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ABSTRACT 

A vehicle platoon is a group of vehicles traveling together at approximately the same speed. 

Traffic platooning is an important phenomenon that can substantially increase the capacity of roads. 

This two-part paper presents a new approach to stochastic dynamic modeling for vehicle platoons. In 

part I, we develop a vehicle platoon model with two interconnected components: a Markov regime-

switching stochastic process that is used to model the dynamic behavior of platoon-to-platoon 

transitions, and a state space model that is employed to describe individual vehicles’ dynamic 

movements within each vehicle platoon. On the basis of the developed stochastic dynamic model, we 

then develop an algorithm for online platoon recognition. The proposed stochastic dynamic model for 

vehicle platoons also provides a new approach to vehicle speed filtering for traffic with a platoon 

structure.   
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1. Introduction 

A vehicle platoon is defined to be a group of vehicles traveling together at approximately the 

same speed. Traffic platooning is an important traffic phenomenon. Tightly spaced platoons will lead 

to savings in fuel and increased highway capacity. Clearly, when the traffic platooning structure is 

taken into consideration, the efficiency of traffic management can be enhanced substantially.  

The importance of the research on vehicle platoons is reinforced by the rapid development on 

autonomous driving in the recent decade where considerable research attention has been paid to 

vehicle platooning formed by a number of automated vehicles that are cooperatively driven. Diakaki 

et al. (2015) have recently reviewed vehicle automation and communication systems, including 

platooning systems and cooperative following and merging systems, from a motorway traffic 

management perspective. Kavathekar & Chen (2011), on the other hand, have provided a survey on 

vehicle platooning and the relevant technical issues such as inter-vehicle communications, obstacle 

detection and collision avoidance; See also an interesting case study on vehicle platooning discussed 

in Bergenhem et al. (2012).  

In the literature, the research on traffic platoons can be classified into several broad categories. 

First, a large body of research on traffic platoon theory focuses on platoon dispersion. In the 

pioneering model by Lighthill and Whitham (1955), the kinematic wave theory was used to describe 

the platoon traffic behavior as it travels along a link.  Pacey (1956) subsequently proposed a 

probabilistic model for traffic platoon dispersion, upon which Robertson (1969) developed a 

recurrence equation to characterize the platoon dispersion phenomena. Robertson’s recurrence 

equation involves a couple of important parameters that need to be estimated in practical applications. 

In recent years, many researchers, e.g., Yu (2000), Farzaneh & Rakha (2006), and Bie et al. (2012), 

have investigated the calibration of these platoon dispersion parameters for the traffic platoon 

dispersion model.  

The second strand of research on vehicle platoons considers how to identify vehicle platoons and 

hence how to take advantages of the platoon structure in traffic management.  For example, Gaur & 

Mirchandani (2001) investigated a method for real-time recognition of vehicle platoons. Chaudhary et 
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al. (2006) developed an intelligent traffic control system for identifying platoons at isolated traffic 

signals on signalized arterials. Jiang et al. (2006) investigated platoon-based traffic signal timing for 

major-minor intersection types. By minimizing the interruptions to vehicle platoon movements, Jiang 

et al. (2006) developed an algorithm to reduce traffic delays at intersections.  

So far in the traffic literature, there is not much research done for stochastic dynamic modeling of 

vehicle platoons. The purpose of this two-part paper is to develop a stochastic model to describe the 

dynamic behavior of vehicle platoons and to investigate various platoon characteristics.  In part I, we 

characterize vehicle platoons by both vehicle speeds and vehicle time headways so that the dynamic 

nature of the platoon-to-platoon transitions and within-platoon movements can be captured. In 

contrast, the research on vehicle platoons in the existing literature on platoon classification and 

recognition (e.g. Gaur & Mirchandani, 2001; Jiang et al., 2006) is solely determined by vehicle time 

headways, and therefore cannot reflect the platoons’ dynamic nature. The developed model in this 

paper also provides a new probabilistic approach to online platoon recognition and online vehicle 

speed filtering. Then in part II in Li (2016), we will investigate statistical distribution models for some 

important platoon characteristics.  

This paper is structured as follows. In the next section we propose a dynamic model to describe 

traffic platoons. Statistical inference, including model estimation, platoon recognition and speed 

filtering, is considered in Section 3. To illustrate the developed stochastic dynamic model for vehicle 

platoons, a practical example is discussed in Section 4. Finally, concluding remarks are offered in 

Section 5.  

 

2.   A vehicle platoon model  

In this section, we develop a stochastic model to describe the dynamics of vehicle platoons. A 

vehicle platoon in the literature is defined to be a group of vehicles traveling together at 

approximately the same speed. We therefore use two microscopic traffic variables, i.e. vehicle speed 

and vehicle time headway, to identify vehicle platoons and to characterize the dynamic behavior of 

platoon-to-platoon transitions and within-platoon movements.  
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2.1.   Vehicles and platoons  

Consider a traffic flow consisting of a number of consecutive vehicles indexed by 𝑛𝑛 = 1,2, …,  as 

illustrated in Figure 1. For any vehicle traveling alone, we follow Jiang et al. (2006) and term it as a 

platoon with size of one. We characterize each individual vehicle  𝑛𝑛 by two microscopic traffic 

variables, i.e. vehicle speed 𝑣𝑣𝑛𝑛 and vehicle time headway ℎ𝑛𝑛.  

 

 

Figure 1. Illustration of vehicle platoons. 

 

We assume that the traffic under investigation involves several velocity modes, indexed by 

𝑗𝑗 ∈ ℳ𝑉𝑉 = {1, … ,𝑀𝑀},  where each velocity mode 𝑗𝑗 is associated with a mean speed level  𝜇𝜇𝑗𝑗 and 

standard deviation 𝜎𝜎𝑗𝑗. Without loss of generality, we restrict 𝜇𝜇1 < ⋯ < 𝜇𝜇𝑀𝑀 for identifiability 

purposes. We use an indicator 𝑆𝑆𝑛𝑛  to represent the velocity mode that a vehicle  𝑛𝑛 is associated with; 

the velocity-mode indicator 𝑆𝑆𝑛𝑛 takes a nominal level in ℳ𝑉𝑉, i.e.  𝑆𝑆𝑛𝑛 ∈ ℳ𝑉𝑉.  

Next, we turn to consider the other microscopic traffic variable, vehicle time headway.  In the 

literature of traffic studies, vehicle time headway is shown to be in one of the two states: a ‘car-

following’ mode that is associated with the vehicles following its lead vehicle, and a ‘free-speed’ 

mode that is associated with the vehicles traveling at a free speed. We define a headway mode 
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indicator 𝑅𝑅𝑛𝑛 ∈ ℳ𝐻𝐻 = {0,1}  to represent the status of the headway of a vehicle 𝑛𝑛: 𝑅𝑅𝑛𝑛 = 0 

representing the car-following status and 𝑅𝑅𝑛𝑛 = 1 otherwise.  

Now we define vehicle platoons. We use two traffic variables, vehicle speed and vehicle time 

headway, to characterize a vehicle platoon. If two consecutive vehicles belong to the same platoon, 

they must travel at the same speed level and the temporal gap between them must be small. A natural 

way to characterize the speed and headway statue of a vehicle 𝑛𝑛 is to use a Cartesian product, 

𝑆𝑆𝑛𝑛 × 𝑅𝑅𝑛𝑛 = {(𝑖𝑖, 𝑗𝑗)|𝑖𝑖 ∈ ℳ𝑉𝑉, 𝑗𝑗 ∈ ℳ𝐻𝐻}: a status of (𝑗𝑗, 0) (or (𝑗𝑗, 1)) indicates that vehicle 𝑛𝑛 is of the car-

following (or free-speed) status and is associated with speed level 𝑗𝑗. This Cartesian product 𝑆𝑆𝑛𝑛 × 𝑅𝑅𝑛𝑛 

can be one-to-one mapped onto a set ℳ𝑃𝑃 = {1, … ,2𝑀𝑀} by defining a vehicle platoon indicator,  

𝐺𝐺𝑛𝑛 = 𝑆𝑆𝑛𝑛+𝑀𝑀𝑅𝑅𝑛𝑛 ∈ ℳ𝑃𝑃  for vehicle 𝑛𝑛. Clearly, 𝐺𝐺𝑛𝑛 = 𝑗𝑗 ≤ 𝑀𝑀 (or 𝐺𝐺𝑛𝑛 = 𝑗𝑗 + 𝑀𝑀)  indicates that vehicle 𝑛𝑛 is 

of the car-following (or free-speed) status and associated with speed level 𝑗𝑗 ∈ ℳ𝑉𝑉. 

Consider a vehicle platoon ℙ𝑚𝑚(𝑗𝑗), indexed by 𝑚𝑚 and of size 𝐿𝐿𝑚𝑚, that is associated with a velocity 

mode 𝑗𝑗 (𝑗𝑗 ∈ ℳ𝑉𝑉). Mathematically, ℙ𝑚𝑚(𝑗𝑗) is defined to be a number of consecutive vehicles 𝑚𝑚1 +

1, … , and 𝑚𝑚1 + 𝐿𝐿𝑚𝑚 such that the following conditions (C1)-(C3) are met: 

 (C1) either {𝐺𝐺𝑚𝑚1 ≠ 𝑗𝑗} ∩ {𝐺𝐺𝑚𝑚1 ≠ 𝑗𝑗 + 𝑀𝑀} ∩ {𝐺𝐺𝑚𝑚1+1 = 𝑗𝑗} or  {𝐺𝐺𝑚𝑚1+1 = 𝑗𝑗 +𝑀𝑀}; 

 (C2)  𝐺𝐺𝑚𝑚1+𝐿𝐿𝑚𝑚+1 ≠ 𝑗𝑗; 

 (C3) 𝐺𝐺𝑛𝑛 = 𝑗𝑗   for all 𝑚𝑚1 + 2 ≤ 𝑛𝑛 ≤ 𝑚𝑚1 + 𝐿𝐿𝑚𝑚. 

