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Abstract

When using measurement data for monitoring there is often a desire for steady-state analysis. On-line condition mon-
itoring and fault detection systems are typical applications where the traditional way of treating transient data is to
remove it using methods that require tuning using thresholds. This paper suggests an alternative approach where the
uncertainty estimate in a particular variable is increased in response to the presence of transients and through propa-
gation, varies the uncertainty in the result accordingly. The formulation of the approach is described and applied to
two examples from building HVAC systems. The approach is demonstrated to be a pragmatic tool that can be used to
increase the robustness of calculations from time series data.
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1. Introduction

The work described in this paper developed out of the
application of condition monitoring and fault detection to
heating ventilation and air conditioning (HVAC) Systems
in buildings. This has been the focus of research over the
last 15-20 years, the aim of which is to help to manage
complex systems in some automated sense using data [4,
7, 16, 9, 15, 11].

The decreasing cost of measurement is increasing the
use of smart metering and home energy monitoring sys-
tems, where information can be feedback to home owners
and also to third party service providers [2]. Additionally,
the complexity of building systems needed to cope with on-
site generation and energy distribution is all buildings will
increase the management of systems [13, 14]. The devel-
opments in the built environment are further complicated
because is is interconnected through the energy generation
and supply systems and so building performance will be-
come increasingly interdependent. Management of these
systems will require greater levels of robust automated su-
pervision and since much of the time series analysis in
the built environment is based on steady-state calcula-
tion methods, having robust means to handle the transient
components are important.

Monitoring applications in buildings have fundamen-
tal issues of robustness due to unmeasured and typically
unidentifiable disturbances, often by the interaction of peo-
ple. These disturbances combined with the response of
the control systems to diurnal variations in ambient condi-
tions result in measurements that will always be transient
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to some extent and hence ‘steady-state detection’ meth-
ods have been developed to filter out transient data [3, 6].
The algorithms often require threshold selection and can
prone to mis-classifying steady-state. This results in a
loss of ‘good’ information and the inclusion of unwanted
transient data in the calculation, which tends to generate
spurious results and in the case of fault detection, lead to
false alarms, which is undesirable.

Figure 1 depicts the problem (taken from [1]). A cool-
ing coil is opened in increments of 10% of the control signal
and left to attain steady-state for about 15 minutes, the
goal of which is to characterise it over it’s operational range
(bottom plot). An algorithm is used to tune the parame-
ters of a steady-state coil model to the data by comparing
the predictions of temperature off-the coil (PTSUP) with
the measurements (TSUP). The centre plot gives the resul-
tant fit, but attention is drawn to the upper plot. The dots
represent the data that are deemed to be in steady-state,
using a low-pass filter and gradient threshold method given
taken from [10]. The problem is that many steady-state
samples are rejected, so much so that the model parameter
estimates could be biased. Further ‘tuning’ only leads to
either fewer good points, or the introduction of data from
transient region of operation, rather than classifying the
data correctly.

Rather than determining rejection criteria, this ap-
proach retains all data but scales the uncertainty in the
observations according to the detection of transients, thus
alleviating the tricky threshold selection and retaining all
available information in the data. This uncertainty can
then be combined with the other uncertainties and prop-
agated to the result [8]. The technique would typically be
applied to each variable under observation and it can be
applied in batch format, or recursively for on-line applica-
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Figure 1: Issues with threshold selection and the reliability of detec-
tion of steady-state.

tions. This paper presents the formulation of the method
and gives examples of its use in practice.

