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Abstract 
Previous work by the authors (Harvey et al., 2015) on brittle interfacial cracking between two 

dissimilar elastic layers is extended to accommodate Poisson’s ratio mismatch in addition to the 

existing capability for elastic modulus mismatch. Under crack tip bending moments and axial 

forces, it is now possible to use a completely analytical 2D elasticity-based theory to calculate 

the complex stress intensity factor (SIF) and the crack extension size-dependent energy release 

rates (ERRs). To achieve this, it is noted that for a given geometry and loading condition, the 

total ERR and bimaterial mismatch coefficient are the two main factors affecting the partitions of 

ERR. Based on this, equivalent material properties are derived for each layer, namely, an 

equivalent elastic modulus and an equivalent Poisson’s ratio, such that both the total ERR and 

the bimaterial mismatch coefficient are maintained in an alternative equivalent case. Cases for 

which no analytical solution for the SIFs and ERRs currently exist can therefore be ‘transformed’ 

into cases for which the analytical solution does exist. The approach is verified against results 

from 2D finite element method simulations in which excellent agreement is observed for cases of 

plane stress and plane strain with a variety of loading conditions. 
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Nomenclature 

a  crack length in a DCB 
b  width of a DCB 

1E , 2E  Young’s modulus of upper and lower beams 

1E  effective Young’s modulus of the upper beam 

1
~E  equivalent Young’s modulus of the upper beam 

1

~
E  equivalent effective Young’s modulus of the upper beam 
G , IG , IIG  total, mode I and mode II ERRs 

1h , 2h , h  thicknesses of upper, lower and intact beams 

IK , IIK  real and imaginary parts of the complex SIF 
k  Kolosov constant 

1M , 2M  DCB tip bending moments on upper and lower beams 

BM1 , BM 2 , BM  crack tip bending moments on upper, lower and intact beams 

1N , 2N  DCB tip axial forces on upper and lower beams 

BN1 , BN2 , BN  crack tip axial forces on upper, lower and intact beams 
r  radius coordinate centered on crack tip 
γ  thickness ratio, 12 hh=γ  
aδ  crack extension size 
ε  bimaterial mismatch coefficient 
η  Young’s modulus ratio, 12 EE=η  
η  effective Young’s modulus ratio 
η~  equivalent Young’s modulus ratio 

1µ , 2µ  shear modulus of upper and lower beams 
Ν  ratio of Poisson’s ratios, 12 νν=Ν  

1ν , 2ν  Poisson’s ratio of upper and lower beams 
ν~  equivalent Poisson’s ratio, ννν ~

21 ==  

nσ , sτ  interfacial opening stress and shear stress 
DCB double cantilever beam 
ERR energy release rate 
FEM finite element method 
SIF stress intensity factor 

1. Introduction 

It is well known from the work of Williams [1] that the stress intensity factor (SIF) for a 

brittle interfacial crack between two dissimilar elastic layers is of complex form, that is, 

III iKKK += . The complex SIF indicates oscillatory singularities in the elastic field around the 

crack tip. This was shown in 1959 and since then one of the major challenges in the field of 
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fracture mechanics has been to analytically obtain the SIFs, IK  and IIK , and the crack extension 

size-dependent energy release rate (ERR) components, III GG  and . 

Harvey et al. [2] have recently established a completely analytical theory to calculate IK , IIK

, IG  and IIG  for a brittle interfacial crack between two elastic materials with an elastic modulus 

mismatch but with equal Poisson’s ratios, that is, with 21 EE ≠  and 21 νν = , under bending 

moments and axial forces (subscripts 1 and 2 represent the upper and lower layers respectively). 

The theory [2] was extensively verified in Ref. [3]. A limitation of the theory [2] is that the 

Poisson’s ratio of each layer must be the same, that is, 21 νν = . In applications of layered material 

systems, for example in thermal barrier coatings in gas turbine engines or in surface coatings to 

protect against corrosion, friction and wear, it is typical, however, to have a mismatch in the 

Poisson’s ratio as well as in the elastic modulus. It is therefore important that the theory [2] is 

extended to accommodate Poisson’s ratio mismatch in addition to the existing capability for 

elastic modulus mismatch, that is, to accommodate both 21 EE ≠  and 21 νν ≠ . This paper reports 

such an extension. 

