucose (w/w) in a batch 

fermentation would limit complete removal of calcium carbonate. However, during 

the actual fermentation process in which several interactions may have been 

occurring including growth of bacteria, hydrolysis of proteins and formation of 

calcium lactate, increasing the glucose concentration might significantly affect one or 

more of these processes and resulted in an overall deleterious effect ~n the 

fermentation. To investigate this, three experiments were conducted to investigate 

the effect of adding additional glucose during the course of fermentation in order to 

achieve a higher percentage of calcium removal. Three modes of glucose addition 

were investigated. 

Mode A: Addition of anhydrous glucose. 

Scampi waste was fermented with 10 % inoculum and 10 % glucose at 30°C as 

described above. A further 20 % glucose (200.0 g) was added at intervals between 

day 3 and day 4. This was done by withdrawing some liquor from the reactor, 

dissol ving the glucose and then replacing it back into the reactor. The basket was 

rotated for I min after each addition of glucose and the basket rotated at 3 revolutions 

every hour throughout the fermentation. Liquor samples taken during fermentation 

were analysed for TN, TT A and Ca content. Also, in this experiment and in all 

subsequent experiments, the pHs' were monitored continously using a Gelplas 

electrode which was inserted into the bioreactor through the lowest port, so that the 

electrode was always immersed in the liquor. The pH meter was connected to a chart 

recorder (Pharmacia). 

Mode B: Addition of dilute glucose solution. 

Scampi waste was initially fermented as in mode A. After 72 hours, 15.0 g glucose 

and 100 ml water were added. A further 15.0 g glucose and 100 ml water were added 

at 120 hours. The basket was rotated for 1 min after each addition of glucose and the 
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basket rotated at 3 revolutions every hour throughout the fermentation. The liquor 

samples taken during fermentation were analysed for TN, TTA and Ca content. 

Mode C: Substitution with dilute glucose solution. 

Scampi waste was initially fermented as in mode A. After 54 hours, the liquor was 

totally withdrawn and replaced with an equal volume of distilled water and 50.0 g 

glucose. Two further additions were made when the pH started to rise, at 96 hours 

and 130 hours. The basket was rotated for I min after each addition of glucose and 

the basket rotated at 3 revolution every hour throughout the fermentation. The liquor 

samples taken during fermentation were analysed for TN, TT A and Ca content. In 

mode C, drainage of the bioreactor prior to making the glucose additions enabled 

samples of the material from inside the basket to be taken for analysis. These 

samples designated as FI, F2, F3 and F4, were washed, dried (105°C for 16 hours), 

and analysed for chitin nitrogen (CN), total nitrogen (TN) and calcium content. 

3.4.3 Effect of waste particle size. 

This cxpcrimcnt was conducted to evaluate the effect of particle size of scampi waste 

on the lactic acid fermentation. Earlier experiments conducted with the mincer fitted 

with plates having holes of 3, 6 and 10 mm revealed no significant differences in the 

particle size distribution of the minced product. Therefore a different approach was 

adopted to produce a material with relatively broad range of particle size. Initial 

trials with ball milling were not successful as the chitinous shells were pliable and 

did not break. In the end, a simple cutting and crushing procedure was used instead. 

Method. Five fermentations were carried out in this series of experiments, each 

employing scampi waste of different particle size (Table 3.1). Where minced waste 

was required, the waste was minced with 6 mm hole mincer plate. Unminced waste 

was prepared by cutting the slightly thawed waste into lengths of either 0.5 or 0.25 

inches. This was subsequently used as cut or was further crushed. Crushing was 

achieved by loosely packing the cut-waste into a thick double layered plastic bag and 

flattened it once with a hammer (Stanley, 1 lb weight). This had the effect of 

cracking the material and exposing the flesh present. However, some smaller sized 

material was also produced by this process. A fixed amount of waste (1.0 kg) was 
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used in all cases and was fermented at 30°C for 72 hours with 10 % inoculum and 10 

% glucose. The basket was rotated at 3 revolutions every hour for 72 hours and the 

pH was monitored continuously. At the end of the fermentation, the sediment was 

separated from liquor and washed with 2 L of distilled water to remove any adhering 

protein liquor. The sediment was dried at 105°C for 16 hours and analysed for CN, 

TN and Ca content. For (D), the fermentation was stopped after 48 hours as it was 

beginning to spoil. No analysis was done on the liquor produced. 

T bl 31 V . t f art a e . . aria IOn 0 p~ IC e sizes use In t t e ermen a IOn: 

Designation Particle size 

(A) 100 % minced 
(B) 50 % minced and 50 % crushed (1/2" size) 
(C) 100 % crushed (1/2" size) 
(D) 100 % crushed (1/4" size) 
(E) 100 % whole 0/2" size) 

3.4.4 Effects of agitation. 

When waste of a relatively large particle size was loaded into the basket it was 

observed that the proportion of solids in contact with the liquor generated during the 

fermentation was reduced. This reduced contact was viewed as undesirable as it 

might have affected the rate of fermentation. It was thought that contact time could 

be increased by increasing the rate of rotation of the basket. However, increasing the 

rotation rates had previously been shown to cause foaming of the liquor in some 

batch fermentations. Based on the results of the batch fermentations, three agitation 

regimes were investigated (Table 3.2). 

Method. Fermentations were carried out using 1.0 kg of waste fermented with 10 % 

inoculum and 10 % glucose at 30°C for 72 hours. The following rotation rates and 

waste treatments were used: 

T bl 32 V .. f a e . . anatlon 0 agltatlon rate use d' h D In t e ermenta IOn 
Fermentations Waste Rotations 

(i) minced 3 revolutions per hour for 72 hours 
(ii) crushed (1/2") 3 revolutions per hour for 72 hours 
(iii) crushed (1/2") 15 revolutions per 15 min for first 36 hours, 

then at 10 revolutions per hour until 72 hour 
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At the end of the fermentation, the sediment was separated from liquor and washed 

with 2 L of distilled water to remove any adhering protein liquor. The sediment was 

dried at 105°C for 16 hours and analysed for eN, TN and Ca content. 

3.4.5 Effect of temperature. 

Temperature plays an important role in processes where enzymes and bacterial 

growth are involved. The A3 strain was able to grow at temperatures 15°C and 45°C 

but not at 10°C or 50°C. It can therefore be considered as a mesophilic bacterium 

(Banwart, 1989). Fermentations were carried out at three temperatures in order to 

evaluate the effect of temperatures on proteolytic activity and acidification of scampi 

waste. 

Method. Minced waste was fermented with 10 % inoculum and 10 % glucose with a 

rotation rate of 3 revolutions per hour for 72 hours. Fermentations were conducted at 

four temperatures, 15°C, 20°C, 30°C and 45°C and pH was monitored continuously. 

Fermentations were stopped after 72 hours and the sediment was separated from the 

liquor, weights of the fractions were determined and the sediment washed with 2 L of 

distilled water, dried at 105°C for 16 hours and analysed as previously described. 

3.4.6 Effect of loading. 

Batch fermentations had revealed that the volume of liquor produced from a 1.0 kg 

minced waste was sufficient to keep the sediment well submerged in the liquor 

within the basket during the fermentation processes. A calculation was also made 

(see Appendix 3.9) to extrapolate the minimum amount of waste needed to effect 

such solid and liquid contact. In experiment 3.3.6, the effect of loading on the 

purification of chitin was evaluated using the lowest loading well within the suitable 

range. 

Method. Minced waste (750 g, 1000 g and 1500 g) was fermented with 10 % 

inoculum and 10 % glucose at 30°C with a rotation rate of 3 revolutions per hour for 

72 hours. pH was monitored continuously. Fermentations were stopped after 72 

hours and the sediment was separated from liquor, weights of the fractions were 
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determined and the sediment washed with 2 L of distilled water, dried at IOSoC for 

16 hours and analysed as previously described. 

3.4.7 Comparison of waste from tropical and temperate species. 

Fermentations of scampi waste and tropical waste were compared. Minced waste 

(1.0 kg) was fermented with 10 % inoculum and 10 % glucose with a rotation rate of 

3 revolutions per hour for 72 hours. Fermentations were conducted at 30°C and the 

pH was monitored continuosly. Fermentations were stopped after 72 hours. 

Sediment was separated from liquor, weights of the fractions were determined and 

the sediment washed with 2 L of distilled water, dried at IOSoC for 16 hours and 

analysed as previously described. 

3.5 Chemical purification of unfermented scampi waste. 

In this experiment, unfermented scampi waste was purified by the conventional acid 

and alkali treatment according to the method of No et al. (1989). The acid and alkali 

purification of the 72 hour fermented scampi waste was conducted elsewhere (Baker 

and Milnes, 1995). In Chapter 4 (Results), comparison was made between the two 

methods in terms of chemical usage. 

3.5.1 Acid treatment. 

3.5.1.1 Effect of HCI concentration. 

Dried waste was treated with HCI (0.2 - I.S M) at a 1:20 ratio(w/v), continuously 

stirred at room temperature for Ih. The treated waste was filtered, washed with 

distilled water and dried for 16h at IOSoC prior to the determination of its calcium 

content by the method described in section 3.3.5. 

3.5.1.2 Effect of HCI extraction time. 

Dried waste was treated with 1.0M HCI (1 :20 ratio, w/v) at room temperature for 

various extraction times ranging from IS min to 2 h. A final calcium content of 

about 0.1 % (dry weight basis) was taken as the optimum value. The treated waste 

was filtered, washed and dried before treating it with alkali to remove protein. 
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3.5.2 Alkali treatment. 

3.5.2.1 Effect of NaOH concentration & temperature. 

The partially purified chitin obtained by the optimum acid conditions above was 

treated with NaOH solutions of concentrations, 0.5, 0.75, 1.0 M at a ratio of 1: 15 

(w/v), stirred for 2 h at 3 different temperatures (21°C, 40°C, 65°C). The chitin was 

then filtered, washed, dried and its total nitrogen determined. 

3.5.2.2 Effect of extraction time. 

Similarly, partially purified chitin was treated with 1.0 M NaOH (I: IS, w/v) at 65°C 

and at various extraction time ranging from 15 min to 2 h. The TN content of the 

dried chitin was determined. The final weight of the product was taken to determine 

the percentage yield. These results were then compared to the conditions obtained 

for fermentation-based purification and the savings in chemical usage was estimated. 
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CHAPTER 4 

RESULTS 

4.1 Isolation of lactic acid bacteria (LAB). 

4.1.1 Isolation and screening. 

Nine lactic acid bacterial strains were successfully isolated from the various 

fermented tropical wastes samples shown in Table 4.1. With 10 percent glucose 

(w/w) added and incubation at 30°C, the moist pinkish mixture soon became 

liquified, the pH dropped and bubbles of gas evolved, an indication of a good 

fermentation taking place. After 48 hours, the wastes were still pinkish in colour and 

had a fermented protein smell. However, one tropical sample from Thailand did not 

ferment at all and was spoilt and turned black within a short time, and no bacteria 

were isolated from this source. No further tests were done on the Thailand prawn 

waste to identify the reason behind this failure to ferment. The nine isolated colonies 

regarded as LAB showed positive reactions to Gram staining, were catalase negative 

and grew well in both APT and MRS broth. On MRS plates, these isolated colonies 

appeared very small (almost pin point) and whitish, typical of LAB. Besides the 

catalase negative isolates, no other types of bacteria seemed to thrive in the acidic 

conditions of the fermented waste except for Gram-negative bacillus species. The 

A I - AS isolates were all very short rod-shaped bacteria, some in chains whereas the 

B isolates contained both spherical (cocci) and rod-shaped bacteria (Table 4.2). The 

Cl strain (rod-shaped), referred to in Table 4.1 was supplied by Dr. Reid of 

Loughborough University and was used in the comparative experiments. 

In order to choose a suitable bacterial strain which will serve as the inoculum or 

starter for scampi waste fermentations, a simple screening procedure was carried out 

in which pH drops were compared during fermentation in scampi extract with added 

glucose. The pH activity of the five A strains are shown in Figure 4.la. Only one 

strain showed significantly different pH activity. Strain A I displayed a lag phase of 

about 30 hours at pH of approximately 6.S, afterwhich a pH of 4.S was attained at 48 

hours. The other four strains were rather similar in activity with an immediate rapid 

drop of pH from 7.4 to approximately pH 4.0 in less than 10 hours. 
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T bl 41 I I . a e .. so atlOn 0 fl ·d b aclIc aCI . f f actena rom varIOus sources 0 prawn waste 
Source of waste No of Catalase test growth in broth Gram Stain 

isolates APT MRS 

Tropical waste sa + + + + 
(AI-AS) 

Indian shrimp 4 + + + + 
(B I-B4) 

Thailand shrimp none 

Scampi b I + + + + 
(Cl) 

a = The S Isolates were very Similar morphologically and only A3 was charactenzed. 
b = temperate source 

T bl 42 M h I a e . orpJ 0 oglca an db· h IOC enuca b o servalIons 0 f h t e varIOus ISO ates 
Characteristics Isolates 

BI B2 B3 B4 A3 Cl 
Morphology in ( APT) cocci rod cocci rod coccobacilli rod 

(MRS) cocci rod cocci rod cocci rod 
Tetrad formation + - - - - -

CO, production - - - + - -
NH3 production + - + - - -
Growth in 4 % NaCI + + + + + + 
Growth in 6.5 % NaCI + + - + + + 
Growth at pH 4.4 + + + + + + 
Growth at pH 9.6 - - - - - -

Growth at 10°C + + + + - + 
Growth at 4SoC + + - - + -

- no growth: + good growth 

These low pH values were maintained over 48 hours. The pH activity of the four B 

strains (Figure 4.1 b) also showed similar trends but with a shorter lag phase of about 

6 hours at pH 7.4 then rapidly dropped to pH 4.1 at 9 hours. 

Since all the isolated strains showed similar pH activity, only those strains that were 

morphologically different were further identified using a series of biochemical tests 

and an API kit system i.e the A3 strain, all the B strains and also the Cl strain. 
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Figure 4.1a: Screening of potential 
LAB from tropical shrimp waste 
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Figure 4.1b: Screening of potential 
LAB from Indian shrimp waste 
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4.1.2 Identification of isolated lactic acid bacteria. 

The morphology of A3 strain was quite difficult to categorise as it appeared to be 

coccobacilli (very short rods) when grown in APT broth and as very short rods in 

MRS broth (Table 4.2). B2, B4 and C I strains were typical lactobacillus species 

with characteristic slender rod forms which can be easily recognised. B I strain had 

tetrad formation. All strains tested, with the exception of B4, did not produced 

carbon dioxide. All strains were able to grow in acidic conditions and in the 

presence of NaCI. In terms of growth temperature, A3 showed a slightly different 

growth pattern, able to grow at 45°C but not at lO°e. The A3 strain grew very well 

in MRS broth and was still active when grown on MRS slopes at 4°C even after 2 - 3 

months. Other strains had to be subcultured within I - 2 months and became non 

viable after 2 months. 

Table 4.3 shows differential characteristics of recent regroupings of the LAB genera 

(Axelsson, 1993). Comparing the results obtained in Table 4.2 with that of the 

reference Table 4.3, the results show that B I is a Pediococcus, having cells with 

tetrad formation; B2, B3, A3 and C I are either homofermentative Lactobacillus (i.e 

they do not produce carbon dioxide) or facultative heterofermentative and B3 is a 

heterofermentative Lactobacillus (producing carbon dioxide). From these isolates, 

three were further identified to the species level using the API kit i.e the A3, B I and 

C I strains, based on the criteria of ease of growth, non-producers of carbon dioxide 

and belonging to different genera. 

Table 4.4 compares the carbohydrate fermentation profile of the isolated strains (A3, 

BI and Cl) to that of similar reference strains extracted from the Identification Table 

provided with the API Kit (see Appendix 4.1). Great similarities were observed in 

the fermentation profile of these isolated strains to that of the reference strains and 

thus strain A3 was identified as Lactobacillus paracasei, B I as a Pediococcus spp. 

and C I as Lactobacillus plantarum. The production of lactate by Lactobacillus 

paracasei was confirmed by gas chromatography from a 24 hours culture in MRS 

broth. 
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Table 4 3· Differential characteristics of lactic acid bacteria (after Axelsson 1993) • 
Characteristics Rods Cocci or soherical 

Camob weloh Aeroc Entero Lactoc Leucon Pedioc Strep- Tetra-
Vapoc to Renoc 

Tetrad formation - - + - - - + - + 

CO2 from glucose - ± - - - + - - -

Growth at 10°C + ± + + + + ± - + 

Growth at 45°C - ± - + - - ± ± -

Growth 10 6.5 % nd ± + + - ± ± - + 
NaCI 

Growth In 18 % - - - - - - - - + 
NaCl 

Growth at pH 4.4 nd ± - + ± ± + - -

Growth at pH 9.6 - - + + - - - - + 

nd = not determined; ± = some strains may show no growth (-). 
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a e . T bl 44 API car b h d o lY, rate ermentalIon pro I e 0 ISO ate fiI f' d and reference strains 
Sugar Isolated Strains' 
fermentation A3 Bl 

Control 
Glycerol + 
L-Arabinose 
Ribose + + 
Galactose + + 
D-Glucose + + 
D-Fructose + + 
D-Mannose + + 
Mannitol + 
Sorbitol + 
a Methyl-D-mannoside 
N Acetyl glucosamine + + 
Amyrdaline + + 
Arbutine + + 
Esculine + + 
Salicine + + 
Cellobiose + + 
Maltose + + 
Lactose + + 
Melibiose 
Saccharose + 
Trehalose + 
Melezitose + 
D-Raffinose 

B Gentiobiose + + 
D-Turanose 
D-Lylose 
D-Tagatose + + 
D-Arabitol 
Gluconate + + 

0 IncubatIOn temperature. 37 C 
Inoculation medium: 50 CHL 
• [+J = positive reaction 

Cl 

+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 

+ 
+ 

Reference Strain" 
Lactobacillus Lactobacillus Pediococcus 
oaracasei viantarum spp 

+ 
+ 

++ ++ + 
++ ++ ++ 
++ ++ ++ 
++ ++ ++ 
++ ++ ++ 
++ ++ 
++ + 

+ 
++ ++ ++ 
++ ++ + 
++ ++ + 
++ ++ ++ 
++ ++ ++ 
++ ++ ++ 
++ ++ ++ 
++ ++ ++ 

++ 
++ ++ ++ 
++ ++ 
++ ++ 

+ 
++ ++ ++ 
++ + 

++ + 
+ 

++ + 
" - .. 

[++1 - 80 - 100 % POSllI ve reactIOn 
[+J = few strains produce positive 

reaction 

Note: Some of the sugars which appeared in the kit but did not produce any positive 
results with the above strains are omitted from Table 4.4 
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4.1.3 Comparison experiments between isolated strains to obtain potential 

starters for the fermentation of scampi waste. 

