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Abstract 

A theory of contact angle hysteresis of a meniscus inside thin capillaries with smooth, homogeneous 

solid walls is developed in terms of surface forces (disjoining/conjoining pressure isotherm) using 

quasi-equilibrium approach. The disjoining/conjoining pressure isotherm includes electrostatic, 

intermolecular and structural components. The values of the static receding, rθ , advancing, aθ , and 

equilibrium, eθ  contact angles in thin capillaries were calculated based on the shape of 

disjoining/conjoining pressure isotherm. It was shown that both advancing and receding contact 

angles depend on the capillary radius. The suggested mechanism of the contact angle hysteresis has a 

direct experimental confirmation: the process of receding is accompanied by formation of thick β-

films on the capillary walls.  The effect of transition from partial to complete wetting in thin 

capillaries is predicted and analyzed. This effect takes place in very thin capillaries, when the receding 

contact angle decreases to zero.  
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Introduction 

It is usually believed that static hysteresis of the contact angle is determined by the surface 

roughness and/or heterogeneity 1. No doubt that a roughness and/or a chemical heterogeneity of the 

solid substrate contribute substantially to the contact angle hysteresis. It is assumed in this case that 

at each point of the surface the equilibrium value of the contact angle is established depending only 

on the local properties of the substrate. As a result a whole series of local thermodynamic 
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equilibrium states can be realized, corresponding to a certain interval of contact angles. The 

maximum possible value corresponds to the static advancing contact angle, θa, and the minimum 

possible value corresponds to the static receding contact angle, rθ . Hence, the dependency of the 

contact angle on the velocity of motion of a meniscus or a drop can be qualitatively described by the 

dependency presented by solid lines in Fig.1. 

  
Fig. 1. Solid lines 1 - Idealized dependency of the contact angle on the advancing (V>0) or the 

receding (V<0) velocity of a droplet/meniscus. All contact angles, θ, between static advancing contact 

angle,θa, and static receding contact angle,  θr , are considered as equilibrium contact angles. Curve 2 

-0.0 a real dependency of the contact angle on the advancing or receding velocities. At any deviation 

from the equilibrium contact angle, θe, the liquid drop/meniscus is in the state of a slow “microscopic 

motion”, which almost abruptly transforms into “a macroscopic motion”. In this case static advancing 

and receding contact angles, θa and θr, are extrapolations to zero velocity. 

 

However, roughness and/or heterogeneity of the surface are apparently not the sole reasons 

for contact angle hysteresis. There have been an increasing number of publications over the last 

years which confirmed the presence of contact angle hysteresis even on smooth, homogeneous 

surfaces 2-7. However, the most convincing evidence for the presence of the above mentioned 

phenomenon is its presence on free liquid films 8-12: in this case there is hysteresis of a meniscus, 

which is located on thin free liquid films. In this case the surfaces of free liquid films are not rough at 

all and are also chemically homogeneous. Hence, in the case of contact angle hysteresis on free liquid 

films it is impossible to explain the hysteresis phenomenon by the presence of roughness and/or 

heterogeneity. 

Earlier a qualitative theory of contact angle hysteresis of menisci in thin capillaries has been 

developed 13,14 based on a s-shape of disjoining/conjoining pressure isotherm. The theory did not 

allow describing the dependency of the static advancing/receding contact angles on the capillary 
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radius. Below a quantitative theory of contact angle hysteresis is presented based on the 

consideration of surface forces, which act in the vicinity of the three-phase contact line. This type of 

contact angle hysteresis exists even on a smooth, homogeneous substrate. Consideration of this kind 

of contact angle hysteresis on rough and/or non-homogeneous surfaces from this point of view is to 

be undertaken. 

Evidently only a single unique value of equilibrium contact angle, eθ , is possible on a smooth, 

homogeneous surface. Hence, both static advancing ea θθ ≠  and static receding er θθ ≠  contact 

angles as well as all contact angles in between, which are observed experimentally on such surfaces, 

correspond only to non-equilibrium states of the system. Hence, the picture presented by solid lines 

in Fig. 1 should be replaced by a new more realistic picture presented in the same picture by curve 2.  

 

The disjoining/conjoining pressure components 

The nature of the disjoining/conjoining pressure can be briefly explained as follows. The 

properties of liquid in the vicinity of liquid-air and solid-liquid interfaces differ from the 

corresponding properties in the bulk because of surface forces action. These layers, where the 

surface forces act, are referred to as boundary layers (nothing to do with hydrodynamic boundary 

layers). In the vicinity of an apparent three phase contact line these boundary layers overlap. This 

overlapping of boundary layers is the reason why disjoining/conjoining pressure appears. 

