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Some implications of superconducting quantum interference to the application of master equations
in engineering quantum technologies
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In this paper we consider the modeling and simulation of open quantum systems from a device engineering
perspective. We derive master equations at different levels of approximation for a superconducting quantum
interference device (SQUID) ring coupled to an ohmic bath. We demonstrate that the master equations we consider
produce decoherences that are qualitatively and quantitatively dependent on both the level of approximation and
the ring’s external flux bias. We discuss the issues raised when seeking to obtain Lindbladian dissipation and
show, in this case, that the external flux (which may be considered to be a control variable in some applications)
is not confined to the Hamiltonian, as often assumed in quantum control, but also appears in the Lindblad terms.
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I. INTRODUCTION

With its ability to provide substantial cost savings and
speed up the exploration of parameter space, modeling and
simulation play a central role in the engineering process.
As quantum technologies (QTs) move away from laboratory
demonstrations and become integrated into consumer systems,
accurate modeling will become increasingly important [1–5].
Here robust, and generally hierarchical, quantitative simula-
tions will be required which are capable of accurately and reli-
ably predicting the behavior of the system-under-development
at different levels of abstraction. The ultimate ambition of this
approach being to achieve a level of realism that would enable
the sort of zero prototyping that occurs in the design of very
large scale integrated (VLSI) microelectronics and which is
also now becoming an aim of the automotive and other indus-
tries. Given the intractability by classical means of modeling
complex quantum systems, it is an open question as to how
well and how far this design paradigm can be translated to the
engineering of quantum technologies. Consequently, there is a
need to investigate the extent to which it is possible to develop
a hierarchy of system models that is able to provide, from
a design perspective, usefully accurate modeling, simulation,
and figures of merit at the component, device, and system level.

Before one might consider developing such a system level
view, it is also necessary to establish the effectiveness of exist-
ing device level models and the degree to which these might be
leveraged for such applications. Of particular interest, at this
stage, is the quantitative accuracy of models of open systems
for single quantum objects, such as the case of a classical
device acting as the environment for some quantum compo-
nent. Ultimately such models will need to include time-varying
parameters such as in the case, for example, of the feedback
and control of a quantum resource. One standard approach that
might prove effective in forming part of an engineering design
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strategy, derives from the application of quantum master
equations, as these provide a generic pathway for the modeling
of a quantum system and its interaction with the environment.
Master equations have become a standard tool in this regard
as they promise a means of extracting system properties from
environmental influences. It is a general view that the dynamics
described is in good qualitative agreement with the ensemble
average of the system being studied, and that deviations of
theory from experimental observations can be brought into
acceptable line by fine tuning model parameters, leading to the
conclusion that master equations provide a good phenomeno-
logical approach [6–8]. The most widely used master equations
are memoryless, and take the Lindblad form [9–12]

dρS

dt
= − i

�
[ĤS,ρS] + 1

2

∑
j

{[L̂j ,ρSL̂
†
j ] + [L̂jρS,L̂

†
j ]}, (1)

where ρS is the reduced density operator of the system, ĤS

is the system Hamiltonian, and the L̂j account for the effects
of the environmental degrees of freedom. Lindblad master
equations dominate work on open quantum systems as they
conserve probability (i.e., Tr [ρS] = 1) and ensure that ρS

is at least physically acceptable (i.e., there are no negative
probabilities, etc.). Master equations of non-Lindblad form,
on the other hand, usually will lead to some situations which
are unphysical [10–14].

In this work we seek to explore how effective the master
equation approach might be in engineering superconducting
quantum devices, and in particular for the case of the su-
perconducting quantum interference device (SQUID) ring (an
LC circuit enclosing a Josephson junction weak link) coupled
to a low temperature ohmic bath, with cut-off frequency �.
We note that Josephson junction based devices are currently
of significant technological importance, with applications in
quantum computation (e.g., D-Wave, IBM, and Google) and
metrology. Beyond their significance for emerging quantum
technologies, there are two further reasons we have chosen
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to investigate the decoherence of SQUIDs as an example
Josepheson junction device.

First, the contribution to the Hamiltonian of the Josephson
junction term brings with it nontrivial mathematical properties
which test the suitability of master equations to quantita-
tive engineering applications (including potentially control
through the externally applied flux �x). Recent work has
provided an exact solution to the similar (but simpler) quantum
Brownian motion (QBM) problem (in a quadratic well) to all
orders of Born approximation. The solution [15,16] displays
a logarithmic dependence on � which indicates the general
result for such problems that the limit � → ∞ does not exist
(i.e., � is finite) and, additionally, highlights the importance
of parametrizing the bath properly. The common practice of
terminating master equations at first order in ω0/� (where
ω0 = 1/

√
LC is a characteristic frequency in the system)

assumes that an expansion to second order will only produce
small corrections.

The second reason for our choice of system is that it
allows us to investigate the issues in the standard derivation
of the master equation for a SQUID/ohmic environment for
a hierarchy of models, in which ω0/� plays the role of a
small expansion parameter. Thus, first and second order master
equations are obtained, using what might be termed standard
techniques, and compared through quantities at the steady
state, such as purity and screening current. The difficulties in
such analysis are discussed and the generally bespoke nature
of such methods highlighted. Finally, while a higher order
Born series approximation might be more valuable, the issues
which arise in the current, simpler analysis are quite significant
enough and are likely to be indicative of those considerations
that an investigation of stronger coupling through a Born series
would require.

