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Abstract

The notion of returns to scale (RTS) is well-established in data envelopment analysis (DEA).
In the variable returns-to-scale production technology, the RTS characterization is closely
related to other scale characteristics, such as the scale elasticity, most productive scale size
(MPSS), and global RTS types indicative of the direction to MPSS. In recent years, a number
of alternative production technologies have been developed in the DEA literature. Most of
these technologies are polyhedral, and hence are closed and convex sets. Examples include
technologies with weakly disposable undesirable outputs, models with weight restrictions and
production trade-offs, technologies that include several component production processes, and
network DEA models. For most of these technologies, the relationship between RTS and
other scale characteristics has remained unexplored. The theoretical results obtained in this
paper establish such relationships for a very large class of closed convex technologies, of
which polyhedral technologies are an important example.
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1. Introduction

The notion of returns to scale (RTS) is well-established in data envelopment analysis
(DEA) — see, e.g., Cooper et al. (2007), Ray (2004) and Thanassoulis et al. (2008).
Extending the earlier results of Banker (1984) and Banker and Thrall (1992), the DEA
literature has primarily focused on the definition and evaluation of RTS in the variable
returns-to-scale (VRS) production technology, for which several different methods are now
available (for a review, see Banker et al., 2011, and Sahoo et al., 2015).

The RTS characterization of decision making units (DMUs) is also related to the notions
of scale efficiency and most productive scale size (MPSS) introduced by Banker et al. (1984)
and Banker (1984). Further connections can be made to the notion of global RTS (GRS)
introduced by Podinovski (2004a, 2004b). The GRS characterization is global in the sense
that its types are indicative of the direction to MPSS and are not defined by the local
(marginal) properties of production function.

In the VRS technology, some relevant known results describing the relationship between
RTS and other scale characteristics can be summarized as follows.

1. A standard procedure for testing if a DMU is at MPSS arises from the definition of
MPSS by Banker (1984). It is based on evaluation of input or output radial efficiency
of the DMU in the reference constant returns-to-scale (CRS) technology of Charnes et
al. (1978), which, from a general perspective, is the cone technology generated by the
VRS technology.
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2. An alternative way to test for MPSS is to evaluate the type of RTS exhibited by a
DMU. Namely, a DMU is at MPSS if and only if it exhibits CRS (Banker and Thrall,
1992).

3. The GRS characterization of DMUs in the VRS technology, while generally differ-
ent from the conventional local RTS characterization, in the case of VRS technol-
ogy coincides with the latter. This effectively follows from Proposition 1 proved by
Banker (1984).

In recent years, a number of new production technologies have been developed and
studied in the DEA literature. Most of these technologies are polyhedral (and therefore
convex) sets in the input and output dimensions. Podinovski et al. (2016) refer to such
technologies as polyhedral technologies.1

The class of polyhedral technologies is very large and includes most of the known convex
DEA technologies, such as the CRS and VRS technologies of Charnes et al. (1978) and
Banker et al. (1984). Further examples include the VRS and CRS technologies expanded
by weight restrictions or production trade-offs (Podinovski, 2004d, 2007, 2015, 2016; Atici
and Podinovski, 2015; Podinovski and Bouzdine-Chameeva, 2013, 2015; Joro and Korho-
nen, 2015), the weakly disposable VRS technology (Kuosmanen, 2005; Kuosmanen and
Podinovski, 2009, Kuosmanen and Kazemi Matin, 2011), the hybrid returns-to-scale (HRS)
technology (Podinovski, 2004c; Podinovski et al., 2014), the convex CRS technology with
exogenously fixed inputs and outputs (Podinovski and Bouzdine-Chameeva, 2011), some
models of technologies with multiple component processes (Cherchye et al. 2013; Cherchye
et al. 2015, 2016; Cook and Zhu, 2011) and various network DEA models (see, e.g., Kao,
2014 and Sahoo et al., 2014).

It is clear that RTS and related scale characterizations such as MPSS are important
for all polyhedral technologies. Thus, several authors develop bespoke methodologies for
evaluation of RTS in particular technologies (see, e.g., Tone, 2001 and Sahoo et al., 2014).
Podinovski et al. (2016) develop a universal methodology for the RTS characterization of
DMUs in any polyhedral technology. This approach uses linear programming techniques for
calculation of one-sided scale elasticities that subsequently define the types of RTS.

Although the current DEA literature allows us to define and evaluate the RTS types
for any polyhedral technology, and further methods exist for their GRS characterization,
the relationship between RTS and GRS types (including MPSS) has so far remained unex-
plored. An exception here is the equivalence of RTS and GRS characterizations for convex
technologies whose boundaries are smooth, established by Podinovski (2004a). This result
does not, however, apply to polyhedral technologies.

This paper addresses the above gap. Its main contribution is the establishment of equiva-
lence of local and global characterizations of RTS in any polyhedral technology. In particular,
this implies that a DMU exhibits CRS if and only if it is at MPSS. In fact, from the theo-
retical perspective, it is straightforward to generalize and prove this result in a larger class
of closed convex technologies, of which polyhedral technologies are a special case.

From a practical perspective, the established equivalence of the notions of RTS and
GRS gives us a new tool for evaluating the GRS types in any polyhedral (and, more gen-
erally, closed and convex) technology, by evaluating the RTS types instead. More precisely,
standard methods for the evaluation of MPSS and GRS types require the use of reference
technologies (such as the CRS, non-increasing and non-decreasing RTS technologies, if the

1In a finite-dimensional space Rn a polyhedral set is defined as the intersection of a finite number of
closed half-spaces (Rockafellar, 1970).
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underlying true technology is VRS). For many polyhedral technologies, their reference tech-
nologies may not be immediately available and would require further development before
they could be used. The new theoretical results established in this paper allow us to avoid
this and, instead, use the existing methodologies for evaluation of RTS.

We illustrate the usefulness of the new results by a numerical example involving the RTS
and GRS characterizations of a VRS technology expanded by the specification of weight
restrictions. We also discuss the application of new results to a two-stage network DEA
model.

2. The output response function

Consider a production technology T ∈ Rm+s
+ , where m is the number of inputs and s is

the number of outputs.2 Elements of T are DMUs (X, Y ), where X ∈ Rm
+ and Y ∈ Rs

+ are
the vectors of inputs and outputs, respectively.

Unless stated otherwise, the only two general assumptions we make about T is that it
is a closed and convex set.3 We refer to T as a closed convex technology. As noted above, a
practically important example of such technologies is the class of polyhedral technologies.

Consider any DMU (Xo, Yo) ∈ T , where T is a closed convex technology. Throughout
this paper we assume that Xo ̸= ∅ and Yo ̸= ∅. Central to our development is the output
response function β̄(α) defined as follows:

β̄(α) = max {β | (αXo, βYo) ∈ T , β ∈ R} . (1)

In formula (1), the scalar α defines a proportional change to the input vector Xo, and β
defines a proportional change to the output vector Yo. The output response function β̄(α) is
equal to the maximum proportion β of output vector Yo that can be produced in technology
T from the input vector αXo.

4

We also make the following assumption:

Assumption 1. DMU (Xo, Yo) is output radial efficient, i.e.,

β̄(1) = max {β | (Xo, βYo) ∈ T , β ∈ R} = 1.

Let Γ be the domain of function β̄(α), i.e., Γ ∈ R is the set of all α for which there exists
a β such that (αXo, βYo) ∈ T . Clearly, 1 ∈ Γ.

Proposition 1. (i) Γ is a closed interval in R+;
(ii) For all α ∈ Γ, the maximum in (1) is finite and is attained.
(iii) β̄(α) is a continuous and concave function on Γ.

2The requirement that T is a subset of the nonnegative orthant Rm+s
+ is needed for the correct defini-

tion of RTS types and MPSS. However, this requirement is not needed and is omitted for the definition
and calculation of the scale elasticity and other marginal scale characteristics. In the case of polyhedral
technologies this is demonstrated by Podinovski et al. (2016).

3A further Assumption 1 additionally implies that technology T does not allow unlimited produc-
tion. (This follows from Theorem 2 proved in Podinovski and Bouzdine-Chameeva 2013.) Technology
T allows unlimited production if there exists an input vector X∗ and output vector Y ∗ ̸= 0 such that
sup {β | (X∗, βY ∗) ∈ T } = +∞.

4The function β̄(α) is closely related to the directional distance function of Chambers et al. (1998)
assessed at DMU (Xo, Yo) in the direction of vector Yo. For details of this correspondence, see, e.g., Section
3.2 in Podinovski et al. (2016).
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The proofs of Proposition 1 and the other statements are given in Appendix A.

The RTS characterization of DMUs developed below is based on the notion of right-hand
and left-hand derivatives of the function β̄(α), denoted β̄′

+(α) and β̄′
−(α), respectively. As

follows from Theorem 24.1 in Rockafellar (1970) restated for a concave function β̄(α), we
have the following properties of the one-sided derivatives β̄′

+(α) and β̄′
−(α) taking values

from the interval [−∞,+∞]:

1. The one-sided derivatives β̄′
+(α) and β̄′

−(α) exist for all α ∈ Γ. For any α interior to
Γ, both β̄′

+(α) and β̄′
−(α) are finite.

2. If α is the left extreme point of Γ, β̄′
+(α) may be finite or +∞. Similarly, if α is the

right extreme point of Γ, β̄′
−(α) may be finite or −∞.5

3. For all α1, α2, α3 ∈ Γ such that α1 < α2 < α3, we have the following monotonicity
property:

β̄′
+(α1) ≥ β̄′

−(α2) ≥ β̄′
+(α2) ≥ β̄′

−(α3). (2)

For convenience, we also formally define β̄′
−(α) = +∞ if α is the left extreme point of Γ,

and β̄′
+(α) = −∞ if α is the right extreme point of Γ. Although neither of these one-sided

derivatives exists in the classical sense, this definition helps us to avoid giving a special
consideration of the extreme points of Γ in the definition of RTS below.

Remark 1. If technology T is polyhedral, in addition to the properties stated in Proposi-
tion 1, the function β̄(α) is also piecewise linear on Γ.6 This in turn implies that, if α is the
left extreme point of Γ, β̄′

+(α) is finite. Similarly, if α is the right extreme point of Γ, β̄′
−(α)

is finite.
As becomes clear below, of particular importance to us are the one-sided derivatives

evaluated at α = 1. For any polyhedral technology, both derivatives can be calculated using
the linear programs developed by Podinovski et al. (2016).