2. Method

The uncertainty in measurements are due to bias in
calibration, indeterminable noise, interference from other
effects that cannot be eliminated or in the approximation
to bulk average properties or quantities. These individual
sources are termed elemental uncertainties and are usu-
ally quoted at a 95% confidence interval and combined in
quadrature to yield a 95% confidence level for the mea-
surement,

U2
i = U2

a + U2
b + ...+ U2

n, (1)

where Ui is the uncertainty in the variable and Ua → Un
are the elemental uncertainties quoted at the 95% level.
Once the variable uncertainties are established, they can
be propagated through a particular calculation or analysis
using the approach described by Kline and McClintock [8],

Uy =

[
n∑
j=1

(
∂y

∂xj
Uj

)2
] 1

2

. (2)

Many calculations yield the best results when the sys-
tem being monitored is stable and close to steady-state,
i.e. does not vary with time [7]. Hence, if the data is at or
very close to steady-state, then there is negligible uncer-
tainty due to transients in any subsequent calculation. If
the system has had an input that drives it towards a new
operating condition, then the data will become transient
for a period of time, during which any calculation will yield
poorer results, because the system is not in steady-state
but is ‘looking forward’ to the new state. In this case,

the additional uncertainty in the result of the analysis will
be due to the transient nature of the data and hence if
accounted for, will yield robust results. Equation 1 can
therefore be expanded to become,

U2
i = U2

τ + (U2
a + U2

b + ...+ U2
n), (3)

where Uτ is the uncertainty due to the transients in the
data. The left hand plot in Figure 2 depicts a system
that begins in steady-state then at some time t1 there is a
step input to the system, such that is drives the variable
to a new steady-state, some time later, t2. The variable
might respond as shown by the dashed line. If the aim
is to calculate a steady-state value from the variable at
either the old or new state, then Uτ = 0 before t1, Uτ =
maximum just after the step input and then Uτ → 0 as
time progresses.

In order to detect the change in state, measure it and
evaluate it with respect to the implications on the uncer-
tainty for a calculation, the variable needs to be sampled.
The dot-dashed line in the right hand plot of Figure 2 de-
picts the effects of applying mean and variance calculations
to a moving window filter applied to the variable.

Two common methods used to recursivley generate the
mean and variance in time series data are: a fixed time
window approach which averages consecutive data samples
over the length of the window and hence applies an equal
weighting to each sample,

x̄n =
1

w

w∑
k=0

x(n−k), (4)

σn =
1

w − 1

w∑
k=0

(x̄n − x(n−k))2, (5)

where x̄n is the mean of the measurements x(n−k) at sam-
ple number n, w is the window length and σn is the sample
variance; and an exponentially weighted method that re-
cursively ‘forgets’ data with each new sample,

x̄·n = λx̄·n−1 + (1− λ)xn, (6)

σ·n = λσ·n−1 + (1− λ)(x̄·n − xn)2, (7)

where the effective sample mean, x̄·n and effective sample
variance σ·n are calculated. The rate at which the forget-
ting occurs is controlled by a factor, λ. The number of
samples is represented by the effective number of samples,
n· and is given by, n· = nearest integer

{
λ(n − 1) + 1

}
.

Figure 3 shows that practical values for the forgetting fac-
tor are in the range 0.8 ≤ λ ≤ 0.967, corresponding to
effective sample sizes of 5 ≤ n· ≤ 30.

When Equation 4 or 6 are applied to the dotted line in
Figure 2, the mean that is generated will in affect bias the
measurement of the variable. The approach here is to treat
this as the uncertainty in sampling the data, Usmp. The
variance that is generated by Equations 5 and 7 gives
a measure of the magnitude of this. Under steady-state
conditions, Usmp is equivalent to what is typically regarded
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Figure 2: The relationship between the uncertainty due to transients (LHS) and the uncertainty due to sampling the variable with a variance
based approach (RHS).
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Figure 3: The relationship between effective sample size and the
forgetting factor.

as the random uncertainty found in measurements and can
be calculated using,

Usmp =
γ
√
σn√

n− 1
, (8)

where γ is Student’s-t statistic, at the 95% confidence
level, σn is the variance and n is the number (or n. the
effective number) of samples. Under steady-state condi-
tions, the uncertainty derived will be the lowest that can
be expected, any increase in variance will indicate tran-
sient activity and the uncertainty Uτ will be due to both
the sampling and the transient activity, Uτ = Utrn+Usmp,
illustrated in the right hand plot of Figure 2.

