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Abstract

Single-stage DEA models aim to assess the input or output radial efficiency of a decision
making unit and potential mix inefficiency in a single optimization stage. This is achieved by
incorporating the sum of input and output slacks, multiplied by a small (theoretically non-
Archimedean infinitesimal) value epsilon in the envelopment model or, equivalently, by using
this value as the lower bound on the input and output weights in the dual multiplier model.
When this approach is used, it is common practice to select a very small value for epsilon.
This is based on the expectation that, for a sufficiently small epsilon, the radial efficiency
and optimal slacks obtained by solving the single-stage model should be approximately
equal to their true values obtained by the two separate optimization stages. However, as
well-known, selecting a small epsilon may lead to significant computational inaccuracies. In
this paper we prove that there exists a threshold value, referred to as the effective bound,
such that, if epsilon is smaller than this bound, the solution to the single-stage program is
not approximate but precise (exactly the same as in the two-stage approach), provided there
are no computational errors.
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1. Introduction

The two conventional models of data envelopment analysis (DEA) are stated under the
assumptions of constant (CRS) and variable (VRS) returns to scale (Charnes et al. 1978,
Banker et al. 1984). Both models aim at assessing the input or output radial efficiency of
decision making units (DMUs). If a DMU is radial efficient, it may still allow some non-
radial, i.e., individual, improvements to its inputs or outputs, in which case it is said to
exhibit mix inefficiency (Cooper et al. 2007). A DMU is strongly efficient if and only if its
input or output radial efficiency is equal to 1 and it does not exhibit mix inefficiency.

The issues of input and output slacks and ways to account for them in efficiency assess-
ment were raised and discussed in the early DEA literature (Charnes et al. 1979, Boyd and
Färe 1984, Charnes and Cooper 1984). Following Ali and Seiford (1993a), the testing of
radial and mix efficiency of any DMUo is usually performed in two stages. The first stage
evaluates the input or output radial efficiency of DMUo and identifies its radial projection
on the boundary of the technology. The second stage tests for mix efficiency by maximizing
the sum of component slacks associated with individual inputs and outputs.
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An alternative to the two-stage solution is the single-stage approach that accounts for
both radial and individual component improvements to DMUo in a single program. Ac-
cording to this approach, the objective function of the envelopment CRS or VRS model,
representing an input or output radial improvement factor, is modified to include the sum
of input and output slacks multiplied by a very small (theoretically infinitesimal) constant
ϵ > 0. Equivalently, in the dual multiplier model a lower bound ϵ is incorporated on all
input and output weights.

As shown by Ali and Seiford (1993b), the single-stage solution approach has important
theoretical and computational drawbacks. From a theoretical perspective, the constant ϵ
has to be sufficiently small for the multiplier model to be feasible or, equivalently, for the
envelopment model to have a finite optimum value. Furthermore, even if ϵ is small and the
resulting models have a finite optimal solution, there is no guarantee that the estimated
radial efficiency and component slacks are close to their true values obtained using the two-
stage approach. Intuitively, the latter concern can be addressed (and the precision of the
approximate solution improved) by taking ϵ as a very small value. However, specifying a
very small ϵ leads to well-documented computational problems arising from finite numerical
tolerance of optimization software (Ali and Seiford 1993b).1

Despite the above drawbacks, solving DEA models in a single stage has attracted sig-
nificant attention in the literature. The most common question addressed in this strand
of research concerns estimation of the assurance interval [0, ϵ∗], where ϵ∗ > 0 is the maxi-
mum value ϵ that keeps the multiplier models feasible (Ali and Seiford 1993b, Mehrabian et
al. 2000, Amin and Toloo 2004, Alirezaee 2005, MirHassani and Alirezaee 2005). Clearly,
choosing an ϵ from the assurance region does not guarantee that the resulting single-stage
optimal solution is a good approximation of the true radial efficiency of DMUo and the
corresponding component slacks.

The contribution of our paper is different from the above literature. We prove that, for
each single-stage model, there exists a strictly positive effective bound ϵo ≤ ϵ∗ such that,
theoretically, the single-stage model with any ϵ ∈ (0, ϵo) yields the true radial efficiency and
component slacks for DMUo. The latter are exactly the same as assessed by the two separate
optimization stages. We refer to the range (0, ϵo) as the effective interval. For all ϵ ∈ (0, ϵo),
the single-stage approach is, at least theoretically, not an approximate, but a precise solution
method for simultaneous assessment of the radial and mix efficiency of DMUs.

These theoretical results show that, for all sufficiently small values ϵ, any difference
between the true efficiency of DMUo and its estimate obtained from a single-stage model are
entirely due to computational, and not approximation, errors. As an illustration, we consider
numerical examples in which computational inaccuracies are negligible (i.e., the preciseness
of the optimal solution is confirmed by observation of a graph). In these examples, strictly
in line with the theoretical results, the single-stage programs with ϵ < ϵo produce efficiency
scores and optimal slacks identical to the two-stage optimization approach.

Using known results of sensitivity analysis in linear optimization (Roos et al. 2005),
we show that the effective bound ϵo can be evaluated as the optimum value of a specially
constructed linear program. Based on this, we prove that ϵo depends on DMUo and the
assumption of returns to scale (CRS or VRS), and is generally different for models in the
input and output orientation. We also prove that the effective bound ϵo in a DEA model
under the assumption of CRS does not exceed the effective bound in the similarly specified

1Improved computational algorithms for solving DEA models with an infinitesimal bound on multiplier
weights have been developed by Charnes et al. (1992, 1993). Scheel and Scholtes (2003, page 154) show
that numerical problems can also occur with the two-stage optimization approach.
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model under the assumption of VRS.

