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ABSTRACT 

Additive manufacturing (AM) is a process where, as the name suggests, material is added during 

production, in contrast to techniques such as machining, where material is removed. With metals, 

AM processes involve localised melting of a powder or wire in specific locations to produce a 

part, layer by layer. AM techniques have recently been applied to the repair of gas turbine blades. 

These components are often produced from nickel-based superalloys, a group of materials which 

possess excellent mechanical properties at high temperatures. However, although the 

microstructural and mechanical property evolution during the high temperature exposure of 

conventionally produced superalloy materials is reasonably well understood, the effects of 

prolonged high temperature exposure on AM material are less well known. 

This research is concerned with the microstructures of components produced using AM 

techniques and an examination of the effect of subsequent high temperature exposures. In 

particular, the paper will focus on the differences between cast and SLM IN939 as a function of 

heat treatment and subsequent ageing, including differences in grain structure and precipitate size, 

distribution and morphology, quantified using advanced electron microscopy techniques. 

INTRODUCTION 

Additive manufacturing has been gaining popularity in recent years as a method for the 

manufacture of gas turbine components due to the efficiency of the process, and the ability to 

produce complex designs for improved performance, which would be difficult, time-consuming 

and expensive to produce using conventional techniques (1–3). This is becoming increasingly 

more important with the hollow structures and cooling channels present in modern turbine 

components (4). One popular additive manufacturing technique is Selective Laser Melting (SLM) 

where a laser selectively scans over powder which is melted and fused layer by layer to build up a 

part. This process creates large temperature gradients which lead to residual stresses in the 

solidified material (5–9). This rapid cooling also means that there is no time for precipitates to 

form. Epitaxial growth of grains through the build layers is achieved by partial remelting of 

previous layers (10). 

Many turbine component alloys require pre-service heat treatments to achieve a very specific 

microstructure for optimal performance in service. In some cases, when a component has been 

additively manufactured, the conventional heat treatments are simply applied to this material 

even though it is produced in a different way. However, these heat treatments have been designed 
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to achieve the desired microstructure from very specific starting microstructures and have been 

optimised for conventionally produced material. 

As the microstructure of additively manufactured material is very different to conventionally 

produced material (e.g. by casting), it is important to study the effects of the heat treatment, 

because it’s influence on the microstructure of additively manufactured material is relatively 

unknown and not well studied (11,12). A cast material will generally have large, relatively equi-

axed grains, and in the case of turbine component materials, large discrete carbides which have 

formed on grain boundaries in the material(13). In contrast to this, the grains in material produced 

using SLM, are very fine, high aspect ratio and columnar, and extend through the microstructure 

in the build direction(14). There is significant grain orientation in the material as a result of the 

process(10) and any precipitation is effectively suppressed, leaving a supersaturated solution of 

the matrix(15). 

Nickel-based superalloys are the group of materials generally used for gas turbine components 

due to their ability to function at temperatures up to 0.8Tm (1,16) and maintain their mechanical 

properties. One such alloy is Inconel(IN)939, a high-chromium alloy with good mechanical 

properties which is capable of operating at temperatures up to 850oC for long periods of 

time (17). IN939 is strengthened by both gamma prime (γ') precipitates and carbides. When 

produced by casting, the MC carbides in the alloy are generally large and discrete, whereas the 

M23C6 carbides are much smaller (18). These carbides both prevent movement of dislocations and 

sliding of grain boundaries, which can be common above 0.5Tm (15,19). 

A heat treatment is applied to IN939 components before they enter service to achieve a number of 

things: firstly for stressed applications, a hot isostatic pressing (HIP) step can be used to reduce 

porosity, as is used with other alloys (20).  This step can be especially beneficial for SLM-

produced material as it can be prone to cracking and porosity (21,22), which HIP has been shown 

to effectively remove (23). Next is a high temperature solution treatment step, designed to 

dissolve the gamma prime precipitates present in the as-cast state back into solution, so that the 

size and morphology of the precipitates can be controlled more effectively in the subsequent 

aging steps. The conventional heat treatment for IN939 then usually involves a single aging 

step (24) to coarsen the γ' precipitates and achieve the desired cuboidal shape which is the 

optimal morphology for creep performance (1). 