2.1. Calculating the uncertainty in transient data, Uτ

Most measurements from real systems will have some
level of background variation in the data and so even at

steady-state Usmp 6= 0 and so there will be a minimum
level of variance, σnmin . The uncertainty can be calculated
using Equation 8, since in steady-state σnmin = σn. σn
will increase when transients are present and taking the
example in Figure 2, will increase to some maximum. The
challenge is to estimate the confidence limits at when there
is maximum uncertainty (Utrnt1) and to then scale this
appropriately as the system returns to steady-state (t2),
i.e. when Utrn = 0, hence Uτ = Usmp.

Most real systems will be bounded by practical limits
on the expected values of variables and on the expected
excitation of the system: for example, if the water flow
temperature from a LTHW boiler in the UK is of interest,
it might be judged that the maximum likely variation in
the temperature measurement is between 10◦C and 90◦C.
In this way the a maximum likely value of uncertainty,
associated with a particular variable in a particular appli-
cation1, Imax, can be defined and so Utrn can be described
by,

Utrn = Imaxf(t, τ, σn), (9)

where f(t, τ, σn) is a normalised scaling function that cre-
ates a time dependant relationship in the decay of Imax
to the minimum uncertainty, (i.e. Usmp when Utrn = 0).
The rate characteristic rate of decay will also be a func-
tion of the system time constant, τ , and the variance, σn,
is used to observe the system.

2.1.1. Deriving f(t, τ, σn)

The scaling function f(t, τ, σn) presented here is based
on a step change in a first order system; the characteristics
of a measurement x̄(t) generated after a step input, can be
described by [12],

x̄(t) = 1− e− t
τ . (10)

1Such values would usually be judged to be, or calculated at the
95% confidence level.
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Figure 4: The relationship between σ′
n and the function f(t, τ, σn).

Observing Figure 2, it can be seen that the solid line rep-
resents the step change, and the dashed line is given by
Equation 10 and so e−

t
τ , therefore, represents the level of

uncertainty between the value and the future value due to
the input activity. Steady-state can be considered to exist
when the output is at 95% of its final value [5] and this
expression can be normalised to give,

f(t, τ) =
1

1− β

(
e−

t
τ − β

)
, (11)

where β = e−
t95%

τ and t95% is the time after the excitation
which the response falls within 5% of the final value. σn
varies between σnmin and σnmax and so can be normalised
to give,

σ′n =
σn − σnmin

σnmax − σnmin
, (12)

It is assumed that σn is a good measure of the transients
in the data and so σ′n ∝ f(t, τ) between the time between
the step change occurring and reaching steady-state (t1
and t2 in Figure 2). Since the time constant is defined at
the period taken for the output to reach 67% of its final
value [12], t

τ ≈ 3 and in order to generate a normalised
output, Equation 11 can be modified to yield,

f(t, τ, σn) = σ′ne
−3(1−σ′

n). (13)

Figure 4 depicts the function given by Equation 13 in the
top left had plot. Top right depicts the response of the
system where τ = 3 and the mean sampled by at 10 sample
fixed window. Bottom left shows the resultant variance
calculated using Equation 5 and bottom right depicts the
Usmp calculated using Equation 8 and Uτ (i.e. Utrn +
Usmp).

3. The effect of window size on Uτ

The size of window (or rate of forgetting) is important
because it determines the sample size and hence affects the
calculation of confidence limits; the greater the number of
samples the better. The size of the window also affects
the responsiveness of the method to detect changes in the
state of the system; the top right hand plot of Figure 4
shows the lag that occurs when calculating the mean. Al-
though it is often desirable to filter the data in this way
to avoid odd spikes, or spurious points in the data, its also
evident that the shorter the window the more responsive
and the longer the window, the less sensitive the method
becomes. This means that the selection of the appropriate
window length is important when calculating the variance
to estimate Uτ ; as n increases so does Usmp and the max-
imum variance moves away from the maxim uncertainty
and hence becomes less effective as a proxy for measuring
Utrn.

