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Pressure work and viscous dissipation in the
equations of thermal convection in a vertical channel
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Abstract Equations for fully developed flow in a vertical channel have been
solved, taking into account viscous dissipation, and using formulations with
and without pressure work. Perturbation solutions are used to distinguish the
effects of viscous dissipation from pressure work. Viscous dissipation has very
little effect on free convection flows driven by temperature differences or heat
fluxes at the channel walls, but it may play a major role in forced convection.

Keywords Thermal convection · Vertical channel · Viscous dissipation ·
Pressure work

1 Introduction

In a recent paper [1] the present author solved equations for forced convection
in a Newtonian fluid confined between parallel vertical plates held at equal
temperatures. In the energy equation, temperature changes in the fluid were
accounted for by heat conduction, viscous dissipation and pressure work. So-
lutions were presented both with and without the inclusion of pressure work,
for the full range of applied pressure gradients for which solutions exist. The
results were of some mathematical interest, but many of the interesting fea-
tures were outside the range of parameter space that is physically accessible
or of practical relevance in engineering. With any given value of applied pres-
sure gradient, there exist either dual solutions or no solution at all; in par-
ticular, with zero applied pressure gradient, one solution branch yields static
fluid with no temperature variation, whereas the second solution branch yields
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“passive convection”, in which viscous dissipation provides the heat to main-
tain (through buoyancy forces) the flow that gives rise to the dissipation.
Setting up the flow specified by this second solution branch would be very
difficult, and indeed Miklavčič [2] has recently shown that solutions on this
branch are unstable. Even on the stable first branch, flow velocities and tem-
perature gradients are only of reasonable magnitude if the applied pressure
gradient is of moderate magnitude; furthermore, large applied pressure gradi-
ents may violate the Boussinesq approximation (made in all the calculations)
which requires any vertical dynamic pressure gradient to be small compared
to the hydrostatic pressure gradient. Hence it would be sensible to focus more
attention on first-branch solutions in the regime of smaller applied pressure
gradient.

The issue of the relative importance of viscous dissipation and pressure
work in convection flows was discussed as long ago as 1971 by Kuiken [3], but
has received more attention recently, including in the context of flows in ver-
tical ducts. Of particular interest is the consistency of neglecting or retaining
either of these terms in the energy equation when the Boussinesq approxima-
tion is made in the momentum equation. For boundary-layer flow adjacent to
a heated vertical plate, Kuiken [3] found that pressure work may be important
whereas viscous dissipation would be no larger than effects neglected in the
Boussinesq approximation. Turcotte et al. [4] have shown that pressure work
and viscous dissipation are proportional to the same dimensionless parameter
in Bénard convection, so the two effects must be considered simultaneously.
Barletta [5,6] has discussed the relative merits of the enthalpy formulation and
the internal-energy formulation of the energy equation: in the latter, there is
no pressure work term because the Boussinesq approximation implies that the
velocity is solenoidal, and this formulation is found to be preferable as long
as care is taken to select the correct specific heat for the fluid under consider-
ation. For flow in a lid-driven square cavity, Barletta and Nield [7] find that
a formulation including viscous dissipation but neglecting pressure work gives
more reasonable results than when both effects are explicitly included. On the
other hand, when investigating flow in a porous medium in a vertical channel,
the same authors [8] find that pressure work is important, in particular pro-
ducing a cooling effect in upward flow greater than the heating due to viscous
dissipation. A similar effect was found by Kay [1] in forced convection of a
Newtonian fluid in a vertical channel when the forcing is relatively small; as
in the discussion of Rayleigh-Bénard convection by Barletta and Nield [9], it
was noted that pressure work is linear in the vertical velocity whereas viscous
dissipation is quadratic, so that pressure work must have greater magnitude
in the limit of small velocities.

Where previous studies of free or forced convection in vertical channels
have considered the effect of viscous dissipation, pressure work has in most
cases been neglected. This has been done both with boundary conditions of
fixed wall temperatures, e.g. [10] and with fixed heat fluxes, e.g. [11]. However,
from the discussion above, it appears that the neglect of pressure work may
not be justified, particularly in the important case of small or moderate flow
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velocities. The object of the present study is to compare results obtained us-
ing formulations both with and without pressure work, but including viscous
dissipation in all cases. We shall use perturbation expansions with the forcing
as the small parameter, whether that be the applied pressure gradient for the
case of pure forced convection, or a temperature difference or heat flux between
the walls for the case of pure free convection (we do not consider the more
complicated case of mixed convection). As well as being appropriate for small
values of the forcing, perturbation expansions will give more insight than nu-
merical solutions into how the effects of viscous dissipation and pressure work
come into play.

2 Governing equations

A thorough discussion of the governing equations for convection in vertical
ducts was given in [1], and the reader is referred there for the derivation of
the equations which follow. We consider only steady, fully developed flow of
a Newtonian fluid in a channel of width 2L between parallel, vertical walls
located at Y = ±L. The coefficient of thermal expansion β is assumed to be
constant, so that the density ρ is linearly related to the temperature T ,

ρ = ρm(1− β(T − Tm)) , (1)

where the reference temperature Tm and reference density ρm are required to
be the cross-section means of these quantities [1,12]. Other fluid properties
that are also assumed constant are viscosity µ, thermal conductivity k and
specific heat c.

The momentum equation is a balance between the applied pressure gradi-
ent (which must be uniform in fully developed flow), the buoyancy force and
the viscous stress. Under the Boussinesq approximation it takes the form

−dPd

dZ
+ ρmgβ(T − Tm) + µ

d2W

dY 2
= 0 , (2)

where the dynamic pressure Pd is the difference between the total pressure and
the hydrostatic pressure, and the velocity W is in the vertical (Z) direction.

The energy equation may be formulated with or without a term for pressure
work:

cρm
dT

dt
= −βTmρmgW + µ

(
dW

dY

)2

+ k
d2T

dY 2
(3)

or

cρm
dT

dt
= µ

(
dW

dY

)2

+ k
d2T

dY 2
. (4)

The pressure work term in (3) has been formulated consistently with the
Boussinesq approximation, assuming that the dynamic pressure gradient can
be neglected in comparison with the hydrostatic pressure gradient in this term,
and using the cross-section mean value of temperature. We have deliberately
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been ambiguous about the definition of the specific heat c (whether at constant
pressure, or constant volume, etc.). Barletta [5,6] discusses this issue in some
detail, but when the equations are nondimensionalised the difference between
the values of c appropriate for (3) or (4) disappears from the equations. Our
objective is to compare the flow and thermal conditions predicted according
to the two formulations, and the differences we shall find cannot be reconciled
by returning to dimensioned variables and inserting different values of specific
heat.

For purely vertical flow,

dT

dt
=
∂T

∂t
+W

∂T

∂Z
, (5)

but steady solutions for the flow velocity are admitted if both the temporal
and downstream variations of temperature are constant in space and time. We
then write

H = cρm
∂T

∂t
and G = cρm

∂T

∂Z
, (6)

with H and G assumed constant. We can now use the momentum equation (2)
to eliminate the temperature from either form of the energy equation, yielding

H +WG = −βTmρmgW + µ

(
dW

dY

)2

− µk

ρmgβ

d4W

dY 4
(7)

or

H +WG = µ

(
dW

dY

)2

− µk

ρmgβ

d4W

dY 4
. (8)

However, solutions with dT/dt = 0, i.e. with the left-hand sides of (7) and (8)
set to zero, are admitted unless the boundary conditions specify the heat flux
at both walls.

