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Abstract: In this paper, resistive flex sensors have been embedded at the strain limiting layer of soft 

pneumatic actuators, in order to provide sensory feedback that can be utilised in predicting their bending 

angle during actuation. An experimental setup was prepared to test the soft actuators under controllable 

operating conditions, record the resulting sensory feedback, and synchronise this with the actual bending 

angles measured using a developed image processing program. Regression analysis and neural networks 

are two data-driven modelling techniques that were implemented and compared in this study, to evaluate 

their ability in predicting the bending angle response of the tested soft actuators at different input 

pressures and testing orientations. This serves as a step towards controlling this class of soft bending 

actuators, using data-driven empirical models that lifts the need for complex analytical modelling and 

material characterisation. The aim is to ultimately create a more controllable version of this class of soft 

pneumatic actuators with embedded sensing capabilities, to act as compliant soft gripper fingers that can 

be used in applications requiring both a ‘soft touch’ as well as more controllable object manipulation.  
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1. INTRODUCTION 

       Soft pneumatic actuators (SPAs) with internal fluidic 

channel patterns (commonly referred to as PneuNets) are 

made of highly stretchable elastomer materials, which deform 

upon the pressurisation of the internal channels to create a 

predefined motion (Ilievski et al., 2011). The response of this 

type of actuators is governed by its morphology, which is 

defined by the geometry of the internal fluidic channels and 

the properties of the materials used in fabrication. A flexible 

but inextensible strain limiting layer, in the form of a paper or 

fabric, can be added at the base of a typical soft pneumatic 

actuator to prevent it from elongating and instead generate a 

bending motion that is analogous to that of a human finger. 

Hence, this class of bending actuators is being adopted as 

compliant soft gripper fingers, which are able to passively 

conform to objects of complex geometries and adapt to 

dimensional variations and location uncertainty (Deimel and 

Brock, 2015, 2013). In addition, the soft nature of the 

elastomer materials used to create these soft gripper fingers, 

allows grasping of delicate objects safely without damaging 

their surface (Galloway et al., 2016).  

 

       On the other hand, the complex deformation exhibited by 

the non-linear elastomer materials, commonly used to create 

the SPA based fingers, makes them difficult to be accurately 

modelled and controlled (Lipson, 2014). Some examples of 

recent work addressing the modelling and characterisation of 

bending SPAs include; an experimental characterisation of 

the geometry of bending and rotary SPAs (Sun et al., 2013), 

finite element analysis (FEA) of cylindrical SPAs for surgical 

applications (Elsayed et al., 2014), theoretical modelling of a 

soft snake robot based on the bending SPAs (Luo et al., 

2014), and finally a detailed analytical and finite element 

modelling of a single chamber fibre-reinforced bending SPA 

(Polygerinos et al., 2015). One of the main challenges 

associated with the analytical and FEA modelling approaches 

is the need for accurate material models and relevant material 

coefficients, which can accurately describe the nonlinear 

behaviour of the used hyperelastic materials. This becomes 

even more challenging when SPAs are made of combinations 

of different materials, or when integrated with external 

reinforcements or embedded components. Furthermore, the 

manual process commonly followed in fabricating SPAs, is 

subject to variations that could arise during the material 

preparation, fabricating the required moulds, and bonding the 

actuators parts together. This means that expecting a 

consistent behaviour would be quite difficult to guarantee 

among different samples of SPAs produced separately, due to 

the uncontrollable sources of variations. Moreover, when 

modelling contacts with external objects for grasping 

applications using SPAs, the FEA and theoretical modelling 

approaches would typically require some knowledge about 

the geometry and nature of the target object, which may not 

always be available in advance. In fact, soft gripper fingers in 

general are desired for their ability to passively accommodate 

a range of different objects, without the need for defining 

their geometry and material properties in advance. Therefore, 

it would be interesting to investigate alternative modelling 

approaches that can be used for predicting and controlling the 

behaviour of soft gripper fingers based on the bending SPAs, 

without the need for deriving precise physical and material 

models, or prior knowledge about the target objects to be 

handled. 
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       The approach demonstrated in this paper exploits 

common data-driven modelling techniques, to derive reliable 

empirical models for bending SPAs using simple sensory 

feedback, which implicitly includes variations arising due to 

the manual fabrication process and accounts for the effect of 

gravity on the bending response when operating at different 

orientations. This approach not only lifts the need for 

deriving precise physical and material models that could be 

difficult to achieve in some cases, but is also not limited to 

specific elastomer materials or designs of SPA. The primary 

requirement of this approach however, is to generate 

sufficient experimental data that describes the behaviour of 

the modelled SPA in different situations, so that the derived 

models can be further generalised to new untrained scenarios. 

