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• Cracks tend to propagate along interfaces in laminated 
materials because they represent a plane of 
weakness. 
 

• They do not kink in order to propagate under pure 
mode I opening conditions, as they would tend to in an 
isotropic material.  
 

• Interfacial cracks therefore propagate in a mixed-
mode with a combination of mode I opening, mode II 
shearing, and/or mode III tearing. 

Ω 

Interfacial cracks 
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• Fracture toughness depends on the 
fracture mode partition. 
 

• Predicting fracture toughness requires 
the knowledge of the partition of a 
mixed-mode fracture.  
 

• Essential to have a correct analytical 
partition theory to predict the fracture 
toughness.  

Fracture toughness 
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One-dimensional fractures 
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Mixed-mode interfacial fracture 
• 1D fracture of DCB is 

fundamental case for study 
– Bending moments 𝑀𝑀1 and 𝑀𝑀2 
– Axial forces 𝑁𝑁1 and 𝑁𝑁2 
– Shear forces 𝑃𝑃1 and 𝑃𝑃2 
– 𝜂𝜂 = 𝐸𝐸2 𝐸𝐸1⁄ , Ν = 𝜈𝜈2 𝜈𝜈1⁄ , 𝛾𝛾 = ℎ2 ℎ1⁄  

Double cantilever beam (DCB) 
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Total energy release rate (ERR) 
• Quadratic form and non-

negative definite 
• Partition total ERR 𝐺𝐺 into its 

pure mode components, 𝐺𝐺𝐼𝐼 
and 𝐺𝐺𝐼𝐼𝐼𝐼 

• Use the orthogonal pure 
fractures modes 
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Pure fracture modes 
• The inner product matrix transforms the 

𝑀𝑀1𝐵𝐵 𝑀𝑀2𝐵𝐵   vectors into ERR space 
• In ERR space, orthogonality between two 

𝑀𝑀1𝐵𝐵 𝑀𝑀2𝐵𝐵  vectors means 

𝑀𝑀1𝐵𝐵 𝑀𝑀2𝐵𝐵 1 𝐶𝐶 𝑀𝑀1𝐵𝐵 𝑀𝑀2𝐵𝐵 2
𝑇𝑇 = 0 

• Orthogonal pairs of 𝑀𝑀1𝐵𝐵 𝑀𝑀2𝐵𝐵  vectors exist that represent pure 
fracture modes 

• Denote pure mode I as 1 𝑀𝑀2𝐵𝐵/𝑀𝑀1𝐵𝐵 = 1 𝜃𝜃1  
• Denote pure mode II as 1 𝑀𝑀2𝐵𝐵/𝑀𝑀1𝐵𝐵 = 1 𝛽𝛽1 , etc. 
• With 𝜃𝜃𝑖𝑖  and 𝛽𝛽𝑖𝑖 = 𝑓𝑓 𝐸𝐸1,𝐸𝐸2, 𝜈𝜈1, 𝜈𝜈2,ℎ1,ℎ2, 𝑏𝑏  

Contours of ERR with 𝐸𝐸 = 1, 
𝑏𝑏 = 1, ℎ = 1, 𝛾𝛾 = 1, 𝜂𝜂 = 1 
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ERR partitions general theory 
• Euler beam partitions: 

 
 
 

• Timoshenko beam partitions: 
 
 

• 2D elasticity partitions: 
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• Bending moments 𝑀𝑀1𝐵𝐵 and 𝑀𝑀2𝐵𝐵 and axial forces 𝑁𝑁1𝐵𝐵 and 𝑁𝑁2𝐵𝐵 
• Revisit the orthogonal pure fracture modes 𝜃𝜃𝑖𝑖 ,𝛽𝛽𝑖𝑖  

– Condition using beam theories does not produce the same stress 
distribution in 2D elasticity theory 
 

– Apply a correction factor for 2D elasticity to the part of the condition that 
represents the intact portion of the beam  
 

– Calibrate correction factor for 𝜃𝜃1−2𝐷𝐷 using 𝜃𝜃1 ≤ 𝜃𝜃1−2𝐷𝐷 ≤ 𝜃𝜃1′  
 

– Obtain other pure modes (𝜃𝜃2−2𝐷𝐷 ,𝛽𝛽1−2𝐷𝐷 ,𝛽𝛽2−2𝐷𝐷 , etc.) using orthogonality  
 

 
 

General 2D elasticity partition theory 
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Timoshenko beam partition theory 
• Crack tip through-thickness shear forces 𝑃𝑃1𝐵𝐵 and 𝑃𝑃2𝐵𝐵 only 