II. MODEL—A SQUID WITH A LOSSY BATH

The system considered here consists of a SQUID ring
coupled to an ohmic bath represented by an infinite number
of harmonic oscillators at absolute zero temperature. Ideally,
the Hamiltonian for this system should be derived from a
full quantum field theoretic description or from a general
quantum circuit model (see, for example, [17]), and such
analysis would certainly be needed for any application of
this method to the engineering of a specific quantum device,
however its inclusion here would complicate our presentation
and distract from our central discussion of the issues associated
with deriving master equations for superconducting systems.
The Hamiltonian for the system is therefore taken to be of
the form Ĥ = ĤS + ĤB + ĤI , which is simply the sum of
the Hamiltonians of the SQUID ĤS , the bath ĤB , and the
interaction between them ĤI , given by

ĤS = Q̂2

2C
+ (�̂ − �x)2

2L
− �ν cos

(
2π�̂

�0

)
,

ĤB =
∑

n

Q̂2
n

2Cn

+ �̂2
n

2Ln

,

ĤI = −(�̂ − �x)
∑

n

κn�̂n, (2)

where Q̂, Q̂n, �̂, and �̂n (n = 1,2, . . . ) represent the charge
and flux operators of the system and bath modes, respectively,
so that [�̂,Q̂] = [�̂n,Q̂n] = i�, �x is an externally applied
flux, and L,C and the Ln,Cn are the inductance and capaci-
tance values in each subsystem. As the Hamiltonian has not
been derived from a complete circuit model, the parameters
must be considered as being the effective values that arise
through the coupling of the components together—thus for
example L and the Ln are effective inductances. The bath
mode coupling strength κn is related to a system damping rate
γ through the explicit expression of the bath spectral density
and correlation functions [11]. We note that, as is usually the
case with this sort of “particle confined by a potential” system,
we have not included any capacitive (momentum) coupling; its
inclusion would naturally change the analysis which follows.

The SQUID Hamiltonian may be simplified to that of an
unshifted harmonic oscillator plus a perturbation term through
the unitary translation operator T̂ = exp (−iQ̂�x/�). The
system Hamiltonians acting in the translated (external flux)
basis may then be written as [18–20]

Ĥ ′
S = T̂ †ĤST̂ = Q̂2

2C
+ �̂2

2L
− �ν cos

[
2π

�0
(�̂ + �x)

]
,

Ĥ ′
B = T̂ †ĤBT̂ = ĤB =

∑
n

Q̂2
n

2Cn

+ �̂2
n

2Ln

,

Ĥ ′
I = T̂ †ĤI T̂ = −�̂

∑
n

κn�̂n = −�̂B̂, (3)

where we have introduced B̂ as a shorthand for the bath
operator

∑
n κn�̂n and will drop the primed notation from now

on. As usual, as long as there is no explicit time dependence in
the total Hamiltonian Ĥ = ĤS + ĤB + ĤI , the Schrödinger
and the Liouville–von Neumann equations are unaltered by
the translation. If the external flux is time dependent there
will arise additional terms in Ĥ ′

S due to this translation of the
form Q̂�̇x—however these would be small in the adiabatic
limit [21].

III. REVIEW OF DERIVING THE GENERAL FORM OF
THE MASTER EQUATION

The derivation of the master equation can now follow
standard textbook methods, we include this discussion for
coherence within the paper, however the reader who is familiar
with such material may wish to move forward to Sec. IV. The
dynamics of the system+bath is given by the Liouville–von
Neumann equation:

dρ(t)

dt
= − i

�
[Ĥ ,ρ(t)]. (4)

As it is not generally possible to solve this equation, ana-
lytically or numerically, we derive a master equation that
approximates the dynamics of the reduced density matrix ρ̃S(t)
for the SQUID ring. Rotating the system into the interaction
picture, Eq. (4) becomes

dρ̃(t)

dt
= − i

�
[H̃I (t),ρ̃(t)], (5)
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where we define Ã = ei(ĤS+ĤB )t/�Âe−i(ĤS+ĤB )t/� as the rotated
version of an operator Â. Integrating Eq. (5) yields

ρ̃(t) = ρ̃(0) − i

�

∫ t

0
ds[H̃I (s),ρ̃(s)]. (6)

It is usual, at this stage, to apply a set of assumptions which are
collectively known as the Born-Markov approximation. This
starts with the assumption that, at some time in the past which
we label t = 0, the bath and system were uncorrelated, i.e., in
a separable pure state, so that ρ̃(0) = ρ̃S(0) ⊗ ρ̃B(0), where ρ̃S

and ρ̃B are the reduced density matrices for the SQUID ring
and bath, respectively. This approximation is generally sound
in quantum optics but may not hold so well for condensed
matter systems. It is not clear whether non-Markovian master
equations will become necessary in such cases, however these
bring with them a number of additional challenges that are
beyond the scope of this work. For now we impose the
uncorrelated assumption and we justify it as being valid at
the point that the superconducting condensate first forms.
That is, if the condensation process removes any existing
correlations between the electrons and their environment, then
this approximation is acceptable and t = 0 is taken to be the
time at condensation.

