Production of functional porous polymeric particles with CO₂ recognition properties and tuned morphology

Seyed Ali Nabavi^{a,}, Goran T. Vladisavljević^b, Eseosa M. Eguagie^b, Beichen Li^b, Stella Georgiadou^b, Vasilije Manović^a

^a Cranfield University, Centre for Combustion, Carbon Capture & Storage, MK43 0AL, Cranfield, UK ^b Loughborough University, Chemical Engineering Department, LE11 3TU, Loughborough, UK

In this study, novel spherical molecularly imprinted polymer (MIP) microparticles containing amide-decorated nanocavities with CO₂ recognition properties in poly[acrylamide-co-(ethyleneglycoldimethacrylate)] mesoporous matrix were synthesized by suspension polymerization in an oil-in-water emulsion, using oxalic acid and acetonitrile/toluene as dummy template and porogen mixture, respectively [1,2]. The presence of nanocavities was revealed and quantified using Horvath-Kawazoe (HK) approach. The performance of MIP particles for CO₂ uptake was assessed by means of imprinting factor (IP), and a maximum IP of 3.7 was achieved. It was found that higher contents of functional monomer (acrylamide) and low-polar solvent (toluene) in the organic phase prior to polymerization led to higher CO₂ capture capacity of the particles due to stronger hydrogen bonding interactions between the template and the monomer during complex formation and larger number of CO₂-philic NH₂ moieties in the polymer network. The degradation temperature at 5% weight loss was 240-255 °C and the maximum equilibrium CO₂ adsorption capacity was 0.56 and 0.62 mmol/g at 40 and 25 °C, respectively, and 0.15 bar CO₂ partial pressure. The volume median diameter (120–211 μ m) and density (1.3 g/cm³) of the produced particles were within the range suitable for CO₂ capture in fixed and fluidized bed systems.

References:

[1] Nabavi, S. A., Vladisavljević, G. T., Eguagie, E. M., Li, B., Georgiadou, S., Manović, V., Production of spherical imprinted mesoporous polymeric particles containing tunable amine decorated nanocavities with CO₂ molecule recognition properties, *Chemical Engineering Journal* (2016)

[2] Nabavi, S. A., Vladisavljević, G. T., Wicaksono, A., Georgiadou, S., Manović, V., Production of molecularly imprinted polymer particles with amide-decorated cavities for CO₂ capture using membrane emulsification/suspension polymerisation, *Colloids and Surfaces A: Physicochemical and Engineering Aspects* (2016).