The half-width L of the channel provides the obvious scale for defining the
dimensionless cross-stream co-ordinate,

y =
Y

L
. (9)

It is less obvious how dimensionless velocities and temperatures should be
defined. In [1] velocity and temperature scales were defined from a balance
between heat conduction and viscous dissipation. While we are not expecting
viscous dissipation to be a leading-order effect in most cases, a nondimension-
alisation based on these scales does have the virtue that it can be used in
every scenario to be considered below, whether for free or forced convection,
and whether temperatures or heat fluxes are specified at walls. Hence we shall
use the same dimensionless variables and parameters as in [1], while being
careful about the interpretation of large or small values of these variables ap-
pearing in solutions of our equations. The dimensionless vertical velocity and
temperature are

w =
ρmgβL

2

k
W , θ =

(ρmgβL
2)2

µk
(T − Tm) . (10)
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The dimensionless dynamic pressure gradient (in forced convection) is

λ =
ρmgβL

4

µk

dPd

dZ
, (11)

and the dimensionless horizontal heat flux is

q = − (ρmgβ)2L5

µk

∂T

∂y
. (12)

Dimensionless temporal and streamwise temperature variations (when heat
flux is specified at both walls) are

η =
(ρmgβL

3)2

µk2
H =

(ρmgβL
3)2

µk2
cρm

dT

dt
, γ =

ρmgβL
4

µk
G =

cρ2mgβL
4

µk

dT

dZ
,

(13)
and a dimensionless parameter introduced by Schneider [13] to compare the
magnitudes of pressure work and viscous dissipation is

N =
(ρmgβL

2)2Tm
µk

. (14)

In terms of these dimensionless variables, equation (7) becomes

−d4w

dy4
+

(
dw

dy

)2

−Nw = η + γw . (15)

This is the equation that we need to solve, with and without the pressure
work term Nw; the terms on the right-hand side will be omitted unless the
boundary conditions specify heat flux on both walls. The dimensionless form
of the momentum equation (2) is

−λ+ θ +
d2w

dy2
= 0 , (16)

and is required only to diagnose the temperature once we have solved for the
vertical velocity.

We shall be considering four scenarios: free convection or forced convection,
each with temperatures or heat fluxes specified on the walls. Two boundary
conditions apply on the walls in all cases: the no-slip condition, w = 0 at each
wall, and the requirement for any dynamic pressure gradient to be balanced by
the total wall shear stress on the two walls, where dimensionless shear stress
is dw/dy. Other boundary conditions differ between the cases, as specified
below.

1. Forced convection, fixed wall temperatures.
For the convection to be purely forced, the wall temperatures must be
equal. We then have symmetry about the mid-plane of the duct, so sym-
metry conditions are imposed at y = 0 instead of wall conditions at y = −1.
Thus we solve

−d4w

dy4
+

(
dw

dy

)2

−Nw = 0 (17)
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(including pressure work) or

−d4w

dy4
+

(
dw

dy

)2

= 0 (18)

(omitting pressure work), subject to the boundary conditions

w′(0) = 0, w′′′(0) = 0, w(1) = 0, w′(1) = λ , (19)

in which primes indicate derivatives with respect to y. The last condition
in (19) is the balance of dynamic pressure gradient with wall shear stress:
we seek perturbation solutions valid in the limit λ → 0, i.e. for small
values of the dimensionless pressure gradient. Note that no temperature
boundary conditions are applied in solving (18); the symmetry condition
is sufficient to ensure that the walls at y = ±1 have equal temperatures
[1]. Dimensionless temperatures θ (relative to the cross-section mean) are
obtained from (16) after solving for w; however, since the wall temperature
θw is supposed to be known, we present formulae and plots for θ − θw
(rather than θ) in Section 3.1 below, to give temperatures relative to this
fixed value.

2. Forced convection, insulated walls.
For purely forced convection with heat flux specified at the walls, that heat
flux must be zero; note that dimensionless heat flux is −∂θ/∂y = ∂3w/∂y3,
from (16). Again there is symmetry about the mid-plane, with conditions
at y = 0 as in case 1. Thus we solve

−d4w

dy4
+

(
dw

dy

)2

−Nw = η + γw (20)

(including pressure work) or

−d4w

dy4
+

(
dw

dy

)2

= η + γw (21)

(omitting pressure work), subject to the boundary conditions

w′(0) = 0, w′′′(0) = 0, w(1) = 0, w′(1) = λ, w′′′(1) = 0 , (22)

again seeking perturbation solutions valid in the limit λ → 0. There are
five boundary conditions for a fourth-order equation, but since neither
η nor γ is known a priori the system is in fact under-determined. This
is because no account has been taken of entry or exit conditions, which
would determine any streamwise temperature gradient γ. We shall discuss
this issue in more detail when considering solutions of these equations in
Section 3.2 below, where formulae and plots for temperature will be given
relative to the cross-section mean (i.e. simply as θ), since the temperature
at any cross-stream location is varying at a constant rate with time and/or
downstream position.
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3. Free convection, fixed wall temperatures.
Free convection means that the dynamic pressure gradient λ is zero, so
that (16) becomes

θ = −∂2w/∂y2 . (23)

With viscous dissipation included, we cannot assume antisymmetry: the
mid-plane temperature will not be the mean of the wall temperatures, and
the mid-plane velocity may not be zero. Thus, with a given dimensionless
temperature difference Θ between the walls, we solve (17) or (18) with the
boundary conditions

w(−1) = 0, w(1) = 0, w′(1)− w′(−1) = 0, w′′(1)− w′′(−1) = −Θ
(24)

in which the third condition specifies zero total wall shear stress. We seek
perturbation solutions valid in the limit Θ → 0. Wall temperatures are
supposed known, so in Section 3.3 we shall present formulae and plots for
θ− θM where θM is the (fixed) mean of the temperatures at the two walls,
not in general the same as the cross-section mean.

4. Free convection, fixed wall heat fluxes.
We consider only the case where the dimensionless heat flux q into the
channel at the wall y = 1 is equal to the heat flux out of the channel at
the wall y = −1. We shall see that this case with antisymmetric boundary
conditions is in some ways unrepresentative of free convection driven by
wall heat flux; however, it is the case that is most comparable to free
convection driven by unequal wall temperatures (case 3 above). A full
exploration of different heat flux boundary conditions is beyond the scope
of this paper.
As with the fixed-temperature free convection case, we cannot assume that
velocity and temperature profiles are antisymmetric. Thus we solve (20) or
(21) with boundary conditions

w(−1) = 0, w(1) = 0, w′(1)− w′(−1) = 0, w′′′(−1) = −q, w′′′(1) = −q ,
(25)

seeking perturbation solutions valid in the limit q → 0. Comments made in
case 2 regarding the number of boundary conditions and the presentation
of formulae and plots for temperatures apply here also.

Before proceeding to the solutions, we consider what magnitudes of physi-
cal parameters are allowed in order to fulfil both the mathematical requirement
of validity of the perturbation solutions and the physical requirement that the
Boussinesq approximation be applicable. For this purpose, the parameter N ,
originally introduced as a dimensionless measure of the importance of pres-
sure work, turns out to be useful independently of whether we are using the
formulation including or excluding pressure work. We first introduce alterna-
tive dimensionless forms of the forcing parameters, which may be considered
more intuitive than λ, Θ and q, and which are related to them as follows. For
forced convection, an intuitive nondimensionalisation of the dynamic pressure
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gradient is with respect to the hydrostratic pressure gradient:

dPd

dZ

/
dPh

dZ
=

µk

(ρmg)2β
L−4λ =

βTm
N

λ . (26)

For free convection, a temperature difference ∆T between the walls could be
nondimensionalised with respect to the absolute mean temperature:

∆T

Tm
=

1

N
Θ , (27)

and a corresponding nondimensionalisation of heat flux would be

−[∂T/∂y]wall

Tm/L
=

1

N
q . (28)

Clearly each of the parameters on the left-hand sides of (26) – (28) must
be small compared to unity in order for the Boussinesq approximation to be
valid, while the parameters λ, Θ or q need to be small in some sense for
the perturbation solutions to be valid. If we fix λ, Θ or q to fulfil the latter
requirement, then from (26) – (28) a large value of N will guarantee that the
former is satisfied, while a small value of N may restrict the range of allowable
values of λ, Θ or q.

Once we have chosen a fluid and fixed its mean temperature Tm (so that
fluid parameters ρm, β, µ and k are also fixed), N depends only on the duct
width: for example, for water at Tm = 20◦C = 293K, we find N ≈ 2.1 ×
106L4 while for glycerine (chosen for illustration since high viscosity is likely
to render viscous dissipation more prominent) at the same temperature, N ≈
2.8× 104L4, with L in metres. Our solutions in Section 3 for the formulation
including pressure work will be plotted for the parameter values N = 4 and
N = 4 × 104, corresponding respectively to L = 3.7cm and L = 37cm for
water, or L = 11cm and L = 1.1m for glycerine. The larger value of N ,
with its implication of duct dimensions only found in very large industrial or
possibly geophysical applications, will at least guarantee that the Boussinesq
approximation is applicable; and the large-N regime is also of mathematical
interest.