Substituting the expression for ρ̃(t) into the Liouville–
von Neumann equation in the interaction picture, Eq. (5)
gives

dρ̃(t)

dt
= − i

�
[H̃I (t),ρ̃(0)] − 1

�2

∫ t

0
ds[H̃I (t),[H̃I (s),ρ̃(s)]].

(7)

If further we apply the standard Markovian restriction that the
bath is memoryless, it is possible to extend this to ρ̃(t) =
ρ̃S(t) ⊗ ρ̃B(t), although previous studies of fully quantum
mechanical models of electromagnetic fields with SQUID
rings show that there may be significant back-action between
the ring and its environment which cannot be captured by
this approximation [19,20,22–24]. However, it does allow for
a further assumption that the bath is sufficiently big that the
SQUID ring will have a negligible effect on it, so that we may
take ρ̃B(t) as approximately constant.

Such considerations already raise the prospect that the
Born-Markov approximation may be inadequate for the ac-
curate study of condensed matter systems, limiting the use of
master equations in the modeling and simulation for quanti-
tative applications as part of an engineering solution; at best
they may offer only a phenomenological tool. Despite these
difficulties, such phenomenological models are important and
an investigation of their predictions is still worthwhile and
we proceed on that basis. The consequence is that Eq. (7)
simplifies to

dρ̃S(t)

dt
⊗ ρ̃B = − i

�
[H̃I (t),ρ̃S(0) ⊗ ρ̃B]

− 1

�2

∫ t

0
ds[H̃I (t),[H̃I (s),ρ̃S(s) ⊗ ρ̃B]].

(8)

To obtain the master equation for the SQUID ring dynamics,
the environment is traced out to yield

dρ̃S(t)

dt
= − i

�
TrB ([H̃I (t),ρ̃S(0) ⊗ ρB])

− 1

�2

∫ t

0
ds TrB ([H̃I (t),[H̃I (s),ρ̃S(s) ⊗ ρ̃B]]).

(9)

For a system, linearly coupled to the environment as here, we
assume a ohmic bath with zero mean so that the first term
above vanishes to give

dρ̃S(t)

dt
= − 1

�2

∫ t

0
ds TrB ([H̃I (t),[H̃I (s),ρ̃S(s) ⊗ ρ̃B]]).

(10)

We note that there is increasing interest on the effect of
nonlinear couplings between systems (such as those with a
Kerr type nonlinearity) [25,26]. In such circumstances, as
here, the approximations used in the standard derivation of
the master equation would need to be examined in detail. The
Markovian approximation further assumes that the system is
only dependent on its current state and not on its state at
earlier times which allows the replacement ρS(s) → ρS(t) to
be applied. Substitution into Eq. (10) then leads to the Redfield
equation [6]:

dρ̃S(t)

dt
= − 1

�2

∫ t

0
ds TrB{[H̃I (t),[H̃I (s),ρ̃S(t) ⊗ ρ̃B]]}.

The correlations with the system at different times may be
made clearer by the change of variables s = t − τ , where τ

is interpreted as the relaxation time for the system. In the
Markovian limit, memory effects must be short lived and
the integrand within the dissipator decays very quickly for τ

much larger than the bath correlation time. With our previous
discussion of the validity of the Markovian approximation
and caveats in mind, the limits of integration can therefore be
extended to infinity (essentially here this requires t � 1/�).
This change of variable, together with interchanging the limits
of integration, gives the general form of the master equation
in the interaction picture:

dρ̃S(t)

dt
= − 1

�2

∫ ∞

0
dτ

× TrB{[H̃I (t),[H̃I (t − τ ),ρ̃S(t) ⊗ ρ̃B]]}. (11)

Finally, rotating these equations back into the Schrödinger
picture yields the dynamics for the system’s reduced density
matrix as

dρS(t)

dt
= − i

�
[ĤS,ρS(t)]

− 1

�2

∫ ∞

0
dτ TrB{[ĤI ,[ĤI (−τ ),ρS(t) ⊗ ρ̃B]]}

(12)

as for linear coupling and a time-independent Hamiltonian
�̂(−τ ) = e−iĤSτ/��̂eiĤSτ/� (as �̂ commutes with ĤI and
ĤB). This equation is of the form of a modified Liouville–
von Neumann equation. The first term describes the free
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evolution of the system while the second term, the dissipator,
represents nonunitary loss. Note that rotation to and from the
interaction picture will be significantly more complex with
a time-dependent external flux, or if the device dynamics
includes a time-varying controller.