2. Preliminaries

Let TCRS and TVRS be the CRS and VRS technologies generated by a finite set of observed
DMUs (Xj, Yj), j = 1, . . . , n. In this notation, Xj ∈ Rm

+ is the vector of inputs and Yj ∈ Rs
+

is the vector of outputs.2 Let X̄ and Ȳ denote the m×n and s×n matrices whose columns
are the vectors Xj and Yj, j = 1, . . . , n.

DMU (X,Y ) in technology TCRS or TVRS is strongly efficient if there does not exist a
DMU (X ′, Y ′) in the same technology, such that X ′ ≤ X, Y ′ ≥ Y , and (X ′, Y ′) ̸= (X, Y ).

Let (Xo, Yo) be the DMU in either technology whose efficiency is being evaluated. This
DMUmay be observed or unobserved,3 but we require thatXo ̸= 0 and Yo ̸= 0. (Throughout
this paper we use bold notation 0 and 1 to denote vectors of zeroes and ones of appropriate
dimensions.)

3. Effective bounds for the output-oriented CRS model

Below we consider the case of output-oriented CRS model in detail. The input-oriented
CRS models and the case of VRS require a straightforward adjustment to this development
and are briefly outlined in the subsequent sections.

3.1. The two-stage solution approach
The output radial efficiency of DMU (Xo, Yo) is the inverse of the optimal value η∗ in

the following output-oriented envelopment CRS model:

η∗ = max η

subject to X̄λ+ SX = Xo,

− Ȳ λ+ SY = −ηYo,

λ, SX , SY ≥ 0, η sign free,

(1)

where SX ∈ Rm
+ and SY ∈ Rs

+ are vectors of input and output slacks, respectively.
After program (1) is solved and the maximum output improvement factor η∗ is found,

the second-stage program is solved:

σ∗ = max 1⊤SX + 1⊤SY

subject to X̄λ+ SX = Xo,

− Ȳ λ+ SY = −η∗Yo,

λ, SX , SY ≥ 0.

(2)

It is known (see, e.g., Cooper et al. 2007) that DMU (Xo, Yo) is strongly efficient if and
only if η∗ = 1 and σ∗ = 0. Define

(X∗, Y ∗) = (X̄λ∗, Ȳ λ∗) = (Xo − S∗
X , η

∗Yo + S∗
Y ).

DMU (X∗, Y ∗) is referred to as an efficient target for DMU (Xo, Yo). It is straightforward
to verify that DMU (X∗, Y ∗) is strongly efficient in technology TCRS.

Remark 1. Let ⟨λ∗, S∗
X , S

∗
Y ⟩ be any optimal solution to (2). Then ⟨η∗, λ∗, S∗

X , S
∗
Y ⟩ is an

optimal solution to program (1).

2We assume that each observed input vectorXj , j = 1, . . . , n, has at least one strictly positive component.
This assumption is used in the proof of Lemma 1.

3An unobserved DMU is an element of technology TCRS or TVRS which is not one of the observed DMUs.
For example, in both technologies the weighted averages (convex combinations) of observed DMUs are
typically unobserved DMUs.
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3.2. The single-stage solution approach

The single-stage approach combines the maximization of the output-improvement fac-
tor η as the primary objective, and the sum of input and output slacks as the secondary
objective, in a single linear program.

Consider some (typically very small) ϵ > 0. The single-stage envelopment program is
stated as follows:

max η + ϵ(1⊤SX + 1⊤SY ) (3a)

subject to X̄λ+ SX = Xo, (3b)

− Ȳ λ+ SY = −ηYo, (3c)

λ, SX , SY ≥ 0, η sign free. (3d)

Its dual multiplier program assumes the form

min X⊤
o v

subject to Y ⊤
o u = 1,

X̄⊤v − Ȳ ⊤u ≥ 0,

u, v ≥ ϵ1.

(4)

It is known that, if ϵ is relatively large, program (4) is infeasible and, by duality, pro-
gram (3) has an unbounded optimum value.4 Mehrabian et al. (2000) develop a linear
programming approach that identifies the maximum value ϵ∗ for which program (4), and
therefore (3), have a finite optimal solution. The range [0, ϵ∗] is referred to as the assur-
ance interval, which is specific to DMU (Xo, Yo). Any value ϵ ∈ [0, ϵ∗] is referred to as an
assurance value.

Assuming ϵ ∈ (0, ϵ∗], let
⟨ηϵ, λϵ, Sϵ

X , S
ϵ
Y ⟩ (5)

be any optimal solution to program (3) for the given ϵ.5 Because (5) is a feasible solution
of program (1), we always have

ηϵ ≤ η∗. (6)

Definition 1. We call ϵ > 0 an effective value for DMU (Xo, Yo) if
(i) program (3) and, therefore, its dual (4) have a finite optimal solution;
(ii) for any optimal solution (5) of program (3), we have ηϵ = η∗, where η∗ is the optimum
value of program (1).

The significance of the above definition is underlined by the next result.

4The economic meaning of infeasibility of program (4) follows from the work of Podinovski and Bouzdine-
Chameeva (2013, 2015). The constraints u, v ≥ ϵ1 of program (8) are absolute weight restrictions. After
a rearrangement (Podinovski 2004, 2005), these are interpretable as production trade-offs that expand
the underlying technology TCRS. The results of Podinovski and Bouzdine-Chameeva (2013) imply that, if
program (8) is infeasible, the constraints u, v ≥ ϵ1 generate free production of output vectors in the expanded
technology. The meaning of optimal input and output weights in DEA models with weight restrictions has
recently been explored by Podinovski (2016).