In other words, platoon ℙ𝑚𝑚(𝑗𝑗) is defined to be 

 ℙ𝑚𝑚(𝑗𝑗) ≔ {vehicles 𝑚𝑚1 + 1, … , and 𝑚𝑚1 + 𝐿𝐿𝑚𝑚 � 𝐺𝐺𝑚𝑚1+1, … ,𝐺𝐺𝑚𝑚1+𝐿𝐿𝑚𝑚  satisfy (C1)− (C3)�. (1) 

Condition (C1) indicates that vehicle 𝑚𝑚1 + 1 is the platoon leader of ℙ𝑚𝑚(𝑗𝑗), where either: (a) the gap 

between vehicles 𝑚𝑚1 and 𝑚𝑚1 + 1 is small but vehicles 𝑚𝑚1 and 𝑚𝑚1 + 1 belong to different velocity 

modes characterized by {𝐺𝐺𝑚𝑚1 ≠ 𝑗𝑗} ∩ {𝐺𝐺𝑚𝑚1 ≠ 𝑗𝑗 + 𝑀𝑀} ∩ {𝐺𝐺𝑚𝑚1+1 = 𝑗𝑗}; or (b) the temporal gap between 

vehicles 𝑚𝑚1 and 𝑚𝑚1 + 1 is large, which is characterized by {𝐺𝐺𝑚𝑚1+1 = 𝑗𝑗 +𝑀𝑀}. On the other hand, 

condition (C2) indicates that the vehicle 𝑚𝑚1 + 𝐿𝐿𝑚𝑚 + 1 is the leader of a new platoon that either 

belongs to a velocity mode that is different from 𝑗𝑗 or the temporal gap between vehicles 𝑚𝑚1 + 𝐿𝐿𝑚𝑚 and 

𝑚𝑚1 + 𝐿𝐿𝑚𝑚 + 1 is large. Finally, condition (C3) indicates that any two consecutive vehicles within the 

platoon must belong to the same velocity mode and the gap between the two vehicles is small.  
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In practice, both the velocity-mode indicator 𝑆𝑆𝑛𝑛 and headway-mode indicator 𝑅𝑅𝑛𝑛 (and therefore 

the platoon indicator 𝐺𝐺𝑛𝑛) are not directly observable (and hence they are latent variables); they can 

only be inferred using the measurements on vehicle speed 𝑣𝑣𝑛𝑛 and vehicle time headway ℎ𝑛𝑛. In the rest 

of this section, we develop a stochastic dynamic model, upon which we investigate stochastic 

recognition of vehicle platoons in Section 3. 

Before concluding this sub-section, we note that in the existing literature, e.g., Jiang et al. (2006) 

and Chaudhary et al. (2006), vehicle platoons are identified solely based on the temporal gaps 

between vehicles. Clearly this implicitly assumes that vehicles’ speeds are homogeneous and it is a 

special case of equation (1) with 𝑀𝑀 = 1. Specifically, in this case we have 𝑆𝑆𝑛𝑛 ≡ 1 and  𝐺𝐺𝑛𝑛 =

𝑆𝑆𝑛𝑛+𝑀𝑀𝑅𝑅𝑛𝑛 ∈ ℳ𝑃𝑃 = {1,2}. Conditions (C1)-(C3) reduce to: 

 (C1a) {𝐺𝐺𝑚𝑚1+1 = 2}; 

 (C2a)  𝐺𝐺𝑚𝑚1+𝐿𝐿𝑚𝑚+1 = 2; 

 (C3a) 𝐺𝐺𝑛𝑛 = 1   for all 𝑚𝑚1 + 2 ≤ 𝑛𝑛 ≤ 𝑚𝑚1 + 𝐿𝐿𝑚𝑚. 

Conditions (C1a) and (C3a) states that the temporal gaps at the two extreme ends of a platoon are 

large, whereas (C2a) requires that the temporal gaps within the platoon be small.  

 

2.2.   Vehicle time headway 

In the traffic literature (e.g., Breiman et al., 1968; Cowan, 1975), there are many existing studies 

showing that vehicle time headways are approximately statistically independent. Therefore, 

throughout this paper, we follow the literature and assume that the headways {ℎ𝑛𝑛, 𝑛𝑛 = 1,2, … } over 

the entire traffic stream under investigation are approximately independent of each other. Vehicle 

time headway is usually modeled by the following two-component mixture distribution of headway in 

the literature: 

 𝑔𝑔(ℎ) = 𝜃𝜃𝑔𝑔0(ℎ) + (1 − 𝜃𝜃)𝑔𝑔1(ℎ),       (2) 

where the density functions 𝑔𝑔0(ℎ) and 𝑔𝑔1(ℎ) correspond to the car-following and free-speed modes 

respectively. The parameter 𝜃𝜃 = Pr {𝑅𝑅 = 0} is the prior probability of the car-following component.  
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Given time headway ℎ𝑛𝑛, it is straightforward to apply Bayes’ rule to work out the probabilities 

that a vehicle 𝑛𝑛 belongs to the car-following mode (𝑅𝑅𝑛𝑛 = 0) and free-speed mode (𝑅𝑅𝑛𝑛 = 1) 

respectively: 

 𝑟𝑟0(ℎ𝑛𝑛) = Pr{𝑅𝑅𝑛𝑛 = 0|ℎ𝑛𝑛} = 𝜃𝜃𝑔𝑔0(ℎ𝑛𝑛)
𝜃𝜃𝑔𝑔0(ℎ𝑛𝑛)+(1−𝜃𝜃)𝑔𝑔1(ℎ𝑛𝑛) ,     (3) 

 𝑟𝑟1(ℎ𝑛𝑛) = Pr{𝑅𝑅𝑛𝑛 = 1|ℎ𝑛𝑛} = (1−𝜃𝜃)𝑔𝑔1(ℎ𝑛𝑛)
𝜃𝜃𝑔𝑔0(ℎ𝑛𝑛)+(1−𝜃𝜃)𝑔𝑔1(ℎ𝑛𝑛) .     

The car-following mode of a vehicle 𝑛𝑛 is solely characterized by its headway ℎ𝑛𝑛 (Cowan, 1975; 

Zhang et al., 2007). Hence, it is reasonable to assume that the car-following mode indicator is 

independent of the state of its lead vehicle, i.e.  

 Pr{𝑅𝑅𝑛𝑛 = 𝑖𝑖|𝑅𝑅𝑛𝑛−1,𝑆𝑆𝑛𝑛−1,ℎ𝑛𝑛} = Pr{𝑅𝑅𝑛𝑛 = 𝑖𝑖|ℎ𝑛𝑛} = 𝑟𝑟𝑖𝑖(ℎ𝑛𝑛) for 𝑖𝑖 ∈ ℳ𝐻𝐻.   (4) 

This can equivalently be written as the following Markov transition probability matrix with elements 

of Pr{𝑅𝑅𝑛𝑛 = 𝑖𝑖|𝑅𝑅𝑛𝑛−1 = 𝑗𝑗,ℎ𝑛𝑛}: 

 𝐏𝐏𝐇𝐇 = �
𝑟𝑟0(ℎ𝑛𝑛) 𝑟𝑟0(ℎ𝑛𝑛)

1 − 𝑟𝑟0(ℎ𝑛𝑛) 1 − 𝑟𝑟0(ℎ𝑛𝑛)�.       (5) 

In practice, there are several commonly used choices for the component distributions in (2). For 

example, Griffiths and Hunt (1991) considered a model with two exponentially distributed 

components 𝑔𝑔0(ℎ) and 𝑔𝑔1(ℎ). A straightforward extension of the above model is the mixture of two 

gamma distributions (Cowan, 1975) that includes the exponential components as its special case. In 

addition, a mixture of lognormal and exponential distribution is also used (Baras et al. 1979). See 

Zhang et al. (2007) for a further discussion. In this paper, we use the following gamma distributions to 

describe the headway components: 

 𝑔𝑔𝑖𝑖(ℎ) = (ℎ − 𝜏𝜏)𝛼𝛼−1exp (−(ℎ − 𝜏𝜏)/𝜆𝜆𝑖𝑖)/[𝜆𝜆𝑖𝑖𝛼𝛼Γ(𝛼𝛼)]     (for ℎ ≥ 𝜏𝜏)      𝑖𝑖 ∈ ℳ𝐻𝐻,   (6) 

where 𝜏𝜏 > 0 is the minimum time headway,  𝛼𝛼 ≥ 1 is the common shape parameter, and 𝜆𝜆𝑖𝑖 is the 

scale parameter of the distribution 𝑔𝑔𝑖𝑖(ℎ) with 𝜆𝜆1 > 𝜆𝜆0.  Model (6) ensures that the transition 

probability in (3) is of a logit form. When 𝛼𝛼 = 1, it reduces to Griffiths and Hunt’s  exponential 

distributions. Clearly, the above model is more flexible than Griffiths and Hunt’s exponential 

distributions: rather than to pre-specify a value of 𝛼𝛼 = 1, the optimal values of 𝛼𝛼 can be estimated 
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using the collected data in practice. The parameters in equation (6) will be estimated in statistical 

inference using, e.g. the maximum likelihood method, as outlined in Section 3.  

 

2.3.   Velocity modes 

In this subsection, we consider the switching process of the velocity modes. We assume that the 

speeds of two consecutive vehicles are dependent on each other: the speed of a lead vehicle influences 

the speed of its following vehicle. The inter-dependence of two consecutive vehicle platoons is 

modeled using a Markov switching process.  

Specifically, let 𝑝𝑝𝑖𝑖𝑗𝑗 = Pr {𝑆𝑆𝑛𝑛 = 𝑖𝑖|𝑆𝑆𝑛𝑛−1 = 𝑗𝑗} denote the probability that vehicle 𝑛𝑛 − 1 is associated 

with velocity mode 𝑗𝑗 but vehicle 𝑛𝑛 switches to mode 𝑖𝑖 (𝑖𝑖, 𝑗𝑗 ∈ ℳ𝑉𝑉).  We assume that the transition 

from a velocity mode 𝑗𝑗 to a mode 𝑖𝑖 is governed by a Markov transition probability matrix: 

 𝑃𝑃𝑉𝑉 = �
𝑝𝑝11 ⋯ 𝑝𝑝1𝑀𝑀
⋮ ⋱ ⋮

𝑝𝑝𝑀𝑀1 … 𝑝𝑝𝑀𝑀𝑀𝑀
�,         (7) 

with ∑ 𝑝𝑝𝑖𝑖𝑗𝑗𝑀𝑀
𝑖𝑖=1 = 1 and 𝑝𝑝𝑖𝑖𝑗𝑗 ≥ 0.         