In water at 20◦C, βTm ≈ 0.061 while in glycerine at the same temper-
ature, βTm ≈ 0.132. Thus for forced convection with λ of order unity, the
ratio of dynamic to hydrostatic pressure gradient in (26) will be very small
with N = 4 × 104 and moderately small with N = 4. We shall actually plot
solutions with λ = 10, which will be seen to still yield valid perturbation
expansions but is stretching the validity of the Boussinesq approximation if
N = 4. For free convection, equations (27) and (28) imply that values of Θ
or q should be small compared to N ; we shall plot solutions with Θ = 10 and
with q = 10, but with N = 400 rather than N = 4 as in the forced convection
cases. Note that the value of 10 taken for the forcing parameters λ, Θ and q
can be considered “small” in the context of perturbation expansions because
higher-order terms in those expansions will all be found to contain numerical
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constants much greater than 10 in their denominators. In all cases, the require-
ment for sufficiently large N to retain the Boussinesq approximation should
be interpreted as a minimum allowable duct width, and remains in place when
we use the formulation excluding pressure work.

3 Perturbation solutions

3.1 Forced convection with fixed wall temperatures

We seek solutions of (17) and (18) in the form of expansions in powers of the
dimensionless dynamic pressure gradient λ,

w = w0 + λw1 + λ2w2 + . . . , (29)

θ = θ0 + λθ1 + λ2θ2 + . . . . (30)

At O(1), the last of the boundary conditions (19) yields w′0(1) = 0 which,
together with the other boundary conditions, ensures that both (17) and (18)
have only the trivial solution w0 ≡ 0 at this order. At O(λ), the formulation
(18) without pressure work then yields

d4w1

dy4
= 0, (31)

whereas when pressure work is included we obtain

d4w1

dy4
+Nw1 = 0 . (32)

The boundary conditions in both cases are

w′1(0) = 0, w′′′1 (0) = 0, w1(1) = 0, w′1(1) = 1 , (33)

and from (16) the temperature perturbation at O(λ) is given by

θ1 = 1− d2w1

dy2
. (34)

The solution of (31) with boundary conditions (33) is

w1 = −1

2
(1− y2) , (35)

so θ1 = 0 from (34). Thus we have a simple Poiseuille flow at leading order;
furthermore, viscous dissipation does not appear at leading order, so without
pressure work there is no change to the temperature.

To solve (32) it is convenient to let

N = 4p4 ; (36)
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note that p is proportional to the duct half-width L. We then find

w1 = − sinh p(1 + y) sin p(1− y) + sinh p(1− y) sin p(1 + y)

p(sinh 2p+ sin 2p)
, (37)

with

θ1 − θ1w =
2p

sinh 2p+ sin 2p
[cosh 2p+ cos 2p− cosh p(1 + y) cos p(1− y)

− cosh p(1− y) cos p(1 + y)] , (38)

in which the temperature profile is given relative to the fixed wall temperature,
indicated by subscript w.

The solution (37) and (38) is mathematically similar to that obtained by
Tao [14] for the case where a uniform streamwise temperature gradient is
imposed. Without boundary constraints, pressure work would produce a ver-
tical (adiabatic) lapse rate in the temperature: thus Tao’s analysis with an
imposed vertical temperature gradient but no pressure work replicates our
analysis which includes pressure work but specifies vertically uniform temper-
ature. In the limit p → 0, (37) approaches the Poiseuille flow solution (35);
however, the case where the pressure work parameter p is larger is of more
interest. According to (37) and (38), the vertical velocity and the temperature
oscillate in the cross-stream direction, with the amplitude of oscillations de-
creasing from the walls towards the mid-plane of the duct. Such oscillations
in vertical flows with significant pressure work have previously been discussed
by Kuiken [3]: by cooling a rising fluid or warming a descending fluid, pres-
sure work produces a buoyancy force which always opposes the direction of
motion. Equation (32) is a leading-order energy balance between conduction
and pressure work. The applied forcing, appearing through the shear-stress
boundary condition at the walls, drives a flow which produces a temperature
change through pressure work. This temperature change is conducted inwards
from the wall, and its associated buoyancy force will at some location drive a
flow opposed to that adjacent to the wall. That flow will then induce an oppo-
site temperature change due to pressure work, and further inward conduction
of heat will lead to further flow reversals by the same mechanism. Flow and
temperature profiles at O(λ) are shown by long-dashed curves in Figure 1: os-
cillations are not apparent with N = 4 because their wavelength is too great,
while at N = 4× 104 the exponential decay of their amplitude away from the
wall is clear.

An alternative interpretation of the large-N flow profile is that the leading-
order solution of (17) as N → ∞ is w ∼ 0, but this does not satisfy the
shear-stress boundary condition so there is a boundary layer of thickness δ ∼
N−1/4 adjacent to the wall. The velocity magnitude in the boundary layer
is controlled by the wall shear stress, so w ∼ λN−1/4. Viscous dissipation is
(dw/dy)2 ∼ λ2 in the boundary layer, so can only be of similar magnitude to
pressure work if λ ∼ N3/4: since λ and N are both proportional to L4, the
pressure gradient required to produce significant dissipative heating in a wide
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duct is inversely proportional to duct width. For smaller values of λ with large
N , the full solution of (17) differs little from that given by the leading-order
energy balance between conduction and pressure work in (32), as seen in the
right-hand panels of Figure 1 in which higher-order terms make no noticeable
difference to the solution. Since the conduction term in (17) can be written as
d2θ/dy2, a scaling for the temperature difference across the boundary layer is
θ − θw ∼ Nwδ2 ∼ λN1/4, consistent with (38) which yields θ1 − θ1w ≈ 2p for
y not close to ±1, and with the value of 200 shown in Figure 1 with λ = 10
and p = 10.

At O(λ2), (18) yields

d4w2

dy4
=

(
dw1

dy

)2

, (39)

while we obtain
d4w2

dy4
+Nw2 =

(
dw1

dy

)2

(40)

from (17). The boundary conditions are

w′2(0) = 0, w′′′2 (0) = 0, w2(1) = 0, w′2(1) = 0 , (41)

and the temperature perturbation at O(λ2) is found from

θ2 = −d2w2

dy2
. (42)

Inserting the respective solutions for w1 into the right-hand sides of (39) and
(40), and solving with the boundary conditions (41), we obtain

w2 =
1

360
(1− y2)2(2 + y2) , θ2 − θ2w =

1

12
(1− y2)(1 + y2) (43)

without pressure work, and

w2 =
1

120p4(sinh 2p+ sin 2p)2
×[

30 sinh 2p sin 2p− 2 sinh 2py sin 2py

+6(cosh 2p+ cos 2p)(cosh 2py − cos 2py)

+ sinh 2p(1 + y) sin 2p(1− y) + sinh 2p(1− y) sin 2p(1 + y)

+8(cosh 2p+ cos 2p)
(

sinh p(1 + y) sin p(1− y) + sinh p(1− y) sin p(1 + y)
)

−
(

6(sinh 2p+ sin 2p) +
16 sinh 2p sin 2p

sinh 2p+ sin 2p

)
×(

cosh p(1 + y) sin p(1− y) + cosh p(1− y) sin p(1 + y)

+ sinh p(1 + y) cos p(1− y) + sinh p(1− y) cos p(1 + y)
)]

, (44)
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θ2 − θ2w =
1

30p2(sinh 2p+ sin 2p)3
×[

(sinh 2p− sin 2p)3 + 12 sinh 2p sin 2p(sinh 2p− sin 2p)

+4(sinh 2p+ sin 2p) cosh 2py cos 2py

+(cosh 2p+ cos 2p)(sinh 2p+ sin 2p)
(
− 6(cosh 2py + cos 2py)

+4(cosh p(1 + y) cos p(1− y) + cosh p(1− y) cos p(1 + y))
)

