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ABSTRACT: It is shown how key predictor parameters for the spatial estimation of PV yield, self-consumption and 
thereby economic and social indicators can be extracted from a GIS system and introduced into a Bayesian Network 
model. This model endogenises the uncertainties and incorporates spatial variability inherent in these parameters. 
Empirical monthly and annual yield measurements obtained from over 600 PV installations have been obtained and 
compared with estimated yields obtained by two key solar tools used for performance estimation in the UK – these 
are PVGIS and the UK Government’s Standard Assessment Procedure (SAP) for domestic buildings. Mean bias 
estimates and root mean square error estimations were obtained for each tool and the results used to construct an 
uncertainty distribution in PV yield prediction given key input parameters such as system rating, orientation and tilt. 
This uncertainty was used to furnish a probabilistic graphical model with a prior distribution for PV yield estimation. 
This was integrated into a Geographical Information (GIS) system furnished with roof and building stock parameters 
including roof attributes obtained from lidar data. Elements held in a vector layer of the GIS system can be selected 
and the resultant distributions of input parameters automatically fed to the model to yield a posterior distribution of 
the PV yield. The model is able to propagate the yield uncertainty to other probabilistic models, including ones which 
predict the internal rate of return and self-consumption. The latter is in turn predicted by empirical marginal 
distributions of domestic electricity consumption. Thus with a given posterior distributions of PV yield, new posterior 
distributions for the internal rate of return, self-consumption and carbon emission savings are automatically 
calculated. By integration with GIS this novel approach allows the spatial analysis of the uncertainty pertaining to 
representative risk factors for PV adoption in the UK, and facilitate the estimation by installers, investors, and local 
authorities in a manner which endogenises uncertainty. 
Keywords:  
 

1. INTRODUCTION 
 
At a whole system level photovoltaic (PV) technologies 
are seen as a valuable means to deliver both (i) an 
effective net energy gain to support multiple consumption 
patterns of society, and (ii) a decreasing reliance on non-
renewable primary energy sources resulting in long term 
energy sustainability [1]. To support the emergence of a 
viable innovation system, in which PV can overcome 
market barriers and contribute to the energy mix, many 
nations have provided subventions or other market 
interventions to enable it to compete with incumbent 
technologies [2]. In the UK the domestic adoption of PV 
has been rapidly accelerated using the FiT mechanism, 
introduced in April 2010, which has driven the 
installation of almost 4GW on UK domestic roofs by 
April 2016 [3]. 
The cumulative cost of this subsidy, over the 6 years of 
FiT operation, commensurate, with a rapid reduction in 
total system cost, has led to intense political pressure to 
reduce the real and perceived burden on the electricity 
bill payer by lowering the FiT rate. The UK’s 
Department of Energy and Climate Change proposed that 
a target hurdle rate for investors of 4% was desirable and 
suggested it should only be realised in the most 
favourable locations [4]. Following consultation the 
generation FiT has been significantly reduced, though not 
as drastically as first proposed [5]. However, adopters 
and investors are exposed to greater risk of not making an 
economic return, and a slow-down in the rate of 
installation in the UK has been observed [3]. 
This has given greater impetus to understanding the 
uncertainty in the financial return. Research has been 
carried out to investigate the sensitivity of PV yield to a 
number of technical system parameters [6]. Taylor et al. 
have recently calculated a mean yearly integrated 
performance ratio of 83%, with a standard deviation of 
7% (a standard error of 8%) using empirical data for over 

