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1 ABSTRACT 

Running economy is well established as a primary determinant of endurance running 

performance. However, there is a lack of clarity about the preferred measurement of running 

economy, its primary limiting factors and the most robust methods enhance running economy 

in highly trained athletes. Therefore, this thesis investigated the running economy of highly 

trained runners, exploring the reliability and validity of measures of running economy to 

deduce its most appropriate quantification, the application of innovative methods to enhance 

our understanding of an athlete’s running economy, and a novel training method to enhance 

running economy. Chapter 3 revealed that energy cost and oxygen cost were shown to 

provide similarly high levels of reliability (typical error of measurement ~3%) for highly 

trained endurance runners when assessed using a short-duration incremental submaximal 

exercise protocol. In chapter 4, the analysis of a large cohort of highly trained endurance 

runners revealed that energy cost increased in a stepwise manner with increments in running 

speed (P<0.001), however oxygen cost remained consistent (P=0.54) across running speed; 

indicating that oxygen cost might not be an appropriate measure of running economy. 

Chapter 5 demonstrated that the inter-individual variation in the magnitude of changes in 

energy cost between different gradients (i.e. from flat running to uphill/downhill running) in 

highly trained runners was low. However, a disparity between the energy saving of running 

on a -5% gradient (-17%) and the additional energy cost of running on a +5% gradient 

(+32%) was evident. The cross-sectional and longitudinal analysis of a large cohort of highly 

trained runners in chapter 6 revealed a small (r=0.25) and moderate (r=0.35) association 

between energy cost and maximal oxygen uptake, respectively. Finally, chapter 7 

demonstrated that eight weeks of supplementary downhill run training at vLTP in existing 

training programmes does not enhance running economy in already well trained runners (1.22 

vs 1.20 kcal·kg
-1·km

-1
; P=0.41), despite a significant increase (+2.4%) in the velocity at 

lactate turnpoint. In conclusion, this thesis demonstrates that energy cost, expressed as 

kcal·kg
-1·km

-1
,
 
provides a reliable and valid method to quantify running economy in trained 

distance runners. However, further investigation is required to identify robust training 

methods to enhance running economy in this already highly trained population. 

Key words: Running economy, energy cost, oxygen cost, distance running, competitive 

athletes, training monitoring, gradient running, maximal oxygen uptake 
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1 Chapter I 

 Introduction 1.1

The ability to travel a set distance in the shortest possible time via bipedal locomotion 

represents one of the most elemental, versatile and long standing forms of human competition. 

The time taken to complete the distance is often used to categorise events as sprint (5-90 s) or 

endurance events (>90 s); with the latter often broken down further for track and field 

athletes into middle- (800 m to 3,000m) or long (>3 km) distance races (Brandon 1995). The 

energy provided during endurance events is primarily from aerobic metabolism (Hill 1999; 

Duffield et al. 2005a), although for middle distance events, a substantial contribution from 

anaerobic metabolism is also evident (Duffield et al. 2005a). A number of deterministic 

physiological variables have been identified that are common across the spectrum of distance 

running events. The primary physiological determinants of endurance running performance 

are maximal oxygen uptake (V̇O2max), lactate threshold/fractional utilisation of V̇O2max and 

running economy (Conley and Krahenbuhl 1980; Bassett and Howley 2000; Jones and Carter 

2000; di Prampero 2003; Jones 2006; Joyner and Coyle 2008; Ingham et al. 2008) and  the 

running velocity that can be sustained in any endurance event is largely dependent on the 

interaction of these variables. 

Though a wealth of empirical investigations exist identifying the determinants of V̇O2max and 

the fractional utilisation of V̇O2max, in addition to their responses to training, investigations 

exploring running economy are comparably limited (Foster and Lucia 2007). Running 

economy (RE) represents the metabolic cost of sustaining a given running speed (Daniels 

1985; Larsen 2003; Joyner and Coyle 2008; Fletcher et al. 2009), thus reflecting the 

translation of energy turnover into linear running velocity. It has long been established that 

RE varies considerably between individuals (Daniels 1974; McMiken and Daniels 1976; 

Svedenhag and Sjödin 1994), with elite distance runners displaying superior RE compared to 

lesser trained individuals (Pollock 1977; Morgan and Bransford 1995). However, little focus 

to date has been directed towards some fundamental aspects of RE, such as the stability and 

validity of measures of RE, in addition to the primary determinants of RE.  

Though some longitudinal interventions have explored the trainability of RE, the focus has 

been predominantly individuals with a low to moderate training status (e.g. Yoshida et al. 

1990; Stray-Gundersen et al. 2001; Spurrs et al. 2003; Guglielmo et al. 2009; Berryman et al. 
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2010; Taipale et al. 2010), with a paucity of investigations in highly trained or elite 

populations. As improvements in V̇O2max could be difficult to achieve in highly trained 

athletes (Lucía et al. 2002; Jones 2006; Iaia et al. 2009; Hopker et al. 2009), methods to 

enhance RE are sought after to maximise an athlete’s performance. Though case studies have 

suggested that RE can be improved in elite populations (Jones 1998; Ingham et al. 2012), 

robust interventions to enhance RE in already highly trained individuals are limited (Lacour 

and Bourdin 2015; Barnes and Kilding 2015b). Therefore, the aim of the current thesis was to 

provide a comprehensive analysis of the RE of highly trained athletes; from the identification 

of the most reliable and valid measurement of RE, to potential factors that affect RE and 

interventions that could enhance this variable in this specific population.  

Differing methods of quantifying RE are evident in the literature. Since its inception, 

measures of oxygen consumption, or oxygen cost (OC), have formed the primary 

quantification of RE in experimental investigations (Conley and Krahenbuhl 1980; Williams 

and Cavanagh 1987a; Paavolainen et al. 1999; Saunders et al. 2004a), based on the 

assumption that V̇O2 provides an index of the underlying energy cost (EC) when aerobic 

metabolism supplies virtually all of the energy requirements (Williams and Cavanagh 1987a; 

Fletcher et al. 2009). However, studies have also calculated the actual EC from the OC and the 

respiratory exchange ratio (Margaria et al. 1963; Folland et al. 2006; Fletcher et al. 2009). 

Though fundamental to any investigation exploring RE, empirical evidence detailing the 

reliability or validity of these different quantifications are rare. Therefore, chapter three 

examined the reliability of OC and EC measurements of RE in highly trained runners, and 

contrasted the reliability to the smallest worthwhile change for these measures. Chapter four 

assesses the validity of OC as a measure of RE by comparisons to the underlying EC, in 

addition to determining the most valid method of accounting for body mass in the 

measurements of RE. Findings from these studies were then used to inform the appropriate 

expression of RE in subsequent investigations. 

Though many biomechanical and physiological variables are known to influence RE 

(Williams and Cavanagh 1987a; Barnes and Kilding 2015a; Lacour and Bourdin 2015), the 

primary limiting factors and their relative contributions is unclear (Joyner and Coyle 2008). 

As RE can be viewed as a composite of both mechanical and metabolic factors, diagnosis of 

specific mechanical or metabolic inefficiencies in an athlete could facilitate the prescription 

of more effective training interventions to enhance RE. The EC of running on different 
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surface gradients could potentially change the importance of metabolic and mechanical 

factors and provide useful diagnostic information. When running uphill, the body mass is 

lifted through each stride cycle (Snyder et al. 2012), with a lower vertical velocity on landing 

(Gottschall and Kram 2005; Neves, Johnson and Myrer 2014). The increased physiological 

work, with a reduced opportunity for elastic storage and utilisation (Snyder, Kram and 

Gottschall 2012) could result in EC being more dependent on metabolic efficiency of an 

athlete. Conversely, when running downhill there is both a reduced requirement for positive 

work (Snyder, Kram and Gottschall 2012) and a higher vertical velocity on landing 

(Yokozawa et al. 2005; Gottschall and Kram 2005; Neves et al. 2014), providing a greater 

opportunity for elastic energy storage and re-utilisation. These differences between uphill and 

downhill running might shift the emphasis between metabolic and mechanical components of 

RE. Chapter five evaluates the EC profiles of highly trained distance runners across these 3 

gradients and assessed the variability in these responses, to potentially facilitate the 

identification of mechanical or metabolic inefficiencies. 

Exceptional values of RE and V̇O2max are considered requirements for success in elite 

endurance competitions. Consequently, highly trained runners strive to improve both 

variables through training in order to maximise performance. However, an inverse 

relationship has been reported between movement economy and V̇O2max in both cross-

sectional (Pate et al. 1992; Morgan and Daniels 1994) and longitudinal observations (Hopker 

et al. 2012); potentially indicating that enhancements in either RE or V̇O2max might only be 

achievable at the expense of the other variable. However, previous investigations have been 

restricted to small sample sizes, with their results limited by the use of inappropriate 

statistical techniques that result in spurious correlations (Atkinson et al. 2003). Chapter six 

therefore explores the cross-sectional and longitudinal relationships between RE and V̇O2max 

in a larger cohort of highly trained distance runners. 

In the few studies with highly trained cohorts, findings suggest that short periods of 

supplementary exercises (e.g. high intensity interval training (Billat et al. 2002; Barnes et al. 

2015)) or plyometric resistance training (Paavolainen et al. 1999; Saunders et al. 2006)) in 

addition to habitual training programmes could enhance RE. A lower EC for a given speed 

(Margaria et al. 1963; Minetti et al. 2002) could increase the time spent at higher training 

velocities when running downhill, combined with the greater impact loads that occur during 

downhill running (Gottschall and Kram 2005; Yokozawa, Fujii and Michiyoshi 2005; Neves, 
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Johnson and Myrer 2014). Consequently, downhill running could exaggerate stretch-

shortening cycle activity, with the modality specificity potentially facilitating greater 

enhancements of RE. Chapter 7 therefore explores the efficacy of a supplementary 8-week 

programme of progressive downhill running as a means of enhancing RE in well-trained 

distance runners 
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Chapter II 

2 Literature review... 

This chapter provides a critical review of the literature considering the physiological 

determinants of endurance running performance, with a specific focus on the RE of highly 

trained distance runners. Specific attention will be directed at the assessment of RE in trained 

athletes, the potential association between RE and V̇O2max, and training interventions to 

enhance RE in this already highly trained population. The final section of the review will 

explore the current methods used to monitor run training, with considerations of its 

application to elite distance runners. 

 The physiological determinants of endurance running performance 2.1

Aerobic metabolism forms the predominant energy source in all running events >400m (for 

athletes ~ 45-60s; Duffield et al. 2005a; Duffield et al. 2005b). For both middle and long 

distance running events, the sustainable performance velocity is principally determined by the 

interaction of an athlete’s V̇O2max, the fractional utilisation of V̇O2max and running economy 

(Conley and Krahenbuhl 1980; Bassett and Howley 2000; Jones and Carter 2000; di 

Prampero 2003; Joyner and Coyle 2008; Figure 2.1).  

 

 

 

 

 

 

 

 

 
Figure 2.1. A schematic representation of the physiological factors that interact to determine 

performance velocity in endurance running events. Adapted from Joyner and Coyle (2008) and Jones 

(2006). 
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 Maximal oxygen uptake (V̇O2max)  2.2

Maximal oxygen uptake is defined as the highest rate at which oxygen can be utilised by the 

body during whole body exercise (Bassett and Howley 2000). It has long been established 

that V̇O2max is significantly greater in high-level endurance athletes, with typical values 

between 65-85 ml.kg
-1

.min
-1

 often reported for trained endurance runners (Svedenhag and 

Sjödin 1985; Zhou et al. 2001; Ingham et al. 2008) compared to <60 ml.kg
-1

.min
-1

 for 

recreationally active (Ramsbottom et al. 1987) or <40 ml.kg
-1

.min
-1

 for untrained individuals 

(Moore et al. 2012). Thus, in a heterogeneous population, V̇O2max has been identified as a 

good predictor of endurance performance (Costill 1967; Foster et al. 1978), and as such a 

high V̇O2max is seen as a prerequisite for elite endurance performance (Jones 2006). The 

V̇O2max of an athlete is commonly assessed via incremental exercise protocols to volitional 

exhaustion with concurrent assessments of gaseous exchange, quantified as the rate of 

oxygen uptake (V̇O2) during the final 30-60s of exercise (Ramsbottom et al. 1987; Svedenhag 

and Sjödin 1994), or the greatest 15-30s average V̇O2 response where breath-by-breath 

analysis is available (Billat et al. 1999; Ingham et al. 2008; Ferri et al. 2012).   

Oxygen utilisation during maximal exercise is determined by both the delivery and 

subsequent extraction/utilisation of oxygen by the active skeletal musculature. Though much 

debate still exists (Spurway et al. 2012), it is generally accepted that cardiovascular factors 

such as cardiac output (Blomqvist and Saltin 1983; Andersen and Saltin 1985), haemoglobin 

mass (Schmidt and Prommer 2008) and capillary density (Andersen and Henriksson 1977) 

are the primary factors that limit an athlete’s V̇O2max. However, a capacity to utilise the 

additional flux of O2 in the activate musculature must also be evident. Consequently, 

peripheral intra-muscular properties such as mitochondrial density and enzyme activity also 

exert a direct influence on the V̇O2max of an individual (Holloszy and Coyle 1984).   

 Fractional utilisation of V̇O2max and blood lactate thresholds 2.3

The proportion of V̇O2max that can be sustained over a given race distance has also been 

identified as a deterministic factor of endurance performance (Costill et al. 1973; Maughan 

and Leiper 1983; Svedenhag and Sjödin 1985). Strong correlations have been reported 

between fractional utilisation of V̇O2max and running performances over various race 

distances, including 5 km (Sjodin and Schele 1982) and 16.1 km (Costill et al. 1973), 

accounting for 88% of the variation in performance over both distances. This variable has 

been closely associated with markers of blood lactate accumulation, most notably lactate 
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threshold and lactate turnpoint (Costill et al. 1973; Sjödin and Svedenhag 1985; Jones and 

Carter 2000).  

It is well established that a curvilinear relationship exists between blood lactate accumulation 

and increments in exercise intensity (Figure 2.2). Elevations in blood lactate are seen to arise 

when Nicotinamide adenine dinucleotide (NADH) and hydrogen ions (H
+
) from cytosolic 

reactions are produced at rates in excess of mitochondrial capacity (Robergs et al. 2004). 

Although no longer directly implicated in the effects of muscle fatigue itself, blood lactate 

concentration ([La]b) is known to be a surrogate indicator for increased H
+
 release and a 

subsequent lowering of cellular and blood pH (Robergs et al. 2004). It is this accumulation of 

H+, in addition to increases in inorganic phosphate (Westerblad et al. 2002) that is likely to 

contribute to the muscle fatigue experienced during intense periods of exercise.  

 

Figure 2.2. A typical blood lactate concentration vs speed relationship assessed by a 7 x 3 minute 

stage incremental running test for a well-trained middle distance runner. LT demarcates lactate 

threshold, LTP demarcates lactate turnpoint. 

 

Lactate thresholds are commonly identified through short stage, incremental exercise tests 

with concurrent assessments of [La]b (Jones 2006; Ingham et al. 2008; Ingham et al. 2012). 

During exercise of a low intensity, [La]b remains close to resting values (~1.0 mmol.l
-1

). As 

exercise intensity progresses, [La]b  increases above baseline, defined as the lactate threshold 

(LT). Despite this rise in [La]b, a steady state environment is still maintained if exercise 
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intensity is stable, reflecting a balance between the rate of lactate production in the muscles 

and subsequent cellular clearance. If intensity continues to increase beyond LT, a second 

‘sudden and sustained’ breakpoint in [La]b can be identified (Jones 2006). This threshold 

intensity, referred to previously as the maximal lactate steady state (Smith and Jones 2001) 

and onset of blood lactate accumulation (Sjödin and Jacobs 1981), represents the lactate 

turnpoint (LTP). In response to work beyond this threshold intensity, [La]b increases 

inexorably until exercise is terminated (Jones 2006).  

For untrained cohorts, LT typically occurs at exercise intensities eliciting 50-70% V̇O2max 

(Jones 2006; Joyner and Coyle 2008). However, LT at relative intensities as high as 80-85% 

have been reported for elite middle distance runners (Ingham et al. 2008) and highly-trained 

marathon and ultra-marathon runners (Sjödin and Svedenhag 1985). Periods of endurance 

training are known to decrease lactate production and increase clearance at a given relative 

exercise intensity (Hurley and Hagberg 1984), resulting in LT and LTP occurring at a higher 

fraction of V̇O2max. Such ability to undertake high intensity exercise without creating large 

disturbances in muscle homeostasis is believed to be primarily a result of enhanced oxidative 

capacity, in addition to enhanced lactate transportation/buffering, within the skeletal muscle 

of elite endurance athletes (Hawley 2002). Strong positive relationships have previously been 

identified between the proportion of type I muscle fibres, a fibre type with intrinsically high 

mitochondrial content and capillary density (Costill 1967; Saltin et al. 1977), and the relative 

intensity at which LTP occurs in moderately trained individuals (Ivy et al. 1980; Tesch et al. 

1981).  Moreover, mitochondrial density and the content/activity of mitochondrial enzymes, 

such as succinate dehydrogenase (SDH), in addition to muscle capillarity, are also known to 

determine the fractional utilisation of V̇O2max (Sjödin and Jacobs 1981; Holloszy and Coyle 

1984). 