The objective of these experiments was to find out whether the strains chosen for 

further investigation could perform better (in terms of achieving a rapid initial pH 

drop) either on their own or in combination when fermenting scampi waste. Some 

commercial starters contain combinations of LAB and are commonly used in various 

fermentations (Wood, 1985). The results obtained from these are considered in two 

sections; in the first, the pH profiles of the different species are compared, whereas in 

the second, the pH activity when using a combination of two strains was evaluated. 

4.1.3.1 Comparison between strains A3, Bl & B2. 

The pH profiles are shown in Figure 4.2a and their respective TT A in Figure 4.2b. 

The only difference observed between these strains is in the initial phase of pH 

decline (Fig 4.2a). Strain A3 reduced the pH immediately whereas B2 & B1 showed 

a lag phase of approximately 6 to 12 hours respectively then dropped rapidly to a 

similar low pH of 5.0 at 24 hours. The TTA were highest when the pH were lowest 

(Fig 4.2b). Analyses performed on the fermented products also showed very little 

difference between these (Tables 4.5, 4.6, 4.7 & 4.8). B1 and B2 achieved 89.6 and 

89.2 percent conversion of glucose respectively, whilst A3 resulted in an 84.1 percent 

conversion of glucose. However, Table 4.7, shows that calcium carbonate removal 

using these three strains was comparable. The mass balances obtained were also not 

significantly different (Table 4.8). 

Table 4.5: Wet weighta and moisture contenta of the various components in the 

£ f ermentatlOn 0 scampI waste. 
Bacterial strains Silage Sediment liquor Ratio ofLiq:Sed 
A3 Wt (g) 59.5 18.0 41.5 

%m.c .. 68.3 ±2.0 56.3 + 1.6 79.6±0.2 
B1 Wt (g) 60.5 15.5 45.0 

%m.c .. 69.4 + 0.9 56.0± 3.4 81.6 + 0.5 
B2 Wt (g) 60.3 17.6 42.7 

%m.c. 69.0 + 1.4 56.1 + 0.7 82.0+0.3 
a Percentages of mOIsture expressed as mean of 3 replIcates ± standard deViatIOn 

m.c. = moisture content 
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Figure 4.2a: Changes in pH during fermentation of 
scampi waste using different bacteria 
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Figure 4.2b: Changes in TTA during fermentation of 
scampi waste using different bacteria. 
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T bl 46 C a e . . om f h r h d f h D osiUon 0 t e !9.uor at teen o t e ermentatlOn. 
Bacteria strain Cone. of glucose in % glucose left %NPN %PN 

the liquor (mg/rnI) in liquor * (w.w.b) (w.w.b) 

A3 15.65 + 0.85 15.9 + 0.83 0.98 ±0.06 0.13 +0.02 
Bl 10.24 ± 1.04 10.4 ± 1.07 0.80 ±0.01 0.15 ± 0.02 
B2 10.65 ± 0.84 10.8 ± 0.85 0.93 ± 0.04 0.17 + 0.03 

w.w.b.= wet weight baSIS 

• % glucose left calculated as = glucose in liquor I glucose at t = 0 (i.e 98.3 mglml) 

Table 4.7: Chitin, protein and calcium contenta of the various components in the 
fermentation 0 f scampI waste. 

Bacteria strain content of: Silage Sediment Liquor 

A3 CH(%) 8.7 ± 1.2 17.8 ± 2.5 nd 
(g) 1.6 ± 0.2 1.4 ± 0.2 

PR (%) 27.6 ± 3.2 18.8 ± 2.3 40.4 ± 0.7 
(g) 5.2 ± 0.3 1.5 ± 1.2 3.4 ± 0.03 

Ca (%) 11.3 ± 1.6 14.8 ± 0.8 9.4 ± 0.3 
(g) 2.1 + 0.4 1.2 ±O.I 0.8 + 0.03 

BI CH (%) 9.2 ± 1.2 15.1 ± 1.7 nd 
(g) 1.7 ± 0.3 1.04 ± 0.2 

PR (%) 27.5 ± 5.0 18.8 ± 1.7 40.4 ± 0.4 
(g) 5.1 ±0.7 1.3 ± om 3.3 ±O.I 

Ca(%) 11.6 ± 1.5 15.0 ± 0.8 7.1 ± 1.8 
(g) 2.1 + 0.2 1.02+0.1 0.6 + 0.2 

B2 CH (%) 9.8 ± 0.8 12.7 ± 1.3 nd 
(g) 1.8 ± 0.1 1.0 ± 0.1 

PR (%) 26.7 ± 2.1 19.4±0.3 44.2 ± 2.5 
(g) 5.0 ± 0.5 1.5 ± 0.02 3.4 ± 0.1 

Ca(%) 11.6 ± 0.6 14.4 ± 0.5 5.51±0.3 
(g) 2.2 ± 0.2 1.1 ± 0.01 0.4 ± 0.02 

nd = not determined a = dry wt basIS. CH = chuIn. PR = proteIn 
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Table 4.8: Overall balances" of the various components in the fermentation of scampi 
waste 
Bacterial strain A B AJB" 

Silage Sed+Liq 
A3 Chitin 1.6 1.4 1.14 

Protein 5.2 4.9 1.06 
Calcium 2.1 2.0 1.05 

BI Chitin 1.7 1.0 1.70 
Protein 5.1 4.6 1.11 
Calcium 2.1 1.6 1.31 

B2 Chitin 1.8 1.0 1.80 
Protein 5.0 4.9 1.02 
Calcium 2.2 1.5 1.47 

.. a = masses of chltIn. protem and calcIUm content of the vanous components taken from Table 4.7 
b = Since silage = sediment + liquor, theoreticallY AIB equals 1.0. 

4.1.3.2 Comparison between mono and co-cultures. 

The strains used in these experiments were C I and A3 which had been identified as 

Lactobacillus plantarum and Lactobacillus paracasei respectively. Cl was chosen 

for study in this experiment besides Lactobacillus paracasei has been shown to be a 

good producer of lactic acid and has been used in many fermentations (Wood. 1985). 

Strain C I was isolated from a temperate source and was able to grow at lOoC and not 

at 45°C, unlike the A3 strain. pH profiles during these fermentations are shown in 

Figure 4.3. The Cl strain showed a lag phase of approximately 6 hours when 

fermented alone, whereas when A3 strain was used on its own, or in combination 

with Cl, the pH dropped almost immediately. However, Cl strain on its own 

resulted in a slightly greater pH drop than either A3 or A3 with C I. Although no 

further analysis was done to compare the products obtained, Figure 4.3 indicates that 

the strain A3 did not show any significant difference when fermented alone or in 

combination with strain Cl. Although many commercial starters contain 

combinations of species (Wood, 1985) the results obtained here suggest that there 

appeared to be no overwhelming advantages to using co-cultures of Lactobacillus 

paracasei strain A3 and Lactobacillus plantarum strain Cl. 
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Figure 4.3: Changes in pH during fermentation of scampi 
waste using mono and co-cultures. 
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A3 = Lactobacillus paracasei Cl = Lactobacillus plantarum 

101 



4.2 Analysis of particle size fractions obtained following mincing. 

Before the shellfish waste underwent lactic acid fermentation, the waste was minced 

to produce a homogeneous material. Pretreatment such as particle size reduction has 

previously been found necessary in making fish silages (Beddows, 1985). However, 

it would be more attractive industrially, if fermentation of shellfish waste could be 

done with minimum pretreatment as this could reduce production costs. Therefore 

experiments were conducted to evaluate the products obtained when tropical and 

temperate or scampi waste are subjected to three different sized-mincer plates with 

diameter holes of 10, 6 and 3 mm and were designated as "10", "6", and "3" 

respectively. After centrifugation and drying, the solid products were sieved using a 

series of 6 sieves. 

4.2.1 Composition of scampi (Nephrops norvegicus) waste. 

When the minced waste products were centrifuged, three distinct layers of material 

were obtained. Besides the liquid and solid layers, there was also a layer of sludge. 

This sludge was incorporated with solids by thoroughly mixing it with the solids 

before drying. The sludge layer was most prevalent in the 3 product and when dried, 

the solids tended to clump together. The dried solids were separated as gently as 

possible before sieving to prevent disrupting the actual size of the materials. Table 

4.9 shows the results obtained. Small differences occurred in terms of percentage of 

liquid or solid produced using the three different mincer plates. However, the 

number of particle size ranges obtained from 6 and 10 were seven, whereas there was 

only six size ranges from 3 which lacked the largest sized particles, which were 

present in both 10 and 6. The slightly higher moisture content in 3 was probably due 

to the moisture bound to the sludge fraction. 

A plot of cumulative percentage by weight against particle size (Figure 4.4) revealed 

that when scampi waste was minced, it produced a distribution of particles. A 

similar pattern of particle size distribution were observed for 10, 6 and 3. However, 

the percentage of larger particles increased as the size of the mincer hole increased 

(Figure 4.4). Particles less than 0.10 mm appeared as sludge when wet and as a fine 

powder when dried. 
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Table 4.9: Weights of various fractions obtained from scampi waste after mincing 

'thd'f~ t' d I WI I eren sIze plates 
Fractions Mincer plate hole diameter (mm) 

3 6 10 
Wet weight of waste used (g) 600.6 599.4 456.8 
Extracted liquid (ml) 265.0 283.0 204.5 
Percentage of LiquidJ Waste (v/w) 44.1 47.2 44.8 
Wet weight of Solid (g) 335.6 316.4 252.5 
Percentage of Solid / Waste (w/w) 55.9 52.8 55.2 
Percent moisture content of solid (w/w) 58.2 53.9 54.5 
No. of particle sizes obtained 6 7 7 

The percentage composition of chitin, protein and calcium of various particle sized 

materials obtained from 10, 6 and 3 are shown in Figures 4.5a, 4.5b and 4.5c 

respectively. Whilst chitin and calcium content remained quite constant in all the 

particle sizes, there was a significant difference in the protein content. The protein 

seemed to be concentrated in either the smallest or largest particles with the highest 

percentage being obtained in the smallest particle size (0.1 mm). Table 4.10 shows 

that more than 80 percent of the chitin, protein and calcium were found in the particle 

range above 0.71 mm size irrespective of the mincer plate used. This means that the 

plates used here did not significantly affect the particle size of the waste materials for 

fermentation. 

T bl 410 Ch" P a e . : Itm, rotem an d Cal . ( ) f h f t d I'd clUm content g) 0 t e rac IOna e so I t was e 
Particle Mincer Whole >3.35 2.00 1.40 0.71 0.36 0.10 <0.10 Total 

Size(mm) Plate solids wt(g) a 

Dried 10.0 114.8 32.0 48.0 16.0 12.0 4.2 2.0 0.6 114.8 
Wt(g) 6.0 131.8 2.8 63.4 26.5 25.7 8.0 4.4 1.0 131.8 

3.0 140.0 none 42.5 34.0 38.5 12.0 8.5 4.5 140.0 

Chitin 10.0 18.78 6.08 8.46 2.77 1.95 0.68 0.18 nd 20.12 
6.0 20.26 0.45 11.03 4.76 4.36 1.22 0.56 nd 22.94 
3.0 23.55 none 6.75 6.07 6.89 1.71 1.03 nd 22.45 

Crude 10.0 31.06 9.28 10.62 3.64 3.03 1.29 0.77 nd 28.63 
Protein 6.0 36.00 0.85 14.70 5.62 5.32 2.12 1.46 nd 31.07 

3.0 34.83 none 10.65 7.20 8.11 3.28 2.82 nd 32.06 

Ca 10.0 19.93 5.30 8.60 2.71 2.22 0.59 0.21 0.05 19.68 
6.0 25.31 0.45 13.03 5.33 4.96 1.51 0.59 0.13 26.00 
3.0 28.59 none 8.49 6.70 7.23 2.28 1.08 0.60 26.38 

a- total wel ~hts g obtame by aldm g the wel~hts g m ead fractlOnated solids. 
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Figure 4.5a: Distribution of chitin, protein and calcium of scampi 
waste* minced using plate with 10 mm holes. 
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Figure 4.5b: Distribution of chitin, protein and calcium of scampi 
waste* minced using plate with 6 mm holes. 

40~--------~============~====~----~ I_ chitin • protein ~ calcium I 
35 ..................................... . 

30 

10 

5 

o 
0.1 0.36 0.71 lA 2 3.35 

Particle size (mm) 

* Chitin and protein content of particles less than 0.1 mm were not determined. 
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Figure 4.5c: Distribution of chitin, protein and calcium of scampi 
waste* minced using plate with 3 mm holes. 
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• Chitin and protein content of particles less than 0.1 mm were not determined 
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4.2.2 Composition of tropical waste (Penaeus monodon). 

The waste was of a darker brownish colour than the scampi waste and the carapace 

covering the head portion was much softer. Table 4.11 shows the increase in the 

percentage of liquid obtained while that of solids decreased as the plate size was 

increased. Similar particle size distributions as for the scampi waste were obtained 

(Figure 4.6) except for the presence of a much higher amount of D.1 mm particles in 

the tropical waste (- 38 percent) compared to - 4 percent. (Figure 4.4) in the scampi 

waste. Similarly, the number of particle size fractions obtained from plates 10 and 6 

were seven, whereas there was only six from the 3 plate. 

The chemical composition of the various particle sizes are shown in Figures 4.7a, b 

and c for 10.6 and 3 respectively. In contrast to the scampi waste, the tropical waste 

contained a higher percentage of protein but a lower calcium content. More than 77 

percent of the chitin, protein and calcium was contained in the particles of sizes D.71 

mm and above (Table 4.12). 

The results obtained from both studies showed that the tropical waste had a lower 

calcium content but slightly higher protein and chitin content than the scampi waste. 

It also showed that mincing the waste (in both cases) with the three mincer plates 

with holes of diameter 3, 6 or 10 mm did not produce significantly different products. 
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Table 4.11: Weights of various fractions obtained from tropical waste after mincing 

with different mincer plates 

Fractions Mincer Plate Size (mm) 
3 6 10 

Wet weight of waste used (g) 231.90 336.00 293.50 
Extracted liquid (ml) 106.82 165.05 159.9 
Percentage of Liquid! Waste (v/w) 46.06 49.11 54.48 
Weight of Solids (g) 125.08 170.95 133.6 
Percentage of Solid I Waste (w/w) 53.94 50.88 45.52 
Percent moisture content of Solid 61.38 66.16 55.58 
(w/w) 

No. of particle sizes obtained 6 7 7 

T bl 412 Ch·· P a e . : HIn, fOteIn an d Cl· a ClUm content ( ) f h F 0 t e ractlOnate dS l"d W 01 aste 
Particle Mincer Whole >3.35 2.00 1.40 0.71 0.36 0.10 
Size Plate solids a 
(mm) 

Dried 10.0 55.64 7.3 15.74 10.16 10.09 3.38 1.08 
Wt(g) 6.0 54.45 4.17 14.07 9.88 9.53 3.09 0.98 

3.0 44.70 none 4.00 5.91 11.55 4.8 1.60 

Chitin 10.0 12.67 1.46 3.57 2.27 2.18 0.68 0.18 
6.0 12.08 1.01 3.33 2.32 2.06 0.61 0.19 
3.0 11.16 none 0.96 1.54 2.72 1.13 0.31 

Crude 10.0 16.86 2.85 5.70 3.33 3.01 1.03 0.38 
Protein 6.0 16.10 1.63 4.68 3.04 2.98 1.02 0.32 

3.0 13.66 none 1.51 1.87 3.05 1.41 0.48 

Ca 10.0 6.37 0.69 1.72 1.22 1.15 0.36 0.11 
6.0 6.05 0.35 1.29 1.19 1.52 0.45 0.13 
3.0 5.69 none 0.50 0.71 1.34 0.72 0.24 

a = total weights obtained by addtng the weights In each fracuonated solIds. 

nd = not determined 
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Figure 4.6: Particle size distribution of tropical waste as a 
function of mincing plate hole diameter 
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Figure 4.7a: Distribution of chitin, protein and calcium of tropical 
waste* minced using plate with 10 mm holes. 
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• Chitin & protein content of particles less than 0.1 mm were not determined. 
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Figure 4.7b: Distribution of chitin, protein and calcium of tropical 
waste* minced using plate with 6 mm holes. 
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Figure 4.7c: Distribution of chitin, protein and calcium of tropical 
waste* minced using plate with 3 mm holes. 
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* Chitin & protein content of particles less than 0.1 mm were not determined 
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4.3 Lactic acid fermentation of scampi waste using a horizontal rotating 
bioreactor (HRB). 

This section is divided into seven parts (4.3.1 - 4.3.7). The first part (4.3.1) deals 

with the results from three batch fermentations while the remainder of this section, 

show the results of six fermentation parameters being studied. The batch 

fermentation experiments were conducted to provide data which could give direction 

to the subsequent optimisation studies. 

4.3.1 Batch fermentations. 

The results of the three replicates of batch fermentation designated as fermentations 

(1), (IT) and (Ill), were compared. Where appropriate the results are jointly presented, 

otherwise they are shown separately as subsection Fermentation (l) and the other two 

fermentations as subsection Fermentation (IT) & (Ill). 

4.3.1.1 Fermentation (I). 

Table 4.13 shows the various weights of the materials involved and their respective 

moisture contents for all the three fermentations. The initial scampi waste had a high 

moisture content of 68.2 percent (w/w). 

At the start" of fermentation (1), the mixture was in a condition best described as a 

moist solid state. During fermentation the state of the waste changed to that of a 

dilute slurry as production of a brownish liquor occurred, particularly during the first 

24 hours. Liquid samples withdrawn during the course of the fermentation had a 

fermented protein smell. The pH of the liquor dropped from 7.8 to 5.0 within 48 

hours (Figure 4.8). The rapid pH drop was almost certainly the result of acid 

produced from glucose by the culture and this is reflected in the rapid increase in the 

titratable acidity of the liquor (Figure 4.8). However, the low pH was not maintained 

and the pH started to increase again after 72 hours. After 108 hours it was found that 

the liquor began to thicken slightly and the fermentation was terminated after 120 

hours when the final pH was 6.4. 
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T bl 413 Th a e . : 'h e welgl ts an d mOIsture content a f h o t e varIOus components. 
Batch %Moisture Starting Silage Liquor Sediment 

& Duration of & Weights material 
fermentation(h) (g) 

(I) %Moisture 68.2 67.1 70.0 62.7 
Wet wt. 1100 840.0 430.0 410.0 

120 Dry wt. 350.2 276.4 129.0 152.9 

(ll) %Moisture 68.2 69.8 75.5 52.1 
Wet wt. 1100 1065.6 759.2 306.5 

132 Dry wt. 350.2 32l.8 185.9 146.9 

(Ill) %Moisture 68.2 70.6 79.3 55.0 
Wet wt. 974.0 953.0 715.0 220.0 

84 Dry wt. 310.1 274.6 148.2 99.1 

a = Mean of duplicate readmgs; for the vanous weIghts taken, refer to Matenals and 
Methods (section 3.3) on how weights were derived. 