5Program (3) may have multiple optimal solutions (5), and optimal ηϵ may not be unique. This is
highlighted by Proposition 4 and illustrated by Example 1.
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Proposition 1. Let ϵ be an effective value for DMU (Xo, Yo), and let (5) be any optimal
solution to program (3). Then (5) is an optimal solution to program (1), and ⟨λϵ, Sϵ

X , S
ϵ
Y ⟩ is

an optimal solution to program (2). Conversely, let η∗ be the optimum value of program (1),
and let ⟨λ∗, S∗

X , S
∗
Y ⟩ be any optimal solution to (2). Then ⟨η∗, λ∗, S∗

X , S
∗
Y ⟩ is an optimal

solution to (3).

The proofs of Proposition 1 and the other statements are given in Appendix A.

Reinterpreting the above result, if ϵ is an effective value for DMU (Xo, Yo), then assess-
ing the efficiency of DMU (Xo, Yo) by solving the single-stage program (3) is theoretically
equivalent to assessing its efficiency in two stages, by solving two consecutive programs (1)
and (2).

Below we prove that the set of all effective values ϵ for DMU (Xo, Yo) is the open interval
(0, ϵo), where ϵo > 0 can be computed as the optimum value of a specially constructed linear
program. We refer to (0, ϵo) as the effective interval, and call ϵo the effective bound for DMU
(Xo, Yo). Note that ϵo is excluded from the effective interval and, as proved below, is not
itself an effective value.

3.3. Calculating the effective bound ϵo

Consider the following linear program, where η∗ and σ∗ are the optimum values of pro-
grams (1) and (2), respectively:

φo = min Y ⊤
o u (7a)

subject to X⊤
o v − η∗Y ⊤

o u = σ∗, (7b)

X̄⊤v − Ȳ ⊤u ≥ 0, (7c)

u, v ≥ 1. (7d)

Proposition 2. Program (7) is feasible and has a finite optimum value φo ≥ Y ⊤
o 1.

Theorem 1. An ϵ > 0 is an effective value for DMU (Xo, Yo) if and only if ϵ < 1/φo.
Therefore, ϵo = 1/φo > 0 is the effective bound, and (0, ϵo) is the effective interval for DMU
(Xo, Yo).

As follows from Theorem 1, any ϵ ≥ 1/φo is not an effective value for DMU (Xo, Yo).
The following two results provide a further clarification.

Proposition 3. Consider any ϵ > 1/φo such that program (3) has a finite optimum value,
i.e., ϵ ∈ (1/φo, ϵ

∗]. Then, for any optimal solution (5) of program (3), ηϵ < η∗.

Proposition 4. Let ϵ = 1/φo. Then ⟨η∗, λ∗, S∗
X , S

∗
Y ⟩ is an optimal solution to program (3).

Furthermore, there exists an ᾱ > 0 such that, for any α ∈ (0, ᾱ], program (3) has an
alternative optimal solution ⟨η̃, λ̃, S̃X , S̃Y ⟩ to program (3) such that η̃ = η∗ − α.

The above results are illustrated by numerical examples in Section 6.

Remark 2. If DMU (Xo, Yo) is strongly efficient, we have η∗ = 1 and σ∗ = 0. Then
program (7) assumes the form

φo = min Y ⊤
o u

subject to X⊤
o v − Y ⊤

o u = 0,

X̄⊤v − Ȳ ⊤u ≥ 0,

u, v ≥ 1.

(8)
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Taking into account the first of the above constraints, we can change the objective func-
tion of program (8) to X⊤

o v. Similarly, we can change the objective function of program (7)
to (X⊤

o v − σ∗)/η∗.

Remark 3. Let ϵo and ϵ̂o be, respectively, the effective bounds for DMU (Xo, Yo) and its
output radial target (X̂, Ŷ ) = (Xo, η

∗Yo).
6 We have the following result:

Proposition 5. ϵ̂o = ϵo/η
∗.

Example 1 in Section 6 illustrates Proposition 5.

4. Effective bounds for the input-oriented CRS model

An extension of the above development to the case of input orientation is straightforward.
In order to avoid repetition, we briefly outline only the main results.

The input radial efficiency of DMU (Xo, Yo) is found as the optimal value θ∗ in the
following program:

θ∗ = min θ

subject to − X̄λ− SX = −θXo,

Ȳ λ− SY = Yo,

λ, SX , SY ≥ 0, θ sign free.

(9)

The second-stage program takes the following form, where θ∗ is the optimum value of (9):

τ ∗ = max 1⊤SX + 1⊤SY

subject to − X̄λ− SX = −θ∗Xo,

Ȳ λ− SY = Yo,

λ, SX , SY ≥ 0.

(10)

The single-stage input-oriented program is stated as follows:7

min θ − ϵ(1⊤SX + 1⊤SY )

subject to − X̄λ− SX = −θXo,

Ȳ λ− SY = Yo,

λ, SX , SY ≥ 0, θ sign free.

(11)

Its dual multiplier program is

max Y ⊤
o u

subject to X⊤
o v = 1,

− X̄⊤v + Ȳ ⊤u ≤ 0,

u, v ≥ ϵ1.

(12)

Definition 2. In the case of input minimization, ϵ > 0 is an effective value for DMU
(Xo, Yo) if

6Note that the output radial target (X̂, Ŷ ) is strongly efficient if and only if DMU (Xo, Yo) does not
exhibit mix inefficiency, i.e., the optimal value σ∗ of program (2) is equal to zero.

7Note that the term with sum of slacks in the objective function of (11) is stated with the negative sign.
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(i) program (11) and, therefore, its dual (12) have a finite optimal solution;
(ii) for any optimal solution ⟨θϵ, λϵ, Sϵ

X , S
ϵ
Y ⟩ of program (11), we have θϵ = θ∗, where θ∗ is

the optimum value of program (9).