 Oxygen uptake kinetics 2.4

The rate at which V̇O2 rises at the onset of exercise, defined as the V̇O2 kinetics, has been 

consistently associated with performance in endurance running events (Jones and Carter 2000; 

Burnley and Jones 2007), with cross sectional analyses revealing faster attainment of 

requisite steady state V̇O2 in trained endurance athletes compared to untrained controls 

(Koppo et al. 2004; Ingham et al. 2007). Assessed via breath-by-breath analysis, the V̇O2 

kinetics from the onset of moderate intensity exercise can be categorised into 3 distinct 

phases. Phase I, referred to as the “cardio-dynamic” phase, reflects the abrupt increase in V̇O2 
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at the onset of exercise, predominantly mediated by an increased venous return and increased 

ventricular output (Burnley and Jones 2007). Phase II, defined as the primary or fast 

component, reflects the kinetics of the muscle V̇O2 (Grassi and Poole 1996), with phase III 

reflecting the steady state of V̇O2 (Burnley and Jones 2007). For exercise intensities above 

the LT, the phase III V̇O2 shows a progressive increase to a V̇O2 greater than the expected 

from the sub LT V̇O2 vs running speed relationship with a considerably slower time course 

than phase II, referred to as the slow component (Jones et al. 1999; Burnley and Jones 2007). 

Though the slow component will stabilise at intensities below LTP, beyond LTP V̇O2 will 

continue to rise towards its maximum value with time, with fatigue following shortly after 

(Burnley and Jones 2007). 

It is now well accepted that the magnitude of the initial oxygen deficit at the onset of exercise 

is regulated by the speed V̇O2 kinetic responses (Jones and Carter 2000). Faster V̇O2 kinetics 

leads to a quicker attainment of the required steady state V̇O2, and consequently can facilitate 

a reduction in metabolic perturbations and blunt the rate of fatigue development (Burnley et 

al. 2000; Rossiter et al. 2001; DiMenna et al. 2010). Moreover, faster V̇O2 kinetics can lead to 

an increase in the energy contribution from aerobic metabolism during high intensity running 

bouts (Ingham et al. 2013). As non-oxidative energy provisions are finite (Ferguson et al. 

2007; Burnley and Jones 2007), the increase in oxidative energy contributions could attenuate 

depletion of anaerobic provisions and thus enhance performance, particularly in middle 

distance events where greater anaerobic contributions to overall energy turnover are seen 

when compared to long distance events (Gastin 2001). Though much debate surrounds the 

principle limiting factor (Poole et al. 2008), evidence suggests the O2 kinetic responses of an 

athlete are regulated by both V̇O2 delivery and the inertia of the intracellular oxidative 

machinery (Grassi et al. 1996; Poole et al. 2008).   

 Running economy 2.5

RE represents the translation of aerobic energy turnover into linear running velocity, and 

forms a critical determinant of endurance running performance (Conley and Krahenbuhl 1980; 

Bassett and Howley 2000; Jones and Carter 2000; di Prampero 2003; Jones 2006; Joyner and 

Coyle 2008; Ingham et al. 2008). In homogenous populations of highly trained runners, RE 

has been shown to account for 65% of the variation in race performance over 10km (Conley 

and Krahenbuhl 1980). Moreover, the combination of RE and V̇O2max has been shown to 

explain 96% of the variance in the performance of national and international middle distance 
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runners (Ingham et al. 2008). Regardless of its expression, the lower the metabolic cost 

assessed at a given speed of running, the better the RE of an individual (Figure 2.3). 

It has long been established that RE varies considerably between individuals (Daniels 1974; 

McMiken and Daniels 1976; Svedenhag and Sjödin 1994). Observations of athletic 

populations highlighted superior RE for elite distance runners compared to good distance 

runners and untrained individuals (Pollock 1977; Morgan and Bransford 1995). When 

quantified as the OC per kilo of body mass over a given horizontal distance (mL.kg
-1

.km
-1

), a 

value of 200 is considered an average RE (Jones 2006). For elite endurance runners, values of 

180-195 mL.kg
-1

.km
-1 

are commonly observed (Pollock 1977; Brisswalter and Legros 1994a; 

Saltin et al. 1995; Jones 2002; Tam et al. 2012), with figures as low as 150-165 mL.kg
-1

.km
-1 

having been reported in exceptional cases (Jones 2006; Lucia et al. 2008). Moreover, when 

categorised by competitive distances, a superior RE has been reported in long distance 

runners when compared to middle distance runners (191 mL·kg
-1·km

-1
 vs 196 mL·kg

-1·km
-1

, 

respectively; Svedenhag and Sjödin 1994). The differences in RE observed between 

individuals is attributed to the weighted sum of the influences from many anthropometrical, 

Figure 2.3. A graphical representation of the V̇O2 response in a submaximal running assessment for two 

athletes with the same V̇O2max and fractional utilisation of V̇O2max, but differing running economies. For a 

given V̇O2 (i.e. 65 mL·kg
-1

·min
-1

), the athlete with superior running economy (black circles) can achieve a 

running speed 1km·h-1
 greater than the athlete with inferior running economy (black squares). Adapted 

from Jones (2006). 
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biomechanical and physiological variables (Figure 2.4), that will be discussed. However, the 

primary determinant of RE remains unclear (Joyner and Coyle 2008). 
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Figure 2.4. Key physiological and biomechanical factors affecting running economy. 
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 Measurement of running economy  2.5.1

Although often overlooked, the methods and procedures employed to measure RE are pivotal 

to any assessment of this variable. Though all measures of RE are based on a common 

principle (i.e. the translation of energy turnover into running velocity), multiple 

quantifications of RE are evident in the literature. Moreover, the protocols and methods used 

to assess RE can vary considerably between investigations. It is therefore critical to first 

consider the validity and reliability of RE assessment. 

2.5.1.1 Quantifications of running economy 

At its most basic level, the validity of a variable can be viewed as the extent to which the data 

measured represents what it is intended to measure (Newman and Benz 1998). When applied 

to RE, a valid assessment would be the direct assessment or an accurate proxy of the 

underlying metabolic cost of running. In the absence of direct measures, assessments of 

pulmonary gas exchange have been used to quantify RE. In principle RE encompasses both 

aerobic and anaerobic energy turnover, however the restricted ability to accurately assess 

anaerobic metabolism limits measure of RE to quantifications of aerobic metabolism. Though 

originally assessed by Douglas bag methods, technological developments have led to the use 

of metabolic measuring systems that provide a breath-by-breath analysis during exercise 

bouts (Figure 2.5). Validation studies comparing measures of gaseous exchange and 

ventilation from Douglas bags, the gold standard, and online metabolic measurement systems 

(i.e. the ‘Oxycon-pro) have demonstrated their accuracy during both low intensity and 

maximal exercise (Ritjens et al. 2001).  

For several decades, measures of oxygen consumption have formed the primary 

quantification of RE in experimental investigations (Conley and Krahenbuhl 1980; Williams 

and Cavanagh 1987a; Paavolainen et al. 1999; Saunders et al. 2004a), based on the 

assumption that oxygen cost (OC) provides an index of the underlying energy cost (EC) when 

aerobic metabolism supplies virtually all of the energy requirements (Williams and Cavanagh 

1987a; Fletcher et al. 2009); leading to some authors to using the terms OC and EC 

interchangeably (Bourdin and Pastene 1993; Brisswalter and Legros 1994b; Maldonado et al. 

2002). Despite this assumption, investigations comparing the response of both OC and the 

actual EC during submaximal exercise are limited. However, recent evidence suggests a 
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discrepancy may exist between the response of EC and OC with increments in running speed 

(Fletcher et al. 2009), bringing into question the validity of OC to quantify RE. 

 

 

 

 

 

 

 

 

 

 

 

 

Previous investigations have consistently cited that OC is independent of running speed, thus 

remaining uniform with increments or decrements in exercise intensity between 55-80% 

V̇O2max  (Margaria et al. 1963; Hagberg and Coyle 1984; di Prampero et al. 2009; Fletcher et 

al. 2009). Intuitively, as OC is used as a surrogate marker of EC at submaximal intensities, 

both OC and EC would be expected to display a similar relationship with running speed. 

However, EC has been shown to be positively related to speed; increasing with increments in 

relative running towards vLTP (Fletcher et al. 2009). This clear disparity between the 

relationship of OC and EC with running speed is likely driven by the confounding influence 

that variations in substrate utilisation have on OC. 

It is well established that differences exist in the OC of metabolising carbohydrates and lipids, 

with a greater energy equivalent of O2 for carbohydrate (5.02 kcal∙L
-1

) compared to lipid 

(4.85 kcal∙L
-1

) metabolism (Krogh and Lindhard 1920; Jeukendrup and Wallis 2005). 

Figure 2.5. The assessment of gaseous exchange by an online metabolic measurement system 

during a treadmill based running test in the laboratory 
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Consequently, the global OC to maintain a given energy demand is heavily dependent on the 

relative contribution of these substrates during submaximal exercise bouts (Jequier et al. 

1987). Whilst direct measurement is invasive, the relative contributions of these substrates to 

energy turnover can be estimated based on the respiratory exchange ratio (RER) (Krogh and 

Lindhard 1920). Previous investigations have consistently highlighted a positive association 

between the RER and submaximal exercise intensity, reflecting a shift towards greater 

carbohydrate metabolism and less fat metabolism at higher exercise intensities (Saunders et al. 

2004a; Fletcher et al. 2009). It is therefore plausible that, despite elevations in the EC as 

exercise intensity increases, the alteration in substrate metabolism towards a more oxygen 

efficient substrate may offset the expected increase in OC. Since the use of RER is inherent to 

the calculation of actual EC via pulmonary gas measures, EC is not influenced by any 

alterations in substrate metabolism during exercise, thus enabling the identification of the true 

relationship of RE and relative running speed. Whilst these findings do not discount the clear 

and well established importance of OC to endurance running performance, as OC represents a 

composite of both energy turnover and substrate utilisation, EC would appear to provide a 

more appropriate expression of running economy. However, evidence to support this 

hypothesis has been limited to one investigation using a small cohort of runners (Fletcher et 

al. 2009), thus further study is warranted to substantiate these findings. 

During each running stride, work is required to transfer the total mass of the body from one 

leg to the other, interspersed by a period of flight. Consequently, the metabolic cost incurred 

is directly influenced by the body mass of the individual. Therefore, to enable accurate and 

useful inter- and intra- individual comparisons of RE, measurements of RE must be 

independent of body mass. Previous investigations have often expressed RE as a ratio of BM, 

e.g. RE.BM
-1

 known as ratio scaling (Margaria et al. 1963; Pate et al. 1992; Bourdin and 

Pastene 1993; Prampero et al. 1993; Morgan and Daniels 1994; Saunders et al. 2004c; 

Fletcher et al. 2009; Tam et al. 2012) under the assumption that a proportional linear 

relationship exists between these two variables. However, empirical evidence to support this 

assumption is sparse. Moreover, expressed relative to BM
-1

, previous investigations have 

reported an inverse relationship to exist between BM and OC (Pate et al. 1992; Bourdin and 

Pastene 1993), which could indicate that the ratio scaling of RE overcompensates for BM 

(Tanner 1949). Studies of heterogeneous cohorts with athletes from various sport disciplines 

have suggested that scaling exponent less than one should be used, specifically BM.
-0.75
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(Bergh et al. 1991). However, these findings have yet to be substantiated in a large cohort of 

endurance runners. Moreover, previous investigations exploring the relationship of BM with 

RE have solely employed OC to quantify this variable. It is therefore of great interest whether 

EC should be raised to the same exponent as OC to account for differences in BM.  

2.5.1.2 The running speed / intensity of RE measurements 

Although ideally assessed directly, practical and technological constraints result in the use of 

pulmonary gaseous exchange to provide indirect assessments of RE for individuals. 

Moreover, despite the RE at race pace forming the primary point of interest, assessments of 

economy are restricted to submaximal running speeds that are often markedly lower 

velocities. This is primarily due to the aforementioned appearance of a V̇O2 slow component 

that does not stabilise beyond this LTP, in addition to an increase in anaerobic contributions 

to energy turnover. Consequently, beyond LTP, the measurement of V̇O2 cannot account for 

the entire rate of energy turnover (Svedahl and MacIntosh 2003). Moreover, the increased 

glycolytic flux beyond LTP leads to an accumulation of H
+
, liberating non-oxidative CO2 

from the bicarbonate pool that would create an excessive V̇CO2 (Romijn et al. 1992). 

Consequently, estimations of energy turnover beyond LTP via gaseous exchange would be 

flawed (Jeukendrup and Wallis 2005). Therefore, methods to assess RE must be below LTP 

to circumvent the aforementioned limitations. Given the intensity of 10km run performance 

(85-95% V̇O2max; Weston et al. 2000; Billat et al. 2003) is likely to be close to, if not in 

excess of LTP, valid assessments of RE for race distances of ≤5km are not possible through 

indirect calorimetry.   

Despite the limitations of RE assessments beyond LTP, previous investigations have 

employed standardised running speeds, or standardised intensities expressed relative to 

V̇O2max. Given that substantial variation can occur in the percentage V̇O2max at which LTP 

can occur even in homogenous cohorts (Coyle and Coggan 1988), the methods standardising 

exercise intensity to V̇O2max are likely to result in the V̇O2 slow component being evident in 

some participants, but not others, thus compromising the validity of comparisons (Whipp 

1994). Running speeds standardised to the velocity of vLTP would therefore appear to be the 

most appropriate method to overcome this issue, and facilitate accurate intra- and inter-

individual comparisons (Fletcher et al. 2009).  
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A fundamental assumption of indirect calorimetry via gaseous exchange is that respiratory 

exchange ratio (RER) adequately mirrors the respiratory quotient (RQ), where pulmonary 

assessments of V̇O2 and carbon dioxide production (V̇CO2) reflect oxidative metabolism; 

thus providing an index of gas exchange from fuel metabolism at the tissue level (Romijn et 

al. 1992). The increased acidosis associated with velocities beyond LTP would disturb the 

stability of the bicarbonate pool, increasing V̇CO2. Moreover, the LTP also demarcates the 

velocity beyond which significant anaerobic contributions to energy turn over are apparent 

(Billat et al. 2003). Given the incomplete oxidation of energy substrates that is associated 

with anaerobic metabolism, further disparity between the RER and RQ would arise. 

Therefore, at exercise intensities beyond LTP, estimations of energy turnover via indirect 

calorimetry are flawed (Jeukendrup and Wallis 2005). Consequently, exercise intensities at a 

given percentage of the velocity at LTP (vLTP) would appear the most appropriate to enable 

valid inter-individual comparisons of RE. However, it should be noted that absolute speed is 

unlikely to not be uniform across cohorts when relative intensities to vLTP are employed, 

with higher running speeds resulting in a greater energy requirement. To circumvent this 

limitation, quantifications of RE should be expressed as a ‘cost’ to cover a given distance 

(∙km
-1

), rather than a rate (∙min
-1

).    

2.5.1.3 Over ground vs treadmill assessments  

Though the vast majority of endurance running races occur outdoors, assessments of RE are 

typically made within a laboratory on motorised treadmills. Consequently, concerns have 

arisen regarding differences between treadmill and over ground assessments of RE (Daniels 

1985). The effect of headwinds and air resistance are seen to have a substantial influences on 

RE, with previous investigations highlighting that ~8% of the energy cost incurred during 

5000m running can be attributed to overcoming air resistance (Pugh 1970), which logically 

increase with increments in running velocity (Daniels 1985). As little air resistance is 

encountered during treadmill running, it would be expected that assessments of RE made 

under these conditions may underestimate the true RE of over ground running. Indeed, a 15% 

greater V̇O2 was apparent when participants were exposed to headwinds experienced in over 

ground conditions during treadmill running when compared to control conditions (Costill and 

Fox 1969). Though it may appear that outdoor assessments may provide a more valid 

measurement, it must be noted that the reliability of a measure is inherent to its validity 

(Newman and Benz 1998). Given the environmental conditions are highly variable outdoors, 



  Chapter II – Literature Review 

  17 

the inability to standardise the conditions during over ground running is likely to compromise 

the reliability of measures; reducing the validity. However, is has been shown that treadmill 

belts inclined at 1% can accurately mimic the energetic cost of outdoor running in well 

trained, treadmill habituated athletes, at speeds of 10.5 - 18 km·h-1
  (Jones and Doust 1996). 

Moreover, similar kinematic and kinetic charactertics are seen between treadmill and over 

ground running (Riley et al. 2008). As laboratory conditions can be controlled and easily 

replicated, it is likely that treadmill running can provide the most reliable, and thus valid, 

assessment of RE. 

When interpreting assessments of RE from treadmill running, consideration must be made for 

the influence of surface compliance of the belt. Typically, research grade treadmills have 

rigid decks, creating a comparable vertical stiffness to that experienced during road running 

(Tung et al. 2013). However, empirical investigations are not limited to this type of treadmill, 

thus variations are evident with regards to belt compliance and surface stiffness. Surfaces that 

facilitate elastic rebound are known to improve RE, contributing a greater proportion of work 

that would otherwise be provided by the runner (Kerdok et al. 2002). Conversely, excessive 

dampening properties of the running surface have been shown to increase the metabolic cost 

of running (Hardin et al. 2004). Therefore, caution should be exercised when inter-

investigation comparisons are made, particularly when rigid decked treadmills are not 

employed. Moreover, the use of the same treadmill for repeated assessments is imperative to 

accurate assessments of changes in RE over time. 