+2(sinh 2p+ sin 2p)(cosh 2p(1 + y) cos 2p(1− y) + cosh 2p(1− y) cos 2p(1 + y))

+
(
3(sinh 2p+ sin 2p)2 + 8 sinh 2p sin 2p

)
×(

cosh p(1 + y) sin p(1− y)− sinh p(1 + y) cos p(1− y)

+(cosh p(1− y) sin p(1 + y)− sinh p(1− y) cos p(1 + y)
)]

(45)

in the formulation including pressure work. The large numerical coefficients
in the denominators of (43) – (45) suggest that the expansions may provide
good approximations when λ is not small; although convergence has not been
analysed, we have obtained the third term in the case without pressure work,

w3 = − 1

151200
(1− y2)2(3 + y2)(8 + y2 − y4) , (46)

θ3 − θ3w = − 1

5040
(1− y2)(1 + y2)(11− 3y4) (47)

(i.e. yielding |w3| ≤ 1/6300 for |y| ≤ 1), which reinforces this suggestion.
The expansions to O(λ2) are shown by solid curves in Figure 1, and their
closeness to the numerical solutions of (18) and (17) with λ = 10 (shown
by short-dashed curves) confirms that the perturbation solutions yield rather
good approximations even with this fairly large value of λ. We have already
noted that λ = 10 with N = 4 implies a dynamic pressure gradient not
very small compared with hydrostatic; an a posteriori check on whether the
Boussinesq approximation is valid is that temperature variations should be
small compared with the absolute temperature, which according to (27) means
that the variation in θ across the duct should be small compared with N .
From Figure 1 this is satisfied with N = 4× 104 but certainly not in the case
N = 4; with pressure work excluded, N is arbitrary so the issue does not arise
except that an acceptably large N may imply a large duct width. Nevertheless,
whereas a smaller value of λ would be more physically realistic when N is also
of moderate size, we show solutions with λ = 10 to give clearer illustrations of
the effects of various terms in the perturbation expansions.

Since viscous dissipation first appears in the perturbation equations at
O(λ2), the difference between the long-dashed curves (O(λ) expansions) and
the solid curves (O(λ2) expansions) includes the lowest-order effect of viscous
dissipation. This difference appears much more significant in the temperature
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Fig. 1 Velocity profiles (upper row) and temperature profiles relative to wall temperature
θw (lower row), between axis of symmetry and wall. Dimensionless pressure gradient λ = 10,
and wall temperatures are held equal. Left: ignoring pressure work. Centre: with N = 4.
Right: with N = 4 × 104. Short-dashed curves: numerical solutions. Long-dashed curves:
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curve, for expansion to O(λ3). In the right-hand plots the three curves are all present, but
indistinguishable.

profiles than the velocity profiles. The velocity profile is primarily driven by
the pressure gradient, and then modified due to pressure work and viscous
dissipation, whereas temperature perturbations are entirely due to the latter
two effects. With N = 4, heating at O(λ2) results in an approximately 10%
reduction in downward velocity, whereas the temperature rise at O(λ) only
accounts for around 60% of the total temperature rise as given by the numer-
ical solution, which the O(λ2) expansion slightly overshoots. If pressure work
is excluded so that dissipation is the only heating mechanism, the O(λ2) tem-
perature rise overshoots the true value by around 25%, but adding the O(λ3)
term produces a better approximation. Note that the flatness of the tempera-
ture profile away from the wall in this case is for a different reason than in the
case N = 4 × 104. Viscous dissipation depends on velocity gradients whereas
pressure work is proportional to velocity; when pressure work is excluded it
is the small velocity gradients near the duct mid-plane that give rise to a flat
temperature profile, whereas when pressure work is dominant it is the small
velocities near the mid-plane that yield a similar result.

Viscous dissipation is the same for upward and downward flow, whereas
pressure work changes sign with the velocity. Hence we do not expect results
with negative λ to mirror those with positive λ. Results with λ = −10 are
shown in Figure 2. For the case N = 4 × 104, where pressure work is domi-
nant, the velocity and temperature profiles are simply inverted versions of the
profiles with λ = 10, but this is not true in the other cases. Where pressure
work is excluded, heating by viscous dissipation increases the magnitude of up-
ward velocity (with negative λ) whereas it works against downward flow. The
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Fig. 2 Velocity and temperature profiles as in Figure 1, but with λ = −10.

temperature rise at O(λ2) is due to the leading-order Poiseuille flow and so is
the same for flow in either direction, but at higher order it becomes greater
in upward flow and less in downward flow as dissipative heating is affected by
perturbations to the Poiseuille flow, with velocity gradients roughly in propor-
tion to velocities. In the intermediate case with N = 4, effects on the velocity
profile are similar: a Poiseuille profile, reduced in magnitude at leading order
due to pressure work, is then enhanced in upward flow but further reduced
in downward flow due to dissipative heating at O(λ2). But the temperature
profiles in this case are more striking: at leading order the temperature rise
in downward flow is mirrored by a temperature fall in upward flow, but vis-
cous dissipation then reverses the latter temperature change in the part of the
domain with the greatest velocity gradients. However, as has already been re-
marked, the value |λ| = 10 has been chosen to make higher-order effects clear
on the plots but with N = 4 the results are not physically realistic; solutions
with λ = −1 (not shown) have dissipation at O(λ2) making a more modest
reduction in the pressure-work cooling. Possibly the most important point is
that in upward flow a formulation in which pressure work is excluded leads
to temperature changes of opposite sign to those found when pressure work is
included.

3.2 Forced convection with insulated walls

If the walls are insulated while there is heating or cooling by pressure work
and/or heating by viscous dissipation, there will be an increase or decrease in
the heat contained within the duct. This heat excess/deficit may remain in
situ, resulting in a variation of temperature with time, or it may be convected
downstream, resulting in streamwise variation of temperature. In general there
may be a combination of temporal and streamwise temperature variation: both
are accounted for in equation (15). If entry and exit conditions were given, the
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streamwise temperature gradient would be constrained; this is not done in our
formulation of fully-developed flow, so there is a degree of arbitrariness. We
are free to specify either the streamwise or temporal temperature variation
to be zero, and we shall solve equations for both cases, denoted respectively
“temporal heating” and “streamwise heating” (although there may be cooling
rather than heating if pressure work is dominant in upward flow).

3.2.1 Temporal heating

We set γ = 0 in (20) and (21). As well as expanding the velocity and tem-
perature according to (29) and (30), the heating rate parameter η must be
expanded:

η = η0 + λη1 + λ2η2 + . . . . (48)

However, before presenting the solutions at each order in λ, we derive some
scalings for η, assuming in all cases that λ is O(1) or smaller. If pressure work
is excluded, (21) with the boundary conditions (22) and with γ = 0 yields

η =

∫ 1

0

(
dw

dy

)2

dy . (49)

The shear-stress boundary condition w′(1) = λ then implies

η ∼ λ2 . (50)

If pressure work is included and is a more significant source of heating/cooling
than viscous dissipation, but not a dominant factor in the dynamics, then
(20) yields η ∼ −Nw where the velocity is still determined principally by the
dynamic pressure gradient, i.e from the boundary condition w′(1) = λ. So
|w| ∼ λ, leading to

|η| ∼ λN . (51)

Finally, if the pressure work parameter N is large, the velocity will be deter-
mined by the balance between heating rate and pressure work in the energy
equation (20): w ∼ −η/N . However, this uniform, non-zero velocity is incon-
sistent with the no-slip boundary condition, so there must be a boundary layer
in which the conduction term d4w/dy4 in (20) is of similar magnitude to the
pressure work term Nw, a balance which yields a boundary layer thickness
∼ N−1/4. The velocity gradient in this boundary layer is determined by the
wall shear stress, so the velocity outside the boundary layer is |w| ∼ λN−1/4.
Hence the heating rate is

|η| ∼ Nw ∼ λN3/4 . (52)

Proceeding to the expansion in powers of λ, at O(1) we again have only
the trivial solution, w0 ≡ 1, while at O(λ) we have

d4w1

dy4
= −η1 (53)
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in the formulation without pressure work, or

d4w1

dy4
+Nw1 = −η1 (54)

when pressure work is included. The boundary conditions in both cases are

w′1(0) = 0, w′′′1 (0) = 0, w1(1) = 0, w′1(1) = 1, w′′′1 (1) = 0; (55)

the problem is well-posed with five boundary conditions on a fourth-order
ODE containing one parameter η1 to be determined.