3. The one-sided scale elasticity

If α = 1 is an interior point of domain Γ and the function β̄(α) is differentiable at α = 1,
the scale elasticity ε(Xo, Yo) evaluated at DMU (Xo, Yo) can be defined as

ε(Xo, Yo) = β̄′(1). (3)

The meaning of this definition is straightforward. To be specific, let ε(Xo, Yo) = 2.
Suppose we increase the input vector Xo in a small proportion, e.g., by 1% (corresponding
to α = 1.01). Then the maximum proportion of vector Yo possible in technology T increases
(to the first degree of approximation) by ε(Xo, Yo) = 2% (which corresponds to β = 1.02).7

Similarly, if we reduce the components of vector Xo by 1%, the maximum proportion of
vector Yo is reduced by ε(Xo, Yo) = 2% (α = 0.99 and β = 0.98).

Podinovski and Førsund (2010) prove that the above definition of scale elasticity ε(Xo, Yo),
effectively also used by Banker (1984) and Banker and Thrall (1992), is equivalent to its
standard definition given in terms of partial derivatives of the production function Φ(X,Y )

5For example, consider the closed convex technology T with a single input and output that contains all
DMUs located under the curve Y = 1 + (X − 1)1/2, where X ≥ 1, Y ≥ 0. Then DMU (Xo, Yo) = (1, 1)
satisfies Assumption 1, and we have β̄′

+(1) = +∞.
6This follows from Proposition 2 stated in Podinovski et al. (2016), which is a restatement of a known

result of sensitivity analysis in linear optimization.
7The corresponding difference quotent is equal to (β̄(α)− β̄(1))/(α− 1) = (1.02− 1)/(1.01− 1) = 2.
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(Hanoch, 1970; Panzar and Willig, 1977)8 and, provided T is freely disposable in all outputs,
to its definition via the notion of local degrees of homogeneity h (Panzar and Willig, 1977;
Starrett, 1977).

Clearly, for general convex production technologies, the function β̄(α) cannot be assumed
differentiable, and the standard economic notion of scale elasticity (3) is undefined. In
particular, this definition does not apply to the VRS technology. This problem is overcome
by the introduction of one-sided (right-hand and left-hand) scale elasticities ε+(Xo, Yo) and
ε−(Xo, Yo) evaluated at DMUo, which correspond to the one-sided derivatives β̄′

+(1) and
β̄′
−(1).
For the conventional VRS technology this approach was pioneered by Banker and Thrall

(1992) and further explored by Fukuyama (2000), Hadjicostas and Soteriou (2006), Podi-
novski et al. (2009), Podinovski and Førsund (2010), and Zelenyuk (2013). This approach
is extended to the entire class of polyhedral technologies by Podinovski et al. (2016).9

Because, as shown above, the one-sided derivatives of function β̄(α) are well-defined in
the more general case of closed production technologies, the definition of one-sided scale
elasticities based on them is straightforward.

Let T be a closed convex technology, and let DMU (Xo, Yo) ∈ T satisfy Assumption 1.

Definition 1. The one-sided scale elasticities at DMU (Xo, Yo) are defined as follows:

ε+(Xo, Yo) = β̄′
+(1),

ε−(Xo, Yo) = β̄′
−(1).

Note that the middle inequality in (2) implies

ε+(Xo, Yo) ≤ ε−(Xo, Yo).

If ε+(Xo, Yo) = ε−(Xo, Yo) (or, equivalently, β̄′
+(1) = β̄′

−(1), and the function β̄(α) is
therefore differentiable at α = 1), we have ε(Xo, Yo) = ε+(Xo, Yo) = ε−(Xo, Yo).

If ε+(Xo, Yo) < ε−(Xo, Yo), the scale elasticity (elasticity of response of output vector Yo

to marginal changes of input vector Xo) is different if vector Xo is proportionally increased
or reduced. For example, let ε+(Xo, Yo) = 0.5 and ε−(Xo, Yo) = 1.5. Then, if we increase
the input vector Xo proportionally by 1%, the maximum possible proportion of vector Yo

increases by ε+(Xo, Yo) = 0.5%. On the other hand, if we reduce vector Xo by 1%, the
maximum proportion of vector Yo is reduced by ε−(Xo, Yo) = 1.5%.

Remark 2. There exist two equivalent methods suitable for the calculation of one-sided
scale elasticities at any DMU (Xo, Yo). First, as noted in Remark 1, if technology T is
polyhedral, the one-sided derivatives β̄′

+(1) and β̄′
−(1), and therefore the one-sided scale

elasticities ε+(Xo, Yo) and ε−(Xo, Yo), can be computed using the linear programming ap-
proach of Podinovski et al. (2016).

Second, as is well-known from the literature, if T is the VRS technology of Banker et al.
(1984), these one-sided elasticities can equivalently be defined as follows:

ε+(Xo, Yo) = 1− ωmax,

ε−(Xo, Yo) = 1− ωmin,
(4)

8The notion of production function Φ(X,Y ) is used to give an implicit definition of the production
frontier by the equation Φ(X,Y ) = 0. Such a definition requires that the function Φ(X,Y ) satisfies certain
properties, e.g., the monotonicity in X and Y (Hanoch, 1970; Panzar and Willig, 1977).

9Theoretical foundations of this approach are explored by Chambers and Färe (2008). In a further
extension, Podinovski and Førsund (2010), Atici and Podinovski (2012) and Podinovski et al. (2016) consider
partial one-sided scale elasticities that correspond to the case in which a subset of input and output measures
responds to marginal changes of another subset.
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where ωmax and ωmin are, respectively, the maximum and minimum of the sign free variable
ω dual to the normalizing equality 1⊤λ = 1, taken over the set of optimal solutions to the
output-oriented multiplier VRS model (Førsund and Hjalmarsson, 2004). A similar formula
to (4) can be given in terms of variable ω calculated in the input-oriented VRS model
(Førsund and Hjalmarsson, 2004; Podinovski et al., 2009; Zelenyuk, 2013). Podinovski et
al. (2016) extend formula (4) and its analogue based on the input-oriented model, to any
polyhedral technology. We use formula (4) for the calculation of one-sided scale elasticities
in the example in Section 8.

4. Returns to scale

According to the standard definition (see, e.g., Førsund and Hjalmarsson 2004), the type
of RTS exhibited by an output efficient DMU (Xo, Yo) is defined by the scale elasticity as-
sessed at this DMU. In particular, DMU (Xo, Yo) exhibits increasing, decreasing or constant
RTS (IRS, DRS or CRS) if ε(Xo, Yo) > 1, ε(Xo, Yo) < 1, or ε(Xo, Yo) = 1, respectively.

Banker and Thrall (1992) generalize this definition to the VRS technology by utilizing the
one-sided scale elasticities (see also Banker et al., 2011). Podinovski et al. (2016) extend the
approach of Banker and Thrall (1992) to all polyhedral technologies. Its further extension
to any closed convex technology is also straightforward.

Let, as above, T be a closed convex technology, and let DMU (Xo, Yo) ∈ T satisfy
Assumption 1.10

Definition 2. DMU (Xo, Yo) exhibits

(i) IRS if 1 < ε+(Xo, Yo) ≤ ε−(Xo, Yo);

(ii) DRS if ε+(Xo, Yo) ≤ ε−(Xo, Yo) < 1;

(iii) CRS if ε+(Xo, Yo) ≤ 1 ≤ ε−(Xo, Yo).

Several remarks with respect to the above definition are worth making. First, the IRS
and DRS types are conceptually consistent with the standard definition of RTS that applies
if the scale elasticity ε(Xo, Yo) exists. Consider, for example the case of IRS in Definition 2.
Although the elasticity of response of output vector Yo to marginal changes of input vectorXo

may generally be different in the case of vector Xo increasing or decreasing, both measures
ε+(Xo, Yo) and ε−(Xo, Yo) are assumed to be greater than 1. Therefore, in both cases
the proportional change (positive or negative) to vector Yo is greater than the change to
vector Xo. Similarly, in the case of DRS, the proportional change to vector Yo described by
ε+(Xo, Yo) and ε−(Xo, Yo) is less than the change to vector Xo.

Second, in the case of CRS in Definition 2, we effectively have DRS if vector Xo is
marginally increased, and IRS if Xo is reduced. This is of course not the standard notion
of CRS that requires that the scale elasticity (and hence its both one-sided analogues) be
equal to 1, but such a classification appears to be well-established in the literature (see, e.g.,
Banker and Thrall, 1992; Banker et al., 2011). Furthermore, as we prove below, in this case

10In the DEA literature, the RTS characterization is often limited to fully efficient DMUs. However, there
is no real reason for this as a weaker Assumption 1 of output radial efficiency of DMUo suffices for the correct
definition of RTS (Podinovski and Førsund, 2010; Podinovski et al., 2016). The notion of RTS is sometimes
also extended to DMUs that are not output radial efficient. This requires that DMUo is first projected
on the boundary of the technology, e.g., by means of output radial maximization or input minimization.
Provided the target DMU satisfies Assumption 1 (which is always true for the output radial projections but
is not necessarily true for the input projections), the type of RTS exhibited by the target DMU is assigned
to the inefficient DMUo. It is well-known that different projections of the same inefficient DMU may result
in its different RTS characterizations (see, e.g., Banker et al., 2011).
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DMU (Xo, Yo) attains the maximum productivity on the domain Γ, i.e., is at MPSS. The
latter is consistent with the standard CRS type.

Third, suppose that vector Xo cannot be proportionally reduced in technology T . (For
example, this situation often arises in computations of scale elasticity in the VRS technology.)
In this case α = 1 is the left extreme point of the interval Γ, and the left-hand derivative
β̄′
−(1) is undefined. As noted above, in this case we formally define β̄′

−(1) = +∞, and so
ε−(Xo, Yo) = +∞. According to Definition 2, this means that any DMU (Xo, Yo) whose
vector Xo cannot be proportionally reduced in T , cannot exhibit DRS. Moreover, whether
DMU (Xo, Yo) is classed as exhibiting IRS or CRS depends entirely on the right-hand scale
elasticity ε+(Xo, Yo). A similar observation applies if vector Xo cannot be proportionally
increased in T (although this possibility is more of theoretical interest as it cannot arise if
T is freely disposable in all inputs, which is normally assumed).