Hence, equipping SPAs with reliable sensing capabilities 

becomes essential to generate the required sensory feedback. 

2.1  Embedded Flexible Sensing  

       Despite the fact that the passive compliance of SPA 

based soft fingers have the benefit of adapting to sources of 

variations and uncertainties without the need for expensive 

sensing and complex control, it has the drawback of limiting 

their application to simple pick and place tasks that do not 

require controlled manipulation and feedback about the grasp 

quality. The absence of active sensing also means that the 

orientation of a grasped object with respect to the soft gripper 

would be unknown, since the grasp was achieved passively. 

Hence, accurate object positioning would be difficult to 

achieve, which is required in applications such as assembly 

tasks for example. Thus, equipping SPA based soft fingers 

with some level of sensing capabilities that do not hinder 

their desired softness and compliance, should enhance their 

functionality and widen the scope of their application to 

include more complex manipulation tasks. 

 

       The primary controllable input parameter that can be 

varied during the actuation of soft actuators is the pressure of 

the pneumatic supply, which in turn controls the input flow 

rate. The actual internal pressure developed inside the soft 

fingers varies during the actuation, because of their 

continuous deformation. Yet, this pressure response can be 

easily measured using common pressure sensors connected to 

the supply tubes. The main challenge in sensing is measuring 

the bending motion of SPAs as they curve towards their base, 

without actually altering this behaviour with the sensing 

element itself. Hence, a flexible sensor is required that can be 

embedded at the base layer of an SPA, where extension is 

restricted by the constraint layer, to provide a measurable 

change in a physical parameter that can be directly related to 

the witnessed bending motion. This leads to need for highly 

flexible sensors that can be easily embedded within the soft 

body of SPAs, without limiting their desired compliance or 

altering their bending mechanism. This is one of several 

applications motivating research over the past few years into 

developing new concepts for flexible and stretchable sensors, 

which can be integrated with soft bodies in general (Lu and 

Kim, 2014). The main soft sensing techniques that could be 

smoothly integrated with soft gripper finger specifically for 

measuring their bending angle can be classified into three 

main categories as follows: 

(1) The first approach is adding carbon content in different 

forms to elastomer materials, to make them conductive and 

hence creating soft sensing elements. This type of conductive 

elastomer based sensors has been incorporated with a soft 

gripper design that is actuated using  linear displacements, to 

differentiate between different sized grasped objects (Issa et 

al., 2013). The main challenge with this type of soft sensing 

is the difficulty in producing sensors with consistent 

electrical properties, since repeated deformation may affect 

the distribution of carbon particles within the elastomer 

material. Also, electrical connections are difficult and may 

cause fluctuations in the sensory readings during actuation. 

 

(2) A popular soft sensing approach now is achieved by 

filling internal channels imprinted within an elastomer body 

with a conductive liquid metal (EGaIn), to measure different 

physical parameters depending on the geometry of the 

conductive channel pattern (Dickey et al., 2008). Previous 

work demonstrated the use of this sensing approach to 

measure parameters such as: Multi-axis forces (Vogt et al., 

2013), strain (Park et al., 2012), curvature (Majidi et al., 

2011), and pressure (Park et al., 2010). The concept was 

incorporated recently with soft gripper fingers based on SPAs 

to achieve position and force control (Morrow et al., 2015). 

However, the manual process of injecting the embedded 

channels with the conductive liquid metal is delicate and not 

easily repeatable, which would become a challenge when 

considering larger scale production. In addition, the 

conductive EGaIn material is quite expensive.  

 

(3) An alternative soft sensing approach was recently 

demonstrated by (Homberg et al., 2015), in which 

commercial resistive flex sensors were embedded in SPA 

based gripper fingers for haptic identification. Readings from 

the embedded flex sensors were clustered so that a trained 

algorithm can identify grasped objects based on the combined 

readings from all soft fingers. Another recent attempt for 

embedding simple flex sensors within soft gripper fingers 

was presented by (She et al., 2015), were the feedback was 

used to control the shape of the soft fingers actuated using 

shape memory alloys. The main advantage of this approach 

compared to using conductive silicone rubber or conductive 

EGaIn channels, is the fact that it relies on simple and 

inexpensive commercially available sensors that can be easily 

wired and embedded within the strain limiting layer of SPAs.  