This paper will focus on a comparison of the effects of the conventional 1 step age heat treatment 

and a slightly altered heat treatment involving a 3 step age on the microstructure of IN939 

produced by both SLM or casting. By examining the differences in the effects of the heat 

treatments between material produced by the two processes it will be possible to determine if the 

desired pre-service microstructure is achieved in the SLM-produced material and thus whether 

the conventional heat treatment is suitable for material produced in this way, or if the heat 

treatment should be altered to better achieve the desired microstructure. 

 
 
 
 
 
 



EXPERIMENTAL METHODS 
Material 
The nominal composition of IN939 is given below in Table 1. 

Table 1: Nominal composition of IN939 alloy (25) 

 

SLM Samples were built using an EOS M270 machine with argon gas flushing, with a laser 

power of 195 W. The as-produced SLM material was received in two batches, the first batch was 

in the form of an 80 mm long 10 mm diameter cylindrical bar built horizontally. The second 

batch was another cylinder of 12 mm diameter built vertically. The cast material was received in 

the form of cuboidal ingots 50x10x15 mm; these were all cut into 10 mm long sections to be used 

in this study. 

 

 

 

Figure 1: Diagrams showing build directions in the different batches of SLM material 

Preparation 

The as-produced material was cut in two different orientations as shown in Fig. 2 using an 

aluminium oxide cut-off wheel, with ample cooling and a maximum cutting speed of 0.008 mms-1. 

No significant differences were found between orientations in the cast material, so for later 

samples only one orientation was used. In the SLM material the direction of one of the cuts was 

chosen to intersect the build layers in the material so that a cross section of the build layers could 

be seen, and the second cut was used to effectively bisect a single build layer. 

      

 

 

 

Figure 2: Diagrams showing first and then second cutting directions for initial cast samples and all SLM 

samples with the build direction shown for SLM samples. 

Heat Treatment 

The traditional heat treatment for the material involves a high temperature hot isostatic pressing 

(HIP) step, followed by a slightly lower temperature solution treatment step, which is then 

usually followed by a single longer aging step at lower temperature. However, the heat treatment 

with a single aging step can lead to some brittleness in the fully heat treated material (11), 

therefore a heat treatment with three separate aging steps at successively lower temperature can 

be used to improve ductility. Both methods are compared in this study. 
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Samples were heat treated in a manually controlled furnace, with a sample of cast and SLM 

material removed after each step to obtain a sample in the condition of each different step of the 

heat treatment. A HIP heat simulation step was used to simulate the heating of the HIP step 

without the pressure, to focus on the effect of the temperature on the material during this step.  

Analysis 
Samples were mounted in electrically conductive Bakelite and polished to 1 µm using 

successively finer grades of SiC pads and polishing pads with diamond suspension. A final (0.05 

µm) colloidal silica polishing step was then used. Backscattered electron imaging was used for all 

samples, which was performed using a Hitachi tungsten filament scanning electron microscope 

(SEM) and a Jeol field emission gun scanning electron microscope (FEGSEM). Transmission 

electron microscope (TEM) samples were prepared using an FEI NovaNanolab dual beam system 

with a focused ion beam (FIBSEM). Energy dispersive x-ray spectroscopy (EDS) was performed 

in the FEGSEM and a TECNAI scanning transmission electron microscope (STEM) to analyse 

the chemical composition of phases and precipitates. A Jeol conventional transmission electron 

microscope (TEM) was used for imaging of precipitates and for diffraction to identify 

precipitates. In order to examine the γ' structure of the samples they were electrolytically etched 

at 3V using hydrofluoric acid as the etchant for 3-5 seconds. These samples were then imaged 

using the FEGSEM. Image analysis to quantify precipitates was performed using the ImageJ 

image analysis software. Precipitates were highlighted using image thresholding and the software 

was then used to analyse size, area percentage and counts. A number of areas were analysed in 

each sample, the precipitates were highlighted and quantified, and then the data were averaged. 

RESULTS AND DISCUSSION 
As-produced Material 

The as-produced material is high density (99%+) and is very typical of material produced by the 

two processes. As shown in Fig. 3; the cast material consists of large equi-axed grains, while the 

SLM-produced material has very fine high aspect ratio columnar grains. There are large (~5 μm2) 

precipitates visible in the cast microstructure, whereas in the SLM material only extremely small 

precipitates (less than 50 nm) have formed, as shown by the higher magnification inset on b). 