Without pressure work there is no heating at O(λ), so we have the same
Poiseuille flow (35) as with constant-temperature walls, with η1 = 0. However,
when pressure work is included,

η1 = 2p3
sinh 2p− sin 2p

cosh 2p− cos 2p
, (56)

where

p =
N1/4

√
2

(57)

as before. Clearly η1 is positive for positive N , so the leading-order dimen-
sionless rate of temperature change λη1 has the same sign as λ, i.e. cooling for
upward flow and warming for downward flow as expected. For small or large
values of the pressure work parameter N , we have

η1 ∼
1

3
N as N → 0, η1 ∼

1√
2
N3/4 as N →∞ , (58)

consistent with the scalings derived above. The O(λ) velocity and temperature
perturbation are

w1 =
1

2p(cosh 2p− cos 2p)
[− sinh 2p+ sin 2p

+ sinh p(1 + y) cos p(1− y) + sinh p(1− y) cos p(1 + y)

− cosh p(1 + y) sin p(1− y)− cosh p(1− y) sin p(1 + y)] , (59)

θ1 = 1− p

(cosh 2p− cos 2p)
[cosh p(1 + y) sin p(1− y) + cosh p(1− y) sin p(1 + y)

+ sinh p(1 + y) cos p(1− y) + sinh p(1− y) cos p(1 + y)] , (60)

shown by long-dashed curves in Figure 3, which is plotted for the case of
downward flow (positive λ).

Temperature changes at O(λ) occur only if pressure work is included.
With N = 4, the warming is greatest at the mid-plane of the duct where
the downward velocity is greatest, and there is only a small perturbation to
the Poiseuille flow profile, with downward velocities being reduced slightly due
to the warming. For large N , when pressure work is a dominant effect, the ve-
locity away from the walls is approximately −λη1/N ∼ −λN−1/4/

√
2 = −0.5
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Fig. 3 Velocity and temperature profiles (relative to cross-section mean) for forced con-
vection with insulated walls and temporal heating. Dimensionless pressure gradient λ = 10.
Other details as in Figure 1.

with λ = 10 and N = 4 × 104. This approximately uniform flow produces
an approximately uniform temperature perturbation θ ∼ λ (from (16)) away
from the duct walls, but θ ∼ λ(1 − p) at the walls according to (60). As in
the case of fixed wall temperature, the velocity and temperature profiles are in
principle oscillatory, but with small N the wavelength of oscillations is greater
than the duct width whereas with large N they decay exponentially away from
the walls.

At O(λ2), (20) and (21) yield respectively

d4w2

dy4
=

(
dw1

dy

)2

− η2 , (61)

without pressure work, and

d4w2

dy4
+Nw2 =

(
dw1

dy

)2

− η2 (62)

when pressure work is included. Boundary conditions are

w′2(0) = 0, w′′′2 (0) = 0, w2(1) = 0, w′2(1) = 0, w′′′2 (1) = 0 . (63)

The solutions are

w2 = − 1

360
(1− y2)2(3− y2), θ2 =

2

45
− 1

12
(1− y2)2 (64)

without pressure work, and

w2 =
1

240p4(cosh 2p− cos 2p)2
×[

− 20(sinh2 2p− sin2 2p) + 10(cosh 2p cos 2p− 1)
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+6(cosh 2p− cos 2p)(cosh 2py − cos 2py) + 2 cosh 2py cos 2py

− cosh 2p(1 + y) cos 2p(1− y)− cosh 2p(1− y) cos 2p(1 + y)

+16(cosh 2p+ cos 2p)(cosh p(1 + y) cos p(1− y) + cosh p(1− y) cos p(1 + y))

+24(cosh 2p− cos 2p)(sinh p(1 + y) sin p(1− y) + sinh p(1− y) sin p(1 + y))

−32(cosh p(1 + y) cos p(1 + y) + cosh p(1− y) cos p(1− y))

]
, (65)

θ2 = =
1

30p2(cosh 2p− cos 2p)2
×[

− 3(cosh 2p− cos 2p)(cosh 2py + cos 2py) + 2 sinh 2py sin 2py

+ sinh 2p(1 + y) sin 2p(1− y) + sinh 2p(1− y) sin 2p(1 + y)

−4(cosh 2p+ cos 2p)(sinh p(1 + y) sin p(1− y) + sinh p(1− y) sin p(1 + y))

+6(cosh 2p− cos 2p)(cosh p(1 + y) cos p(1− y) + cosh p(1− y) cos p(1 + y)

−8(sinh p(1 + y) sin p(1 + y) + sinh p(1− y) sin p(1− y))

]
, (66)

when pressure work is included. The heating rate is

η2 =
1

3
(67)

in both cases: this is the value of heating rate produced by the Poiseuille flow
profile found at O(λ) without pressure work, and although that profile is per-
turbed when pressure work is present, the resulting change in heat generation
by viscous dissipation appears to be exactly compensated by heat generated
by pressure work at O(λ2).

Temerature profiles resulting from viscous dissipation at O(λ2) in Figure 3
are very different from those occurring with fixed wall temperatures (Figure 1).
In both cases, heat is generated mainly near the duct walls, where the velocity
gradient is greatest: with fixed-temperature walls, heat can be conducted out
through those walls as well as in towards the mid-plane of the duct, so the
greatest temperatures are found near the mid-plane; but when the walls are
insulated, the heat cannot be conducted out so the highest temperatures are
found where the heat is being generated. The relatively cooler temperatures
near the mid-plane in the latter case enhance the downward flow in this region.
These effects are seen in Figure 3 both in the case where pressure work is
excluded and where N = 4; in the latter case, viscous dissipation apparently
reverses the temperature trends produced by pressure work at O(λ), but this
is an artefact of the unrealistically large value of λ used in the plots; with
λ = 1, the temperature profile at O(λ2) (and in the numerical solution) is of
similar shape to that at O(λ), but reduced in magnitude. For N = 4 × 104,
viscous dissipation makes negligible change to the velocity and temperature
profiles which are controlled by pressure work.
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Given that λ = 10 is a rather large value of the “small” parameter in the
perturbation expansion, there is surprisingly good agreement between values
of η obtained in the numerical solutions and those found from the first few
terms of the expansion. This is particularly true in the case where pressure
work is dominant: with N = 4 × 104, p = 10, the numerical solution yields
η = 20,033.32, agreeing to six significant figures with

η = 2p3
sinh 2p− sin 2p

cosh 2p− cos 2p
λ+

1

3
λ2 (68)

(and to three significant figures with the first term in the expansion). With
N = 4, p = 1, the numerical solution gives η = 55.8858 whereas (68) gives
η = 46.3412, with a substantially greater contribution from the second term
(due to dissipative heating) than the first term (pressure work). If pressure
work is excluded, the numerical solution gives η = 43.4787; at O(λ2) in this
case, we have η ∼ λ2/3 = 33 1

3 , but a further term in this expansion has been
calculated,

η =
1

3
λ2 +

16

1890
λ3 , (69)

yielding a value of 41.7989 as the O(λ3) approximation to η.

We may ask whether these values of dimensionless heating rate η are phys-
ically reasonable. For this purpose we note that the conduction time scale over
a distance L is

tc =
L2

k/cρm
(70)

and that the fractional temperature change over this time scale is

tc
Tm

dT

dt
=

η

N
(71)

(from (13) and (14)). The duct width L is tied to the value of N for any given
fluid, and the values of tc with N = 4 are 9.9× 103s for water and 1.4× 105s
for glycerine, both at 20◦C. We have found η/N ≈ 14 with λ = 10 and N = 4,
so the temperature change in water would only remain small compared to
the absolute temperature for a matter of minutes – but as we have already
observed, λ = 10 does yield somewhat unrealistic results with N = 4, and the
rate of temperature change would be more reasonable with a smaller value of
λ. With N = 4× 104 the time scale tc is 100 times greater than with N = 4,
and we have found η/N ≈ 2, so the heating rate is more realsitic although this
value of N does imply a rather large duct.