Contact angle hysteresis on smooth homogeneous substrates appears in the case of partial 

wetting, when disjoining/conjoining isotherm has a special s-shape. Components contributing to the 

formation of disjoining/conjoining pressure are discussed elsewhere 15-18. According to DLVO theory17 

these components are  

1) electrostatic component, which is caused by formation of electrical double layers and their 

overlapping: 

Π𝐸𝐸 = 𝑅𝑅𝑅𝑅𝑐𝑐0(exp (𝜑𝜑) + exp (−𝜑𝜑)) − 2𝑅𝑅𝑅𝑅𝑐𝑐0 −
(𝑅𝑅𝑅𝑅)2𝜀𝜀𝜀𝜀0
2𝐹𝐹2

�𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
�
2
,    (1) 

 
where R,T, F, ε, ε0 are universal gas constant, temperature in oK; Faraday’s constant, dielectric 

constant of water and dielectric constant of vacuum, respectively; c0 is concentration of univalent 

electrolyte;  y and ϕ are the co-ordinate normal to the liquid-air interface and dimensionless electric 

potential in F/RT units, respectively. 

The electric potential 𝜑𝜑 and the surface charge density 𝜎𝜎  in Eq.(1) are related as 17 

Field Code Changed

Field Code Changed

Field Code Changed



𝜎𝜎ℎ = 𝜀𝜀𝜀𝜀0
𝑅𝑅𝑅𝑅
𝐹𝐹
�𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
�
𝜕𝜕=ℎ

 for the liquid/vapour interface; 

𝜎𝜎𝑠𝑠 = −𝜀𝜀𝜀𝜀0
𝑅𝑅𝑅𝑅
𝐹𝐹
�𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
�
𝜕𝜕=0

 for the solid/liquid interface; 

where h is a separation between the interacting surfaces. 

2) structural component, which is caused by water molecule dipoles orientation in a vicinity of 

interfaces and overlapping of these structured layers. This component is presented as a combination 

of both short-range and long-range interactions 19: 

ΠS(ℎ) = 𝐾𝐾1 exp(−ℎ/𝜆𝜆1) + 𝐾𝐾2 exp(−ℎ/𝜆𝜆2),      (2) 

where 𝐾𝐾1,𝐾𝐾2 and 𝜆𝜆1, 𝜆𝜆2 are parameters related to the magnitude and the characteristic length of the 

structural forces. The subscripts 1 and 2 correspond to the short-range and long-range structural 

interactions, respectively. Currently the latter four constants can be extracted from experimental 

data only. The constants 𝐾𝐾1,𝐾𝐾2 usually have the opposite signs (see parameters values to Fig.8); 

3) molecular or van der Waals component 15,17:  

36
)(

h
AhM
π

=Π ,         (3) 

where A = −AH, AH is the Hamaker constant. Note, the importance of the van der Waals component is 

usually grossly exaggerated in the literature: other components of the disjoining/conjoining pressure 

are equally or even more important in the case of aqueous electrolyte solutions. 

The resulting disjoining/conjoining pressure isotherm has a characteristic s-shape 17,18: 

)()()()( hhhh SEM Π+Π+Π=Π .       (4) 

An example of possible shapes of the disjoining/conjoining pressure isotherms is given in Fig.2. The 

shape of the isotherm depends on contribution of the surface forces components and correspond to 

different wetting conditions. 

 

Disjoining/conjoining pressure and wetting phenomena 

Kelvin’s equation describes the change in vapour pressure over the curved liquid/vapor 

interface (for example, a capillary or a droplet)20: 

,     (5) 

𝑃𝑃𝑒𝑒 =
𝑅𝑅𝑅𝑅
𝑣𝑣𝑚𝑚

ln
𝑝𝑝𝑠𝑠
𝑝𝑝
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where P
e
 = P

v
 – P

l
  is  the excess pressure; P

l  
is  the pressure inside the liquid; P

v
 is the pressure in the 

ambient vapour; v
m

 is the liquid molar volume; p
s
 and p are the saturated vapour pressure (over a flat 

liquid surface) and the pressure over the curved interface, respectively.. The excess pressure inside 

the droplet, Pe, should be negative (pressure inside the droplet is higher than the pressure in the 

ambient vapour). Thus, the right-hand side of Kelvin’s equation must be negative, which is possible 

only if p > ps; that is, droplets can only be at equilibrium with oversaturated vapour. It is the reason 

why it is difficult to investigate experimentally equilibrium droplets on solid substrates: it is necessary 

to maintain oversaturated vapour over the substrate under investigation for a prolonged period of 

time 14. 