2.5.1.4 The reliability of running economy 

Prior to the exploration of appropriate interventions to enhance RE, knowledge of the 

between-test reliability is required. The between-test reliability reflects the stability and 

repeatability of a measure (Newman and Benz 1998), providing an estimate of the accuracy 

to which changes in the given variable can be detected. This measure of reliability relates to 

the random error, or ‘noise’, that occurs between assessments despite identical protocols and 

conditions being upheld. The primary factors contributing to between-test variability can be 

categorised as biological error (i.e. unexpected changes in physiological or psychological 

responses) and/or technical/equipment error (Batterham and George 2003). Reductions in the 

noise from either component will therefore enhance the reliability of a measure. 
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Using submaximal treadmill assessments, relatively high levels of between test reliability in 

RE have been observed, reflected by low coefficients of variation (1-5%) for populations of 

varying athletic ability (Table 2.1). In attempts to reduce the biological error between 

measurements, studies have employed various experimental controls, including restrictions 

on the training and nutrition prior to assessments (Morgan et al. 1991; Brisswalter and Legros 

1994b; Pereira and Freedson 1997). Though such controls clearly enhance the between-test 

reliability (Table 2.1), it must be noted that these experimental controls (i.e. standardising 

diet, training and time of day etc ) are frequently impractical for the monitoring of athletes in 

full time training. Methods to enhance the between-test reliability without imposing 

additional constraints on the athlete’s day-to-day lifestyle are therefore desirable. 

All previous investigations exploring the reliability of RE have employed OC as the 

quantification of RE (Table 2.1). As outlined previously, this measure is susceptible to 

changes in substrate metabolism that may result from an altered diet or training bouts prior to 

RE assessments.  Quantification of RE as EC might mitigate the confounding influence of 

substrate utilisation on OC, providing greater reliability without prior dietary and training 

restrictions. Moreover, as the V̇CO2 measurement needed to calculate RER is routinely 

assessed simultaneously to V̇O2, no additional constraints are imposed on participants. 

However, whether EC provides a more reliable assessment of RE than OC remains to be 

elucidated. 

2.5.1.5 Limitations of running economy assessments 

The assessment of RE via pulmonary gaseous exchange provides a global assessment of the 

metabolic cost within the body at a given time. As a result, it is not possible to discriminate 

the relative proportion of energy turnover from various components within the body, such as 

demand from cardiac activity, ventilatory activity, or specific proportions of active skeletal 

muscle. Therefore, the ability to identify the primary limiting factor of RE in an individual 

might be limited by the use of indirect calorimetric. 

 Factors affecting running economy  2.5.2

2.5.2.1 Physiological factors 

Anthropometry 
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Various anthropometrical characteristics have been proposed to affect the biomechanical 

effectiveness with which muscular activity is translated into locomotion (Anderson 1996). 

Although general body mass is often accounted for and thus does not influence RE per se, the 

distribution of mass across the body could play an important role in determining the 

metabolic cost of locomotion. It is known that mass carried distally on limbs increases the 

energy requirement during running to a greater extent to that carried closer to the centre of 

mass, with previous findings showing an increase in V̇O2 by 1% when an additional 1kg load 

is carried on the trunk of an athlete, compared to a 7-10% increase in V̇O2 when an equal 

load is carried on the foot (Myers and Steudel 1985; Martin 1985). In addition, more distally 

distributed mass on the lower limbs might require more kinetic energy to overcome the 

moment of inertia and accelerate and decelerate limbs, evidenced by a smaller 3.5% increase 

in V̇O2 when an equal 1kg load was carried on the thigh (Myers and Steudel 1985). Elite 

endurance runners often possess characteristics such as slender body types and slim limbs 

(Saltin et al. 1995; Lucia et al. 2006; Fudge et al. 2006; Kong and Heer 2008). In addition, 

smaller calf girths have been observed in elite long distance runners (Lucia et al. 2006; Kong 

and Heer 2008; Lucia et al. 2008) when compared to the average of athletically 

heterogeneous cohorts (Pate et al. 1992).  

Moreover, observations of relatively lower calf girths for adolescent Kenyan males to that of 

Caucasian counterparts has led to the speculation that smaller limb dimensions, and thus mass, 

is an important contributory factor to the superior RE of Kenyan runners (Larsen 2003; Foster 

and Lucia 2007).  

Respiratory properties 

Previous investigations have noted an association between the cardio-respiratory demands 

during submaximal running and RE (Pate et al. 1992; Thomas et al. 1995; Franch et al. 

1998) .In an early study, the indirect measures of oxygen costs from the mechanical work 

estimated the oxygen demand of ventilation to be ~6% of the total V̇O2 during exercise 

(Milic-Emili et al. 1962). A subsequent cross-sectional investigation of trained runners 

demonstrated small association (r=0.4) between minute ventilation and OC at 16.1 km·h-1
 

(Pater et al. 1992). Furthermore, strong positive associations have been noted between minute 

ventilation and changes in OC during extended periods of exercise (Thomas et al. 1995) and 

following intensified training (Franch et al. 1998).    
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Table 2.1. Summary of findings for between test reliability of OC measurements obtained via submaximal treadmill running assessments. 

*- denotes data from the same investigation. CV – Coefficient of variation; VV̇O2max – velocity associated with maximal oxygen uptake

Authors 
Population 

Athletic status (n) 

Protocol 

No. of assessments (time period in 

days) and speed 

Experimental controls Between test 

variation 

CV  
Time of day Footwear Diet Training 

Williams et al. 1991 
Moderately trained 

males (10) 

20 (28) at 9.6, 11.3 and 12.9  

km.h
-1

 
    2.72% 

Morgan et al. 1991 
Moderately trained 

males (17) 
2 (2) at 12  km.h

-1
     1.32% 

Brisswater and Legros 

1994 
Elite males (10) 4 (7) at 75% VV̇O2max     4.65% 

Pereira et al. 1994 
Moderately trained 

males (5) 
10 (35) at 70% VV̇O2max      1.47% 

Pereira and Freedson 

1997* 

Highly trained 

males (7) 
3 (21) at 75% VV̇O2max      1.77%  

Pereira and Freedson 

1997* 

Moderately trained 

males (8) 
3 (21) at 75% VV̇O2max      2.00% 

Saunders et al. 2004 elite males (11) 2 (7) at 14, 16 and 18 km.h
-1

     2.70% 
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Muscle-tendon properties 

Skeletal muscle fibre type composition 

Skeletal muscle fibres are often categorised as slow twitch (type I) or fast twitch (type II), 

based on their enzymatic and contractile properties (Essén et al. 1975; Billetter. et al. 1980). 

Type I fibres display characteristics that are tailored towards aerobic metabolism (Essen et al. 

1975), with a maximal shortening velocity 3-5 times slower than Type II fibres (Fitts et al. 

1989). Previous evidence has suggested a comparative efficiency of type I over type II 

muscle fibres for a given force generation (Wendt and Gibbs 1974; Katz et al. 1986; Hunter 

et al. 2001). Moreover, as both type I and II fibres display the highest efficiency at ~1/3 of 

the maximal shortening velocity, it is logical that type I fibres could display greater efficiency 

at the relatively slow shortening velocities associated with submaximal exercise (Coyle et al. 

1991). It has long been established that the trained musculature of elite endurance runners 

contains a high proportion of type I muscle fibres (Costill et al. 1976). Inter-individual 

variations of exercise economy in endurance athletes have been largely attributed to type I 

fibre content within skeletal musculature in cycling (Coyle et al. 1991). Greater proportions 

of type I fibres have also shown moderate associations with enhanced RE at relatively low 

(11-13 km·h-1
) running speeds (Bosco et al. 1987; Kaneko 1990). Conversely, in a study of 

highly trained runners, no association has been reported between type I fibres and RE at 

submaximal running speeds between 14.5 and 20 km·h-1
 (Kyrolainen et al. 2003). However, a 

large inverse relationship (r = -0.68) has been reported between walking economy and type II 

muscle fibre (Hunter et al. 2001). It has been postulated that the lack of a clear association 

between economy and fibre type in running might reflect the more complex locomotive 

pattern to that of cycling (Joyner and Coyle 2008). 

Mitochondrial efficiency 

 The amount of oxygen consumed to phosphorylate adenosine diphosphate (ADP) to form 

ATP, referred to as the P/O ratio, represents the efficiency of mitochondrial oxidative 

phosphorylation (Hinkle 2005). Within mitochondria, the oxidation of substrates liberates 

protons to enter the electron transport chain; resulting in a transmembrane proton gradient 

that is the basis for ATP resynthesis. However, other factors are known to dissipate the 

transmembrane potential other than phosphorylation, thus proton liberation does not match 

ATP production, termed ‘uncoupling’ (Larsen et al. 2011). Logically, increasing the P/O ratio 
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could lead to an enhancement in RE. Indeed, dietary supplementation of nitrates have been 

shown to acutely increase the P/O ratio (Larsen et al. 2011), potentially mediating a reduced 

OC in submaximal exercise (~4-6%) following nitrate supplementation (Larsen et al. 2007; 

Bailey et al. 2009; Lansley et al. 2011). However, investigations exploring the influence of 

training status on the P/O ratio are limited, with the few investigations showing a similar 

(Mogensen et al. 2006) or a reduced P/O ratio (Befroy et al. 2008) in trained vs untrained 

subjects.    

Musculo-skeletal structure and mechanics 

The mechanical efficiency of running has been shown to exceed the mathematically predicted 

efficiency of conversion of chemical to kinematic energy within active musculature 

(Cavanagh and Kram 1985; Williams 1985), indicating a contribution to energy turnover 

during the running gait that is independent from muscular work. In the stance phase of the 

running gait, active muscles in the legs contract eccentrically on landing, followed 

immediately by a concentric contraction during the propulsive phase. During this stretch 

shortening cycle, energy can be stored during eccentric contractions within the series elastic 

component of the muscle-tendon unit that can be passively released during the concentric 

phase of the movement, reducing the net energy requirement of motion. Previous estimates 

indicate that, whilst running at a moderate speed, the tendons in the arch of the foot and the 

Achilles tendon can store 17% and 35%, respectively, of the kinetic and potential energy 

gained and lost in a step; estimated from the responses of an amputated foot model (Ker et al. 

1987). Moreover, following mathematical estimations of external and internal work during 

the running gait, it has been postulated that the energy requirement during running could be 

30-40% greater without the contributions from elastic energy storage and subsequent 

reutilisation (Cavagna et al. 1964). Intuitively, altered structural characteristics of the 

aponeuroses and tendons around the ankle, knee and hip that enhance storage and return of 

potential energy during running would induce superior RE.  

Theoretically, comparatively short muscles in series with longer, thinner tendons should be 

conducive for stretch-shortening cycle potentiation; leading to more energy storage and 

return (Biewener and Roberts 2000), consequently increasing economy. Indeed, a longer 

Achilles tendon length has recently been shown to correlate with better RE in recreational 

distance runners (Hunter et al. 2011). Moreover, indirect estimates of stiffness suggest the 
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compliance of the tendons and aponeurosis within the quadriceps femoris could also 

contribute to energy storage during running (Arampatzis et al. 2006), with a greater 

compliance reported at low, submaximal force levels for more economic runners (Arampatzis 

et al. 2006; Fletcher et al. 2010). Moreover, changes in Achillies tendon stiffness have been 

shown to relate to changes in RE (Fletcher et al. 2010). Yet, a follow up study suggested the 

relationship between Achilles tendon stiffness and RE might only be evident in female, and 

not male, runners (Fletcher et al. 2013). However, the sensitivity and validity of indirect 

assessments of tendon stiffness could be questioned, thus limiting the interpretation of these 

findings.  

In addition to these structural characteristics, the positioning of this connective tissue relative 

to the joint might also influence RE. A smaller moment arm, defined as the shortest 

perpendicular distance from the line of action to the centre of rotation, is known to enhance 

storage of elastic energy (Scholz et al. 2008). For a cohort of well-trained runners, a strong 

relationship (r=0.75) has been reported between the moment arm of the Achilles tendon and 

RE at 16 km.h
-1 

(Scholz et al. 2008).  Finally, despite prescription of flexibility training by 

many athletic coaches with an aim of increasing RE (Jones 2002), increased stiffness of the 

hip and lower limbs has been associated with elevated RE (Gleim et al. 1990; Craib et al. 

1996; Jones 2002). Moreover, recent observations indicate that global static stretching of the 

lower limbs has no acute influence on RE (Allison et al. 2008). It is postulated that the stiffer 

muscle-tendon and joint complex would not only enhance elastic energy storage and return, 

but also reduce the range of motion of the pelvic region (Gleim et al. 1990; Craib et al. 1996). 

Furthermore, the inflexibility of the region might also diminish the additional recruitment of 

muscle mass required to stabilise the pelvis during impact and the stance phase of running 

(Gleim et al. 1990). The available evidence therefore suggests, either via training or genetic 

endowment, ability to store and re-utilise energy within the muscle-tendon unit forms one key 

construct that contributes to superior RE in elite distance runners.   

2.5.2.2 Biomechanical factors 

An athlete who employs movement patterns that excludes non-productive movement, exerts 

forces of appropriate magnitude and direction with precise timing may minimise the work 

required to sustain a given velocity (Anderson 1996). Investigations have therefore looked to 
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quantify the mechanical descriptors of the running gait, to in turn elucidate whether a distinct 

mechanical profile for an economical distance runner exists.  

Spatiotemporal factors 

It is well established that high running speeds are associated with elevated stride lengths, 

stride frequencies, and a reduction in ground contact time (Cavanagh and Williams 1981; 

Svedenhag and Sjödin 1994; Weyand and Sternlight 2000). Studies have shown that both 

self-selected stride length and frequency are often the most economically optimal for a given 

athlete (Williams and Cavanagh 1987b), potentially mediated by a self-optimising process 

that migrates towards the lowest RE. However, cross-sectional observations have reported no 

association between RE and stride length or stride frequency at a given speed (Kyröläinen et 

al. 2001; Santos-Concejero et al. 2014a).  

Previous investigations have also highlighted that greater force generation during the ground 

contact of the running gait is the primary factor driving the achievement of faster running 

speeds, rather than the rapid repositioning of lower limbs during the swing phase (Weyand 

and Sternlight 2000). It could be argued that elongating ground contact time (tc) may confer a 

mechanical advantage for endurance athletes by offsetting the requirement of greater rates of 

force development, reducing the recruitment of faster and more metabolically expensive 

muscle fibres, thus potentially reducing RE. Indeed, an inverse association (~r=0.5) has been 

identified between OC and tc in distance runners (Williams and Cavanagh 1987a; Roberts and 

Kram 1998; Di Michele and Merni 2014).  It is proposed that 70-90% of the increase in V̇O2 

with speed can be explained by the reduction in tc in humans and bipedal animals (Roberts 

and Kram 1998). Yet, evidence appears equivocal, with some authors reporting no 

association (Kyröläinen et al. 2001; Støren et al. 2011) or even a positive relationship 

between RE and tc (Paavolainen et al. 1999), with the latter attributed larger decelerations of 

horizontal speed as tc increases (Nummella et al. 2007). However, it is also possible that the 

association between tc and RE is clouded by the concurrent interaction of other 

biomechanical influences, such as stride angle (Santos-Concejero et al., 2014) and foot strike 

patterns (Di Michele and Merni 2014).  

During ground contact, muscle activation is required to maintain forward momentum and 

stability during running. Ground reaction forces (GRF) characterise these functional and 

mechanical requirements, reflecting the acceleration pattern of the body’s centre of gravity 
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during this stance phase of running. Excessive changes in momentum in the vertical, anterior-

posterior and medial-lateral planes can often occur during running (Heise and Martin 2001), 

elevating the metabolic energy requirement without a functional gain in running velocity. In 

support of this premise, a strong positive correlation has been reported between vertical 

impulse measures and OC in recreational runners (Heise and Martin 2001). Moreover, recent 

investigations have noted an association of similar strength (r = 0.65) between vertical 

oscillation and OC in highly trained distance runners (Tartaruga et al. 2012), indicating those 

with lower and potentially less wasteful vertical motion display greater RE. It is therefore 

plausible that minimising excessive force generation in the vertical plane of motion could 

lead to a reduction in energy expenditure at a given intensity.  

Kinematic factors 

The extension of the lower leg at toe off has consistently been associated with RE in both 

cross-sectional and longitudinal investigations (Williams et al. 1987; Williams and Cavanagh 

1987b; Moore et al. 2012; Moore et al. 2014). A less extended leg at toe off facilitated by a 

combination of less knee extension and/or plantar flexion as the foot leaves the ground has 

been associated with a lower OC, and thus a superior RE. The greater flexion of the leg is 

suggested to enhance the propulsive force during toe off (Moore et al. 2012), in addition to 

reducing the required flexion during the swing phase (Moore 2016).   

Stride angle, defined as the angle between of the theoretical tangent of the foot parable from 

toe off to initial ground contact and the ground (Santos-Concejero et al. 2014a; Santos-

Concejero et al. 2014b), has been shown to display a large, negative association with OC 

(r=0.8) in highly trained runners (Santos-Concejero et al, 2014a). It is possible that a larger 

stride angle is associated with superior RE and could be mediated by reducing stride length or 

increasing swing time.  

The initial contact of the foot with the ground has also been associated with RE. Strike 

patterns can be divided into 3 distinct categories; a fore-foot strike (FF), in which the ball of 

the foot lands before the heel; a mid-foot strike (MF) in which the heel and the ball of the 

foot land simultaneously; and a rear-foot strike (RF) in which the heel lands first (Hasegawa 

2007; Lieberman et al. 2010). Though studies have identified ~70-80% of shod runners 

display a RF pattern (Hasegawa 2007; Larson et al. 2011), a MF and FF pattern has been 

postulated to enhance RE (Hasegawa 2007; Jenkins and Cauthon 2011). The mechanisms 
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underpinning this theory are based on the effective exploitation of the series elastic 

component, with a more FF pattern enabling greater storage and return of elastic energy in 

the longitudinal arch of the foot and the Achilles tendon (Perl et al. 2012). Indeed, MF/FF 

have been shown to be more economical than RF at a given stride angle (<4°; (Paavolainen et 

al. 1999; Nummela et al. 2006; Santos-Concejero et al., 2014b). Despite this, previous 

investigations have shown no differences in RE between RF and FF (Ardigo et al. 1995; 

Cunningham et al. 2010; Perl et al. 2012).  