An increase was observed in the calcium content of the liquor samples as the 

fermentation progresses (Figure 4.9). Gas formation occurred during the 

fermentation particularly in the early stages and could be seen bubbling through the 

Dreschel bottle attached to the gas exit line. Figure 4.9 also shows that the calcium 

solubilisation followed closely behind acid production. 

Figure 4.10 reveals a gradual increase in the total nitrogen (TN) content of the liquor. 

A small amount of soluble protein was detected at the start of the fermentation 

reaching a maximum at approximately 12 hours after which its concentration fell. In 

contrast, there was a large increase in non protein nitrogen (NPN) compounds in the 

liquor, being highest at the end of the fermentation period. Figure 4.10 also shows 

that the sum of the soluble protein nitrogen (SPN) and NPN is almost equal to the 

TN. 

A slight modification was done to the second and third fermentations in order to 

avoid the thickening of the liquor by changing the mode of rotation. Although the 

frequency of rotation of the basket was relatively low, i.e it was rotated for 10 

minutes every six hours, it was sufficient to cause the formation of a stable foam. 

This was presumably the result of "whipping up" the proteins present in the liquor. 

In order to avoid this happening in the subsequent fermentations, agitation was 
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Figure 4.9: Changes in TTA & calcium content 
in the liquor during fermentation (I) 
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stopped at day three and the fermentation continued under static conditions until the 

end of the fermentation period. With this arrangement no thickening of the liquor 

occurred and the insoluble chitin sediment was easily separated from the brownish, 

viscous liquor. 

At the end of the fermentation period, the concentration of glucose in the liquor as 

determined and the results of all three fermentations are shown in Table 4.14. The 

results show that the amount of glucose left varied between 11.7 to 7.2 percent which 

represents a conversion of between 88.3 percent and 92.8 percent respectively. 

T bl 414 GI a e . h r h ucose content 10 t e 1 uor at teen d f £ 0 ermentatlOn. 
Fermentation Duration of Conc. of glucose in % glucose left in 

fermentation (h) the liquor (mg/rnl) the liquor* 
(I) 120 11.46 ±0.31 11.7 
(Il) 132 11.10 ± 0.28 11.3 
(Ill) 84 7.05 + 0.32 7.2 

* % glucose left calculated as = glucose in liquor I glucose at t = 0 (i.e 98.3 mg/rnl) 

In order to establish a mass balance, analysis of the sediment, liquor and silages was 

done and the results are shown in Table 4.15. In this case, the whole product of 

fermentation is designated as "silage", and if the silage is centrifuged, two fractions 

are obtained i.e. the insoluble chitin solids which is the "sediment" and the liquid 

fraction which is referred to as "liquor". Proximate analysis on the sediment and the 

liquor in fermentation (1) revealed that with 27.0 g of protein and 33.1 g calcium left 

on the sediment, the removal of protein and calcium from the initial waste (114.9 g 

and 72.7 g) were 76.5 percent and 54.5 percent respectively. The liquor contained 

28.13 percent protein and 11.46 percent calcium, indicating a substantial amount of 

calcium and protein removal from the waste into the liquor. 

To complete the mass balance, it was assumed that the weight of silage (A) should 

equal the sum of the weights of sediment and liquor (B) and as such the ratio of AIB 

should be one. Table 4.16 shows the overall mass balances for protein, chitin and 

calcium content during fermentation (I) and slightly higher or lower values of the 

ratio AIB (1.02,0.97 and 0.83 in the protein, calcium and chitin content respectively) 
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were obtained. These differences may be due to the masses lost during dismantling 

of the bioreactor. Extracting fermented waste sediment which remained in between 

the basket and the plastic mesh was quite difficult, resulting in small amount of 

material loss. Overall, there is a 98.3 percent recovery of protein, 102.6 percent of 

calcium and 121.1 percent of chitin (calculated as masses in B over masses in A from 

Table 4.16). 

Table 4.15: Distributions of calcium, protein and chitin content* in the various 
fractions at the end of fermentation (1) 

Fractions Protein Calcium ** Chitin 
Silage ( %) 23.19 16.86 10.30 

(g) 64.10 46.7 28.51 

Sediment (%) 17.56 21.65 17.70 
(g) 26.85 33.10 26.98 

Liquor (%) 28.06 11.46 5.80 
(g) 36.20 14.80 7.48 

Waste (%) 32.83 20.77 12.05 
(g) 114.90 72.70 42.20 

* = % expressed on a dry weIght baSIS; 
** 1.0 percent calcium = 2.5 percent calcium carbonate 

T bl 416 M ab 1 f 1 . a e . ass a ance or protem, ca clum an d h·· d . fi c Itln unng ermentatlon (I) 
Components (A) (B) AlBb 

Silage Sed + Liq 

Protein 64.1 63.1 1.02 
Calcium 46.7 47.9 0.97 
Chitin 28.5 34.5 0.83 
a masses in this table were obtamed from Table 4.15. 
b Since silage = sediment + liquor, theoretically, NB should equal 1.0. 

4.3.1.2 Fermentations (11) and (Ill). 

Similar fermentation patterns were observed during fermentation (ll) and (Ill) 

(Figures 4.11 - 4.16) as was shown in fermentation (l). However, in both cases, the 

pH started to rise again after 48 hours (Figure 4.11 and 4.12 respectively). The liquor 

at the end of fermentation (ll) produced a slightly off smell and the final pH was 6.5. 

Fermentation (Ill) was stopped as soon as the pH reached approximately pH 6.0. 
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Figure 4.11: Changes in pH & TTA in the 
liquor during fermentation (IT) 
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Figure 4.12: Changes in pH & TTA in the 
liquor during fermentation (In) 
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Figure 4.13: Changes in TTA and calcium content 
in the liquor during fermentation (II) 
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Figure 4.14: Changes in TTA and calcium content 
in the liquor during fermentation (Ill) 
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Figure 4.15: Changes in SPN, NPN & TN in the 
liquor during fermentation (ll) 
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Figure 4.16: Changes in SPN, NPN & TN in the 
liquor during fermentation (Ill) 
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The results of proximate analysis on the fermentation products in (ll) and (ill) are 

shown in Table 4.17 and 4.19 and their corresponding mass balances shown in Table 

4.IS and 4.20 respectively. Proximate analysis on the sediment and the liquor in 

fermentation (ll) (Table 4.17) revealed that with 25.9 g of protein and 2S.4 g calcium 

left on the sediment, the removal of protein and calcium from the initial waste was 

77.5 percent and 61 percent respectively. The liquor contained 44.38 percent protein 

and 9.2 percent calcium. The recovery of protein, calcium and chitin was 120.6, 

111.0 and 92.4 percent respectively (calculated as in (1), and the results from Table 

4.IS). 

Table 4.17: Distributions of Ca, Protein and chitin content* in the various fractions 
at 

the end of fermentation (ll) 
Fractions Protein Calcium** Chitin 
Silage (%) 2S.00 12.70 II.S2 

(g) 90.10 40.90 38.00 

Sediment (%) 17.63 19.3 17.55 
(g) 25.90 28.40 25.S0 

Liquor (%) 44.3S 9.20 5.0S 
(g) 82.50 17.00 9.40 

Waste (%) 32.83 20.80 12.05 
(g) 114.90 72.80 42.20 

* = % expressed on dry weight basis; 
** 1.0 percent calcium = 2.5 percent calcium carbonate 

Table 4.18: Mass· balance for protein, calcium and chitin during fermentation (ll). 
Components (A) (B) AIB" 

Silage Sed + Lia 
Protein 90.1 108.4 0.S3 
Calcium 40.9 45.4 0.90 
Chitin 3S.0 35.2 1.08 
• masses in this table were obtained from Table 4.17. 
b Since silage = sediment + liquor, theoretically, AIB should equal 1.0. 

Proximate analysis on the sediment and the liquor in fermentation (Ill) (Table 4.19) 

revealed that with 19.6 g of protein and 20.7 g calcium left on the sediment, the 

removal of protein and calcium from the initial waste was 80.7 percent and 67.9 

124 



percent respectively. The liquor contained 36.69 percent protein and 9.29 percent 

calcium. The percentage recoveries of protein, calcium and chitin are 112.6, 82.5 

and 82.8 respectively (calculated as in (I), results from Table 4.20). 

Table 4.19: Distributions of Ca. protein and chitin content* in the various fractions 
at the end of fermentations (Ill) 

Fractions Protein Calcium** Chitin 

Silage (%) 23.94 15.2 11.01 
(g) 65.7 41.8 30.23 

Sediment (%) 18,00 20.91 18.85 
(g) 17.84 20.7 18.68 

Liquor (%) 36.68 9.29 4.88 
(g) 54.4 13.8 7.23 

Waste (%) 32.83 20.8 12.05 
(g) 101.8 64.5 37.4 

* = % expressed on dry weIght baSIS; 
** 1.0 percent calcium = 2.5 percent calcium carbonate 

T bl 420 M • b I I . a e . ass a ance for protein, ca ClUm an d hi' d c tm uring fermentation (Ill) 

Components (A) (B) A/B" 
Silage Sed + Liq 

Protein 65.7 74.0 0.89 
Calcium 41.8 34.5 1.21 
Chitin 30.2 25.9 1.17 

• masses in this table were obtained from Table 4.17. 
b Since silage = sediment + liquor, theoretically, A/B should equal 1.0. 

Overall, the three batch fermentations showed a very similar pattern. The HRB 

proved to be particularly efficient in separating the insoluble chitin solids from the 

liquor. The system also made sampling of the liquor straightforward and at the same 

time allowed the solids to be in frequent contact with the liquor. This made 

purification of chitin from protein and calcium carbonate possible with a high 

percentage removal being obtained. The data obtained has also made other 

information available such as, i) the glucose consumption requirement (see Appendix 

4.2) which is further discussed in section 4.3.2. and ii) the agitation regimes which 

did not result in thickening of the proteinaceous liquor (see Appendix 4.3). 
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4.3.2 Variation in glucose additions. 

The addition of 10 percent glucose during the batch fermentations (section 4.3.1) 

resulted in a a significant amount of protein and calcium removal from the scampi 

waste. It was reasoned that improved purification might follow if additional glucose 

were added during the course of fermentation. According to the theoretical glucose 

conversion to lactic acid if it is assumed that lactic acid is produced 

stoichiometrically only from glucose and that the lactic acid subsequently reacts with 

calcium carbonate, the initial charge of glucose might be the limiting factor in 

increased purification. Since glucose has been shown to be inhibitory to the growth 

of lactic acid bacteria (Jay, 1992), it was added in small amounts at various time 

intervals. In all, three modes (A, B and C) of glucose addition were evaluated. 

Mode A: Addition of anhydrous glucose. 

In mode A, 50 g glucose was added each at 48, 57, 72 and 80 hours. Figure 4.17 

show changes in the pH and ITA over 144 hours. The pH dropped rapidly during 

the first 48 hours and a low pH (between pH 5.3 to 5.6) was maintained until the end 

of the fermentation. 

After 144 hours, the fermentation was stopped. Surprisingly, the liquor was very 

viscous and sticky and the sediment had formed into hard balls of various sizes. The 

balls consisted of chitin sediment and whitish solids, presumably solid calcium 

lactate. As it was quite difficult to clean the chitin sediments, no analysis was done 

on the sediments. 

Analysis of the liquor samples revealed that following each glucose addition a 

relatively rapid decrease recurred in the concentration of glucose (Figure 4.18). 

However, after 80 hours, when the last batch of glucose was added, the glucose 

concentration reduced slightly, then it remained constant until the end of the 

fermentation period, indicating that no further utilisation of glucose was taking place. 

However, the final glucose concentration (approximately 17 mg/m!) was much higher 

than the initial starting concentration (approximately 7 mg/ml). The apparently 

inactive period at the end of the fermentation was also reflected in the changes of 
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Figure 4.17: Changes in pH of the liquor 
during fermentation (mode A)* 
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Figure 4.18: Changes in glucose concentration in the 
liquor during fermentation (mode A) 
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calcium concentration of the liquor (Figure 4.19) where the concentration 

continuously increased until 82 hours then dropped slightly until the end of the 

fermentation period. This is in contrast to the batch fermentation described in section 

4.3.1 where the calcium concentration of the liquor increased until the end of the 

fermentation. This slight reduction of calcium in the liquor after 82 hours may have 

been caused by the crystallization of calcium lactate. This substance together with 

the high glucose concentration in the liquor might have caused the chitin sediment to 

form balls which was observed during fermentation (I). Therefore to summarise, 

adding glucose at various times during the fermentation did maintain a low pH but 

the subsequent formation of putative calcium lactate solids made purification of 

chitin more difficult to achieve. 

Mode B: Addition of glucose solution. 

In this fermentation, dilute glucose solution was added rather than solid glucose 

powder. Glucose solution was added as soon as the pH was observed to rise. On this 

occasion the chitin sediment was not covered with the whitish substance at the end of 

fermentation period but instead the whitish substance precipitated out from the liquor 

and started covering the steel basket after the 120th hour and became thicker towards 

the end. The fermentation was stopped after 144 hours. The pH dropped each time 

glucose was added (Figure 4.20) and again the same observation occurred in the 

calcium content of the liquor whereby the percentage of calcium in the liquor 

decreased slightly after the 96th hour i.e. when it started to precipitate out (Figure 

4.21). The chitin sediment was extracted from the basket and analysed. The analysis 

of the chitin sediment revealed a high calcium content (27.6 %) and 8.68 percent of 

protein. Chitin nitrogen was low, at only 2.36 percent, dry weight basis which 

corresponds to 34.72 percent chitin. Therefore it seems that the strategy of adding 

glucose during fermentation does result in enhanced removal of calcium from the 

waste. However, the increase in the calcium content of the liquor resulted in the 

formation of whitish solids which hindered further purification. 
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Figure 4.19: Changes in TTA and calcium content 
during fermentation (mode A)* 
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Figure 4.20: Changes in pH of the liquor 
during fermentation (mode B)* 
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Figure 4.21: Changes in glucose & calcium in 
the liquor during fermentation (mode B) 
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Mode C: Substitution of fermentation liquor with glucose solution. 

In the first two variations described above, where glucose was added either in solid 

form or in dilute solution, additional calcium was removed from the waste but the 

corresponding increase in calcium concentration in the liquor caused difficulties as 

descri bed above. It was also observed that when the 10 % glucose fermented liquor 

obtained after 72 hours was stored in the refrigerator, similar white solid material 

was precipitated. 

Therefore in mode C, the liquor produced during the first period of fermentation i.e. 

up to 48 hours was totally removed from the bioreactor before adding new glucose 

solution. Two more similar additions were added at approximately 96 hours and 130 

hours (Figure 4.22). It was hoped that this arrangement would minimise the 

precipitation of solids. 

During the initial glucose addition at 48 hours, the liquor produced was very dark in 

colour but the intensity of the colour became reduced as further additions of glucose 

were made until a pale yellow liquor was finally produced. Changes were also 

percei ved to the odour of the liquor which changed from that of characteristic 

"fermented protein" smell to that of a "fermented starch" one. Although smells are 

subjective impressions, what is important is that changes were taking place after each 

liquor substitution. The changes from a characteristic fermented protein smell to a 

fermented starch suggested that protein extraction from the waste into the liquor was 

being reduced progressively during this fermentation and that the final liquor had 

contained almost negligible amounts of protein. The sediment also became lighter in 

colour after each fermentation. A small sample taken out from the basket after each 

fermentation (designated as FI to F4) enabled analysis to be done on the sediment 

and the results are shown in Table 4.21. 

The pH drop and the subsequent changes in TT A during the fermentation are shown 

in Figure 4.22. A low pH was maintained throughout the fermentation period. 

Figure 4.23 shows that there was a substantial removal of calcium from the waste 

into the liquor at each fermentation period continuing until the termination of 

fermentation. 
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Figure 4.22: Changes in pH and TTA of the liquor 
during fed batch fermentation (mode C)* 
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Figure 4.23: Changes in TN and calcium content of the 
liquor during fed batch fermentation (mode C) 
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This progressive removal of calcium from the waste is reflected in the progressive 

reduction of the calcium content in the sediment from 22.51 percent in FI to 8.25 

percent in F4 (Table 4.21). This corresponds to 92.94 percent removal of calcium 

from the waste in 192 hours (Table 4.22). 

However, the total nitrogen content of the liquor decreased after 48 hours (Figure 

4.23) and only small amounts (approximately 0.1 percent TN which corresponds to 

0.6 percent protein) was detected after 96 hours. This data suggested that protein was 

mostly removed by 48 hours and that almost complete removal was achieved within 

96 hours. It is interesting to note that the sediment at each period (FI-F4) contained 

a constant protein concentration of 6 to 7 percent (Table 4.21). This result suggests 

that total removal of protein may be difficult to achieve by fermentation. 

The economic implications of making glucose additions to remove additional 

calcium when compared to the 'base case' of a 72 hour fermentation with a single 

glucose charge is further evaluated in section 4.4. 

The amount of glucose detected in the liquor at the end of each fermentation period 

was approximately fixed i.e. 8.00 to 12.35 mg/ml or 8.14 to 12.56 percent of glucose 

left (Table 4.23). This shows that the glucose was being utilised following each 

addition and that the addition of a 22 percent glucose (in total) resulted in the 

removal of 92.94 percent calcium from the scampi waste (Table 4.22) in 8 days. The 

theoretical amount of glucose required to remove all of the calcium carbonate from 

the waste is about 30 percent (see Appendix 4.2). 
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Table 4.21: Proximate analysis of sediments (FI-F4)a collected at each fermentation 
. d peno 

Percentage (dwb) FI F2 F3 F4 

Total N 2.91 4.19 4.43 5.34 

Chitin N 1.86 3.03 3.29 4.27 

Chitin 27.00 43.90 47.70 61.89 

Corr. Protein 6.56 7.25 7.13 7.17 

Calcium 22.51 15.93 11.J7 8.25 
Corrected ProteIn = (TN - CN) x 6.25; (dwb) = dry weight basIs 
a = sediments were taken at 48, 96, 130 and 192 hours, washed and dried before 
analysis 

Table 4.22: Percentage removal of protein and calcium from the waste during fed 
batch fermentation 

Components Dry weight Ca1cium* Protein Chitin 
(g) (%) (g) (%) (g) (%) (g) 

Waste used 318.0 20.80 66.14 32.83 104.40 12.05 38.32 

Final Sediment 56.57 8.25 4.67 7.17 4.06 61.89 35.01 
(F4) 
Percentage 92.94 96.11 
Removal 
* To convert Ca to CaC03, multiply by 2.5 

T bl 423 GI a e h r h ucose content In t e Iquor at teen d f h D ·d o eac ermentatlOn peno . 
Fermentation period Conc. of glucose in the % glucose left in the liquor* 

liquor (mg/ml) 

FI 12.35 12.56 
F2 8.00 8.14 
F3 9.20 9.36 
F4 11.20 11.39 

* glucose left calculated as = glucose In hquor I glucose at t = 0 (I.e. 98.3 mg/ml) 
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4.3.3 Effect of particle size. 