To achieve this extension, it is noted that for a given geometry and loading condition, the total 

ERR and the bimaterial mismatch coefficient (the oscillation index of the interfacial stresses) are 

the two main factors affecting the partitions of ERR. Based on this, the approach has been to 

derive equivalent material properties for each layer, namely, an equivalent elastic modulus and 

an equivalent Poisson’s ratio, such that both the total ERR and the bimaterial mismatch 

coefficient are maintained in an alternative case. Cases for which no analytical solution for the 

SIFs and ERRs currently exist can therefore be ‘transformed’ into other cases for which the 

analytical solution does exist [2]. 

This paper is organised as follows: In Section 2, equivalent material properties are derived so 

that cases with 21 νν ≠  can be used with the analytical partition theory in Ref. [2]. In Section 3, 

the approach is verified against results from 2D finite element method (FEM) simulations with 

21 νν ≠  and with a variety of loading conditions. Finally conclusions are drawn in Section 4. 

Note that this paper is a supplement to work previously published by the authors in Refs. [2,3]. 

Due to the complexity of the previous work [2,3], only the new analytical development is 

presented here with accompanying background only where necessary. The reader is directed to 

Refs. [2,3] for further information and full details. A review of the literature can also be found in 

Ref. [2]. 
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2. Analytical development 

2.1. Interfacial stresses ahead of the crack tip 

Fig. 1a shows a bimaterial double cantilever beam (DCB) with its geometry, tip bending 

moments, 1M  and 2M , and tip axial forces, 1N  and 2N . The Young’s modulus, shear modulus 

and Poisson’s ratio of beam i  are denoted by iE , iµ  and iν  respectively (with 2,1=i ). The 

interfacial opening stress and shear stress ahead of the crack tip, nσ  and sτ , can be expressed in 

combined complex form as [4] 

 ( ) ε

π
τσ iIII

σn r
r

iKKi
2
+

=+  (1) 

or in individual real form as 

 ( )[ ] ( )[ ]{ }rKrK
r IIIn lnsinlncos

2
1 εε
π

s −=  (2) 

 ( )[ ] ( )[ ]{ }rKrK
r IIIs lncoslnsin

2
1 εε
π

τ +=  (3) 

where r  is the radius coordinate centered on the crack tip and IK  and IIK  are the real and 

imaginary parts of the complex SIF. The signs of nσ  and sτ  are positive in the directions shown 

in Fig. 1b. In Eqs. (1) to (3), the bimaterial mismatch coefficient ε  is defined as 
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where the Kolosov constant ik  (with 2,1=i ) is defined as iik ν43−=  for plane strain and as 

( ) ( )iiik νν +−= 13  for plane stress. By introducing the Young’s modulus ratio, 12 EE=η , then 

ε  becomes 
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2.2. Total energy release rate 

From the authors previous work [2,5–11], and with reference to Fig. 1b, the total ERR G  of a 

bimaterial DCB with two crack tip bending moments, BM1  and BM 2 , and two crack tip axial 

forces, BN1  and BN 2 , is given by 
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where 

 1464 2342 ++++= γηγηγηγηC  (7) 

and where 1E  is the effective Young’s modulus of the upper beam and η  is the effective 

Young’s modulus ratio. For plane stress 11 EE =  and ηη = ; for plane strain ( )2
111 1 ν−= EE  

and ( ) ( )2
2

2
1 11 ννηη −−= . The coefficient matrix [ ]C  is given by 

 ( ) 3
1

23
11 36412 hC +++= γγγhγh  (8) 

 ( ) 3
112 112 hC +−= γh  (9) 

 ( ) 2
113 16 hC += γγh  (10) 

 ( ) 2
114 16 hC +−= γ  (11) 

 ( ) ( )33
1

23
22 146312 γηγηγηγη ηC +++=  (12) 

 ( ) 2
123 16 hC += γγh  (13) 

 ( ) 2
124 16 hC +−= γ  (14) 

 ( ) 1
3

33 1 hC += γhγh  (15) 

 ( ) 1
3

34 1 hC +−= γh  (16) 

 ( ) ( )γηγη 1
3

44 1 ηC +=  (17) 
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2.3. Equivalent bimaterial problems 