In contrast to a droplet equilibrium for a meniscus according to the Kelvin’s equation is possible 

with undersaturated vapour (Pe > 0 and p < p
s
). Note, equilibrium meniscus can exist in the case of 

both complete and partial wetting. The latter is different from equilibrium droplets, which can exist 

only in the partial wetting case; in the case of complete wetting droplets spread out completely.  

Schematic presentation of two possible shapes of disjoining/conjoining pressure isotherms is 

given in Fig. 2. These types of dependence, Π(ℎ) , are typical for the sum of electrostatic and van der 

Waals components of the disjoining/conjoining pressure (DLVO theory). Dependency 1 in Fig. 2 

corresponds to the complete wetting case, while curve 2 corresponds to the partial wetting case. 

Note, if the structural component is taken into account then the shape of the disjoining/conjoining 

pressure dependency become more sophisticated 27. The structural component is  included below in 

the disjoining/conjoining pressure isotherms. However, for a case of capillary meniscus, Pe>0 and the 

secondary minimum of the structural interactions on isotherm has no such drastic effect on the 

contact angle hysteresis as in the case of droplets27 . 

Let us consider the conditions of equilibrium for flat wetting films in contact with a liquid 

meniscus or a droplet. Due to a small size of the considered systems, the gravity effect is neglected 

below. 

In the case of complete wetting the thickness he of the equilibrium wetting film corresponds to 

the intersection of a straight line Pe > 0 with the disjoining/conjoining pressure isotherm: there is a 

only one intersection in the case 1 in Fig. 2.  

It could be three intersections of a straight line Pe > 0 (partial wetting, isotherm 2 in Fig.2) with 

the disjoining/conjoining pressure isotherm. However, hβ and hu are a metastable and an unstable 

equilibrium thicknesses, respectively; only he corresponds to a thermodynamically stable equilibrium 

thickness.14,17 



 

 
Fig. 2. Schematic presentation of disjoining/conjoining pressure isotherms. 

(1) complete wetting case, (2) partial wetting case. 

he, hu, hβ – thicknesses of a stable, an unstable and a metastable wetting films respectively.14,17 

The shape of the isotherms is typical for a sum of electrostatic and van der Waals interactions (DLVO 

theory). 

 

The equilibrium contact angle in terms of disjoining/conjoining pressure is determined by 

known equation17,21  

    (6) 

where 𝛱𝛱 is the disjoining pressure; γ is the liquid-vapour interfacial tension. 

Let us discuss a two-dimensional capillary with a half-width H (Fig. 3). There are two possible 

situations in geometrical definition of equilibrium contact angle, 𝜃𝜃𝑒𝑒: 

(i) 𝐻𝐻 < 𝑟𝑟𝑒𝑒 (Fig. 3, case 2), this situation is referred to as partial wetting case and contact angle is 

defined as cos θ𝑒𝑒 = 𝐻𝐻/𝑟𝑟𝑒𝑒 < 1; 

(ii) 𝐻𝐻 ≥ 𝑟𝑟𝑒𝑒 (Fig. 3, case 1), this situation is referred to as complete wetting; the contact angle 

cannot be introduced geometrically. The case of complete wetting is characterised below by the ratio 

/𝑟𝑟𝑒𝑒 , which sometimes referred to as ‘cos𝜃𝜃𝑒𝑒 > 1’. 

cos𝜃𝜃𝑒𝑒 ≈ 1 +
1
𝛾𝛾
� 𝛱𝛱(ℎ)𝑑𝑑ℎ,
∞

ℎ𝑒𝑒
 



  

Fig. 3. A schematic presentation of two possible positions of a spherical meniscus inside two 

dimensional capillary. 

(1) complete wetting, 𝑟𝑟𝑒𝑒 ≤ 𝐻𝐻, 𝐻𝐻/𝑟𝑟𝑒𝑒 ≥ 1; 

(2) partial wetting, 𝑟𝑟𝑒𝑒 > 𝐻𝐻, cos θ𝑒𝑒 = 𝐻𝐻/𝑟𝑟𝑒𝑒 < 1. 

 

For the complete wetting case the integral in the right-hand side in Eq.(6) is always positive14 

(see curve 1 in Fig.2). For partial wetting conditions (cos𝜃𝜃𝑒𝑒 < 1), the integral in the right hand side of 

Eq. (6) of the disjoining/conjoining pressure is negative (Fig.2, curve 2). 

The integral ∫ Π(ℎ)𝑑𝑑ℎ∞
ℎ𝑒𝑒

 can be positive even for curve 2 in Fig.2. It means that complete 

wetting conditions take place in this situation and 𝜃𝜃𝑒𝑒 = 0. The eq.(6) cannot be applied in the case of  

complete wetting case. 