Differences in velocity and temperature profiles between upwardly forced
flow (negative λ) and downward flow have been discussed in Section 3.1; the
same principles apply in the case of insulated walls, so we do not show results
computed with negative λ here.
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3.2.2 Streamwise heating

We set η = 0 in (20) and (21), and observe that the equation including pressure
work is now of the same form as that without pressure work, but with γ
replaced by N + γ. Thus the velocity and temperature profiles will be the
same in both cases, and the only change if pressure work is included will
be that the dimensionless streamwise temperature gradient will differ by an
amount N . From (20), we obtain

γ = −N +

∫ 1

0

(
dw

dy

)2

dy

/∫ 1

0

w dy (72)

in which the contribution from viscous dissipation (= dissipation rate / vol-
ume flux) is always O(λ), while the contribution from pressure work is simply
the adiabatic lapse rate, as can be seen by using (13) and (14) to write the
streamwise (vertical) temperature gradient in dimensioned variables:

dT

dZ
=
Γ

N
γ (73)

where Γ is the adiabatic lapse rate,

Γ =
gβTm
c

(74)

(in which we have assumed that the appropriate specific heat c does not differ
appreciably from cp, as should be the case in liquids). Values of Γ are 1.4 ×
10−4

◦
C.m−1 for water and 5.5× 10−4

◦
C.m−1 for glycerine, both at 20◦C. If

N � λ, so that pressure work is the main source of heating/cooling, the total
streamwise (i.e. vertical) temperature gradient will be given approximately
by the adiabatic lapse rate. In other cases, assuming always that λ ∼ O(1),
the streamwise temperature gradient could only be unreasonably large if N is
rather small, i.e. for a narrow duct.

The reason that pressure work does not affect the dynamics is that the
streamwise (vertical) temperature variation is not constrained by boundary
conditions in the present case. We could remove pressure work from the equa-
tions entirely by replacing the temperature with a potential temperature, as is
commonly done in meteorology; but even without doing that, we only need to
solve equation (21), in which pressure work is excluded. Expanding the velocity
and temperature according to (29) and (30), and the streamwise temperature
gradient as

γ = γ0 + λγ1 + λ2γ2 + . . . , (75)

we again find w0 ≡ 0 at O(1). Then at O(λ) (21) yields

d4w1

dy4
+ γ0w1 = 0, (76)
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with the boundary conditions (55). The solution at O(λ) is again Poiseuille
flow with no heating:

w1 = −1

2
(1− y2) , θ1 = 0, γ0 = 0 . (77)

Including pressure work would simply set γ0 = −N at this stage, and there
would be no change to subsequent calculations. At O(λ2) we have

d4w2

dy4
=

(
dw1

dy

)2

− γ1w1, (78)

with boundary conditions (63). The solution is

w2 = − 1

240
(1− y2)2(3− y2), θ2 =

1

15
− 1

8
(1− y2)2 (79)

with γ1 = −1. The velocity and temperature perturbations at this order are
simply 3/2 times those in the case of temporal heating. The leading-order
dimensionless temperature gradient is λγ1 = −λ, which is a temperature in-
crease in the direction of flow, as expected when heat is generated by viscous
dissipation. To obtain γ2 we need the solution at O(λ3): we have

d4w3

dy4
= 2

dw1

dy

dw2

dy
− γ1w2 − γ2w1 = 0 (80)

with boundary conditions on w3 of the same form as those on w2, yielding

γ2 = − 2

105
(81)

with

w3 = − 1

1209600
(1− y2)2(419− 291y2 + 109y4 − 13y6) , (82)

θ3 = − 56

32175
− 1

11440
(1− y2)3(45− 13y2) . (83)

Velocity and temperature profiles are rather similar to those found with
temporal heating in the absence of pressure work, so by way of contrast to Fig-
ure 3, we show profiles for upward flow (negative λ) in Figure 4. Dissipative
heating is greatest near the wall, where the velocity gradient has largest mag-
nitude. The relatively cooler fluid near the mid-plane experiences a downward
buoyancy force, reducing the velocity of an upward flow at O(λ2) (Figure 4)
or increasing a downward velocity (Figure 3). This in turn reduces the magni-
tude of dissipative heating in upward flow, but increases it in downward flow;
the consequent increase or decrease of the cross-stream temperature contrast
at O(λ3) changes the buoyancy force and hence affects the velocity profile at
O(λ3).
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tion with insulated walls and streamwise heating. Dimensionless pressure gradient λ = −10.
Expansions to O(λ) (long-dashed curves), O(λ2) (solid curves) and O(λ3) (dotted curves),
together with numerical solution (short-dashed curves).

3.3 Free convection with fixed wall temperatures

To solve (17) and (18) with the boundary conditions (24), we expand in powers
of the dimensionless imposed temperature difference Θ:

w = w0 +Θw1 +Θ2w2 + . . . , (84)

θ = θ0 +Θθ1 +Θ2θ2 + . . . . (85)

As with forced convection, we obtain w0 ≡ 0. Next, equations (31) and (32)
apply at O(Θ), but with boundary conditions

w1(−1) = 0, w1(1) = 0, w′1(1)− w′1(−1) = 0, w′′1 (1)− w′′1 (−1) = −1 .
(86)

Without pressure work, we find the velocity and temperature profiles associ-
ated with simple conduction of heat from the hotter to the cooler wall:

w1 =
1

12
y(1− y2), θ1 − θ1M =

1

2
y . (87)

If pressure work is included, the solution of (32) is

w1 =
sinh p(1 + y) sin p(1− y)− sinh p(1− y) sin p(1 + y)

4p2(cosh 2p− cos 2p)
(88)

with

θ1 − θ1M =
cosh p(1 + y) cos p(1− y)− cosh p(1− y) cos p(1 + y)

2(cosh 2p− cos 2p)
. (89)

With no viscous dissipation at O(Θ), these profiles are antisymmetric, and
are shown by long-dashed curves in Figure 5, in which we display profiles for
N = 400 rather than N = 4 as was done for forced convection, since in the
present case the profiles with N = 4 differ little from those in which pressure
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work is excluded. For these antisymmetric profiles, θ1M = 0, i.e. at O(Θ) the
mean of the wall temperatures is equal to the cross-section mean.

Most of the comments in Section 3.1 relating to the effects of pressure
work still apply here; indeed, in the case N = 4 × 104 where pressure work
dominates, the velocity profiles in Figures 2 and 5 are very similar. In both
cases the buoyancy force resulting from the cooling/heating due to pressure
work opposes the primary flow; if N is large, this results in the fluid being
almost stationary except near the walls. The difference between the two cases
is that here it is a temperature boundary condition which cannot be satisfied
by static fluid, whereas in forced convection it was a shear-stress boundary
condition. The boundary layer thickness is still δ ∼ N−1/4, but the velocity
in the boundary layer is now given by (23) as w ∼ Θδ2 ∼ ΘN−1/2. Viscous
dissipation in the boundary layer is then (dw/dy)2 ∼ Θ2N−1/2, and so is
only of similar magnitude to pressure work if Θ ∼ N , which would certainly
invalidate the Boussinesq approximation since it means that the temperature
difference between the walls is of similar magnitude to the absolute mean
temperature.