From the previous work in Ref. [2], it is observed that for a given geometry and loading 

condition, the bimaterial mismatch coefficient ε  and the total ERR G  are the two main factors 

affecting the partitions of ERR, IG  and IIG . Eqs. (5) and (6) show that ε  and G  depend on 1E , 

η , 1ν  and 2ν . It is therefore proposed that a given real case with 1E , 12 EE η= , 1ν  and 2ν  can be 

replaced by an equivalent case with 1
~E , 12

~~~ EE η=  and ννν ~~~
21 ==  that maintains ε  and G  with 

similar partitions of ERR, IG  and IIG . Such behavior would be advantageous to transform cases 

for which no analytical solution for the SIFs and ERRs currently exists into other cases for which 

the analytical solution does exist, such as for those in Ref. [2]. To maintain the same ε , the 

equivalent Poisson’s ratio ν~  is obtained by using Eq. (5), as follows: 
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It is seen from Eq. (6) that under plane stress conditions the total ERR G  is independent of 

the Poisson’s ratios. Therefore, changing the values of the Poisson’s ratios only affects the value 

of the bimaterial mismatch coefficient ε  and hence the partitions of the ERR, IG  and IIG . For 

this case, as the total ERR G  is maintained regardless of 1ν  and 2ν , only an equivalent 

Poisson’s ratio ν~  is needed and it is possible to set ηη =~ , in which case Eq. (18) for plane stress 

reduces to 

 ( )
( )1

~ 21

−
−

=
η

νηνν  (19) 

In Eq. (19), if 1→η  then ∞→ν~ , which is unacceptable behavior for ν~ . Therefore when η  

is close to 1, setting ηη =~  is no longer suitable and Eq. (18) must be used instead with an 

alternative η~ . 

Using an alternative η~  affects the total ERR G  under both plane stress and plane strain 

conditions. Therefore, to maintain G , 1E  must also be replaced by 1

~
E , which represents the 

equivalent effective Young’s modulus of the upper beam. Let [ ]C~  and C
~

 denote the [ ]C  and C  

in Eqs. (6) and (7) respectively with the substitution ηη ~= . To maintain the same G , 1

~
E  is 

obtained by using Eq. (6), as follows: 



7 

 { }[ ]{ }
{ }[ ]{ }T

BBBBBBBB

T
BBBBBBBB

NNMMCNNMM
NNMMCNNMM

C
CEE

21212121

212121211
1

~
~

~
=  (20) 

Then, 1E  is replaced by 1
~E  where for plane stress 11

~~ EE =  and for plane strain ( )2
11

~1
~~ ν−= EE . 

Note that for plane stress cases with ηη =~ , Eq. (20) reduces to 11
~ EE = . 

The method above derives formulae for ν~  and 1
~E , which are dependent on the initial 

selection of η~ . Any consistent combination of 1
~E , η~ , ν~  will maintain both G  and ε  in an 

alternative equivalent case with 21 EE ≠  and 21 νν = . The following recommends which 

combinations give the most accurate partitions of ERR, IG  and IIG . The general principle in the 

following is to minimize the difference between the real material properties and the equivalent 

material properties while still achieving ννν ~~~
21 == . 

Based on the FEM results in Section 3, for plane stress conditions, using ηη =~  provides 

accurate results for almost the whole range of η ; however, when ( ) 1.01log1.0 10 <<− η , since 

∞→ν~  as 1→η , it has been identified that using 1.1~ =η  and 1

~
E  as given by Eq. (20) instead 

works well throughout this range. 

For plane strain conditions, selecting the equivalent material properties, 1
~E , η~  and ν~ , is more 

involved as 1
~E  and ν~  are very sensitive to the chosen value of η~ . Initially the value of 

( )η~1log10  is varied by increments of 0.1 in the range ( ) 2~1log2 10 ≤≤− η . If the corresponding 

value of ν~  is in the range of physically admissible Poisson’s ratios, that is, 5.0~0 <<ν , then the 

values are saved. If only one value of ν~  is in this range then it is selected with the corresponding 

value of η~ ; however, if multiple values of ν~  obey this condition, then the ones which minimize 

the arithmetic difference between η  and η~  are selected. Finally, the value of 1
~E  can be 

calculated  using 1

~
E  from Eq. (20). 

3. Numerical verification 

A method has been described in Section 2 for reducing cases of bimaterial interfacial cracking 

with 21 EE ≠  and 21 νν ≠  to equivalent cases with 21 EE ≠  and 21 νν = . The ERRs, IG  and IIG , 

can then be calculated by using the analytical mixed-mode partition theory in Ref. [2] for brittle 