Using the SQUID-environment interaction Hamiltonian
above, and expanding the commutators within the integral,
this can be written in the form

dρS(t)

dt
= − i

�
[ĤS,ρS(t)] + 1

�2

∫ ∞

0
dτ

×
(

i

2
D(−τ )[�̂,{�̂(−τ ),ρS(t)}]

− 1

2
D1(−τ )[�̂,[�̂(−τ ),ρS(t)]]

)
. (13)

Here ρS(t) describes the reduced density matrix in the
external flux basis and [·] and {·} denote commutators and
anticommtutators, respectively. As the terms in the integrand
of Eq. (13) are both commutators, the cyclic property of
Tr ensures that Tr(dρ/dt) = 0, thus Tr(ρ) = 1 for all t .
However Lindblad form is not assured. The functions D

and D1 are related to the bath correlation function B by
[11]

D1(−τ ) + iD(−τ ) = 2〈BB(−τ )〉B, (14)

where the expectation value with respect to the bath is given
by 〈BB(−τ )〉B = TrB{BB(−τ )ρB}. In this case, the coupling
constants κn in Eq. (2) are determined by a quasicontinuous
spectral density J (ω), which describes the absorption and
emission of energy arising from the coupling to the environ-
ment. The dissipation and noise kernels can be written in terms
of the spectral density as [11]

D(−τ ) = 2�

∫ ∞

0
dωJ (ω) sin (ωτ ),

D1(−τ ) = 2�

∫ ∞

0
dωJ (ω) coth

(
�ω

2kBT

)
cos (ωτ ). (15)

While the first expression is easy to evaluate for an ohmic
bath, the second requires the separation into slowly and rapidly
oscillating terms, as indicated in [14], which enables us to write
D1(−τ ) as approximately

D1(−τ ) = ω0

2
coth

(
�ω0

2kBT

) ∫ ∞

0
dω

J (ω)

ω
cos (ωτ ). (16)

For an ohmic bath with a Lorentz-Drude cut-off function, with
cut-off frequency �, the spectral density is given by

J (ω) = 2Cγ

π
ω

�2

�2 + ω2
, (17)

where ω is a bath frequency and γ represents the damping rate
of the system.

In this case, the dissipation [11] and noise [14] kernels
D(−τ ) and D1(−τ ) may be written, respectively, as

D(−τ ) = 2Cγ ��2e−�|τ | sgn τ,

D1(−τ ) = C�γ�ω0 coth

(
�ω0

4kBT

)
e−�|τ |

in the mid-low temperature regime [11,14], for system thermal
energy kBT . In the limit temperature T → 0 the noise kernel
reduces further to

D1(−τ ) = C�γ�ω0e
−�|τ |. (18)

The approximation used in Eq. (16) has an easier justification
at higher temperatures. At low temperatures it would be
more accurate to swap the order of the time integral in
Eq. (13) and the frequency integral in Eq. (15), as is
done for the special case of the quantum Brownian motion
[10–12,15,16,27–33]. Details of this will be presented in a
future work.

IV. INTEGRATING THE MASTER EQUATION

An issue which arises with QBM is a logarithmic cut-off
divergence [leading to a log(�) dependence in the diffusion
terms] in the exact solution of the master equation, thus making
the large � limit difficult. Most approximations stop at first
order in ω0/�, before the log term enters, and this rather
begs the question of how accurate this is and consequently
we seek here both first and second order solutions. To derive
a useful master equation it is necessary to evaluate, or at
least approximate, the dissipator integral in (13). A common
means of approximating the relaxation-time-dependent-flux
term �̂(−τ ) is through a power series expansion in τ , such
that

�̂(−τ ) =
∑

n

An[�̂]τn, (19)

where the functional An[�̂] is found by equating powers of τ

from the Baker-Campbell-Hausdorff expansion of �̂(−τ ) =
e−iĤSτ/��̂eiĤSτ/�, i.e.,

�̂(−τ ) = �̂ + τ

[
− iĤS

�
,�̂

]
+ τ 2

2!

[
− iĤS

�
,

[
− iĤS

�
,�̂

]]

+ · · · + τn

n!

[
− iĤS

�
, . . . ,

[
− iĤS

�
,�̂

]]
. (20)

For the simpler case of a quantum Brownian particle in a
harmonic oscillator potential, each of the An[�̂] is proportional
to either the position or momentum operator, with prefactors
which add to give trigonometric terms [16]. Unfortunately the
same cannot be said for the SQUID. Due to the nonlinear
nature of the Josephson junction term in the Hamiltonian, the
series grows in complexity as the order is increased. For this
reason it is not possible to evaluate �̂(−τ ) analytically and
it is necessary to truncate the series in Eq. (19). Analysis of
this series shows it to be convergent and a more detailed study
will follow in later work. Including more terms in the series
though should lead to increasingly accurate master equations
and here we explore the impact of truncating to first and second
order. Note that if the system Hamiltonian were to be time
dependent [possess a time-dependent external flux �x(t)], the
series would grow significantly in complexity and this method
may not be applicable.
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Substituting Eq. (19) into the expressions for the dissipator
of Eq. (13) yields the non-Lindblad master equation:

dρS(t)

dt
= − i

�
[ĤS,ρS(t)]

+ iCγ�

�

[
�,

{∑
n

n!

�n
An[�̂],ρS(t)

}]

− C�γω0

2�

[
�,

[∑
n

n!

�n
An[�̂],ρS(t)

]]
, (21)

where the identities for the dissipation and noise terms:

i

2�2

∫ ∞

0
dτD(−τ )�̂(−τ ) =

∑
n

iCγ�

�

n!