Remark 3. As follows from Remark 2, if T is the VRS technology, Definition 2 can be
restated in terms of the maximum and minimum values ωmax and ωmin of variable ω in the
output-oriented VRS model using formulae (4), and also in terms of ω evaluated in the
input-oriented model (see, e.g., Sahoo and Tone, 2015). A similar restatement is possible if
T is a general polyhedral technology (Podinovski et al., 2016).

Remark 4. It is intuitively clear that the shape of production frontier and the (one-sided)
scale elasticities that characterize its different parts are generally sensitive to the set of
observed DMUs on which the analysis is based. For the standard VRS technology of Banker
et al. (1984), Podinovski and Førsund (2010) prove that, if more DMUs are added to the
sample and DMUo remains output radial efficient in the new (larger) VRS technology, then
the left-hand scale elasticity ε−(Xo, Yo) cannot increase, while the right-hand scale elasticity
ε+(Xo, Yo) cannot decrease. This implies that the interval [ε+(Xo, Yo), ε

−(Xo, Yo)] generally
becomes narrower as more DMUs are added to the sample. By Definition 2 this means that
a DMUo classed as exhibiting IRS will remain in the same class if the sample is enlarged
(provided DMUo still satisfies Assumption 1 in the enlarged VRS technology). Similarly, a
DMUo exhibiting DRS, will exhibit DRS in a larger sample. However, a DMUo exhibiting
CRS may exhibit any of the three types of RTS in the enlarged sample.

5. Most productive scale size

Consider any (not necessarily convex) production technology T . According to the def-
inition given by Banker (1984), a DMU (Xo, Yo) ∈ T is at MPSS if for all DMUs in the
form (αXo, βYo) ∈ T , where α > 0, we have β/α ≤ 1.11 Therefore, following Banker (1984),
DMU (Xo, Yo) is at MPSS if the optimal value of the following program is equal to 1:

max β/α

s.t. (αXo, βYo) ∈ T ,

α, β > 0.

(5)

Obviously, if DMU (Xo, Yo) is at MPSS, it is output radial efficient and therefore satisfies
Assumption 1.

Program (5) can be simplified by introducing the reference cone extension T ∗ to tech-
nology T :

T ∗ =
{
(X, Y ) ∈ Rm+s | ∃(X̃, Ỹ ) ∈ T , δ ≥ 0 : (X, Y ) = δ(X̃, Ỹ )

}
.

11This standard definition is equivalently restated using the output response function β̄(α). Namely, DMU
(Xo, Yo) is at MPSS if β̄(α)/α ≤ 1, for all α ∈ Γ \ {0}.
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Note that the optimal value of program (5) does not change if we replace T by T ∗ in its
constraints.12 We can subsequently normalize the feasible solutions by requiring that α = 1
and remove the nonnegativity conditions on variables α and β as redundant.13 Therefore,
the optimal value of program (5) is equal to the optimal value of the following program:

max β

s.t. (Xo, βYo) ∈ T ∗.
(6)

Program (6) measures the output radial efficiency of DMU (Xo, Yo) in technology T ∗.
Therefore, DMU (Xo, Yo) is at MPSS if and only if it is output radial efficient in the cone
technology T ∗ generated by T . If T is the VRS technology of Banker et al. (1984), pro-
gram (6) is the standard output-oriented CRS model of Charnes et al (1978).

6. Global returns to scale

The notion of global returns to scale (GRS) was introduced by Podinovski (2004a, 2004b)
under extremely weak assumptions about the production technology T , namely, that the
latter does not allow free and unlimited production.14 No other assumptions about T are
required. For example, T is not required to be convex, disposable according to any definition
or even closed.

The types of GRS are indicative of the direction in which the size of operations of DMUo

should change while approaching its MPSS. To state this formally and following Podinovski
(2004a), let T ∈ Rm+s

+ be any technology that disallows free and unlimited production, and
let DMU (Xo, Yo) ∈ T satisfy Assumption 1.

Suppose that the optimal value of program (5) is attained at some α̂ and β̂. Obviously,
DMU (α̂Xo, β̂Yo) is at MPSS. Podinovski (2004a, 2004b) refers to this DMU as the scale
reference unit (SRU) of DMU (Xo, Yo).

If DMU (Xo, Yo) is at MPSS, then α̂ = β̂ = 1 is an optimal solution to (5), and
(α̂Xo, β̂Yo) = (Xo, Yo). Otherwise, DMUo is either smaller than its SRU (α̂Xo, β̂Yo) (if
α̂, β̂ > 1), or DMUo is larger than its SRU (if α̂, β̂ < 1).15 It is also possible that pro-
gram (5) has multiple optimal solutions, each defining a different SRU of DMUo. In this
case it is theoretically possible that DMUo is smaller than some of its SRUs and larger than
the other.16

Definition 3. (Podinovski, 2004a). DMU (Xo, Yo) exhibits

(i) global CRS (G-CRS) if DMUo is at MPSS;

12Any feasible solution in the resulting program (with T replaced by T ∗) can be stated as (δα, δβ), where
(α, β) is feasible in (5). Because (δβ)/(δα) = β/α, ∀α, δ > 0, the feasible values of the objective function
in (5) are not affected.

13Let (α∗, β∗) be an optimal solution to program (5) in which T is replaced by T ∗. Then (δα∗, δβ∗) is
also an optimal solution, for any δ > 0. By taking δ = 1/α∗, we obtain the optimal solution (1, β∗/α∗).
Therefore, there always exists an optimal solution in the form (1, β). Program (6) identifies such a solution.

14Technology T allows free production if there exists a DMU (X∗, Y ∗) ∈ T such that X∗ = 0 and Y ∗ ̸= 0.
The notion of unlimited production was defined in footnote 3.

15By Lemma 2 in Podinovski (2004a), α̂ < 1 implies β̂ < 1, and α̂ > 1 implies β̂ > 1, so, for example, the

case α̂ < 1 and β̂ > 1 is impossible.
16Let β∗ be the optimal value of program (6). Then the condition (αXo, αβ

∗Yo) ∈ T , where α > 0, defines
all SRUs of DMUo. The smallest SRU is found by minimizing α subject to the latter condition, and the
largest SRU is identified by maximizing α subject to the same condition. If T is a polyhedral technology,
each of the latter two tasks requires solving an appropriately specified linear program.
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(ii) global IRS (G-IRS) if all its SRUs are larger than DMUo;

(iii) global DRS (G-DRS) if all its SRUs are smaller than DMUo;

(iv) global sub-constant CRS (G-SCRS) if some of its SRUs are smaller, and some larger,
than DMUo, but DMUo is not at MPSS.17

In the general case program (5) may not have an optimal solution and its maximum (in
this case more correctly referred to as the supremum) may not be attained. Consequently,
an SRU of DMUo does not exist. In this case Podinovski (2004a) introduces an approximate
notion of SRU referred to ε-SRU, and restates Definition 3 in the latter terms.

Podinovski (2004a) shows that the type of GRS exhibited by DMUo can be tested by
evaluating its output radial efficiency in technology T and two further reference technologies,
namely, in the nonincreasing (NIRS) and nondecreasing (NDRS) returns-to-scale technolo-
gies generated by T .18 The four types of GRS correspond to the four logical possibilities
arising by comparison of the efficiencies of DMUo in the three technologies.19

It is worth noting that the local and global characterizations of RTS are conceptually
different. The local characterization of RTS is based on the notion of scale elasticity (which
can be generalized using its one-sided analogues). Provided the efficient frontier is suffi-
ciently smooth, the scale elasticity is a particular derivative evaluated at DMUo (i.e., β̄′(1)
in our notation). This derivative depends only on a marginally small neighbourhood of
DMUo or, equivalently, on a marginally small neighbourhood of α = 1 within the domain
Γ. Therefore, the types of RTS are indicative of the direction that DMUo should undertake
for immediate marginal improvements of its productivity. For example, if DMUo exhibits
IRS, its productivity will increase if DMUo increases the scale of its operations in a small
proportion.

In contrast, the GRS types are global characteristics. They indicate a direction that
DMUo should undertake as it changes the scale of its operations towards its MPSS, even if
moving in the identified direction in small steps might initially lead to a detriment to its
productivity.

For example, consider the nonconvex technology with a single input X and single output
Y shown as the shaded area in Figure 1. Note that DMUs A, C and E exhibit local CRS,
DMU B exhibits local DRS, and DMU D exhibits local IRS. From the global perspective,
DMU A has the largest ratio of the output to the input, and is the only DMU that is at
MPSS. Therefore, DMU A exhibits G-CRS. The other three DMUs B, C, D and E are
larger than A and, therefore, all exhibit G-DRS.

17The G-SCRS type is primarily needed for the theoretical completeness of the GRS characterization,
and may be observed in specially constructed illustrative examples (Podinovski, 2004a, 2004b). In most
practical applications, this type may be rarely observed, and, if technology T is convex, it is theoretically
impossible (Podinovski 2004a). However, in the (nonconvex) free replication hull (FRH) technology of Ray
and Hu (1997) (see also Ray, 2004, p. 144), the G-SCRS type may occur more naturally. For example,
consider the FRH generated by two DMUs A = (1, 1) and B = (1.5, 1.2), where the first component is input
and the second is output. Both DMUs are output radial efficient. Note that DMU A and all its replications
kA = (k, k), where k = 2, 3, . . . , are SRUs for DMU B. (The ratio of output to input is equal to 1 for DMU
A and its replications, and 0.8 for DMU B.) Because DMU A is smaller than B, but its replications kA,
k = 2, 3, . . . , are larger than B, DMU B exhibits G-SCRS.

18If T is free disposal hull (FDH) of Deprins et al. (1984), the output radial efficiency of DMUo in the
corresponding reference technologies can be evaluated by solving mixed integer linear programs developed
by Podinovski (2004e).

19This method of testing GRS is similar, but not identical, to the reference technology method of testing
RTS developed by Färe et al. (1983, 1985) and further explored by Kerstens and Vanden Eeckaut (1999)
and Briec et al. (2000).
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Figure 1: The difference between the local and global RTS characterizations in a nonconvex technology.

Figure 2: The equivalence of the local and global RTS characterizations in a convex technology.

It is also worth emphasizing that the local characterization of RTS is defined only for
sufficiently smooth (convex or nonconvex) production technologies, as required for the defi-
nition of scale elasticity or its one-sided analogues. In contrast, the global characterization
of GRS does not require that the technology be smooth. For example, the notion of GRS
is fully applicable for the characterization of DMUs in free disposal hull (FDH) technology
(Deprins et al., 1984).