In section 4.2, detailed studies on the effect of mincing (using thtee mincer plates 

with holes of diameter 3, 6 and 10 mm) on the particle size of temperate and tropical 

waste were evaluated. The results of these experiments showed that changing the 

aperture of the holes of the plates did not significantly affect product size 

distributions. In the work present below a different strategy was adopted. Size 

reduction was done by cutting and then lightly crushing the waste. Waste material 

(as received) was cut into either 1/2 or 114 inch pieces. This material was either 

crushed or used directly. In addition fermentations were conducted with both cut and 

minced scampi waste (refer Table 3.1, section 3.4.3 for details). 

All previously described fermentations were conducted with minced scampi waste 

and the fermentation was successful resulting in a substantial purification of the 

chitin. Pretreatment by mincing produces relatively homogeneously small scampi 

waste particles. However, such pretreatment would normally add to the cost of 

production and as such it is best avoided if possible. 

In all the fermentations, observations were made on the extent to which the sediment 

in the basket was submerged in the liquor. These observations were made purely by 

sight and as such are somewhat subjective, nonetheless they provide some useful 

information. The results obtained were as follows: 

(A), all sediment was fully submerged 

(B), - 112 was submerged, most of the bigger pieces stayed out of the liquid. 

(C), - only 30% was submerged. 

(D), - a degree of submergence was obtained which was intermediate to B and C 

(E), only a very small amount of waste was in contact with the liquor 

The odour given off during fermentation (C) was indicative of spoilage whereas all 

the other fermentations had a fermented protein smell. Figure 4.24, shows that with 

the 100 % minced waste (A) rapid acidification was achieved within 12 hours 

whereas the rest of the fermentations lagged behind by approximately 6 hours. 

Significant differences between the fermentation became manifest after 

approximately 40 hours. It appears that the lower the content of minced waste, the 
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Figure 4.24: Effect of particle size of scampi waste on the pH 
profile of the liquor during fermentation 
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A = 100 % minced 
B = 50 % minced + 50 % crushed (1/2" size) 
C = 100 % crushed (1/2" size) 
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E = 100 % whole (1/2" size) 
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faster the pH started to rise. It was also noticed that an off smell was generated 

during fermentation (C) which implies that spoilage organisms may have become 

active as the pH increased. Fermentations (D) and (E) were stopped when it became 

clear that the pH was rising. 

Table 4.24 shows that the volume of liquor produced decreases with increasing 

particle size. The percentage of protein in the liquor remains comparable for all 

ferments but the percentage of protein in the sediment increases slightly with 

increasing particle size. A drastic increase in the protein left on the sediment was 

observed when whole waste was used in fermentation (E) (Table 4.24). These 

obervations were also similar in the calcium content of the sediment (Table 4.24). 

Table 4.25, clearly shows that the best purification of chitin was achieved when a 100 

percent minced waste was used with 93.8 percent and 78.3 percent removal of 

protein and calcium respectively being achieved. Very little difference in the protein 

and calcium removal were observed between fermentations (A) - (D) but the results 

suggest that purification is better when the waste contains higher proportion of 

minced waste. In fermentation (E) when whole waste was used, the removal of both 

protein and calcium dropped significantly. Although the pH drop in (E) did reach a 

value of 5.0, the relatively low amount of liquor being produced and the higher 

proportion of solids not in contact with the liquor, suggest that good contact between 

the acidified liquor is a necessity for calcium removal from the waste. These results 

show that using unminced waste did not affect the protein removal as much as 

calcium removal. 
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Table 4.24: Proximate analysis of sediment and liquor 

Fractions Moisture Volume Wet ~ried Chitin Protein Calcium 
content (m!) wt wt(g)* (%) (%) (%) 

(%) (g) 

Waste -
(0/0) 68.20 12.05 32.83 20.80 
(g) 1000 318.0 38.32 104.40 66.14 

Sediment * -
(A) (%) nd 28.28 7.51 16.50 

(g) 377.0 87.0 24.60 6.53 14.36 

(B) (%) nd - 25.32 10.18 16.93 
(g) 415.0 121.0 30.64 12.32 20.49 

(C) (%) nd - 24.23 11.73 15.05 
(g) 510.0 159.2 38.57 18.67 23.96 

(D) (0/0) nd 25.61 9.41 17.34 -(g) 525.0 115.0 29.45 10.82 19.94 

(E) (%) nd 18.75 18.34 34.60 
(g) - 585.0 175.0 32.81 32.10 60.55 

Liquor 
(A) (%) 79.30 nd 40.40 9.40 

.. 
(g) 620 625 -

(B) (%) 79.43 nd 42.48 10.45 
(g) 660 670 -

(C) (0/0) 78.24 nd 42.92 7.30 
(g) 550 560 - . 

(D) (%) 76.68 nd 41.44 ;. nd 
(g) 506 503 - - . 

(E) (%) 78.36 nd 41.31 . ·nd 
(g) 457 451 -

* SedIment washed and dned before bemg analysed 
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Table 4.25: Percentage removal* of calcium and protein from scampi waste 

Fractions Protein Calcium 

(A) 93.8 78.3 
(B) 88.2 69.0 
(C) 82.1 63.7 
(D) 89.6 69.9 
(E) 69.3 8.5 

*Percentage removal calculated from the weights in Table 4.24. 

4.3.4. Effect of temperature. 

This study was conducted to evaluate the effect of temperature upon the fermentation 

of scampi waste and on its subsequent purification. Therefore four temperatures 

were studied i.e. 15°C, 20°C, 30°C and 45°e. Analyses were performed on the solid 

sediments obtained at the end of the fermentation. 

Figure 4.25 shows the pH profile of each fermentation. At 15°C, there was no 

fermentation activity taking place and the pH remaining high at 7.8 until the 48th 

hour, after which time the fermentation was stopped. Although the waste was not 

fermented, neither did it spoil. The low temperature had preserved the waste material 

but could not initiate growth of the inoculum, hence no production of acid occurred. 

However, at 20°C, there was a lag phase of 24 hours before the pH suddenly dropped 

to a value of 5.5. Increases in the rate of pH decline were observed for the 

fermentations conducted at 30°C and 45°e. The lowest pH achieved was at 5.1 at 

45°e. 

Table 4.26 shows that there was an increase in the weight of sediment remaining at 

the end of fermentation as the temperature decreased whereas in Table 4.27, it is seen 

that the volume of liquor decreases with decreasing temperature. Analysis of the 

liquors revealed no significant differences with respect to protein content. However, 

there was a slight increase in the protein content of the sediment fermented at 20°e. 

For ease of reference the data has been summarised in Table 4.28, which shows the 

percentage removal of calcium and protein from scampi waste. The percentage 
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Figure 4.25: Effect of temperature on 
the fermentation of scampi waste 
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removal of these two components is greatest (81.9 percent calcium and 96.5 percent 

of protein) when fermentation was conducted at 45°C and the percentage removal 

gradually decreased with temperature. 

T bl 426 P a e : roximate ana I . a f h h' SIS 0 t e c ltin sediment after 72 hours fermentation 
Temperature Calcium Protein Chitin Total wet Total dried 
(oC) wt (g) wt (g) 
45 (%) 22.62 6.73 30.26 

(g) 11.99 3.57 16.04 195.0 53.0 
30 (%) 16.50 7.51 28.28 

(g) 14.36 6.53 24.60 377.0 87.0 
20 (%) 21.92 12.87 29.44 

(g) 19.73 11.58 26.50 440.0 90.0 
waste (%) 20.80 32.83 12.05 

( 0-) 66.14 104.40 38.32 1000 318.0 

a = Results expressed as percentages on dry weight basis 

T bl 427 P a e . : I . f h r d d f 72h roxlmate ana VSIS 0 t e .lquor pro uce a ter ours fermentation 
Temperature Calcium Protein Moisture Total wet Volume 

("C) (% ) (% ) content (%) weight (g) (ml) 

45 11.35 36.88 78.03 747.0 726.5 
30 9.40 40.40 79.30 625.0 620.0 
20 12.94 35.60 77.90 557.5 525.0 

(%) on dry wt basis 

Table 4.28: Percentage removal of calcium and protein from scampi waste 

Temperature 

45°C 
30°C 
20°C 

Calcium 

81.9 
78.3 
70.1 
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Protein 

96.5 
93.8 
88.9 



4.3.5 Effect of agitation. 

The results from a previous experiment (section 4.3.3), show that when unminced 

waste was fermented, the volume of the liquor produced was much less than the 

minced waste. The unminced waste also occupied a much greater volume than the 

minced waste and thus most of the sediment in the basket was above the liquor level. 

In this condition, contact between the calcium carbonate of the solids and the 

acidified liquor can only occur during the relatively short time when the basket was 

rotated (i.e. 3 turns every I hours). If however, this contact time could be increased 

by increasing the number of rotations, calcium removal could also be increased 

further. Therefore a series of experiments were conducted to evaluate the effect of 

agitation on the fermentation of unminced scampi waste. These are designated as: 

(i) fermentation with minced waste, at 3 revs per hour. 

(ii) fermentation with unminced waste (112 inch), at 3 revs per hour. 

(iii) fermentations with unminced waste (112 inch) with increased rotation rate of 15 

revs per 15 min for first 36 hours, then at 10 revs per hour until 72 hours. 

The result of the pH activity is shown in Figure 4.26. The results show that although 

there was very little difference in liquor pHs between (ii) and (iii), the pH drop in (iii) 

lagged behind that obtained in (ii). The lowest concentration of calcium in the liquor 

was obtained in (iii) (Table 4.30) signifying a relatively lower calcium removal. This 

result is reflected in the higher amount of calcium left on the chitin sediment (Table 

4.29). The protein content of the sediment is also slightly higher in (iii) than in (ii). 

Calculation of the percentage removal of calcium and protein from the waste (Table 

4.31), shows that providing additional agitation did not improve the purification of 

chitin as expected but actually resulted in a low level of purification. Interestingly, 

the protein removal was also affected with only 77.9 percent removal from the waste 

in (iii). 
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Figure 4.26: Effect of rotation on the pH of the liquor 
during fermentation of scampi waste 
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T bl 429 P a e . : I . roxlmate analysIs on t h hi· ec tm se Iment af 72h t< ter our ermentaUon. 
Type of Rotation Calcium Protein Chitin Moisture Total wet Total dried 

(%) (%) (%) content(%) wt (g) wt(g) 

(i) (%) 16.50 7.51 28.28 
(g) 14.36 6.53 24.60 377 87.0 

(ii) (%) 15.05 11.73 24.23 
(g) 23.96 18.67 38.57 510.0 159.2 

(iii) (%) 21.18 14.88 19.98 
(g) 32.83 23.06 30.97 544.0 155.0 

Waste (%) 20.80 32.83 12.05 68.20 
(g) 66.14 104.40 38.32 1000 318.0 

Table 4.30: Proximate analysis on the liquor produce a ter our ermentatlO d f 72h D n 

Rotation Calcium Protein Moisture Total wet Volume 
(%) (%) content (%) wt (g) (ml) 

(i) 9.40 40.40 79.30 625 620 
(ii) 7.30 42.92 78.24 550 560 
(iii) 6.80 39.80 75.65 454 440 

Table 4.31: Percentage removal of calcium and protein from scampi waste 

Rotation 

(1) 

(ii) 

(iii) 

Protein 

93.8 

82.1 

77.9 
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Calcium 

78.3 

63.7 

50.4 



4.3.6 Effect of charge size. 

The objective of this series of experiments was to determine the treatment capacity of 

the HRB. A particular characteristic of this bioreactor is the necessity of maintaining 

good solid liquid contact in order to achieve acceptable purification. Although it was 

anticipated that increasing the initial charge of scampi waste would result in 

increased liberation of liquor, it was not known whether the increase would be 

directly proportional. In previously described experiments, a charge of I kg of 

scampi waste was used and resulted in satisfactory operation. However, the basket 

has a maximum capacity between 1500 and 2000 g waste depending on the physical 

condition of the waste. In order to maximise the productivity of batch fermentations, 

it would be useful to determine the maximum charge of scampi waste which could be 

treated without adversely affecting product quality. Loadings are designated as L! 

(750 g), L2 (1000 g), and L3 (1500 g) and the results of the production of liquor and 

sediment are shown in Table 4.32. 

Table 4.32 shows that, as expected the volume of the liquor and the amount of chitin 

sediment produced at the end of the 72 hour fermentation increased as the initial 

amount of waste used increased. No significant difference occurred in the pH 

profiles (Figure 4.27). A linear relationship with high correlation coefficient (r2 = 

0.9) was obtained when mass of liquor generated was plotted against mass of charge 

(Figure 4.28). Similarly, a graph of volume of liquor generated versus mass of 

charge (Figure 4.29) was linear with a correlation coefficient of 0.9968. These 

results provides a good basis for establishing the relationship between the mass of 

waste used and the volume of liquor produced. From Figure 4.29, the relationship 

between the amount of waste used and the volume of liquor produced after 72 hour 

fermentation is y = 0.67x - 16.7. 

Table 4.33 shows no difference among the chitin, calcium and protein content of the 

various fractions. This implies that, over the range studied, the level of purification 

was maintained. 
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T bl 4 32 W· h fl" a e . : elgl ts 0 IQuor an d h·· d· f 72 h ~ c ltlll se lment a ter our ermentatlOn. 
Loading (g) Weight of Liquor volume Sediment Sediment 

liquor (g) (ml) wet weight (g) dry weight (g) 

Ll 471.0 450.0 166.0 45.5 
L2 673.0 650.0 290.0 91.0 
L3 1027.0 1000.0 481.0 126.0 

Table 4.33: Proximate analysis on the chitin sediment and liquor after 72 hour 

fermentation 

Product Moisture Calcium Protein Chitin 
components content (%) 

Scampi waste* nd 18.45 ± 0.15 26.87 14.48 ± 0.39 
Liquor 

(LI) 75.17 ± 0.08 7.77 ± 1.07 37.37 ± 0.16 nd 
(L2) 76.20± 0.07 7.25 ± 1.24 38.50 ± 0.18 nd 
(L3) 75.94 ± 0.01 7.16 ± 0.29 37.65 ± 0.50 nd 

Sediment 
(Ll) nd 22.87 ± 0.02 7.06 29.44 ± 0.58 
(L2) nd 23.52 ± 1.56 6.02 29.68 ± 0.81 
(L3) nd 23.89 ± 1.23 6.48 29.21 ± 0.62 

* new batch of scampI waste was used, nd = not detenruned 
All percentages of chitin, protein and calcium expressed as dry weight basis 
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Figure 4.27: Changes in pH of the 
liquor at different loading capacities 
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Figure 4.28: Relationship between weights of 
liquor and sediment produced and the initial 
waste 
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4.3.7 Effect of waste type. 

In all the previous experiments, fermentations were conducted USIng waste from 

temperate prawn or scampi (Nephrops norvegicus). In this section, the fermentation 

of temperate waste was compared to a waste from the tropical prawn (Penaeus 

monodon). Both waste containing heads and claws, were minced with a mincer plate 

with 6 mm diameter holes and fermented with A3 strain of Lactobacillus paracasei. 

The tropical waste was slightly darker in colour compared to the temperate waste 

which had a pinkish colour and the shells of the tropical species were softer. During 

fermentation, a very dark brown, viscous liquor was collected from the tropical waste 

while the liquor from the temperate waste was slightly less viscous and lighter in 

colour. The tropical waste had a slightly lower initial pH than the temperate waste, 

however their pH profile were quite similar (Figure 4.30). The volume of liquor 

produced from the tropical waste (720 ml) was slightly higher than that from the 

temperate waste (620 ml) (Table 4.34). The protein content of the tropical liquor 

(Table 4.35) was slightly higher (44.13 percent) than the temperate liquor (40.40 

percent ). 

Table 4.35 shows, the protein content of tropical unfermented waste to be higher than 

that of unfermented temperate waste. In contrast, the calcium and chitin contents of 

tropical waste were lower. The compositions of the produced liquor in both 

fermentations were quite similar and both had a similar fermented smell. 

The percentage removal of calcium and protein from temperate waste was 78.3 

percent and 93.7 percent respectively (Table 4.36). In the tropical waste there was a 

79.9 percent removal of calcium and 89.2 percent removal of protein (Table 4.36). 

The results show that for a 72 hour fermentation with 10 percent glucose substantial 

amounts of calcium and protein were removed from the waste. However, in both 

cases, further treatment may still be necessary to provide chitin of acceptable purity. 

150 



Figure 4.30: Changes in pH of the liquor during fermentation 
of fermentation of temperate and tropical waste 
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T bl 4 34 W' h f h a e . elgl ts 0 t e varIOus components 0 f d . I temperate an troplca waste 

Components Temperate Tropical 

Drywt Wet wt Dry wt Wet wt 

Initial waste used 318.0 1000.0 271.5 1000 

Sediment 87.0 377.0 67.3 248.0 

Liquor 129.4 625.0 196.2 752.0 

Table 4.35: Proximate analysisa on the unfermented waste and sediment and liquor 

fraction of fermented waste 

Components Temperate Waste Tropical Waste 

Calcium Protein Chitin Calcium Protein 
b 

Waste (%) 20.80 32.83 12.05 11.12 45.00 
(g) 66.14 104.40 38.32 30.19 122.18 

Sediment (%) 16.50 7.51 28.28 9.01 19.60 
(g) 14.36 6.53 24.60 6.07 13.20 

Liquor (%) 9.40 40.40 nd 5.94 44.13 

a= . 0 t m on dry wt.basls, To convert % Ca 0 CaCO), ultJply by 2.5, 
nd = not determined. 

Chitin 

22.18 
60.22 

37.57 
25.30 

nd 

Table 4.36: Percentage removal of calcium and protein from scampi waste 

Waste type 

Temperate 
Tropical 

Calcium 

78.3 
79.9 
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Protein 

93.7 
89.2 



4.4 Acid & alkali purification of unfermented shellfish waste. 

At present, chitin is purified from shellfish waste by chemical means. Chitin is 

usually treated with acid (usually HC!) and an alkali (usually NaOH) to remove 

calcium and protein respectively as exemplified in Route (A) below. In this project, 

the scampi waste underwent an alternative method of purification i.e. through a lactic 

acid fermentation for 72 hours (Route B), during which time a considerable amount 

of calcium and protein removal took place, producing a partially purified chitin. 

Scampi waste __ mincing __ acid / alkali treatment __ chitin (Route A) 

Scampi waste __ mincing __ fermentation __ acid / alkali treatment __ chitin (Route B) 

Unlike the chemical method, the results so far suggested that the chitin purified by 

the lactic fermentation still contained small amounts of protein (7 %) and calcium 

(16.5 %) on a dry weight basis. To obtain a highly purified chitin, the chitin 

sediment may be further treated with acid and alkali as in Route A. Pure chitin 

normally contains less than 1.0 percent calcium and 6.89 percent nitrogen (No et aI., 

1989). 

Thus in this section, a study was made to compare treatment by Route A and Route B 

in terms of acid and alkali consumption. In Section 4.4.1. are described the results of 

chemical treatments for Route A and these results were compared to the treatments in 

Route B (section 4.4.2). The chemical treatment of a 72 hour fermented waste of the 

same source had been carried out elsewhere (Baker and Milnes, 1995) and their 

results shown in Table 4.38. 