 

       The work presented here follows the third sensing 

approach for measuring the bending angle of a typical SPA 

based soft finger design. This achieved by correlating the 

readings from the embedded flex sensors in conjunction with 

the internal pressure readings from on-board pressure 

sensors, to the actual bending angle measured using a 

developed vision system. This combination of multi-sensory 

feedback allows reasonable estimations of the bending angle 

of soft fingers, without the need for deriving accurate 

physical and material models. The aim is to ultimately utilise 

these inexpensive bending SPAs with embedded sensors, to 

act as more controllable soft gripper fingers that can be 

achieve accurate positioning in complex manipulation tasks. 



 

 

     

 

       The paper will proceed by briefly introducing a common 

fabrication process that can be followed to create soft gripper 

fingers based on the bending SPA morphology. Afterwards, 

in section 3 the platform involving the use of pneumatic 

control board and a high speed imaging system is presented, 

explaining how the soft fingers are actuated under different 

operating conditions to collect the required experimental 

data. Moreover, in section 4 a relation between the acquired 

sensory feedback and the bending angle measured using the 

vision system is derived using regression analysis and neural 

networks. The results obtained using both techniques are then 

presented, comparing the accuracy of their predicted bending 

angle values to the actual measured values. Furthermore, the 

derived empirical model and trained neural network are 

validated by evaluating their prediction accuracy when tested 

with new experimental data acquired at untrained operating 

conditions. Finally, the paper ends with some conclusions 

regarding the proposed sensing and modelling approach, 

highlighting the planned future work. 

2. FABRICATION OF SOFT BENDING ACTUATORS  

       The main technique for fabricating SPAs relies on 

moulding silicone rubbers into the required shape, using 3D 

printed moulds with the negative of the features to imprint, 

followed by bonding the parts together after curing to create 

the final shape of the actuator (Ilievski et al., 2011). A soft 

finger based on a standard bending SPA design with ribbed 

channel morphology (shown in Fig. 1), was fabricated from a 

common silicone rubber material called (Ecoflex-501). The 

dimensions of the soft finger were based on the results of 

previous work characterising the bending response and force 

generation of a set of soft fingers with variable internal 

channel dimensions (K. Elgeneidy et al., 2016). To fabricate 

the soft finger, it had to be divided it into three main parts 

(labelled on Fig. 1): (1) The main body moulded from 

Ecoflex-50 with the imprinted fluidic channel pattern, (2) the 

bottom base made also from EcoFlex-50 or a stiffer elastomer 

if desired, which seals the internal channels, (3) and a strain 

limiting layer in a form of a sheet of paper between those two 

parts. This layer is necessary to prevent the finger from 

extending, allowing only a bending motion curving towards 

its base. Here, we attach a flexible resistive sensor2 to the 

strain limiting layer, in order to change in resistance as the 

soft finger bends without hindering the deformation process. 

Fig. 1. A cross-sectional illustration through a typical 

bending SPA featuring a ribbed morphology. 

 

                                                 
1 EcoFlex-50, SmoothOn. http://www.smooth-

on.com/Silicone-Rubber-an/c2_1115_1130/index.html 
2 Flex Sensor 2.2", http://www.spectrasymbol.com/flex-

sensor 

The practical procedure involved in the fabrication of the soft 

bending fingers with embedded sensing can be summarised 

in the following steps: 

1) Printing Moulds: The moulds with the negative of the 

geometry featured required to be imprinted, are designed and 

3D printed from ABS filament.  

2) Mixing and Degasing: EcoFlex-50 is prepared by mixing 

equal volumes of the provided components stirred well for 2 

minutes. The mixed material is then quickly placed in a 

vacuum chamber at 900 mbar for about 5 minutes for 

degasing, in order to remove trapped air bubbles. 

3) Moulding: the mixed material is then carefully poured in 

the 3D printed moulds to create the two parts of the soft 

finger with imprinted features, and then left to cure. The 

curing process can be accelerated by placing the moulds in an 

oven at 50o for around an hour.  

4) Strain limiting layer: two pieces of paper are cut into the 

required dimensions to create the strain limiting layer which 

will fit between the two parts of the soft finger. 