At O(Θ2), equations (39) and (40) apply, with boundary conditions

w2(−1) = 0, w2(1) = 0, w′2(1)−w′2(−1) = 0, w′′2 (1)−w′′2 (−1) = 0 . (90)

The solution without pressure work is

w2 =
1

241920
(1−y2)2(41−10y2+9y4) , θ−θ2M =

1

1440
(1−y2)(3−2y2+3y4) ,

(91)
whereas if pressure work is included we obtain

w2 =
1

1920p6(cosh 2p− cos 2p)2

[
− 30 sinh 2p sin 2p+ 2 sinh 2py sin 2py

+6(cosh 2p− cos 2p)(cosh 2py + cos 2py)

+ sinh 2p(1 + y) sin 2p(1− y) + sinh 2p(1− y) sin 2p(1 + y)

+
2

sinh 2p+ sin 2p
(14 sinh 2p sin 2p− 3 sinh2 2p− 3 sin2 2p)×(

sinh p(1 + y) cos p(1− y) + sinh p(1− y) cos p(1 + y)

+ cosh p(1 + y) sin p(1− y) + cosh p(1− y) sin p(1 + y)
)

+
8

sinh 2p+ sin 2p
(cosh 2p− cos 2p)(sinh 2p− sin 2p)×

(sinh p(1 + y) sin p(1− y) + sinh p(1− y) sin p(1 + y))

]
, (92)

θ2 − θ2M =
1

480p4(cosh 2p− cos 2p)2(sinh 2p+ sin 2p)

[
(sinh 2p− sin 2p)3



24 Anthony Kay.

y y y

y y y

w w w

θ - θM

-2 -2 -2

-4
-4 -4

2 2 2

4
4 4

-0.05

0.05

-0.005

0.005

-0.010

0.010

-0.3

-0.2

-0.1

0.3

0.1

0.2

1.0 1.0 1.0

1.0 1.0 1.0

-0.5

-0.5 -0.5

-0.5 -0.5

-0.5

0.5 0.5

0.5 0.5

0.5

0.5-1.0-1.0-1.0

-1.0 -1.0 -1.0

θ - θM θ - θM

Fig. 5 Velocity and temperature profiles (relative to mean of wall temperatures) for free
convection with dimensionless temperature difference Θ = 10 between walls. Left: excluding
pressure work. Centre: with N = 400. Right: with N = 4 × 104. Long-dashed curves:
expansions to O(Θ). Solid curves: expansions to O(Θ2). Short-dashed curves: numerical
solutions (although these are indistinguishable from expansions to O(Θ2) in every case).

−8 sinh 2p sin 2p(sinh 2p− sin 2p) + 8(1− cosh 2p cos 2p)(sinh 2p+ sin 2p)

−4 cosh 2py cos 2py(sinh 2p+ sin 2p)

−6(cosh 2p− cos 2p)(sinh 2p+ sin 2p)(cosh 2py − cos 2py)

+2(sinh 2p+ sin 2p)(cosh 2p(1 + y) cos 2p(1− y) + cosh 2p(1− y) cos 2p(1 + y))

−(14 sinh 2p sin 2p− 3 sinh2 2p− 3 sin2 2p)×(
cosh p(1 + y) sin p(1− y)− sinh p(1 + y) cos p(1− y)

+(cosh p(1− y) sin p(1 + y)− sinh p(1− y) cos p(1 + y)
)

+4(cosh 2p− cos 2p)(sinh 2p− sin 2p)×

(cosh p(1 + y) cos p(1− y) + cosh p(1− y) cos p(1 + y))

]
. (93)

Effects of viscous dissipation (i.e. differences between O(Θ2) and O(Θ)
profiles) are only visible in Figure 5 in the case without pressure work, and
are rather small even there; the fluid is warmed, and there is a consequent
increase in upward velocity (or decrease in velocity where it is downward).
The magnitude of these effects may be measured by considering temperature
and velocity at the mid-plane y = 0: according to the numerical solution,
θ− θM = 0.2084 and w = 0.0170 at y = 0 for the case in which pressure work
is excluded, with Θ = 10. These values decrease as N increases when pressure
work is included, making the profiles more nearly antisymmetric as pressure
work becomes more dominant.

In order to satisfy the Boussinesq approximation, we require Θ to be small
compared to N , so that temperature variations are small compared to absolute
temperatures. This is satisfied in all the cases illustrated in Figure 5 (with N



Pressure work and viscous dissipation 25

being arbitrary where pressure work is excluded), although the large values of
N do imply rather large duct widths.

3.4 Free convection with fixed wall heat fluxes

We seek solutions of (20) and (21) with boundary conditions (25), both for the
case of temporal heating (γ = 0) and for streamwise heating (η = 0), although
we shall see below that for the latter case no solution exists with the equal
and opposite wall heat fluxes represented by (25).

3.4.1 Temporal heating

We expand the velocity, temperature and heating rate in powers of the wall
heat flux q:

w = w0 + qw1 + q2w2 + . . . , (94)

θ = θ0 + qθ1 + q2θ2 + . . . , (95)

η = η0 + qη1 + q2η2 + . . . . (96)

As in previous cases, we have w0 ≡ 0. At O(q), equations (53) and (54) apply,
but with boundary conditions

w1(−1) = 0, w1(1) = 0, w′1(1)− w′1(−1) = 0, w′′′1 (−1) = −1, w′′′1 (1) = −1 .
(97)

The solutions are the same antisymmetric profiles (apart from constant multi-
pliers) as were found for free convection driven by unequal wall temperatures:

w1 =
1

6
y(1− y2), θ1 = y (98)

if pressure work is excluded, or

w1 =
sinh p(1 + y) sin p(1− y)− sinh p(1− y) sin p(1 + y)

2p3(sinh 2p+ sin 2p)
(99)

with

θ1 =
cosh p(1 + y) cos p(1− y)− cosh p(1− y) cos p(1 + y)

p(sinh 2p+ sin 2p)
(100)

including pressure work; compare equations (87) – (89). The O(q) heating rate
is

η1 = 0 (101)

even when pressure work is included: in the antisymmetric flow, any heating
in the downward moving fluid is exactly compensated by cooling in the up-
ward moving fluid. This special circumstance means that the sort of scaling
arguments for velocity and heating rate that were used in the case of forced
convection with insulated walls do not necessarily apply here. Starting with
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Fig. 6 Velocity and temperature profiles (relative to cross-section mean) for free convection
driven by antisymmetric wall heat flux |q| = 10. Other details as in figure 5.

the heat-flux boundary condition d3w/dy3 = −q, we have w ∼ q, dw/dy ∼ q
and θ = −d2w/dy2 ∼ q if there is no pressure work or if N is not large. With-
out pressure work, (49) applies and we have η ∼ q2. With pressure work and
with moderate N , we would expect η ∼ −Nw as for forced convection with
insulated walls; but for our antisymmetric case the net heating by pressure
work is small, so the heating rate is still governed by viscous dissipation, with
the same scaling as in the absence of pressure work. Similarly, in the case of
large N where we might expect the velocity scaling to be w ∼ η/N as for
forced convection with insulated walls, the present antisymmetric boundary
conditions yield w ∼ 0 except in boundary layers of thickness δ ∼ N−1/4

adjacent to the walls. Within these boundary layers, w ∼ qδ3/4 ∼ qN−3/4,
dw/dy ∼ qN−1/2 and θ ∼ qN−1/4; inserting the scaling for dw/dy into (49)
suggests that η ∼ q2N−1δ ∼ q2N−5/4, although we shall in fact find that
η ∼ q2N−1. The scalings for w and θ in the boundary layer are in accord
with the large-p limits of the O(q) velocity and temperature near y = ±1 from
equations (99) and (100), i.e. w ∼ (q/2p3) sin p(1∓ y), θ ∼ (q/p) cos p(1∓ y).

At O(q2) we need to solve (61) and (62) with boundary conditions

w2(−1) = 0, w2(1) = 0, w′2(1)− w′2(−1) = 0, w′′′2 (−1) = 0, w′′′2 (1) = 0 .
(102)

Excluding pressure work, we find

w2 = − 1

60480
(1−y2)2(15+10y2−9y4), θ2 =

2

945
− 1

360
(1−y2)2(1+3y2) ,

(103)
with heating rate

η2 =
1

45
. (104)
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If pressure work is included,

w2 =
1

480p8(sinh 2p+ sin 2p)2

[
− 6(sinh2 2p+ sin2 2p+ 3 sinh 2p sin 2p)

+6(cosh 2p− cos 2p)(cosh 2py + cos 2py) + 2 sinh 2py sin 2py

+ sinh 2p(1 + y) sin 2p(1− y) + sinh 2p(1− y) sin 2p(1 + y)

+8 sinh 2p(cosh p(1 + y) sin p(1− y) + cosh p(1− y) sin p(1 + y))

+8 sin 2p(sinh p(1 + y) cos p(1− y) + sinh p(1− y) cos p(1 + y))

]
,

(105)

θ2 =
1

60p6(sinh 2p+ sin 2p)2

[
− 3(cosh 2p− cos 2p)(cosh 2py − cos 2py)− 2 cosh 2py cos 2py

+ cosh 2p(1 + y) cos 2p(1− y) + cosh 2p(1− y) cos 2p(1 + y)

+2 sinh 2p(sinh p(1 + y) cos p(1− y) + sinh p(1− y) cos p(1 + y))

−2 sin 2p(cosh p(1 + y) sin p(1− y) + cosh p(1− y) sin p(1 + y))

]
, (106)

with

η2 =
1

20p4
(sinh 2p− sin 2p)2

(sinh 2p+ sin 2p)2
. (107)

The velocity and temperature profiles, to O(q) and O(q2) and from a numerical
solution, are plotted in Figure 6 for the same cases as in Figure 5: no pressure
work,N = 400 andN = 4×104. The most obvious features are the similarity to
the profiles in Figure 5 for free convection with fixed wall temperatures, and
the closeness of the numerical and O(q2) profiles to the O(q) profiles: even
though the net heating rate is governed by viscous dissipation (at O(q2)), this
has very little effect on the velocity and temperature profiles.