The switching process of the velocity modes can potentially be affected by the headway of 

individual drivers. From a driver perspective, given the average speed level 𝜇𝜇𝑗𝑗 of the lead vehicle, the 

driver needs to make a decision if he/she is willing to continue to follow the velocity level of the lead 

vehicle or change the speed to a different level. This, however, is subject to the feasibility of the 

intended maneuver characterized by the vehicle time headway. Hence, we assume that the time 

headway ℎ𝑛𝑛 of a vehicle 𝑛𝑛 affects the driver’s decision on the choice for velocity levels. Note that 

ℎ𝑛𝑛 is more informative than its corresponding headway mode 𝑅𝑅𝑛𝑛 because the latter is only a binary 

indicator. Hence, we also assume that given the information on the current headway ℎ𝑛𝑛 of vehicle 𝑛𝑛,  

the information on the headway modes of vehicle 𝑛𝑛 and its lead vehicle becomes redundant for  the 

driver to make his/her decision, In summary, we make the following assumption: 

  Pr{𝑆𝑆𝑛𝑛 = 𝑖𝑖|𝑆𝑆𝑛𝑛−1 = 𝑗𝑗,ℎ𝑛𝑛,𝑅𝑅𝑛𝑛,𝑅𝑅𝑛𝑛−1} = Pr{𝑆𝑆𝑛𝑛 = 𝑖𝑖|𝑆𝑆𝑛𝑛−1 = 𝑗𝑗,ℎ𝑛𝑛 }.    (8) 

We model the discrete choice among the velocity levels by the widely used logit model with an 

attribute 𝑧𝑧𝑛𝑛 = log (ℎ𝑛𝑛 − 𝜏𝜏): 
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 𝑝𝑝𝑖𝑖𝑗𝑗(ℎ𝑛𝑛) = Pr{𝑆𝑆𝑛𝑛 = 𝑖𝑖|𝑆𝑆𝑛𝑛−1 = 𝑗𝑗,ℎ𝑛𝑛 } = exp (𝑎𝑎�𝑖𝑖𝑖𝑖+𝑏𝑏𝑖𝑖𝑖𝑖𝑧𝑧𝑛𝑛)
1+∑ exp (𝑎𝑎�𝑘𝑘𝑖𝑖+𝑏𝑏𝑘𝑘𝑖𝑖𝑧𝑧𝑛𝑛)𝑘𝑘≠𝑖𝑖

= 𝑎𝑎𝑖𝑖𝑖𝑖(ℎ𝑛𝑛−𝜏𝜏)𝑏𝑏𝑖𝑖𝑖𝑖

1+∑ 𝑎𝑎𝑘𝑘𝑖𝑖(ℎ𝑛𝑛−𝜏𝜏)𝑏𝑏𝑘𝑘𝑖𝑖𝑘𝑘≠𝑖𝑖
, (9) 

with two parameters 𝑎𝑎𝑘𝑘𝑗𝑗=exp�𝑎𝑎�𝑘𝑘𝑗𝑗� > 0 and 𝑏𝑏𝑘𝑘𝑗𝑗 ≥ 0 for 𝑘𝑘 ≠ 𝑗𝑗. We set  𝑎𝑎�𝑖𝑖𝑖𝑖 = 0 and 𝑏𝑏𝑖𝑖𝑖𝑖 = 0 for 

identifiability purposes throughout the paper. The log-transformation for the attribute in (9), log (ℎ𝑛𝑛 −

𝜏𝜏), is used to ensure that the range of the attribute 𝑧𝑧𝑛𝑛 is on the entire real-line. It also transforms the 

highly skewed headway distribution to an approximately symmetrical distribution.  

 

2.4.   Platoon-to-platoon switching process 

On the basis of the models for the headway and velocity, we are ready to derive a Markov 

switching process model for the platoon indicators. Markov regime-switching processes are a very 

useful tool to analyze stochastic phenomena that exhibit different characteristics during different time 

periods. See, for example, Malyshkina et al. (2009), Malyshkina and Mannering (2010), and Xiong et 

al. (2014) for its applications to vehicle crash injury-severity data where the road-segment 

heterogeneity was taken into consideration.  

Consider a vehicle 𝑛𝑛 with the vehicle platoon indicator 𝐺𝐺𝑛𝑛 = 𝑆𝑆𝑛𝑛+𝑀𝑀𝑅𝑅𝑛𝑛 ∈ ℳ𝑃𝑃. Let 𝑘𝑘 and 𝑙𝑙 be 

either 0 or 1. We first note that 𝐺𝐺𝑛𝑛 = 𝑖𝑖 + 𝑘𝑘𝑀𝑀 if and only if 𝑆𝑆𝑛𝑛 = 𝑖𝑖 and 𝑅𝑅𝑛𝑛 = 𝑘𝑘; Likewise, 𝐺𝐺𝑛𝑛−1 = 𝑗𝑗 +

𝑙𝑙𝑀𝑀 if and only if 𝑆𝑆𝑛𝑛−1 = 𝑗𝑗 and 𝑅𝑅𝑛𝑛−1 = 𝑙𝑙. Hence,  

 Pr{𝐺𝐺𝑛𝑛 = 𝑖𝑖 + 𝑘𝑘𝑀𝑀|𝐺𝐺𝑛𝑛−1 = 𝑗𝑗 + 𝑙𝑙𝑀𝑀,ℎ𝑛𝑛} = Pr{𝑆𝑆𝑛𝑛 = 𝑖𝑖,𝑅𝑅𝑛𝑛 = 𝑘𝑘|𝑆𝑆𝑛𝑛−1 = 𝑗𝑗,𝑅𝑅𝑛𝑛−1 = 𝑙𝑙,ℎ𝑛𝑛} 

 = Pr{𝑆𝑆𝑛𝑛 = 𝑖𝑖|𝑅𝑅𝑛𝑛 = 𝑘𝑘, 𝑆𝑆𝑛𝑛−1 = 𝑗𝑗,𝑅𝑅𝑛𝑛−1 = 𝑙𝑙,ℎ𝑛𝑛} Pr{𝑅𝑅𝑛𝑛 = 𝑘𝑘|𝑆𝑆𝑛𝑛−1 = 𝑗𝑗,𝑅𝑅𝑛𝑛−1 = 𝑙𝑙,ℎ𝑛𝑛}. 

From equation (8), the probability Pr{𝑆𝑆𝑛𝑛 = 𝑖𝑖|𝑅𝑅𝑛𝑛 = 𝑘𝑘, 𝑆𝑆𝑛𝑛−1 = 𝑗𝑗,𝑅𝑅𝑛𝑛−1 = 𝑙𝑙,ℎ𝑛𝑛} collapses to 

Pr{𝑆𝑆𝑛𝑛 = 𝑖𝑖|𝑆𝑆𝑛𝑛−1 = 𝑗𝑗,ℎ𝑛𝑛} = 𝑝𝑝𝑖𝑖𝑗𝑗(ℎ𝑛𝑛). In addition, from equation (4), the probability 

Pr{𝑅𝑅𝑛𝑛 = 𝑘𝑘|𝑆𝑆𝑛𝑛−1 = 𝑗𝑗,𝑅𝑅𝑛𝑛−1 = 𝑙𝑙, ℎ𝑛𝑛} reduces to 𝑟𝑟𝑘𝑘(ℎ𝑛𝑛). Therefore for each vehicle 𝑛𝑛 and any 𝑖𝑖 and 

𝑗𝑗 ∈ ℳ𝑉𝑉, we obtain 

 𝑞𝑞𝑖𝑖𝑗𝑗(ℎ𝑛𝑛) ≔ Pr{𝐺𝐺𝑛𝑛 = 𝑖𝑖|𝐺𝐺𝑛𝑛−1 = 𝑗𝑗,ℎ𝑛𝑛} = 𝑟𝑟0(ℎ𝑛𝑛)𝑝𝑝𝑖𝑖𝑗𝑗(ℎ𝑛𝑛),       

 𝑞𝑞𝑖𝑖(𝑗𝑗+𝑀𝑀)(ℎ𝑛𝑛) ≔ Pr{𝐺𝐺𝑛𝑛 = 𝑖𝑖|𝐺𝐺𝑛𝑛−1 = 𝑗𝑗 + 𝑀𝑀,ℎ𝑛𝑛} = 𝑟𝑟0(ℎ𝑛𝑛)𝑝𝑝𝑖𝑖𝑗𝑗(ℎ𝑛𝑛), 

 𝑞𝑞(𝑖𝑖+𝑀𝑀)𝑗𝑗(ℎ𝑛𝑛) ≔ Pr{𝐺𝐺𝑛𝑛 = 𝑖𝑖 + 𝑀𝑀|𝐺𝐺𝑛𝑛−1 = 𝑗𝑗,ℎ𝑛𝑛} = [1 − 𝑟𝑟0(ℎ𝑛𝑛)]𝑝𝑝𝑖𝑖𝑗𝑗(ℎ𝑛𝑛),       

 𝑞𝑞(𝑖𝑖+𝑀𝑀)(𝑗𝑗+𝑀𝑀)(ℎ𝑛𝑛) ≔ Pr{𝐺𝐺𝑛𝑛 = 𝑖𝑖 + 𝑀𝑀|𝐺𝐺𝑛𝑛−1 = 𝑗𝑗 + 𝑀𝑀,ℎ𝑛𝑛} = [1 − 𝑟𝑟0(ℎ𝑛𝑛)]𝑝𝑝𝑖𝑖𝑗𝑗(ℎ𝑛𝑛).  
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Hence we have 

 𝑞𝑞𝑖𝑖𝑗𝑗(ℎ𝑛𝑛) = 𝑞𝑞𝑖𝑖(𝑗𝑗+𝑀𝑀)(ℎ𝑛𝑛)   and   𝑞𝑞(𝑖𝑖+𝑀𝑀)𝑗𝑗(ℎ𝑛𝑛) = 𝑞𝑞(𝑖𝑖+𝑀𝑀)(𝑗𝑗+𝑀𝑀)(ℎ𝑛𝑛)    for any 𝑖𝑖,𝑗𝑗 ∈ ℳ𝑉𝑉 .      

Now we can write out the Markov transition matrix for the platoon indicator 𝐺𝐺𝑛𝑛: 

 𝑄𝑄 = �
𝑞𝑞11 ⋯ 𝑞𝑞1×(2𝑀𝑀)
⋮ ⋱ ⋮

𝑞𝑞(2𝑀𝑀)×1 … 𝑞𝑞(2𝑀𝑀)×(2𝑀𝑀)
� = �

𝑟𝑟0𝑃𝑃𝑉𝑉 𝑟𝑟0𝑃𝑃𝑉𝑉
(1 − 𝑟𝑟0)𝑃𝑃𝑉𝑉 (1 − 𝑟𝑟0)𝑃𝑃𝑉𝑉

� = 𝑃𝑃𝐻𝐻 ⊗ 𝑃𝑃𝑉𝑉,  (10) 

where ⊗ denotes the Kronecker product of two matrices 𝑃𝑃𝐻𝐻  and 𝑃𝑃𝑉𝑉 given by equations (5) and (7).  