 

Hysteresis of contact angle in capillaries 

In this section equilibrium of a meniscus in a flat capillary is briefly considered according to 
13,14,22. 

If a meniscus is at equilibrium with a reservoir under the equilibrium pressure Pe, then there is 

no flow in the system. However, if the pressure inside the reservoir is changed by 0≠∆P , then the 

flow will start immediately. In the bulk part of the meniscus a new local equilibrium can be achieved 

rather quickly. In this case it is possible to divide the whole system (Fig. 4) into several regions: region 

1, which is the spherical meniscus with a new radius, r, in a state of a new local equilibrium, a part of 

the transition region 2 in a state of a local equilibrium with a meniscus 1. Inside the regions 1 and 2 

the pressure is constant everywhere and equals to the new excess pressure, PPP e ∆+= ; region 3 of 

a thin flat equilibrium thin film, where the pressure equals to the initial equilibrium excess pressure, 

Pe; transport region 2´ in which a viscous flow of liquid occurs and in which the pressure gradually 



changes from the value P to Pe (Fig. 4). The largest pressure drop and the higher resistance to the 

flow occur in the non-equilibrium part of the transition region, 2´, where the liquid film is very thin. 

Region 2´ covers a part of the transition region of very thin films, which immediately adjoins the 

equilibrium thin film. 

  
Fig. 4. The liquid profile in a capillary in the case of partial wetting in the state of local equilibrium at 

excess pressure ePP ≠ ; r and θ are the radius of the spherical meniscus in the central part of the 

capillary and the new local equilibrium contact angle, eθθ ≠ . 1 – spherical meniscus of a new radius 

r, where err ≠ ; 2 – profile of a part of the transition zone at local equilibrium with the meniscus; 3 – 

flat equilibrium liquid film of thickness he, with old equilibrium excess pressure Pe; 2´- a flow zone 

inside the transition region.  

 

 

Keep in mind that the capillary is in contact with the reservoir, where the pressure, Pa - Pe-∆P, 

is maintained, i.e., the pressure in the reservoir is lower than the atmospheric pressure, Pa. 

If the pressure under the meniscus is increased then the meniscus will not move but changes 

its curvature to compensate for the excess pressure and, as a consequence, the contact angle 

increases accordingly. In this state the meniscus does not move macroscopically but it moves 

microscopically. This state of microscopic motion can continue for a prolong period of time if 

evaporation/condensation processes can be neglected. The meniscus does not move macroscopically 

until some critical pressure and critical contact angle, θa, are reached. After further increase in 

pressure the flow zone occupies the region of much thicker β-films13,14 and the meniscus starts to 

advance macroscopically. A similar phenomenon takes place if the pressure under the meniscus is 

decreased: the meniscus does not recede until a critical pressure and corresponding critical contact 

angle, θr, are reached. This means that in the whole range of contact angles, θr<θ<θa, the meniscus 

does not move macroscopically but moves microscopically.  

 



 

 
Fig. 5. Contact angle hysteresis in capillaries in the case of partial wetting (s-shaped isotherm of 

disjoining/conjoining pressure curve 2 in Fig.2). a - advancing contact angle: 1- a spherical meniscus 

of radius ra >re; 2 - transition zone with a “critical” marked point (see explanation in the text); 3 - flow 

zone; 4 - flat film. Close to the marked “critical” point a dashed line shows the profile of the transition 

zone just after the contact angle reaches the critical value θa, the beginning of a ”caterpillar motion”.  

b - receding contact angle: 1- a spherical meniscus of radius rr <re< ra;   2 - transition zone with a 

“critical” marked point (see explanation in the text); 3 - flow zone, 4 - flat film. Close to the marked 

“critical” point the dashed line shows the profile of the transition zone just after the contact angle 

reaches the critical value θa.  

 

 

The above qualitative explanation for the contact angle hysteresis on smooth, homogeneous 

solid substrates is based on the s-shaped isotherm of disjoining/conjoining pressure in the case of 

partial wetting. The s-shaped determines a very special shape of the transition zone in the case of 

equilibrium meniscus (Fig. 4). In the case of increasing the pressure behind the meniscus (Fig. 5a) a 

detailed consideration 13,14 of the transition zone shows that close to the “critical” point marked in 

Fig. 5a, the slope of the profile becomes steeper with increasing pressure. In the range of very thin 

films (region 3 in Fig. 5a) there is a flow zone: viscous resistance in this region is very high, that is why 

the meniscus advances very slowly. After some critical pressure behind the meniscus is reached, then 

the slope at the “critical” point reaches π/2. After that the flow step-wisely occupies the region of 

thick β-films the fast “caterpillar motion” starts as shown in Fig. 5a. 