In section 4.4.3, another comparison was made between the overall performance of a 

72 hour batch fermentation and a fed batch fermentation (192 hour) in terms of 

overall chitin purification. 
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4.4.1 Acid and alkali treatment. 

When dried unfermented minced waste was added to the acid solution, the mixture 

became frothy due to rapid production of carbon dioxide gas which lasted between 

15 and 20 minutes. Figure 4.31 shows the effect of HCI concentration on the calcium 

content of the chitin sediment. An almost total calcium removal can only be obtained 

when a concentration higher than 1.0 M is used. In Figure 4.32, the minimum time 

taken to remove all the calcium carbonate using a 1.0 M solution was I hour. For 

treatment with NaOH solution, Figure 4.33 shows that the optimum concentration 

was 1.0 M at a reaction temperature of 65°C under which conditions total nitrogen 

residual became constant at 6.4 percent. This figure was taken as the percent 

nitrogen content for purified chitin in this study. This value was a slightly lower than 

theoretical value of 6.89 percent obtained by No et al. (1989). In Figure 4.34, the 

optimum extraction time to remove protein using the above conditions was found to 

be I hour. The purified product was cream coloured. A summary of the optimum 

acid and alkali treatments of the unfermented waste is shown in Table 4.37 and that 

of the fermented waste in Table 4.38. From the results of these two tables, a 

comparison was made in terms of chemical usage, and is described below. 

4.4.2 Comparison between fermented and unfermented waste in terms of acid 
and alkali utilisation. 

(a) Purification of unfermented scampi waste. 

If a 100 g (wet weight) of minced scampi waste having a moisture content of 68.20 

percent was treated with 1.0 M HCI (36.5 g/mol) @ ratio of I: 20 (dry wt / v), and 

1.0 M NaOH (40 g/mol) @ ratio of 1 : 50 (dry wt / v) (i.e. under optimal conditions, 

see Table 4.37), then the amount of acid and alkali required to purify the chitin would 

be: 

100g waste = 31.8g dry weight 

Amount of HCI required = [(20 x 31.8)11000] x 36.5 

= 23.21 g Hel 

Amount of NaOH required = [(50 x 31.8) / 1000] x 40 

= 63.60g NaOH 

154 



14 

12 
~ 

~1O 
~ 

= 8 .: 
..5::! 

C!I 

'"' 6 .... 
= ... 
'"' 4 .. ... 

Q. 

2 

0 

0 

Fig. 4.31: Effect of HCI concentration 
on the calcium content of chitin* 

0.5 1 
HCI (M) 

1.5 

* Reaction time = 1.0 hour 

Fig. 4.32: Effect of acid extraction 
time on calcium content of chitin * 

2 

2.5 ,-----------------------, 

• 

~ 
2 .---.--------------------------

~ 
~ 

e 1.5 - - - - - - - - - - - . - - - - - - - - - - - - - - - - - - - - - - - -
.: 
..5::! 
C!I 

'"' ... 
= ... 
1:: ... 

Q. 0.5 

O+-------~----_+------~------~ 

o 0.5 1.5 2 
Time (hour) 

* Concentration of HCI used = 1.0 M 

155 



Figure 4.33: Effect of NaOH concentration and temperature 
on the TN content of chitin * 
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Figure 4.34: Effect of alkali extraction time on the nitrogen 
content of chitin * 
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(b) Purification of fermented waste. 

Similarly, fermenting 100 g of minced scampi waste (wet weight) will produce 8.7 g 

dried sediment (obtain from previous result in section 4.3.3). Applying the optimal 

conditions for acid treatment for fermented waste (Table 4.38) i.e. 1.2 M HCI @ ratio 

of I : 15 (dry wtl v), and 1.0 M NaOH @ ratio of I : 15 (dry wt 1 v), then the amount 

of acid and alkali required to purify the chitin sediment would be: 

Amount of HCI required = [(15 x 8.7) x 1.2)/1000 

= 0.1566 mol HCI 

= 5.72 g HCI 

Amount of NaOH required = [(15 x 8.7)/1000) x 40 

= 5.22 gNaOH 

Table 4.39 shows that when Route (B) was used prior to acid and alkali treatment, a 

saving of 91.8 percent NaOH and 75.4 percent HCI were obtained. This result is 

very encouraging especially in terms of environmental preservation. Besides these 

large savings in chemicals, protein could also be recovered safely and cheaply in the 

form of a fermented protein liquor. 

Table 4.37: Optimum conditions for chemical treatment of unfermented scampi 
waste 

Parameters Alkali Acid Alkali 

Concentration(M) 1.0 1.0 

Weight to volume ratio 1: 20 I : 50 

Extraction time(h) 2.0 1.0 

Temperature (C) 21 65 

Table 4.38: Optimum conditions for chemical treatment of fermented scampi 
wastea 

Parameters Alkali Acid Alkali 

Concentration(M) 1.2 1.0 

Weight to volume ratio 1 : 15 1 : 15 

Extraction time(h) . 2.0 2.0 

Temperature (0C) 21 linear 

a = Results were obtamed elsewhere (Baker and Mllnes, 1995). 
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Table 4.39: Summary of the amount of chemicals used as presented in the above 

11· dh b·d ca cu atlons an t e re~ectlve savmgs 0 tame . 
Chemicals NaOH (g) HCl (g) 

Fermented waste 5.22 5.72 
Unfermented waste 63.60 23.21 
SaviUl~s (%) 91.79 75.36 

4.4.3 Comparison between a batch fermentation (72 hour) and a fed batch 
fermentation (192 hours). 

During a 72 hour batch fermentation, the percentage removals of protein and calcium 

were 78.29 and 93.74 percent (dry weight basis) respectively, whilst in the fed batch 

fermentation with additional glucose added, the percentage removals of protein and 

calcium were 92.94 and 96.11 percent respectively (Table 4.40). This result shows 

that the effect of adding more glucose improved the calcium removal by 17.82 

percent but only increased the protein removal by 3.17 percent. 

T bl 440 C a e . ompanson b etween b h Hdb hfi atc an e atc ermentatlOns 
Batch (72 h) Fed Batch (192 h) 

Waste used (g) 1000.0 1000.0 
Glucose added (g) 100 220 
Sediment (%) Ca 16.5 8.25 

Pr 7.51 7.17 
CH 28.28 61.89 

% Removal ofjJfotein 93.74 92.94 
% Removal of calcium 78.29 96.11 

.. 
Ca = calcIUm, Pr = protem, CH = chltm. 
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CHAPTERS 

DISCUSSION 

5.1 Isolation of lactic acid bacteria (LAB) from fermented prawn waste. 

5.1.1 Isolation of LAB. 

In the past LAB have been isolated from a wide variety of sources such as fermented 

products, food and dairy products, in the mouth and intestinal tract of humans and 

animals and in vegetable materials (Sharpe et al., 1966; Sneath, 1986; Axelsson, 

1993). The variety of habitats from which they can be isolated suggests that they are 

highly competitive bacteria. As such their isolation should not be too difficult. Their 

presence in these various habitats proves to be beneficial to the host or their 

surroundings. For example, their presence in the intestinal tract provides protection 

against undesired bacteria (Vandevoorde et ai., 1992). Fermented samples normally 

contain bacterial species which produce large amount of acids which preserve the 

food and feed products. Since their energy gain is through the metabolism of 

fermentable carbohydrates (Axelsson, 1993), it is not surprising that fermentations 

are usually performed by high carbohydrate content food materials such as rice, 

cereals, milks, vegetables and grass (Plat!, 1987). 

In the present work, LAB were isolated from minced prawn waste. The prawn waste 

which constitutes the heads and claws were first fermented with 10 percent glucose 

to form a silage. From these silages, nine strains of LAB were successfully isolated. 

The reason for using shellfish waste for isolation of LAB was because bacteria 

isolated from a particular substrate generally produce satisfactory performance when 

used to ferment that substrate (Jepperson, 1993). 

The fermentation of shellfish waste was successful possibly because of the presence 

of natural microflora and also the addition of a fermentable carbohydrate (Lindgren 

and Pleje, 1983). Shellfish like other animals have popu1ations of bacteria associated 

with them and referred to as "resident flora". In a normal living shellfish there are a 

variety of types of bacteria present that cause no harm to the shellfish. Once the 

shellfish is caught and dies, changes occur in the environment in which the bacteria 
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live which provide conditions conducive to bacterial growth. Refrigeration or 

freezing of the waste effectively controls the growth of these bacteria which may 

have originated from the waters from which it was harvested (Jay, 1992). If 

however, conditions become conducive to growth, such as raising the temperature, 

these bacteria can increase in number and if allowed to continue, can cause spoilage 

of the food. It appears that the spoilage organisms first utilise the simpler 

compounds present in the food and in the process release various volatile "off' odour 

components such ammonia, hydrogen sulphide, and amines (Jay, 1992). It is the 

dominance of these bacteria which renders the shellfish waste unsuitable for any 

form of further utilisation. Shrimp has been reported to have a higher content of free 

amino acids than fish and to contain cathepsin-like enzymes that rapidly break down 

proteins (Jay, 1992). The presence of higher quantities of free amino acids in 

particular and of higher quantities of nitrogenous extractives in crustacean meats in 

general makes them susceptible to rapid attack by the spoilage flora. When shrimp 

was allowed to spoil at oDe for 13 days, Pseudomonas spp. were found to be the 

dominant spoilers (Matches, 1982). Because of the very low sugar content in the 

shellfish (Table 5.1) it is unlikely that the LAB will dominate. 

If however, a substantial amount of glucose is present, then it is expected that the 

LAB will dominate (provided the number of other bacteria was originally low). 

When LAB proliferate, they produce lactic acid from glucose. The acid conditions 

create the right environment for the native enzymes to work, halts the growth of 

spoilage bacteria (Lindgren and Pleje, 1983; Booth and Kroll, 1989) and helps to 

break down protein. If isolation is carried out during the course of active 

fermentation, it is highly likely that a good acid producer will be obtained. Similar 

proliferation of LAB has been reported from fish and fish/vegetable silages 

(Woolford, 1985). [n this work, the LAB strains were isolated from minced prawn 

waste fermented with a 10 percent sugar where the production of acid was rapid and 

immediate as reflected by the pH drop. A low pH of 5.0 was obtained within 48 

hours. By comparison, it has been reported that an addition of a 10 percent glucose 

(w/w) gave the highest level of acid with the lowest pH drop of 4.9 within 48 hours 

(Hall and Reid, 1995). With no added glucose, the scampi waste was soon spoil and 
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fermentation will not occur. Therefore it seems that glucose must be present to 

promote rapid fermentation. This will ensure that LAB will dominate and produce 

high levels of acid essential to preserve the prawn waste. However, increasing the 

concentration of glucose may not result in a better fermentation but may actually 

inhibit the growth of bacteria (Jay, 1992). During fermentation of the various 

tropical wastes with 10 percent glucose (w/w) at 30°C, the mixture stays fresh 

pinkish in colour, indicating no spoilage at all. Other types of bacteria may have 

been fully suppressed at this stage by the low pH (Booth and Kroll, 1989). 

Furthermore the fermentation was done in a lightly capped bottle, creating a partially 

anaerobic environment, thus reducing the possibility of aerobic microorganisms 

being present. 

Table 5.1: Fish and shellfish: Approximate percentage chemical compositions 
(after Jay, 1992) 
Water Carbohy- Proteins Fat Ash 

drates 
Bony Fish 
Cod 82.6 0 16.5 0.4 1.2 
Haddock 80.7 0 18.2 0.1 1.4 
Herring 67.2 0 18.3 12.5 2.7 
Mackerel 68.1 0 18.7 12.0 1.2 
Salmon 63.4 0 17.4 16.5 1.0 

Crustaceans 
Crab 80.0 0.6 16.1 1.6 1.7 
Lobster 79.2 0.5 16.2 1.9 2.2 

Molluscs 
Oysters 80.5 5.6 9.8 2.1 2.0 

One tropical sample did not ferment at all and was spoilt and turned black within a 

short time, thus no bacteria were isolated from this source. As no further tests were 

done on this sample, the reason behind this failure could not be identified. If the 

presence of indigenous microorganisms is essential for the fermentation to take place, 

then it seems possible that the reason for its failure is probably the absence of these 

natural microorganisms. There have been concerns over the years of large doses of 

antibiotics being found in cultured prawns especially during the harvesting season. 
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One of the most commonly used antimicrobial agents in food production is the 

tetracycline group. Antibiotics have been used extensively in the shrimp aquaculture. 

However, it is important to withdraw the drugs well in advance of harvesting to 

enable the animals to clear themselves of any residual antibiotics. In spite of the fact 

that most countries have strategies to prevent the occurrence of antibiotic residues in 

their exports, failures of these measures are occasionally reported (Srisomboon and 

Poomchatra, 1995). In the making of grass silages, where the presence of indigenous 

LAB is of the utmost important, it has been found that freshly cut herbage does 

sometimes contain very minimal amount of LAB (less than 102 per g material). This 

relatively low number has been suggested to be the consequence of either antibiotic 

or antagonistic activity on the part of other components of the microflora (Woolford, 

1985). 

The nine isolated colonies regarded as LAB showed positive reactions to Gram stain, 

are catalase negative and grew well in both APT and MRS broth. On MRS agar 

plate, these isolates were easily recognised by their prominantly small, almost pin­

point shape and whitish, typical to that of LAB (Kitchell and Shaw, 1975; Sharpe, 

1979, Collins et al., 1989a). Besides the catalase negatives isolates, no other types of 

bacteria seemed to thrive on the acid medium of MRS agar (Collins et al., 1989a). 

However, Gram-negative bacillus species were able to grow on a slightly less 

selective medium of APT agar plate, appearing as big, whitish colony. From these 

isolates only a few were chosen for identification. It was rather difficult to pick up 

colonies which were markedly different from each other as revealed by the results 

obtained. 

In conclusion, to ensure successful fermentation as a prerequisite to the isolation of 

LAB, it is important to obtain fresh waste, as it is less likely to contain high numbers 

of spoilage bacteria. A sufficient amount of fermentable sugar must be added and the 

preparation done as quickly as possible, moreover, the optimum fermentation 

temperature must quickly be attained. It should be appreciated that when doing a 

lactic acid fermentation using the indigenous microflora, the risk of spoilage is 

relatively high as spoilage microorganisms may also be present. It is also important 
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to intermittently mix the fermenting waste so that all the waste comes into contact 

with acid because pockets of untreated material can putrefy rapidly. 

5.1.2 Identification of isolated strains and their potential as starter cultures for 

the fermentation of scampi waste. 

LAB are a large group of bacteria containing ten different genera (Axelsson, 1993; 

Schleifer and Ludwig, 1995). Each genera has quite prominant biochemical and 

physiological characteristics which can easily be used to differentiate them such as 

the production of gas and morphological characteristics. The results of the 

biochemical tests in section 4.1.2 showed that the isolated colonies were those of 

homofermentative Lactobacillus (i.e they do not produce carbon dioxide) and 

heterofermentative Lactobacillus (producing carbon dioxide). Also identified were 

those of a tetrad-forming colonies typical to that of Pediococci and an unidentified 

cocci species. It is not surprising to find these genera in the fermented prawn waste 

as Pediococci and Lactobacillus are typically dominant in many fermented food 

products (Hammes and Vogel, 1995; Sharpe, 1979). 

From the fermentation profile usmg the API Kit, strain A3 was identified as 

Lactobacillus paracasei, formerly known as Lactobacillus casei (Collins et al., 

1989b), B I as a Pediococcus sp. and Cl as a strain of Lactobacillus plantarum. B2 

was a Lactobacillus species. From these species, A3 was finally chosen for use as a 

starter culture for the fermentation of scampi waste for chitin recovery. A3 had a 

higher maximum growth temperature (it grew well at 45°C) and could be maintained 

at a longer period on MRS agar slant at 4°C than B I and Cl. Nevertheless, the other 

two strains were equally good producers of acid and could warrant further 

investigation as starters for fermentation purposes though they suffered from the 

disadvantage of displaying a lag phase of between 6 to 12 hours. This is reflected in 

the comparison experiments between A3, BI and B2 and Cl. Analysis on the 

fermented products also showed very little differences among these strains. 

The difference in the conversion of glucose during fermentation using strains B I, B2 

and A3 were small and no difference was also observed in the calcium content of the 

chitin sediment in each case (refer Table 4.7). These results suggest that these three 
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strains were acceptable as potential starters for the fermentation of shellfish waste. 

Also strain A3 did not show any significant difference when fermented alone or in 

combination with strain Cl. 

During the isolation of LAB, the fermentation of prawn waste was initiated by the 

presence of the indigenous LAB. Once isolated and purified, these LAB can 

themselves be used as starters for fermentation purposes. Although many 

commercial starters are available such as Lactostart (Lactobacillus plantarum), 

Pediostart (Pediococcus pentosaceus), and Stabisil (combination of Streptoccus 

jaecium, Lactobacillus plantarum and Pediococcus acidilactici), they have been 

isolated for different purposes, thus may not be suitable for the formation of prawn 

silagc. Indeed, a study conducted by Guerrero-Lagarreta et at. (1996) comparing the 

performance of these commercial starters and the A3 strain isolated in this work 

shows that some of the commercial vegetable starters are not suitable for the 

fermentation of prawn waste. They found that the isolated strain, A3 was as good as 

some of the commercial meat starter cultures. Jepperson (1993) also stresses the 

importance of using starters which have been isolated from the same conditions in 

which they will ultimately be used. 
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5.2 Lactic acid fermentation (LAF) of scampi waste using a horizontal rotating 

bioreactor (HRB). 

5.2.1 Batch fermentations. 

The LAF of scampi waste is similar in principle to the ensilation method used to 

preserve crops and grass for preparation of animal feed (Woolford, 1985). During 

ensilation, the material is preserved from pathogenic and spoilage organisms by 

creating acid conditions either by adding acids or the acid can be produced in situ by 

LAB from a carbohydrate source. The LAB may be naturally-occurring in the 

substrate but best results are achieved with starter cultures. The term "silage" has 

also been used to describe the product of anaerobically-stored mixtures of animal by­

products and plant materials (usually cereals) and the liquid digest resulting from the 

treatment of fish and fish offal with acid (Woolford, 1985). 

As mentioned in the Materials and Method section, the LAF of scampi waste was 

carried out using a ten percent (v/w) inoculum of Lactobacillus paracasei (A3 strain) 

and ten percent glucose (w/w). Under these conditions fermentations carried out in 

the HRB was shown to be successful in stabilising the waste and to yield 

reproducible results. During the process of LAF of scampi waste, the results 

obtained suggested that a unique combination of synergistic processes had occurred 

to bring about the purification of chitin. These processes were (a) production of acid 

from glucose by the bacteria and, (b) autolysis or self digestion of protein. In this 

section the discussion on the batch fermentations of scampi waste is divided into 

subheadings. 