5) Embedding flex sensor: The flex sensor is positioned 

between those two sheets of paper and glued together to form 

one flexible but not extendable layer, to be embedded within 

the soft finger at the interface between the two moulded parts. 

6) Demoulding and Bonding: both parts of the soft finger are 

demoulded and dipped in a freshly mixed EcoFlex material at 

their joining faces, to act as a bonding agent. The prepared 

strain limiting layer is placed on top of the base part, and the 

main body of the finger is then placed and aligned on top.  

7) Connection: once bonding layer cures, a needle is inserted 

at the base of the finger to penetrate through the internal 

channels, which needs to be pneumatically actuated. A tube is 

then connected to the other end of the needle to be connected 

to the source of the pneumatic supply from the other end. 

 
Fig. 2. Soft actuator sample with an embedded flex sensor  

Although this process uses inexpensive materials and requires 

fairly simple equipment to implement, the manual nature of 

the process introduces sources of variation that could arise 

during the material preparation and moulding. This is one of 

the challenges faced in modelling the behaviour of soft 

actuators in general, due to the uncertainty in its dimensional 

accuracy and material properties, which encourages the data-

driven modelling approach considered here.   
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3.  EXPERIMENTAL TESTING 

3.1  Testing Platform 

       The next step after embedding the flex sensor within the 

soft finger samples is to create a setup that not only acquires 

the sensory feedback at controllable operating conditions, but 

also synchronises this with the corresponding bending angles 

measured during the actuation of the soft fingers. The 

developed testing platform comprises of the following units: 

 

(a) A fixed frame setup with adjustable 3D printed mounts, 

which provides a modular interface that fixes the tested soft 

finger at desired orientations (measured from the positive X-

axis) within its bending plane as show in Fig.3. The input 

pneumatic supply flows through a tube with a 1.6 mm needle 

attached to its end, to facilitate switching between finger 

samples easily during testing. The tip of this needle passes 

through a locating hole in the 3D printed fixture to pierce the 

soft finger at the base of the internal channels. The fixed inlet 

diameter for the needle means that the flow rate of the 

pneumatic supply can only be changed by varying the value 

of the input pressure and its duration. 

 
Fig.3. Experiment setup fixing the tested soft fingers 

 

(b) A pneumatic control board, based on the design proposed 

in the soft robotics toolkit3, was built to control the actuation 

of the tested soft fingers. The board includes solenoid valves 

controlling the flow of pneumatic supply, pressure sensors 

measuring the output pressure at each channel, an Arduino 

microcontroller programmed to control the actuation process. 

The duration of each actuation as well as the input pressure 

can be controlled by setting the duty cycle and frequency of a 

pulse width modulated signal controlling the switching of the 

solenoid valves. Furthermore, the Arduino is interfaced with 

the on-board pressure sensors and embedded flex sensors, to 

                                                 
3 Pneumatic control board, soft robotics toolkit, 

http://softroboticstoolkit.com/book/control-board. 

record and synchronise the sensory readings acquired during 

each actuation test.  

 

(c) A high speed camera is used to capture continuous image 

frames at 130 Fps showing the deformation of the tested soft 

fingers upon actuation. The camera is fixed to the same frame 

that holds the soft finger, to ensure that it remains in the same 

location with respect to the fingers. Calibration for the 

intrinsic and extrinsic camera parameters was conducted to 

allow measurements in real-world coordinates for the radius 

of curvature, tip trajectory, and bending angle of the tested 

soft fingers. Furthermore, the camera is externally triggered 

via the Arduino microcontroller on the pneumatic control 

board, so that each captured image frame can be matched to 

the corresponding sensory readings recorded simultaneously. 

3.2  Acquiring Sensory Readings 

       Soft fingers were repeatedly actuated at different 

magnitudes and durations of the supplied pressure input, to 

confirm the repeatability of the sensory feedback. Fig. 4 

shows a plot for the internal pressure measured against the 

resulting flex sensor readings, when supplied with a step 

pressure input of 12 Psi for different durations. The plotted 

cycle shows the value from the flex sensor decreasing upon 

actuation as the internal pressure builds up, until the 

pneumatic supply is stopped and the soft fingers starts to 

retract back to its original shape. The response was observed 

to be fairly repeatable; with longer actuation duration causing 

a systematic extension to the witnessed response. Thus, it can 

be assumed that when increasing the actuation duration, the 

soft finger will continue to bend following the same relation 

between the internal pressure and flex sensor readings, as 

long as the input pressure is held constant and the material 

does not fail.  