In the case of decreasing the pressure behind the meniscus the event proceeds according to 

Fig. 5b. In this case up to some critical pressure the slope in the transition zone close to the “critical” 

marked point becomes more and more flat.  In the range of very thin film (region 3 in Fig. 5b) there is 



a zone of flow. As in the previous case the viscous resistance in this region again is very high, that is 

why the receding of the meniscus proceeds very slowly.  After some critical pressure behind the 

meniscus is reached then the profile in the vicinity of the “critical” point shows the discontinuous 

behavior, which is obviously impossible. This means the meniscus will start to slide along the thick β-

film.  This phenomenon (the presence of a thick β-film behind the receding meniscus of aqueous 

solutions in quartz capillaries) has been discovered experimentally 23-24. This supports the presented 

arguments explaining static contact angle hysteresis on smooth, homogeneous substrates. 

The suggested mechanism of contact angle hysteresis on smooth homogeneous surfaces has a 

direct experimental confirmation 25,26. A qualitative estimations for advancing and receding contact 

angles via disjoining/conjoining pressure isotherm were deduced in 13,14.  

To simplify the derivation below the discussion is limited to liquids of a low volatility, whose 

rates of evaporation and condensation are sufficiently low. In contrast to droplets, the effect of liquid 

evaporation in thin capillaries is much less significant and it may be easily neglected. The main 

assumption is that the liquid flow from the quasi-equilibrium meniscus to the equilibrium film in 

front is very slow until some critical pressure difference, aP∆ , (in the case of advancing meniscus) or 

rP∆  (in the case of receding meniscus) is reached. These conditions do not exist in the case of 

complete wetting, when the equilibrium film is sufficiently thick. However, static hysteresis is usually 

observed in cases of partial wetting (at 0>θ ) only, when the surface of the solid body is covered 

with significantly thinner films, where the resistance to the viscous flow is much higher. 

Two-dimensional (flat) capillary is under consideration below, so the equations   includ a 

curvature along one direction only. The two-dimensional approach reproduces the main physical 

features of the system, but at the same time it makes easier the theoretical and numerical analysis of 

the problem. The same time the two-dimensional approach allows comparing with previous results 

on contact angle hysteresis in the case of two-dimensional droplers27.  

The conditions are written down below for quasi-equilibrium of the meniscus in region 1 (Fig. 

5). Within the region 1 all fluxes can be neglected and the excess pressure can be considered to 

remain constant and equal to constPPP e =∆+= . It is assumed below based on the previous 

consideration that for description of the quasi-equilibrium profile of the liquid, ( )xh , in region 1 in 

the absence of true thermodynamic equilibrium in the whole system, the known equation 14,17 for 

liquid profile can be used: 



  ( ) ( ) Ph
h

h
=Π+

′+

′′
2/321

γ
, (7) 

where the equilibrium pressure, eP , is replaced by the new non-equilibrium pressure, P.  

Multiplying both sides of Eq. (7) by h′  and integrating it with respect to x from 0  to x  (h=H, 

h′=∞ at x=0, Fig. 3), we obtain 

  ( )Ph
h

,
1 2

ψγ
=

′+
, (8) 

where 

  ( ) ( ) ∫
∞

Π−−=
h

hdhhHPPh  )(,ψ . (9) 

The left hand side of Eq. (8) ranges in between 0 (at ∞=′2h ) and γ (at 02 =′h ). Hence, the same 

should be true for the right hand site of Eq. (8). The latter determined the region where a solution of 

Eq. (8) exists: 

  ( ) γψ ≤≤ Ph,0 . (10) 

There is no solution of Eq. (8) in the region where either γψ >  or 0<ψ . If any of these 

conditions is violated then the boundary of the flow zone, and the centre of the meniscus cannot be 

connected by a continuous profile. Accordingly, quasi-equilibrium becomes impossible, i.e., the 

meniscus cannot be at quasi-equilibrium and must start moving. The violation of one of the 

inequalities in (10) determines the static advancing contact angle, aθ , and the violation of the other 

condition, the static receding contact angle, rθ . 