7000 mainly domestic systems [7]. This error depends, of 
course, on many predictor variables, each with their own 
uncertainties. In particular monthly global horizontal 
irradiation, estimated by interpolating between ground 
station measurements, had an RMSE of 4.5%; further 
errors result from decomposition into direct and diffuse 
components and transposition to the plane of array [8]. 
However knowledge of uncertainties in the performance 
of PV is not enough to understand resultant uncertainties 
in economic performance. Under the UK’s FiT scheme, 
value is created for the generation, export and the 
displacement of imported electricity [9]. Thus Leicester 
et al. have investigated the uncertainty in self-
consumption and characterised a distribution with a mean 
value of 34% and a standard error of circa 60%, 
depending on the housing stock studied [10]. This and 
other parameters have been used to furnish a probabilistic 
model with the required distributions for a probabilistic 
discounted cash flow analysis to yield a measure of the 
uncertainty in a net present value calculation for domestic 
PV [11]. This research has pioneered the employment of 
probabilistic graphical models (PGM) in order to 
endogenise the uncertainties in renewable energy 
generation and allow uncertain or variable inputs to 
furnish investors or policy makers with probabilistic 
outputs [12]. 
Specifically a PGM approach using Bayesian Networks 
(BN) has been developed in order to qualitatively define 
the parameter space, and to quantify the conditional 
independency relationships, between them using a 
directed acyclic graph and underlying conditional 
probability tables. In recent years, the BN community has 
employed graphical information systems (GIS) to furnish 
BN with the requisite marginal distributions for key 
parameters [13]. This allows the model to deliver 
spatially disaggregated probabilistic outputs. 
The objective of this paper is to show how GIS/BN 
integration can be developed using publically available 
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datasets so as to deliver a spatial probabilistic PV 
evaluation tool. This can yield spatially disaggregated 
probabilistic outputs for key indicators allowing 
community planners to evaluate social, environmental 
impacts of PV. The paper presents the material as 
follows. In the Section 2 the use of GIS to furnish BN 
with probabilistic inputs is presented. In Section 3, GIS 
data to deliver building stock attributes, and PV yield, 
household incomes are explored. In Section 4 the use of a 
GIS interface to select evidence for the probabilistic 
model is demonstrated. Finally we present a discussion of 
the utility of this approach, followed by conclusions and 
suggestions for further work. 
 
2. PROBABILISTIC EVIDENCE FOR BAYESIAN 

NETWORKS 
 
An entire knowledge domain defined by a set 𝑽𝑽 =
{𝑉𝑉1,𝑉𝑉2,⋯ ,𝑉𝑉𝑛𝑛} of random variables can be represented by 
a joint probability distribution (JPD), 𝑃𝑃(𝑉𝑉1,𝑉𝑉2,⋯ ,𝑉𝑉𝑛𝑛). A 
jpd with many variables, each with a number of potential 
values (states) can be mathematically intractable due to 
an inordinate total number of states. In contrast, a 
Bayesian network (BN) is a significantly more compact 
representation of the knowledge domain. A BN is a 
couple (𝑮𝑮,𝑷𝑷), where 𝑮𝑮 =  (𝑵𝑵,𝑬𝑬) is a directed acyclic 
graph with a set of nodes 𝑵𝑵, each representing a variable 
in 𝑽𝑽, and 𝑬𝑬 is a set of directed edges, which represent 
conditional dependencies between them. The latter are 
encapsulated as conditional probability tables (CPT). The 
joint probability distribution for a BN can be factorised 
using the chain rule, represented by Equation 1, where 
𝝅𝝅𝑉𝑉𝑖𝑖  is the set of parent nodes of node 𝑉𝑉𝑖𝑖. Thus each term 
in the product is a CPT, or, in the case where the set of 
parent nodes is empty, its marginal probability 
distribution. The BN renders the algorithmic calculation 
of the prior distribution of each variable mathematically 
tractable. For a brief introduction in to BN theory see 
reference [11] and references therein. 

