Partition of Mixed-Mode Fractures in 2D Elastic Beams with Through-Thickness Shear Forces

Joe Wood, Chris Harvey, Simon Wang J.Wood@lboro.ac.uk

Department of Aeronautical & Automotive Engineering Loughborough University, LE11 3TU, UK

Loughborough

19th International Conference of Composite Structures

Interfacial cracks

- Cracks tend to propagate along interfaces in laminated materials because they represent a plane of weakness.
- They do not kink in order to propagate under pure mode I opening conditions, as they would tend to in an isotropic material.
- Interfacial cracks therefore propagate in a mixedmode with a combination of mode I opening, mode II shearing, and/or mode III tearing.

80

100

60

Partition G_I/G (%)

Fracture toughness

- Fracture toughness depends on the • fracture mode partition.
- Predicting fracture toughness requires the knowledge of the partition of a mixed-mode fracture.
- Essential to have a correct analytical partition theory to predict the fracture toughness.

Loughborough Iniversity

20

()

Mixed Mode =

toughnes

Fracture

+ Mode III

One-dimensional fractures

▲ Delamination during drilling

Helicopter blade delamination \blacktriangle

▲ Thermal barrier cracking

Needle puncture of red blood cell/IVF treatment \blacktriangle

Mixed-mode interfacial fracture

- 1D fracture of DCB is fundamental case for study
 - Bending moments M_1 and M_2
 - Axial forces N_1 and N_2
 - Shear forces P_1 and P_2

oughborough

$$-\eta = E_2/E_1$$
, N $= \nu_2/\nu_1$, $\gamma = h_2/h_1$

Double cantilever beam (DCB)

5

Total energy release rate (ERR)

- Quadratic form and nonnegative definite
- Partition total ERR G into its pure mode components, G_I and G_{II}
- Use the orthogonal pure fractures modes

$$G = \begin{cases} M_{1B} \\ M_{2B} \\ N_{1B} \\ N_{2B} \end{cases}^{T} \begin{bmatrix} M_{1B} \\ M_{2B} \\ N_{1B} \\ N_{2B} \end{bmatrix}$$

$$C_{ij} = f(E_1, E_2, \nu_1, \nu_2, h_1, h_2, b)$$

Mixed Mode =

+ Mode II

Pure fracture modes

- The inner product matrix transforms the $\{M_{1B} \ M_{2B}\}$ vectors into ERR space
- In ERR space, orthogonality between two $\{M_{1B} \ M_{2B}\}$ vectors means

$$\{M_{1B} \ M_{2B}\}_1[C]\{M_{1B} \ M_{2B}\}_2^T = 0$$

- Orthogonal pairs of $\{M_{1B} \ M_{2B}\}$ vectors exist that represent pure fracture modes
 - Denote pure mode I as $\{1 \quad M_{2B}/M_{1B}\} = \{1 \quad \theta_1\}$
 - Denote pure mode II as $\{1 \quad M_{2B}/M_{1B}\} = \{1 \quad \beta_1\}$, etc.
 - With θ_i and $\beta_i = f(E_1, E_2, \nu_1, \nu_2, h_1, h_2, b)$

ERR partitions general theory

• Euler beam partitions: $G_{IE} = c_{IE} \left(M_{1B} - \frac{M_{2B}}{\beta_1} - \frac{N_{1B}}{\beta_2} - \frac{N_{2B}}{\beta_3} \right) \left(M_{1B} - \frac{M_{2B}}{\beta_1'} - \frac{N_{1B}}{\beta_2'} - \frac{N_{2B}}{\beta_3'} \right)$

$$G_{IIE} = c_{IIE} \left(M_{1B} - \frac{M_{2B}}{\theta_1} - \frac{N_{1B}}{\theta_2} - \frac{N_{2B}}{\theta_3} \right) \left(M_{1B} - \frac{M_{2B}}{\theta_{1'}} - \frac{N_{1B}}{\theta_{2'}} - \frac{N_{2B}}{\theta_{3'}} \right)$$

• Timoshenko beam partitions:

$$G_{IT} = c_{IT} \left(M_{1B} - \frac{M_{2B}}{\beta_1} - \frac{N_{1B}}{\beta_2} - \frac{N_{2B}}{\beta_3} - \frac{P_{1B}}{\beta_4} - \frac{P_{2B}}{\beta_5} \right)^2 \qquad G_{IIT} = c_{IIT} \left(M_{1B} - \frac{M_{2B}}{\theta_1} - \frac{N_{1B}}{\theta_2} - \frac{N_{2B}}{\theta_3} - \frac{P_{1B}}{\theta_4} - \frac{P_{2B}}{\theta_5} \right)^2$$

• 2D elasticity partitions:

$$G_{I-2D} = c_{I-2D} \left(M_{1B} - \frac{M_{2B}}{\beta_{1-2D}} - \frac{N_{1B}}{\beta_{2-2D}} - \frac{N_{2B}}{\beta_{3-2D}} - \frac{P_{1B}}{\beta_{4-2D}} - \frac{P_{2B}}{\beta_{5-2D}} \right)^2 \quad G_{II-2D} = c_{II-2D} \left(M_{1B} - \frac{M_{2B}}{\theta_{1-2D}} - \frac{N_{1B}}{\theta_{2-2D}} - \frac{N_{2B}}{\theta_{3-2D}} - \frac{P_{1B}}{\theta_{4-2D}} - \frac{P_{2B}}{\theta_{5-2D}} \right)^2$$