�n
An[�̂],

− 1

2�2

∫ ∞

0
dτD1(−τ )�̂(−τ ) = −C�γω0

2�

∑
n

n!

�n
An[�̂],

(22)

have been used alongside the identity �n+1
∫ ∞

0 dττne−�τ=n!.

V. FIRST ORDER MASTER EQUATION

If the series of Eq. (19) is truncated to first order in τ then
the summations in Eq. (21) can be simplified accordingly:

∑
n

n!

�n
An ≈ A0 + 1

�
A1 = �̂ − Q̂

�C
, (23)

so that Eq. (21) yields the first order master equation:

dρS

dt
= − i

�
[ĤS,ρS] +

renormalizes L︷ ︸︸ ︷
iCγ�

�
[�̂2,ρS] −

dissipation term︷ ︸︸ ︷
iγ

�
[�̂,{Q̂,ρS}]

− Cω0γ

2�

⎛
⎜⎜⎝[�̂,[�̂,ρS]]︸ ︷︷ ︸

noise term

− 1

�C
[�̂,[Q̂,ρS]]︸ ︷︷ ︸

first order cutoff

⎞
⎟⎟⎠. (24)

It is worth remarking, at this stage, that additional capacitive
coupling in the interaction Hamiltonian [Eq. (2)] will lead
to a much more complicated expression than Eq. (24) due
to the presence of a commutation relation between the
charge operator and the Josephson coupling energy and would
inevitably lead to a nonlinear dependence on external flux
even in a first order master equation. We believe this would
produce noticeable differences in theory which could be
observed experimentally even for modest couplings (again a
more detailed study will be the subject of future work). The
final term in Eq. (25) vanishes in the limit of high cut-off
frequency. This limit is often assumed in quantum optics and
the term neglected but, as indicated above, is not be applicable
to condensed matter systems and we retain it for this reason,
and because it is also a necessary ingredient for turning Eq. (24)
into Lindblad form.

The second term in Eq. (24) is simply a renormalization
of the potential, or more specifically a shift in the SQUID
inductance [34–36] by a factor of λ = 2�γ

ω2
0(1+2�γ/ω2

0)
and can

therefore be absorbed into the free evolution part of the

equation to give

dρ

dt
= − i

�
[HS1 ,ρ] − iγ

�
[�̂,{Q̂,ρ}]

− Cω0γ

2�

(
[�̂,[�̂,ρ]] − 1

�C
[�̂,[Q̂,ρ]]

)
, (25)

where ĤS1 is of exactly the same form as ĤS as in Eq. (3)
but uses the bare inductance of the SQUID ring, since L0 =
L/(1 − λ), instead of L. Equation (25) is a Caldeira-Leggett
equation [27], rather than in the Lindblad form of Eq. (1),
and thus does not ensure all solutions will be physically
sensible [13] (i.e., a density operator that is positive). The
simplest way to address this issue is to transform Eq. (25)
into Lindblad form, as for QBM [11,14,37]. This is achieved
through the addition of a term proportional to [Q̂,[Q̂,ρ]].
The physical significance of this addition becomes clear
when considering the same system capacitively (rather than
inductively) coupled to the bath, when such a term arises
naturally. One can then think of this addition as the inclusion
of a capacitive element in the interaction, an effect that will
be presented in future work. It should be noted that unlike the
case of QBM at high temperatures, the additional term is not
necessarily small. Nevertheless, proceeding this way leads to

dρ

dt
= − i

�
[Ĥ ,ρ] + 1

2
([L̂,ρL̂†] + [L̂ρ,L̂†]),

Ĥ = ĤS1 + �γ

2
(X̂P̂ + P̂ X̂),

L̂ = γ 1/2

[
X̂ +

(
i − ξ

2

)
P̂

]
, (26)

where we have introduced the dimensionless quantities X̂ =√
Cω0

�
�̂, P̂ =

√
1

C�ω0
Q̂, and ξ = ω0/�. There are a number

of observations to be made here in relation to the introduction
of the [Q̂,[Q̂,ρ]] into Eq. (25). First Eq. (26) recovers, in
the limit ξ → 0, a more familiar Lindblad proportional to the
annihilation operator. What the derivation here demonstrates
is that in assuming L̂ = √

2γ â, for some γ , a significant
adjustment to the master equation is being made. Second, it is
clear that, within the Hamiltonian Ĥ , there exists a squeezing
term, which cannot be included in the Lindblad terms, but
which may instead be included in the system Hamiltonian.
This arises as a corollary of applying the Lindblad process and
its inclusion is very often neglected in the literature. However,
it is a necessary part of the system evolution which provides
a physical frequency shift, and is essential in recovering the
quantum to classical transition [38–42].