interfacial cracks between two elastic materials with 21 EE ≠  and 21 νν = . In order to verify this 

approach, a series of 2D FEM simulations are conducted using MSC/NASTRAN on the DCB 
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shown in Fig. 1 with a range of values of 1E , 2E , 1ν  and 2ν , from which the ERRs, IG  and IIG , 

are calculated. The verification is then performed by comparing values of the total ERR G  and 

the ERR partition GGI  from the FEM and the analytical theory. 

In the FEM simulations, the thickness ratio 12 hh=γ  is kept at a constant value of 1=γ ; the 

Young’s modulus ratio 12 EE=η  is varied in the range 1001001 ≤≤η ; the ratio of Poisson’s 

ratios 12 νν=Ν  is varied in the range ( ) 7.01log7.0 10 ≤Ν≤− ; and the DCB tip loads are 

varied in the range 000,10 ,000,10 12 ≤≤− NM  with 10001 =M . Note that it is not necessary to 

vary the thickness ratio γ . The effect of the through-thickness location of the crack on the ERRs 

and SIFs has already been thoroughly dealt with in Refs. [2,3]. This paper adds additional 

material mismatch capability, and further consideration of the thickness ratio γ  is therefore not 

needed. It can, however, be easily shown that the same conclusions apply if 1≠γ . Therefore, the 

entire practically useful domain of cracking between bimaterial layers is considered. As the FEM 

is dimensionless in nature, the model’s parameters are given here without units; however, if 

engineering scale-appropriate units are required then units of mm and N may be chosen for 

length and force respectively, from which the consistent set of units follows. The upper and 

lower beams of the DCB are modelled using quadrilateral plane stress or plane strain shell 

elements with a thickness of 10=b  and isotropic material properties within each beam. The 

thicknesses of the upper and lower beams are equal with 121 == hh . The minimum Young’s 

modulus is 1000min =E . If the modulus ratio 1>η , then the Young’s modulus of the upper and 

lower beams is selected to be min1 EE =  and min2 EE η=  respectively, otherwise min2 EE =  and 

ηmin1 EE = . The Poisson’s ratios are controlled by specifying a mean value of 29.0=ν  such 

that ( ) 221 ννν += . The Poisson’s ratio of the upper beam and lower beams are then determined 

as ( )Ν+= 121 νν  and 12 νν Ν=  for the upper and lower beams respectively. This provided an 

even spread of the Poisson’s ratios to be considered while still keeping the maximum value 

below 0.5. Note that a value of 1=Ν  corresponds to no Poisson’s ratio mismatch or 21 νν = , as 

previously considered in Refs. [2,3]. The shear modulus is calculated using ( )[ ]iii E νµ += 12  

with 1,2=i  for the upper and lower beams, respectively. The uncracked length of the DCB is 

100 and the cracked length is 10. 

The partitions of ERR, IG  and IIG , depend on the crack extension size aδ . The analytical 

partition theory in Ref. [2] accommodates any value of aδ  by determining IG  and IIG  for 
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05.0=aδ , from which the SIFs, IK  and IIK  are determined. With knowledge of IK  and IIK , 

IG  and IIG  can be determined for any value of aδ . In this work, therefore, the selection of aδ  is 

somewhat arbitrary; however, if 05.0≠aδ  then the verification is even more rigorous due to the 

extra steps in the analytical calculation, the necessary accurate calculation of the SIFs as part of 

the process, and the opportunity for compounding inaccuracy. A crack extension size 01.0=aδ  

is therefore selected in order to calculate the ERR. The choice of aδ  determined the size of the 

elements surrounding the crack tip. Since aδ  is very small ( aa <<δ ), a non-uniform mesh is 

used in order to avoid excessive computation. 2000 square elements of size pp×  are centered 

on the crack tip in the x-direction with 01.0== ap δ , and 100 square elements are centered on 

the crack tip in the y-direction. Beyond the region of uniform element size surrounding the crack 

tip, elements are allowed to grow at a constant rate of 1.1 in both the x- and y-directions. In the x-

direction, the maximum element size is limited to 1.0 (no limit is needed in the y-direction due to 

the thin layers). Very small adjustments are made to the element size growth rate vertically and 