7. Equivalence of local and global RTS characterizations

As noted, in an arbitrary technology, the RTS and GRS characterizations are generally
different. However, as proved by Podinovski (2004a, Theorem 7), if technology T is closed,
convex and its frontier is sufficiently smooth, the two characterizations are equivalent. More
precisely, in this case, subject to Assumption 1, any DMUo exhibits G-CRS, G-IRS and
G-DRS if and only if it exhibits local CRS, IRS and DRS, respectively. In this case, the
G-SCRS type is impossible.

For example, consider the convex technology depicted as the shaded area in Figure 2.
Note that DMU B exhibits CRS and is at MPSS. DMU A exhibits IRS and should increase
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the scale of its operations to achieve its MPSS at B. Therefore, A exhibits G-IRS. Similarly,
DMU C exhibits DRS and G-DRS.

A related result by Banker et al. (1996) implies that the RTS and GRS characterizations
are also equivalent in the VRS technology, which is nonsmooth.20 The recent development
of various polyhedral technologies raises a question whether the equivalence of the corre-
sponding RTS and GRS types could also be extended from the case of VRS to any such
technology.

Below we prove that the answer to the above question is positive, and that this result
is true not only for any polyhedral technology, but also for a larger class of closed convex
technologies.

Let T be any closed convex technology, and let DMUo ∈ T satisfy Assumption 1.

Theorem 1. DMUo exhibits G-CRS, G-IRS or G-DRS if and only if it exhibits local CRS,
IRS or DRS, respectively. The G-SCRS type is therefore impossible.

Corollary 1. DMUo is at MPSS if and only if it exhibits CRS.

The equivalence of MPSS and the CRS type of RTS stated by Corollary 1 is well known
in the case of conventional VRS technology (Banker and Thrall, 1992). This means that,
in the VRS technology, we can test for MPSS using two approaches. First, we can verify
if the output radial efficiency of DMUo in the reference CRS technology is equal to 1, as
in program (6). Second, we can verify if DMUo exhibits CRS (and is therefore at MPSS)
by calculating the one-sided scale elasticities ε+(Xo, Yo) and ε−(Xo, Yo) or, equivalently, the
maximum and minimum values ωmax and ωmin, as discussed in Section 4.

Corollary 1 implies that we have the same two choices in any closed convex technology
(most importantly, in any polyhedral technology). In particular, instead of solving pro-
gram (6), we can alternatively test for MPSS by evaluating the one-sided scale elasticities
at DMUo. If T is a polyhedral technology, the latter approach is computationally straight-
forward and requires solving two linear programs (Podinovski et al., 2016). However, to
solve program (6) we need to have an operational definition of the reference technology T ∗.
Defining T ∗ may not be a straightforward task and may require additional research. Thus,
such situation arises in the numerical example discussed in the next section.21

Furthermore, as noted in Section 6, the testing of types of GRS requires assessing the
output radial efficiency of DMUo in the reference NIRS and NDRS technologies generated by
T , and such technologies may not be immediately available either. However, as established
by Theorem 1, we can equivalently test for local RTS types. As noted, if T is a polyhedral
technology, this task is straightforward.

8. Numerical example

Theorem 1 establishes the equivalence of local and global RTS characterizations in any
closed convex technology T . In this section we illustrate this result by an example involving
a VRS technology expanded by additional weight restrictions. DEA models based on such
technologies are well established in the literature (see, e.g., Allen et al., 1997; Dyson and
Thanassoulis, 1988; Podinovski, 2004d, 2005, 2016; Thanassoulis et al., 2014).

20See Podinovski (2004a, p. 245) for a discussion of this interpretation.
21Another example is the reference cone technology for the HRS technology (Podinovski, 2004c), which

is developed in Podinovski (2009). Both technologies are subsequently used in the decomposition of the
Malmquist index of productivity change in analysis of school efficiency reported in Podinovski et al. (2014).
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8.1. Theoretical background

Let observed DMUs be (Xj, Yj), j = 1, . . . , n, where Xj ∈ Rm
+ and Yj ∈ Rs

+ are the
vectors of inputs and outputs respectively. To be specific, consider assessing the output
radial efficiency of DMUo by the multiplier VRS model. This model is stated in terms of
variable vectors of input and output weights v ∈ Rm

+ and u ∈ Rs
+, respectively.

Weight restrictions are additional constraints on the input and output weights incorpo-
rated in the multiplier model. Suppose we have K homogeneous weight restrictions stated
in the following form:

v⊤Pt − u⊤Qt ≥ 0, t = 1, . . . , K. (7)

The output radial efficiency of DMUo is the inverse of the optimal value η∗ of the following
program:

η∗ = min v⊤Xo + ω

subject to u⊤Yo = 1,

v⊤Xj − u⊤Yj + ω ≥ 0, j = 1, . . . , n,

v⊤Pt − u⊤Qt ≥ 0, t = 1, . . . , K,

u, v ≥ 0, ω sign free.

(8)

The dual to program (8) is the output-oriented envelopment model which can be stated
as follows:

η∗ = max η

subject to
n∑

j=1

λjXj +
K∑
t=1

πtPt ≤ Xo,

n∑
j=1

λjYj +
K∑
t=1

πtQt ≥ ηYo,

n∑
j=1

λj = 1,

λ, π ≥ 0, η sign free,

(9)

where vector π ∈ RK
+ is dual to the weight restrictions in (8).

Observe that the envelopment model (9) includes the dual terms generated by weight
restrictions in the multiplier model (8):

(Pt, Qt), t = 1, . . . , K. (10)

These terms, used in variable proportions πt ≥ 0, modify the DMUs in the standard VRS
model represented by the first terms of constraints of program (9). Following Podinovski
(2004d), the terms (10) are interpretable as production trade-offs between inputs and out-
puts. This implies that the envelopment program (9) assesses the output radial efficiency of
DMUo in the VRS technology expanded by production trade-offs (10). More precisely, this
expanded technology is defined as follows:

Definition 4. (Podinovski, 2004d). The VRS technology with production trade-offs
TVRS−TO is the set of all nonnegative DMUs (X,Y ) ∈ Rm

+×Rs
+ for which there exist intensity
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Table 1: The data set in example.

Input 1 Input 2 Input 3 Output 1 Output 2

DMU 1 2 2 3 2 1

DMU 2 4 4 3 4 3

DMU 3 6 4 5 3 2

DMU 4 2 3 3 3 4

DMU 5 6 5 4 4 5

vectors λ ∈ Rn
+, π ∈ RK

+ , and slack vectors d ∈ Rm
+ and e ∈ Rs

+ such that

n∑
j=1

λjXj +
K∑
t=1

πtPt + d = X, (11a)

n∑
j=1

λjYj +
K∑
t=1

πtQt − e = Y, (11b)

n∑
j=1

λj = 1. (11c)

Technology TVRS−TO is a polyhedral set and is, therefore, a convex technology (Podi-
novski, 2015).

Remark 5. It is well known that the incorporation of weight restrictions (7) in the multiplier
model (8) may result in its infeasibility or, equivalently, in an unbounded solution to its
dual envelopment model (9). Podinovski and Bouzdine-Chameeva (2013, 2015) refer to such
weight restrictions as inconsistent (with the data set). They show that inconsistent weight
restrictions generate either unlimited or free production of output vectors in technology
TVRS−TO.

22 Moreover, it is possible that weight restrictions are inconsistent, even if for
all observed DMUs, the corresponding multiplier model (8) is feasible, and the calculated
efficiency scores appear unproblematic. Podinovski and Bouzdine-Chameeva (2013, 2015)
develop simple necessary and sufficient conditions, and also computational approaches, for
verifying the consistency of weight restrictions (7).

Below we assume that the weight restrictions (7) are consistent. Under this assumption,
both the multiplier and envelopment models (8) and (9) have a finite optimal solution η∗,
for any DMUo in technology TVRS−TO, provided Yo ̸= 0.

8.2. The data set and output radial efficiency

The data set in Table 1 shows 5 DMUs assessed on 3 inputs and 2 outputs. Let v1, v2
and v3 be the input weights, and u1 and u2 be the output weights. Consider assessing the
output radial efficiency of the five DMUs using the VRS model with the following additional

22See footnotes 3 and 14 for the definitions of unlimited and free production.
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Table 2: One-sided scale elasticities ε+ and ε−, and local RTS types of output radial efficient DMUs.

ωmin ωmax ε− ε+ Type of RTS

DMU 1 −∞ −5 +∞ 6 IRS

DMU 2 −∞ 0.3333 +∞ 0.6667 CRS

DMU 4 −∞ 0.2118 +∞ 0.7882 CRS

DMU 5 0.1111 0.2727 0.8889 0.7273 DRS

weight restrictions, which is a special case of (7):23

v1 − v2 ≥ 0,

− v1 + 2v2 ≥ 0,

− 2u1 + 3u2 ≥ 0,

v3 − 2u2 ≥ 0.

(12)

The output radial efficiency of each DMU can be assessed by solving either the multiplier
model (8) or its dual envelopment model (9). Computations show that four out of the five
DMUs (all except DMU 3) are output radial efficient. All four such DMUs allow both the
local and global RTS characterizations.

The output radial efficiency of DMU 3 is equal to 0.5. Therefore DMU 3 does not satisfy
Assumption 1, and the notions of local and global RTS are undefined at this DMU.

8.3. Local RTS

As noted in Remark 2, the left-hand and right-hand scale elasticities ε− and ε+ evaluated
at any output radial efficient DMUo can be calculated by formulae (4).24 For this we need
to calculate the two extreme optimal values ωmin and ωmax of the sign free variable ω in the
multiplier model. This task is straightforward and requires solving two linear programs for
each DMUo, as shown in Appendix B.

Table 2 shows the values ωmin and ωmax, and the corresponding one-sided scale elasticities
evaluated at the four output radial efficient DMUs. By Definition 2, DMU 1 exhibits IRS,
DMUs 2 and 4 exhibit CRS, and DMU 5 exhibits DRS.25

The obtained RTS characterization is by definition local, i.e., the RTS types are indica-
tive of the proportion in which the output vector Yo of DMUo would respond to marginal
proportional changes of the input vector Xo, provided the resulting DMU remains output
radial efficient. For example, DMU 5 exhibits DRS, and the right-hand scale elasticity eval-
uated at this DMU is equal to 0.7273. This implies that, if we increase its input vector in a
marginally small proportion, e.g., by 1%, its output vector would increase more gradually,
by 0.7273%. If we reduce the input vector of this DMU by 1%, the output vector would
decrease by 0.8889%.