Restating and proving an input-oriented analogue of Proposition 1 is straightforward,
and is not given. In particular, if ϵ is an effective value, solving the single-stage input-
oriented program (11) is equivalent to assessing the input radial efficiency of DMU (Xo, Yo)
and the corresponding optimal slacks in two stages (9) and (10).

Consider the following linear program, where θ∗ and τ ∗ are the optimum values of pro-
grams (9) and (10), respectively:

φ̃o = min X⊤
o v

subject to θ∗X⊤
o v − Y ⊤

o u = τ ∗,

X̄⊤v − Ȳ ⊤u ≥ 0,

u, v ≥ 1.

(13)

Theorem 2. For the single-stage input-oriented program (11), ϵ > 0 is an effective value
if and only if ϵ < 1/φ̃o. Therefore, ϵ̃o = 1/φ̃o > 0 is the effective bound, and (0, ϵ̃o) is the
effective interval for DMU (Xo, Yo).

The proof of the Theorem 2 follows closely the proof of Theorem 1 and is not given.8

We also have direct analogues of Proposition 3 and 4. In particular, the latter implies that,
if ϵ = 1/φ̃o, program (11) has multiple optimal solutions ⟨θϵ, λϵ, Sϵ

X , S
ϵ
Y ⟩, and there exist

optimal solutions with θϵ = θ∗ and θϵ > θ∗.
Furthermore, for the input radial projection (X̂, Ŷ ) = (θ∗Xo, Yo) of DMU (Xo, Yo), an

analogue of Proposition 5 is true. Namely, we have ϵ̂o = ϵ̃o/θ
∗, where ϵ̃o and ϵ̂o are the

effective bounds for DMUs (Xo, Yo) and (X̂, Ŷ ), respectively.

Remark 4. Generally, the effective bound ϵo is different for the output-oriented and input-
oriented programs (3) and (11). An exception to this is highlighted by the following result.

Proposition 6. Let DMU (Xo, Yo) be strongly efficient in technology TCRS. Then φo = φ̃o,
which implies ϵo = ϵ̃o.

5. Effective bounds for the VRS models

Under the assumption of VRS, the two-stage output-oriented programs and the corre-
sponding single-stage program are obtained from programs (1), (2) and (3), by incorporating
the additional normalizing equality

1⊤λ = 1. (14)

The dual to the single-stage VRS program incorporates the additional sign-free variable
ω dual to the normalizing equality (14):

min X⊤
o v + ω

subject to Y ⊤
o u = 1,

X̄⊤v − Ȳ ⊤u+ ω1 ≥ 0,

u, v ≥ ϵ1, ω sign free.

8As in the latter case, the proof implies that program (13) is feasible and has a finite optimum value
φ̃o ≥ X⊤

o 1. The latter means that ϵ̃o ≤ 1/X⊤
o 1.
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Adapting Definition 1, we refer to ϵ as an effective value for the single-stage output-
oriented VRS program (program (3) with the normalizing condition (14)) if, for any of its
optimal solutions ⟨ηϵ, λϵ, Sϵ

X , S
ϵ
Y ⟩, we have ηϵ = η∗.

Consider the following linear program, where η∗ and σ∗ are the optimum values of the
VRS analogues of programs (1) and (2) (that incorporate the additional equality (14)):

φo = min Y ⊤
o u

subject to X⊤
o v − η∗Y ⊤

o u+ ω = σ∗,

X̄⊤v − Ȳ ⊤u+ ω1 ≥ 0,

u, v ≥ 1, ω sign free.

(15)

It is straightforward to show that Theorem 1 and Propositions 1–5 remain true in the case
of VRS, with obvious modifications. (In their statements, programs (1) and (3) are replaced
by their VRS analogues, and φo is the optimum value of program (15).) In particular, for the
single-stage output-oriented VRS program, the effective interval is (0, ϵo), where ϵo = 1/φo.

Similarly, in the case of input orientation, let θ∗ be the input radial efficiency of DMU
(Xo, Yo) in the VRS technology, and τ ∗ be the corresponding maximum sum of input and
output slacks. Then the effective interval for the single-stage input-oriented VRS program
is (0, ϵ̃o), where ϵ̃o is the inverse of the optimum value φ̃o in the following program:

φ̃o = min X⊤
o v

subject to θ∗X⊤
o v − Y ⊤

o u+ ω = τ ∗,

X̄⊤v − Ȳ ⊤u+ ω1 ≥ 0,

u, v ≥ 1.

The next result shows that the effective bound in the CRS model does not exceed
the effective bound in the VRS model, in both input and output orientations. Let DMU
(Xo, Yo) ∈ TVRS and, therefore, (Xo, Yo) ∈ TCRS. Denote ϵVRS

o and ϵCRS
o the effective bounds

for DMU (Xo, Yo) in the single-stage output-oriented VRS and CRS programs, respectively.
Similarly, denote ϵ̃VRS

o and ϵ̃CRS
o the effective bounds in the respective input-oriented VRS

and CRS models.

Proposition 7. ϵCRS
o ≤ ϵVRS

o , ϵ̃CRS
o ≤ ϵ̃VRS

o .

6. Examples

Below we consider two examples that illustrate theoretical results obtained in this paper.

Example 1. Consider the CRS technology with a single input and two outputs generated
by observed DMUs A, B and C shown in Table 1. The other DMUs in this table are also
in this technology and may be viewed as observed or unobserved. The last two columns of
Table 1 show the value φo evaluated by solving program (7) and the corresponding effective
bound ϵo = 1/φo (rounded to 5 decimal places).

Figure 1 provides a graphical illustration of this example. The shaded area represents
the section of the above technology for the input equal to 1. Each DMU in this graph is
shown together with the corresponding value φo (the value in parentheses).