 

 
Fig. 4. Flex sensor response against the internal pressure at 

variable actuation durations. 

 

Moreover, the same test was repeated again, but this time the 

actuation duration was fixed at 500 mS, while the soft finger 

was actuated using pressure inputs of 10 and 12 Psi. Fig. 5 

shows that changing the input pressure had a more significant 

effect on the recorded sensory response, influencing not only 

the final reading from the flex sensor, but also the gradient of 

the response. The pressure input directly controls the flow 
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rate of the pneumatic supply energising the actuation. This 

shows the importance of incorporating the measured internal 

pressure response building up inside the soft finger during 

actuation, if accurate models are to be derived for the 

estimation of the bending response of soft fingers. 

 

 
Fig. 5. Flex sensor response against the internal pressure at 

variable input actuation pressure. 

 

       Furthermore, Fig. 6 Shows the relation between the input 

pressure and flex sensor readings, at three different initial soft 

finger orientations of 45o, 0o, and -45o (measured from the 

positive X-axis). A deviation in the response can be observed 

in each case, especially during the retraction of the soft finger 

to its initial position, since the pneumatic supply is stopped 

and gravity becomes the dominant force acting on the finger. 

This shows the importance of taking the initial orientation of 

soft fingers into consideration when modelling their bending 

response, to be able to compensate for the effect of gravity 

and generate more accurate models (Polygerinos et al., 2015). 

The orientation here is known for each test since the tested 

soft finger is fixed using the 3D printed mounts, yet in actual 

grasping applications the orientation needs to be measured in 

real-time using an accelerometer sensor mounted at the 

gripper base. This would be an additional sensory input that 

can be interfaced to the main controller. 

 

 
Fig. 6. Flex sensor response against the internal pressure at 

variable soft finger orientations. 

 

 

 

 

3.3  Measuring Bending Angle 

       An image processing program was developed using 

Halcon library4, to process captured images for the actuation 

of fixed soft fingers, using a calibrated high speed camera. 

The aim is to track the trajectory of its fingertip and measure 

the change in bending angle, without using any external 

markers that could alter the bending response. To achieve 

this, the program segments the deforming soft finger body 

using automatic thresholding, aided with a dark background. 

Contours defining the circumference of the segmented blob 

representing the finger body are then extracted and processed 

to locate the position of the fingertip within each image frame 

in real-word coordinates. Afterwards, the bending angle ‘θ’ is 

calculated with respect to the base of the soft finger as 

illustrated in Fig. 7, showing the output from the program. 

 

 
Fig. 7. Image processing program extracting the soft finger 

and tracking its trajectory to measure the bending angle. 

 

4. DATA-DRIVEN MODELLING 

       The data acquired from the experimental tests would be 

utilised in deriving empirical models that describe the 

bending response of the investigated soft finger design. The 

input data comprises of the (1) internal pressure measured 

using on-board pressure sensors, (2) the change in resistance 

due to bending of the embedded flex sensor, (3) and the 

initial orientation of the soft finger known from the setup. A 

soft finger sample with embedded flex sensor was tested at 

three different initial orientations (-45o, 0o, and 45o), using a 

step pressure input of 10 Psi and lasting for a duration of 400 

mS. The finger was actuated twice under these input 

conditions at each of the tested orientations, while recording 

the generated sensory data and captured image frames to be 

processed for measuring the actual bending angle. Regression 

analysis and neural networks are two data-driven modelling 

techniques implemented and compared here, in order to 

derive empirical models that can be used in predicting the 

bending angle of soft gripper fingers, based on the generated 

sensory feedback. This can also be used as part of a control 

program to actuate the fingers to a specific bending angle. 

                                                 
4 Halcon library, http://www.halcon.com/.   
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4.1.  Regression Analysis 

       First, we use linear regression to correlate the acquired 

internal pressure readings “P”, the embedded flex sensor 

readings “S”, and the initial orientation of the soft finger 

within its bending plane “ϕ”, to the actual bending angle “θ” 

measured using the developed vision system. The data set 

included 606 observations recorded as the soft finger fully 

actuates twice at three different orientations. The resulting 

empirical model (1) showed a good correlation between the 

inputs and outputs. The mean squared error (MSE) and 

standard deviation (SD) of the predicted bending angles for 

each finger orientation is shown in Table 1 below. 