Our perturbation solutions yield η ≈ q2/45 without pressure work and
η ≈ q2/5N when N is large. In the former case the numerical solution with
q = 10 gives η = 2.2153, compared to q2/45 = 2.2222. Including pressure work
and taking q = 10 and N = 400, the numerical solution yields η = 0.04996,
very close to q2/5N = 0.05 even though N is not large enough for the profiles
to take the boundary-layer form. The values of η for free convection with
q = 10 are somewhat smaller than those found for forced convection with
λ = 10, so the heating rates will remain realistic for a correspondingly longer
time period. Temperature variations should be small compared to N in order
that the Boussinesq approximation be valid, and this requirement is satisfied
for all cases shown in Figure 6, bearing in mind that N is arbitrary when
pressure work is excluded.
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3.4.2 Streamwise heating

We now seek to solve (21) with η = 0; we do not need to consider the case in
which pressure work is included explicitly, for the reasons given in relation to
forced convection with streamwise heating (Section 3.2.2 above). The velocity
and temperature are expanded according to (94) and(95), and the streamwise
temperature gradient is expanded similarly:

γ = γ0 + qγ1 + q2γ2 + . . . . (108)

We find w0 ≡ 0, and then at O(q) we need to solve

d4w1

dy4
+ γ0w1 = 0 (109)

with the boundary conditions (97). Solutions at O(q) are available for each of
the cases, γ0 = 0, γ0 > 0 and γ0 < 0. Taking firstly γ0 = 0, we find

w1 =
1

6
y(1− y2) , (110)

the same O(q) profile as with temporal heating. At O(q2) we have

d4w2

dy4
=

(
dw1

dy

)2

− γ1w1 − γ0w2 . (111)

Substituting γ0 = 0 and w1 from (110) into the right-hand side of (111), and
integrating once, we obtain

w′′′2 =
1

180
(5y − 10y3 + 9y5)− γ1

24
(2y2 − y4) +A , (112)

where A is a constant of integration. However, we need to satisfy the boundary
conditions

w2(−1) = 0, w2(1) = 0, (113)

which cannot simultaneously be satisfied by (112) since the undetermined
constants γ1 and A only apply to the even part of the solution. Similar con-
tradictions are obtained if we take γ0 > 0 or γ0 < 0, but we do not display
the rather messy calculations required in these cases. Hence we conclude that
no perturbation solution exists. Attempts to find a numerical solution of (21)
with η = 0 and boundary conditions (25) also fail: specifically, taking q = 10,
we have enforced the first four conditions of (25) and sought a value of γ for
which the fifth condition is satisfied. Increasing the magnitude of γ, either
positive or negative, yields values of w′′′(1) that approach the required value
of −q, but we are unable to satisfy w′′′(1) = −q for any finite γ.

The reason for the non-existence of a solution with antisymmetric heat
flux conditions and only streamwise heating is easy to see. The wall heat flux
conditions tend to produce an antisymmetric flow, which then generates heat
by viscous dissipation. This heat is to be removed by advection, requiring a
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temperature gradient in the direction of flow: this is not possible with a sup-
posed uniform temperature gradient and an antisymmetric flow, even allowing
for the antisymmetry of the flow being perturbed by buoyancy forces due to
the heat being generated.

4 Conclusions

We have solved equations for fully developed flow in a vertical channel, with
particular attention to the effects of pressure work and viscous dissipation in
the energy equation. By using perturbation expansions we have been able to
separate the effects of these two processes: pressure work comes in at first
order, while dissipation only appears at second order in the velocity.

If the vertical temperature variation is unconstrained, pressure work simply
results in cooling or warming of the fluid at the adiabatic lapse rate. Among
the various boundary conditions that we have considered, this case only applies
when heat flux (rather than temperature) is specified at the channel walls and
when streamwise temperature variations are allowed. Pressure work then plays
no further role in the dynamics, so can be excluded from the energy equation
once the adiabatic cooling or warming is accounted for.

It is argued by Barletta [5,6] that pressure work should in any case be
excluded from the energy equation when the Boussinesq approximation is ap-
plied, although Schneider [13] insists that it should be included. The present
analysis does not resolve this argument; however, by presenting solutions us-
ing the energy equation both with and without the pressure work term, it
clarifies the effect of including or excluding it. The argument could in prin-
ciple be resolved by comparing these solutions with results obtained either
from experiments or from numerical computations using equations without
any approximation.

Our perturbation expansions are in terms of dimensionless forcing param-
eters, λ for forced convection or Θ or q for free convection, each of which
is proportional to a further dimensionless parameter N as well as to the re-
spective pressure gradient, temperature difference or heat flux that is driving
the flow (see equations (26) – (28)). Now, N may be considered a geometric
parameter, being proportional to the fourth power of the channel width (and
otherwise dependent only on supposedly fixed physical properties of the work-
ing fluid); but where pressure work is included in the energy equation, it also
expresses the relative importance of pressure work and viscous dissipation.
Pressure work results in temperature changes which always yield a buoyancy
force opposed to the motion. However, the drivers of the motion in all cases
act at the channel walls (an applied pressure gradient only appearing in the
equations for fully developed flow as a wall shear stress, while free convection is
driven by differences in wall temperatures or by wall heat fluxes). Thus, when
N is large, the pressure work (if included in the equations) can extinguish the
flow except in boundary layers close to the walls of the broad channel. These
boundary layers are always of dimensionless width ∼ N−1/4, because the (di-
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mensioned) width of the boundary layer must be independent of the channel
width.

All plotted results are with the relevant dimensionless forcing parameter
having magnitude 10. The plots show that viscous dissipation has very little
effect on free convection flows, whether driven by temperature differences or
heat fluxes at the walls: figures 5 and 6 show very little difference between
the first-order perturbation solutions and the numerical solutions of the full
equations. Viscous dissipation does appear to play a greater role in forced
convection, except where pressure work is included and N is very large; how-
ever, it should be noted that when N is not large and λ = ±10, conversion
to dimensioned variables reveals the calculated flows to be somewhat unre-
alistic, or at least outside the regime where the Boussinesq approximation is
justified. We have chosen the rather large magnitude for λ to bring out the
effects of pressure work and viscous dissipation, but we then require a rather
large channel to prevent temperature variations being greater than the abso-
lute temperature (which occurs if θ − θw > N , see (27)) or velocities being
unrealistically large: note that the dimensioned velocity is

W =

(
kTm
µ

)1/2

N−1/2w (114)

where (kTm/µ)1/2 ≈ 416 m.s−1 in water, but 7.7 m.s−1 in glycerine at a tem-
perature of 293K. Thus realistic flows on a laboratory scale (with N not large)
would require smaller values of dimensionless pressure gradient λ, with the ef-
fects of viscous dissipation (of order λ2) being accordingly smaller than shown
in Figures 1 – 4. For flows on large industrial or geophysical scales, the differ-
ences between flows predicted using the formulations with or without pressure
work are greater, with viscous dissipation possibly playing a major role if the
latter formulation is correct, but pressure work being totally dominant in the
former case.
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