Note that the output radial efficiency of DMU D is equal to 0.5, and its radial target
is DMU G. Similarly, the output radial efficiency of DMU E is equal to 0.6, and its radial
target is DMU B. The effective bounds ϵo for these DMUs shown in Table 1 clearly comply
with the statement of Proposition 5.
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Table 1: DMUs in Example 1 and values φo and ϵo.

DMU Input Output 1 Output 2 φo ϵo = 1/φo

A 1 3 6 15 0.06667

B 1 5 5 10 0.1

C 1 6 1 25 0.04

D 1 1 3 7 0.14286

E 1 3 3 6 0.16667

F 1 1 6 13 0.07692

G 1 2 6 14 0.07143

H 1 4 5.5 15 0.06667

K 1 5.5 3 25 0.04

To illustrate the theory developed in this paper, we solve the single-stage program (3)
for each DMU, using three different values of ϵ, namely, 0.1, 0.05 and 0.03. Table 2 shows
the corresponding optimum values ηϵ (rounded to 5 decimal places).

Note that ϵ = 0.03 is strictly smaller than the effective bound ϵo of each DMU (shown
in the last column of Table 1). Therefore, according to Theorem 1, the corresponding value
ηϵ is the true value of output expansion factor η∗ of each DMU.9 The optimal input and
output slacks Sϵ

X and Sϵ
Y also coincide with their true values S∗

X and S∗
Y obtained by solving

program (2) (these are not shown but can be verified by observation of Figure 1).
In line with Theorem 1, for ϵ = 0.05 and ϵ = 0.1, we have ηϵ ̸= η∗, in all cases where

ϵ is larger than the required effective bound ϵo. For example, for DMU A, ϵo = 0.06667.
This means that computations with ϵ = 0.05 produce the true output expansion factor
ηϵ = η∗ = 1, while computations with ϵ = 0.1 produce ηϵ = 0.83333 < 1 = η∗. (Note that
this is consistent with Proposition 3.)

According to Proposition 4, solving the single-stage program (3) with ϵ = ϵo does not
guarantee that ηϵ = η∗. This result is relevant for DMU B when we use ϵ = 0.1, which
coincides with ϵo for this DMU. In our computations we obtained ηϵ = η∗ = 1. In order to
illustrate Proposition 4, we incorporate the additional constraint η + ϵ(1⊤SX + 1⊤SY ) = 1
in program (3) and change its objective to the minimization of η. Computations show that
the resulting program has an unbounded optimum value. This implies that the original
single-stage program (3) has multiple optimal solutions (5), in which ηϵ can be any value
from the interval (−∞, 1].

Similarly, performing additional computations with ϵ = 0.04 (not shown) produces the
same results as with ϵ = 0.03, for all DMUs. However, because ϵo = 0.04 for DMUs C and
K, by Proposition 4, there exist alternative optimal solutions to the corresponding single-
stage programs (3) in which ηϵ < η∗ = 1. Computations show that, for DMU C, there exist
optimal solutions (5) in which ηϵ is any value from the interval [0.83333, 1]. For DMU K,
any value ηϵ ∈ [0.90909, 1] can be obtained.

Example 2. It may appear that we can evaluate the effective bounds ϵo for all strongly
efficient observed DMUs, define ϵ̄o as the smallest among them, and use ϵ̄o as a universal

9The true values η∗ are also easy to compute by observation of Figure 1.
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Figure 1: An illustration of Example 1. The values in parentheses show φo = 1/ϵo evaluated at the
corresponding DMU.

effective bound for all DMUs in the technology. In particular, Figure 1 appears to suggest
that such an approach might be valid.10 The following example shows that, in the general
case, this approach would be incorrect. In particular, single-stage computations for an
inefficient DMU may require a smaller ϵ than for any of the efficient DMUs.

Consider the CRS or VRS technology generated by three observed DMUs A, B and C
shown in Table 3, all of which are strongly efficient in both technologies. DMU D is the
convex combination of A, B and C with the weights 0.5, 0.25 and 0.25, respectively, and is
also strongly efficient. DMU E is inefficient. Its output radial efficiency is equal to 0.9 in
both CRS and VRS technologies, and its efficient radial target is DMU D.

The last two columns of Table 3 show effective bounds ϵCRS
o and ϵVRS

o for the single-stage
output-oriented CRS and VRS models. The former are calculated by solving program (7),
and the latter by solving program (15).

Note that the effective bounds ϵo for the inefficient DMU E and its efficient output radial
projection D are strictly smaller than for any of the three efficient observed DMUs A, B
and C. This observation is true in both the CRS and VRS technologies.

Furthermore, as an illustration to Proposition 7, note that the effective bounds ϵo calcu-
lated under the assumption of VRS do not exceed those calculated for the CRS technology.

7. Conclusion

The single-stage approach to assessing the efficiency of DMUs is usually viewed as an
approximate method that, additionally, may suffer from significant computational errors. In
this paper we prove that, if the value ϵ employed by the method is sufficiently small, the
single-stage approach theoretically (i.e., assuming we can solve the program exactly, without
any computational errors) produces the true radial efficiency of DMUo and the corresponding

10In this case, the lowest effective bound ϵo = 1/φo is attained at the observed DMU C. Therefore,
ϵ̄o = 0.04. As discussed, in this example, any smaller value, e.g., ϵ = 0.03, is suitable for single-stage
solutions for all DMUs.
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Table 2: Optimal ηϵ for different values ϵ in Example 1.

DMU ϵ = 0.1 ϵ = 0.05 ϵ = 0.03

A 0.83333 1 1

B 1 1 1

C 0.83333 0.83333 1

D 2 2 2

E 1.66667 1.66667 1.66667

F 0.83333 1 1

G 0.83333 1 1

H 0.90909 1 1

K 0.90909 0.90909 1

Table 3: DMUs in Example 2 and values ϵo in the CRS and VRS technologies.