Footwear 

Often coupled with foot strike pattern, the shoes employed by endurance runners might have 

a considerable bearing on RE. For the vast majority of human evolutional history, athletes 

would have been limited to running barefooted, or in minimally cushioned sandals 

(Lieberman et al. 2010). Due to elevated collision forces experienced in RF strikes, barefoot 

and minimally shod runners typically exhibit a MF or FF pattern (Lieberman et al. 2010). 

However, the additional cushioning in the heel of modern running shoes reduces the impact 

experienced by the body, allowing a RF strike to be maintained for extended periods without 

injury. Though it is clear that the choice of shoe may influence strike pattern, and vice versa, 

evidence suggests footwear may exert an independent effect on RE.  

Additional mass carried on the feet clearly increases the inertia of the lower leg and is known 

to increase the metabolic cost of running, equating to an increase of ~1% in VO2 for every 

100g of mass added (Frederick 1983; Franz et al. 2012). Given that even minimalist shoes 

weigh ~200g, shod running might be expected to incur an additional metabolic penalty 

compared to barefoot running if all other factors remain constant (Franz et al. 2012). 

However, several previous investigations have shown no differences in RE between barefoot 

and shod running (Frederick 1983; Burkett et al. 1985; Franz et al. 2012). As leg muscles are 

required to generate force to cushion and stabilise the impacts experienced during the running 

gait, barefoot running may require greater muscular cushioning and stabilisation that negates 

any inertial benefits of a lighter lower leg. Indeed, under conditions of equal foot mass, shod 

running resulted in a ~3% improvement in RE when compared to barefoot running; attributed 

to a reduced metabolic cost of cushioning (Franz et al. 2012). This theory was later 

substantiated in a well-designed study that manipulated the running surface, rather than 

footwear (Tung et al. 2013). Using a modifiable treadmill belt, barefoot running on a 

cushioned surface (10 mm thickness) resulted in a ~1.7% enhancement in RE when compared 
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to barefoot running on a control, rigid surface (Tung et al. 2013). However, it must be noted 

that doubling the thickness of the cushioned surface resulted in no benefit in RE over the 

control condition, suggesting that if the optimal amount of cushioning is exceeded, then  

excessive dampening may occur (Tung et al. 2013).  

2.5.2.3 The influence of surface gradient 

It is also well established that surface has a substantial influence on the energetic cost of 

running (Margaria et al. 1963; Minetti et al. 2002). When running on positive gradients, the 

body’s centre of mass (COM) is elevated during each stride cycle, resulting in a gain in 

gravitational potential energy at the end of the stance phase when compared to the beginning, 

increasing the energetic cost for a given running speed (Margaria et al. 1963; Minetti et al. 

2002; Snyder and Farley 2011). Moreover, as the increase in EC is primarily achieved through 

metabolically expensive concentric contractions, resulting in greater physiological work 

(Snyder, Kram and Gottschall 2012), and a shift in the emphasis towards metabolic 

determinants of RE might occur. Conversely, when running downhill a reduced requirement 

for positive work is evident (Snyder, Kram and Gottschall 2012). Furthermore, a higher 

vertical velocity on landing during downhill running gives more opportunity for elastic 

energy storage and re-utilisation (Gottschall and Kram 2005; Yokozawa, Fujii and 

Michiyoshi 2005; Neves, Johnson and Myrer 2014). Consequently, a reduction in the 

energetic cost for a given running speed ensues (Margaria et al. 1963; Minetti et al. 2002; 

Snyder & Farley, 2011), with a potential shift in the emphasis away from metabolic 

efficiency to mechanical efficiency and the ability to store and re-utilise gravitational 

potential energy (Snyder, Kram and Gottschall 2012). It would therefore appear that the use 

of uphill and downhill running might provide a useful diagnostic tool for understanding the 

determinants and limiting factors to each runner’s economy. However, this concept has yet to 

be investigated. 

2.5.2.4 Possible influence of V̇O2max on running economy 

The translation of an individual’s maximal aerobic capacity into linear velocity, commonly 

defined as the velocity at V̇O2max (vV̇O2max), has been of considerable interest since its 

conception. This variable encompasses both RE and V̇O2max, providing an estimate of the 

running velocity mathematically associated with attainment of V̇O2max (Daniels 1985). It is 

suggested that vV̇O2max provides a useful tool to explain performance similarities between 
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athletes who possess different levels of V̇O2max and RE (Daniels 1985; Morgan et al. 1989). 

Unsurprisingly, the vV̇O2max has been shown to be the strongest predictor of endurance 

performance in cohorts heterogeneous cohorts for performance ability (Morgan et al. 1989; 

McLaughlin et al. 2010), accounting for ~94% of the inter-individual variance in 16 km 

performance (McLaughlin et al. 2010). Given the contribution of both RE and V̇O2max to 

vV̇O2max, simultaneous enhancement of these underpinning constructs are likely to result in 

substantial performance gains. However, previous investigations have noted an inverse 

relationship exists between RE and V̇O2max in populations of trained endurance athletes (Pate 

et al. 1992; Morgan and Daniels 1994; Sawyer and Blessinger 2010).  

In a cross sectional examination of 178 trained runners, Pate and colleagues (1992) noted a 

positive relationship (r = 0.26) between submaximal V̇O2, assessed at 6 mph, and V̇O2max. 

Though seemingly paradoxical, these findings were later confirmed in elite cohorts (r = 0.59; 

Morgan and Daniels 1994) and physically active individuals (r = 0.48; Sawyer and Blessinger 

2010). These findings have led to theories that the inherent association between RE and 

V̇O2max results from V̇O2 being a consequence, rather than a determinant, of athletic ability 

(Noakes and Tucker 2004). Athletes displaying superior athletic ability will achieve greater 

peak work rates, with the resultant V̇O2max being dependent on the economy of the individual 

at this speed (Noakes and Tucker 2004). Consequently, it has been proposed that in cohorts 

homogenous for endurance performance, an inverse relationship is likely to be found (Lucia 

et al. 2003; Noakes and Tucker 2004). However, the cohorts of the aforementioned 

investigations are truly ‘homogenous’ for performance should be questioned, as notable 

variability in performances would still be expected even in cohorts of highly trained athletes. 

Moreover, studies have solely employed cross sectional comparisons to assess the 

interactions of RE and V̇O2max. Longitudinal assessment of both RE and V̇O2max in endurance 

athletes could give further insight into whether an inherent association exists between these 

two variables. 

Due to repeated reports of this positive relationship between RE and V̇O2max, several theories 

have been proposed to explain an inherent association between the two variables. Previous 

investigations have highlighted a negative relationship between submaximal RER and V̇O2max, 

indicating a greater reliance on fat oxidation during submaximal efforts in those individuals 

with high aerobic capacities (Costill et al. 1979; Pate et al. 1992). Given the lower energy 

equivalent of O2 for lipids when compared to carbohydrates (Krogh and Lindhard 1920), the 
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greater reliance on this energy substrate is likely to elevate submaximal V̇O2 for such 

individuals. In addition, muscle fibre composition has also been implicated as a factor 

underpinning this relationship. Though increasing the aerobic capacity, an increased 

proportion of type IIa fibres within the gastrocnemius may increase the submaximal oxygen 

demand, due to the relative inefficiency of this fibre type (Hunter et al. 2001). It is therefore 

possible that those with greater V̇O2max display a greater proportion of these type IIa fibres, 

thus incurring an additional metabolic penalty during submaximal running (Sawyer and 

Blessinger 2010). However, there is considerable evidence that V̇O2max during whole body 

exercise is largely determined by oxygen delivery, rather than demand and utilisation within 

the active musculature (Wagner 2000), which might question this explanation. 

It should be noted that the restricted body of evidence exploring the relationship between RE 

and V̇O2max is not without limitation. Studies have often employed small sample sizes (<25 

participants (Morgan and Daniels 1994; Lucía et al. 2002; Fletcher et al. 2009) that is likely 

to have compromised the statistical strength of the relationship between V̇O2max and RE 

(Morgan and Daniels 1994; Lucía et al. 2002). More prominently, the employment of 

inappropriate statistical techniques could create spurious relationships between these two 

variables. Due to the known influence of body mass on both RE and V̇O2max, studies have 

often expressed both variables relative to the mass of the individual (Pate et al. 1992; Morgan 

and Daniels 1994; Sawyer and Blessinger 2010). When examining the relationship between 

these two variables, it is possible that BM acts as a common divisor, establishing a 

correlation between these two variables even in the absence of any ‘organic’ link (Atkinson et 

al. 2003). Therefore, similar correlations to those reported in the aforementioned studies 

would be apparent even when random values of V̇O2 are generated and expressed relative to 

BM (Atkinson et al. 2003). Consequently, the existence of this relationship may merely 

reflect a statistical artefact, inherently associated by calculation. Exploring the relationship 

between RE and V̇O2max with appropriate statistical methods could in turn explicate the true 

relationship between these variables. 

 Training to enhance running economy 2.5.3

The greater physiological capability possessed by elite endurance athletes is a composite of 

natural genetic endowment (Smith 2003; Bray et al. 2009; Ahmetov et al. 2009) and chronic 

adaptations from physical training (Midgley et al. 2007; Laursen 2010). Although the genetic 
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make-up of an individual represents an unalterable construct, the modulation of exercise 

training is known to have profound effects on physical adaptation and athletic performance 

(Holloszy and Coyle 1984; Hawley 2002; Hawley and Spargo 2007). The magnitude of this 

training response is dependent on the intensity, duration and frequency of exercise bouts 

(Wenger and Bell 1986), in addition to initial training status, genetic potential, age and 

gender of the individual (Jones and Carter 2000). It might therefore be considered that while 

genetics might set the boundaries of an individual’s athletic capacity, physical training 

determines the extent to which this athletic potential is realised. Consequently, effective 

training practices to improve RE are likely to be vital to achieving success in endurance 

running.   

2.5.3.1 Run training intensity 

Substantial improvements in RE have previously been noted in a longitudinal analysis of an 

elite endurance runner (Jones 2006), highlighting the trainability of this variable. Continual 

exposure to high training volumes over extended time periods have previously been proposed 

as a substantial contributing factor to enhancements in RE (Morgan and Bransford 1995).  

Subtle alterations to mechanical efficiency and running technique in response to repeated 

contractions during submaximal training bouts might progressively accumulate in the long 

term (Nelson and Gregor 1976), leading to significant enhancements in RE. Furthermore, this 

neuromuscular entrainment might exhibit a degree of velocity specificity, with anecdotal 

reports of athlete’s displaying their best RE over the velocities at which they habitually train 

(Jones and Carter 2000). However, the specificity of training velocity on RE has yet to be 

investigated. 

The inclusion of high-intensity interval training has previously been shown to enhance RE of 

well-trained runners (Billat et al. 1999; Slawinski et al. 2001). Over a 4 week intervention, 

RE was seen to improve by ~6.5% with the incorporation of intense weekly interval sessions 

at vV̇O2max into a normal training programme (Billat et al. 1999). Likewise, an ~4% 

enhancement was observed following 8 weeks of short duration interval training at supra-

lactate threshold intensities (Slawinski et al. 2001). Moreover, an ~7% increase in RE has 

been noted following 4 weeks of supplementary training at the velocity associated with LTP 

(vLTP) in already highly trained runners (Billat et al. 2004). However, it is important to note 

that no control groups were employed in the aforementioned investigations, compromising 
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the interpretation of these findings. Moreover, although these findings suggest that training at 

or around vLTP and vV̇O2max might induce enhancements in RE, the findings from an 

investigation with recreationally active individuals suggest that supra-maximal velocities 

might be ineffective in eliciting comparable responses (Franch et al. 1998). It is possible that 

an inability to accomplish a sufficient training volume at supra-maximal intensities, in 

addition to a loss of running form, might limit the training response to such intensities 

(Midgley et al. 2007).  

2.5.3.2 Resistance and plyometric training 

A large body of evidence exists suggesting the incorporation of concomitant strength training 

into an existing endurance training programme results in significant improvements in RE. 

Enhancements of 4-7% in RE have been observed with the inclusion of traditional strength 

training, comprising of high resistive loads and low repetitions, in already well trained 

endurance athletes (Johnston et al. 1997; Millet et al. 2002). However, long term training of 

this nature is known to evoke substantial increases in body mass (Abe et al. 2003), that could 

in turn be detrimental to endurance performance (Costill 1967).  On the contrary, plyometric 

training (PT) is known to elicit similar muscular adaptations with markedly lower levels of 

hypertrophy to that of traditional strength training (Häkkinen et al. 1985; Sale 1991). 

Following a 9 week inclusion of PT into the habitual training of highly trained endurance 

runners, substantial improvements in RE (4-8%) have been reported (Paavolainen et al. 1999; 

Saunders et al. 2006). In addition to possible neural adaptations, the enhancement in RE 

resulting from PT is thought to be mediated by an increased stiffness of the muscle-tendon 

unit; enabling greater recycling of elastic energy during the stretch-shortening cycle (Spurrs 

et al. 2003).  

2.5.3.3 Altitude training 

Improvements in RE have been noted following periods of altitude acclimatisation for elite 

endurance athletes (Saunders et al. 2004c; Schmitt et al. 2006; Saunders et al. 2009). 

Reductions in submaximal oxygen by 3-4% have been observed in response to relatively 

short time frame (20-40 days) of live high, train low altitude exposure, inferring an increase 

in RE (Saunders et al. 2004c; Saunders et al. 2009). Moreover, 5 weeks of intermittent 

hypoxic exposure incorporated into existing training programmes have been demonstrated to 

enhance RE greater than training alone during pre-season training (Burtscher et al. 2010). 
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However, the precise mechanisms underpinning the improvements in RE following altitude 

exposure are unclear.  

 Summary 2.6

This critical review of the literature has highlighted clear scope for further investigations that 

could enhance the understanding of running economy in trained athletes. The objective of this 

thesis was to therefore provide a comprehensive analysis of the RE of highly trained runners, 

from its quantification, to potential factors that affect RE, and finally an intervention that 

could enhance this RE in this specific population. This was addressed through the following 

aims: 

 To identify a reliable (Chapter 3) and valid (Chapter 4) method to assess and quantify 

running economy in trained distance runners. 

 To assess the variability in the running economy responses of athletes when running 

on positive and negative gradients (Chapter 5). 

 To explore the cross-sectional and longitudinal relationship between running and 

maximal oxygen uptake (Chapter 6).  

 To assess the efficacy of downhill running as a training method to enhance running 

economy  in highly trained distances runners (Chapter 7) 
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CHAPTER III 

3  The reliability of running economy expressed as oxygen cost and 

energy cost in trained distance runners… 

 Introduction 3.1

For distance running, maximal oxygen uptake ( OV 2max), the proportion of OV 2max that can be 

sustained prior to the onset of blood lactate accumulation and the metabolic cost of 

locomotion are the primary physiological factors that underpin performance (Pollock 1977; 

Farrell et al. 1979; Ingham et al. 2008). The latter, quantified as the oxygen cost or energy 

cost for a given submaximal velocity, defines an individual’s running economy. In an 

athletically homogenous population, running economy is cited as a stronger indicator of 

endurance performance than OV 2max alone (Conley and Krahenbuhl 1980; Daniels 1985), and 

it has been suggested that modest enhancements in running economy could result in 

substantial performance gains for elite distance runners (Cavanagh 1989). Accordingly, 

improvements in running economy are highly desirable in order to maximise athletic 

performance. However, without prior knowledge of the between test reliability of running 

economy, interpretation of any changes is limited.   

Measurements of running economy are made during submaximal steady state exercise in 

order to provide an index of adenosine triphosphate (ATP) turnover when aerobic metabolism 

supplies virtually all of the energy requirements. The most commonly employed measure of 

running economy is oxygen cost (OC), defined as the oxygen required to cover a given 

distance (Foster and Lucia 2007; Ingham et al. 2008), and has been reported to have a typical 

error of 4.7 and 2.4% in elite distance runners (Brisswalter and Legros 1994b; Saunders et al. 

2004a). However, as there are differences in the OC of metabolising carbohydrates and lipids 

(Krogh and Lindhard 1920), alterations in substrate utilisation could influence, and 

potentially confound, the reliability of running economy. 

The use of energy cost (EC) has been used as an alternative measure of running economy 

(Margaria et al. 1963; Folland et al. 2006; Allison et al. 2008) that has been postulated to be a 

more comprehensive, sensitive and valid measure (Fletcher et al. 2009), as it calculates actual 

energy expenditure, from OC and the RER, and thus accounts for variations in substrate 

metabolism. To minimise between test reliability of OC, previous studies have typically 
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employed a range of experimental controls, including restrictions on prior training and 

nutrition (Williams et al. 1991; Brisswalter and Legros 1994b; Pereira and Freedson 1997), in 

order to control for variations in substrate metabolism. However, for the monitoring of 

athletes in full time training, these experimental controls are frequently impractical and may 

not be necessary if EC is the primary measurement of running economy. Accordingly, 

quantification of running economy as EC might mitigate the confounding influence of 

substrate utilisation on OC, providing greater reliability without imposing practical constraints 

on the participant. We therefore hypothesised that EC would provide a more reliable measure 

of running economy than OC. 