θ = -185.51 - 0.166*P + 0.347*S + 0.991*ϕ         (1) 

Table 1. Regression error statistics at different orientations 

 -45o 0o 45o 

MSE 3.97 7.58 5.84 

SD 1.979 2.717 2.406 

4.2.  Artificial Neural Networks 

       A more advanced data-driven modelling technique 

investigated here is the use of artificial neural networks 

(ANN). The same data set used in the regression analysis was 

used again here to train a neural network with 1 hidden layer 

and 6 neurons. This network structure was found to reduce 

the MSE while avoiding overfitting. The inputs to the neural 

network are again the sensory feedback from the pressure and 

flex sensor, and the initial orientation of the soft finger, while 

the output is the predicted bending angle of the soft finger. 

To train the network, the measured bending angle using the 

vision system synchronised with the acquired sensory 

feedback, is used as target outputs. The training results 

showed a good fit between the inputs and target output as 

shown in Fig. 8, with improved accuracy compared to 

regression analysis as summarised in Table 2. 

 

Fig. 8. Fitting the target otputs aginst the predicted values by 

the trained ANN 

Table 2. ANN error statistics at different orientations 

 -45o 0o 45o 

MSE 1.52 1.60 2.12 

SD 1.231 1.262 1.449 

4.3.  Comparing the Prediction Accuracy 

       The accuracy of the derived empirical model using 

regression analysis and the trained neural network is 

evaluated by comparing their predicted values of bending 

angle to the actual value measured using the vision system. 

Fig. 9 shows that both techniques successfully reproduced the 

bending angle response at the tested finger orientations. It is 

obvious from comparing tables 1 and 2 that neural networks 

are able to generate more accurate predictions at the three 

tested orientations, with a notable reduction in the deviation 

from actual values. This means that the trained neural 

network was more successful in implicitly incorporating the 

effect of gravity at different orientations, and accurately 

captured the non-linear deformation of the silicone rubber 

materials used in fabricating the tested soft fingers. 

 

 
Fig. 9. Comparing the prediction accuracy of regression and 

neural networks 

4.3.  Validation and Discussions 

       Moreover, in order to validate the acquired results from 

both data-driven modelling techniques and safely assume 

they can be generalised to wider operating conditions, the 

prediction accuracy of the derived empirical model and the 

neural network were tested using a new data set acquired at 

different pressure input and actuation duration. A soft finger 

sample with the embedded flex sensor, was actuated at 

orientations of +45o and -45o at an input pressure of 12 Psi 

for a duration of 350 mS. The resulting sensory feedback was 

collected in conjunction with the corresponding bending 

angle measured using the vision system. The new data set 

was fed to the empirical model and neural network, and the 

resulting predicted bending angle was compared to the actual 

values as shown in Fig. 10. 



 

 

     

 

 

 

Fig. 10. Comparing the prediction accuracy of ANN and 

Regression using new input data at orientations of +/-45o.  

It now becomes clear that both techniques can be used to 

predict the bending angle response when given new data sets 

acquired at untrained operating conditions. Again neural 

networks performed better than the derived model using 

regression analysis, as shown in the statistics in Table 3. 

Table 3. Error statistics for the validation testing 

 ANN Regression 

 -45o 45o -45o 45o 

MSE 13.18 10.93 15.53 14.72 
SD 1.207 1.71 1.855 2.10 

 

5. CONCLUSIONS AND FUTURE WORK 

The work presented here demonstrated an alternative 

approach for predicting the bending angle of a common soft 

pneumatic actuator using purely data-driven modelling 

techniques, which rely on generated data-sets of sensory 

feedback without the need for deriving complex physical and 

material models. A resistive flex sensor was embedded within 

the strain limiting layer of the soft actuator, which changes 

resistance as it bends with the bending of the soft actuator. 

While a pressure sensor connected to the pneumatic supply 

measures the internal pressures response during the actuation. 

The soft actuator was tested by fixing it to a testing platform 

at different orientations, and actuating it repeatedly with a 

controlled pneumatic supply. A high speed camera captures 

the deformation of the soft actuator and a developed image 

processing program tracks the tip trajectory along the image 

frames to measure the change in bending angle during 

actuation. Regression analysis and neural networks were 

considered as two common data-driven modelling techniques 

that can be used to correlate the synchronised sensory 

feedback generated, with the measured bending angle output. 