(𝑉𝑉1,𝑉𝑉2,⋯ ,𝑉𝑉𝑛𝑛) = �𝑃𝑃(𝑉𝑉𝑖𝑖|𝝅𝝅𝑉𝑉𝑖𝑖)
𝑛𝑛

𝑖𝑖=1

 Equation 1 

The crucial concept to grasp for the application of BN to 
a problem domain is the concept of evidence in order to 
make prognostic and diagnostic inferences. Evidence 
means that the model user has new knowledge about the 
probability distribution applied to one or more variables, 
and applies these to the model. This results in a new 
calculation of the JPD and furnishes all the remaining 
variables with a new posterior distribution. Evidence is of 
two principal types. Firstly, a variable may be fixed to a 
specific state i.e. the variable is fixed to one specific 
value of its potential states. For example, consider a 
distribution of the discretised states for the PV system 
rating. The prior distribution of system ratings in a 
dataset might be as in Table 1. The user could then 
update the model by applying evidence such that the 
system rating were set to 4 kWp. This is known as hard 
evidence since the variable has been fixed to this value. 
In Table 1 the hard evidence is set to 4kWp. A second 
type of evidence might be one where the user applies a 
new distribution which updates the prior distribution. 
This is called probabilistic evidence since the evidence 
represents a new local probability distribution applied to 
the variable in the model [14]. 

Table 1 Example of a prior distribution of a parameter 
modified with hard evidence and probabilistic evidence. 

 
System Rating (kWp) 

  1 2 3 4 5 
Distribution Probability (%) 
Prior Distribution 5 20 40 30 5 
Hard evidence 0 0 0 100 0 
Probabilistic Evidence 0 15 40 35 10 

 
3. PROBABILISTIC EVIDENCE FURNISHED 

FROM A GIS SYSTEM 
 
For this work several BN have been developed to 
understand the relationship between building stock 
parameters, building energy consumption, PV yield and 
self-consumption. These have been linked together to 
deliver an object oriented BN which integrates several 
knowledge domains to deliver a whole system model. 
The key elements of this model are reproduced in Figure 
1. The individual BN models can be seen in Reference 
[11].  
 

 
Figure 1. Object oriented BN model for domestic PV 

The building stock BN model is key since it delivers 
probabilistic distributions for its parameters to the 
building energy consumption and PV yield models. 
These in turn predict the distribution of self-consumption 
[10]. The challenge is to extract distributions from GIS 
vector layers and to furnish the BN model with these 
distributions as probabilistic evidence. The distributions 
are determined from the features selected by the GIS 
user. 
There are two approaches which decision and policy 
makers might employ to achieve this. The first is to select 
specific geographic areas based on boundary polygons 
(for example a local authority or community). All the 
features within the boundary are then used to generate 
distributions for the required parameters. The second 
approach is to use the GIS interface to select specific 
features, for example a row of houses, or those matching 
particular search criteria, such as all south-facing 
properties which have a roof size of 25m2 or greater. 
Here we demonstrate the approach using UK census 
areas known as lower super output areas (LSOA). Figure 
2 shows a vector map of one such census area in the 
South West of England. 
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The selection of a census area can be used to trigger a 
software script in order to calculate the distributions 
required as probabilistic evidence in the BN model. This 
involves a frequency count of discrete variables, such as 
building type or, for a continuous variable the allocation 
to an appropriate interval in a discretised distribution. 
Some parameters are held in vector layer attribute tables 
which are linked to the selected features. Others may be 
calculated using attribute parameters from one or more 
layers. In the following subsections the parameter sources 
and processing are described. 
 
 

 
Figure 2 Census area LSOA Kerrier 008B in Camborne, 

Cornwall, England 

3.1. DWELLING FLOOR AREA 
Building footprints are available in the UK’s OS 
MasterMap® Topography Layer which provides streets 
and building vector layers [15].  For the correct 
estimation of energy consumption, using the Building 
Energy Consumption BN, footprints need to be converted 
to floor areas. Thus the footprint area is multiplied by the 
number of floors, the latter estimated using building 
height data. This has recently been included for many 
conurbations in the UK MasterMap Building Heights 
geospatial data [16]. Building footprints in the 
MasterMap datasets do not always represent single 
dwelling units. Using the OS AddressBase® File [17], 
which provides a point vector layer for postal addresses, 
the number of dwelling units within the building footprint 
can be estimated using spatial queries. Figure 3 shows an 
example row of dwellings evaluated using this method. It 
can be seen that the building footprint on the far left 
encompasses four address points and the next one 
encompasses two. The remaining building footprints have 
only one. 
 