To aid the practical interpretation of between-test reliability, it is useful to compare the 

typical error to the smallest worthwhile change (SWC). The SWC reflects the smallest 

individual change that can be interpreted as real within acceptable limits of probability 

(Impellizzeri and Marcora 2009), representing the threshold for when a change becomes 

‘meaningful’. Comparisons of the typical error to SWC enable investigators to assess if a test 

is sufficiently reliable to detect the SWC. Consequently, if the typical error > SWC, it is not 

possible to confidently detect the SWC due to the insufficient reliability of the test. A 

previous investigation suggested that absolute measurements of OC (L·min
-1

) were 

sufficiently reliable to detect the SWC (Saunders et al. 2004). However, the metabolic cost of 

running is known to be proportional to body mass (BM), and relative values enable accurate 

comparisons between individuals of differing BM (Bergh et al. 1991; Svedenhag 1995), 

which is not the case for absolute values. As the calculation of the SWC relies on the 

assessment of inter-individual differences, the expression of running economy relative to 

BM
0.75

 would appear the most appropriate measurement. However, whether quantification of 

running economy relative to BM provides sufficient reliability to detect the SWC remains 

unknown. 

Therefore, the primary aim of the present study was to examine the between test reliability of 

oxygen and energy cost measurements of running economy. Highly trained competitive 

runners were assessed using a widely used short-duration incremental submaximal running 

protocol, but without specific training or dietary restrictions, to examine if these controls 

might be circumvented by the potentially more reliable EC assessment of running economy. 

The secondary aim was to contrast the reliability of OC and EC measurements with the SWC 

for these measures.   
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 Materials and methods 3.2

 Participants 3.2.1

Twelve healthy endurance trained males (mean ± SD: age 28 ± 6 y, stature 180 ± 5 cm, BM 

70.6 ± 3.4 kg, V̇O2max 75.5 ± 5.2 ml·kg
-1

·min
-1

) participated in this study. Participants’ best 

performances times over the past two seasons were 114 ± 5% of the current British record as 

of December 2012 in events from 1500m to the marathon. All participants were treadmill 

habituated and provided written informed consent prior to participating in this study, which 

was approved by the Loughborough University Ethical Advisory Committee. Observations 

on a larger cohort of twenty nine endurance trained males (age 24 ± 7 y, BM 67.9 ± 7.5 kg, 

V̇O2max 73.4 ± 6.1 ml·kg
-1

·min
-1

)
 
were used to determine the SWC.  

 Overview 3.2.2

Participants attended the laboratory on four separate occasions. The first three visits were for 

identical submaximal running trials conducted 7 days apart at a consistent time of day for 

each participant. A final visit involved a maximal treadmill running assessment. Participants 

wore appropriate clothing and racing shoes and laboratory conditions were similar throughout 

all running assessments (temperature 19-21°C, relative humidity 40-50%). The SWC was 

assessed using single observations of 29 runners using the same protocol employed for the 

reliability measurements.  

 Protocol 3.2.3

Submaximal running assessments 

Following a warm-up (10 minutes at 10-11.5 km·h
-1

), participants completed a discontinuous 

submaximal incremental test of seven 3 minute stages with increments of 1 km·h
-1

 on a 

calibrated motorised treadmill (HP cosmos Saturn, Traunstein, Germany) at 1% gradient, 

interspersed by 30 s rest periods for blood sampling. The heart rate (HR) response during the 

warm-up was used to determine a starting speed and provide a minimum of 4 speeds prior to 

lactate turnpoint (LTP). HR (s610i, Polar, Finland) and pulmonary gas exchange (detailed 

below) were monitored throughout the test. 
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Maximal running assessments 

V̇O2max was determined by a continuous incremental treadmill running ramp test to volitional 

exhaustion. After a warm-up, participants initially ran at a speed 2 km·h
-1

 below the final 

speed of the submaximal test and at a 1% gradient. Each minute, the incline was increased by 

1% until volitional exhaustion. The test duration was typically 6-8 minutes.  

 Measurements 3.2.4

Anthropometry 

Prior to exercise on all laboratory visits, BM was measured using beam balance scales to the 

nearest 0.1 kg. Stature was recorded to the nearest 1 cm using a stadiometer.  

Pulmonary gas exchange 

Breath-by-breath gas exchange data were quantified via an automated open circuit metabolic 

cart (Oxycon Pro, Carefusion, San Diego, USA). Participants breathed through a low-dead 

space mask, with air sampled at 60 ml·min
-1

. Prior to each test, two point calibrations of both 

gas sensors were completed, using a known gas mixture (16% O2, 5% CO2) and ambient air. 

Ventilatory volume was calibrated using a 3 L (±0.4%) syringe. Oxygen consumption (V̇O2), 

carbon dioxide production (V̇CO2), and RER values were quantified over the final 60 s of 

each stage of the submaximal protocol. To assess if a steady-state for V̇O2 and V̇CO2 had 

been attained (defined as a difference of <5.8 ml·kg
-0.75

·min
-1

; equivalent to 2 ml·kg
-1

·min
-1

) 

during the final minute of each stage during the first assessment, the first and last 30 s of this 

final minute were compared. Gas exchange data were collected throughout the maximal 

running assessment test, with V̇O2max defined as the greatest continuous sample of V̇O2 

averaged over 30 s. 

Blood lactate 

A 20 µl capillary blood sample was taken from the earlobe for analysis of blood lactate ([La]b) 

(Biosen C-line, EKF diagnostics, Germany). The LTP was identified to the nearest km·h
-1

 

from [La]b vs. speed relationship. LTP was defined as the running speed above which [La]b 

increased by >1.0 mmol·l
-1 

from the previous stage (Thoden 1991).
 
The four stages prior to 

LTP were identified for each participant (LTP-4, -3, -2 and -1 km·h
-1

) and used to assess the 

OC and EC of running. 
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Calculation of running economy  

V̇O2 during the final minute of each submaximal stage was used to determine OC in mL·kg
-

0.75
·km

-1
. V̇O2 and V̇CO2 during the same time period were used to calculate EC. Updated 

nonprotein respiratory quotient equations (Péronnet and Massicotte 1991) were used to 

estimate substrate utilisation (g·min
-1

) during the monitored period. The energy derived from 

each substrate was then calculated by multiplying fat and carbohydrate usage by 9.75 kcal 

and 4.07 kcal, respectively, reflecting the mean energy content of the metabolised substrates 

during moderate to high intensity exercise (Jeukendrup and Wallis 2005). EC was quantified 

as the sum of these values, expressed in kcal·kg
-0.75

·km
-1

. A worked example of this process 

is provided below for a 70 kg athlete running at 14 km∙h
-1

 with a V̇O2 of 3.5 L∙min
-1

 and 

V̇CO2 of 3.0 L∙min
-1

 

Fat utilisation 

(1.695 * 3.5) – (1.701 * 3.0) = 0.83 g·min
-1 

Energy derived = 0.83 * 9.75 = 8.09 Kcal·min
-1 

Carbohydrate utilisation 

(4.585 * 3.0) – (3.226 * 3.5) = 2.46 g·min
-1

 Energy derived = 2.46 * 4.07 = 10.01 Kcal·min
-1

 

Total energy 

8.09Kcal·min
-1

 + 10.01 Kcal·min
-1

 = 18.10 Kcal·min
-1 

(18.10 Kcal·min
-1

 * 60) / 14 km∙h
-1

= 77.57 Kcal·km
-1 

Expressed to body mass 

77.57 Kcal·km
-1

 / 70kg
 (0.75)

 = 3.21 Kcal·kg
-1

∙min
-1

 

Both OC and EC were also quantified in absolute terms (L·km
-1 

and kcal·km
-1 

respectively) 

enabling comparisons of the SWC to previously published data.  

 Statistical analyses  3.2.5

Normal distributions of the dependant variables were confirmed via Shapiro-wilk tests, and 

the variance was found to be homogenous for the assessed speeds. Two-way ANOVA with 

repeated measures were used to assess differences in all monitored variables across trials and 
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speeds. To assess intra-individual variation between tests, the typical error (TE), a value that 

encompasses both technical and biological variation, was calculated using the root mean 

squares error method (Batterham 2003). The reliability of EC and OC was also assessed via 

intraclass correlation coefficients (ICC, two-way random, single measure). To enable the 

statistical comparison (two-way ANOVA) of within-subject variation to be made between 

measures, the within-subject coefficients of variations (CVW) were calculated for each 

individual ([Standard deviation /mean]*100). The SWC in measures of EC and OC was 

calculated as 0.2 times the between-participant standard deviation within the larger cohort 

(n=29; Hopkins 2000). The between-participant coefficient of variation (CVB) for V̇O2 and 

V̇CO2 were calculated from this cohort. Data are presented as mean ± standard deviation, 

with significance accepted at p ≤ 0.05. 

 Results 3.3

BM remained consistent across the submaximal assessments (70.6 ± 3.4, 70.6 ± 3.3, 70.8 ± 

3.4 kg; p = 0.46), with a mean CVW of 0.55 ± 0.31% across the 3 trials. Mean LTP was 17 ± 

1 km·h
-1 

for the cohort. OV 2, RER and [La]b were similar across all trials at each given speed. 

Low levels of within-subject variation were seen for HR (TE <3.25%), COV 2 (TE <5.94%), 

RER (TE <4.35%), and OV 2 (TE <3.33%) across the submaximal assessments. Within-

subject variability for [La]b was high for all monitored speeds (TE 18.3–24.4%), but absolute 

group mean values were stable (<0.4 mmol·L
-1

 change between trials). 

Differences in gaseous exchange between the first and final 30 s of the monitored minute 

were small for both V̇O2 and V̇CO2 (group mean differences <2.02 mL·kg
-0.75

·min
-1

 across all 

speeds). Of the 48 assessments of gaseous exchange for the first trial (12 runners × 4 stages), 

the steady-state criteria were not met on 2 (V̇O2) and 5 (V̇CO2) occasions. However, when 

such cases did occur, differences did not exceed 8 ml·kg
-0.75

·min
-1 

(equivalent to 2.8 ml·kg
-

1
·min

-1
). Within-subject variation was greater for V̇CO2 (CVW 4.06 - 5.35%) than V̇O2 (CVW 

2.29 - 2.98%; p < 0.01). 

No systematic bias was observed for any measure of running economy (OC or EC in absolute 

or relative values) across the 3 weeks (p > 0.37). Absolute and relative EC were lower for 

LTP-4 than LTP-3 and LTP-1 (Table 3.1), however OC was similar across all speeds. Within-

subject variation was low for all measures of running economy across the submaximal 

assessments (TE < 3.85%; Table 3.1). 
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Table 3.1. Reliability of running economy measures collected during the submaximal running assessments. Data are displayed as Mean ± SD (n = 12). 

Measurement 

  Speed 

 Trial 

 TE 
TE 

(%) 
ICC  1 2 3 

Oxygen Cost (LO2·km
-1

)       

  LTP -4 km·h
-1

  16.22 ± 1.46 15.94 ± 1.05 15.87 ± 0.94  0.53 3.34 0.79 

  LTP -3 km·h
-1

  16.11 ± 1.33 15.99 ± 1.02 16.06 ± 0.98  0.50 3.24 0.81 

  LTP -2 km·h
-1

  16.02 ± 1.18 15.97 ± 0.98 16.16 ± 0.98  0.45 2.86 0.82 

  LTP -1 km·h
-1

  16.11 ± 1.25 15.96 ± 0.96 16.20 ± 0.89  0.43 2.73 0.84 

  Mean of the 4 speeds 16.12 ± 1.28 15.96 ± 0.98 16.06 ± 0.93  0.45 2.89  

Oxygen Cost relative to BM (mlO·kg
-0.75

·km
-1

)    
 

  

  LTP -4 km·h
-1

  666.5 ± 58.7 654.7 ± 43.9 651.0 ± 39.8  21.3 3.31 0.82 

  LTP -3 km·h
-1

  662.2 ± 53.1 656.6 ± 41.7 658.4 ± 36.6  20.2 3.18 0.82 

  LTP -2 km·h
-1

  658.3 ± 45.1 655.5 ± 37.0 662.5 ± 37.1  18.5 2.86 0.81 

  LTP -1 km·h
-1

  662.1 ± 48.8 655.4 ± 36.5 662.3 ± 34.4  17.6 2.72 0.83 

  Mean of the 4 speeds 662.3 ± 50.3 655.6 ± 38.9 658.5 ± 36.2  18.4 2.88  

         

Energy Cost (kcal·km
-1

)   
  

  

  LTP -4 km·h
-1

  84.27 ± 7.29 82.43 ± 5.98 82.31 ± 4.57  3.17 3.83 0.73 

  LTP -3 km·h
-1*  84.70 ± 7.13 83.43 ± 5.77 84.20 ± 5.08  2.91 3.53 0.78 

  LTP -2 km·h
-1

  84.70 ± 6.05 83.95 ± 5.72 85.14 ± 5.33  2.71 3.27 0.78 

  LTP -1 km.h
-1*  86.35 ± 6.81 84.40 ± 5.56 85.51 ± 4.58  2.75 3.28 0.76 

  Mean of the 4 speeds 85.01 ± 6.72 83.56 ± 5.63 84.30 ± 4.76  2.70 3.27  

Energy Cost relative to BM (kcal·kg
-0.75

·km
-1

)       

  LTP -4 km·h
-1

  3.463 ± 0.297 3.385 ± 0.240 3.375 ± 0.180  .126 3.72 0.75 

  LTP -3 km·h
-1*  3.481 ± 0.287 3.426 ± 0.229 3.452 ± 0.182  .115 3.39 0.79 

  LTP -2 km·h
-1

  3.480 ± 0.233 3.447 ± 0.214 3.494 ± 0.192  .108 3.16 0.78 

  LTP -1 km·h
-1*  3.549 ± 0.281 3.465 ± 0.210 3.514 ± 0.175  .106 3.05 0.79 

  Mean of the 4 speeds 3.493 ± 0.240 3.431 ± 0.218 3.459 ± 0.176  .106 3.13  

         

*- denotes a significant difference to LTP -4 km·h
-1

 when collapsed across trials. BM, body mass; ICC, intraclass correlation coefficient; LTP, lactate 

turnpoint; TE, typical error
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Table 3.2. Smallest worthwhile changes in oxygen cost and energy cost assessed at the 4 speeds prior 

to LTP (n = 29). 

BM, body mass; CVB, between-subject coefficient of variation; LTP, lactate turnpoint; SWC, smallest 

worthwhile change 

Measurement Economy CVB SWC SWC 

Speed  (%) (%) 

     

Oxygen Cost (LO2·km
-1

)    

LTP -4 km·h
-1

 15.02 ± 2.220 14.8 0.44 2.96 

LTP -3 km·h
-1

 14.96 ± 2.089 14.0 0.42 2.79 

LTP -2 km·h
-1

 14.90 ± 1.999 13.4 0.40 2.68 

LTP -1 km·h
-1

 14.93 ± 1.960 13.1 0.39 2.63 

Mean of the 4 speeds 14.95 ± 2.058 13.8 0.41 2.75 

     

Oxygen Cost relative to BM (mlO2·kg
-0.75

·km
-1

)    

LTP -4 km·h
-1

 632.6 ± 50.21 7.9 10.0 1.59 

LTP -3 km·h
-1

 630.6 ± 45.21 7.2 9.04 1.43 

LTP -2 km·h
-1

 628.1 ± 41.86 6.7 8.37 1.33 

LTP -1 km·h
-1

 629.6 ± 39.66 6.3 7.93 1.26 

Mean of the 4 speeds 630.3 ± 43.50 6.9 8.70 1.38 

     

Energy Cost (kcal·km
-1

)    

LTP -4 km·h
-1

 79.66 ± 11.43 14.3 2.29 2.87 

LTP -3 km·h
-1

 80.17 ± 10.97 13.7 2.19 2.74 

LTP -2 km·h
-1

 80.65 ± 10.74 13.3 2.15 2.66 

LTP -1 km·h
-1

 82.47 ± 11.86 14.4 2.37 2.88 

Mean of the 4 speeds 80.74 ± 11.07 13.7 2.21 2.74 

     

Energy Cost relative to BM (kcal·kg
-0.75

·km
-1

)    

LTP -4 km·h
-1

 3.355 ± 0.276 8.2 .055 1.65 

LTP -3 km·h
-1

 3.382 ± 0.277 8.2 .055 1.64 

LTP -2 km·h
-1

 3.405 ± 0.305 9.0 .061 1.79 

LTP -1 km·h
-1

 3.481 ± 0.356 10.2 .071 2.04 

Mean of the 4 speeds 3.406 ± 0.292 8.6 .058 1.71 
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However, no differences in relative or absolute CVW between measures of OC and EC were 

evident. ICC analysis revealed significant relationships for all measures of running economy 

between trials, with values of 0.73-0.84 for OC and EC, but no notable differences were 

observed between the two measures. The SWC was similar between OC and EC at all 

monitored speeds when expressed as a percentage of mean values (Table 3.2). The SWC was 

notably greater for absolute than relative expressions of OC (absolute, 2.63 - 3.96% vs 

relative, 1.26 - 1.59%) and EC (absolute, 2.66 - 2.88% vs relative, 1.64 – 2.04%) over all 

monitored speeds. The CVB for absolute measures were greater than relative expressions (~2-

fold) for both OC and EC 

 Discussion 3.4

The results of the present study demonstrated similar between-test reliability for OC and EC in 

highly trained distance runners. Moreover, absolute and relative expressions of running 

economy displayed similar levels of between-test reliability. For relative values that enable 

accurate comparisons between individuals, the typical error exceeded the SWC for both OC 

and EC. Therefore, the current protocol does not provide sufficient sensitivity to detect small, 

but meaningful, changes in OC and EC when expressed relative to BM
0.75

.  