– 𝑀𝑀1𝐵𝐵 = 𝑀𝑀2𝐵𝐵 = 𝑁𝑁1𝐵𝐵 = 𝑁𝑁2𝐵𝐵 = 0 

 
 
 

• 𝜃𝜃𝑃𝑃−𝑇𝑇  ,𝛽𝛽𝑃𝑃−𝑇𝑇 = −1 , 𝛾𝛾     ∴     𝐺𝐺𝐼𝐼𝐼𝐼 = 0 
• Shear correction factor 𝜅𝜅 = 5 6⁄  
 

𝐺𝐺𝜃𝜃𝑃𝑃−𝑇𝑇 =
1

2𝑏𝑏2ℎ1𝜅𝜅𝜅𝜅
1 +

𝜃𝜃𝑃𝑃−𝑇𝑇2

𝛾𝛾  𝐺𝐺𝛽𝛽𝑃𝑃−𝑇𝑇 =
1

2𝑏𝑏2ℎ1𝜅𝜅𝜅𝜅
1 +

𝛽𝛽𝑃𝑃−𝑇𝑇2

𝛾𝛾 −
1 + 𝛽𝛽𝑃𝑃−𝑇𝑇 2

1 + 𝛾𝛾  

 



• Crack tip through-thickness shear forces 𝑃𝑃1𝐵𝐵 and 𝑃𝑃2𝐵𝐵 only 
– 𝑀𝑀1𝐵𝐵 = 𝑀𝑀2𝐵𝐵 = 𝑁𝑁1𝐵𝐵 = 𝑁𝑁2𝐵𝐵 = 0 

 
 
 

• 𝜃𝜃𝑃𝑃−2𝐷𝐷 ,𝛽𝛽𝑃𝑃−2𝐷𝐷 = ? ?,  ? ?  
• Shear correction factor now 𝛾𝛾 dependent 𝜅𝜅 𝛾𝛾  
• 𝐺𝐺𝐼𝐼𝐼𝐼 ≠ 0 and introduce pure-mode-II correction factor 𝑐𝑐 𝛾𝛾  

 
 

 

𝐺𝐺𝛽𝛽𝑃𝑃−2𝐷𝐷 =
1

2𝑏𝑏2ℎ1𝜅𝜅 𝛾𝛾 𝜅𝜅 1 +
𝛽𝛽𝑃𝑃−2𝐷𝐷2

𝛾𝛾 −
1 + 𝛽𝛽𝑃𝑃−2𝐷𝐷 2

1 + 𝛾𝛾 𝑐𝑐 𝛾𝛾  𝐺𝐺𝜃𝜃𝑃𝑃−2𝐷𝐷 =
1

2𝑏𝑏2ℎ1𝜅𝜅 𝛾𝛾 𝜅𝜅 1 +
𝜃𝜃𝑃𝑃−2𝐷𝐷2

𝛾𝛾  , 
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2D elasticity partition theory 

 



Shear Force Pure Modes 
• 𝜃𝜃𝑃𝑃−2𝐷𝐷,𝛽𝛽𝑃𝑃−2𝐷𝐷  
• FEM simulations  
• −1.7 ≤ log10 1 𝛾𝛾⁄ ≤ 1.7 

 
• Pure mode I 𝜃𝜃𝑃𝑃−2𝐷𝐷 

– 𝐺𝐺𝐼𝐼𝐼𝐼 = 0,  𝜃𝜃𝑃𝑃−2𝐷𝐷 = −1 
– ∴ 𝑃𝑃2𝐵𝐵 = −𝑃𝑃1𝐵𝐵 

 
• Pure mode II 𝛽𝛽𝑃𝑃−2𝐷𝐷 

– 𝐺𝐺𝐼𝐼 = 0 
– 𝛽𝛽𝑃𝑃−2𝐷𝐷 = 𝛾𝛾exp(−1.986060 atanh(0.563483𝛾𝛾𝑖𝑖)) 

 

12 



Shear & Pure Mode II Correction Factors 
• FEM Simulations 
• 𝑀𝑀1𝐵𝐵 = 𝑀𝑀2𝐵𝐵 = 𝑁𝑁1𝐵𝐵 = 𝑁𝑁2𝐵𝐵 = 0 
• −1.7 ≤ log10 1 𝛾𝛾⁄ ≤ 1.7 