to the maximum element size horizontally to satisfy the boundary geometry. Axial forces, 1N  

and 2N , are applied as point forces to the tips of the upper and lower beams respectively and are 

uniformly-distributed by area. Bending moments, 1M  and 2M , are applied as equal and opposite 

axial forces to the top and bottom corners of each of the upper and lower beam tips respectively. 

A rigid interface between the upper and lower beams is modelled by ‘connecting’ the 

translational degrees of freedom of co-located interface nodes on the upper and lower beams 

using multi-point constraints; however, at the crack tip, instead of rigidly connecting the crack tip 

nodes, the interface is modelled with normal and shear point springs. Using springs ‘captures’ the 

crack tip opening force and shearing force. The stiffness of both springs is CTs bpEk =  where 

1010=CTE , which is the Young’s modulus of the interface at the crack tip. This meant that the 

spring stiffness sk  is sufficiently high with respect to 21  and EE  to simulate brittle interfacial 

cracking without introducing excessive numerical error. Because the interface is rigid, the ERRs 

are calculated using the virtual crack closure technique. Contact between the upper and lower 

surfaces of the crack is not considered.  

3.1. Bending moments only 

The DCB is subjected to tip bending moments in order to vary the crack tip bending moment 

on the lower beam BM 2  in the range 000,10000,10 2 ≤≤− BM  while keeping the crack tip 
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bending moment on the upper beam constant at 10001 =BM . Results from the plane stress 

condition are shown in Fig. 2 and results from the plane strain condition are shown in Fig. 3. 

Figs. 2a and 3a show the difference between the total ERR G  from the present theory thG  and 

from the FEM FEMG , defined as FEMth1 GG− . Figs. 2b and 3b show the difference between the 

ERR partition GGI  from the present theory ( )thGGI  and from the FEM ( )FEMGGI , defined 

as ( ) ( )FEMth GGGG II − . Note that, as described above, the present theory combines the 

partition theory in Ref. [2] with the method in Section 2 for transforming cases with Poisson’s 

ratio mismatch into alternative cases with no Poisson’s ratio mismatch. 

It is seen from Figs. 2a (plane stress) and 3a (plane strain) that there is virtually exact 

agreement over the whole domain between the present theory and the FEM when considering 

total ERR G . Then, from Figs. 2b (plane stress) and 3b (plane strain), there is generally 

excellent agreement between the theory and the FEM when considering the ERR partition GGI

. In both cases, the majority of the theoretical results are within about 4% of that obtained from 

the FEM. From Fig. 2b (plane stress), the maximum error between the ERR partitions is 10.5% 

and located at ( ) 7.11log10 =η , ( ) 7.01log10 =Ν  and 012 =BB MM . (The error color bar has 

been capped at 0.10 for clear presentation.) For Fig. 3b (plane strain) the maximum error 

between the ERR partitions is 36.8%, located at ( ) 2.11log10 −=η , ( ) 7.01log10 =Ν  and 

512 =BB MM , and rapidly diminishes. 

As explained in Section 2.3, an equivalent Poisson’s ratio ν~ , an equivalent Young’s modulus 

ratio η~ , and an equivalent Young’s modulus of the upper beam 1
~E  are all needed in order to find 

a suitable equivalent bimaterial case under plane strain conditions. For the selected value of η~ , 

two approximations are needed to find ν~  and 1
~E  using Eqs. (18) and (20) respectively. 

Furthermore, ν~  and 1
~E  are very sensitive to the chosen value of η~ . In contrast, only ν~  is 

required for plane stress conditions (unless 1→η ), which requires only one approximation using 

Eq. (18) with ηη =~  being maintained. The increased maximum error in the plane strain results is 

attributed to the compounding error from the two approximations for ν~  and 1
~E , while the plane 

stress results agree with FEM results more closely due to there being only one approximation for 

ν~ . 
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3.2. Bending moments and axial forces 

The DCB is also subjected to tip axial forces and bending moments in order to vary the crack 

tip axial force on the upper beam BN1  in the range 000,10000,10 1 ≤≤− BN  while keeping the 

crack tip bending moment on the upper beam constant at 10001 =BM . Results from the plane 