Clearly, if there is only one velocity level, i.e. 𝑀𝑀 = 1, then the transition matrix (10) reduces to 

transition matrix (5). Correspondingly, vehicle platoons are defined by conditions (C1a)-(C3a). Dunne 

et al. (1968) in their pioneering study investigated a case where platoons were defined solely based on 

time headways without taking into account vehicle speed transitions.  

The special structure on the transition matrix 𝑄𝑄 in equation (10) can be generalized. Without 

assuming equations (4) and (8), we can consider that the transition probability 𝑞𝑞𝑖𝑖𝑗𝑗 has the following 

form of semi-parametric logit function of headway ℎ𝑛𝑛 (Li, 2011): 

 𝑞𝑞𝑖𝑖𝑗𝑗(ℎ𝑛𝑛): = Pr{𝐺𝐺𝑛𝑛 = 𝑖𝑖|𝐺𝐺𝑛𝑛−1 = 𝑗𝑗,ℎ𝑛𝑛 } =  𝐻𝐻(𝑎𝑎�𝑖𝑖𝑖𝑖+𝑏𝑏𝑖𝑖𝑖𝑖𝑧𝑧𝑛𝑛)
1+∑ 𝐻𝐻 (𝑎𝑎�𝑘𝑘𝑖𝑖+𝑏𝑏𝑘𝑘𝑖𝑖𝑧𝑧𝑛𝑛)𝑘𝑘≠𝑖𝑖

 for any 𝑖𝑖,𝑗𝑗 ∈ ℳ𝑃𝑃 ,     

where function 𝐻𝐻(. ) > 0 is a pre-specified function; alternatively the function 𝐻𝐻(. ) can be left un-

specified and hence it is to be estimate in statistical inference. 𝑎𝑎�𝑖𝑖𝑗𝑗 and 𝑏𝑏𝑖𝑖𝑗𝑗 are state-specific 

coefficients that are related to the transition from state 𝑗𝑗 to 𝑖𝑖 of the platoon indicator.  

 

2.5.   Within-platoon movements 

To complete the stochastic dynamic modeling for vehicle platoons, we finally consider the within-

platoon movements of vehicles. Recall that vehicles within platoon ℙ𝑚𝑚(𝑗𝑗) have theoretical mean 

speed 𝜇𝜇𝑗𝑗 of its velocity mode. In practice, however, vehicles within the same vehicle platoon usually 

do not travel at an identical speed level. We therefore assume that each driver adjusts his/her speed by 

a speed drift 𝑤𝑤𝑛𝑛: 

 𝑣𝑣𝑛𝑛 =  𝜇𝜇𝑗𝑗 +  𝑤𝑤𝑛𝑛 + 𝜎𝜎0𝜀𝜀𝑛𝑛         with       𝜀𝜀𝑛𝑛~𝑁𝑁(0,1),             (12a) 

where car 𝑛𝑛 is a member of a platoon ℙ𝑚𝑚(𝑗𝑗) with mean speed 𝜇𝜇𝑗𝑗. 𝜎𝜎0 represents the standard deviation 

of the error term  𝜀𝜀𝑛𝑛. The error terms  𝜀𝜀𝑛𝑛 and 𝜀𝜀𝑚𝑚 for 𝑛𝑛 ≠ 𝑚𝑚 are assumed to be mutually independent. 
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To characterize the dynamic behavior of within-platoon movements, we assume that the speed 

drift 𝑤𝑤𝑛𝑛 follows an auto-regressive AP(p) model: 

 𝑤𝑤𝑛𝑛 = ∑ 𝛾𝛾𝑘𝑘𝑤𝑤𝑛𝑛−𝑘𝑘
𝑝𝑝
𝑘𝑘=1 + 𝜎𝜎𝑗𝑗𝑒𝑒𝑛𝑛,     with   𝑒𝑒𝑛𝑛~𝑁𝑁(0,1)             (13a) 

where the standard deviation 𝜎𝜎𝑗𝑗 characterizes the magnitude of the adjustment that is not from its lead 

vehicles’ speeds. 𝛾𝛾𝑘𝑘 (𝑘𝑘 = 1, … ,𝑝𝑝) are coefficients. In practice, the order p of the AR process is 

usually small because drivers adjust their speed drift only based on a few cars in front of them. The 

noise terms  𝑒𝑒𝑛𝑛 and 𝑒𝑒𝑚𝑚 for 𝑛𝑛 ≠ 𝑚𝑚 are assumed to be mutually independent. 

In the literature, Dailey (1999) used an AR(2) model to describe vehicle speeds. On the other 

hand, Li (2009) used a random walk model to describe the evolution of vehicle speeds. For speed 

drifts, however, a stationary autoregressive process that ensures effectively drifts back to the mean is a 

more reasonable choice. Technically, this requires that the above AR(p) process be stationary. 

The above AR(p) model (13a) can be written as a state space model below: 

 𝑊𝑊𝑛𝑛 = 𝐴𝐴𝑊𝑊𝑛𝑛−1 + 𝜎𝜎𝑗𝑗𝐵𝐵𝑒𝑒𝑛𝑛   with   𝑒𝑒𝑛𝑛~𝑁𝑁(0,1)              (13b) 

where  

 𝐴𝐴 = �

𝛾𝛾1 𝛾𝛾2 … 𝛾𝛾𝑝𝑝
1 0 … 0
… … … …
0 0 1 0

� , 

𝐵𝐵 = [1,0 … ,0]𝑇𝑇, and  𝑊𝑊𝑛𝑛 = [𝑤𝑤𝑛𝑛,𝑤𝑤𝑛𝑛−1 … ,𝑤𝑤𝑛𝑛−𝑝𝑝+1]𝑇𝑇.  

Equation (12a) can also be written as  

 𝑣𝑣𝑛𝑛 =  𝜇𝜇𝑗𝑗 +  𝐶𝐶𝑊𝑊𝑛𝑛 + 𝜎𝜎0𝜀𝜀𝑛𝑛 with       𝜀𝜀𝑛𝑛~𝑁𝑁(0,1),             (12b) 

with 𝐶𝐶 = [1,0 … ,0]. Equations (12b) and (13b) form a state space model with observation equation 

(12b) and state equation (13b) for all vehicles traveling within a platoon.  

Combining (12b) and (13b), we can see that the state space model in this subsection stipulates that 

vehicle speeds follow a normal distribution within each platoon. This is consistent with many existing 

studies (see, e.g. Salter, 1989; May, 1990). For traffic flow across different vehicle platoons, however, 

the distribution of vehicle speeds is assumed to be a normal mixture in this paper. See Park et al. 

(2010) for a detailed discussion on mixture normal distributions for vehicle speeds.  In contrast, 

vehicle speeds in the conventional traffic platoon dispersion models (e.g., Pacey, 1956) are usually 
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assumed to follow a (single) normal distribution. The assumption of normal mixture distributions for 

vehicle speeds clearly takes speed heterogeneity into consideration and hence it can better reflect 

traffic platoon dispersion. Note that the normal mixture reduces to a single normal distribution when 

𝑀𝑀 = 1.  

Before concluding this section, we point out that the assumptions made in equations (4) and (8) 

suggest a conditional independence of the latent variables for given headway ℎ𝑛𝑛. Note, however, 

under this conditional independence, vehicle speed 𝑣𝑣𝑛𝑛 and vehicle time headway ℎ𝑛𝑛 are 

interdependent on each other. This is because the vehicle speed 𝑣𝑣𝑛𝑛 is modeled by a hidden Markov 

chain with transition matrix 𝑃𝑃𝑉𝑉 = [𝑝𝑝𝑖𝑖𝑗𝑗(ℎ𝑛𝑛)] in equation (9) that is conditional on headway ℎ𝑛𝑛. In 

other words, the conditional density function of 𝑣𝑣𝑛𝑛 depends on headway ℎ𝑛𝑛; see equation (15) for 

further details.  

 

3.   Statistical inference   

In this section, we investigate statistical inference for the proposed model. Consider a number of 

consecutive vehicles, indexed by 𝑛𝑛 = 1, … ,𝑁𝑁, and traveling at speed 𝑣𝑣𝑛𝑛 with headway ℎ𝑛𝑛. The 

stochastic model developed thus far does not address how to measure vehicles’ speeds and headways.  

In traffic studies, there are two commonly used methods to measure vehicles’ speeds and 

headways. First, the vehicle speeds can be measured contemporaneously from a series of aerial 

photographs using the distances traveled by the vehicles in the constant time interval between 

adjacent photos. This method is usually expensive. Alternatively, a more practical approach is to 

measure the spot speeds and time headways of a line of vehicles passing the same point.  In the rest of 

the section, we follow Chaudhary et al. (2006) and Jiang et al. (2006), and assume that the traffic data 

is collected using the second method.  

Now based on a set of traffic data {𝑣𝑣𝑛𝑛,ℎ𝑛𝑛 } for 𝑛𝑛 = 1, … ,𝑁𝑁, we will discuss how to identify the 

state-space model with Markov switching process. As it will be seen later, once the model is built, 

online speed filtering 𝑣𝑣�𝑘𝑘  and online estimation of platoon indicator 𝐺𝐺𝑘𝑘 can be carried out whenever a 
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new piece of information of traffic data {𝑣𝑣𝑘𝑘,ℎ𝑘𝑘  } becomes available for a future vehicle 𝑘𝑘, upon which 

inference for the corresponding platoon ℙ𝑚𝑚(𝑗𝑗) (𝑗𝑗 ∈ ℳ𝑉𝑉) can be drawn.   

We first define an information set 𝐼𝐼𝑛𝑛 = {𝑣𝑣0,ℎ0 … , 𝑣𝑣𝑛𝑛,ℎ𝑛𝑛 } that contains all the information 

available up for the 𝑛𝑛th vehicle of interest. Let 𝐼𝐼𝑛𝑛 = {𝐼𝐼𝑛𝑛,ℎ𝑛𝑛+1} denote the information set that the 

headway of vehicle 𝑛𝑛 + 1 is also known. We follow the maximum likelihood method developed by 

Kim and Nelson (1999, Chapter 5) to draw statistical inference. The likelihood function involves two 

inter-connected filters, i.e. Hamilton filter and Kalman filter, which will be discussed in details in the 

next two subsections.  

 

3.1.   Hamilton filter 

In general, the Hamilton filter is used to deal with discrete variables. The objective of the 

Hamilton filtering in this section is to draw inference for 𝐺𝐺𝑛𝑛 based on the information set 𝐼𝐼𝑛𝑛. This is 

undertaken recursively.  