  

Figure 3: Backscattered electron images showing microstructure of IN939 samples in the as-manufactured 

state produced by a) Casting and b) SLM 

Microscopy of Heat Treatment Stages 

The changes occurring in the microstructure of both the cast and SLM-produced samples through 

the heat treatment steps are shown in Fig. 4. For the cast material there are no apparent changes to 

the microstructure throughout the heat treatment steps observable in the SEM. Changes in the γ' 

precipitate size and distribution are not visible here, but will be discussed in a later section. The 

a) b) 



SLM-produced material, however, shows extensive recrystallization throughout the course of the 

heat treatment, which progresses through each step until in the fully heat treated materials, almost 

all the fine columnar grains have been replaced with much larger, lower aspect ratio grains. 
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Figure 4: Backscattered electron images of Cast and SLM material after the heat treatment processes 

The other visible difference in the SLM material is the appearance of bright precipitates large 

enough to be visible at this magnification after the HIP heat simulation step. While the 

precipitates in the cast material are large (~5 μm2) and spaced far apart (10 μm+ separation 

between carbides), the precipitates in the SLM-produced material are very small (~0.5 μm2) and 

spaced very close together (~1 μm separation). Based on the size, contrast and location of these 

precipitates, they appear to be MC type carbides(13,19), however, it is necessary to confirm this. 

Using EDS mapping, these precipitates were found to be very rich in titanium and rich in carbon, 

as shown in Fig. 5. 



   

Figure 5: EDS maps showing precipitates are rich in titanium and carbon 

The EDS was then performed with point analysis using atomic percentage to show the 

precipitates are ~50 % carbon and very rich in titanium. TEM electron diffraction (as shown in 

Fig. 6) then confirmed that these precipitates are MC carbides. 

 

Figure 6: TEM image of carbides in fully heat treated (1-step age) IN939 along with electron diffraction 

patterns obtained from these carbides 

There were also some small dark precipitates on grain boundaries in the fully heat treated 

materials which appeared to be M23C6 carbides. This observation is supported by EDS data which 

gave a carbon content of ~20 at.% and a chromium content of ~50 at.% which, when accounting 

for carbon contamination and beam interaction with the surrounding matrix, are around the values 

expected of M23C6 carbides (26). Compared to the MC type carbides these are very few in 

number so will not be the focus of this paper. Based on the pattern of precipitation of the MC 

carbides in the SLM material it seems that they formed very early in the heat treatment on the 

pre-existing grain boundaries. As the material has recrystallised, these precipitates have remained 

in place, but are no longer on grain boundaries, as can be seen more clearly in Fig 7. 
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Figure 7: Backscattered image of solution treated SLM-produced IN939 viewed parallel to the build 

direction, showing a small number of precipitates on recrystallized grain boundaries and others aligned 

with original grain boundaries inside recrystallized grains. 

The reason for these changes is that in the as-produced state, the SLM-produced material is a 

supersaturated solution, with a large amount of residual stress and stored energy (6,15), so when 

heat is applied, there is a large driving force for recrystallisation as a method of stress relaxation. 

Therefore, throughout the course of the heat treatment the microstructure changes from a very 

fine columnar microstructure into a more coarse-grained microstructure, with lower aspect ratio 

grains. However, although there is a great deal of recrystallization and grain growth, it is noted 

that the grain size in the SLM material still remains much smaller than the cast material. 

With the carbides the situation is similar: with a supersaturated microstructure there is a large 

driving force for formation of precipitates in the matrix, coupled with the fact that the repeated 

heat input of the successively melted layers throughout the SLM process can be sufficient to 

produce nuclei for precipitates (11), this means that when heat is applied very small and closely 

distributed precipitates form very rapidly. Throughout the heat treatment process it is not possible 

to accurately determine visually what is happening to the carbides, therefore image analysis was 

used to quantify this.  

Carbide Quantification 

The difference in effect of the heat treatment steps on the carbides in the cast and SLM-produced 

material is very noticeable from the quantification shown in Fig. 8 and Fig. 9. The carbides in the 

heat treated SLM-produced material are extremely small, but there are many more of them when 

compared to the cast material. However, although broadly similar, the area fraction is slightly 

higher in the SLM material, but the trend between both materials throughout the heat treatment is 

also quite similar, with significant redissolution of carbides occurring during the HIP step, as 

shown by the decreasing area fraction and counts. 