This is evident from the harmonic oscillator component
of the SQUID ring Hamiltonian Ĥ = ĤS1 + (�γ )/2(X̂P̂ +
P̂ X̂) = �ω(â†â + 1/2) + (�γ i)/2(â†2 − â2); the significance
of the second (the squeezing) term appears when considering
the correspondence limit. If the quantity Tr ( d

dt
(ρâ)) is found

from Eq. (1), without the squeezing term, one obtains an
expression for the expectation value of the evolution of the
position operator:

〈x̂(t)〉 = (〈x̂+〉eiωt + 〈x̂−〉e−iωt )e−γ t , (27)
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FIG. 1. To quantify the importance of cut-off frequency � in the
first order master equation Eq. (26), we show Tr [ρ2] as a function of
external flux �̂x for the steady state solution to the master equation
for ξ = ω0/� equal to 0 (� = ∞), 0.05 (� = 20ω0), 0.1 (� =
10ω0), and 0.5 (� = 2ω0). We see that � = ∞ and � = 20ω0 are
indistinguishable, while near the dip at �x = 0.5�0 there are small
differences at � = 10ω0. While the functional form is similar the
effect of cut-off frequency is significant for � = 2ω0. Note, circuit
parameters are C = 5 × 10−15 F, L = 3 × 10−10 H, and Ic ≈ 3 μA.
The sharp dip at �x = �0/2 is due to the fact that the SQUID’s
potential becomes a double well and the ground energy eigenstate is
a Schrödinger cat (i.e., a macroscopically distinct superposition of
states). Decoherence of this state produces a statistical mixture of
states equally localized in each well—as there is a 50% chance of
being in either well Tr [ρ2] = 0.5 at �x = �0/2. As we move away
from this bias point the ground state rapidly loses its Schrödinger cat
structure and so decoherence is less significant at these values. The
width of this dip is related to the the barrier height and can be changed
by altering circuit parameters.

which describes a system oscillating at a frequency ω and
decaying at a rate e−γ t .

Although there appears to be agreement with decay rate in
classical models for the damped harmonic oscillator, frequency
shifts are not accounted for; and this violates the correspon-
dence principle. This result suggests two things: Lindblad
operators describe dissipation only, and the frequency shift
is described by the additional Hamiltonian term. The impact
of the squeezing term can be seen by performing a Bogoliubov
transform [43] so that the Hamiltonian may be written in terms

of a new set of raising and lowering operators b̂† and b̂,

b̂ = uâ + vâ†, b̂† = u∗â† + v∗â,

that reproduce â† and â in the limit where γ → 0. Satisfying
the requirement that |u|2 + |v|2 = 1 through the assumption
that the constants u = sec θ and v = i tan θ , allows the
Hamiltonian to be rewritten as

H ′ = �ω̃b̂†b̂ = �ω

√
1 − γ 2

ω2
b̂†b̂.

It is clear to see that this term is responsible for the frequency
shift of the dissipating system.

The Lindblad in Eq. (26) is a function of cut-off frequency
as ξ = ω0/�, we now establish how significant this is when
compared with simply assuming a Lindblad term proportional
to the annihilation operator. There are many ways that we can
quantify the effect of changing cut-off frequency, but as our
focus in this work is on estimating the effects of environmental
decoherence we choose to compare the purity Tr [ρ2] of the
steady state solution to Eq. (26) as a function of external flux
and cut-off frequency. This is shown in Fig. 1. We first note that
in the limit � → ∞ we have ξ → 0 and the Lindblad reduces
to the annihilation operator times

√
2γ and the standard form

of the master equation that has been applied to SQUIDs in
previous work [44–48].

In this work we have chosen reasonable SQUID parameters
values of C = 5 × 10−15 F and L = 3 × 10−10 H that are
used in all calculations together with a Josephson coupling
energy [20] of �ν = Ic�0/2π = 9.99 × 10−22 J, where �0 =
h/2e is the flux quantum and Ic is the critical current of
the weak link (here Ic ≈ 3 μA). The external environment is
defined by the parameters γ , �, �ν, and �x where the damping
rate γ determines the rate of loss in the system. Treating
the environment as a cavity of harmonic oscillator modes,
this loss is directly proportional to the cavity quality factor
Qc = 2πωc/γ for cavity frequency ωc. This quality factor
can range from Qc ∼ 102 to Qc ∼ 106 or higher [49,50]. The
cut-off frequency � defines the peak frequency of the bath’s
spectral density which has a similar form to the impedance
in Josephson circuits [51,52]. The results shown in Fig. 1
might lead us to conclude that for a cut-off frequency of
� = 10ω0 (ξ = 0.1) and higher (lower) that the usual choice
of a Lindblad proportional to the annihilation operator is a
good one. In the next section we show that this conclusion is
incorrect.

VI. SECOND ORDER APPROXIMATION

Although for systems of this type it is often assumed to be adequate, truncation at first order of series [Eq. (23) ] may not
always suffice and higher order terms in τ (or equivalently ω0/�) may be important; consideration of a second order expression
will help to justify that. It is also important to explore the impact of higher order terms as higher order models may differ
quantitatively, if not qualitatively, to the first order model. Expanding Eq. (23) to second order in τ we obtain

∑
n

n!