(a) Production of acid and its role in preserving the waste and removing 

calcium carbonate. 

One important aspect of the lactic acid fermentation (LAF) of scampi waste is the 

acidification process. As presented in the results, rapid acidification of scampi waste 

occurred during the first 48 hours (refer Figure 4.8). Similar results of rapid 

acidification was also obtained by Hall and De Silva (1992) in their study of LAF of 

tropical prawn waste (Penaeus monodon). The production of acid occurred as a 

result of glucose metabolism by the starter cultures. A conversion of about 85 
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percent of the initial glucose into lactic acid has been being reported in the literature 

(Jay, 1992). In the present study, a conversion of between 88.3 and 92.8 percent of 

glucose were obtained and this result shows that total conversion of glucose is 

difficult to achieve. 

In common with all fermentation processes, the nutritional and environmental 

requirements of LAB have to be met if successful operation is to be achieved. The 

nutritional requirements of LAB include fermentable carbohydrates, amino acids, 

peptides, nucleotides and vitamins (Vandevoorde et al., 1992). Initially the LAB can 

obtain these requirements from the scampi waste as seafood products has been 

reported to contain small amount of amino acids and short peptides (Early and 

Stroud, 1982). These smaller components are easily absorbed by microorganisms 

and seafood products are notorious for their perishability due to the ready availability 

of the former (Jay, 1992). However, as these nutrients become depleted during 

fermentation the LAB will have to utilise the short chain peptides generated as a 

result of autolysis. The fermentation temperature employed here for the majority of 

experiments was 30°C, this is well within the temperature range (20°C - 37°C) for 

growth of spoilage and pathogenic organisms (Hobbs, 1982). As the scampi waste 

used was not sterile, there will be competition between the natural scampi flora and 

the starter inoculum for nutrients at the initial stages of the fermentation. However, 

the addition of a large inoculum (108 cfu/g waste) of A3 strain was successful in 

enabling the LAB to gain a position of dominance over spoilage organisms. 

Jepperson (1993) also reported similar success by this strategy. Spoilage organisms 

such as Pseudomonas sp. have been reported in spoiled shrimp and prawns (Banwart, 

1989). These organisms, which also utilise small peptides and amino acids in the 

substrate, break down these substrates into foul smelling volatile bases such as 

ammonia and amines (Early and Stroud, 1982). It is the production of these foul 

smelling products (which are markedly different from the fermented smell) which is 

actually responsible for making food products unacceptable for human consumption. 

Scampi waste must be in a fresh condition otherwise it cannot be used for 

fermentation as the essential enzymes, vital for the autolytic processes become 

denatured (Arason, 1994). 
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The precise mechanisms by which LAB inhibits other organisms is not yet clear (Jay, 

1992). However, several potential factors have been identified such as low pH, 

organic acids (lactic, acetic), hydrogen peroxide, diacetyl, nutrient depletion and 

bacteriocins (Daeschel, 1989). Bacteriocins are typically plasmid-borne and heat 

resistant, and inhibit or kill other closely related species or different strains of the 

same species but do not affect the producing strains; many are peptides (Earnshaw, 

1992). 

It is well known that most microorganisms grow best at pH values around 7.0 (Jay, 

1992), whereas few grow below 4.0. Bacteria tend to be more fastidious in their 

relationships to pH than are moulds and yeasts, with the pathogenic bacteria being 

the most fastidious. Lactic and acetic acids produced by certain LAB have anti­

microbial activity towards many microorganisms including those that cause food 

spoilage and food borne diseases (Earnshaw, 1992; Mayra-Makinen and Bigret, 

1993). Low pH, dissociation constant (pKa) and the acid concentration determine 

inhibition by both lactic (pKa = 3.08) and acetic acid (pKa = 4.73) (Adams and Hall, 

1988). At a given pH, the acid with the highest pKa value will have the most 

undissociated acid present, resulting in the strongest antimicrobial activity (Vuyst and 

Vandamme, 1994b). However, the minimal inhibitory level of acid at different pH is 

different for different species (Woolford, 1985). Table 5.2 shows the minimum 

inhibitory concentration of lactic acid and acetic acid against various groups of 

microorganisms. The antimicrobial effect markedly increases as the pH declines. 

Table 5.2: Minimum inhibitory concentrations (mmol/L) of lactic acid and acetic 
'd f d'ffi H I aCI agaInst varIOus groups 0 organisms at I erent pI va ues. 

Tested microorganisms Lactic acid Acetic acid 
pH pH 

5 4 5 4 
LAB (heterofermentati ve strains) 31 4 379· 94 
Clostridium sp 8 nd 47 nd 
Bacillus sp. 6 nd < 12 nd 
Other Gram-positive bacteria 31 nd 47 nd 
Other Gram-negative bactetia 16 nd 23 nd 
Yeasts >250 >250 281 94 
Fungi >250 >250 188 94 
Adopted from Wool ford (1985). 
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Table 5.2, shows that lactic acid is inhibitory to Clostridium at a level of 8 mmoVL at 

pH 5. From the results of the present study (see Figure 4.11), the highest level of 

acid detected was about 1.2 percent TT A (w/v) which is equivalent to 132 mmoVL of 

lactic acid at pH 5.0. It can therefore be assumed that during the fermentation of 

scampi waste, pathogenic organisms such as Clostridium sp. were being effectively 

inhibited. Therefore if the protein-rich liquor is to be incorporated into animal feed it 

is vitally important to terminate the fermentation during the stage when the pH is low 

i.e. after 48 - 72 hours after inoculation. In the food industry, acetic and lactic acid 

are among the most widely employed preservatives (Jay, 1992). These compounds 

are employed as sprays at levels of I to 3 percent, with I percent solutions being used 

most often (Jay, 1992). Clearly, when the pH rises, the inhibitory effect of organic 

acids produced by LAB can hardly be expected (Vandevoorde et al., 1992). At pH 

values higher than 5.6, the possibility that spoilage will occur is increased as will be 

the growth of pathogens (Booth and Kroll, 1989). Therefore pH monitoring can be 

used as a good indicator of a successful fermentation as well as providing a safety 

measure. This further emphasizes the importance of obtaining a rapid lowering of 

pH in order to ensure good preservation. With reference to the problem of spoilage, 

it must be stressed that the fermentation needs to be done quickly, as soon as the 

waste is received, this is even more critical where ambient temperatures are high such 

as in hotter countries. Although this process does not require sterilisation, every 

measure must be taken to keep processing equipment and the working surroundings 

as clean as possible. 

It has been noted that adverse pH affects at least two aspects of a respiring microbial 

cell: namely the functioning of its enzymes and the transport of nutrients into the cell 

(Ray and Sandine, 1992), with regard to the latter, the bacterial cell tends to have a 

residual negative charge. Microbial cells are bounded by a membrane which is 

relatively impermeable to ions, and protons in particular. Non-ionised compounds 

therefore can enter cells, while ionised ones can not. At neutral or alkaline pHs, 

organic acids do not enter the cell, whilst at acid pH values, these compounds are 

non-ionised and are able to enter the negatively charged cells. The accumulation of 

acid can denature the membrane and transport enzymes leading to growth inhibition 

(Booth and Kroll, 1989; Jay, 1992). Eklund (1984) predicted that the dissociated 

168 



form of a weak acid is approximately 10 - fold less effective as a growth inhibitor. 

Lipophilic acids such as lactic and acetic acids can penetrate the microbial cell in 

their undissociated form, and at higher intracellular pH, dissociate to produce 

hydrogen ions, and interfere with essential metabolic functions such as substrate 

translocations and oxidative phosphorylation, thus reducing the intracellular pH 

(Baird-Parker, 1980). 

The amount of acid produced is largely dependent upon the microorganism used, the 

availability of glucose and the buffering capacity of the substrate or the waste 

material. As in other lactic fermentation processes the main role of the acid is to 

preserve the substrate. However, in the fermentation of scampi waste, the acid has an 

added role, that of calcium carbonate removal. As scampi waste contains high 

amounts of calcium carbonate, any acid produced will react with calcium carbonate 

forming carbon dioxide and calcium lactate. The removal of calcium carbonate from 

the waste is reflected in the gradual increase in the calcium content of the liquor 

samples as the fermentation progresses (see Figure 4.9). This reaction explains the 

formation of copious amounts of gas seen bubbling through the Dreschel bottle. 

Whitish crystals formed in the liquor when the latter was cooled in the refrigerator 

were likely to be calcium lactate. It has also been shown (Appendix 4.2) that in the 

case of scampi waste, the ten percent glucose used is a limiting factor in the further 

production of acids. 

In the formation of fish silage, the fish is preserved by lactic acid, produced in situ by 

LAB from a carbohydrate source such as malt, cereals, molasses or tapioca (Wyk and 

Heydenrych, 1985). Under these conditions, the production of lactic acid reduces the 

pH of the mixture to about 4.5, a pH lower than that achieved with scampi waste, this 

is because fish waste is not as well buffered as scampi waste which contains calcium 

carbonate. Another example is the fermentation of fructans in a grass ensilation 

study using Lactobacillus paracasei (Muller and Lier, 1994) which reduced the pH to 

less than 4.0. This shows that the buffering capacity of the substrate affects the 

overall pH drop during a fermentation process and determines the lowest pH reached. 

It has also been shown that the extent of the pH drop will in turn have an impact on 

the efficacy of the lactic acid as a preservative. 
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Regarding the bacteriocins produced by certain LAB, Silva et al. (1987) found a low 

molecular mass inhibitory substance produced by a Lactobacillus casei strain isolated 

from human faeces. It was found active against a broad spectrum of both Gram­

negative and Gram-positive bacteria, including LAB, but excluding other lactobacilli. 

It was resistant to various proteases such as proteinase, chymotrypsin, bromelain, 

trypsin and carboxypeptidases and had a narrow optimal pH range, i.e. pH 3·0 - 5·0. 

However, no experiments were conducted here to ascertain whether bacteriocin were 

produced by Lactobacillus paracasei (A3 strain). 

Although heterofermentative bacteria are capable of producing greater levels of 

antimicrobial agents such as carbon dioxide, hydrogen peroxide and acetic acid, 

which is a strong inhibitory acid, maximal conversion of glucose into acids is the 

more important criterion for effective removal of calcium carbonate. 

The production of carbon dioxide gas is also an added advantage to the overall 

preservation of the waste as carbon dioxide has long been known for its antagonistic 

properties towards spoilage microorganisms (Jay, 1992). Gram negative bacteria are 

reported to be more sensitive than Gram positive, with pseudomonads being among 

the most sensitive and LAB and anaerobes being among the most resistant (Jay, 

1992). Carbon dioxide has been used on its own or in combination with other gases 

in vacuum-packed meat as a preservative (Wood, 1985). Its inhibitory activities are 

due to the creation of an anaerobic environment by replacing molecular oxygen, its 

extra- and intracellular pH-decreasing effect and to its destructive effect on cell 

membranes (Eklund, 1984) 

(b) Protein solubilisation (autolysis). 

During the course of the scampi waste fermentations, the liquid level In the 

bioreactor rose as a result of protein solubilisation, forming a protein-rich liquor. 

Protein solubilisation was evidenced by the increase in the total nitrogen (TN) 

content of the liquor (see Figure 4.10). Rapid production of the liquor occurred 

during the first 24 hours then slowed down towards the end of the fermentation 

period. This demonstrates the typical pattern of nitrogen release during autolysis 

which is rapid during the first two days then slower thereafter (Lindgren and Pleje. 
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1983; Beddows, 1985). It was also shown that the sum of soluble protein nitrogen 

(SPN) and non-protein nitrogen (NPN) was almost equal to the TN content in the 

liquor but was always slightly lower. These results suggest that autolysis or self­

digestion of protein was taking place and that proteolytic enzymes were active in the 

silage. During autolysis, protein is being broken down into smaller components such 

as smaller molecular weight soluble proteins and NPN compounds (free amino acids 

and polypeptides). Similar observations have been reported during ensilation of fish 

and shrimp products using added acids (Backhoff, 1976; Barratt and Montano, 1986) 

and also during LAP of tropical shrimp waste (Hall and De Silva, 1992). Several 

studies have shown that the autolysis occurring during ensilation of fish products was 

caused by the proteolytic activity derived from the head and viscera and its enzymic 

nature is shown by the fact that boiled minced fish preserved in acid does not liquefy 

(Backhoff, 1976; Adams et aI., 1987). It was also suggested that mincing promotes 

the autolytic process by releasing the enzymes responsible for autolysis and brought 

into contact with the substrate proteins (Arason, 1994). Protein solubilisation 

process probably occurred as a result of proteases released from the gastrointestinal 

tract of the scampi and also of cathepsins from muscle tissue both of which are active 

at acid conditions (DeVillez and Buschlen, 1967; Lindgren and Pleje, 1983). Studies 

by Jiang et al. (1992) on the proteolytic enzyme in grass shrimp (Penaeus monodon) 

revealed the presence of trypsin-like and chymotrypsin-like enzymes. More evidence 

on the effect of mincing is discussed in section 5.2.3. The slightly lower value of the 

sum of SPN + NPN compared to the TN was probably due to measurement errors. 

Autolysis is the term used to describe a variety of processes controlled by the 

enzymes present in the flesh and various organs of fishes and marine organisms at 

death. These processes result in the breakdown of many components of the tissues. 

Autolysis in certain shellfish such as lobster and shrimp can occur extremely rapidly, 

the flesh being attacked by gut enzymes within a few hours after death (Early and 

Stroud, 1982). The enzymes in the muscle and especially in the gut can break down 

proteins of the flesh to smaller compounds or even to free amino acids. Mincing the 

fish can increase the rate of enzymic reactions. 
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In unfermented scampi waste, the protein of the waste originates from two main 

sources. Firstly, the waste contains large amounts of meat in the claws and heads and 

secondly the exoskeleton also contains protein. Most protein in the exoskeleton is 

readily extractable by native proteolytic enzymes in the epidermal cells except for the 

outermost protein layer in the epicuticle which is tightly bound (see 2.1.1.4), 

(O'Brien et al., 1993). It is therefore assumed that most of the proteins in the liquor 

comes from these two sources. Further discussions on this matter are covered in 

5.2.2. 

(c) Bioreactor. 

During their study on the fermentation of scampi waste in a simple unstirred reactor, 

Hall and Reid (1995) observed that rapid production of gas caused solids to float to 

the top and if the material was not frequently mixed (manually) spoilage quickly 

ensued. This problem was not encountered during the present study as the horizontal 

basket is slightly above the liquor and was rotated intermittently. Moreover, gas 

generated during fermentation was vented through the Dreschel bottle. Bioreactors 

of horizontal configuration have been widely used in many solid state fermentations 

(Kargi and Curme, 1985; Lonsane et aI., 1985; Shama and Berwick, 1991). For 

larger scale work, improvements may be made by providing baffles in the horizontal 

drum (Kargi and Curme, 1985). One shortcoming relating to the use of drum 

bioreactors is the formation of aggregated substrates. This is perhaps not unexpected 

when the substrates are in the form of moist particles. However, in the LAP of 

scampi waste, the solid state condition was not maintained for long periods as liquid 

was released during the course of fermentation and aggregation did not occur. 

5.2.2 Variation in glucose additions. 

Attempts were made to improve calcium removal from scampi waste by operating 

the HRB in fed batch mode. Three modes of glucose addition were investigated. 

During the first two modes (A & B) where glucose or glucose solution were added at 

intervals, the low pH of the liquor was maintained and subsequently resulted in the 

removal of more calcium carbonate from the waste, resulting in a higher 

concentration of calcium in the liquor. However, the increase in the calcium content 
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of the liquor posed a new problem, namely that of the formation of whitish crystals 

especially towards the end of the fermentation periods (i.e. after the 96th hour). 

During mode A (direct addition of anhydrous glucose), as the whitish crystal 

precipitated out of the liquor, it caused aggregation of the chitin sediment into the 

form of balls. The clumping of the whitish crystals to the chitin sediment may well 

have been initiated by the stickiness of the high glucose-content liquor. In such 

conditions, further removal of calcium carbonate from the chitin sediment would be 

difficult. The precipitation of the crystals caused a slight decrease in calcium content 

in the liquor after the 96th hour which remained steady thereafter. 

However, in mode C where the existing liquor was removed before adding new 

glucose solution, this problem was not observed and the removal of calcium 

continued until only a small percentage was left in the chitin sediment. Besides the 

continued removal of calcium carbonate, following the replacement of liquor by 

glucose solution, protein solubilisation was also found to be taking place although at 

a much lesser extent than during the first 48 hours of the fermentation. After the 96th 

hour, i.e. in between the third and the fourth addition of glucose, the protein content 

of the liquor was very low showing that almost complete protein removal occurred 

within 3 to 4 days and that high levels of protein were being removed during the first 

stage of the fed batch fermentation. This was confirmed by comparing the protein 

content of the chitin sediments collected at the end of each fermentation period 

(designated as FI, F2, F3 and F4) which remained similar i.e. six to seven percent 

protein (see Table 4.21). 

One possible explanation for the almost constant protein values is that, since protein 

removal was enzymic in nature, there may be a limit to the extent of protein 

solubilisation with indigenous enzymes. The reason for this may be due to the 

establishment of conditions not conducive for the enzymes or alternatively the 

residual protein may simply not be completely digested by the indigenous enzymes. 

The protein in scampi waste originates from two sources, from the meat and organs 

and the exoskeleton (Skinner et al., 1992). The meat protein can be easily solubilised 

by indigenous enzymes (Guillou et al., 1995), however the proteins in the 

exoskeleton vary in their bonding structures (O'Brien et ai., 1993). While most of 
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the proteins in the inner part of the exoskeleton are either soluble in water or can be 

easily removed by enzymes, the outermost layer, the epicuticle protein is strongly 

bonded (O'Brien et aI., 1993). The epicuticular protein is usually discarded as 

exuviates during the moulting period (ecdysis) and are not recycled during the 

premoulting period (Figure 5.1) as are the protein, chitin and calcium in the lower 

parts of the exoskeleton (O'Brien et aI., 1993). It seems possible that the constant six 

to seven percent protein detected in the chitin sediment during the fed batch 

fermentation is that of the epicuticle type. Several studies have been done in which 

chitin was purified from associated proteins by enzymic methods. Takeda and Abe 

(1962) utilised proteolytic enzymes such as papain and proteinase to remove protein 

from shell material and resulted in chitin containing 5 percent protein. Roberts 

(1992) reasoned that the residual protein ranging from I - 7 % approximately is 

inaccessible to the proteinase involved. However, this residual bound protein may 

not prove problematic as most chitin is currently converted to chitosan as 

applications for the former are limited. This conversion involves treatment with 

strong alkali at high temperature and any residual protein will be removed by this 

process (Coughlin et aI., 1990). In this way, the alkaline step to purify the fermented 

chitin can be omitted. 

The production of acid by LAB is not just confined to simple sugars such as glucose. 