The findings of this study are in accordance with those previously published in this area, with 

similar levels of between test reliability for the OC of running relative to BM (Williams et al. 

1991; Brisswalter and Legros 1994b). We found the typical error for relative OC (~ 2 to 3 %) 

to be similar to a previous study of elite endurance athletes (2.4%); where only time of day 

and footwear were controlled (Saunders et al. 2004). Conversely, these values were greater 

than those previously observed for well trained (1.32%) and highly trained (1.77%) 

endurance athletes that employed dietary and training constraints prior to running economy 

measurements (Morgan et al. 1991; Pereira and Freedson
 
1997). It is likely the additional 

restrictions on the athlete’s day-to-day lifestyle contributed to the enhanced between test 

reliability of these studies. It was hypothesised that EC may be a more reliable measure of 

running economy than OC, and also compensate the need for stricter experimental controls 

that can interfere with the full-time training of high performance athletes. Specifically, the 

quantification of running economy as EC was proposed to mitigate the confounding influence 

of alterations in substrate utilisation on OC in the absence of dietary or training constraints.  
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The between-test reliability of running economy when quantified as EC has not been 

previously documented.  EC exhibited typical error values of <3.9% and ICC values >0.7 for 

all monitored speeds, and contrary to our hypothesis, had similar between-test reliability as 

OC, when expressed in both absolute (mean of 4 speeds: EC 3.27% vs OC 2.89%) and relative 

terms (EC 3.13% vs OC 2.88%). Due to the extensive training schedules of the current cohort, 

variability in substrate metabolism and thus the OC of running was expected, but not observed, 

despite the lack of dietary and training controls employed in this study. Intuitively, the 

stability of substrate utilisation across trials may have obviated the potential benefits of 

expressing running economy as EC over OC. In addition, the reliability of EC measurements is 

dependent upon the consistency of both V̇O2 and V̇CO2 recordings (in order to derive RER) 

rather than just the single measurement (V̇O2) for OC. It is possible the additional requirement 

of V̇CO2 might have exacerbated the inherent technical variance in EC measurements, as the 

within-subject variation of COV 2 was greater than V̇O2. As V̇CO2 exhibits a greater time 

constant (~50-60s) relative to V̇O2 (~30-40s) during the transition from rest to moderate 

intensity exercise (Whipp 2007), it is possible that the 3 minute stages employed in the 

current study were insufficient to establish a genuinely steady state V̇CO2. Consequently, 

although a theoretical basis for quantifying running economy as EC is clear, the practical 

application in the current protocol may explain the lack of any improvement in between test 

reliability compared to OC.  

To facilitate the practical interpretation of the reliability findings in the current study, the 

typical error was compared to the SWC calculated from a larger cohort of highly trained 

endurance runners. When averaged over the four monitored speeds, the typical error for OC 

(2.88%) and EC (3.13%) expressed relative to BM
0.75

, were substantially higher than the SWC 

(OC, 1.38%; EC, 1.71%). Therefore, it appears that the incremental running protocol 

employed in the current investigation provides inadequate reliability to detect the SWC. This 

may appear contrary to a previous investigation, however Saunders et al (2004) compared the 

typical error to the SWC for absolute values of OC (both 2.4%), rather than the recommended 

expression of values relative to BM for inter-individual comparisons. Interestingly, the 

typical error in this study for both absolute OC (2.89%) and EC (3.27%) were also similar to 

the SWC (OC, 2.74%; EC, 2.75%), and appears to be an artefact of the greater inter-individual 

variation of running economy values that are not corrected for BM (e.g. CVB: OC, 13.8%; EC, 

13.7%) compared to more appropriate relative values (CVB: OC, 6.9%; EC, 8.6%). Therefore, 
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when expressed relative to BM
0.75

, the current protocol displays insufficient sensitivity to 

detect the SWC of EC or OC. Consequently, investigators employing the 3 minute 

discontinuous submaximal test examined can only be confident of a true change in running 

economy when changes >2.9% or >3.1% are apparent for OC and EC, respectively. 

 Conclusion 3.5

Running economy expressed as an OC and EC provided similarly high levels of reliability for 

highly trained endurance runners when assessed using a short-duration incremental 

submaximal exercise protocol. However, the typical error of measures of OC and EC relative 

to BM
0.75

 was found to be ~2-fold higher than the SWC of both variables. Therefore, only 

when alterations in OC or EC exceed the typical error can practitioners confidently interpret a 

meaningful change in running economy. As EC provides similar levels of reliability, and 

appears to offer greater validity than OC (Fletcher et al. 2009), it is recommended as the 

primary measure of running economy. 
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CHAPTER IV 

4 The valid measurement of running economy in runners… 

 Introduction 4.1

Running economy (RE), defined as the metabolic cost to cover a given distance, is a primary 

physiological determinant of endurance running performance (di Prampero 2003; Ingham et 

al. 2008). RE represents the translation of energy turnover into running velocity, and in 

athletically homogenous populations is cited as a stronger indicator of endurance 

performance than OV 2max alone (Conley and Krahenbuhl 1980; Daniels 1985). Moreover, the 

recent dominance of East Africans in distance running events has been attributed to the 

superior RE of this population (Larsen 2003; Lucia et al. 2006). Given the fundamental 

contribution of RE to human locomotion and performance, assuring the validity of RE 

measurements appears essential. 

Previous investigations have considered inter-individual comparisons to identify the specific 

anthropological, mechanical and physiological factors that characterise an economical runner 

(Pate et al. 1992; Lucia et al. 2006). These studies have typically measured the RE as the 

oxygen cost of running (OC), defined as the oxygen required to cover a given distance (Foster 

and Lucia 2007; Ingham et al. 2008; Tam et al. 2012) or to maintain a given speed (Saunders 

et al. 2004a). This quantification of RE is based on the assumption that OC provides an index 

of adenosine triphosphate turnover during submaximal exercise, and thus reflects the 

underlying energy cost (EC) of locomotion. However, a recent investigation has brought into 

question the validity of OC to assess RE, with evidence suggesting a disparity exists between 

the changes in OC and EC as running speed increases (Fletcher et al. 2009). Whilst the EC to 

cover a kilometre (Kcal∙kg
-1

∙km
-1

) appears to be positively related to speed (Fletcher et al. 

2009), OC has consistently been shown to be independent of running speed (Margaria et al. 

1963; Hagberg and Coyle 1984; di Prampero et al. 2009; Fletcher et al. 2009). If such a 

relationship exists between EC and running speed, but not for OC and speed, then the validity 

of OC as a measure of RE would appear to be compromised. It is worth noting that Fletcher 

and colleagues studied a relatively small cohort of endurance runners, which is likely to have 

weakened the statistical power of these findings. Thus, substantiation of this relationship 

between EC and relative exercise intensity is warranted within a larger cohort of trained 

distance runners. 
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Accurate inter-individual comparisons of RE can only be made if this measurement is 

independent of potential confounding variables. It has long been established that a positive 

relationship exists between body mass (BM) and absolute OC measures of RE (Morgan and 

Daniels 1994). To remove the influence of BM on OC it has often been expressed as a ratio of 

BM i.e. VO2∙kg
-1

 (Morgan and Daniels 1994) under the assumption that a proportional linear 

relationship exists between these variables. However, some authors have suggested a 

negative relationship exists between BM and ratio scaled OC (Pate et al. 1992; Bourdin and 

Pastene 1993), which would indicate that ratio scaled OC overcompensates for the influence 

of BM. Measurements of absolute oxygen uptake during running suggest that OC might be 

more appropriately scaled to a power function exponent of BM that is <1 in endurance 

trained individuals, specifically BM∙
-0.75

 (Bergh et al. 1991). However, the aforementioned 

study employed a mixed cohort of endurance trained individuals from several exercise 

modalities. The relationship between BM and measures of RE has yet to be examined in a 

large cohort of competitive distance runners, and therefore the appropriate scaling of EC 

relative to BM in this population remains to be elucidated.      

Therefore, the primary aim of the current investigation was to assess the validity of OC as a 

measure of RE in comparison to the underlying EC, and consider whether these measurements 

are influenced by running speed. It was hypothesised that, although EC would increase with 

increments in running speed, measurements of OC would be insensitive to changes in running 

speed. The secondary aim was to determine the most valid method of accounting for BM in 

the measurement of RE in a large cohort of highly trained distance runners. 

 Materials and methods 4.2

 Overview 4.2.1

The work was a retrospective analysis of data collected from 172 healthy endurance trained 

athletes with competitive distances ranging from 800m to the marathon (males, n = 101; 

females, n = 71; Table 4.1). The following tests were performed after informed consent was 

obtained as a part of sports science support provision, with procedures approved by the 

Internal Review Board of English Institute of Sport. Data were collected from two 

laboratories, with all tests conducted as part of athlete support services between November 

2004 and April 2013. Of the participants assessed, 112 (males, n = 65; females, n = 47) were 
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classed as middle distance runners, defined by a primary competitive distance ≤ 3000m (6), 

with 60 classed as long distance runners (males, n = 36; females, n = 24).Where multiple 

visits from the same athlete had occurred during the study period, data only from their final 

visit were included in the analysis. Participants wore appropriate racing ‘flats’ shoes, and 

laboratory conditions were similar throughout all running assessments (temperature 20.5 ± 

1.9 °C, relative humidity 45.9 ± 9.7%).  

 Protocol 4.2.2

Submaximal running assessments 

Following a warm-up at a self-selected running speed (typically 10-12 km.hr
-1

 for ~10 min), 

participants completed a discontinuous submaximal incremental test consisting of six to nine 

bouts of 3 minutes continuous running, with increments of 1 km·h
-1

 on a motorised treadmill 

of known speed (HP cosmos Saturn, Traunstein, Germany) interspersed by 30 s rest for blood 

sampling. As the speeds assessed were typically between 10.5 km∙h
-1

 and 18 km∙h
-1

,
 
treadmill 

gradient was maintained at 1% throughout submaximal assessments in order to reflect the 

energetic cost of outdoor running (Jones and Doust 1996). The heart rate (HR) response 

during the warm-up was used to determine a starting speed and provide ~4 speeds prior to 

lactate turnpoint (LTP). Increments were continued until blood lactate had risen by ~2 

mmol∙L
-1

 from the previous stage. HR (s610i, Polar, Finland) and pulmonary gas exchange 

were recorded throughout the test. 

Table 4.1. Physiological and anthropometrical characteristics. 

 
Females 

(n = 71) 

Males 

(n = 101) 

Age (yrs) 23 ± 5 23 ± 6 

Body mass (kg) 54.8 ± 4.7* 67.1 ± 7.0 

Stature (cm) 169 ± 5* 180 ± 7 

V̇O2max (mL∙kg
-1

∙min
-1

) 65.9 ± 6.5* 73.0 ± 6.6 

vLTP (km∙h
-1

) 15.6 ± 1.3* 17.4 ± 1.4 

* denotes a significant difference to males (P < 0.001). V̇O2max - maximal oxygen consumption. vLTP – 

velocity at LTP 
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Maximal running assessments 

OV 2max was determined by a continuous incremental treadmill running test to volitional 

exhaustion. After a warm-up, participants initially ran at a speed 2 km·h
-1

 below the final 

speed of the submaximal test and at a 1% gradient. Each minute, the incline was increased by 

1% until volitional exhaustion, typically achieved in 6-8 minutes.  

 Measurements 4.2.3

Anthropometry 

Prior to exercise BM was measured using digital scales (Seca 700, Seca, Hamburg, Germany) 

to the nearest 0.1 kg. Stature was recorded to the nearest 1 cm using a stadiometer 

(Harpenden Stadiometer, Holtain Limited, UK).  

Pulmonary gas exchange 

Breath-by-breath gas exchange data were measured with an automated open circuit metabolic 

cart (Oxycon Pro, Carefusion, San Diego, USA). Participants breathed through a low-dead 

space mask, with air sampled at 60 ml·min
-1

. Prior to each test, two point calibrations of the 

gas sensors were completed, using a known gas mixture (16% O2, 5% CO2) and ambient air. 

Ventilatory volume was calibrated using a 3 L (±0.4%) syringe. Oxygen consumption ( OV 2), 

carbon dioxide production ( COV 2), and RER values were quantified over the final 60 s of 

each stage of the submaximal protocol.  

Blood lactate 

A 20µl capillary blood sample was taken from the earlobe for analysis of blood lactate ([La]b) 

(Biosen C-line, EKF diagnostics, Germany). The LTP was identified via the modified Dmax 

method. Briefly, LTP was quantified as the point on the third order polynomial curve fitted to 

the speed-lactate relationship that generated the greatest perpendicular distance to the straight 

line formed between the first stage preceding an increase in [La]b greater than 0.4 mmol.L
-1

 

(lactate threshold) and the final stage (Bishop et al. 1998). Based on this value, the four 

stages prior to LTP were identified for each participant as LTP-4, LTP-3, LTP-2 and LTP-1. 

Measurements for all 4 stages below LTP were not present for 9 males and 12 females, 

therefore these participants were excluded from the analysis of running speed vs RE.  
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Calculation of running economy  

The average of breath by breath OV 2 and COV 2 during the final minute of each submaximal 

stage were used to calculate OC and EC. Updated nonprotein respiratory quotient equations 

(Péronnet and Massicotte 1991) were used to estimate substrate utilisation (g·min
-1

) during 

the monitored period. The energy derived from each substrate was then calculated by 

multiplying fat and carbohydrate usage by 9.75 kcal and 4.07 kcal, respectively, reflecting the 

mean energy content of the metabolised substrates during moderate to high intensity exercise 

(Jeukendrup and Wallis 2005). Absolute EC was quantified as the sum of these values, 

expressed in kcal·km
-1

. The V̇O2 during the final minute of each submaximal stage was used 

to determine absolute OC, expressed in L·km
-1

. From previous work in our laboratory, the 

typical error of measurement was ~3% for both OC and EC (Chapter 3).  

 Statistical analyses  4.2.4

The relationships between absolute EC (averaged over the 3 speeds prior to LTP) and BM 

were fitted using both a power function, assuming a log linear model to estimate the 

parameters (i.e. EC = a(BM)
b
), and linear models (i.e. EC = a(BM) + b). For power exponents 

(b), 95% confidence intervals (CI) were calculated. To compare the strength of fit between 

models, the coefficient of determination and root mean squared errors (RMSE) were 

calculated. The appropriateness of each model was then assessed using Pearson’s product-

moment correlation coefficient. If the model has been successful in accounting for BM, the 

correlation between BM and the assessed variable scaled appropriately to BM should 

approach zero (Tanner 1949). This analysis was repeated with OC to compare with previous 

investigations. Normal distributions of OC and EC were assessed via Shapiro-wilk tests prior 

to comparisons between speeds. Differences in participant characteristics between males and 

females were assessed via independent samples t-tests. Differences in EC, OC and RER 

between males and females for the 4 speeds prior to LTP were assessed with two-way 

ANOVA (speed; sex) with mixed measures. One way ANOVA with repeated measures was 

conducted to assess differences in EC or OC across the 4 speeds prior to lactate threshold. Post 

hoc analysis with Bonferoni adjustment was used to identify where any significant 

differences occurred. Data are presented as mean ± standard deviations, with significant 

differences accepted at P < 0.05. 
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 Results 4.3

 Participant Characteristics 4.3.1

Participant characteristics are shown in Table 4.1. The well trained status of the participants 

was emphasised by the high OV 2max and vLTP values for both males and females. The mean 

of the four stages prior to vLTP were 12.4 – 15.4 km∙h
-1

 for females and 13.8 – 16.8 km∙h
-1

 

for males.  

 Allometric modelling 4.3.2

Plots of BM against EC (Figure 4.1) and OC (Figure 4.2) were fitted with both power and 

linear functions. The results of the regression analyses with a power function fit between 

absolute EC and BM revealed exponents close to unity (males, b = 0.90, CI 0.75-1.05; females, 

b =0.88, CI 0.66-1.10), and for OC (males, b = 0.93, CI 0.79-1.06; females, b = 0.95, CI 0.73-

1.16). Similar, but marginally higher, R
2
 and lower RMSE values were observed for linear 

ratio scaling compared to power functions for both OC an EC (Table 4.2). The appropriateness 

of the linear model was confirmed by the absence of any relationship when BM was re-

plotted against ratio scaled EC (Kcal∙kg
-1

∙km
-1

) and OC (mL∙kg
-1

∙km
-1

) for both males (R
2 

= 

0.017, P = 0.19; R
2
 = 0.011, P = 0.30; respectively) and females (R

2 
= 0.012, P = 0.36; R

2
 = 

0.001, P = 0.77; respectively). Consequently, relative expressions of EC and OC were scaled 

to BM
-1 

in all further analysis.  

 Running speed 4.3.3

No interaction effect was evident between speed and sex for EC, OC, and RER, thus both 

cohorts were combined to analyse the influence of speed on these parameters. ANOVA 

revealed increases in RER with increments in running speed (P < 0.001; Figure 4.3). 

Increases in EC were also observed with increments in running speed (ANOVA, P < 0.001; 

Figure. 4.3). No differences in OC were seen across the 4 monitored speeds (ANOVA, P = 

0.54). 
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Figure 4.1. Absolute energy cost vs body mass. A. Females (n = 71) fitted with linear (solid line; y = 

1.087x + 4.323) and power functions (dashed line; y = 1.888x0.879). B. Males (n = 101) fitted with 

linear (solid line; y = 1.052x + 6.506) and power functions (dashed line; y = 1.746x0.900). 
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Figure 4.2. Absolute oxygen cost vs body mass. A. Females (n = 71) fitted with Linear (solid line; y 

= 0.218x + 0.063) and power functions (dashed line; y = 0.271x0.946). B. Males (n = 101) fitted 

with Linear (solid line; y = 0.202x + 0.841) and power functions (dashed line; y = 0.290x0.928).  
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Table 4.2. The coefficient of determination (R
2
) and root mean square error (RMSE) from linear and 

power scaling between body mass and both energy cost and oxygen cost 

 

 Discussion 4.4

The primary aim of the present study was to investigate the validity of OC as a quantification 

of RE by comparing this variable to the underlying EC of running. A disparity was evident 

between the changes in OC and EC as running speed increased, with significant increases in 

EC but no change in OC, which appeared to be explained by a progressive shift towards 

carbohydrate metabolism.  A further finding was that linear ratio scaling, rather than a power 

function, was the most appropriate way of accounting for BM when using both measures of 

RE.  