Specifically, suppose that we have worked out the probability of platoon indicator 𝐺𝐺𝑛𝑛−1 for 

vehicle 𝑛𝑛 − 1, i.e. Pr {𝐺𝐺𝑛𝑛−1 = 𝑖𝑖|𝐼𝐼𝑛𝑛−1}. Noting the mutual independence of ℎ𝑛𝑛  (𝑛𝑛 = 1,2, …), we can 

calculate the following joint probability: 

 Pr{𝐺𝐺𝑛𝑛 = 𝑖𝑖,𝐺𝐺𝑛𝑛−1 = 𝑗𝑗�𝐼𝐼𝑛𝑛−1} = Pr{𝐺𝐺𝑛𝑛 = 𝑖𝑖|𝐺𝐺𝑛𝑛−1 = 𝑗𝑗, 𝐼𝐼𝑛𝑛−1}Pr {𝐺𝐺𝑛𝑛−1 = 𝑗𝑗|𝐼𝐼𝑛𝑛−1} 

 =𝑞𝑞𝑖𝑖𝑗𝑗(ℎ𝑛𝑛)Pr {𝐺𝐺𝑛𝑛−1 = 𝑗𝑗|𝐼𝐼𝑛𝑛−1}.        (14) 

Let 𝑓𝑓(𝑣𝑣𝑛𝑛,ℎ𝑛𝑛|𝐼𝐼𝑛𝑛−1) denote the joint probability density function of (𝑣𝑣𝑛𝑛,ℎ𝑛𝑛) conditional on the 

information set 𝐼𝐼𝑛𝑛−1. In addition, let 𝑓𝑓(𝑣𝑣𝑛𝑛|𝐼𝐼𝑛𝑛−1,ℎ𝑛𝑛) = 𝑓𝑓(𝑣𝑣𝑛𝑛�𝐼𝐼𝑛𝑛−1)  be the conditional density function 

of 𝑣𝑣𝑛𝑛 when ℎ𝑛𝑛 becomes available. From the law of total probability and (14), we obtain  

 𝑓𝑓(𝑣𝑣𝑛𝑛,ℎ𝑛𝑛|𝐼𝐼𝑛𝑛−1) =  𝑔𝑔(ℎ𝑛𝑛)𝑓𝑓(𝑣𝑣𝑛𝑛�𝐼𝐼𝑛𝑛−1) 

 = 𝑔𝑔(ℎ𝑛𝑛)∑ ∑ 𝑓𝑓(𝑣𝑣𝑛𝑛�𝐼𝐼𝑛𝑛−1,𝐺𝐺𝑛𝑛 = 𝑖𝑖,𝐺𝐺𝑛𝑛−1 = 𝑗𝑗)𝑞𝑞𝑖𝑖𝑗𝑗(ℎ𝑛𝑛)Pr {𝐺𝐺𝑛𝑛−1 = 𝑗𝑗|𝐼𝐼𝑛𝑛−1} 2𝑀𝑀
𝑖𝑖=1

2𝑀𝑀
𝑗𝑗=1   (15) 

where the calculation of  𝑓𝑓(𝑣𝑣𝑛𝑛�𝐼𝐼𝑛𝑛−1,𝐺𝐺𝑛𝑛 = 𝑖𝑖,𝐺𝐺𝑛𝑛−1 = 𝑗𝑗) will be discussed in Section 3.2.  𝑔𝑔(ℎ) is given 

by equation (2). 
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When the measurements 𝑣𝑣𝑛𝑛 and ℎ𝑛𝑛 for vehicle 𝑛𝑛 become available and  

𝑓𝑓(𝑣𝑣𝑛𝑛�𝐼𝐼𝑛𝑛−1,𝐺𝐺𝑛𝑛 = 𝑖𝑖,𝐺𝐺𝑛𝑛−1 = 𝑗𝑗) is obtained, we can apply Bayes’ rule to update the joint probability for 

vehicle 𝑛𝑛 as follows: 

 Pr{𝐺𝐺𝑛𝑛 = 𝑖𝑖,𝐺𝐺𝑛𝑛−1 = 𝑗𝑗|𝐼𝐼𝑛𝑛} = Pr{𝐺𝐺𝑛𝑛 = 𝑖𝑖,𝐺𝐺𝑛𝑛−1 = 𝑗𝑗�𝑣𝑣𝑛𝑛, 𝐼𝐼𝑛𝑛−1} 

 = 𝑓𝑓(𝑣𝑣𝑛𝑛|𝐼𝐼𝑛𝑛−1,𝐺𝐺𝑛𝑛=𝑖𝑖,𝐺𝐺𝑛𝑛−1=𝑗𝑗)Pr{𝐺𝐺𝑛𝑛=𝑖𝑖,𝐺𝐺𝑛𝑛−1=𝑗𝑗|𝐼𝐼𝑛𝑛−1}
𝑓𝑓(𝑣𝑣𝑛𝑛|𝐼𝐼𝑛𝑛−1)  

 = 𝑓𝑓(𝑣𝑣𝑛𝑛|𝐼𝐼𝑛𝑛−1,𝐺𝐺𝑛𝑛=𝑖𝑖,𝐺𝐺𝑛𝑛−1=𝑗𝑗)Pr{𝐺𝐺𝑛𝑛=𝑖𝑖,𝐺𝐺𝑛𝑛−1=𝑗𝑗|𝐼𝐼𝑛𝑛−1}
∑ ∑ 𝑓𝑓(𝑣𝑣𝑛𝑛|𝐼𝐼𝑛𝑛−1,𝐺𝐺𝑛𝑛=𝑖𝑖,𝐺𝐺𝑛𝑛−1=𝑗𝑗)Pr{𝐺𝐺𝑛𝑛=𝑖𝑖,𝐺𝐺𝑛𝑛−1=𝑗𝑗|𝐼𝐼𝑛𝑛−1} 2𝑀𝑀

𝑖𝑖=1
2𝑀𝑀
𝑖𝑖=1

 .     (16) 

Finally, we obtain the probability that the platoon indicator of vehicle 𝑛𝑛 is equal to 𝑖𝑖: 

 Pr{𝐺𝐺𝑛𝑛 = 𝑖𝑖|𝐼𝐼𝑛𝑛} = ∑ Pr{𝐺𝐺𝑛𝑛 = 𝑖𝑖,𝐺𝐺𝑛𝑛−1 = 𝑗𝑗|𝐼𝐼𝑛𝑛}2𝑀𝑀
𝑗𝑗=1 .      (17) 

In practice, this probability will be used for platoon recognition. See Section 3.3 for details.   

 

3.2.   Kalman filter 

 To draw inference for 𝐺𝐺𝑛𝑛 in the conditional Hamilton filter in Section 3.1, we need to calculate 

equation (15) that depends on the inference for individual vehicle speeds. This will be undertaken via 

the Kalman filter. See Simon (2006) and Li (2013) for a detailed discussion on the Kalman filter.  

The Kalman filtering is carried out in a recursive manner. Specifically, for each 𝐺𝐺𝑛𝑛−1 = 𝑗𝑗 

(𝑗𝑗 ∈ ℳ𝑃𝑃), let 𝑊𝑊𝑛𝑛−1|𝑛𝑛−1
(𝑗𝑗)  be an estimate of 𝑊𝑊𝑛𝑛−1 based on the information set 𝐼𝐼𝑛𝑛−1 and let  𝑃𝑃𝑛𝑛−1|𝑛𝑛−1

(𝑗𝑗)  be 

the corresponding covariance matrix. In addition, throughout this section, let 𝑙𝑙 = 𝑖𝑖 if 𝑖𝑖 ≤ 𝑀𝑀 and 

𝑙𝑙 = 𝑖𝑖 − 𝑀𝑀 if 𝑖𝑖 > 𝑀𝑀. 

Suppose that, based on the information 𝐼𝐼𝑛𝑛−1 up to vehicle 𝑛𝑛 − 1, the filtered speed-drift vector 

𝑊𝑊𝑛𝑛−1|𝑛𝑛−1
(𝑗𝑗)  and its corresponding covariance matrix 𝑃𝑃𝑛𝑛−1|𝑛𝑛−1

(𝑗𝑗)  have been obtained. We now consider 

inference for vehicle 𝑛𝑛. Consider each 𝐺𝐺𝑛𝑛 = 𝑖𝑖 (𝑖𝑖 ∈ ℳ𝑃𝑃). The one-step forecast distribution of the 

speed-drift vector 𝑊𝑊𝑛𝑛 can be obtained straightforwardly using the well-known Kalman filter:  

 𝑊𝑊𝑛𝑛|(𝐼𝐼𝑛𝑛−1,𝐺𝐺𝑛𝑛 = 𝑖𝑖,𝐺𝐺𝑛𝑛−1 = 𝑗𝑗) ~𝑁𝑁�𝑊𝑊𝑛𝑛|𝑛𝑛−1
(𝑗𝑗,𝑖𝑖) ,𝑃𝑃𝑛𝑛|𝑛𝑛−1

(𝑗𝑗,𝑖𝑖) �, 

where  𝑊𝑊𝑛𝑛|𝑛𝑛−1
(𝑗𝑗,𝑖𝑖) = 𝐸𝐸[𝑊𝑊𝑛𝑛�𝐼𝐼𝑛𝑛−1,𝐺𝐺𝑛𝑛 = 𝑖𝑖,𝐺𝐺𝑛𝑛−1 = 𝑗𝑗] = 𝐴𝐴𝑊𝑊𝑛𝑛−1|𝑛𝑛−1

(𝑗𝑗) , and 

 𝑃𝑃𝑛𝑛|𝑛𝑛−1
(𝑗𝑗,𝑖𝑖) = 𝐸𝐸[�𝑊𝑊𝑛𝑛−𝑊𝑊𝑛𝑛|𝑛𝑛−1

(𝑗𝑗,𝑖𝑖) )2�𝐼𝐼𝑛𝑛−1,𝐺𝐺𝑛𝑛 = 𝑖𝑖,𝐺𝐺𝑛𝑛−1 = 𝑗𝑗� = 𝐴𝐴𝑃𝑃𝑛𝑛−1|𝑛𝑛−1
(𝑗𝑗) 𝐴𝐴𝑇𝑇 + 𝜎𝜎𝑙𝑙2𝐵𝐵𝐵𝐵𝑇𝑇. 
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Hence, the predictive distribution of the observed speed for vehicle 𝑛𝑛 is 

 𝑓𝑓(𝑣𝑣𝑛𝑛�𝐼𝐼𝑛𝑛−1,𝑆𝑆𝑛𝑛 = 𝑖𝑖, 𝑆𝑆𝑛𝑛−1 = 𝑗𝑗) = 𝑁𝑁 �𝜇𝜇𝑙𝑙 + 𝐶𝐶𝑊𝑊𝑛𝑛|𝑛𝑛−1
(𝑗𝑗,𝑖𝑖) ,𝑃𝑃𝑛𝑛|𝑛𝑛−1

(𝑗𝑗,𝑖𝑖) + 𝜎𝜎02�,    (18) 

which is used in the Hamilton filter, equations (15)-(17). 