DMU Input Output 1 Output 2 Output 3 ϵCRS
o ϵVRS

o

A 1 4 1 1 0.02381 0.06818

B 1 1 4 1 0.02381 0.06818

C 0.5 1 1 10 0.08333 0.08333

D 0.875 2.5 1.75 3.25 0.01191 0.05985

E 0.875 2.25 1.575 2.925 0.01323 0.06650

optimal slacks, exactly the same as obtained by the two-stage approach of Ali and Seiford
(1993a).

We prove that the threshold value ϵo, referred to as the effective bound, can be computed
by solving a specially constructed linear program for each DMUo. Such a linear program
requires that we know the true input or output radial efficiency of DMUo and the corre-
sponding optimal input and output slacks. This means that we implement the two-stage
procedure before we identify the effective bound ϵo, which leaves the subsequent single-stage
implementation uninteresting from the practical perspective.

However, our results provide a useful insight into the asymptotic behaviour of efficiency
assessed by the single-stage method as a function of ϵ. In particular, they allow us to explain
the behaviour of the output improvement factor ηϵ as a function of ϵ shown in Table 2 of
the illustrative example.

Out results imply that, if we reduce ϵ aiming to improve the precision of the single-stage
solution (viewed as an approximation of the true solution yielded by the two-stage method),
then there exists the threshold value ϵo > 0 below which the approximation error is not
improved, because the theoretically precise (true) solution is already achieved. Therefore,
for very small values ϵ, any discrepancy between the calculated and true efficiencies of DMUo

is explained entirely by computational errors.
Expressing the effective bound ϵo as the inverse optimal value of a specially constructed
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linear program leads to further theoretical results. In particular, we prove that the effective
bound for any DMUo in the CRS model does not exceed its effective bound in the VRS
model, in both input and output orientations. We also show that the effective bounds in
the input and output orientations, for both CRS and VRS models, are generally different,
and their evaluation requires solving different linear programs. We show by an example
that the effective bound of an inefficient DMU may be smaller than the efficient bound of
any of the strongly efficient DMUs. This implies that assessing the effective bounds for all
observed DMUs is generally insufficient to identify the common effective value ϵ that would
be suitable for all (including unobserved) DMUs in the CRS or VRS technology.

Another implication of our results concerns interpretation of single-stage DEA models.
Traditionally, the value ϵ in these models is regarded as a non-Archimedean infinitesimal
whose definition is, as highlighted by Cooper et al. (2007, page 74), based on non-standard
mathematics of linear programming. Our results show that we can always stay within the
realm of standard linear programming and interpret ϵ as a sufficiently small positive real
number.

From a practical perspective, considering the importance of the effective bound ϵo for
single-stage models, it would be interesting to develop a method for assessing or approxi-
mating ϵo that does not require an explicit knowledge of the radial efficiency of DMUo and
the corresponding maximum slacks. Addressing this issue is a topic open for future research.
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Appendix A. Proofs

Proof of Proposition 1. By Definition 1, ηϵ = η∗. Therefore, ⟨λϵ, Sϵ
X , S

ϵ
Y ⟩ is an optimal

solution to program (3) with the additional constraint η = η∗. This makes η a fixed con-
stant, and maximizing the objective function (3a) is equivalent to maximizing the objective
function of program (2).

Conversely, let ⟨λ∗, S∗
X , S

∗
Y ⟩ be an optimal solution to (2). Then ⟨η∗, λ∗, S∗

X , S
∗
Y ⟩ is a

feasible solution to program (3). Consider any optimal solution (5) to program (3). By
Definition 1, ηϵ = η∗. Then ⟨λϵ, Sϵ

X , S
ϵ
Y ⟩ is an optimal solution to program (2). Therefore,

1⊤Sϵ
X + 1⊤Sϵ

Y = 1⊤S∗
X + 1⊤S∗

Y , and ⟨η∗, λ∗, S∗
X , S

∗
Y ⟩ is an optimal solution to (3).

Proof of Proposition 2. The fact that program (7) has a finite optimum value is estab-
lished in the proof of Theorem 1. The inequality φo ≥ Y ⊤

o 1 follows from (7d).

Proof of Theorem 1. Let η∗ be the optimum value of program (1), and let ⟨λ∗, S∗
X , S

∗
Y ⟩

be an optimal solution to program (2). Then ⟨η∗, λ∗, S∗
X , S

∗
Y ⟩ is a feasible solution to pro-

gram (3), whose objective function is equal to

η∗ + ϵ
(
1⊤S∗

X + 1⊤S∗
Y

)
. (A.1)

Consider the following linear program in which η∗ is fixed and α ≥ 0 is a parameter (not
used for optimization):

Φ(α) = max ϵ(1⊤SX + 1⊤SY ) (A.2a)

subject to X̄λ+ SX = Xo, (A.2b)

− Ȳ λ+ SY = −η∗Yo + αYo, (A.2c)

λ, SX , SY ≥ 0. (A.2d)

If α = 0, program (A.2) is program (2) (with its objective function multiplied by ϵ).
Therefore,

Φ(0) = ϵ
(
1⊤S∗

X + 1⊤S∗
Y

)
. (A.3)

If α ̸= 0, program (A.2) can be regarded as a perturbed program (2) (with its objective
function multiplied by ϵ) in which the vector of perturbation Yo on the right-hand side of
constraint (A.2c) is used in proportion α.