 
Figure 3 Building footprints with address points 

It is important that the floor area is calculated correctly 
since, as previous work has shown [10], it is an important 
predictor of building energy demand by a domestic unit. 
  
3.2. BUILDING TYPE AND AGE 
Two other attributes, which have been shown to influence 
domestic energy consumption, are the Building type and 
the Building Age. These are available in commercially 
available GIS datasets from the GeoInformation Group 
[18]. Figure 4 shows the distributions of Building Age 
determined for four different LSOA census areas in 
England. 
 

 
Figure 4 Distributions of Building Age 

3.3. ROOF AREA AND ORIENTATION 
Publically available lidar data, in combination with 
building footprints discussed above to serve as cookie-
cutters in the GIS data layer, can be used to estimate roof 
orientations and tilts using methods reported by Palmer et 
al [19]. Roof areas can also be calculated using lidar data. 
Whilst this can yield azimuth and tilt distributions for 
most building stock in the UK, visual inspection does 
show that there is a high degree of potential error. For 
example stock which exhibits a high density of complex 
roof structures common in the UK, such as dormer 
windows, skylights, hip-roofs and intersecting roofs can 
overestimate the PV potential of the housing stock. Table 
2 shows the percentage of buildings afflicted by problems 
which are difficult to estimate using automated 
algorithmic approaches. These were assessed using aerial 
photography in combination with GIS data. Only two-
thirds of dwellings had roofs unaffected by structural 
constraints or shading. This included significant number 
of apartment dwellings which had no dedicated roof [12]. 

0.00
10.00
20.00
30.00
40.00
50.00
60.00
70.00

1870-
1914

1945-
1964

1979-
1999Pe

rc
en

ta
ge

 o
f p

ro
pe

rti
es

Charnwood 
002D

0
10
20
30
40
50
60
70
80

1870-
1914

1945-
1964

1979-
1999Age band

Kerrier 
008B

Age band

0
10
20
30
40
50
60
70
80
90

18
70

-1
91

4

19
14

-1
94

5

19
45

-1
96

4

19
64

-1
97

9

19
79

-1
99

9

R
ec

en
t

Newcastle 
008G

0
10
20
30
40
50
60
70
80

18
70

-1
91

4

19
14

-1
94

5

19
45

-1
96

4

19
64

-1
97

9

19
79

-1
99

9

R
ec

en
t

Kirklees 
042B

Pe
rc

en
ta

ge
 o

f p
ro

pe
rti

es

32nd European Photovoltaic Solar Energy Conference and Exhibition

2456



Table 2 roof assessments in four census areas 
(% suitable) 

Assessment 

K
errier 

008B 

K
irklees 
042B 

C
harnw

ood 
002D

 

N
ew

castle 
008G

 

TO
TA

L 

Suitable 71.0 66.8 57.2 73.3 66.7 

Affected by shading 9.7 11.1 9.4 8.2 9.6 

Apartment (No roof) 14.0 11.1 26.4 15.3 16.9 
Structural 

Constraints 5.2 11.0 7.1 3.2 6.8 

 
Nevertheless these techniques enable the creation of GIS 
datasets of large areas of building stock from which 
parameter distributions to serve as probabilistic evidence 
can be determined. 
 