Applying the Kalman filter (see, e.g. Simon, 2006; Li, 2013), we can obtain the filtered speed-

drift vector: 

 𝑊𝑊𝑛𝑛|𝑛𝑛
(𝑗𝑗,𝑖𝑖) = 𝑊𝑊𝑛𝑛|𝑛𝑛−1

(𝑗𝑗,𝑖𝑖) + 𝐾𝐾𝑛𝑛|𝑛𝑛−1
(𝑗𝑗,𝑖𝑖) (𝑣𝑣𝑛𝑛 − 𝜇𝜇𝑙𝑙−𝐶𝐶𝑊𝑊𝑛𝑛|𝑛𝑛−1

(𝑗𝑗,𝑖𝑖) )      (19) 

with the Kalman gain 𝐾𝐾𝑛𝑛|𝑛𝑛−1
(𝑗𝑗,𝑖𝑖) = 𝑃𝑃𝑛𝑛|𝑛𝑛−1

(𝑗𝑗,𝑖𝑖) 𝐶𝐶𝑇𝑇/(𝐶𝐶𝑃𝑃𝑛𝑛|𝑛𝑛−1
(𝑗𝑗,𝑖𝑖) 𝐶𝐶𝑇𝑇 + 𝜎𝜎02) and its covariance matrix 

  𝑃𝑃𝑛𝑛|𝑛𝑛
(𝑗𝑗,𝑖𝑖) = (1 −𝐾𝐾𝑛𝑛|𝑛𝑛−1

(𝑗𝑗,𝑖𝑖) 𝐶𝐶)𝑃𝑃𝑛𝑛|𝑛𝑛−1
(𝑗𝑗,𝑖𝑖)  .        (20) 

Following Kim and Nelson (1999, Chapter 5), the speed-drift vector for mode 𝐺𝐺𝑛𝑛 = 𝑖𝑖 is estimated by 

 𝑊𝑊𝑛𝑛|𝑛𝑛
(𝑖𝑖) =

∑ Pr {𝐺𝐺𝑛𝑛=𝑖𝑖,𝐺𝐺𝑛𝑛−1=𝑗𝑗|𝐼𝐼𝑛𝑛}𝑊𝑊𝑛𝑛|𝑛𝑛
(𝑖𝑖,𝑖𝑖) 𝑀𝑀

𝑖𝑖=1

Pr {𝐺𝐺𝑛𝑛=𝑖𝑖|𝐼𝐼𝑛𝑛}
       (21) 

and  𝑃𝑃𝑛𝑛|𝑛𝑛
(𝑖𝑖) =

∑ Pr{𝐺𝐺𝑛𝑛=𝑖𝑖,𝐺𝐺𝑛𝑛−1=𝑗𝑗|𝐼𝐼𝑛𝑛}[𝑃𝑃𝑛𝑛|𝑛𝑛
(𝑖𝑖,𝑖𝑖)+(𝑊𝑊𝑛𝑛|𝑛𝑛

(𝑖𝑖) −𝑊𝑊𝑛𝑛|𝑛𝑛
(𝑖𝑖,𝑖𝑖))2] 𝑀𝑀

𝑖𝑖=1

Pr {𝐺𝐺𝑛𝑛=𝑖𝑖|𝐼𝐼𝑛𝑛}
,      (22) 

where Pr {𝐺𝐺𝑛𝑛 = 𝑖𝑖,𝐺𝐺𝑛𝑛−1 = 𝑗𝑗|𝐼𝐼𝑛𝑛} and Pr {𝐺𝐺𝑛𝑛 = 𝑖𝑖|𝐼𝐼𝑛𝑛} are given by the conditional Hamilton filter, 

equations (14)-(17). This process continues and the inference for vehicle 𝑛𝑛 + 1 can be drawn when 

the relevant information becomes available.  

It can be seen that this is an alternating algorithm for the computation of the likelihood, and the 

computations of Hamilton and Kalman filters are inter-connected to each other during the 

computation. Therefore, the statistical inference for each vehicle 𝑛𝑛 is undertaken in two stages. We 

first update the probabilities of the platoon indicators using Hamilton filter that provides the 

information on the platoon indicator of each vehicle 𝑛𝑛. Next, we apply the Kalman filter to deal with 

the continuous speed-drift vector for a given mode.  

 

3.3.   Model estimation, speed filtering and platoon recognition 

From a practical perspective, there are three major research objectives to be achieved: (a) 

estimation of the model parameters; (b) speed filtering; and (c) platoon recognition. We briefly 

discuss each of them as follows.  
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3.3.1. Estimation of the model parameters 

The estimation of the parameters of the vehicle platoon model forms the basis of online speed 

filtering and online platoon recognition. The parameters to be estimated include: (a) velocity-mode 

parameters 𝜇𝜇𝑗𝑗 and 𝜎𝜎𝑗𝑗; (b) transition probability parameters  𝑎𝑎𝑖𝑖𝑗𝑗 and 𝑏𝑏𝑖𝑖𝑗𝑗 in (9); and (c) the parameters 

of the headway distribution in (2) and (6). 

To estimate these model parameters, we first collect a number of measurements of consecutive 

vehicles, (𝑣𝑣𝑛𝑛,ℎ𝑛𝑛) (𝑛𝑛 = 1, … ,𝑁𝑁). The maximum likelihood method developed by Kim and Nelson 

(1999, Chapter 5) involves the Kalman filter and Hamilton filter. Note that there are (2𝑀𝑀) × (2𝑀𝑀) 

conditional posterior distributions at each iteration step (see, equations (19)-(20)); the number of the 

mixture components grows exponentially as the number of vehicles increases. To avoid this problem, 

an approximation is made in Kim and Nelson (1999, Chapter 5) so that these (2𝑀𝑀) × (2𝑀𝑀) 

conditional posterior distributions collapse into (2𝑀𝑀) × 1 distributions using equations (21) and (22). 

Following Kim and Nelson (1999, Chapter 5), the approximate likelihood is ℒ =

∏ 𝑓𝑓(𝑣𝑣𝑛𝑛,ℎ𝑛𝑛|𝐼𝐼𝑛𝑛−1)𝑁𝑁
𝑛𝑛=1 , where 𝑓𝑓(𝑣𝑣𝑛𝑛,ℎ𝑛𝑛|𝐼𝐼𝑛𝑛−1) is given by equation (15). Then the maximum likelihood 

method can be used to estimate all the unknown parameters of the model. 

After the model parameters have been estimated, the Kalman filter and Hamilton filter can be 

used as two stand-alone algorithms for online speed filtering and online platoon recognition. These 

will be discussed in the next two subsections.   

 

3.3.2. Speed filtering for traffic with a platoon structure 

Speed filtering and prediction are important in traffic control and management; they are widely 

investigated in the literature. For example, Dailey (1999) applied the Kalman filtering method to 

estimate vehicle speed. Hazelton (2004) investigated speed estimation using a Monte Carlo approach. 

Li (2009, 2010) proposed two algorithms for the recursive estimation of vehicle speeds using a single 

loop detector and dual-loop detector respectively. In all these studies, the platoon structure is not 

taken into consideration during the speed estimation.  
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For the traffic with a platoon structure, the stochastic dynamic model for vehicle platoons 

developed in this paper provides a new approach to online estimation of vehicle speed. We outline the 

method below.  

Given the information set 𝐼𝐼𝑛𝑛, we wish to estimate the speed of vehicle 𝑛𝑛. From the law of total 

probability, we have: 

 𝑓𝑓(𝑣𝑣𝑛𝑛| 𝐼𝐼𝑛𝑛) = ∑ ∑ 𝑓𝑓(𝑣𝑣𝑛𝑛| 𝐼𝐼𝑛𝑛,𝐺𝐺𝑛𝑛 = 𝑖𝑖,𝐺𝐺𝑛𝑛−1 = 𝑗𝑗) Pr{𝐺𝐺𝑛𝑛 = 𝑖𝑖,𝐺𝐺𝑛𝑛−1 = 𝑗𝑗| 𝐼𝐼𝑛𝑛}2𝑀𝑀
𝑗𝑗=1

2𝑀𝑀
𝑖𝑖=1  

where 𝑓𝑓(𝑣𝑣𝑛𝑛| 𝐼𝐼𝑛𝑛,𝐺𝐺𝑛𝑛 = 𝑖𝑖,𝐺𝐺𝑛𝑛−1 = 𝑗𝑗) = 𝑁𝑁(𝜇𝜇𝑙𝑙 + 𝐶𝐶𝑊𝑊𝑛𝑛|𝑛𝑛
(𝑗𝑗,𝑖𝑖),𝑃𝑃𝑛𝑛|𝑛𝑛

(𝑗𝑗,𝑖𝑖)) with 𝑊𝑊𝑛𝑛|𝑛𝑛
(𝑗𝑗,𝑖𝑖) and 𝑃𝑃𝑛𝑛|𝑛𝑛

(𝑗𝑗,𝑖𝑖) given by equations 

(19)-(20). Pr{𝐺𝐺𝑛𝑛 = 𝑖𝑖,𝐺𝐺𝑛𝑛−1 = 𝑗𝑗| 𝐼𝐼𝑛𝑛} is given by (16). Hence the speed of vehicle 𝑛𝑛 is estimated as 

𝑣𝑣�𝑛𝑛|𝑛𝑛 = ∑ ∑ [𝜇𝜇𝑙𝑙 + 𝐶𝐶𝑊𝑊𝑛𝑛|𝑛𝑛
(𝑗𝑗,𝑖𝑖)]2𝑀𝑀

𝑗𝑗=1
2𝑀𝑀
𝑖𝑖=1 Pr{𝐺𝐺𝑛𝑛 = 𝑖𝑖,𝐺𝐺𝑛𝑛−1 = 𝑗𝑗| 𝐼𝐼𝑛𝑛}. An algorithm is outlined below. 

 

Algorithm A (speed filtering for traffic with a platoon structure).  

Initialization. Set 𝑊𝑊0|0
(𝑗𝑗,𝑖𝑖) = 0, and 𝑃𝑃0|0

(𝑗𝑗,𝑖𝑖) = 𝑐𝑐𝐼𝐼 for all 𝑖𝑖, 𝑗𝑗 ∈ ℳ𝑉𝑉, where 𝑐𝑐 is a sufficiently large constant. 

Let 𝑙𝑙 = 𝑖𝑖 if 𝑖𝑖 ≤ 𝑀𝑀 and 𝑙𝑙 = 𝑖𝑖 − 𝑀𝑀 if 𝑖𝑖 > 𝑀𝑀. 