Both techniques were successful in capturing the bending 

response of the soft actuator with neural networks providing 

more accurate predictions. In order to validate the derived 

models, a new data set was generated by testing the soft 

actuators at untrained operating conditions. The recorded 

sensory feedback was fed to both the derived model using 

regression analysis and the previously trained neural network, 

in order to compare their predicted bending angles to the 

actual values measured using the vision system. The error in 

the predicted values using both techniques increased, as to be 

expected when testing the models at untrained conditions. 

However, the response curves still managed to closely follow 

that of the actual bending angle values, with the neural 

network again providing more accurate predictions (Fig. 10). 

The main contribution of this paper is in the proposition of an 

alternative data-driven modelling approach that utilises 

feedback from inexpensive commercially available sensors to 

derive reliable empirical models, which can be used for 

prediction and control purposes. Another contribution is the 

inclusion of the effect of gravitational forces on the bending 

response, which is usually ignored when testing SPAs. This 

was achieved by supplying the initial orientation of the soft 

actuator as an additional input to the derived empirical 

models, to allow reliable predictions of the bending angles at 

different orientations. The results of this work showed that 

trained neural networks are able to predict the bending angle 

of this common design of bending SPAs at different 

operating conditions, despite the limited data sets used here 

in deriving those models. This shows the potential for 

generalising the use of the proposed approach with other SPA 

designs as long as the required sensory feedback can be 

generated. The main advantage of this approach lies lifting 

the need for prior knowledge about the geometry or material 

properties of the tested soft actuators. Instead, inexpensive 

commercial sensors can be used to provide the feedback 

required for deriving the empirical models, which implicitly 

incorporates variations in geometry and material properties 

that arise during the manual fabrication of such actuators. 

 

       This is part of ongoing work on developing more 

controllable versions of highly compliant soft gripper fingers, 

by providing them with sufficient sensing capabilities and 

intelligent controllers. The first stage of the work was 

presented here, demonstrating that a trained neural network is 

able to predict the bending angle of freely actuated soft 

fingers using simple sensory feedback. The next step is to 

develop a complete soft gripper prototype based on the soft 

fingers tested here, which uses trained neural networks to 

achieve more accurate manipulations.  It is envisioned that by 

further training of neural networks under wider operating 

conditions, accurate estimations can be made about the 

position of the grasped object with respect to the gripper 

base, as well as detecting contact with the grasped objects 

and possibly monitoring this to predict slippage. This will 

provide a step towards expanding the application of soft 

grippers to include more complex manipulation tasks, which 

require not only the inherited softness and compliance, but 

also accurate position and force control.  



 

 

     

 

ACKNOWLEDGMENTS 

The reported work has been partially funded by the EPSRC 

Centre for Innovated Manufacturing in Intelligent 

Automation (EP/IO33467/1). The support of which is 

gratefully acknowledged. 

REFERENCES 

Deimel, R., Brock, O., 2015. A novel type of compliant and 

underactuated robotic hand for dexterous grasping. Int. 

J. Rob. Res. doi:10.1177/0278364915592961 

Deimel, R., Brock, O., 2013. A compliant hand based on a 

novel pneumatic actuator. Proc. - IEEE Int. Conf. 

Robot. Autom. 2047–2053. 

doi:10.1109/ICRA.2013.6630851 

Dickey, M.D., Chiechi, R.C., Larsen, R.J., Weiss, E. a., 

Weitz, D. a., Whitesides, G.M., 2008. Eutectic gallium-

indium (EGaIn): A liquid metal alloy for the formation 

of stable structures in microchannels at room 

temperature. Adv. Funct. Mater. 18, 1097–1104. 

doi:10.1002/adfm.200701216 

Elsayed, Y., Vincensi, A., Lekakou, C., Geng, T., Saaj, C.M., 

Ranzani, T., Cianchetti, M., Menciassi, A., 2014. Finite 

Element Analysis and Design Optimization of a 

Pneumatically Actuating Silicone Module for Robotic 

Surgery Applications. Soft Robot. 2, 

141031124711007. doi:10.1089/soro.2014.0016 

Galloway, K.C., Becker, K.P., Phillips, B., Kirby, J., Licht, 

S., Tchernov, D., Wood, R.J., Gruber, D.F., 2016. Soft 

Robotic Grippers for Biological Sampling on Deep 

Reefs. Soft Robot. 00, soro.2015.0019. 

doi:10.1089/soro.2015.0019 

Homberg, B.S., Katzschmann, R.K., Dogar, M.R., Rus, D., 

2015. Haptic identification of objects using a modular 

soft robotic gripper. 2015 IEEE/RSJ Int. Conf. Intell. 