The following analysis investigates the error generated
when averaging functions are employed to evaluate the
sample mean and variance in the presence of dynamic ef-
fects. The responses generated by a first order system to
various forcing functions are used to represent the true
values of the measurements. The mean calculated by the
filters that sample the true value differ and this difference
can be regarded as the total error. The total error and the
calculated variance are used to evaluate the performance
of the filters. The more desirable filter has a smaller vari-
ance and one who’s maxima coincides with the peak total
error. Three system input characteristics are used here:
step, ramp and impulse, given by,

c(t)step = 1− e−t/τ , (14)

c(t)ramp = k
′
(t− τ + τe−t/τ ), and, (15)

c(t)impulse =
1

τ
e−t/τ , (16)

where t is time (s), τ is the system time constant (s) and
k

′
controls the magnitude of the rate of increase in the

ramp input. The number of samples in a given period is
given by n = t

In
where In is the time sample interval (s).

3.1. Results

Figure 5 shows the true value, sample response and
sample variance for the different system time constants
and sample sizes for both the equal and exponentially
weighted sampling methods for the first order step input
case. On the plot, ‘tc’ and ‘si’ refer to ‘time constant’ and
‘sample interval’ respectively. The figure shows the lag of
the mean in the response to the input which increases as
the sample size (window length) increases. The total sam-
ple variance increases accordingly. One difference between
the two filters is that the exponentially weighted method
gives a smaller peak variance at the shorter time constants,
whereas when τ is larger, the equal weighting has a smaller
peak variance.
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Figure 5: The performance of equally and exponentially weighted
averaging methods on the sample uncertainty due to a step input.

Figure 6 demonstrates the coincidence of the total error
and variance maxima. There are three observations: the
total error associated with the equal weight approach is
less than for the exponential method (demonstrated by
the areas under the plots); the smaller the sample size, the
greater the coincidence of the peak values; and the larger
the system time constant is in relation to the sample size,
the closer the coincidence.

Figure 7 shows results for a unit ramp input. The
ramp functions have been stopped at an arbitrary point
to demonstrate the rate at which uncertainty reduces after
the disturbance. The steady-state error for a first order
response to a ramp input is given by k′τ where k′ = 1
for a unit input. After the initial transients, the equal
weight method therefore gives constant variance related
to the sample size and ramp gradient. The uncertainty
is independent of system time constants after the initial
transients.

Figure 8 shows the results when the rate of input is
increased to k′ = 2. What is significant is the effect of k′

on the response of the exponentially weighted method; it
significantly impacts the rate at which the variance returns
to zero.

The performance of the methods sampling the sys-
tems where an impulse input is generated is shown in Fig-
ure 9. For this case, the exponentially weighted method
has a lower peak uncertainty, lower total uncertainty and
a quicker initial reduction in uncertainty compared to the
equally weighted method when the time constant is small
with respect to the sample interval. Although the reduc-
tion in uncertainty is initially quicker than for the equal
weighting, the exponential method is slower to return to
zero. Figure 10 shows the relationship between the total
error and the sample variance for both methods. As the
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Figure 6: Total error and variance for the equally and exponentially
weighted averaging methods in response to a step input.

system time constant increases, the uncertainty becomes
less significant. One interesting feature is that due to the
rapidity of the system input response and the slower decay
of the sampling functions, a sign change in the total error
is evident.