Other cheaper sources could also be used. This includes whey powder and molasses 

(Wyk and Heydenrych, 1985), cereals (Lindgren and Pleje, 1983) and cassava (Hall 

and De Silva, 1992). The need to minimise costs in developing countries indicates 

that the carbohydrate source should be based on indigenous staples such as nce, 
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Figure 5.1: Diagram of cross sections of the exoskeleton and underlying integumentary 
tissues of G. lateralis during an intermolt cycle. During proecdysis. inner layers of the old 
exoskeleton are degraded and new epicuticle and exocuticle are synthesised. At ecdysis. the 
animal separates from the old exoskeleton. ep, epicuticle; ex, exocuticle; en. endocuticle; 
ml, membranous layer. 
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cassava or sago (Twiddy et al., 1987). Many of these studies are related to making 

fish silages. Wyk and Heydenrych (1985) found that molasses is better than whey 

powder in terms of rapid acidification, however, molasses on its own did not give 

adequate preservation of silage for long term storage. The use of 3.8 percent whey 

powder caused rapid putrefaction. Their results also suggested that a ten percent 

inclusion (whether a single type of carbohydrate or combinations) was able to 

provide the required acidity to produce a stabilised product for long term storage. 

Clearly not only the type of carbohydrate used, but also the total level of 

carbohydrate source is important in determining successful lactic acid fermentations. 

In conclusion, the removal of calcium carbonate from scampi waste is dependent 

upon generating sufficient acid. However, successful removal of calcium during 

subsequent fermentations in a fed batch fermentation, can only be obtained if the 

liquor produced is being removed before replacing new glucose solution. This mode 

of operation avoided the complications caused by the aggregation of scampi waste 

brought about by excess glucose and sticky white precipitates of putative calcium 

lactate during subsequent fermentations. 

The discovery of a constant protein content in the chitin sediment during subsequent 

fermentations during the fed batch fermentations exposes the limits to which protein 

could be removed by the fed batch approach which would not be apparent during a 

normal single batch fermentation. The fed batch fermentations succeed in removing 

more calcium carbonate while the protein solubilisation mostly occurred during the 

first 48 to 72 hours. 

5.2.3 Effect of particle size on the fermentation of scampi waste. 

The ultimate objective here was to establish whether the pre-fermentation step of 

particle size reduction could be omitted. Obviating the need for this step would be 

attractive, especially when applied at large scales as it would result in reduced costs 

of production. Previous experiments had shown that the use of minced scampi waste 

resulted in a stabilised product with reasonably high levels of purification. 

Moreover, the production of a brown protein-rich liquor was rapid reflecting the 

rapid breakdown of the proteinaceous materials. Much of the production of fish and 
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shrimp silages by ensilation employs minced substrates (Backhoff, 1976; Wyk and 

Heydenrych, 1985; Giullou et al., 1995). All of these workers reported rapid protein 

solubilisation or autolysis. The process of mincing is thought to promote autolytic 

processes by rupturing the guts and distributing the hydrolytic enzymes (Arason, 

1994). Mincing also produced. a homogeneous mixture thus ensuring good 

preservation by removing any pockets of high pH which can initiate spoilage 

(Arason, 1994). However, the results of the present experiment revealvsome 

interesting observations regarding LAF of scampi waste in the bioreactor. 

In the fermentations (A) - (C), the effect of using respectively: 100 percent minced, a 

mixture of minced and crushed (1/2 inch size), and 100 percent crushed (112 inch 

size) scampi waste were evaluated. In fermentation (D) the effect of using crushed 

but with smaller particles (1/4 inch size) than (C) was evaluated whilst (E) shows the 

effect of using whole scampi waste (112 inch size). 

The pH profiles of all the above fermentations, revealed very few differences 

between them. Although, the fastest rate of pH decline was achieved with the lOO 

percent minced waste, the other four fermentations also showed that acid production 

was occurring at a relatively high rate, dropping to about pH 5.0 within 24 hours. 

However, slight differences became apparent from the pH profiles after 48 hours 

when pHs of the fermentations of crushed and whole waste rose rapidly. The lOO 

percent crushed waste in (C) produced an off-smelling product at 72 hours. With the 

lOO percent minced waste, the rise in pH after 48 to 72 hours was related to the 

neutralising effect of calcium carbonate on the acid, thus reducing the acidity of the 

liquor. However, the rapid rise in pH with the crushed waste is more compatible 

with spoilage. Comparisons of the percentage removal of calcium carbonate and 

protein in each case, revealed that mincing the waste did not affect the protein 

solubilisation as much as it did the removal of calcium. This effect was even more 

prominent when whole waste was used (E). Therefore in (C) where a lOO percent 

crushed waste was used, the calcium removal was not as efficient as when 100 

percent minced waste (A) was used, yet the rise in pH was faster than (A). It is 

therefore reasonable to suggest that besides calcium neutralisation of the acid, 

spoilage processes may have also contributed to the rapid rise in pH in crushed waste 
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as these processes normally produce basic compounds which can increase the pH. At 

72 hours, the pH of 100 percent minced waste was slightly above pH 5.0 but the lOO 

percent crushed waste had already attained a pH of about 6.3. It seems likely that the 

crushed waste which was not in contact with the acidified liquor contained pockets of 

high pH which could initiate spoilage. Since rotation rates were low, contact 

between these bigger particles and the liquor was infrequent. A pH higher than 5.6 

was also previously reported to greatly increased the risk of spoilage (Jay, 1992). 

To summarise, at this scale of operation mincing did produce the highest level of 

waste purification. However, at larger scales of operation mincing might not be 

required. The results obtained here suggest that it is important to ensure full or 

substantial submergence of the waste in the liquor. At higher scales of operation this 

will be dependent on drum diameter and loading of the drum, despite the increase in 

the volume of liquor as the particle size decrease. However, studies need to be 

conducted at intermediate scales of operation. 

5.2.4 Effect of rotation rate. 

In the foregoing it was concluded that minced waste resulted in a higher level of 

purification of chit in whilst the use of un minced waste resulted in a less well purified 

product. The bulkiness of the unminced waste resulted in a situation where most of 

the scampi waste remained above the liquor level in the basket. Without proper 

contact between the acidified liquor and the waste material, calcium solubilisation 

can not take place. One way to increase contact is to increase the rotation rates of the 

bioreactor. A relatively intensive mixing regime was evaluated as it was reasoned 

that small variations from what had become the accepted regime would not yield 

significantly different results. 

The application of more intensive agitation resulted in the disruption of the growth of 

bacteria. This effect can be seen from the increased lag phase and a lower pH drop. 

The pH also increased faster after the lowest pH had been reached. This effect was 

even more noticeable in the degree of purification of chitin. Both processes 

(autolysis and calcium solubilisation) were adversely affected. 
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The reason for the impaired bacterial activities when rotated at higher rates was 

probably due to the disruption of the microaerophilic growth environment. Kandler 

and Weiss (1986) reported that although most strains of lactobacilli are fairly 

aerotolerant, optimal growth is achieved under microaerophilic or anaerobic:if 

conditions. They also reported that increased carbon dioxide concentration (- S %) 

may stimulate growth. The increased tumbling nature of the rotation of the basket 

might have resulted in a more efficient stripping out of carbon dioxide from the 

system which would reduced the growth rate of the bacteria. Reduction in growth of 

the bacteria will affect the production of acid and subsequent calcium carbonate 

removal. 

Similar oxygen toxicity is encountered in the dairy industry (Mayra-Makinen and 

Bigret, 1993) where in order to maintain constant pH a continuous agitation is 

applied which induces aeration. Oxygen can also cause the production of hydrogen 

peroxide by some starter strains, which can be auto inhibitory (Mayra-Makinen and 

Bigret, 1993). 

5.2.5 Effect of temperature. 

Temperature is one of the most important environmental factors influencing the 

growth and activities of microorganisms. During a lactic acid fermentation, beside 

the availability of a fermentable carbohydrate, the population levels and activity of 

the lactic acid bacteria are of importance for rapid acid production (Deschamps, 

1993). Whilst very low temperatures will inhibit or reduce microbial growth, high 

temperatures may kill the cells. 

During the lactic acid fermentation of scampi waste, there are two main aspects of 

fermentation that are affected hy temperatures, i.e. the growth of hacteria and the 

activity of the autolytic enzymes in the waste. The results obtained here showed that 

virtually no activity was observed when attempts were made to operate at 1 Sac. 

Increasing the temperature to 200e resulted in some activity with the pH decreasing 

after 24 hours. Fermentation at 300e and at 4Soe proceeded vigorously indicating 

good growth of the bacteria and a concomitant rapid decrease in pH. Regarding the 

removal of calcium and protein from the waste, increasing the temperature from 20 to 
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300 e resulted in increased levels of purification. Whilst further improvements were 

obtained by increasing the fermentation temperature to 45°e, these were not as great 

as those obtained by increasing the temperature from 20 to 30°C. Since the emphasis 

of this work was on developing a process with low investment costs, fermentations of 

shellfish waste conducted in the tropical regions would seem attractive as high 

ambient temperature will eliminate the need for heating. Furthermore the protein­

rich liquor produced during the fermentation could be incorporated into animal feed, 

and could be easily sun-dried. Wood (1985) noted that many of the food and feed 

fermentations are conducted at temperatures between 28°e to 30'e and Beddows 

(1985) reported that the optimum temperatures for visceral enzymes in fish are in the 

range 35 to 45°C. With the A3 strain used in these experiments, fermentation at 

200 e seems to be very slow with longer lag period. It may require a slightly longer 

fermentation period if a similar effect is to be obtained as at 30 or 45°C. 

In general, microorganisms are usually divided into three arbitary classes: 

psychrophilic (low temperature), mesophilic (medium temperature), and thermophilic 

(high temperature). The temperature ranges for the various types are listed in Table 

5.3. Insufficient data was obtained on Lactobacillus paracasei (strain A3) to enable 

it to be categorised in these terms with certainty. However, it can be regarded more 

as mesophilic in nature as it did not grow at lOoe but grew.well at 45°e but not at 

500 e in MRS medium. However, since the A3 strain is relatively insensitive to the 

effects of temperatures, no adverse effects would follow if the temperature were to 

increase as high as 40oe. 

Table 5.3: Approximate temperature ranges of growth for arbitary classes of 
microorganisms (after Banwart, 1989). 

Temperature (0C) 

Minimum Optimum Maximum 

Psychrophilic -15 - 5 10 - 30 20 - 40 

Mesophilic 5 - 25 25 - 40 40 - 50 

Thermophilic 35 - 45 45 - 65 60 - 90 
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5.2.6. Effect ofloading 

The result of this experiment has very important implications for large scale 

fermentations. It is obviously desirable to maximise loading of the bioreactor as long 

as purification of the waste is not compromised. LAF of scampi waste is a type of 

solid state fermentations and the starter used is microaerophilic in nature (Axelsson, 

1993). As such it does not require vigorous agitation or oxygen rich-atmosphere. 

Furthermore in a solid state conditions,large volumes of water was not necessary. 

Investigations conducted into the effects of increasing the loading of the bioreactor 

from 750 g to 1500 g proved encouraging. The increase in loading did not adversely 

affect the quality of the end product obtained. Moreover, useful additional data was 

obtained showing the relationship between mass of waste treated and volume of 

liquor generated (see Figures 4.28 & 4.29). What has been experienced using the 

present bioreactor is that it requires a certain amount of liquid in order to keep the 

chitin sediment and the liquor in contact. Such contact was important for 

preservation as well as calcium removal. 

5.2.7 Effect of waste type. 

The objective of this experiment was to evaluate the feasibility of applying the 

fermentation method using the HRB and the isolated strain, A3 to other waste type, 

in particular a tropical species. Hall and De Silva (1992) have shown some 

encouraging results using commercial starters and the waste of a tropical species 

(Penaeus monodon). Currently, the production of the seafood industry in particular 

prawns and shrimp had risen tremendously in the Asian countries (Ferdouse, 1996). 

Furthermore cultured shrimps had also made an impact on the global crustacean 

production (Csavas, 1993). With this rise in production, the availability of shellfish 

waste is also expected to rise. 

The results obtained here may not be representative of the entire tropical species as 

shrimps are biological species and as such its characteristics are subjected to various 

environmental factors, age and species (Nicol, 1967). Nevertheless, the results in 

this experiment could give implications as to the expected results when using this 

type of waste. The results showed that the fermentation process was also successful 
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using the tropical waste and that the pH profiles were almost similar. The results 

also showed that the tropical waste had higher protein content and that the liquor 

produced was darker in colour compared to the scampi waste (a temperate species), 

whereas the calcium content in the former was lower. These differences in the initial 

composition of waste resulted in a different chitin product. The tropical chitin 

sediment had a higher protein but lower calcium content and vice versa for the 

temperate chitin sediment (see Table 4.35). The lower calcium content in the tropical 

waste (11.12 percent) compared to the temperate waste (20.80 percent) was thought 

to be an attractive characteristics for chitin recovery by the fermentation method as it 

would require less glucose. 
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5.3 Comparison of chitin purification by the acid/alkali treatment and 

fermentation. 

5.3.1 The consumption of chemicals. 

The chemical method of extracting chitin from shellfish waste is simple but requires 

large volumes of acid and alkali which results in the generation of large volumes of 

aqueous effluents. Alternative approaches have been suggested to reduce or 

eliminate the use of chemicals (Hall and De Silva, 1992; Healy et al., 1994). 

In the present work, by conducting a lactic acid fermentation, partially purified chitin 

was obtained. The purification level of the fermented waste was high, with 

approximately 94 percent removal of protein and 78 percent removal of calcium 

carbonate having being achieved (see Table 4.28). Further purification would require 

treatment with acid and alkali, but the quantities of these two reagents required 

would be relatively low in comparison to those needed to purify chitin solely using 

acid and alkali. In sub-section 4.4, comparison was made in terms of chemicals used 

to purify waste that had been fermented for 72 hours and unfermented waste. The 

fermented waste required 5.22 g NaOHlIOO g waste compared to 63.6 g NaOHlIOO g 

waste for unfermented waste and this is a saving of 92 percent of NaOH. Similarly, 

fermented waste required 5.72 g HCl/IOO g waste whereas unfermented waste 

required 23.2 g HCLlIOO g waste which is equivalent to a 75 percent saving of HC!. 

In terms of chemicals, this is a substantial saving and coupled with the protein 

recovery, the fermentation method may prove to be a worthwhile method of chitin 

purification, either on its own or as a pretreatment prior to production of chitin or 

chitosan. However, further work needs to be done to enable realistic estimates of 

fermentation costs to be achieved. Further saving may also be achieved if cheaper, 

more locally abundant carbohydrate sources were used instead of glucose. 

The optimum conditions obtained by other workers (see Tables 2.2 and 2.3) to purify 

chitin by the acid and alkali treatment varied with species. The Tables show that 

optimal acid treatment was achieved at room temperature whilst protein hydrolysis 

required temperatures in the range of 65°C to 100°C. This supports the result 

obtained here. Thus to the large savings in terms of quantity of alkali used for 
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purifying fermented waste must be added energy savings. In the case of using HCI 

for the demineralisation step, it had been reported that using HCI at concentration 

above 1.25 N adversely affects the viscosity of the final product (Muzzarelli, 1977). 

Subsequent to the demineralisation and deproteinisation steps, the product may be 

decolourised with acetone and/or hydrogen peroxide (Simpson et aI., 1994). All 

these treatments would require special corrosion resistant equipment and the reagents 

would have to be handled with care. 

5.3.2 Comparison between a 72 hour batch fermentation and a fed-batch 

fermentation (192 hour). 

Comparing the 72 hour batch fermentation with a fed batch fermentation, an increase 

in the overall calcium removal was observed i.e. a 17.8 percent increase whereas no 

significant change occurred in the protein removal. This means that in terms of acid 

and alkali used (if further purification is required), the prolonged fermentation with 

increased addition of glucose, would only increase savings on the acid used. Thus 

the cost of overall production must be balanced between the cost of the additional 

glucose and the increased fermentation period with the incremental increase in 

purification achieved. From an economic point of view, the 48 to 72 hour batch 

fermentation is likely to be more attractive, though further work need to be 

undertaken to estimate accurate costings. Furthermore, this approach of chitin 

purification has only been conducted on a small scale and would need to be repeated 

at higher scales. 

However, as had been mentioned in section 5.2.2., the fed batch fermentation 

experiment provided important information leading to a better understanding of the 

overall process. These include operating strategies for reducing foaming, estimates 

of a suitable rotation rates and considerations of maximum loading whilst 

maintaining purification. 
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CHAPTER 6 

OVERALL CONCLUSIONS AND 
SUGGESTIONS FOR FURTHER WORK. 

The present trend towards using natural-based polymers in many fields, has increased 

the demand for chitin and chitosan (its simplest derivative). Chitin, an important 

structural component of the exoskeleton of crustaceans is produced from shellfish 

waste material from the seafood industry. Its attractive characteristics such as 

biodegradability, ease of conversion into various forms and its chelating properties 

have led to major applications such as waste water treatment, medical applications, 

biotechnology and cosmetics. The conventional process of producing chitin requires 

the use of corrosive chemicals (acid and alkali) and produces large amounts of 

effluent. Realising the disadvantages of using such chemicals, several recent studies 

have examined the possibilities of applying alternative milder methods such as the 

use of enzymes to remove protein. Alternatively, as in the present work, chitin is 

purified from the waste by using a solid-state lactic acid fermentation similar to the 

ensilation technique and the results obtained have shown it to be promising and 

meriting further studies with reference to scale-up. In this process, chitin is being 

purified from calcium carbonate and protein by the acid produced and the indigenous 

enzymes from the waste respectively. The following paragraphs conclude the 

findings of this study and at the end of the chapter, some suggestions for further work 

are provided. 

The initial part of the work involving the isolation of lactic acid bacteria was found 

to be crucial to the fermentation process. As the purification of chitin from shellfish 

waste was dependent upon acid production by the bacteria, fast growing strains with 

rapid production of acid were important selection criteria which would bring about 

rapid preservation of waste and allowing the purification process to proceed. In this 

study, nine strains of lactic acid bacteria were successfully isolated from various 

sources of fermented shellfish waste. Identification of these strains showed that they 

belonged of the genera Pediococcus and Lactobacillus. One strain A3, which was 

identified as Lactobacillus paracasei, showed a rapid lowering of pH and had a 
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broader temperature growth profile (growth between IS to 4S"C) than the rest of the 

isolated strains and was used as starters for the optimisation studies using the 

horizontal bioreactor. This characteristic may prove useful when applied to large 

scale fermentation operations as close temperature control is often difficult to 

exercise in solid state fermentations. The upper growth temperature displayed by this 

strain, represented an added advantage if the procees were to be applied in tropical 

regions where the higher ambient temperatures would not be detrimental to the 

growth of the starters. The effect of temperature upon the lactic acid fermentation 

was clearly shown in the fermentations conducted in the bioreactor at various 

temperatures. Fermentation conducted at 20"C showed very slow activity, whilst 

higher temperatures of 30"C and 4S"C showed rapid fermentation rates. In terms of 

the level of purification of chitin, the differences was greater when fermenting 

between 20'C and 30"C as compared to between 30"C and 4S"C. Taken together, this 

result suggest that temperatures of around 30"C would be adequate to obtain good 

levels of purification. It is also important to bring up the desired fermentation 

temperature as quickly as possible to ensure rapid dominance of the starter cultures 

(LAB) over other undesired microorganisms. 