Loughborough

General 2D elasticity partition theory

- Bending moments M_{1B} and M_{2B} and axial forces N_{1B} and N_{2B}
- Revisit the orthogonal pure fracture modes (θ_i, β_i)
 - Condition using beam theories does not produce the same stress distribution in 2D elasticity theory
 - Apply a correction factor for 2D elasticity to the part of the condition that represents the intact portion of the beam
 - Calibrate correction factor for θ_{1-2D} using $\theta_1 \le \theta_{1-2D} \le \theta'_1$
 - Obtain other pure modes (θ_{2-2D} , β_{1-2D} , β_{2-2D} , etc.) using orthogonality

Timoshenko beam partition theory

Crack tip through-thickness shear forces P_{1B} and P_{2B} only

$$- M_{1B} = M_{2B} = N_{1B} = N_{2B} = 0$$

$$G_{\theta_{P-T}} = \frac{1}{2b^2 h_1 \kappa \mu} \left(1 + \frac{\theta_{P-T}^2}{\gamma} \right) \qquad \qquad G_{\beta_{P-T}} = \frac{1}{2b^2 h_1 \kappa \mu} \left(1 + \frac{\beta_{P-T}^2}{\gamma} - \frac{(1 + \beta_{P-T})^2}{1 + \gamma} \right)$$

- $(\theta_{P-T}, \beta_{P-T}) = (-1, \gamma)$ \therefore $G_{II} = 0$
- Shear correction factor $\kappa = 5/6$

2D elasticity partition theory

• Crack tip through-thickness shear forces P_{1B} and P_{2B} only

$$- M_{1B} = M_{2B} = N_{1B} = N_{2B} = 0$$

$$G_{\theta_{P-2D}} = \frac{1}{2b^2 h_1 \kappa(\gamma) \mu} \left(1 + \frac{\theta_{P-2D}^2}{\gamma} \right), G_{\beta_{P-2D}} = \frac{1}{2b^2 h_1 \kappa(\gamma) \mu} \left(1 + \frac{\beta_{P-2D}^2}{\gamma} - \frac{(1 + \beta_{P-2D})^2}{1 + \gamma} c(\gamma) \right)$$

- $(\theta_{P-2D}, \beta_{P-2D}) = (??, ??)$
- Shear correction factor now γ dependent $\kappa(\gamma)$
- $G_{II} \neq 0$ and introduce pure-mode-II correction factor $c(\gamma)$

Shear Force Pure Modes

- $(\theta_{P-2D}, \beta_{P-2D})$
- FEM simulations
- $-1.7 \le \log_{10}(1/\gamma) \le 1.7$
- Pure mode | θ_{P-2D} - $G_{II} = 0, \ \theta_{P-2D} = -1$ - $\therefore P_{2B} = -P_{1B}$
- Pure mode II β_{P-2D}
 - $\quad G_I = 0$
 - $\beta_{P-2D} = \gamma \exp(-1.986060 \operatorname{atanh}(0.563483\gamma_i))$

Shear & Pure Mode II Correction Factors

- FEM Simulations
- $M_{1B} = M_{2B} = N_{1B} = N_{2B} = 0$
- $-1.7 \le \log_{10}(1/\gamma) \le 1.7$
- Shear Correction Factor - $\kappa(\gamma)$
 - $P_{2B}/P_{1B} = \theta_{P-2D} = -1$
- Pure-mode-II ERR Correction Factor
 - $c(\gamma)$
 - $P_{2B}/P_{1B} = \beta_{P-2D}$

Numerical Verification

Numerical Verification

Loughborough

Blister Test

• Interface fracture toughness

Image from Koenig (2011)

Adhesion of graphene membranes

$$\gamma = h_2/h_1 \to \infty$$

$$G_{I} = \frac{6M_{Be}^{2}}{Eh^{3}} (1 - \nu^{2}) \left(1 - \frac{N_{Be}h}{4.450M_{Be}} - \lambda \right)^{2} 0.6227$$
$$G_{II} = \frac{6M_{Be}^{2}}{Eh^{3}} (1 - \nu^{2}) \left(\frac{N_{Be}h}{2.697M_{Be}} \right)^{2} 0.3773$$

Loughborough University

17

Adhesion of graphene membranes

- Pressure loaded blister test
 - Linear failure critierion
 - $-G_{Ic} = 0.226 J/m^2$
 - $G_{IIc} = 0.683 J/m^2$

Adhesion of graphene membranes

- Pressure loaded blister test
 - Linear failure critierion
 - $-G_{Ic} = 0.226 J/m^2$
 - $G_{IIc} = 0.683 J/m^2$
 - $\rho_{mono} = G_I/G_{II} = 0.431$
 - $\rho_{multi} = G_I/G_{II} = 0.764$

Experimental validation

- Pressure loaded blister test Koenig et al. (2011)
 - Linear failure critierion
 - $G_{Ic} = 0.226 J/m^2$ and $G_{IIc} = 0.683 J/m^2$
- Point loaded blister Zong et al. (2012)
 - Experimental Results
 - $-\delta/R_B=0.2309$, $E=1\mathrm{TPa}$, $nt=1.7\mathrm{nm}$ and n=5.
 - $G_{exp} = 0.438 J/m^2$
 - Mode mixity $\rho_{th} = G_I/G_{II} = 0.381$
 - Linear failure criterion $G_{th} = 0.438 J/m^2$

Conclusion

- 2D elasticity partition theory
 - Developed for general loading conditions (bending moments, axial forces and shear forces).
 - Numerically verified for a number of loading conditions
- Application to:
 - Adhesion of graphene membranes
 - Adhesion energy has been explained and well-predicted

Thank you very much for your attention

Questions are now welcome

- Submitted for publication at Composite Structures
 - Partition of mixed-mode fractures in 2D elastic orthotropic laminated beams under general loading (2016).