3.2. Summary

The exponential method considers more samples than
the fixed length window method, the ‘memory’ of the vari-
ance, therefore, causes sluggish response to the total error
for ramp and step inputs. Conversely, the equal weighting
method can generate higher uncertainties when an impulse
input is considered, which is particularly apparent when τ
is small. Figure 11 depicts this by plotting the sum of the
variance over 50 samples for the step and impulse cases:
the ramp and step cases yield similar results relative to
the two sampling methods. There is little to distinguish
between the filters in terms of the coincidence of the to-
tal error with maximum variance. In conclusion, if mea-
surements are taken from a system having predominantly
impulse inputs and small time constants, the exponential
method will generate less uncertainty. If the system is sub-
ject to predominantly ramp and step inputs having longer
time constants, as is the case with most typical HVAC
systems, the equal weighting method is more appropriate.

4. Application of the evaluation method for Uτ

The Uτ approach is applied to air temperature mea-
surement in a typical HVAC and a typical domestic set-
ting; both sets of data are from real buildings. The first
application demonstrates the variation in Usmp and Utrn
and the second the affect of relative contributions to the
uncertainty from Uτ and other uncertainties associated
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Figure 7: The performance of equally and exponentially weighted
averaging methods on the sample uncertainty due to a ramp input;
k′ = 1, for different time constants.
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Figure 8: The performance of equally and exponentially weighted
averaging methods on the sample uncertainty due to a ramp input;
tc = 5si, for k′ = 1 and k′ = 2.
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Figure 9: The performance of equally and exponentially weighted
averaging methods on the sample uncertainty due to an impulse in-
put.
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weighted averaging methods in response to an impulse input.
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stants (tc) for equally and exponentially weighted sampling methods,
where si is ‘sample interval’ and w and ff indicate the fixed window
and forgetting factor approaches respectively.

with the measurement. In both cases the equal weighing
method has been applied and the window length based
on the observed duration of the response of the system
to a step input. For example, taking the third plot down
on the LHS of Figure 5, a window length of ≈15 samples
would span the response of the system to the input; and
would yield a small variance, while remaining responsive
to changes. In practice, the method is not overly sensitive
to this window length and hence a good estimate can be
made by eyeing a sample of data from the system, making
the approach practical to implement.

4.1. HVAC off coil air temperature measurement

Heating and cooling coils are common components in
HVAC systems and are often combined with variable speed
fans. Control of the output of coils will be through vary-
ing the mass flow rate or temperature of the water flowing
through them and hence the temperature of the air off the
coil (Taoc) will be a function of the air and water tempera-
tures into the coil and the air an water flow rates through
it. The closeness of Taoc to steady-state will depend on
the transients in these inputs due to control action and
any unmeasured disturbances.

The Uτ method can be applied to Taoc which is partic-
ularly useful in condition monitoring when Taoc could be
used to compare against some reference case. Figure 12
depicts data from a real HVAC system where the coil con-
ditions are principally affected by variations in three in-
puts: the control signal that governs the mass flow rate
of chilled water through the coil; the air temperature onto
the coil; and the air mass flow rate. The bottom plot shows
these normalised against maximum and minimum values
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Figure 12: the Uτ method applied to a typical air temperature mea-
surement in an HVAC system.

observed in the data set. The top plot depicts the re-
sults from running Taoc through a 10 sample fixed averag-
ing window, calculating the subsequent mean and variance
(Equations 4 and 5). τ ≈180s and the sampling interval is
every 60s. Recorded data was used to establish reasonable
estimates of σnmin = 0.07 and σnmax = 59.8. Uτ was then
calculated using Equation 8 and Equation 9 at the 95%
confidence level. The plot shows T̄aoc as the dashed line
and Uτ as a solid line. Steady-state can identified and dif-
ferentiated from when the excitation of the inputs are gen-
erating a lack of confidence in the results. Any calculation
required using Taoc can now be performed on every sam-
ple, propagating the uncertainty through the calculation
at each point to improve the robustness of the results. The
middle plot shows the balance between Usmp and Utrn as
uncertainty percentage contributions (UPC) to Uτ . Since
other sources of uncertainty have not been considered in
this example, these are calculated by, UPCtrn = Utrn/Uτ
and UPCsmp = 1− UPCtrn.