�n
An ≈ �̂ − Q̂

�C
− ω2

�2

[
�̂ + 2π�νL

�0
sin

(
2π

�0
(�̂ + �x)

)]
, (28)
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where the external flux dependence, originating from the nonlinear SQUID potential, can be seen to enter the dissipator for the
first time. Substituting (28) into (22) then allows (13) to be rewritten as

dρS

dt
= − i

�
[ĤS,ρS(t)]

+ iγ�C

�

( renormalizes L︷ ︸︸ ︷(
1 − ω2

0

�2

)
[�̂2,ρS(t)]] −

1st order dissipation︷ ︸︸ ︷
1

�C
[�̂,{Q̂,ρS(t)}] −

2nd order dissipation︷ ︸︸ ︷
2π�νL

�0

ω2
0

�2

[
�̂,

{
sin

(
2π

�0
(�̂ + �x)

)
,ρS(t)

}] )

− γω0C

2�

( (
1 − ω2

0

�2

)
[�̂,[�̂,ρS(t)]]︸ ︷︷ ︸

1st and 2nd order noise

− 1

�C
[�̂,[Q̂,ρS(t)]]︸ ︷︷ ︸

1st order in cutoff

− 2π�νL

�0

ω2
0

�2

[
�̂,

[
sin

(
2π

�0
(�̂ + �x)

)
,ρS(t)

]]
︸ ︷︷ ︸

2nd order cutoff

)
, (29)

where once again ĤS consists of the true inductance of the SQUID ring after second order renormalization is accounted for, i.e.,

λ = [2γ�(1 − ω2
0

�2 )]/ω2
0[1 + 2γ�

ω2
0

(1 − ω2
0

�2 )].

Equation (29) is once again not of Lindblad form, and suffers from the associated problems. However, it may be made so by
following the same process as in the first order case, and it is of interest to observe the form that the Lindblad operators now take.
Two Lindblads L̂1 = α1�̂ + ε1Q̂ and L̂2 = α2�̂ + ε2 sin ( 2π

�0
(�̂ + �x)) are needed; the first is an annihilator while the second

represents a correction to the environmental interactions and is a function of the external flux control parameter �x .
There is some flexibility to the manner in which the fifth term in Eq. (29) may be split between the two Lindblads L̂1 and L̂2. The

weighting of this split, with respect to first and second order contributions, is characterized in this work by the weighting parameter

ζ and is allocated in such a way that −(1 − ζ ) γω0C

2�
(1 − ω2

0
�2 )[�̂,[�̂,ρS(t)]] contributes to L̂1 and −ζ

γω0C

2�
(1 − ω2

0
�2 )[�̂,[�̂,ρS(t)]]

contributes to L̂2. Usually a “minimally invasive” approach is taken to ensure that first order terms remain dominant and the extra
term needed for L̂2 is as small as possible. In Fig. 2 we show the value of ζ which finds the minimum difference �min in steady
state purity between the first and second order master equations. For most systems this would be expected to be constant value
but for the SQUID ring it is nonlinearly dependent on external flux. This is not as surprising as it might first seem as SQUID
rings are known to affect externally coupled oscillators (tank circuits) in a nonlinear way and the environment is considered as an
infinite bath of such oscillators. As a result we expect that the modeling process should also yield results that are also nonlinearly
dependent on the external flux.

It is therefore the case that the Lindblad form of the master equation expressed to second order should contain a correction that is
dependent on external flux and cut-off frequency—ζ (�,�x). These and some other subtleties will be explored in a followup work.
We see that for high cut-off frequency that choosing ζ = 1 − ω0/� = 1 − ξ is a good approximation to a minimally invasive
master equation (especially away from �x = 0.5). With this choice, the Lindblad operator L̂1 again approaches the annihilation
operator in the high cut-off limit, where ξ → 0. In the remainder of this work we will therefore make the approximation that
ζ = 1 − ω0/�. Within this model, frequency shifts are still accounted for, as they are enclosed within the third term in Eq. (29).
The second order equation also possesses a second frequency shift. It must be expected that higher order approximations in ω0/�

will introduce additional Lindblad operators and additional frequency renormalization, this again will be investigated in future
work.

If the additional terms, required to bring the equation into Lindblad form are included in Eq. (29), one obtains

dρ

dt
= − i

�
[Ĥ ,ρ] + 1

2

∑
j

([L̂j ,ρL̂
†
j ] + [L̂jρ,L̂

†
j ]),

Ĥ = ĤS2 + �γ

2
(X̂P̂ + P̂ X̂) +

√
βξ

ν

�
X̂ sin

(√
βω0

ν
X̂ + 2π

�x

�0

)
,

L̂1 = γ 1/2

[√
(1 − ξ )(1 − ξ 2)X̂ +

(
i − ξ

2

)√
1

(1 − ξ )(1 − ξ 2)
P̂

]
,

L̂2 = γ 1/2

[√
ξ (1 − ξ 2)X̂ +

√
ξ

(1 − ξ 2)

(
i − ξ

2

)√
β

ν

ω0
sin

(√
βω0

ν
X̂ + 2π

�x

�0

)]
, (30)

where here we introduced the parameter β = 2πLIc/�0, re-
lated to the critical current Ic = 2π�ν/�0, which is frequently
used in semiclassical analysis to separate hysteretic (β > 1)
from nonhysteretic behavior (β � 1).