23It is straightforward to verify that weight restrictions (12) are consistent. Indeed, the inequalities (12)
are satisfied by the strictly positive weights v1 = v2 = 1, v3 = 2 and u1 = u2 = 1. By Corollary 1 to
Theorem 4 in Podinovski and Bouzdine-Chameeva (2015), the weight restrictions (12) are consistent.

24The validity of formula (4) for technology TVRS−TO follows from the general formula (20) proved in
Podinovski et al. (2016).

25As established by Theorem 1 in Podinovski et al. (2016), the case ε− = +∞ (observed for DMUs 1, 2
and 4) corresponds to the situation in which the input vector of DMUo cannot be proportionally reduced,
while keeping the resulting DMU in the technology.
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8.4. Global RTS

The question we are now concerned with is the following: are the types of local RTS
discussed above (and shown in Table 2) indicative of the direction to MPSS for the four
output-efficient DMUs, i.e., is the global characterization of RTS the same as the local one?

In the standard VRS model without additional weight restrictions, this question is pos-
itively answered by Proposition 1 in Banker (1984). For example, in the standard VRS
technology (without weight restrictions), the IRS type indicates that the DMU should in-
crease its scale of operations in order to reach its MPSS. If a DMU exhibits CRS, it is
already at MPSS. On the other hand, this simple correspondence between the local and
global characterizations generally breaks down if the technology is not convex (Podinovski,
2004a).

Theorem 1 gives a positive answer to the stated question. As noted, the VRS technology
with weight restrictions is a convex technology. According to Theorem 1, the local RTS
characterization of the output-efficient DMUs shown in Table 2 coincides with their global
characterization. In particular, because DMU 1 exhibits local IRS, it also exhibits G-IRS
and should increase the scale of its operations to achieve its MPSS. DMU 5 exhibits local
DRS and therefore exhibits G-DRS, and should be scaled down to achieve its MPSS. DMUs 2
and 4 exhibit CRS and are therefore at their respective MPSS.

8.5. Direct evaluation of GRS

Taking into account Theorem 1, we could stop our investigation now because both the
local and global characterizations of RTS have been obtained. However, for illustrative pur-
poses, below we show how the global RTS types can be evaluated directly. This assessment
(and the identification of DMUs at MPSS) requires additional computations utilizing the
idea of the reference technology method (Färe et al. 1983, 1985). A variant of this method
adjusted for testing for GRS types in an arbitrary technology was developed in Podinovski
(2004a). This method relies on the evaluation of output radial efficiency of DMUo in the
NIRS and NDRS technologies generated by the underlying true technology, in our example
technology TVRS−TO.

To the best of the author’s knowledge, the DEA literature does not describe the required
NIRS and NDRS technologies generated by technology TVRS−TO. Following the general
definition of Podinovski (2004a), let C, H and G be the CRS (cone), NIRS and NDRS
technologies generated by technology TVRS−TO. More precisely,

C =
{
(X, Y ) ∈ Rm+s | ∃(X̃, Ỹ ) ∈ TVRS−TO, δ ≥ 0 : (X,Y ) = δ(X̃, Ỹ )

}
,

H =
{
(X,Y ) ∈ Rm+s | ∃(X̃, Ỹ ) ∈ TVRS−TO, δ ∈ [0, 1] : (X,Y ) = δ(X̃, Ỹ )

}
,

G =
{
(X,Y ) ∈ Rm+s | ∃(X̃, Ỹ ) ∈ TVRS−TO, δ ≥ 1 : (X, Y ) = δ(X̃, Ỹ )

}
.

(13)

In Appendix C we present examples that show that, generally, technologies C and H
may not be closed sets.26 Let C̄ and H̄ be the closures of technologies C and H, respectively.
Denoting cl(.) the closure operator, we have the following result.

26If the VRS technology of Banker et al. (1984) is used without weight restrictions, its reference technolo-
gies C, H and G are the standard CRS (Charnes et al., 1978), NIRS (Färe and Grosskopf, 1985) and NDRS
(Seiford and Thrall, 1990) technologies. All these technologies are closed sets, and the particular problem
with nonclosed reference technologies arising in the case of weight restrictions does not occur.
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Table 3: Output radial efficiency of DMUs in different technologies, all incorporating weight restrictions (12),
and their GRS characterization. Note that DMU 3 is output radial inefficient, and its GRS type is undefined.

VRS CRS NIRS NDRS Type of GRS

DMU 1 1 0.5 0.5 1 G-IRS

DMU 2 1 1 1 1 G-CRS (MPSS)

DMU 3 0.5 0.45 0.5 0.45 Undefined

DMU 4 1 1 1 1 G-CRS (MPSS)

DMU 5 1 0.9643 1 0.9643 G-DRS

Theorem 2. (i) Technology C̄ = cl(C) is described by conditions (11) from which the equal-
ity (11c) is removed.27

(ii) Technology H̄ = cl(H) is described by conditions (11) in which equality (11c) is
changed to the “≤” inequality.

(iii) Technology G is closed and described by conditions (11) in which equality (11c) is
changed to the “≥” inequality.

Proposition 2. The output radial efficiency of any DMUo ∈ TVRS−TO evaluated in the
reference technology C or H is equal to its output radial efficiency in the corresponding
closed technology C̄ or H̄, respectively.

The above statement implies that in practice we can assess the efficiency of all DMUs in
the closed technologies that have a simple operational form stated by Theorem 2.28

Table 3 shows the output radial efficiency of all five DMUs in the VRS technology
TVRS−TO and its reference CRS, NIRS and NDRS technologies.29 Appendix B shows an
example of linear program used for the calculations.

Denote EV RS, ENIRS and ENDRS the output radial efficiency of DMUo in technologies
TVRS−TO, H and G.30 By Theorem 3 in Podinovski (2004a), where we omit the fourth case
of G-SCRS as impossible in a convex technology, DMUo exhibits

(i) G-CRS if and only if ENDRS = ENIRS = EV RS;

(iii) G-IRS if and only if ENIRS < ENDRS ≤ EV RS;

(ii) G-DRS if and only if ENDRS < ENIRS ≤ EV RS.

For example, as shown in Table 3, for DMU 1 we have: EV RS = 1, ENIRS = 0.5 and
ENDRS = 1. Therefore, DMU 1 exhibits G-IRS. The last column of Table 3 shows the GRS
types of all four output radial efficient DMUs. As formally established by Theorem 1, this
is of course consistent with the local RTS characterization shown in Table 2.

27This means that C̄ = cl(C) is the standard CRS technology of Charnes et al. (1978) expanded by the
weight restrictions (7).

28Note that Proposition 2 is not a trivial statement. Thus, generally, the output radial efficiency of a
DMUo in an arbitrary technology T may be strictly smaller than in technology T̄ = cl(T ), even if T̄ is a
polyhedral technology. An example of this is considered in Appendix C.

29The CRS technology is not required for the method of Podinovski (2004a) but is used by the method
of Färe et al. (1983, 1985). We include technology C in Table 3 for completeness and reference purposes.

30Because DMUs 1, 2, 3 and 4 are output radial efficient, we always have EV RS = 1 for each of them.
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In summary, as demonstrated, we can evaluate the local and global RTS types indepen-
dently. However, as follows from Theorem 1, in a convex technology, the two characteriza-
tions are identical, and it suffices to obtain only one of them. An additional consideration
here is that the local RTS characterization in any polyhedral technology can be obtained
by the unifying approach developed in Podinovski et al. (2016), used in the above example.
In contrast, as also shown by the above example, testing for global types of RTS requires
operational statements of the NIRS and NDRS technologies, which may not be readily
available.

9. Further example: a two-stage network DEA model

There is large literature on various types of network DEA models (see, e.g., Kao 2014).
Consider the simple two-stage production process in which each DMU is described by the
triplet (X,Z, Y ), whereX ∈ Rm

+ , Z ∈ Rp
+ and Y ∈ Rs

+ are the vectors of inputs, intermediate
outputs produced by the first production stage and acting as the inputs to the second
production stage, and the vector of final outputs, respectively.

Each observed DMU j = 1, . . . , n is stated as (Xj, Zj, Yj). Denote X̄ the n×m matrix
whose columns are vectors Xj, j = 1, . . . , n. Similarly, let matrices Z̄ and Ȳ consist of the
vector-columns Zj and Yj, j = 1, . . . , n, respectively.

Suppose we are interested in the maximum production of the final outputs described by
vector Y from any given vector of inputsX. Taking into account the network structure of the
production process, and assuming that both stages exhibit VRS, we define the technology
T N in the input and final output dimensions as follows. This definition is consistent with
the definition used by Sahoo et al. (2014).

Definition 5. The network technology T N with two VRS stages is the set of all nonnegative
DMUs (X, Y ) ∈ Rm

+ × Rs
+ for which there exist intensity vectors λ, µ ∈ Rn

+, intermediate
outputs Z ∈ Rp

+, and slack vectors d ∈ Rm
+ , e ∈ Rs

+, f, g ∈ Rp
+ such that

X̄λ+ d = X, (14a)

Ȳ µ− e = Y, (14b)

Z̄λ− Z − f = 0, (14c)

Z̄µ− Z + g = 0, (14d)

1⊤λ = 1, (14e)

1⊤µ = 1. (14f)

The above conditions (14) are a special case of conditions (1) of Podinovski et al. (2016)
defining a general polyhedral technology that satisfies free disposability of inputs and out-
puts. In particular, the latter general formulation utilizes vector Uo important for the
calculation of one-sided elasticities and RTS characterization. In our case vector Uo is the
vector of constants on the right-hand side of equalities (14c)–(14f), i.e.,

Uo = (0, 0, 1, 1)⊤. (15)

Note that the first two zero components of the vector Uo are vectors, and the last two
ones are scalars.31

31As required by formula (1) in Podinovski et al. (2016), we define the vector λ̂ = (λ, µ, Z, f, g). Then
equalities (14a) and (14b) are special cases of conditions (1.1) and (1.2) of Podinovski et al. (2016). Equal-
ities (14c)–(14f) are a special case of condition (1.3).
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Because T N is a polyhedral technology, the calculation of the one-sided scale elasticities
and many other marginal characteristics on its frontier can be performed by solving linear
programs developed in Podinovski et al. (2016). In particular, let DMU (Xo, Yo) be output
radial efficient in technology T N , i.e., satisfy the above Assumption 1.