3.4. SOCIO-ECONOMICS 
A key objective was to be able to evaluate the socio-
economic impacts of PV. For example, there is a need to 
understand the impact of low carbon technologies on fuel 
spending and the overall household income. To this end 
household income distributions for census areas were 
calculated using the iterative proportional fitting 
technique (IPF) [20]. This technique uses a reference 
dataset of anonymised census data with income linked to 
other social parameters to calculate the distribution of 
income in a target dataset for which only the social 
parameters are known. This showed that, typically, 
equivalised household incomes are variable, exhibiting a 
coefficient of variation of over 50%. This delivers a 
marginal distribution of income for the census area 
(Figure 5). This data can then be further linked to 
building stock using the IPF technique. As a reference 
dataset the UK’s English Housing Survey [21] was used 
to estimate income for the housing stock in candidate 
census areas. 
 

 
Figure 5 Household income distributions for census areas 

Earlier studies have shown that domestic energy 
consumption, both electricity and gas, are directly and 
indirectly influenced by household income; the indirect 
influence is via the dwelling floor area [22] [23]. The 
result of the IPF technique applied to the building stock 
data is shown in Figure 6. This shows that the latter 
relationship has been effectively modelled in the 
simulated dataset. This probabilistic interpolation of 
income into the building stock model and the 

relationships modelled between building parameters, 
building energy consumption, and self-consumption of 
PV generated electricity ensure that the GIS layers 
deliver useful probabilistic evidence to the BN model in 
Figure 1. 
 

 
Figure 6 Result of modelled relationship between floor 
area and household income using iterative proportional 

fitting 

3.5. PV YIELD 
Whilst above the characterisation of building stock and 
occupancy factors which can then introduce probabilistic 
distributions in to the Building Stock BN model, it is also 
pertinent to note the sources of data used to estimate the 
PV Yield. Two PV yield estimation tools have been 
evaluated for the degree of uncertainty they introduce in 
to the model, PVGIS [24] and the UK SAP. Estimates 
from these tools where compared to the empirical annual 
yields for over 600 UK installations obtained from the 
Sheffield Microgeneration Database [25]. Figure 7 shows 
the result for PVGIS using the CMSAF database. Mean 
bias estimates and root mean square error estimations 
were obtained for each tool and the results used to 
construct an uncertainty distribution in PV yield 
prediction given key input parameters such as system 
rating, orientation and tilt. This analysis furnishes the 
model with an uncertainty distribution for the yield 
estimation by PVGIS or the SAP. In the application 
developed in this work, PVGIS was used to furnish the 
model with estimations. 
 

 
Figure 7 Measured versus PVGIS/CMSAF estimated 
yield for 600 UK systems 

In this section a number of parameters have been 
presented which can be extracted from GIS layers in 
order to then be summarised as probability distributions. 
These are summarised in Table 3. 
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Table 3 Summary of parameters obtained from GIS 
vector layers and source data 

Parameter GIS Source Comments 

Floor area 
Mastermap 
building 
footprints 

Calculated using 
address point data 
and building heights 

Building 
Type Geoinformation 

group 

Commercially 
available data; can be 
ignored if total 
energy not required. 

Building 
Age 
Roof Slope 

Lidar data Calculated and added 
to attribute table 

Roof areas 
for PV 
Orientation 

Household 
income Census data 

Iterative proportional 
fitting to produce 
simulated data added 
to attribute table 

PV Yield PVGIS or SAP 
Uncertainty must be 
incorporated using 
empirical data. 