Although the mechanism of violation of the equilibrium is understood physically, the value of 

the static advancing contact angle, aθ , cannot be calculated exactly, since the point 1hh =  (Fig. 6) 

belongs to a region where the liquid profile goes more abruptly and condition h’2<<1 is violated. This 

condition is required since the disjoining/conjoining pressure, Π(h) was obtained from assumption of 

the flat (low slope) interacting surfaces17. Such estimation of aθ  is given below. In the case under 

consideration, the value 0<∆P , and the curvature of the meniscus decreases with decreasing 

pressure in the reservoir. It follows from Eq. (9) that for ePP <  the curve ( )Ph,ψ  should be 

everywhere below the equilibrium curve ( )ePh,ψ  (Fig.6, curve 1). At  aθθ =  and aPP =  the function 

(9) vanishes, 0=ψ , at 1hh =  (Fig.6, curve 1). Hence, it follows from Eq. (9) that 



  ( ) ( )∫
∞
Π=−

1

1
h

a dhhhHP . (11) 

The expression for the static advancing contact angle, aθ , in the case of capillary meniscus can 

be found from (11) using the general relationship )(cos 1hHP aa Π== θγ  obtained from 

intersection of continuation of the spherical meniscus with a capillary wall: 

  ( ) ( )∫∫
∞∞

Π+
Π

=Π






 −

=
11

1)(

1

1cos 11

1 hh
a dhhhhdhh

H
h γγγ

θ .  (12) 

The  equality Pa = Π(h1) is a condition of equilibrium in Fig. 6 (corresponds to the intersection point of 

the isotherm with a streight line Pa). The term Π(ℎ1)ℎ1
𝛾𝛾

= 𝑃𝑃𝑎𝑎ℎ1
𝛾𝛾

  can be obtained by substitution of 𝑃𝑃𝑎𝑎𝐻𝐻 

from (11) to relation: cos𝜃𝜃𝑎𝑎 = 𝑃𝑃𝑎𝑎𝐻𝐻 𝛾𝛾⁄ . 

The functional dependence (12) coincides with the corresponding expression for the static advancing 

contact angle in the case of drops 13,27. However, the magnitude h1 in (12) has a different numeric 

value, so the static advancing contact angle for meniscus differs from the case of drops27.  The 

dependence aθcos  on disjoining pressure allows concluding that the disjoining/conjoining isotherm 

determines uniquely not only the equilibrium value of the contact angle but also the static advancing 

contact angle, aθ . 

 



Fig. 6. Schematic plot of the function ( )Ph,ψ  according to Eq. (9) for the following cases 1- 

advancing, 2 - equilibrium and 3 - receding. 

 

Curve 2 in Fig.2 touches the dashed line γ at a single point he.  According to Eq.(8) this point 

corresponds to the condition h′=0 which is satisfied only for a flat film at h=he. For any other values of 

h the liquid profile has a non-zero slope (Fig. 4).  

The next step in derivation of expression for the static receding contact angle, rθ . In this case, 

the value 0>∆P , since the curvature of the meniscus increases with decreasing pressure in the 

reservoir. It follows from Eq. (9) that for ePP >  the curve ( )Ph,ψ  should be everywhere above the 

equilibrium curve ( )ePh,ψ  (Fig.6, curve 3). Violation of the conditions of quasi-equilibrium occurs in 

this case if ( ) γψ =Ph, , i.e., an increase in P∆  to such a critical value rP∆  makes the curve ),( rPhψ  

to intersect the dashed line const=γ . 

For rPP > , the part of the profile shown in Fig. 5b by dashed line starts sliding. When the 

meniscus is displaced from the initial position, then a thick metastable β-film should remain behind 

the receding meniscus. This prediction has been confirmed experimentally9-11. The thickness of the 

film 2h  belongs to the β part of the disjoining/conjoining isotherm. 

Since the profile of the receding meniscus in the transition zone has a low slope, the value of 

the static receding contact angle, rθ , in the case of sufficiently thick capillaries, that is, for maxΠ<eP  

can be determined exactly. In the case of sufficiently thick capillaries, that is, for maxΠ<eP , the 

substitution γψ = , for rPP =  and 2hh =  into Eq. (9) gives the following equation: 

  ( ) ( )∫
∞

=Π−−
2

 2
h

r dhhhHP γ , (13) 

where ( )2hPr Π= . 

The static receding contact angle is obtained from Eq. (13) as 

cos𝜃𝜃𝑟𝑟 = 1 +
Π(ℎ2)ℎ2

𝛾𝛾
+

1
𝛾𝛾
� Π(ℎ)𝑑𝑑ℎ
∞

ℎ2
 (14) 

For comparison the expression for equilibrium contact angle can be obtained as before as follows13: 



𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃𝑒𝑒 = 1 +
𝛱𝛱(ℎ𝑒𝑒)ℎ𝑒𝑒

𝛾𝛾
+

1
𝛾𝛾
� 𝛱𝛱(ℎ)𝑑𝑑ℎ
∞

ℎ𝑒𝑒
 (15) 

 

Calculation procedure 

The above theoretical derivations have been obtained within the framework of approach to the 

theory of contact angle hysteresis qualitatively suggested in13. The numerical calculations and 

analysis based on real disjoining/conjoining pressure isotherms, comparison of the calculated data 

for capillary meniscus and droplet are given below  for the first time. 