stress condition are shown in Fig. 4 and results from the plane strain condition are shown in Fig. 

5. Figs. 4a and 5a show the difference between the total ERR G  from the present theory thG  and 

from the FEM FEMG , defined as FEMth1 GG− . Figs. 4b and 5b show the difference between the 

ERR partition GGI  from the present theory ( )thGGI  and from the FEM ( )FEMGGI , defined 

as ( ) ( )FEMth GGGG II − . 

Again it is seen from Figs. 4a (plane stress) and 5a (plane strain) that there is virtually exact 

agreement over the whole domain between the present theory and the FEM when considering the 

total ERR G . Then, from Figs. 4b (plane stress) and 5b (plane strain), there is also excellent 

agreement between the theory and the FEM when considering the ERR partition GGI . In both 

cases, the majority of the theoretical results are again within about 4% of that obtained from the 

FEM. For Fig. 4b (plane stress) the maximum error between the ERR partitions is 16.3%, located 

at ( ) 6.11log10 =η , ( ) 4.01log10 =Ν  and 1011 −=BB MN , and rapidly diminishes. For Fig. 5b 

(plane strain) the maximum error between the ERR partitions is 36.3%, located at 

( ) 2.11log10 =η , ( ) 7.01log10 −=Ν  and 1011 =BB MN , and rapidly diminishes. 

4. Conclusions 

The authors’ existing analytical partition theory [2] for brittle interfacial cracking between two 

dissimilar elastic layers has been successfully extended to accommodate Poisson’s ratio 

mismatch between the upper and lower beams in addition to its existing capability for elastic 

modulus mismatch. This is achieved by developing a method to transform cases with Poisson’s 

ratio mismatch into alternative cases with no Poisson’s ratio mismatch. Results for total ERR G  

and the ERR partition GGI  are obtained by combining this method with the existing analytical 

partition theory in Ref. [2], and are compared to those obtained from the 2D FEM in order to 

verify the approach. Excellent agreement is observed for both cases of plane stress and plane 

strain and under a variety of loading conditions. Under crack tip bending moments and axial 

forces, it is now possible to calculate the crack extension size-dependent ERRs, IG  and IIG , for 
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a brittle interfacial crack between two dissimilar elastic layers with a Poisson’s ratio mismatch as 

well as a Young’s modulus mismatch. 

It should be remembered that this work represents an approximate method. It will be useful 

for researchers and engineers to quickly obtain predictions of the fracture mode partition without 

full FEM simulations. Despite it being an approximate method, in the majority of cases the 

partition can be predicted to within 4% of the FEM result. If improved accuracy is required then 

it may be that only a full FEM simulation can provide this. To be confident of avoiding any of 

the localized areas of increased error, it is suggested to be cautious when dealing with extreme 

cases of Poisson’s ratio mismatch, for example, ( ) 7.01log10 ±≈Ν  (or 15±≈Ν ). 
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Fig. 1: A bimaterial DCB. (a) General description. (b) Interfacial stresses and crack tip forces. 
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Fig. 2: Comparison of the present analytical theory and the 2D FEM for the total ERR G  and the 

ERR partition GGI  for variable η , Ν  and BB MM 12  with 1=γ  and 01.0=aδ  under the plane 

stress condition. 
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Fig. 3: Comparison of the present analytical theory and the 2D FEM for the total ERR G  and the 

ERR partition GGI  for variable η , Ν  and BB MM 12  with 1=γ  and 01.0=aδ  under the plane 

strain condition. 
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Fig. 4: Comparison of the present analytical theory and the 2D FEM for the total ERR G  and the 

ERR partition GGI  for variable η , Ν  and BB MN 11  with 1=γ  and 01.0=aδ  under the plane 

stress condition. 
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Fig. 5: Comparison of the present analytical theory and the 2D FEM for the total ERR G  and the 

ERR partition GGI  for variable η , Ν  and BB MN 11  with 1=γ  and 01.0=aδ  under the plane 

strain condition. 
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