By Lemma 1, program (A.2) is feasible and has a finite optimum value for all α ∈ Γ =
[0,+∞), i.e., Γ is the domain of function Φ(α). As known from sensitivity analysis in linear
optimization (see, e.g, Roos et al. 2005, Theorems IV.48 and IV.50), Φ(α) is a continuous,
concave and piecewise linear function on Γ. Because function Φ(α) is linear in some right
neighbourhood of α = 0, it has a finite right-hand derivative Φ′

+(0).
By Lemma 2, program (7) is feasible and its optimum value φo is finite, which proves

Proposition 2. Furthermore,
Φ′

+(0) = ϵφo. (A.4)

Because Φ(α) is concave on Γ, we have

Φ(α) ≤ Φ(0) + Φ′
+(0)α, ∀α ∈ Γ. (A.5)

Moreover, because function Φ(α) is linear in some right neighbourhood [0, ᾱ] of α = 0
(where ᾱ > 0), the inequality (A.5) is satisfied as equality for all α ∈ [0, ᾱ], i.e.,

Φ(α) = Φ(0) + Φ′
+(0)α, ∀α ∈ [0, ᾱ]. (A.6)

The proof now follows from Lemma 3 and Propositions 3 and 4.
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Lemma 1. The domain Γ of function Φ(α) is [0,+∞).

Proof of Lemma 1. Obviously, 0 ∈ Γ. Let ⟨λ′, S ′
X , S

′
Y ⟩ denote an optimal solution to (A.2),

where α = 0. Let α̃ > 0. Then ⟨λ′, S ′
X , S

′
Y + α̃Yo⟩ is an optimal solution to (A.2), where

α = α̃. (In particular, SY = S ′
Y + α̃Yo satisfies (A.2c).) Therefore, α̃ ∈ Γ. Finally, let

α̃ < 0. We need to prove that program (A.2) is infeasible. Indeed, assume the opposite.
Then program (A.2) is feasible for η̃ = η∗ − α̃ > η∗.

By constraints (A.2b) and (A.2c), the objective function of program (A.2) is bounded
above. Indeed, (A.2b) implies that the terms X̄λ and SX are bounded above by vector Xo.
Because all columnsXj of matrix X̄, j = 1, . . . , n, are nonzero, all components of vector λ are
bounded above. Then the term Ȳ λ in (A.2c), and hence SY , are bounded above. Therefore,
program (A.2) has a finite optimal solution ⟨λ̃, S̃X , S̃Y ⟩. The same solution must be optimal
in program (2) in which η∗ is replaced by η̃. By Remark 1, ⟨η̃, λ̃, S̃X , S̃Y ⟩ is optimal in (1),
which contradicts the assumption that η∗ is the optimum value of program (1).

Lemma 2. Program (7) is feasible and has a finite optimum value φo. Furthermore, Φ′
+(0) =

ϵφ0.

Proof of Lemma 2. As shown in the proof of Theorem 1, the right-hand derivative Φ′
+(0)

exists and is finite. Using the known result of sensitivity analysis, to calculate Φ′
+(0),

consider the dual to (A.2) where α = 0:

min X⊤
o v − η∗Y ⊤

o u

subject to X̄⊤v − Ȳ ⊤u ≥ 0,

u, v ≥ ϵ1.

(A.7)

Denote Ω the set of optimal solutions to (A.7). Then (see, e.g., Roos et al. 2005,
Theorem IV.62)

Φ′
+(0) = min{Y ⊤

o u | (u, v) ∈ Ω}. (A.8)

Because Φ′
+(0) exists and is finite, program (A.8) is feasible and has a finite optimal

solution. To restate program (A.8) in an operational form, note that program (A.7) is
the dual to (A.2) with α = 0, and the latter is program (2), with its objective function
multiplied by ϵ. Therefore, the optimum value of (A.7) is equal to ϵσ∗. Hence, the set of
optimal solutions Ω of program (A.7) is the set of all its feasible solutions for which the
objective function of (A.7) is equal to ϵσ∗. Then program (A.8) can be stated as follows:

Φ′
+(0) = min Y ⊤

o u

subject to X⊤
o v − η∗Y ⊤

o u = ϵσ∗,

X̄⊤v − Ȳ ⊤u ≥ 0,

u, v ≥ ϵ1.

Substituting ũ = u/ϵ and ṽ = v/ϵ, we have

Φ′
+(0) = ϵ×min Y ⊤

o ũ

subject to X⊤
o ṽ − η∗Y ⊤

o ũ = σ∗,

X̄⊤ṽ − Ȳ ⊤ũ ≥ 0,

ũ, ṽ ≥ 1.

Comparing with (7), we have Φ′
+(0) = ϵφ0. Because, as shown, Φ

′
+(0) is finite, φo is also

finite, which completes the proof.
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Lemma 3. Any ϵ ∈ (0, 1/φo) is an effective value for DMU (Xo, Yo).

Proof of Lemma 3. Consider any ϵ ∈ (0, 1/φo). Then, by (A.4),

Φ′
+(0) < 1. (A.9)

Let ⟨ηϵ, λϵ, Sϵ
X , S

ϵ
Y ⟩ be an optimal solution to (3). We need to prove that ηϵ = η∗. First

note that ηϵ ≤ η∗. (This follows from the fact that ⟨ηϵ, λϵ, Sϵ
X , S

ϵ
Y ⟩ is feasible in (1) and that

η∗ is the optimum value of (1).) Assume that ηϵ < η∗, and let α̂ = η∗ − ηϵ > 0. Then the
optimum value of program (3) is

ηϵ + ϵ
(
1⊤Sϵ

X + 1⊤Sϵ
Y

)
= ηϵ + Φ(α̂). (A.10)

Taking into account (A.1) and (A.3), observe that the objective function of program (3)
at its feasible solution ⟨η∗, λ∗, S∗

X , S
∗
Y ⟩ is equal to

η∗ + ϵ
(
1⊤S∗

X + 1⊤S∗
Y

)
= η∗ + Φ(0). (A.11)

Subtracting the right-hand side of (A.11) from the right-hand side of (A.10), and not-
ing (A.5) and (A.9), we obtain

ηϵ − η∗ + Φ(α̂)− Φ(0) ≤ −α̂ + Φ′
+(0)α̂ = (Φ′

+(0)− 1)α̂ < 0.