It was explained earlier that if the contact angle θ is in between either ae θθθ <<   or er θθθ << , 

then the meniscus is in the state of a slow microscopic motion and ,hence, this motion can be 

neglected from the macroscopic point of view. It is the reason to assume that continuation of the 

meniscus profiles for the all three cases of advancing (a), receding (r) and equilibrium (e) intersect the 

capillary wall at the same point A (Fig. 7). A small shift of the point A during transition between the 

states (a), (e) and (r) is neglected. 

   
Fig. 7. The deformation of the capillary meniscus profile while changing the pressure in the reservoir 

by ∆P.  

 

Similarly to the equilibrium meniscus, the contact angles and a capillary width are related by the 

following equations (see Figs. 3 and 7): 



𝑟𝑟𝑎𝑎 cos𝜃𝜃𝑎𝑎 =
𝛾𝛾 cos𝜃𝜃𝑎𝑎
Π(ℎ1)

= 𝐻𝐻 (16) 

𝑟𝑟𝑟𝑟 cos𝜃𝜃𝑟𝑟 =
𝛾𝛾 cos𝜃𝜃𝑟𝑟
Π(ℎ2) = 𝐻𝐻 (17) 

𝑟𝑟𝑒𝑒 cos𝜃𝜃𝑒𝑒 =
𝛾𝛾 cos𝜃𝜃𝑒𝑒
Π(ℎe) = 𝐻𝐻 (18) 

The sets of equations (12),(16); (14),(17) and (15),(18) were solved. 

The values he, h1, h2 were found as roots of equation:    𝐿𝐿(ℎ) = 𝛾𝛾 cos𝜃𝜃(ℎ)
Π(ℎ) = 𝐻𝐻,   

where 𝜃𝜃𝑟𝑟,𝑒𝑒(ℎ) = acos �1 + Π(ℎ)ℎ
𝛾𝛾

+ 1
𝛾𝛾 ∫ Π(ℎ)𝑑𝑑ℎ∞

ℎ � ;    𝜃𝜃𝑎𝑎(ℎ) = acos �Π(ℎ)ℎ
𝛾𝛾

+ 1
𝛾𝛾 ∫ Π(ℎ)𝑑𝑑ℎ∞

ℎ �, 

correspondingly. 

In the case of multiple solutions the roots, which satisfy the conditions (10) for (ℎ,𝑃𝑃) , were selected. 

The states of equilibrium, advancing and receding correspond to the intersection points of the 

disjoining pressure isotherm with different straight lines of the pressures Pa, Pr and Pe, respectively. 

The equilibrium and receding states correspond to positions of α- and β-films, respectively; the 

advancing state corresponds to intermediate (unstable) position on the isotherm.  

The contact angles 𝜃𝜃𝑎𝑎 ,𝜃𝜃𝑟𝑟   and 𝜃𝜃𝑒𝑒 were calculated at variation of the capillary width H. The 

calculation results are presented in Fig. 8a and Table 1.  

The obtained data demonstrate that θr < θe < θa, as expected. An agreement of the obtained 

values of contact angles values for droplets (Fig. 8b) is observed. The calculation results of advancing 

contact angle ~ 57°, receding contact  angle ~ 9° agree with calculated data for droplet 27 and with 

experimental data 14,16. Parameters of the disjoining/conjoining pressure isotherm used for these 

calculations are similar to that for glass surfaces 16. 

Table 1. The values of the advancing, equilibrium and receding contact angles as functions of the 
capillary size, H. 

H, m θa, degr θe, degr θr, degr 
1.0 × 10-7 56.99 9.54 0 
5.0 × 10-7 57.28 9.86 0 
1.0 × 10-6 57.32 9.89 0 
5.0 × 10-6 57.35 9.93 4.20 
1.0 × 10-5 57.35 9.93 5.65 



5.0 × 10-5 57.35 9.93 6.61 
 

 

(a)       (b) 

Fig.8. Dependence of the calculated values of the contact angles on the capillary width (a) and the 
droplet volume (b) 27. 