4.2. Domestic room air temperature measurement

Monitoring room air temperature in dwellings is in-
creasingly of interest and such measurements are often
used as some guide to the comfort levels with in the space
or to make some estimation of the energy used to heat
or cool the space. Figure 13 shows data from a real UK
dwelling during the heating season over a 24 hour period.
The temperatures were sampled at 2 minute intervals. The
top plot shows the internal air temperature averaged using
a 30 sample (60mins) fixed window. The confidence limits
are calculated using Equation 3 when Uτ is calculated as
described and the calibration uncertainty is ±0.5K. The
bottom plot shows the measured input excitation, being
the normalised outside air temperature and the boiler flow
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Figure 13: the Uτ method applied to a typical air temperature mea-
surement in a dwelling.

temperature. The boiler flow temperature is used here as
a proxy to establish when the system is heating the build-
ing: at ≈150 samples, the system switches on, and then
turns off at sample ≈200, when the flow pipe goes into
free cooling. The system fires once again at sample ≈520.
Since the internal air temperature is around 20◦C and an
outside air temperature of 5◦C would not be uncommon
and Imax was judged to be 15K: a heat input from an fan
heater, or similar might also yield a similar difference.

The UPCs are calculated for Uτ and Ucalibration and
given on the central plot. As the heating system comes
on the building warms up and the Uτ dominates. Once
the heating is off, the relatively slow change in outdoor air
temperature has little impact and the system approaches
steady-state. As the effect of the transient activity drops
off the uncertainty in the calibration of the devices dom-
inates. The region of increased uncertainty at samples
350-380 is due to a single sample where the indoor air tem-
perature measurement equaled the outdoor temperature.
This was simulated here in order to demonstrate the sen-
sitivity of the approach to unmeasured and unpredictable
disturbances (one data point was set to the outside air
temperature). For this case, the measurement was in the
hall and had the sensor been exposed to a cold gust of air
as the door was opened, a dip in the temperature would
have been observed. The condition would have been tran-
sient and hence we would have less confidence in the results
of calculations at this time. By evaluating the uncertainty
using the Uτ method, the analysis can be made to be more
robust by accounting for the effects of transient data.

5. Conclusions

Steady-state calculations are widely used in analysis,
but the presence of transients in data can yield spurious

results. This is particularly evident in systems that require
continual monitoring and that are exposed to unexpected
disturbances. Rather than attempt to filter out transient
data, this paper presented a robust method of estimating
the additional uncertainty in the results due to the use
of transient data in steady-state calculations, particularly
useful for reducing false alarms in condition monitoring
applications.

The theoretical basis for the Uτ−method (pronounced
‘UT-method’) were presented and the sensitivity sample
window length investigated for generalised systems, vary-
ing time constants and input types. The steps for applying
the method are:

1. Establish dominant time constant in the system and
likely input type (Step, Ramp, Impulse).

2. Select the averaging method that performs the best:

• if impulse inputs are predominant and the sys-
tem has small time constants, choose the expo-
nential weighting method (Equations 6 and 7),
or,

• if ramp and step inputs are predominant and
the system has longer time constants, select the
equal weighting method (Equations 4 and 5).

3. Define the maximum likely range that each variable
would be expected to encounter in the specific appli-
cation (Imax).

4. Apply Equation 9 to each new data point and cal-
culate the uncertainty due to the transients for each
variable.

5. Add this Utrnk as an elemental uncertainty to the re-
spective uncertainties in each variable and propagate
to the result.

Having originally been developed help generate robust
condition monitoring schemes for HVAC system applica-
tions, the method now has wider potential application in
energy and performance monitoring in the built environ-
ment. This is driven through the increasing application of
low cost sensing in domestic buildings and the additional
complexity of building systems to accommodate renewable
energy generation and storage. As buildings become more
interconnected to help balance intermittent energy genera-
tion and demand, greater levels of automated supervisory
monitoring and decision making will be required. Tech-
niques like the Uτ−method can contribute to the creation
of robust systems.
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