Note that evaluating the output radial efficiency of DMUo requires replacing vectors
X and Y on the right-hand side of equations (14a) and (14b) by vectors Xo and ηYo,
respectively, where η is a sign-free scalar, and maximizing η over the resulting constraints.32

Let µ, ν and ω be the dual vectors corresponding to the constraints of this output-oriented
linear program. More precisely, vectors µ and ν correspond to the constraints based on (14a)
and (14b), and ω includes the dual variables to the constraints (14c)–(14f).

As shown by Podinovski et al. (2016), the one-sided scale elasticities at DMUo in any
polyhedral technology can be calculated as follows:

ε+(Xo, Yo) = 1− max
⟨µ,ν,ω⟩∈Ω

{U⊤
o ω},

ε−(Xo, Yo) = 1− min
⟨µ,ν,ω⟩∈Ω

{U⊤
o ω},

(16)

where Ω is the set of optimal solutions to the dual (multiplier) output-oriented program.
Taking into account (15), we can restate the general formula (16) by the following equiv-

alent statement:

ε+(Xo, Yo) = 1− max
⟨µ,ν,ω⟩∈Ω

{ω1 + ω2},

ε−(Xo, Yo) = 1− min
⟨µ,ν,ω⟩∈Ω

{ω1 + ω2},
(17)

where ω1 and ω2 are the dual variables (scalars) to equalities (14e) and (14f), respectively.
According to Definition 2, the one-side scale elasticities (17) lead to the straightforward

RTS characterization of DMUo. By Theorem 1, the local types of RTS stated by Definition 2
coincide with the corresponding GRS types. Furthermore, according to Corollary 1, a DMUo

in the network technology T N is at MPSS if and only if it exhibits CRS.
It is worth emphasizing that obtaining these global characterizations of DMUo would

normally require constructing the NIRS and/or NDRS reference technologies for the network
technology T N which, to the best of the author’s knowledge, are not readily available.
However, as shown, the GRS types and related notion of MPSS can equivalently be evaluated
using the notion of one-sided scale elasticities. Their evaluation in technology T N requires
solving two linear programs (17), which is a straightforward task.

Remark 6. The one-sided scale elasticities can also be obtained using the set of optimal
solutions ∆ to the dual (multiplier) input-oriented program. Assuming DMUo is simultane-
ously input and output radial efficient, Podinovski et al. (2016, footnote 14) show that such
scale elasticities are calculated as follows:

ε+(Xo, Yo) = 1/

(
1− min

⟨µ,ν,ω⟩∈∆
{U⊤

o ω}
)
,

ε−(Xo, Yo) = 1/

(
1− max

⟨µ,ν,ω⟩∈∆
{U⊤

o ω}
)
.

(18)

32In the case of input orientation, a similar program is considered in Sahoo et al. (2014).
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For the network technology T N , formulae (18) take on the form:

ε+(Xo, Yo) = 1/

(
1− min

⟨µ,ν,ω⟩∈∆
{ω1 + ω2}

)
,

ε−(Xo, Yo) = 1/

(
1− max

⟨µ,ν,ω⟩∈∆
{ω1 + ω2}

)
,

where ω1 and ω2 are the dual variables to equalities (14e) and (14f), in the input-oriented
multiplier program. This last expression generalizes formula (8) given in Banker and Thrall
(1992) for the single-stage VRS technology.

10. Conclusion

In recent years, an important research avenue in DEA theory has been the development
of new models based on more specific assumptions about the production process than those
incorporated in the standard VRS model. Many of these new approaches model the pro-
duction technology as a convex set and, almost invariably, as a polyhedral set. Examples of
such polyhedral technologies arise in models with weakly disposable undesirable outputs, in
extensions to the VRS technology by weight restrictions or production trade-offs, models of
production processes with several components and network DEA models.

In a recent paper, Podinovski et al. (2016) developed a unifying linear programming
methodology for the evaluation of one-sided scale elasticities and RTS characterization of
DMUs in any polyhedral production technology. This development has led to a theoretical
question, whether the local RTS characterization in an arbitrary polyhedral technology
(conceptually defined by the scale elasticity evaluated at a given point on the frontier) is
consistent with the global scale characteristics (including the notion of MPSS) as it is in the
case of conventional VRS technology.

In this paper we address the above question in a more general class of closed convex
technologies. We first establish that the one-sided scale elasticities of efficient frontiers in
this class are “well-behaved”, and their properties are sufficiently similar to those observed
in polyhedral technologies. This allows us to extend the standard local RTS characteriza-
tion to generally nonsmooth production frontiers of closed convex technologies. Based on
this development, we prove that the types of RTS for this very large class of frontiers are
consistent with the standard notions of MPSS and direction to MPSS expressed by global
types of returns to scale.

The above development rigorously shows that closed convex technologies and, in partic-
ular, all polyhedral technologies are theoretically similar to the conventional VRS model.
This result has an important practical implication. The standard methods of testing MPSS
and, more generally, global types of RTS rely on the evaluation of output or input radial
efficiency of DMUo in the reference constant, nonincreasing and nondecreasing RTS tech-
nologies. In the conventional case of VRS, these technologies are well-known. However, for
many other polyhedral technologies their reference technologies may not be readily available.
Our theoretical results show that, instead of developing such reference technologies, we may
alternatively evaluate the types of RTS using the existing linear programming methodologies
suitable for any polyhedral technology. Based on results of this paper, the task of translating
the types of local RTS into the MPSS and global RTS types becomes straightforward.
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Appendix A. Proofs

Proof of Proposition 1. The proof of part (i) follows from the assumption that T is a
closed convex set. To prove part (ii), first note that sup β(α) < +∞, for all α ∈ Γ. Indeed,
assume the opposite, i.e., that there exists an α∗ ∈ Γ such that sup β(α∗) = +∞. Then by
Theorem 2 in Podinovski and Bouzdine-Chameeva (2013), sup β(α) = +∞, for all α ∈ Γ,
which contradicts Assumption 1. Therefore, for every α ∈ Γ, sup β(α) is finite and, because
T is closed, it is attained. Part (iii) is proved as Lemma 3 in Podinovski (2004a).

We now prove Corollary 1 as a lemma, before proving Theorem 1.

Lemma 1. DMUo is at MPSS if and only if it exhibits CRS.

Proof of Lemma 1. Let DMUo exhibit CRS. We need to prove that DMUo is at MPSS,
i.e.,

β̄(α)

α
≤ 1, ∀α ∈ Γ, α > 0. (A.1)

Let α = 1 be an interior point of Γ. Then, as noted in Section 2, the one-sided derivatives
β̄′
−(1) and β̄′

+(1) exist and are finite. For all α ∈ Γ we have

β̄(α) ≤ 1 + β̄′
+(1)(α− 1), (A.2a)

β̄(α) ≤ 1 + β̄′
−(1)(α− 1). (A.2b)

Consider any α ∈ Γ. If α > 1 then, because β̄′
+(1) ≤ 1, (A.2a) implies β̄(α) ≤ α. If

0 < α < 1 then, because β̄′
−(1) ≥ 1, (A.2b) implies β̄(α) ≤ α. Both cases imply (A.1).

Now assume that α = 1 is the left extreme point of Γ. Then α ≥ 1 for all α ∈ Γ. As
noted in Section 2, β̄′

+(1) > −∞. Taking into account the definition of CRS, β̄′
+(1) is finite

and β̄′
+(1) ≤ 1. The inequality (A.1) now follows from (A.2a) as above.

Let α = 1 be the right extreme point of Γ. We need to prove (A.1) for all α ∈ Γ,
0 < α < 1. As noted in Section 2, β̄′

−(1) < +∞. Taking into account the definition of CRS,
β̄′
−(1) is finite and β̄′

−(1) ≥ 1. Then (A.1) follows from (A.2b), as above.
Conversely, assume that DMUo is at MPSS, i.e., (A.1) is true. We need to prove that

β̄′
+(1) ≤ 1, if α = 1 is not the right extreme point of Γ, and β̄′

−(1) ≥ 1, if α = 1 is not
the left extreme point of Γ. Both proofs are similar, and we prove only the first part. By
definition, we have

β̄′
+(1) = lim

α↓1

β̄(α)− β̄(1)

α− 1
. (A.3)

Assume that β̄′
+(1) > 1. Then for all α > 1 sufficiently close to 1 we have

β̄(α)− β̄(1)

α− 1
> 1. (A.4)

By rearrangement and because β̄(1) = 1, we have β̄(α) > α, which contradicts (A.1).

Proof of Theorem 1. The equivalence of G-CRS and CRS types is established by Lemma 1.
For further proof, consider the function of ray average productivity φ(α) = β̄(α)/α defined
on Γ0 = Γ \ {0}. Denote φ∗ the supremum of φ(α) on Γ0. Note that φ∗ may be finite
or equal to +∞, and may be attained or unattained. Denote Γ∗ = {α ∈ Γ | φ(α) = φ∗}.
Γ∗ = ∅ if φ∗ is not attained. By Lemma 5 in Podinovski (2004a), if Γ∗ ̸= ∅ then Γ∗ is a
closed interval. Therefore, we can represent Γ0 as the union of three intervals as follows:

Γ0 = Γ+ ∪ Γ∗ ∪ Γ−, (A.5)
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where, for any α1 ∈ Γ+, α2 ∈ Γ∗ and α3 ∈ Γ−, we have α1 < α2 < α3. Any of the three
intervals Γ+, Γ∗ and Γ−, but not all of them, may be empty sets, however, the case Γ∗ = ∅,
while Γ+ ̸= ∅ and Γ− ̸= ∅, is impossible (Podinovski 2004a).

By Theorem 5 proved in Podinovski (2004a), φ(α) is strictly increasing on Γ+ and strictly
decreasing on Γ− (provided these intervals are not empty). This implies that DMUo exhibits
G-IRS if 1 ∈ Γ+, G-CRS (and hence is at MPSS) if 1 ∈ Γ∗, and G-DRS if α = 1 ∈ Γ−.

Let 1 ∈ Γ+. Because Γ∗ is a closed interval, from (A.5), α = 1 is not the right extreme
point of Γ+. Because φ(α) is strictly increasing on Γ+, for all α located in Γ+ to the right
of α = 1, we have β̄(α)/α > β̄(1)/1 = 1. This implies (A.4). By (A.3), β̄′

+(1) ≥ 1. If we
assume that β̄′

+(1) = 1, then by Definition 2, DMUo exhibits CRS and, by Lemma 1, DMUo

is at MPSS. Therefore 1 ∈ Γ∗, which contradicts the assumption. Therefore β̄′
+ > 1 and, by

Definition 2, DMUo exhibits IRS.
If 1 ∈ Γ−, a similar proof establishes that DMUo exhibits DRS.