For 𝑛𝑛 = 1:𝑁𝑁 

 Computing: Pr{𝐺𝐺𝑛𝑛 = 𝑖𝑖,𝐺𝐺𝑛𝑛−1 = 𝑗𝑗|𝐼𝐼𝑛𝑛} using equation (16). 

 One-step forecasting:   

- 𝑊𝑊𝑛𝑛|𝑛𝑛−1
(𝑗𝑗,𝑖𝑖) = 𝐴𝐴𝑊𝑊𝑛𝑛−1|𝑛𝑛−1

(𝑗𝑗)  ; 

-  𝑃𝑃𝑛𝑛|𝑛𝑛−1
(𝑗𝑗,𝑖𝑖) = 𝐴𝐴𝑃𝑃𝑛𝑛−1|𝑛𝑛−1

(𝑗𝑗) 𝐴𝐴𝑇𝑇 + 𝜎𝜎𝑙𝑙2𝐵𝐵𝐵𝐵𝑇𝑇.  

Updating: 

-  𝐾𝐾𝑛𝑛|𝑛𝑛−1
(𝑗𝑗,𝑖𝑖) = 𝑃𝑃𝑛𝑛|𝑛𝑛−1

(𝑗𝑗,𝑖𝑖) 𝐶𝐶𝑇𝑇/(𝐶𝐶𝑃𝑃𝑛𝑛|𝑛𝑛−1
(𝑗𝑗,𝑖𝑖) 𝐶𝐶𝑇𝑇 + 𝜎𝜎02) ; 

-  𝑃𝑃𝑛𝑛|𝑛𝑛
(𝑗𝑗,𝑖𝑖) = (1 −𝐾𝐾𝑛𝑛|𝑛𝑛−1

(𝑗𝑗,𝑖𝑖) 𝐶𝐶)𝑃𝑃𝑛𝑛|𝑛𝑛−1
(𝑗𝑗,𝑖𝑖) ;     

- 𝑊𝑊𝑛𝑛|𝑛𝑛
(𝑗𝑗,𝑖𝑖) = 𝑊𝑊𝑛𝑛|𝑛𝑛−1

(𝑗𝑗,𝑖𝑖) + 𝐾𝐾𝑛𝑛|𝑛𝑛−1
(𝑗𝑗,𝑖𝑖) (𝑣𝑣𝑛𝑛 − 𝜇𝜇𝑙𝑙−𝐶𝐶𝑊𝑊𝑛𝑛|𝑛𝑛−1

(𝑗𝑗,𝑖𝑖) );      

- 𝑣𝑣�𝑛𝑛|𝑛𝑛 = ∑ ∑ [𝜇𝜇𝑙𝑙 + 𝐶𝐶𝑊𝑊𝑛𝑛|𝑛𝑛
(𝑗𝑗,𝑖𝑖)]2𝑀𝑀

𝑗𝑗=1
2𝑀𝑀
𝑖𝑖=1 Pr{𝐺𝐺𝑛𝑛 = 𝑖𝑖,𝐺𝐺𝑛𝑛−1 = 𝑗𝑗| 𝐼𝐼𝑛𝑛}. 

Return 𝑣𝑣�𝑛𝑛|𝑛𝑛. 

End For. 
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In practical applications of the Kalman filtering, it is common practice to introduce a tuning 

parameter to deal with uncertainty in the future time. For this end, additional speed calibration data 

measured with a high-accuracy device are required. This tuning parameter is chosen in a way such 

that the filtered speed values are as close as possible to the additional speed calibration data.  

 

3.3.3. Platoon recognition  

Vehicle platoons can be recognized using the derived vehicle platoon indicators. Suppose that 

vehicle measurements (𝑣𝑣𝑛𝑛,ℎ𝑛𝑛) are gathered for each vehicle 𝑛𝑛. Using the conditional Hamilton filter, 

we can work out the probability of the platoon indicator 𝐺𝐺𝑛𝑛. The following rule is used for platoon 

recognition: 

  Assign 𝐺𝐺�𝑛𝑛 = argmax𝑖𝑖 Pr{𝐺𝐺𝑛𝑛 = 𝑖𝑖|𝐼𝐼𝑛𝑛},       (23) 

i.e. we assign the vehicle platoon indicator  𝐺𝐺�𝑛𝑛 for vehicle 𝑛𝑛 to be an index 𝑖𝑖∗ such that the 

corresponding probability Pr{𝐺𝐺𝑛𝑛 = 𝑖𝑖∗|𝐼𝐼𝑛𝑛} attains its maximum across all the indexes in ℳ𝑃𝑃. Then we 

can follow equation (1) for platoon recognition. Specifically, for given  𝐺𝐺�𝑛𝑛  (𝑛𝑛 = 1, … ,𝑁𝑁) from 

equation (23), the following algorithm identifies vehicle platoons ℙ𝑚𝑚(𝑗𝑗) for 𝑚𝑚 = 1,2 … 

 

Algorithm B (online platoon recognition). 

Initialization. Set 𝑚𝑚 = 0.  𝐺𝐺�0  = 0. ℙ0(𝑗𝑗) = ∅ (𝑒𝑒𝑚𝑚𝑝𝑝𝑒𝑒𝑒𝑒 𝑠𝑠𝑒𝑒𝑒𝑒). 

For 𝑛𝑛 = 1:𝑁𝑁 

 If  𝐺𝐺�𝑛𝑛  ≠  𝐺𝐺�𝑛𝑛−1  %start a new platoon due to a large temporal gap or different velocity modes;  

- return the previous platoon ℙ𝑚𝑚(𝑗𝑗);  

- set 𝑗𝑗 =  𝐺𝐺�𝑛𝑛 when  𝐺𝐺�𝑛𝑛  ≤ 𝑀𝑀 or set 𝑗𝑗 =  𝐺𝐺�𝑛𝑛  −𝑀𝑀 when  𝐺𝐺�𝑛𝑛  > 𝑀𝑀; 

- set 𝑚𝑚 = 𝑚𝑚 + 1; 

-  set ℙ𝑚𝑚(𝑗𝑗) = {𝑛𝑛} . 

Elseif  𝐺𝐺�𝑛𝑛 > 𝑀𝑀    % start a new platoon due to a large temporal gap;  

- return the previous platoon ℙ𝑚𝑚(𝑗𝑗);  
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- set 𝑗𝑗 =  𝐺𝐺�𝑛𝑛  −𝑀𝑀; 

- set 𝑚𝑚 = 𝑚𝑚 + 1; 

- set ℙ𝑚𝑚(𝑗𝑗) = {𝑛𝑛}  . 

Else    % add into the current platoon due to the same velocity mode and a small gap;  

- set ℙ𝑚𝑚(𝑗𝑗) = ℙ𝑚𝑚(𝑗𝑗) ∪ {𝑛𝑛} . 

End If 

End For. 

 

The output of Algorithm B is a series of platoons ℙ𝑚𝑚(𝑗𝑗) (𝑚𝑚 = 1,2, … ). In practice, whenever a 

new piece of information (𝑣𝑣𝑛𝑛,ℎ𝑛𝑛) of vehicle 𝑛𝑛 becomes available, we can use equations (17) and (23) 

to calculate  𝐺𝐺�𝑛𝑛 which is further used for platoon recognition by Algorithm B.  

 

4.  A case study  
 

In this section, we use a practical example to illustrate the proposed method.  

 

4.1.   Traffic data 

Traffic measurements on vehicle speed and vehicle time headway were collected at a dual-loop 

station located in a three-lane freeway near Seattle during a morning off-peak time period on a normal 

weekday. In the following analysis we focus on the innermost lane.  

The collected raw data were initially prescreened using the algorithm developed by Zhang et al. 

(2006) to remove erroneous records. Table 1 presents summary statistics for the vehicle speed and 

time headway measurements after the prescreening. 

Figure 2 displays a histogram of the speed measurements. It can be seen that the speed 

distribution is multi-modal, involving two distinctive modes, each centering at approximately 48 mph 

and 60 mph respectively. In the following analysis, we set 𝑀𝑀 = 2 for illustration purposes. In 

practice, the number of velocity modes  𝑀𝑀 can be selected using an appropriate criterion such as AIC 

or use a set of validation data. 
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Table 1. Summary statistics of vehicle speed (mph) and time headway (s) measurements  

for a sample of 1057 vehicles. 

 mean S.D. skewness minimum maximum 

   Measured speed 57.953     5.896   -0.447 41.536    77.369    

   Time headway 3.496 2.970 2.204 0.490 28.100 

 

The histogram of the time headway measurements is displayed in Figure 3. It can be seen that a 

majority of the vehicles had a very small headway (below 2 s) and the frequency shown in Figure 3 

drops very rapidly as the headway increases. In the following analysis, we used the headway 

distribution (2) with gamma components (6).  

  

Figure 2. Histogram of speed measurements.      Figure 3. Histogram of vehicle time headways.  

 

4.2.   The estimated model 

We considered ℳ𝑉𝑉 = {1,2} and ℳ𝐻𝐻 = {0,1}. Note that when 𝐺𝐺 = 𝑆𝑆 + 𝑀𝑀𝑅𝑅 is 1 or 3, it 

corresponds to the lower velocity level, whereas when 𝐺𝐺 is equal to 2 or 4, it corresponds to the higher 

velocity level. In addition, when 𝐺𝐺 is 1 or 2, the vehicles are of the car-following statue, whereas 

when 𝐺𝐺 takes 3 or 4, the vehicles are of the free-speed status. 

We applied the model developed in the previous sections to analyze the traffic data. The obtained 

transition matrix for the headway mode (5) is 

 𝑃𝑃𝐻𝐻 = �

1
1+0.048𝑒𝑒𝑒𝑒𝑝𝑝(−0.718+1.466(ℎ−0.490))

1
1+0.048𝑒𝑒𝑒𝑒𝑝𝑝(−0.718+1.466(ℎ−0.490))

0.048𝑒𝑒𝑒𝑒𝑝𝑝(−0.718+1.466(ℎ−0.490))
1+0.048𝑒𝑒𝑒𝑒𝑝𝑝(−0.718+1.466(ℎ−0.490))

0.048𝑒𝑒𝑒𝑒𝑝𝑝(−0.718+1.428(ℎ−0.490))
1+0.048𝑒𝑒𝑒𝑒𝑝𝑝(−0.718+1.466(ℎ−0.490))

�. 