In accordance with previous findings (Fletcher et al. 2009), as running speed progressed 

towards the vLTP, elevations in EC were apparent for each increment in running speed; 

increasing by 3.7% across the 4 speeds assessed, whilst OC remained consistent; supporting 

the premise that OC is independent of running speed (Margaria et al. 1963; Hagberg and 

Coyle 1984; di Prampero et al. 2009; Fletcher et al. 2009). It is therefore clear that a 

discrepancy exists between these two variables. Fundamentally, the validity of a given 

variable can be viewed as the extent to which the data represents what it is intended to 

measure (Newman and Benz 1998). Given that EC provides the actual indirect assessment of 

the underlying energy turnover during running, the differing response of EC and OC with 

running speed questions the validity of OC as a measure of RE.   

The inability of OC to account for variations in substrate metabolism would appear to explain 

the discrepancy with EC. It is well established that RER increases with increments in exercise 

intensity (Saunders et al. 2004a; Fletcher et al. 2009). Indeed, RER in the present 

investigation increased from 0.88 to 0.94 across the 4 monitored speeds below LTP, 

Variable Sex R
2
 RMSE 

  Linear Power Linear Power 

Energy cost (kcal∙km
-1

) Males 0.59 0.59 6.15 7.55 

 Females 0.50 0.48 5.13 7.11 

Oxygen cost (L∙km
-1

) Males  0.66 0.65 1.02 1.66 

 Females 0.53 0.53 0.96 1.27 



 Chapter IV – The validity of measures of running economy  

  54 

reflecting a shift towards greater utilisation of carbohydrates to fuel energy turnover (Brooks 

and Mercier 1994). As carbohydrates have a greater energy equivalent per mole of O2 

compared to lipids (Krogh and Lindhard 1920), the increase in carbohydrate metabolism 

appears to offset the greater energy required at higher speeds, resulting in a stable OC. As the 

RER is inherent in the calculation of EC, it is not influenced by changes in substrate 

metabolism, enabling the identification of the true relationship of RE and running speed. 

However, the mechanisms underpinning the association between EC and running speed 

remain unclear.  Studies utilising rodent models (Barclay et al. 2010) and humans (Katz et al. 

1986; Coyle et al. 1992; Hunter et al. 2001) suggest a greater efficiency in type I fibres when 

compared to type II fibres. The elevated EC might therefore reflect the increased recruitment 

of comparatively inefficient type II muscle fibres at higher work rates (Hunter et al. 2001). 

This could be a consequence of the increasing work rate per se, that requires the recruitment 

of additional motor units. Furthermore, the changing mechanics of running at higher speeds 

with greater joint angular velocities and reductions in ground contact times (Chapman et al. 

2012), which both require greater rates of force development, might also promote recruitment 

of type II motor units. Therefore, as alterations in EC appear to be metabolically driven, it is 

proposed that future assessments should be conducted at a uniform running intensity relative 

to vLTP.  

The confounding influence of substrate utilisation on OC might also compromise the 

interpretation of inter-individual differences, and intra-individual changes, in RE. Notable 

inter-individual variability in substrate utilisation during exercise has been observed in 

trained athletes (Bosch 1993; Goedecke et al. 2000). In addition, a greater utilisation of lipids 

at a given exercise intensity is apparent following endurance training (Gollnick 1985), which 

might inflate OC despite no differences in EC, and potentially be erroneously interpreted as 

detrimental to performance. Whereas, for prolonged events, an increased utilisation of lipids 

might benefit performance through enhanced glycogen sparing (Costill et al. 1973; Holloszy 

and Coyle 1984). Consequently, the inability of OC to account for variations in substrate 

utilisation compromises the validity, and subsequent interpretation, of this commonly 

employed measure of RE. Whilst is it clear that OC is a critical determinant of endurance 

running performance (Conley and Krahenbuhl 1980; Ingham et al. 2008), it is proposed that 

as OC represents both EC and substrate utilisation, EC would provide a more appropriate 

expression of RE.  
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The accurate comparison of RE between individuals requires an expression that is 

independent of the confounding influence of BM. In this study linear ratio scaling had 

marginally higher R
2
 values but lower RMSE than power function scaling, for both EC and 

OC, and therefore appeared to be the most appropriate method to remove the influence of BM 

on RE in endurance runners. Our findings support recent observations demonstrating ratio 

scaled RE measurements to be independent of BM (Taboga et al. 2012). In contrast, previous 

investigations of heterogeneous cohorts of trained athletes have proposed measures of 

submaximal oxygen uptake to be proportional to BM
-0.75

 (Bergh et al. 1991) and BM
-0.69 

(Markovic et al. 2007). However, unlike the homogenous cohort of endurance runners in the 

current study, these investigations included athletes from various sporting disciplines as 

opposed to our cohort from a single discipline (running). Our findings hence demonstrate the 

necessity to evaluate the appropriate scaling factor for a given population, which might be 

sensitive to the body composition of the cohort. Given the better fit of the linear model, the 

comparative simplicity of its calculation, and the wide spread use of this exponent in the 

literature, the expression of EC relative to BM
-1

 would appear preferential. It is therefore 

proposed that measures of RE in highly trained endurance runners should be expressed 

relative to BM to accurately account for variations in BM.  

In conclusion, our data indicate that OC does not provide a valid index of the underlying EC of 

running. Though EC increased with increments in running speed, OC is insensitive to such 

changes, likely because it does not account for variations in substrate utilisation. Moreover, 

expression of EC relative to BM
-1

 was found to be the most appropriate method to remove 

influence of BM on this variable. It is therefore proposed that EC should be employed as the 

primary measure of RE, scaled appropriately to BM
-1

. 
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CHAPTER V 

5  The use of up-hill and down-hill running as a diagnostic tool for 

running economy.... 

 Introduction 5.1

Running economy (RE), defined as the energy cost to cover a given distance, is a primary 

physiological determinant of endurance running performance (di Prampero 2003; Ingham et 

al. 2008). Runners with a superior running economy expend less energy to sustain a given 

running velocity, and consequently incur a lower metabolic cost. Therefore, modest 

enhancements in RE are considered to be of significant benefit to performance (Cavanagh 

1989).  However, few training methods have been shown to enhance RE (Saunders et al. 

2004d; Foster and Lucia 2007), potentially restricted by the inability to identify the principal 

limiting factor of  RE. As an athlete’s RE could be viewed as a composite of both mechanical 

and metabolic factors, diagnosis of specific mechanical or metabolic inefficiencies in an 

athlete could facilitate the prescription of more effective training interventions to enhance RE. 

Surface gradient is known to influence the energetic cost of running (EC) at a given speed 

(Margaria et al. 1963; Minetti et al. 2002), with running uphill incurring a greater EC and 

downhill a lesser EC when compared to running on the flat. When running on positive 

gradients, the body’s centre of mass (COM) is lifted during each stride cycle primarily 

through metabolically expensive concentric contractions, resulting in greater physiological 

work (Snyder et al. 2012). In addition the lower vertical velocity on landing whilst running 

uphill (Gottschall and Kram 2005; Neves et al. 2014) might reduce the opportunity for elastic 

energy storage and re-utilisation (Snyder et al. 2012), and thus also elevate the EC.  The EC of 

running uphill, in comparison to running on the flat, would seem to be more dependent on the 

metabolic efficiency of the athlete, with metabolically inefficient athletes likely to incur a 

greater increase in EC. 

Conversely, during downhill running there is both a reduced requirement for positive work 

(Snyder et al. 2012) as well as a higher vertical velocity on landing (Yokozawa et al. 2005; 

Gottschall and Kram 2005; Neves et al. 2014) that might give more opportunity for elastic 

energy storage and re-utilisation. Consequently, running downhill might shift the emphasis 

away from metabolic efficiency to mechanical efficiency and the ability to store and re-utilise 
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gravitational potential energy (Snyder et al. 2012). If this were the case running downhill, 

compared to flat running, may have larger reduction in EC for mechanically efficient athletes. 

 

Based on this rationale, runners with high metabolic efficiency would display smaller 

increases in EC as gradient increased (i.e. from downhill to flat to uphill), whereas runners 

with high mechanical efficiency would exhibit larger decreases in EC as gradient decreased 

(i.e. from uphill to flat to downhill). In which case the EC-gradient relationship may vary 

between runners, being steeper for the most mechanically efficient runners and less steep for 

the most metabolically efficient runners with other athletes scattered in between (Figure 5.1). 

We therefore hypothesised that the response to uphill and downhill running might be highly 

variable between runners. Furthermore, if this were the case then uphill and downhill running 

may provide a useful diagnostic tool for understanding the determinants and limiting factors 

to each runner’s economy and ultimately facilitate specific interventions to enhance RE.  The 

aim of the current investigation was to evaluate the EC profiles of trained distance runners 

across the 3 gradients and assess the variability in these responses.  

Figure 5.1. Hypothesised variable responses of energy cost to running at different gradients. Two 

hypothetical athletes are shown with identical running economy during flat running, one with high 

mechanical efficiency (solid line) and one with high metabolic efficiency (dashed line). 
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 Materials and methods 5.2

 Participants 5.2.1

Thirty healthy trained male distance runners were recruited for this study, however due to 

inclusion criteria imposed in data analysis (detailed below), 8 participants were subsequently 

excluded. This investigation therefore represents data from twenty two male distance runners 

(Age: 28 ± 8 years; stature: 179 ± 5 cm; body mass: 68.5 ± 5.5 kg; V̇O2max: 71.8 ± 5.2 mL·kg
-

1·min
-1

). Participants’ best performance times over the last two seasons were 115 ± 6% of the 

current British record as of January 2014 in their specialist event from 800m up to the 

marathon. All participants were treadmill habituated, and provided written informed consent 

prior to participating in this study.  

 Overview 5.2.2

Participants attended the laboratory on two separate occasions. During the first visit, 

participants completed a submaximal downhill running assessment followed by a maximal 

running assessment, with ~15 minutes of rest in between. During the second visit, 

participants completed the main trial that measured the energy cost of submaximal running at 

three velocities all performed on three different gradients (flat 0%, uphill +5%, and downhill 

-5%) i.e. 9 conditions. Gradients were selected to maximise the difference in EC between 

conditions, whilst preserving running technique and enabling valid sub LTP assessments of 

EC in all conditions. Participants wore appropriate clothing and racing shoes, and laboratory 

conditions were similar throughout all running assessments (temperature, 18-21°C; relative 

humidity, 40-50%). Heart rate (s610i, Polar, Finland) and pulmonary gas exchange (detailed 

below) were monitored throughout all assessments. 

 Protocol 5.2.3

Submaximal physiology assessment 

Following a warm-up (~10 min at 10-12 km∙h
-1

), participants completed a discontinuous 

submaximal incremental test on a motorised treadmill of known belt speeds (HP cosmos 

Saturn, Traunstein, Germany). This involved six to nine stages with 3 minutes of continuous 

running at each stage, interspersed by 30 s rest periods and increments of 1 km∙h
-1

. As the 
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speeds assessed were typically between 10.5 km∙h
-1

 and 18 km∙h
-1

, treadmill gradient was 

maintained at 1% throughout submaximal assessments in order to reflect the energetic cost of 

outdoor running (Jones and Doust 1996). Recent performance times of participants were used 

to determine an appropriate starting speed to provide ~4 speeds prior to lactate turnpoint 

(LTP). Increments were continued until blood lactate concentration had risen exponentially, 

typically defined as an increase in blood lactate of ~2 mmol∙L
-1

 from the previous stage. The 

LTP was identified to the nearest km·h-1
 from blood lactate concentration vs. speed 

relationship.  

Maximal running assessments 

The maximal rate of oxygen uptake (V̇O2max) was determined by a continuous incremental 

treadmill running ramp test to volitional exhaustion. After a warm-up, participants initially 

ran at a speed 2 km∙h
-1

 below the final speed of the submaximal test and at a 1% gradient. 

Each minute, the incline was increased by 1% until volitional exhaustion, reached typically in 

6-8 minutes. 

Main Trial – Energy cost of running at different gradients 

On the second visit, following 15 minutes of standing rest, participants were required to 

complete nine 4 minute running stages, interspersed with 1 minute of rest. For the first 3 

stages, running velocity was set at 70% of the velocity at lactate turnpoint (vLTP) determined 

from the prior assessment, with a surface gradient of 0% (flat), +5% (uphill; 2.9°) and -5% 

(downhill; -2.9°) respectively. This process was then repeated at running velocities of 75 and 

80% of vLTP. Data for all biomechanical and physiological parameters (detailed below) were 

collected in the final 60s of each running stage. 

 Measurements 5.2.4

Anthropometry 

Prior to exercise on laboratory visits, body mass was measured using digital scales (Seca 700, 

Seca, Hamburg, Germany) to the nearest 0.1 kg. Stature was recorded to the nearest 1 cm 

using a stadiometer (Harpenden Stadiometer, Holtain Limited, UK).  

Blood lactate  
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During rest periods in the submaximal running assessment, a 20µL capillary blood sample 

was taken from the earlobe for analysis of blood lactate ([La]b) (Biosen C-line, EKF 

diagnostics, Germany). LTP was defined as the running speed above which blood lactate 

concentration increased by >1.0 mmol·L-1
 from the previous stage (Thoden 1991). 

Pulmonary gas exchange 

Breath-by-breath gas exchange data was quantified via an automated open circuit metabolic 

cart (Oxycon Pro, Carefusion, San Diego, USA). Participants breathed through a low dead-

space mask, with air sampled at 60 mL∙min
-1

. Prior to each test, two point calibrations of both 

gas sensors were completed, using a known gas mixture (16% O2, 5% CO2) and ambient air. 

Ventilatory volume was calibrated using a 3 L (± 0.4%) syringe. The final 60 s of each stage 

were used to quantify oxygen uptake (V̇O2), carbon dioxide production (V̇CO2), and RER. 

The greatest continuous sample of V̇O2 averaged over 30s defined V̇O2max. Resting V̇O2 was 

defined as the average V̇O2 assessed over the final 10 minutes of standing rest. 

Calculation of running economy  

V̇O2 and V̇CO2 during the final minute of each stage of the main trial, less resting values, 

were used to calculate net EC. Updated nonprotein respiratory quotient equations (Péronnet 

and Massicotte 1991) were used to estimate substrate utilisation (g∙min
-1

) during the 

monitored period.  For eight athletes an RER > 1 was recorded during uphill running, thus 

violating the assumptions required to derive substrate utilisation and indicating anaerobic 

metabolism that invalidates the calculation of EC. Consequently, these athletes were excluded 

from further analysis. The energy derived from each substrate was then calculated by 

multiplying fat and carbohydrate usage by 9.75 kcal and 4.07 kcal, respectively, reflecting the 

mean energy content of the metabolised substrates during moderate intensity exercise 

(Jeukendrup and Wallis 2005). EC was quantified as the sum of these values, expressed as in 

absolute terms (kcal∙min
-1

) and relative terms (kcal∙kg
-1

∙km
-1

). V̇O2 during the final minute of 

each stage, less resting values, were used to determine oxygen cost (OC; mL∙kg
-1

∙km
-1

) for 

comparative purposes. 

Biomechanical parameters 

A photoelectric cell system (Optojump, Microgate, Bolzano, Italy) was used to measure 

ground contact time, flight time, stride length and stride frequency over the final 60s of each 
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running stage during the main trial. The system consisted of two parallel units (a transmitter 

and a receiver), set on opposing sides of a 2 m section of the treadmill belt. The Optojump 

system was positioned 0.3 cm above the plane of the treadmill belt and each transmitter 

contained 96 equidistant LEDs per meter, recording at 1 kHz. All parameters were quantified 

using the Optojump Next software (v 1.9.9.0). Data were filtered to remove erroneous 

values >2 standard deviations away from the mean. Vertical oscillation was assessed using a 

high speed (240 Hz) camera (Casio Exilim EX-ZR 100, Casio Computer Co. Ltd., Tokyo, 

Japan) situated 1m behind the treadmill at a height of 2m, with a reflective marker placed on 

the participants’ 3
rd

 lumbar vertebrae as an approximate measure of the displacement of the 

COM. Recordings were digitised (Quantic Biomechanics v26, Quitic consultancy LTD, UK), 

with vertical oscillation defined as the greatest vertical displacement of the COM during a 

complete step, and averaged over 10 continuous steps. Oscillation of the COM was expressed 

relative to leg length, calculated as the distance between the greater trochanter and the lateral 

malleolus on the right leg.     