Parameters of the disjoining/conjoining pressure isotherm for both cases are identical and 

taken from27: σs= -150 mC; σh= 120 mC; c0 =1×10-2 mole/m3; A = 3.5×10-20 J; K1 = 2.0×107 Pa; K2 = -

1×104 Pa; λ1 = 3.6×10-9 m; λ2 = 26×10-9 m. Dilute aqueous solution of NaCl with the surface tension γ= 

72.7 × 10−3 [N/m] was considered. The volume unit [m2] corresponds to the flat (two-dimesional) 

droplet. Arrows near the curves indicate an axis (left or right) which should be seen for this curve 

(two vertical axes with a different scales are used). 

 

However, Figs. 8a and 8b show that droplets and capillaries have completely opposite behavior 

as a function of droplet/capillary size: the contact angles for meniscus grow with size of the capillary, 

whilst for the droplet, on the contrary, the bigger a droplet, the better wetting conditions (the lower 

the angles). This character of the contact angle dependence (Fig. 8a) in capillaries was observed 

experimentally in similar systems28 

The dependences presented in Fig.8a and Table 1 demonstrate the interesting behaviour: in 

thin capillaries with low enough size, H, a transition from partial to complete wetting occurs in the 

case of receding contact angle: for capillaries with H ≈ 3×10-6 m the transition from partial to 

complete wetting is observed with a decrease in capillary width. This behaviour of the contact angles 

was predicted earlier29. 



The values θr = 0 in Table 1 were obtained when numerical calculations give  cos θr >1. 

Mathematically this condition is senseless, but physically it corresponds to the case of compete 

wetting, θr = 0.  

Transition from partial to complete wetting may be interpreted physically as a diminution of a 

spherical meniscus radius r=γ/Pr as a result of increasing capillary pressure in small-size capillaries. 

This leads to receding process over thick film (β-film) which forms from the  equilibrium on the 

disjoining/conjoining pressure isotherm. According to experimental observations, the process of 

receding often goes under complete wetting conditions. 

The equilibrium contact angle varies in capillaries and almost does not change in droplets, but 

for thick capillaries andbig droplets equilibrium contact angles coincide.  

The reason of different behavior of equilibrium contact angles for droplet and capillary can be 

clarified based on from the  analysis of the shape of the disjoining pressure isotherm.  

The value he (corresponding to a point of intersection between Π(h) and Pe) changes very 

slightly at variations of Pe. This is because Π(h) increases abruptly at lowering h. For droplets, Pe<0 

and the integral in Eq(6) almost does not change with Pe approaching to zero. So, the angle θe for 

droplets changes very slightly.  

For capillaries, Pe>0 and the integral in Eq(6) starts growing with h diminution. As a result a 

change in contact angle θe is observed in thin capillaries. 

It is important to emphasizes that for both droplets and capillaries the receding contact angles 

are closer to the equilibrium ones than to advancing, i.e. θe-θr << θa-θe. It is in contradiction with a 

well adopted view that the static advancing contact angle is a good approximation for the equilibrium 

contact angle. In both case droplets and capillaries (Figs. 8a and 8b) the receding contact angles are 

closer to the equilibrium contact angel values.    

Constancy of the equilibrium contact angle of droplets can be explained based on the shape of 

the disjoining/conjoining pressure isotherm (see e.g. Fig. 2, curve 2): the value he (corresponding to a 

point of intersection between Π(h) and Pe) changes very slightly at variations of Pe. This is because 

Π(h) grows very abruptly at low h. Hence, according to Eq. (6), there is a very weak dependence of 

the equilibrium contact angle, θe, on Pe and, consequently, θe on the droplet volume.  

In capillaries the identical disjoining pressure isotherm was used as in27, however, in the case of 

capillaries Pe >0. It is necessary to increase Pe rather substantially in the region of low h values to 



have a small variation of h. This leads to a growth of positive area under the isotherm and to a 

decrease of the equilibrium contact angle according to Eq. (6).  

For droplets the predicted dependence between the contact angles and the droplet volume 

was confirmed experimentally 30,31. Prediction of thick β-films behind the receding meniscus in 

capillaries was experimentally confirmed by Churaev’s group 15,16,19. Presence of β-films behind the 

receding droplet is to be confirmed.  

 

Conclusions 

It is shown that both static advancing and receding contact angles in capillaries with smooth 

homogeneous walls can be calculated based on the isotherm of disjoining/conjoining pressure.  

According to the theory presented both static advancing and receding contact angles are 

increasing function of the capillary width. . This is the opposite trend as compared with the earlier 

calculated static advancing and receding contact angles in the case of droplets, when the contact 

angles decreased with the droplet size increase. However, all three contact angles (static advancing, 

receding and equilibrium) coincide for big droplets and wide capillaries.  

The calculation results demonstrate the effect of transition from partial to complete wetting 

in thin capillaries: the receding contact angle decreases to zero in this case. 
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