 
• Shear Correction Factor 

– 𝜅𝜅(𝛾𝛾) 
– 𝑃𝑃2𝐵𝐵 𝑃𝑃1𝐵𝐵⁄ = 𝜃𝜃𝑃𝑃−2𝐷𝐷 = −1 

• Pure-mode-II ERR Correction Factor 
– 𝑐𝑐(𝛾𝛾) 
– 𝑃𝑃2𝐵𝐵 𝑃𝑃1𝐵𝐵⁄ = 𝛽𝛽𝑃𝑃−2𝐷𝐷 
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Numerical Verification 

1
10

≤ 𝛾𝛾 ≤ 10 
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Numerical Verification 

1
10

≤ 𝛾𝛾 ≤ 10 
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Blister Test 

Image from Koenig (2011) 

• Interface fracture toughness 
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Thick substrate 

Adhesion of graphene membranes 
𝛾𝛾 = ℎ2 ℎ1⁄ → ∞ 

𝐺𝐺𝐼𝐼 =
6𝑀𝑀𝐵𝐵𝐵𝐵

2

𝐸𝐸ℎ3 1 − 𝜈𝜈2 1 −
𝑁𝑁𝐵𝐵𝐵𝐵ℎ

4.450𝑀𝑀𝐵𝐵𝐵𝐵
− 𝜆𝜆

2

0.6227 

𝐺𝐺𝐼𝐼𝐼𝐼 =
6𝑀𝑀𝐵𝐵𝐵𝐵

2

𝐸𝐸ℎ3 1 − 𝜈𝜈2
𝑁𝑁𝐵𝐵𝐵𝐵ℎ

2.697𝑀𝑀𝐵𝐵𝐵𝐵

2

0.3773 
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Adhesion of graphene membranes 
• Pressure loaded blister test 

– Linear failure critierion  
– 𝐺𝐺𝐼𝐼𝐼𝐼 = 0.226 𝐽𝐽 𝑚𝑚2⁄   
– 𝐺𝐺𝐼𝐼𝐼𝐼𝐼𝐼 = 0.683 𝐽𝐽 𝑚𝑚2⁄  
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Adhesion of graphene membranes 
• Pressure loaded blister test 

– Linear failure critierion  
– 𝐺𝐺𝐼𝐼𝐼𝐼 = 0.226 𝐽𝐽 𝑚𝑚2⁄   
– 𝐺𝐺𝐼𝐼𝐼𝐼𝐼𝐼 = 0.683 𝐽𝐽 𝑚𝑚2⁄  

 
– 𝜌𝜌𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = 𝐺𝐺𝐼𝐼 𝐺𝐺𝐼𝐼𝐼𝐼⁄ = 0.431 
– 𝜌𝜌𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖 = 𝐺𝐺𝐼𝐼 𝐺𝐺𝐼𝐼𝐼𝐼⁄ = 0.764 
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Experimental validation 
• Pressure loaded blister test – Koenig et al. (2011) 

– Linear failure critierion  
– 𝐺𝐺𝐼𝐼𝐼𝐼 = 0.226 𝐽𝐽 𝑚𝑚2⁄  and 𝐺𝐺𝐼𝐼𝐼𝐼𝐼𝐼 = 0.683 𝐽𝐽 𝑚𝑚2⁄  

 
• Point loaded blister – Zong et al. (2012) 

– Experimental Results 
– 𝛿𝛿 𝑅𝑅𝐵𝐵⁄ = 0.2309 , 𝐸𝐸 = 1TPa , 𝑛𝑛𝑛𝑛 = 1.7nm and 𝑛𝑛 = 5. 
– 𝐺𝐺𝐵𝐵𝑒𝑒𝑒𝑒 = 0.438 𝐽𝐽 𝑚𝑚2⁄  
– Mode mixity 𝜌𝜌𝑚𝑚𝑡 = 𝐺𝐺𝐼𝐼 𝐺𝐺𝐼𝐼𝐼𝐼⁄ = 0.381 
– Linear failure criterion 𝐺𝐺𝑚𝑚𝑡 = 0.438 𝐽𝐽 𝑚𝑚2⁄  
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Conclusion 
• 2D elasticity partition theory 

– Developed for general loading conditions (bending moments, axial forces 
and shear forces).  

– Numerically verified for a number of loading conditions 

• Application to: 
– Adhesion of graphene membranes 
– Adhesion energy has been explained and well-predicted 
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Thank you very much for your attention 

• Submitted for publication at Composite Structures 
– Partition of mixed-mode fractures in 2D elastic orthotropic laminated 

beams under general loading (2016). 

Questions are now welcome 
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