In Fig. 3 we compare the purity Tr{ρ2(t)} of the steady
state solutions of the first order, Eq. (26), and second order,
Eq. (30), Linblad master equations for a cut-off frequency of
� = 10ω0. We have also included for comparison the first
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FIG. 2. A plot of the second order weighting parameter ζ that
minimizes the difference between first and second order master
equations as a function of external flux. �min is defined to be the
minimal difference in steady state purity between first and second
order models, for system parameters �,�x . We see that the ζ that is
minimally invasive is a nonlinear function of external flux. For high
cut-off frequency this is approximated by ζ = 1 − ω0/� (where we
note that this approximation is less good around �x = �0/2).

order master equation steady state purity for � = 2ω0. In
Fig. 1, for a cut-off frequency of � = 10ω0, we concluded
that there was little difference between the steady state solution
to the first order corrected master equation and one that just
assumed an annihilation operator as a Lindblad. In Fig. 3, for
the same value of cut-off frequency, we observe that the steady
state purity is much lower and changes slightly in functional
form in the second order model. This indicates that neither the
annihilation operator nor first order Lindblads are sufficient to
quantitatively model the effects of decoherence on the SQUID
ring.

FIG. 3. The purity Tr{ρ2(t)} of the steady state solutions of the
first order, Eq. (26), and second order Eq. (30), Lindblad master
equations. In this figure we see evidence that the order of truncation
has a bigger effect on the steady state purity than one might expect
when compared to that of decreasing cut-off frequency.

FIG. 4. A plot of the expectation value of screening current 〈�̂/L〉
as a function of external flux for first order (red) and second order
(blue) models at a bath cut-off frequency of � = 10ω0. Despite the
two models differing quite largely in terms of steady state purity, the
expectation values of observables remain very similar.

The difference between first and second order models
is less obvious when considering the expectation value of
observables, such as screening current, as shown in Fig. 4.
This suggests that device characterization based solely on
simple expectation values of observables such as flux may
not be sufficient and a more rigorous analysis of decoherence
times T1 and T2 as functions of external flux is necessary in
order to produce a good phenomenology. Such an approach
may be used to parametrize the master equation framework
presented in this work and to assess its effectiveness in
modeling decoherence processes on Josephson junction based
devices.

VII. CONCLUSIONS

The necessity to consider stronger environmental coupling
than might be admitted in lowest order Born approximation,
or the effects of a finite bath cut-off frequency, or of a device
operating at low temperature, suggest that the standard Born-
Markov development of a master equation will need to be
extended. The most obvious way to do this is through a small
parameter expansion, such as the Born series or, as here, by
extending the large cut-off limit by developing the model as a
series in the small parameter ω0/�, or similarly by extending
a zero temperature limit. We have chosen, here, perhaps the
simplest case (that of a finite cutoff), in the certain knowledge
that whatever difficulties one finds are very likely to appear in
all other such attempts.

The most obvious consequence of the present analysis is
that the correction obtained by including second order terms
(in ω0/�) in the master equation is not an insignificant one,
leading to steady state impurities 1 − P (ρ) which are twice
those predicted by using a first order model. More subtle is
the appearance of the external flux �x entering the master
equation, not only in the Hamiltonian terms, but also in the
second order Lindblad. Indeed with capacitive coupling the
external flux is likely to appear in Lindblads at all orders.
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As the Josephson coupling energy dictates the height of
the potential well, and therefore the tunneling probability,
SQUIDs are (notoriously) sensitive to external magnetic fields
and so it is reasonable to expect a strong external flux
dependence [19,20,53]; Eq. (30) shows such a dependence
lies also within the dissipator. Although this is largely contrary
to the assumptions of quantum control, where it is generally
considered to be the case that, for systems with Lindbladian
dissipation, control parameters such as �x will only enter
through the Hamiltonian (see, e.g., [54]), it is evident from
the form of Eq. (21) that �x can play an important role in
dissipation. That the dissipator will in general be a function of
control parameters has been pointed out previously [55], the
current analysis shows they may not all enter at the same order.
Furthermore, we have shown that the second order correction
to the master equation has a surprisingly large effect. Hence, an
understanding of this phenomenon and the role of �x will be
of importance to those working on Josephson junction based
devices especially for emerging quantum technologies.

Recent analysis of the quantum Brownian motion (QBM)
system indicates that both regular and anomalous diffusion
parameters show a logarithmic divergence on bath cut-off
frequency �, implying a finite cutoff. It thus makes sense to
consider a series solution, to different orders of ω0/�, if only
to check that the common first order truncation is accurate.
It is not surprising that, as with QBM, it is necessary to add
extra terms in order to bring the master equation into Lindblad

form and so avoid unphysical system development. However,
in our second order approximation, the extra term needed
to complete the first order Lindblad L̂1 is of a lower order
than the terms which make up the second order Lindblad
L̂2. This makes the “minimally invasive” argument a difficult
one to sustain and so we appear to be left with the choice of
abandoning hierarchical checks, reworking a new standard
method, or abandoning the Lindblad form for systems such
as these. None of which is attractive.

With the exception of a quadratic constraining potential,
which is simple because the position operator (� here) links
only neighboring states of fixed energy difference ω0, all other
systems are likely to run into the same difficulties we have here.
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