 
4. APPLICATION OF PROBABILISTIC EVIDENCE 

TO THE BAYESIAN NETWORK 
 
When selecting GIS features, either by selecting a 
polygon, or a large number of features using QGIS, it is a 
simple task to iterate through the selection set to obtain 
attribute values with which to construct probability 
distributions for the required parameters in the BN 
model. This was implemented as a QGIS plugin using a 
routine written in R [26]. This calculated the required 
distributions using an R-GIS implementation which were 
then provided to an RNetica software layer [27]. The 
latter uses the Netica-C API to establish the distributions 
in the target Netica BN model. 
The application of probabilistic evidence is not 
straightforward in Netica, or indeed, in most commercial 
BN software [14], since it requires the application of 
evidence using a dummy node which is a child node of 
the one to which the evidence is being applied [28]. It is 
even more complicated if the new evidence is a set of 
multiple probabilistic evidences to be applied to a 
number of target nodes – this is predominantly the case 
when deriving a set of new distributions from a GIS 
system. In theory is a straightforward application of 
Bayes’ rule to each node in turn. However the process is 
noncommutative since the order in which multiple CPTs 
are adjusted to set target nodes to their desired 
distribution is significant. In other words, the application 
of Bayes’ rule to set the desired distribution to the second 
node influences the first and so on. In order to solve this, 
an iterative proportional fitting procedure as proposed by 
Pan et al [29] has been applied using a software 
algorithm written in R. This cycles round each target 
node, adjusting the dummy nodes’ CPTs in turn. It was 
found that the CPTs rapidly converge such that the 
correct distribution representing the probabilistic 
evidence is applied to all the target nodes. 
This algorithm, once all the probabilistic evidence from a 
GIS selection has been applied to the BN model, returns 
the new posterior distributions to the GIS interface for the 
user to evaluate. 
 

5. DISCUSSION 
 
In this section some key results obtainable from a 
GIS/BN integrated model are presented. These results are 
the probability distributions for any variable in the 
integrated BN model. As such the results are not unlike 
those we have previously published [10] [11]. The 
significance of this approach is discussed with regard to 
spatial decision making for the deployment of low carbon 
technologies. The further development of this approach is 
discussed in the context of the low carbon transition, new 
value propositions for decentralised energy business 
models and the management of risk. 
 
Figure 8 shows the model’s posterior distributions when 
a specific census area is selected. 
 

 
Figure 8  Posterior distributions of key parameters 

following selection of a census area: (from left to right) 
Electricity consumption, Gas consumption, PV yield, 

Self-consumption 

As reported in [11] these output disitrbutions can be used 
to furnish probabilistic discounted cash flow analysis and 
energy affordability indicators such as for example the 
percentage of household income spent on fuel following 
the installation of PV. The fact that these distributions 
can be obtained for any selection of properties in a GIS 
model equipped with appropriate vector layers and 
attribute data provides a powerful evaluation tool for 
decision and policy makers. 
One of the benefits of this technique is that is provides a 
means of accessing the power of probabilistic graphical 
models while retaining a GIS interface that may be more 
familiar or more intuitive to stakeholders in the decision-
making process. This paper is therefore presents the 
development of an integrated GIS/BN model as a logical 
development of a probabilistic analysis of a low carbon 
intervention such as PV. 
The approach is very extendable. It can be easily adapted 
to yield a number of other impact indicators which will 
benefit from a spatially disaggregated analysis. For 
example the evaluation of low voltage grid impacts is a 
candidate application since there are a number of studies 
which predict grid impacts such as voltage and thermal 
issues as a function of the penetration of PV [30]. This 
requires both an assessment of demand and generation 
which the model can assess using the selection of 
building stock. 
A third area is the evaluation of community wide cash 
flows for the evaluation of virtual power flows and the 
influence of energy storage on the value proposition 
which can be realised. It is clear that a probabilistic 
approach is required for an accurate evaluation of risk. 
 
6. CONCLUSION 
 
A Bayesian network which probabilistically estimates 
generation, demand and direct self-consumption for 
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domestic PV has been successfully integrated with a GIS 
system. The latter has been furnished with a number of 
commercial and publically available datasets which allow 
the extraction of probability distributions based on a 
selection of GIS features. 
The problem of supplying these multiple probabilistic 
evidences to the BN has been solved using an iterative 
algorithm. The model then furnishes a user with posterior 
distributions of all variables based on the selection of GIS 
features. This has potential for further development to 
incorporate other low carbon technologies and evaluate 
new business models such as virtual power stations and 
integrate energy storage using s method which 
endogenises uncertainties and helps evaluate risk. 
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