Robot. Syst. 1698–1705. 

doi:10.1109/IROS.2015.7353596 

Ilievski, F., Mazzeo, A.D., Shepherd, R.F., Chen, X., 

Whitesides, G.M., 2011. Soft robotics for chemists. 

Angew. Chemie - Int. Ed. 50, 1890–1895. 

doi:10.1002/anie.201006464 

Issa, M., Petkovic, D., Pavlovic, N.D., Zentner, L., 2013. 

Sensor elements made of conductive silicone rubber for 

passively compliant gripper. Int. J. Adv. Manuf. 

Technol. 69, 1527–1536. doi:10.1007/s00170-013-

5085-8 

K. Elgeneidy, N. Lohse, M.J., 2016. Experimental Analysis 

of the Bending Response of Soft Gripper Fingers, in: 

Accepted Paper at the ASME 2016 International 

Design Engineering Technical Conferences & 

Computers and Information in Engineering Conference 

IDETC/CIE 2016. 

Lipson, H., 2014. Challenges and Opportunities for Design, 

Simulation, and Fabrication of Soft Robots. Soft Robot. 

1, 21–27. doi:10.1089/soro.2013.0007 

Lu, N., Kim, D.-H., 2014. Flexible and Stretchable 

Electronics Paving the Way for Soft Robotics. Soft 

Robot. 1, 53–62. doi:10.1089/soro.2013.0005 

Luo, M., Agheli, M., Onal, C.D., 2014. Theoretical Modeling 

and Experimental Analysis of a Pressure-Operated Soft 

Robotic Snake. Soft Robot. 1, 136–146. 

doi:10.1089/soro.2013.0011 

Majidi, C., Kramer, R., Wood, R.J., 2011. A non-differential 

elastomer curvature sensor for softer-than-skin 

electronics. Smart Mater. Struct. 20, 105017. 

doi:10.1088/0964-1726/20/10/105017 

Morrow, J., Shin, H., Torrey, J., Larkins, R., Dang, S., 

Phillips-grafflin, C., Park, Y., Berenson, D., 2015. 

Improving Soft Pneumatic Actuator Fingers through 

Integration of Soft Sensors , Position and Force Control 

, and Rigid Fingernails. 

Park, Y.L., Chen, B.R., Wood, R.J., 2012. Design and 

fabrication of soft artificial skin using embedded 

microchannels and liquid conductors. IEEE Sens. J. 12, 

2711–2718. doi:10.1109/JSEN.2012.2200790 

Park, Y.-L., Majidi, C., Kramer, R., Bérard, P., Wood, R.J., 

2010. Hyperelastic pressure sensing with a liquid-

embedded elastomer. J. Micromechanics 

Microengineering 20, 125029. doi:10.1088/0960-

1317/20/12/125029 

Polygerinos, P., Wang, Z., Overvelde, J.T.B., Galloway, 

K.C., Wood, R.J., Bertoldi, K., Walsh, C.J., 2015. 

Modeling of Soft Fiber-Reinforced Bending Actuators. 

IEEE Trans. Robot. 31, 778–789. 

doi:10.1109/TRO.2015.2428504 

She, Y., Li, C., Cleary, J., Su, H.-J., 2015. Design and 

Fabrication of a Soft Robotic Hand With Embedded 

Actuators and Sensors. J. Mech. Robot. 7, 021007. 

doi:10.1115/1.4029497 

Sun, Y., Song, Y.S., Paik, J., 2013. Characterization of 

silicone rubber based soft pneumatic actuators. IEEE 

Int. Conf. Intell. Robot. Syst. 4446–4453. 

doi:10.1109/IROS.2013.6696995 

Vogt, D.M., Park, Y.-L., Wood, R.J., 2013. Design and 

Characterization of a Soft Multi-Axis Force Sensor 

Using Embedded Microfluidic Channels. IEEE Sens. J. 

13, 4056–4064. doi:10.1109/JSEN.2013.2272320 

 