Proof of Theorem 2. Consider statement (i). Denote C∗ the set of DMUs (X,Y ) de-
scribed by conditions (11) from which the equality (11c) is removed. We need to prove
that C̄ = C∗. We first note that C∗ is a polyhedral set (Theorem 3 in Podinovski, 2015).
Therefore, C∗ is a closed set.

Consider any DMU (X, Y ) ∈ C. By (13), (X, Y ) = δ(X̃, Ỹ ), where (X̃, Ỹ ) ∈ TVRS−TO.
The latter DMU satisfies (11) with some vectors λ̃, π̃, ẽ and d̃. Then DMU δ(X̃, Ỹ )
satisfies (11a) and (11b) with the vectors δλ̃, δπ̃, δẽ and δd̃. Therefore, (X,Y ) ∈ C∗, and
C ⊆ C∗. Because the set C∗ is closed, we have C̄ = cl(C) ⊆ cl(C∗) = C∗.

Conversely, let (X,Y ) ∈ C∗. Then (X, Y ) satisfies (11a) and (11b) with some vectors λ′,
π′, e′ and d′. Denote λ∗ = 1⊤λ′. The following two cases are possible. First, let λ∗ > 0.
Define (X̃, Ỹ ) = (1/λ∗)(X,Y ). Then (X̃, Ỹ ) satisfies (11) with λ = λ′/λ∗, π = π′/λ∗,
e = e′/λ∗ and d = d′/λ∗. Therefore, (X̃, Ỹ ) ∈ TVRS−TO. By (13), (X,Y ) ∈ C ⊆ C̄.

Now let λ∗ = 0. Therefore, λ′ = 0. Consider DMUs (Xk, Yk), k = 1, 2, . . . , defined as
follows:

(Xk, Yk) =
n∑

j=1

(
1

n
(Xj, Yj)

)
+ k(X, Y ).

Each DMU (Xk, Yk) is nonnegative and satisfies all conditions (11) with the vectors
λk = (1/n, . . . , 1/n), πk = kπ′, ek = ke′ and dk = kd′. Therefore, (Xk, Yk) ∈ TVRS−TO, for
all k = 1, 2, . . . Consider the sequence of DMUs (X̃k, Ỹk) = (1/k)(Xk, Yk). By (13), we have
(X̃k, Ỹk) ∈ C, for all k = 1, 2, . . . Furthermore,

lim
k→+∞

(X̃k, Ỹk) = (X, Y ).

Therefore, (X, Y ) ∈ C̄. Because DMU (X, Y ) is an arbitrary element of C∗, in both cases
λ∗ > 0 and λ∗ = 0 we have C̄ ⊆ C̄. Taking into account the first part of the proof, we have
C∗ = C̄.

The proof of the other two statements of the theorem is similar. It requires defining
technologies H∗ and G∗ as the sets of all DMUs that satisfy conditions (11) in which the
equality (11c) is replaced by the “≤” and “≥” inequality, respectively. As in the case of
technology C∗, it is first established that the sets H∗ and G∗ are polyhedral and therefore
closed. Repeating the steps of the above proof, it is straightforward to establish thatH∗ = H̄.
Because for technology G the case λ′ = 0 is impossible, we have G∗ = G, which implies that
G is a closed set.
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Proof of Proposition 2. Define η∗ = sup{η | (Xo, ηYo) ∈ C} and η̄∗ = sup{η | (Xo, ηYo) ∈
C̄}. Because C ⊆ C̄, we have η∗ ≤ η̄∗.

Conversely, note that the weight restrictions (7) are assumed to be consistent in the VRS
technology TVRS−TO. By Theorem 5 in Podinovski and Bouzdine-Chameeva (2013), they are
also consistent in technology C̄ which, as noted in footnote 27, is the CRS technology with
weight restrictions (7). Therefore, the supremum η̄∗ < +∞. Because technology C̄ is closed,
η̄∗ is attained. We also obviously have η̄∗ ≥ 1 and (Xo, η̄

∗Yo) ∈ C̄.
Let DMU (Xo, Yo) ∈ TVRS−TO satisfy (11) with some vectors λ̃, π̃, ẽ and d̃. Similarly, let

DMU (Xo, η̄
∗Yo) ∈ C̄ satisfy conditions (11a) and (11b) with some vectors λ′, π′, e′ and d′.

Let λ∗ = 1⊤λ′. Two cases arise.
First, let λ∗ > 0. In this case, it is straightforward to prove that (Xo, η̄

∗Yo) ∈ C. Indeed,
define (X̃, Ỹ ) = (1/λ∗)(Xo, η̄

∗Yo). Then (X̃, Ỹ ) satisfies (11) with λ = λ′/λ∗, π = π′/λ∗,
e = e′/λ∗ and d = d′/λ∗. Therefore, (X̃, Ỹ ) ∈ TVRS−TO. Because (Xo, η̄

∗Yo) = λ∗(X̃, Ỹ ),
by (13), (Xo, η̄

∗Yo) ∈ C. Therefore, if λ∗ > 0, we have η∗ ≥ η̄∗.
Now let λ∗ = 0. For all k = 1, 2, . . . define(

X̃k, Ỹk

)
=

1

k
(Xo, Yo) +

(
1− 1

k

)
(Xo, η̄

∗Yo). (A.6)

Each DMU (X̃k, Ỹk) is nonnegative and satisfies (11a) and (11b) with the vectors λk =
(1/k)λ̃, πk = (1/k)π̃+ (1− 1/k)π′, ek = (1/k)ẽ+ (1− 1/k)e′ and dk = (1/k)d̃+ (1− 1/k)d′.
Therefore, (X̃k, Ỹk) ∈ C, for all k = 1, 2, . . . Rearranging (A.6), we have(

X̃k, Ỹk

)
= (Xo, ηkYo) ∈ C,

where ηk = 1/k + (1 − 1/k)η̄∗ ≤ η̄∗. Because limk→+∞ ηk = η̄∗, and by definition of η∗, we
have η∗ ≥ η̄∗. Combining all parts of the above proof, we have η∗ = η̄∗.

The proof for technologies H and H̄ is similar. In particular, because H̄ ⊆ C̄, we have
η̂∗ = sup{η | (Xo, ηYo) ∈ H̄} ≤ η̄∗. As proved, η̄∗ < +∞. Therefore, η̂∗ < +∞. The rest of
the proof is similar to the proof for technology C̄ and is omitted.
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Appendix B. Models for the numerical example

Below we present linear programs used in the assessment of local and global RTS in the
example discussed in Section 8. To be specific, consider DMU 1.

To calculate the one-sided scale elasticities at DMU 1, we first evaluate the extreme
values of variable ω in the set of optimal solutions to the corresponding program (8). For
example, the value ωmax is obtained by solving the following linear program:33

ωmax = max ω

subject to 2v1 + 2v2 + 3v3 + ω = 1,

2u1 + 1u2 = 1,

2v1 + 2v2 + 3v3 − 2u1 − 1u2 + ω ≥ 0,

4v1 + 4v2 + 3v3 − 4u1 − 3u2 + ω ≥ 0,

6v1 + 4v2 + 5v3 − 3u1 − 2u2 + ω ≥ 0,

2v1 + 3v2 + 3v3 − 3u1 − 4u2 + ω ≥ 0,

6v1 + 5v2 + 4v3 − 4u1 − 5u2 + ω ≥ 0,

v1 − v2 ≥ 0,

− v1 + 2v2 ≥ 0,

− 2u1 + 3u2 ≥ 0,

v3 − 2u2 ≥ 0,

u1, u2, v1, v2, v3 ≥ 0, ω sign free.

The value ωmin is obtained by changing the maximization of ω in the above program
to its minimization. We convert the obtained values ωmax and ωmin to the one-sided scale
elasticities using formula (4).

For the GRS characterization, we first assess the output radial efficiency of each DMUo

in the reference NIRS and NDRS technologies for technology TVRS−TO. As described in
Section 8, the GRS type of each DMUo is obtained by comparing these efficiencies with its
efficiency in technology TVRS−TO.

For example, the output radial efficiency of DMU 1 in the reference NIRS technology H
(more precisely, in its closure H̄: see Section 8 for a discussion) is the inverse to the optimal
value η∗ of the following program:

η∗ = max η

subject to

2λ1 + 4λ2 + 6λ3 + 2λ4 + 6λ5 + 1π1 − 1π2 ≤ 2,

2λ1 + 4λ2 + 4λ3 + 3λ4 + 5λ5 − 1π1 + 2π2 ≤ 2,

3λ1 + 3λ2 + 5λ3 + 3λ4 + 4λ5 + 1π4 ≤ 3,

2λ1 + 4λ2 + 3λ3 + 3λ4 + 4λ5 + 2π3 ≥ 2η,

1λ1 + 3λ2 + 2λ3 + 4λ4 + 5λ5 − 3π3 + 2π4 ≥ 1η,

1λ1 + 1λ2 + 1λ3 + 1λ4 + 1λ5 ≤ 1,

λ1, λ2, λ3, λ4, λ5, π1, π2, π3, π4 ≥ 0.

For the output radial efficiency in the reference NDRS technology G, we change the sign
of the second last inequality in the above program to “≥”.

33This program maximises ω subject to the same constraints as in program (8) and the additional first
constraint that keeps the objective function of program (8) equal to 1.
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Figure C.3: Technology TVRS−TO (shown in dark grey) for which its reference CRS and NIRS technologies
(expanded by the light grey area) are the same and are not closed sets.

Appendix C. Examples

Below we give an example of a VRS technology with weight restrictions TVRS−TO whose
CRS (cone) and NIRS reference technologies C and H are not closed sets. We also give
an example that illustrates footnote 28. These examples underline the importance of The-
orem 2 and Proposition 2 for the assessment of output radial efficiency in these reference
technologies.

Figure C.3 shows the single observed DMU A whose input X is equal to 2, and output
Y is equal to 1. Assume that we have specified the weight restriction

v1 − 2u1 ≥ 0. (C.1)

By Definition 4, the VRS technology TVRS−TO induced by DMU A and weight restric-
tion (C.1) is the set of nonnegative DMUs (X, Y ) such that, restating (11), we trivially
have:

2λ1 + 1π1 + d1 = X,

1λ1 + 2π1 − e1 = Y,

1λ1 = 1,

λ1, π1, d1, e1 ≥ 0.