One of the factors determining the success of the lactic acid purification of chitin was 

the use of the horizontal rotating bioreactor. The bioreactor was found to be suitable 

for the fermentations of scampi (Nephrops norvegicus) waste and fulfilled the criteria 

of providing easy separation of the fermented products, namely the protein-rich 

liquor and the chitin sediment. The problem of flotation of chitin sediment (which 

may initiate spoilage) caused by the production of carbon dioxide gas as experienced 

by Hall and Reid (199S) was not observed in this bioreactor. This is due to the 

horizontal position of the basket which is slightly above the liquor and the tumbling 

nature of the agitation. The horizontal arrangement also provided ease of intermittent 

mixing by the motor-controlled rotation of the inner basket. In large scale 

operations, the liquor could easily be emptied via an outlet or pipe at the bottom of 

the reactor and once the liquor had been removed, washing of chitin sediment or 

further treatment could be done in-situ. 
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Batch fermentations conducted in the bioreactor revealed that successful 

fermentation was dependent upon the quality of the waste, providing a high enough 

inoculum level and adding sufficient glucose to ensure rapid production of acid by 

the bacteria. Perhaps one of the principal advantages of this method is that it does 

not require the addition of water. After mixing the waste with the inoculum and 

glucose, rapid production of acidified liquor was achieved which dissolved the 

calcium carbonate of the waste. Charging of the waste was found to be critical in 

effecting contact between waste and the produced liquor. Since the LAB are 

generally microaerophilic, only low intermittent mixing was necessary for good 

growth whilst high rotation rates led to the formation of mousse-like product which 

hindered the purification of chitin. High rotation rates were also found to reduce 

bacterial growth resulting in a much reduced production of acid during fermentation 

of scampi waste. The gentle mixing provided by the tumbling action of the reactor 

also helped to prevent pockets of high pHs from persisting which might initiate 

spoilage. Fermentation products were best recovered at fermentation times in the 

range of 48 to 72 hours when the pH was still low because longer periods tended to 

favour the growth of spoilage organisms as the pH increased due to the neutralisation 

of the acid by the calcium carbonate. 

Mincing the shellfish waste was found to promote good fermentation resulting in 

substantial level of purification. Fermentation of minced scampi waste with 10 

percent glucose at 30"C for 72 hours led to the removal of 78 percent calcium 

carbonate and 94 percent protein. In order to maximise the batch productivity at the 

same condition as above, experiments conducted with increased charges of waste 

revealed that the increased loading did not affect the level of purification of chitin. 

However, evaluating the effect of particle size upon fermentation revealed that larger 

particles (cut to 112 inch followed by crushing) occupied a greater volume of the 

basket, thereby greatly reducing the contact between waste and the liquor produced. 

Crushing the waste was found particularly effective in exposing meat fractions to the 

acid conditions and it also helped to reduce the bulkiness of the waste material. 

Since purification of chitin during a lactic acid fermentation involved the removal of 

calcium carbonate and the solubilisation of protein, the presence of acid was of great 
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importance to both processes. If it is assumed that the reaction between calcium 

carbonate and the acid proceeded stoichiometrically, then it appeared that the 

addition of a 10 percent glucose in a batch fermentation was the limiting factor 

towards further removal of calcium carbonate. It was found that further removal of 

calcium carbonate could be achieved in a fed batch fermentation with increased 

addition of glucose. The fed batch fermentation revealed that whilst calcium removal 

improved by 15.5 percent when more glucose was added, the protein content of the 

chitin sediment remained almost constant. This result suggested that the autolytic 

process which resulted in protein solubilisation, was achieved within 48 to 96 hours 

whilst calcium removal was dependent upon the availability of acid. The production 

of acid by LAB is generally not just confined to simple sugars such as glucose. 

Other cheaper sources could also be used such as whey powder, cereals, molasses or 

cassava. In developing countries, the need to minimise costs indicates that 

carbohydrate source should be based on indigenous staples such as rice, cassava or 

sago. 

The lactic acid fermentation was also found applicable to waste from tropical prawns 

(Penaeus monodon) and it is not inconceivable that it could be applied to waste from 

a wider range of crustaceans. Krill for instance, is a high protein content material 

and contains 25 percent chitin (on a dry weight basis) and is usually used whole for 

aquaculture. The minute size of krill hinders peeling processes to separate the meat 

and the shells thus reducing the availability of chitin. The simplicity of the lactic 

acid fermentation and its rapid separation of the fermentation products into protein­

rich liquor and the chitinous material may prove useful for separating chitin from 

krill. It is anticipated that crab waste which contains a higher amount of hardened 

protein-chitin composite in the exoskeleton might prove more difficult to treat. 

However, further investigations would need to be conducted to optimise fermentation 

conditions for wastes from different shellfish species. 

Complete purification of the fermented (72 hours) and unfermented chitin product by 

the acid and alkali method showed that by pre-fermenting the waste to partially 

remove calcium carbonate and protein resulted in savings of 75.4 and 91.8 percent of 

acid (HCI) and alkali (NaOH) respectively. This indicates that the operation of lactic 
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acid fennentation method of recovering chitin from shellfish waste on a large scale 

either on its own or as a pretreatment prior to further acid and alkali treatments, is 

very much less polluting to the environment as compared to the traditional acid and 

alkali method. Furthermore, protein is recovered and the purification level of chitin 

after 72 hours fermentation is high. In addition, if chitin is to be eventually 

converted to chitosan, the small amount of protein left during fermentation would be 

eliminated in the course of the conversion process, as the conversion process 

employs boiling concentrated NaOH solution which would easily remove any 

residual protein. 

The recovery of the protein-rich liquor after fermentation is an added advantage of 

this process. Further investigation into the protein rich liquor could improve the 

profitability of the process either as nutritious animal feed or as a source of food 

flavourings. The liquor could be mixed with other carbohydrate fillers such as malt 

wastes, rice husk, corn, bananas and other carbohydrate-rich substances. Once dried, 

it could be included in formulations in poultry, cattle as well as shrimp-feeds. 

Transporting dried product is also simpler and cheaper. The liquor product from this 

work has also been tried as an "attractant" by researchers at Hull University. 

Although experimentation IS at an early stage, initial results are promising. 

Continuing studies on the enzymes present in the protein liquor is also underway at 

the Food and Biotechnology Laboratory at Loughborough University. 

It seems appropriate to suggest that the immediate work should be conducted to 

evaluate the process on a larger scale. This could easily be conducted on site, as 

freshly processed waste material would be available. The relatively higher growth 

temperature of Lactobacillus paracasei, strain A3 means that the process is best 

conducted at tropical regions as heating could be omitted, thus reducing production 

costs. Further studies need to be conducted to permit economic evaluation of both 

the fennentation method and the traditional purification method. This should be 

extended to examine whether the fed batch process shows real advantage over the 

simple batch process. The results obtained here suggest that futher investigations 

into the effect of particle size when applied to larger scale horizontal rotating 

bioreactor need to be undertaken. The possibility of omitting the size reduction 
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pretreatment stage or reducing the amount of communition required would enhanced 

the attractiveness of the process. At the present scale of operation, whole untreated 

waste would spoil rapidly but crushing the waste helped to reduce the problem of 

spoilage and bulkiness of material. However, it is difficult to forecast what would 

happen at higher scales as the extent of submergence depends upon the volume of 

liquor produced and the drum diameter. Finding a direct use of the partially purified 

chitin (from a 72 hour fermentation) would be highly rewarding as it would obviate 

the need for further processing. The application of partially purified chitin by 

Coughlin et al. (1990) in purifying electroplating wastewater is one example of such 

an application. 

On the whole the results obtained in this work suggest that lactic acid fermentation of 

shellfish waste merits serious consideration by the chitin production industry. With 

expected future increases in the production of shellfish waste, a process based on that 

developed here could have a significant impact on the continued viability of the 

shellfish industry. 
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Appendix 3.1: APT and MRS Broths 

APT Broth (Difco, Michigan, V.S.A.) 

Contents 
Yeast extract 
Tryptone 
Dextrose 
Sodium citrate 
Thiamine hydrochloride 
Sodium chloride 
Dipotassium phosphate 
Manganese chloride 
Magnesium sulphate 
Ferrous sulphate 
Sorbitan monoleate complex 

g/L 
7.5 
12.5 
10.0 
5.0 
0.001 
5.0 
5.0 
0.14 
0.8 
0.04 
0.2 

To prepare broth: dissolve 46.2 g of APT Broth powder in 1.0 L of distilled water, 

autoclave at 121°C for 15 min. Avoid excessive heating. To make APT agar plates, 

add 1.5 % (w/v) of bacteriological agar (Oxoid) to the broth and after autoclaving, 

cool the agar broth to 45°C in a water bath before plating out. 

MRS Broth (Oxoid, Unipath Ltd., Basingstoke, Hampshire) 
Contents g I L 
Peptone 10.0 
Lab Lemco powder 8.0 
Yeast extract 4.0 
Glucose 20.0 
Tween 80 1.0 ml 
Dipotassium hydrogen phosphate 2.0 
Sodium acetate 5.0 
Triammonium citrate 2.0 
Magnesium sulphate 0.2 
Manganese sulphate 0.05 

To prepare: dissolve 52.0 g in 1.0 L of distilled water, autoclave at 121°C for IS 

min. To make MRS agar plates, add 1.5 % (w/v) of bacteriological agar (Oxoid) to 

the broth and after autoclaving, cool to 45°C in a water bath before pouring. 
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Appendix 3.2: Scampi Broth 

A broth made from scampi waste was used for the screening procedures. Scampi 

broth is rich in essential amino acids will provide a good medium for growth of lactic 

acid bacteria. 

Method: Minced scampi waste (250 g) was mixed with 1.0 L of distilled water, 

stirred and left to stand for 10 min at room temperature. The mixture was filtered 

and the filtrate boiled for 30 min to coagulate the proteins and was left to stand for 

another 30 min to settle down the solids. The clear solution was decanted and 

centrifuged at 3000g for 15 min before autoclaving at 121°C for 15 min. The scampi 

broth was kept at 4°C until further use. Sterilised glucose solution was added to the 

scampi broth prior to fermentation (10 m1 of 20 % (w/v) glucose solution with every 

90 m1 of scampi broth). 

Appendix 3.3: Arginine solution (Collins et al., 1989a). 

To prepare arginine broth, dissolve the following by heating, adjusting the pH to 7.0 

and autoclaving at 115°C for 10 min. This broth was used to identify streptococci 

but for arginine breakdown by lactobacillus, MRS broth in which ammonium citrate 

is replaced with 0.3 % (w/v) arginine hyfrochloride was used. 

Contents 
Tryptone 
Yeast extract 
Dipotassium hydrogen phosphate 
L - arginine monohydrochloride 
Glucose 
Water 
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Appendix 3.4: Boric acid solution 

To prepare a 2 % Boric acid solution, dissolve 50 g of boric acid in 2.5 L of boiled 

distilled water. Allow to cool. Add to the cooled boric acid solution, 25 ml of 

bromocresol green (1.0 mg / ml in ethanol) and 17.5 ml of screened methyl red ( 1.0 

mg / ml in ethanol) indicator. Transfer 25 ml of the boric acid solution to a flask and 

titrate with 0.1 M NaOH until a neutral grey colour is obtained. Calculate the 

amount of NaOH solution required to adjust the 2.5 L of boric acid solution to 

neutrality (approximately 30 drops). 

Appendix 3.5: Protein Standard Curve 
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Appendix 3.6: Copper reagent (Pearson. 1976). 

To prepare Somogyi' s modified alkaline copper tartrate stock reagent, dissolve 28 g 

anhydrous disodium phosphate and 40 g sodium potassium tartrate in 700 ml distilled 

water. Add 100 ml of 1.0 M of sodium hydroxide (aq) and 80 ml of a 10 % (w/v) 

solution of crystalline copper sulphate. Lastly, add 180 g of anhudrous sodium 

sulphate and make up to a litre. Allow to stand for a few days before decantibg and 

filtering. 

Appendix 3.7: Arsenomolybdate reagent (Pearson. 1976). 

Dissolve 25 g of ammonium molybdate in 450 ml distilled water. Add 21 ml of 

concentrated sulphuric acid and 3.0 g Na2HAS04.H20 which has been previously 

dissolved in 25 ml water. Incubate at 31'C for 2 days. 
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Appendix 3.8: Glucose Standard Curve 
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Appendix 3.9: Estimation of the minimum amount of waste needed to produce 
substantial submergence of waste and liquor. 

outer glass casing 

inner basket 

chitin 

produced liquor 

During fermentation, shellfish waste is placed in the inner basket. Subsequently, 

acidified protein liquor is being produced as a result of protein digestion and 

production of lactic acid by the bacteria, which accumulates in the outer glass casing. 

To produce successful fermentation and purification of chitin, substantial amount of 

the waste material must be well submerged in the liquor. Therefore, to obtain an 

estimate of the minimum waste required to produce such effect, firstly, submergence 

of the inner basket was tested with the volume of water added. Then based on the 

results of the batch fermentations, an average percentage of liquor production was 

noted (which is 62 %, v/w) and was related to the amount of waste needed to produce 

it. The results are as follows; 

Volume of water (mJ) Approximate submergence 
of basket (inch) 

375 touching 
750 0.5 
1500 1.5 

Amount of waste required 
(~) 

605 
1210 
2419 

Therefore approximately 750 g waSte was considered the minimum amount of waste 

required to produce sufficient submergence of waste in the liquor. 
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Appendix 4.1: Identification Table 
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Appendix 4.2: Theoretical Calculation of the Calcium Solubilisation from Scampi 

waste. 

Homofennentative lactic acid bacteria produces lactic acid (90 g/mol) as their major 

product from glucose (180 g/mol). In reality more than 85 % glucose is converted to 

lactic acid (Jay, 1992). The production of acid is important in removing the calcium 

carbonate (100 g/mol) from scampi waste. However, from batch fermentations 

results (see section 4.3.1), it was shown that when scampi waste was fermented with 

10 percent (w/v) glucose, only 54 to 68 percent of the calcium carbonate was 

removed. As the scampi waste contains large amounts of calcium carbonate, it might 

be possible that more glucose is required. Since prawns and shrimps contain only 

minute amount of carbohydrate, it is assumed that the lactic acid produced during 

fermentation of scampi waste mainly originated from the conversion of glucose. 

Also with the assumption that intimate contact between acid and calcium carbonate 

occured, then the theoretical glucose consumption necessary to effect complete 

removal of calcium carbonate from scampi waste can be calculated using Eqn 1 and 2 

as shown below; 

1 mol glucose = 2 mols pyruvate = 2 mols lactic acid -----> Eqn 1 (100 % conversion) 
1 mol glucose = 2 mols pyruvate = 1.7 mols lactic acid ---> Eqn 1 (85 % conversion) 

2 mols acid + calcium carbonate--> carbon dioxide + water + calcium lactate---> Eqn 2 

For every 1.0 kg waste, 100 g glucose was added, which is equals to (100/180) or 

0.56 mols of glucose. Assuming an 85 % conversion of glucose to lactic acid, this 

will produce (0.56 x 1.7) mols of acid. The acid produced reacts with calcium 

carbonate according to Eqn. 2 to produce calcium lactate. Assuming all acid 

produced readily reacted with calcium carbonate, then (0.56 x 1.7) mols acid will 

dissolve [(0.56 x 1.7) 12] mols calcium carbonate or 47.6 g calcium carbonate. Since 

1.0 kg (318.0 g dry weight) of scampi waste contains 20.8 percent calcium (Ca2
+, 40 

g/mol) on dry weight basis, then it follows that 

-
318 g drywaste contains = 66.14 g calcium 

= (66.14 I 40) mols calcium 
= 1.65 mols calcium carbonate 
= 165 g calcium carbonate. 
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Therefore if 100 g glucose are required to remove 47.6 g of calcium carbonate, the 

amount of calcium carbonate left in the sediment should be; 

165 - 47.6 = 117.4 g calcium carbonate 
= 1.17 mol calcium 
= 47.0 g calcium 

From the result of fermentation (a) in section 4.3.1, the average calcium content of 

the sediment was 27.4 g calcium which is lower than the theoretical value. This 

result seems to suggest that removal of calcium carbonate had also been initiated by 

some other mechanism other than acid reaction. However, it remains possible that 

further addition of glucose may provide the essential acid required to remove more 

calcium carbonate, then the theoretical amount of glucose required to remove 165 g 

calcium carbonate would be 294.6 g glucose, i.e. approximately 30 percent glucose. 
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Appendix 4.3: Optimisation of agitation to avoid foaming. 

Initially a simple 24 hour timer was used during the batch fermentations (section 

4.3.1) which switches on at least for ten min. Since the bioreactor has a motor which 

operates at 20 revs per min, then switching on the timer for 10 min will rotate the 

basket for 200 revs. From the results of the batch fermentations, it was observed that 

during fermentation (a), the liquor started to solidify after the 4th day of the 

fermentation. During this fermentation, the timer was on every 6 hours which means 

that it will be on for 4 times a day. This is equivalent to (4 x 200) revs a day or to 

3200 revs in 4 days. Previously, another batch fermentations (result not shown) 

started to solidify after 3 days when rotated at 4 hourly intervals. This is equivalent 

to 6 X rotations a day or 3600 revs in total. Therefore during fermentations (b) and 

(c), the timer was switched on every 6 hours but only for the first 3 days. With this 

arrangement, the problem of solidification was overcome. 

However, in other experiments, a purpose-built timer was used instead. With this 

timer, shorter durations of rotation period were possible. From the above 

observations, a general rule can be postulated regarding the minimum rotations 

possible to avoid solidification of the liquor from taking place and the new 

arrangements could be easily set with the new timer. 

For a 3-day fermentation, taking an average of 1000 revs a day as the maximum 

rotations possible to avoid foaming or solidification of liquor, then the following 

variations of rotation rates may be used; 

No of revs Time on(min) Intervals(h) . No of frequency a day Total rev/day 
250 12.5 6 4 1000 
166 8.3 4 6 1000 
83 4.1 2 12 1000 
41 2.1 1 24 1000 
20 0.5 0.5 48 1000 
10 0.25 0.25 96 1000 
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Therefore the rate in the last row (i.e. 0.25 h interval) represents the upper limit in 

which the timer can be set based on the problem of the solidification of the liquor. 

However, it must be remembered that the lactic acid bacteria is a microaerophilic 

bacteria, meaning it only requires minimal amount of oxygen for growth. The 

rotation of the inner basket is a type of stirring mechanism and as such it can also be 

considered an aeration mechanism. Although no data is available to provide the 

maximum rates at which the bacteria could withstand without affecting its growth 

rate, it is reasoned that a low rotation rate is only necessary. 
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