   

Figure 8: Graphs showing Average Size and Area Percentage of MC carbides in Cast and SLM material 

throughout the heat treatment process 

  

Figure 9: Graphs showing number of carbides per area in SLM and cast material throughout the heat 

treatment process 

The most important result to note from these data, however, is the difference in trend of the 

counts per area: whereas in the cast material the carbides are coarsening throughout each stage of 

the 3-step aging process (as shown by the decreasing count and increasing size with constant area 

percentage), in the SLM material the opposite is occurring and carbides are continuing to 

precipitate up until the end of the heat treatment. This has important implications as it means that 

the SLM material is likely to behave differently in service and carbides could continue to 

precipitate. The presence of these carbides may increase creep performance to an extent (15), but 

it has previously been shown that too many carbides distributed evenly through the 

microstructure could cause embrittlement (12). Based on these results it may be necessary to 

design a different heat treatment procedure for SLM materials compared to cast materials to 

produce a similar starting microstructure. 

Gamma Prime Analysis 

The images of the etched samples in Fig. 10 showing the size and morphology of the gamma 

prime precipitates show that there is not much difference in them between the cast and SLM 

samples. The precipitates are larger in the cast material after the solution treatment step, however 

in the fully heat treated samples, the gamma prime precipitates in the SLM-produced sample are 

very similar in size to those in the cast material in the 1-step aged condition and slightly larger in 

the 3-step aged condition. After 1-step aging, the precipitates in the SLM-produced material also 



appear to have a more complex morphology than those in the cast material as shown by the inset 

in Fig. 10, which suggests that they may be further evolved than those in the cast material and 

formed what are described as ogdoadically diced cubes (1), where a cuboidal precipitate partially 

splits into 8 smaller precipitates. This could be due to the as-produced microstructure having a 

large amount of stored energy and being a supersaturated solution, therefore having a greater 

driving force for formation and evolution of the precipitates during the heat treatment (11). 

However, as there appear to be some instances of a similar morphology in the solution treated 

samples it may simply be that the precipitates in the cast material have undergone significant 

coarsening, leaving larger, more simple-shaped precipitates, whereas the precipitates in the SLM 

material have not. 
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Figure 10: Backscattered electron images showing voids left by gamma prime precipitates in etched IN939 

samples through the heat treatment 

In the 3-step aged SLM-produced sample, the size and morphology appear to be quite optimal for 

a pre-service microstructure as the precipitates are large and cuboidal in shape, however there is a 

possibility that the cuboidal precipitates have also begun to evolve to a more complex shape, so 

possibly a shorter heat treatment could be beneficial. 

 

 



Gamma Prime Quantification 

The graphs in Fig. 11 illustrate the quantification of γ' in both the cast and SLM samples. It can 

be seen that both materials follow very similar trends during the heat treatment, except that there 

appears to be a slightly greater area percentage of γ' in the SLM-produced material in general, 

and the precipitates are largest in the 3-step aged SLM-produced material. The formation of 

ogdoadically diced cubes will have reduced the average size of the precipitates in the 1-step aged 

SLM-produced material, hence why the average size appears slightly lower than in the cast 

material and the number of precipitates per area is higher. 

    

Figure 11: Quantification graphs for gamma prime precipitates in the heat treated materials showing size, 

area percentage and precipitates per area 

CONCLUSIONS 

The SLM-produced material has a very different starting microstructure compared to that of the 

cast material, therefore it is not surprising that the material is affected differently by the heat 

treatments. In the cast material, some dissolution of carbides occurs, followed by precipitation of 

new carbides, which then coarsen through the aging steps of the heat treatment, while the grain 

structure remains unchanged. Whereas in the SLM material, as there are no carbides in the as-

produced state, carbides form very quickly during the first step of the  heat treatment, and then 

continue to precipitate up until the end of the heat treatment. Moreover, the microstructure 

undergoes almost full recrystallization, with the initial high-aspect ratio ‘stressed’ grains 

becoming larger, more equi-axed, ‘relaxed’ grains. 

The network of very fine carbides formed during the heat treatment in the SLM-produced 

material may have a different effect on the mechanical performance in service of the SLM 

material when compared to the cast materials. A shorter heat treatment may also be beneficial due 

to the fact that carbides continue to precipitate up until the end of the heat treatment process, 

meaning that a shorter heat treatment may not have a significant effect if the component is to be 

used at high temperatures. 

The gamma prime structure in the material produced by the two methods is very similar after the 

heat treatment processes, with slightly larger precipitates in the 3-step aged SLM-produced 

material which could be beneficial to high temperature performance. However, the tendency of 

the morphology of the gamma prime precipitates to evolve further, especially in the 1-step aged 

SLM-produced material suggests that an altered heat treatment may be necessary for this material 

for optimal performance in service. 
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