(C.2)

Technology TVRS−TO is shown in Figure C.3 as the dark grey area below the ray AD.
For example, DMU D is obtained from (C.2) by taking λ1 = 1, π1 = 1.5, and d1 = e1 = 0.

The reference CRS technology. According to (13), the reference CRS (cone) technology
C is obtained from technology TVRS−TO by scaling its units by arbitrary multipliers δ ≥ 0.
Therefore, technology C includes all rays starting from the origin O and passing through an
arbitrary point in TVRS−TO. For example, C includes the rays OA and OD. From Figure C.3
it is clear that technology C is the set under the ray OF (shown in both light and dark grey
shading). Note that technology C does not include the ray OF and is not a closed set.
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The closure of technology C, denoted C̄, is the closed cone that includes the ray OF and
the shaded area below it. This technology is described by conditions (C.2) from which the
equality 1λ1 = 1 is removed. For example, DMU B satisfies the resulting conditions with
λ1 = 0, π1 = 1, and d1 = e1 = 0. This illustrates statement (i) of Theorem 2.

Note that technology C̄ is (but technology C is not) the conventional CRS technology
expanded by the incorporation of weight restrictions (C.1).34

The reference NIRS technology. According to definition (13), the reference NIRS tech-
nology H is obtained by scaling DMUs in technology TVRS−TO by multipliers δ ∈ [0, 1]. It is
clear that, for the technology in Figure C.3, its reference NIRS technology H coincides with
the reference CRS technology C discussed above. Therefore, technology H is the shaded
area below the ray OF , which excludes this ray and is not therefore a closed set. Its closure
is technology H̄ which includes the ray OF and the shaded area below it.

As proved by statement (ii) of Theorem 2, the closed technology H̄ is described by con-
ditions (C.2) in which the normalizing equality for λ1 is replaced by the inequality 1λ1 ≤ 1.
As in the case of CRS technology, DMU B and any other DMU on or below the ray OF
satisfies the resulting conditions with appropriately selected variables λ1,π1, d1 and e1.

Technology H̄ (but not the technology H) can be regarded as the conventional NIRS
technology (Färe and Grosskopf, 1985) expanded by weight restrictions (C.1).

The reference NDRS technology. Using definition (13), the reference NDRS technology
G is obtained by scaling all DMUS in technology TVRS−TO by multipliers δ ≥ 1. In our case,
technology G clearly coincides with technology TVRS−TO. For example, moving from DMU
A along the ray OA and away from the origin (which corresponds to scaling DMU A with
δ ≥ 1) generates DMUs that are already in technology TVRS−TO.

According to statement (iii) of Theorem 2, technology G is described by conditions (C.2)
in which the normalizing equality for λ1 is replaced by the inequality 1λ1 ≥ 1. It is clear
that, in this particular example, the resulting relaxed set of conditions does not generate
any new hypothetical (unobserved) DMUs compared to technology TVRS−TO.

As proved by Theorem 2 and illustrated by this example, technology G is a closed set.
The reference NDRS technology G can be regarded as the conventional NDRS technology
(Seiford and Thrall, 1990) expanded by weight restrictions (C.1).

Example illustrating Proposition 2.
Consider technology T shown as the shaded area in Figure C.4. Note that T includes

the segment AC but excludes all points strictly between A and B, and also excludes B. The
closure T̄ = cl(T ) includes the entire segment BC.

The output radial efficiency of DMU A = (1, 1) in technology T is the inverse of the
supremum

η∗ = sup{η | (1, η) ∈ T } = 1.

Therefore, the output radial efficiency of DMU A in T is equal to 1. This is strictly
smaller than the output radial efficiency of A in technology T̄ , which is equal to 0.5.

34A standard definition of the CRS technology with weight restrictions is given by Podinovski (2004d). It
is obtained from Definition 4 by removing condition (11c).
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Figure C.4: Example of technology T in which the output radial efficiency of DMU A is strictly smaller
than in technology T̄ = cl(T ).
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Chambers, R.G., Färe, R. (2008). A “calculus” for data envelopment analysis. Journal of Productivity
Analysis, 30(3), 169–175.

Charnes, A., Cooper, W.W., Rhodes, E. (1978). Measuring the efficiency of decision making units. European
Journal of Operational Research, 2(6), 429–444.

Cherchye, L., De Rock, B., Dierynck, B., Roodhooft, F., Sabbe, J. (2013). Opening the “black box” of
efficiency measurement: Input allocation in multioutput settings. Operations Research, 61(5), 1148–1165.

Cherchye, L., De Rock, B., Walheer, B. (2015). Multi-output efficiency with good and bad outputs. European
Journal of Operational Research, 240(3), 872–881.

Cherchye, L., De Rock, B., Walheer, B (2016). Multi-output profit efficiency and directional distance func-
tions. Omega, 61, 100–109.

26



Cook, W.D., Zhu, J. (2011). Multiple variable proportionality in data envelopment analysis. Operations
Research, 59(4), 1024–1032.

Cooper, W.W., Seiford, L.M., Tone, K. (2007). Data envelopment analysis. A comprehensive text with mod-
els, applications, references and DEA-Solver software (2nd ed.). New York: Springer Science + Business
Media.

Deprins, D., Simar, L., Tulkens, H. (1984). Measuring labor-efficiency in post offices. In M. Marchand, P.
Pestieau, H. Tulkens (Eds.), The performance of public enterprises: concepts and measurements (pp. 243–
267). Amsterdam: North-Holland.

Dyson, R.D., Thanassoulis, E. (1988). Reducing weight flexibility in data envelopment analysis. Journal of
the Operational Research Society, 39(6), 563–576.
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to Färe and Grosskopf. American Journal of Agricultural Economics, 91(2), 539–545.
Panzar, J.C., Willig, R.D. (1977). Economies of scale in multi-output production. The Quarterly Journal of

Economics, 91(3), 481–491.
Podinovski, V.V. (2004a). Efficiency and returns to scale on the “no free lunch assumption only. Journal of

Productivity Analysis, 22(3), 227–257.
Podinovski, V.V. (2004b). Local and global returns to scale in performance measurement. Journal of the

Operational Research Society, 55(2), 170–178.
Podinovski, V.V. (2004c). Bridging the gap between the constant and variable returns-to-scale models:

Selective proportionality in data envelopment analysis. Journal of the Operational Research Society, 55(3),
265–276.

Podinovski, V.V. (2004d). Production trade-offs and weight restrictions in data envelopment analysis. Jour-
nal of the Operational Research Society, 55(12), 1311–1322.

Podinovski, V.V. (2004e). On the linearisation of reference technologies for testing returns to scale in FDH
models. European Journal of Operational Research, 152(3), 800–802.

Podinovski, V.V. (2005). The explicit role of weight bounds in models of data envelopment analysis. Journal
of the Operational Research Society, 56(12), 1408–1418.

Podinovski, V.V. (2007). Improving data envelopment analysis by the use of production trade-offs. Journal
of the Operational Research Society, 58(10), 1261–1270.

Podinovski, V.V. (2009). Production technologies based on combined proportionality assumptions. Journal
of Productivity Analysis, 32(1), 21–26.

Podinovski, V.V. (2015). DEA models with production trade-offs and weight restrictions. In J. Zhu (Ed.),
Data envelopment analysis: A handbook of models and methods (pp. 105–144). New York: Springer Science
+ Busines Media.

Podinovski, V.V. (2016). Optimal weights in DEA models with weight restrictions. European Journal of
Operational Research, 254(3), 916–924.

27



Podinovski, V.V., Bouzdine-Chameeva, T. (2011). The impossibility of convex constant returns-to-scale
production technologies with exogenously fixed factors. European Journal of Operational Research, 213(1),
119–123.

Podinovski, V.V., Bouzdine-Chameeva, T. (2013). Weight restrictions and free production in data envelop-
ment analysis. Operations Research, 61(2), 426–437.

Podinovski, V.V., Bouzdine-Chameeva, T. (2015). Consistent weight restrictions in data envelopment anal-
ysis. European Journal of Operational Research, 244(1), 201–209.

Podinovski, V.V., Chambers, R.G., Atici, K.B., Deineko, I.D. (2016). Marginal values and returns to scale
for nonparametric production frontiers. Operations Research, 64(1), 236–250.

Podinovski, V.V., Førsund, F.R. (2010). Differential characteristics of efficient frontiers in data envelopment
analysis. Operations Research, 58(6), 1743–1754.

Podinovski, V.V., Førsund, F.R., Krivonozhko, V.E. (2009). A simple derivation of scale elasticity in data
envelopment analysis. European Journal of Operational Research, 197(1), 149–153.

Podinovski, V.V., Ismail, I., Bouzdine-Chameeva, T., Zhang, W. (2014). Combining the assumptions of
variable and constant returns to scale in the efficiency evaluation of secondary schools. European Journal
of Operational Research, 239(2), 504–513.

Ray, S.C. (2004). Data envelopment analysis. Theory and techniques for economics and operations research.
Cambridge: Cambridge University Press.

Ray, S.C., Hu, X. (1977). On the technically efficient organization of an industry: A study of U.S. airlines.
Journal of Productivity Analysis, 8(1), 5–18.

Rockafellar, R.T. (1970). Convex analysis. Princeton, NJ: Princeton University Press.
Sahoo, B.K., Tone, K. (2015). Scale elasticity in non-parametric DEA approach. In J. Zhu (Ed.), Data

envelopment analysis: A handbook of models and methods (pp. 269–290). New York: Springer Science +
Busines Media.

Sahoo, B.K., Zhu, J., Tone, K., Klemen, B.M. (2014). Decomposing technical efficiency and scale elasticity
in two-stage network DEA. European Journal of Operational Research, 233(3), 584–594.

Seiford, L.M., Thrall, R.M. (1990). Recent developments in DEA: The mathematical programming approach
to frontier analysis. Journal of Econometrics, 46(1–2), 7–38.

Starrett, D. A. (1977). Measuring returns to scale in the aggregate, and the scale effect of public goods.
Econometrica, 45(6), 1439–1455.

Thanassoulis, E., Portela, M.C., Allen, R. (2004). Incorporating value judgements in DEA. In: Cooper WW,
Seiford LM, Zhu J, eds. In W.W. Cooper, L.M, Seiford, J. Zhu (Eds.), Handbook on data envelopment
analysis (pp. 99–138). Boston: Kluwer Academic Publishers.
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