This contradicts the assumption that ⟨ηϵ, λϵ, Sϵ
X , S

ϵ
Y ⟩ is an optimal solution to (3). There-

fore, ηϵ = η∗.

Proof of Proposition 3. Let ϵ ∈ (1/φo, ϵ
∗) and, therefore, program (3) has a final opti-

mum value. To prove Proposition 3, it suffices to prove the following two statements.
(i) There exists a feasible solution ⟨η̃, λ̃, S̃X , S̃Y ⟩ to program (3) for which its objective

function is strictly larger than for ⟨η∗, λ∗, S∗
X , S

∗
Y ⟩, i.e.,

η̃ + ϵ
(
1⊤S̃X + 1⊤S̃Y

)
> η∗ + ϵ

(
1⊤S∗

X + 1⊤S∗
Y

)
. (A.12)

Therefore, the inequality (A.12) is true for any optimal solution ⟨η̃, λ̃, S̃X , S̃Y ⟩ to program (3).
(ii) For any optimal solution ⟨η̃, λ̃, S̃X , S̃Y ⟩ to program (3), we have η̃ < η∗.
To prove statement (i), first note that, by (A.4),

Φ′
+(0) > 1. (A.13)

Consider any η̃ < η∗ such that α̃ = η∗− η̃ ∈ [0, ᾱ], where ᾱ > 0 is as defined in the proof
of Theorem 1. Let ⟨λ̃, S̃X , S̃Y ⟩ be an optimal solution to program (A.2), where α = α̃. Then
⟨η̃, λ̃, S̃X , S̃Y ⟩ is a feasible solution to program (3), for which its objective function is equal
to

η̃ + ϵ
(
1⊤S̃X + 1⊤S̃Y

)
= η̃ + Φ(α̃). (A.14)

Because Φ(α) is a linear function on [0, ᾱ], (A.6) implies

Φ(α̃) = Φ(0) + Φ′
+(0)α̃. (A.15)

The value of the objective function of (3) at ⟨η∗, λ∗, S∗
X , S

∗
Y ⟩ is given by (A.11). Sub-

tracting the right-hand side of (A.11) from the right-hand side of (A.14), and using the
substitution of (A.15), we have

[η̃ + Φ(α̃)]− [η∗ + Φ(0)] = −α̃ + Φ′
+(0)α̃ = (Φ′

+(0)− 1)α̃. (A.16)
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Statement (i) now follows from (A.13).
To prove statement (ii), consider any optimal solution ⟨η̃, λ̃, S̃X , S̃Y ⟩ to program (3). By

statement (i), this solution satisfies (A.12). Taking into account (6) (where ηϵ is replaced
by η̃), it suffices to prove that the case η̃ = η∗ is impossible, and therefore we have η̃ < η∗.

Indeed, assume that η̃ = η∗. Then ⟨λ̃, S̃X , S̃Y ⟩ is feasible in program (2). From (A.12)
we have

1⊤S̃X + 1⊤S̃Y > 1⊤S∗
X + 1⊤S∗

Y ,

which contradicts the optimality of solution ⟨λ∗, S∗
X , S

∗
Y ⟩ in program (2).

Proof of Proposition 4. First note that, if ϵ = 1/φo, we have

Φ′
+(0) = 1. (A.17)

As in the proof of Lemma 3, it is straightforward to show that ⟨η∗, λ∗, S∗
X , S

∗
Y ⟩ is an

optimal solution to program (3).
Let ᾱ be as defined in the proof of Theorem 1. For any α̃ ∈ (0, ᾱ], consider the feasible

solution ⟨η̃, λ̃, S̃X , S̃Y ⟩ to program (3), defined in the proof of Proposition 3. For this solution,
because η∗ − η̃ = α̃ > 0, we have η̃ < η∗. Subtracting the value of the objective function
of program (3) at solution ⟨η∗, λ∗, S∗

X , S
∗
Y ⟩ from its value at solution ⟨η̃, λ̃, S̃X , S̃Y ⟩ (i.e.,

subtracting (A.11) from (A.14)), we obtain (A.16). Using the substitution of (A.17), we
have

[η̃ + Φ(α̃)]− [η∗ + Φ(0)] = (Φ′
+(0)− 1)α̃ = 0.

Therefore, ⟨η̃, λ̃, S̃X , S̃Y ⟩ is an optimal solution to program (3), and η̃ < η∗.

Proof of Proposition 5. For DMU (X̂, Ŷ ), the optimum value η̂∗ of the corresponding
first-stage program (1) is equal to 1, and the maximum sum of slacks in the corresponding
program (2) is equal to σ∗, the same as for DMU (Xo, Yo). Therefore, the single-stage
program for DMU (X̂, Ŷ ) is program (7) in which the objective function is changed to
η∗Y ⊤

o u. For its optimum value φ̂o we have φ̂o = η∗φo. This implies ϵ̂o = ϵo/η
∗.

Proof of Proposition 6. Because DMU (Xo, Yo) is strongly efficient, in program (13),
θ∗ = 1 and σ∗ = 0. Then program (13) is program (8), and φo = φ̃o.

Proof of Proposition 7. Let ⟨u′, v′⟩ be an optimal solution to program (7). Then ⟨u′, v′, ω′⟩,
where ω′ = 0, is feasible in program (15). The objective functions of these two programs
are equal for the two solutions. Therefore, φCRS

o ≥ φVRS
o , where φCRS

o is the optimum value
of (7) and φVRS

o is the optimum value of (15). Similarly, φ̃CRS
o ≥ φ̃VRS

o .
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