40 45 50 55 60 65 70 75 80
0

50

100

150

200

250

300

350

H
is

to
gr

am

Vehicle speed(mph)
0 5 10 15 20 25 30

0

100

200

300

400

500

600

700

H
is

to
gr

am

Vehicle time headway(s)



 21  

Figure 4 depicts transition probability 𝑟𝑟0(ℎ) = [1 + 0.048𝑒𝑒𝑒𝑒𝑝𝑝(−0.718 + 1.466(ℎ − 0.490))]−1. 

Clearly the transition probability decreases rapidly as headway increases. At approximately ℎ = 3s, 

the probability reduces to 0.5. Therefore, vehicles with a headway higher than this point were more 

likely to be of free-speed status. This is in line with the existing literature; for example, Jiang et al. 

(2006) used ℎ = 2.5 s as a cut-off point in their empirical analysis.  

 

Figure 4. Transition probability 𝑟𝑟0(ℎ) against headway ℎ. 

Next, we consider the velocity modes. For the two velocity modes, we obtained  𝜇𝜇1 =48.660 and 

𝜎𝜎1 = 2.087 for lower velocity level, and 𝜇𝜇2 = 60.298 and 𝜎𝜎2 = 3.497 for the higher velocity level. 

This indicates that the nominal speed levels of the two velocity modes were 48.7 mph and 60.3 mph 

respectively. Within each velocity mode, the speed variability was substantial with standard 

deviations of 2.1 mph and 3.5 mph respectively. The obtained velocity transition matrix (7) is 

 𝑃𝑃𝑉𝑉 = �

1
1+4.842(ℎ−0.490)0.093

0.279(ℎ−0.490)0.061

1+0.279(ℎ−0.490)0.061

4.842(ℎ−0.490)0.093

1+4.842(ℎ−0.490)0.093
1

1+0.279(ℎ−0.490)0.061
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Figure 5 (left) displays the transition probability 𝑝𝑝11(ℎ) = [1 + 4.842(ℎ − 0.490)0.093]−1 and 

Figure 5 (right) shows the transition probability 𝑝𝑝22(ℎ) = [1 + 0.279(ℎ − 0.490)0.061]−1. It can be 

seen that the vehicle platooning behavior was very different at the two velocity levels. At the lower 

velocity level, the transition probability 𝑝𝑝11(ℎ) decreases very rapidly. At approximately ℎ = 0.73 s, 

the probability 𝑝𝑝11(ℎ) reduces to 0.5. This suggests that when the headway of a vehicle was larger 

than this point, it had a higher likelihood not to follow the lead vehicle and form a platoon at the lower 

velocity level. In contrast, at the higher velocity level, the transition probability 𝑝𝑝22(ℎ) decreases 

much slowly. The probability 𝑝𝑝22(ℎ) reduces to 0.5 at approximately ℎ =  3.81 s. Even at ℎ =  7.9 s, 

for example, the transition probability 𝑝𝑝22(ℎ) is still about 0.3.  Hence, vehicles at the higher velocity 

level had a much higher likelihood to travel as a group.   

 

Figure 5. Probability that a vehicle remains at the lower velocity level given its lead vehicle 
travels at the lower velocity level (left) and probability that a vehicle remains at the higher velocity 

level given its lead vehicle travels at the higher velocity level (right). 
 

Next, we applied Algorithm B for vehicle platoon recognition. The upper panel of Table 2 shows 

the classification of the vehicles. It can be seen that, of the total 1057 vehicles under investigation, 

there were 17.7% of vehicles traveling alone and 3.8% of vehicles traveling in groups at the lower 

velocity mode; on the other hand, there were 30.2% of vehicles traveling alone and 48.3% of vehicles 

traveling in groups at the higher velocity mode. Hence, there were over a half of the vehicles traveling 

in groups of size larger than one. This highlights the importance of research on vehicle platooning.  
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The lower panel of Table 2 shows that, of the total 712 platoons, there were 26.3% (or 2.7%) of 

the platoons traveling at the lower velocity mode that had only one vehicle (or more than one vehicle); 

on the other hand, there were 44.8% (or 26.2%) of platoons traveling at the higher velocity mode that 

had only one vehicle (or more than one vehicle). This has further reinforced that vehicle platooning 

behavior is very different at the different velocity levels.  

Table 2. Classification of vehicles and platoons. 

 

Finally, we report the results on vehicle movements within the platoons. We used an AR(2) model 

in equation (13a). The estimated equation is: 

 𝑤𝑤𝑛𝑛 = 0.207𝑤𝑤𝑛𝑛−1 + 0.041𝑤𝑤𝑛𝑛−2 + 𝜎𝜎𝑗𝑗𝑒𝑒𝑛𝑛,                    (24) 

with  𝜎𝜎1 = 2.087 and 𝜎𝜎2 =3.497. Equation (24) shows that the speed drift of the current vehicle 𝑛𝑛 

was mainly determined by the speed of the lead vehicle 𝑛𝑛 − 1; the small coefficient 0.041 suggests 

that vehicle 𝑛𝑛 − 2 (i.e. the lead vehicle of vehicle 𝑛𝑛 − 1) does not affect vehicle 𝑛𝑛 very much. The 

stationary process in (24) also shows a strong tendency of mean-reverting of the speed drifts within a 

platoon. The estimated observation equation is 

 𝑣𝑣𝑛𝑛 = 𝜇𝜇𝑛𝑛 + 𝑤𝑤𝑛𝑛 + 1.104𝜀𝜀𝑛𝑛 .              (25) 

The standard deviation 𝜎𝜎0 = 1.104 in the observation equation (25) is relatively small in comparison 

with 𝜎𝜎1 = 2.087 and 𝜎𝜎2 =3.497 in equation (24) 

 

4.3.   Model assessment 

Finally, we consider the issue of model assessment. In the literature, model assessment is usually 

undertaken based on the comparison between the actual data and the output of a model. 

 Vehicle classification 
 Lower velocity mode Higher velocity mode 
Group size =1 17.7% 30.2% 
Group size >1 3.8% 

 
48.3% 

   
 Platoon classification 
 Lower velocity mode Higher velocity mode 
Group size =1 26.3% 44.8% 
Group size >1 2.7% 26.2% 
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Following this principle, we first compare the obtained model for the headway with the observed 

headways. Specifically, we split the collected headway data into 11 groups. The observed frequencies  

𝑂𝑂𝑙𝑙 (𝑙𝑙=1,…,11) are displayed in Table 3.  The estimated headway distribution is given by 

 𝑔𝑔(ℎ) = 0.471𝑔𝑔0(ℎ) + 0.529𝑔𝑔1(ℎ),       (26) 

where 𝑔𝑔0(ℎ) = (ℎ − 0.490)1.320exp (−(ℎ − 0.490)/0.507)/[0.5072.320Γ(2.320)]  and 𝑔𝑔1(ℎ) =

(ℎ − 0.490)1.320exp (−(ℎ − 0.490)/1.974)/[1.9742.320Γ(2.320)].  On the basis of the distribution 

(26), we calculated expected frequencies 𝐸𝐸𝑙𝑙 (𝑙𝑙=1,…,11), as displayed in Table 3. 

Table 3. Observed and expected frequencies of vehicle time headway. 

 Observed frequency 𝑂𝑂𝑙𝑙 Expected frequency 𝐸𝐸𝑙𝑙 
ℎ < 1 109 101.13 

1 ≤ ℎ < 2 322 327.88 
2 ≤ ℎ < 3 182 190.38 
3 ≤ ℎ < 4 124 115.72 
4 ≤ ℎ < 5 93 85.15 
5 ≤ ℎ < 6 64 65.76 
6 ≤ ℎ < 7 42 49.88 
7 ≤ ℎ < 8 33 36.77 

8 ≤ ℎ < 10 40 45.03 
10 ≤ ℎ < 12 27 21.69 

12 ≤ ℎ 21 17.60 
total 1057 1057 

 

Based on Table 3, the test statistic was calculated,   𝜒𝜒2 = ∑ (𝑂𝑂𝑙𝑙 − 𝐸𝐸𝑙𝑙)211
𝑙𝑙=1 /𝐸𝐸𝑙𝑙 = 6.595. The 

critical value with 𝛼𝛼 = 0.05 and degrees of freedom 11− 6 = 5  is 11.07. Therefore there is no 

evidence to doubt that the headway data follow the model distribution (26). 

Next, we turn to consider the speed data. We assess the goodness-of-fit of the speed filtering. The 

dynamic model for the speed data is given by equations (24) and (25). We applied Algorithm A for 

speed filtering. We measured the accuracy of the speed estimates by the root square mean error 

(RMSE) between the observed speeds and filtered speeds. The calculated RMSE was equal to 1.410 

mph. From a practical perspective, this size of the speed estimation error is reasonably small (see, e.g. 

Hazelton, 2004; Li, 2009).  
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The observed and filtered vehicle speeds are displayed in Figure 6. Overall, it can be seen that the 

filtered values smoothed out the random noise to large extent and the filtered speeds were able to 

follow the speed variation closely.  

 

 

Figure 6. Speed measurements (real line ) and the corresponding filtered values (broken line ----). 

The 1057 vehicles in the sample are split into four groups, where the upper left (or right) graph 

displays the observed and filtered speeds of the first (or second) 250 vehicles, and  the lower left (or 

right) graph displays the observed and filtered speeds of vehicles 501 to 750 (or 751 to 1057). 

 

5.   Concluding remarks  
 

This two-part paper investigates stochastic dynamic modeling for vehicle platoons. Part I has 

focused on the modeling of vehicles’ dynamic grouping behavior, where a Markov regime-switching 

process is used to describe the platoon-to-platoon transitions, and a state space model is employed to 

characterize the dynamic movements within each platoon.  
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We have also investigated statistical inference for the proposed model, including model 

estimation, speed filtering and online platoon recognition.  Further investigation on statistical 

distribution models for some important platoon characteristics will be undertaken in part II (Li, 2016).  

Finally, we highlight the practical advantages of the proposed approach here. First, we note that 

the current platoon classification and recognition methods (e.g. Gaur & Mirchandani, 2001; Jiang et 

al., 2006) are solely determined by vehicle time headways, whereas the information on vehicle speeds 

is ignored. To better reflect the dynamic nature of traffic, the proposed method takes into account both 

vehicle speed and vehicle headway to identify vehicle platoons. In doing so, vehicle platoons can be 

better recognised in practice. Secondly, this paper has developed a new method for vehicle speed 

filtering for traffic with a platoon structure. This is a problem that has not been investigated yet in the 

literature; the existing algorithms for vehicle speed estimation (e.g., Dailey, 1999; Hazalton, 2004; Li, 

2009, 2010) cannot deal with the traffic with a platoon structure.  With the platooning structure taken 

into consideration in this paper, vehicle speeds can be estimated more accurately.  
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