 Statistical analyses 5.2.5

Data are presented as mean ± SD for all dependant variables. Data analysis was conducted 

using SPSS for windows (v21; IBM Corporation, Armonk, NY). Normal distribution of the 

dependant variables were confirmed via Shaprio-wilk tests, and the variance were found to be 

homogenous across the 3 gradients. Pearson’s product-moment correlation coefficient 

between measures of EC (Kcal·kg
-1·km

-1
; averaged over the 4 stages prior to LTP the 

submaximal assessment) and body mass were used to assess the appropriateness of linear 

modelling to remove the influence of body mass in accordance with chapter 3. One-way 

ANOVA with repeated measures were used to assess any differences in RE and 

biomechanical variables between surface gradients. Where differences were found, post-hoc 

analyses with Bonferroni adjustments were conducted. Partial correlations, and associated 95% 

confidence intervals (CI) were used to assess relationships between EC (average of the 3 

speeds; Kcal.min
-1

) during flat, uphill and downhill running whilst controlling for body mass 

and running speed to avoid spurious correlations created by correlating two variables with 

common divisors (Pearson 1986). Partial correlations and associated 95% confidence 

intervals (CI) were also used to assess relationships between EC during flat running and both 

the absolute change in RE from flat running to uphill running (uphill EC – flat EC; ∆Up) and 



 Chapter V – The effect of surface gradient on running economy  

  62 

downhill running (downhill EC – flat EC; ∆Down), in addition to the relationship between 

∆Up and ∆Down. Between athlete coefficient of variations were calculated for ∆Up and 

∆Down to assess the variability of the responses to different gradients. Effect size descriptors 

(trivial 0.0 – 0.1, small 0.1 – 0.3, moderate 0.3 - 0.5, large 0.5 - 0.7, very large 0.7 – 0.9, 

nearly perfect 0.9 - 1, perfect 1) were used to infer correlation magnitude (Hopkins et al. 

2009), with significance accepted at P ≤ 0.05. 

 Results 5.3

 Biomechanical changes with the different gradients 5.3.1

The running speeds associated with 70, 75 and 80% vLTP were 11.7 ± 0.6, 12.5 ± 0.7 and 

13.4 ± 0.7 km·h
-1

, respectively. Stride parameters (stride length, frequency, ground contact 

time and flight time) were not available for 3 athletes due to limitations with equipment. 

Averaged over the 3 speeds, uphill running involved a shorter stride, a shorter flight time and 

an increased stride frequency, as well as less vertical oscillation compared to the flat and 

downhill conditions (Table 5.1). This pattern was repeated when comparing the flat to the 

downhill condition. No differences were noted between ground contact times between 

conditions (P > 0.05).  

 

 Table 5.1. Gait characteristics during flat, uphill and downhill running. 

 Note: * denotes significant difference to flat (P < 0.05); † denotes significant difference to downhill (P < 0.005) 

 Surface gradient 

 Uphill Flat Downhill 

Ground contact time 
(s) 

.239 ± .015 .238 ± .015 .239 ± .018 

Stride length 

(m) 
2.46 ± 0.16*† 2.48 ± 0.21† 2.51 ± 0.16 

Stride frequency 
(Strides.min

-1
) 

169 ± 7*† 167 ± 7† 165 ± 7 

Flight time 

(s) 
.119 ± .021*† .123 ± .019† .129 ± .026 

Vertical Oscillation 

(% leg length) 
11.6 ± 1.3*† 12.3 ± 1.46† 12.7 ± 1.6 
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 Running economy 5.3.2

Pearson’s correlations confirmed the appropriateness of linear modelling to remove the 

influence of body mass on EC (R
2
=0.11; P=0.14). The absolute and relative EC during uphill, 

flat and downhill running are displayed in Figure 5.2. There were differences in EC between 

gradients (ANOVA, P < 0.001), with EC greatest during uphill running (1.28 ± 0.07 kcal∙kg
-

1
∙km

-1
), lower during flat running (0.97 ± 0.08 kcal∙kg

-1
∙km

-1
) and lower still during downhill 

running (0.80 ± 0.08 kcal∙kg
-1

∙km
-1

; Figure 5.2a). The relative OC during uphill, flat and 

downhill running was 241.7 ± 14.2 mL∙kg
-1

∙km
-1

, 188.1 ± 15.0 mL∙kg
-1

∙km
-1

 and 155.6 ± 

14.4 mL∙kg
-1

∙km
-1

, respectively. Compared to flat running, EC was +31.9 ± 4.4% during 

uphill running (∆Up) and -17.4 ± 2.6% during downhill running (∆Down), with OC 

displaying a similar pattern (∆Up +28.5%, ∆Down -17.3%). The between athlete coefficient 

of variations for absolute EC ∆Up and ∆Down were 10.4% for and 14.0%, respectively.  

Partial correlation analysis, whilst controlling for body mass and speed, revealed no 

association between ∆Up and ∆Down (r = 0.10; P = 0.69; CI -0.38 – 0.54), indicating that 

there were not consistent responses to these two changes in gradient.  Moreover, partial 

correlations revealed very large positive associations between the EC of flat and uphill 

running (r = 0.85; P < 0.001; CI 0.65 – 0.94) and uphill and downhill running (r = 0.77; P < 

0.001; CI 0.49 – 0.91), with a nearly perfect association between EC of flat and downhill 

running (r = 0.9; P < 0.001; CI 0.75 – 0.96; Figure 5.3). 

 Discussion 5.4

The aim of the current investigation was to evaluate the EC of running on flat, positive and 

negative gradients in trained distance runners. As expected, EC was highest during uphill 

running, and lowest during the downhill running. However, a difference was observed in the 

magnitude of the change in EC from flat running to uphill or downhill running, with a smaller 

reduction in EC running downhill when compared to the increase in EC of running uphill. This 

response was consistent across the group, with little between subject variation for the changes 

in EC for uphill and downhill compared to flat running. In addition, very strong positive 

associations were seen between the EC measured at all three gradients, indicating the different 

gradients produced similar responses for all the runners and did not strongly discriminate for 

individual characteristics.  
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In accordance with previous investigations, the positive and negative gradients resulted in 

notable alterations in EC from flat running (Ardigo et al. 1995; Lussiana et al. 2013; Vernillo 

et al. 2015). Running up a +5% gradient incurred a 32% greater EC than flat running (∆Up), 

which is consistent with previous observations at slower running speeds (Minetti et al. 1994; 

Lussiana et al. 2013). However, running down the same gradient (-5%) produced a smaller 

energy saving (∆Down -17%) supporting data from Vernillo and colleagues (2015), and 

highlights a disparity between the energy saving of running downhill and the additional 

energy cost of running uphill. Intuitively, these findings could reflect an inflated energy cost 

of running uphill beyond the savings achieved running downhill (i.e. a relative inefficiency 

during uphill running), and / or a restricted energy saving downhill compared to the cost of 

running uphill (i.e. a relative inefficiency during downhill running). During downhill running, 

vertical oscillation of the COM was ~10% greater than uphill running. As previous 

investigations have reported a positive association between vertical oscillation and RE 

(Williams and Cavanagh 1987a; Halvorsen et al. 2012), it is possible that the greater vertical 

displacement could offset some of the savings in EC during downhill running. In addition, 

though not assessed in the current investigation, the higher work rate during uphill running 

could increase the recruitment of comparatively inefficient type II muscle fibres (Hunter et al. 

2001), further inflating EC during uphill running. However, further study would be required 

to confirm these hypotheses.  

The current investigation was the first to document the association between ∆Up and ∆Down, 

in addition to the association between absolute EC across the three different gradients. It was 

proposed that increasing the surface gradient, throughout the range down-flat-up, would place 

more emphasis on metabolic efficiency, and decreasing the gradient, throughout the range up-

down-flat, would place more emphasis on mechanical efficiency. If this were the case, ∆Up 

would be related to ∆Down. Our results demonstrated no association between ∆Up and 

∆Down in our cohort of highly trained endurance runners. Moreover, very large associations 

were evident between EC during uphill running and both flat (r = 0.85) and downhill (r = 

0.77), in addition to a near perfect association between EC during flat and downhill running (r 

= 0.9). These large correlations indicate that runners who have the lowest EC during flat 

running largely display the lowest EC when running on shallow positive and negative 

gradients. Therefore, contrary to our hypotheses, running on shallow positive and negative  
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Figure 5.2 The energy cost of uphill, flat and downhill running expressed in A. absolute values and B. relative to 

the energy cost of flat running. Individual data is displayed for the four athletes who exhibited the greatest and 

smallest change during uphill or downhill relative to flat running. * - denotes significant difference to uphill (P < 

0.001). # - denotes significant difference to flat running (P < 0.001). 
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Figure 5.3. Scatter plots of the energy cost (n = 22), adjusted for body mass and speed, during A. uphill running vs flat running (r = 0.85; P < 0.001), B. downhill 
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gradients did not produce highly variable EC profiles for different runners, with the ∆Up 

being independent from ∆Down. 

It is possible that the low variability in the EC responses could underpin the lack of 

association between ∆Up and ∆Down. Despite the notable differences in EC between 

gradients, the inter-individual variability in the response to different gradients was limited, 

with between athlete coefficients of variation <15% for both ∆Up and ∆Down. It is possible 

that the gradients used in this study were insufficient to differentiate between runners, and 

could be argued that larger changes in EC elicited by steeper gradients may better 

discriminate individuals and their limitations to running economy (e.g. mechanical or 

metabolic factors).  However, running gradients steeper than ±5% may preclude the use of 

meaningful running speeds, as running speed would have to be reduced for the exercise 

intensity to remain below LTP.  

The findings of the current investigation could have direct implications for running 

performance, specifically the marathon and cross-country events. As the winning margin in 

the men’s marathon is extremely small (0.4% in major summer games over the last 30 years; 

www.sports-reference.com), effective tactics and pacing strategies of elite runners to 

maximise performance are of great interest (Erdmann and Lipinska 2013; Angus 2014). 

Though it has long been established that RE forms a critical determinant of marathon race 

pace (Sjödin and Svedenhag 1985; Joyner 1991), the implications of uneven terrain on RE, 

and thus performance, have been overlooked in the scientific literature. If differential 

responses in RE were evident on different surface gradients, further opportunities to 

maximise application of energy, and thus pacing, over the course of a race would result. For 

example, an individual who is highly economical uphill, but uneconomical downhill, could 

enhance overall race pace by subtly increasing their pace during uphill sections and reducing 

pace during downhill sections. However, since our findings indicate that those runners who 

display superior levels of RE during flat running also display superior RE when running 

uphill and downhill, a runner with superior RE during flat running is likely to benefit equally 

on both flat and undulating courses. Hence, the current investigation demonstrates that the 

assessment of RE during flat running largely determines RE on all shallow uphill and 

downhill gradients.   

In conclusion, the current study demonstrated a disparity between the energy saving of 

running downhill and the additional energy cost of running uphill. However, the between 
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athlete variation in the changes of EC from flat running during uphill and downhill running 

were small, with the changes in EC from flat running to uphill being independent from the 

changes in EC from flat to downhill running. These findings suggest that the different 

gradients produced similar responses for all the runners, with athletes who have the lowest EC 

during flat running also likely to display the lowest EC when running on shallow positive and 

negative gradients. Therefore, the use of laboratory based uphill and downhill running does 

not appear to provide a useful diagnostic tool for understanding the contributions and limiting 

factors to a runner’s economy. 
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CHAPTER VI 

6 The correlation between running economy and maximal oxygen uptake: 

cross-sectional and longitudinal relationships in highly trained distance 

runners… 

 Introduction 6.1

Running economy (RE) and maximal oxygen uptake (V̇O2max) are two of the primary 

determinants of endurance running performance (Joyner 1991; Lucía et al. 2002; di Prampero 

2003; Ingham et al. 2008). The combination of RE and V̇O2max, defined as the velocity at 

V̇O2max (vV̇O2max), has been found to account for ~94% of the inter-individual variance in 

running performance over 16.1 km (McLaughlin et al. 2010). Consequently, exceptional 

values of both RE and V̇O2max are considered requirements for success in elite endurance 

competitions, and endurance runners strive to improve both variables through training in 

order to maximise performance. As the margin of success is extremely small in elite distance 

running, subtle enhancements in either variable could result in substantial performance gains. 

Therefore, understanding the relationship of RE and V̇O2max both between and within 

individuals is necessary to understand and optimise performance.   

In cohorts of trained (Pate et al. 1992; Fletcher et al. 2009) and elite (Morgan and Daniels 

1994) distance runners, it has been suggested that a superior RE, quantified as the 

submaximal oxygen uptake, is associated with a lower V̇O2max. These findings have been 

used to postulate that superior economy compensates for a lower V̇O2max in some individual 

to achieve a similar performance level (Morgan and Daniels 1994; Lucía et al. 2002; Santalla 

et al. 2009). However, these investigations have often been restricted to small sample sizes 

(<25 participants (Morgan and Daniels 1994; Lucía et al. 2002; Fletcher et al. 2009)), and the 

validity of their statistical techniques has been questioned due to the expression of both 

variables relative to body mass (i.e. mL∙kg
-1

∙min
-1

); creating a common divisor that is known 

to produce spurious correlations (Atkinson et al. 2003). Partial correlation analysis would 

provide an appropriate method to account for the influence of body mass on both variables 

whilst avoiding statistical artefacts, however this method has yet to be used to examine the 

relationship between RE and V̇O2max. Furthermore, studies have solely employed oxygen cost 

(OC) as a measure of RE, rather than the comprehensive measurement of energy cost (EC). 
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Thus, whether a genuine association exists between RE and V̇O2max remains unclear from the 

limited cross-sectional observations to date.  

Moreover, the concurrent alterations in RE and V̇O2max that occur in athletes over time with 

training might further reveal if there is an inherent association between these variables, whilst 

also informing the optimisation of both variables and thus performance. Previous 

investigations in well trained athletes have noted enhancements in cycling efficiency 

following short-term, intensive endurance training, but with no change in V̇O2max evident 

(Iaia et al. 2009; Hopker et al. 2009; Santalla et al. 2009). In contrast, a recent investigation 

reported an association between individual changes in cycling efficiency and V̇O2max in 

response to endurance training and across a competitive season; despite no change in mean 

group V̇O2max (Hopker et al. 2012). These preliminary findings highlight the significance of 

this relationship for elite endurance athletes, as enhancements in either RE or V̇O2max might 

only be achievable at the expense of the other variable. However, this previous investigation 

was limited to measurements of gross efficiency, with no data presented on movement 

economy. Moreover, analysis of this longitudinal relationship was restricted to observations 

in small cohorts of athletes, and with responses to run training yet to be explored.   

The primary aim of the current investigation was to explore the cross-sectional relationship 

between V̇O2max and RE, quantified as EC (OC data are also presented for comparative 

purposes), in a large cohort of highly trained distance runners. The secondary aim was to 

examine the longitudinal relationship between the changes in V̇O2max and RE occurring in 

athletes in response to endurance training.  

 Materials and methods 6.2

 Overview 6.2.1

The cross-sectional investigation involved retrospective analysis of data from 168 healthy 

endurance trained athletes with competitive distances ranging from 800m to the marathon 

(males, n = 98; females, n = 70), who undertook testing and monitoring as part of their sport 

science support from the English Institute of Sport. The following tests were performed after 

written informed consent was obtained as a part of sports science support provision, with 

procedures approved by the Internal Review Board of English Institute of Sport. Of the 

participants assessed, 97 (males, n = 57; females, n = 40) were classed as middle distance 
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runners, defined by a primary competitive distance ≤ 3000m (Brandon 1995), with 71 classed 

as long distance runners (males, n = 41; females, n = 30). During the season following their 

final visit, athlete’s best performance times in their primary competitive distance were 89.1 ± 

6.1% and 91.2 ± 4.4% of the current British record for males and females, respectively. Data 

were collected from two laboratories, with all tests conducted as part of athlete support 

services between November 2004 and April 2013. Participants provided informed consent 

prior to physiological assessments, in addition to an athlete agreement providing permission 

for the use of their data in anonymous retrospective analysis. During each visit to the 

laboratory, participants completed first submaximal and then maximal running assessments 

(detailed below). Participants wore appropriate clothing (shorts and a vest or t-shirt) and 

racing shoes, and laboratory conditions were similar throughout all running assessments 

(temperature 20.6 ± 1.9 °C, relative humidity 45.9 ± 9.8%). As differences in RE and V̇O2max 

have been noted between sexes (Daniels and Daniels 1992; Helgerud 1994; Helgerud et al. 

2010), males and females were analysed separately for cross sectional analyses.  

The longitudinal aspect of the study was based on 54 participants (males, n = 27; females, n = 

27) from amongst the larger cohort of 168 runners, that had completed at least one follow up 

assessment, with a median trial separation of 203 days (range: 37 – 2567 days) in order to 

assess within-athlete changes in both RE and V̇O2max over time. The number of repeat 

assessments in the longitudinal analysis varied between participants, with a median of 3 visits 

per athlete (range: 2 – 10 visits), summating to 182 assessments in total. No evidence is 

currently available regarding sex differences in the concurrent alterations in RE and V̇O2max 

in response to habitual endurance training, thus data for males and females were combined 

for longitudinal analysis.  

 Protocol 6.2.2

Submaximal running assessments 

Following a warm-up (~10 min at 10-12 km∙h
-1

), participants completed a discontinuous 

submaximal incremental test consisting of six to nine stages of 3 minutes continuous running, 

with increments of 1 km∙h
-1

 on a motorised treadmill of known belt speeds (HP cosmos 

Saturn, Traunstein, Germany) interspersed by 30 s rest periods for blood sampling. As the 

speeds assessed were typically between 10.5 km∙h
-1

 and 18 km∙h
-1

, treadmill gradient was 

maintained at 1% throughout submaximal assessments in order to reflect the energetic cost of 
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outdoor running (Jones and Doust 1996). This protocol has been shown to be reliable 

measures of running economy when quantified as both EC and OC (typical error ~3%; (Shaw 

et al. 2013)). Moreover, the controlled laboratory environment enabled assessments of EC 

whilst avoiding the confounding influence of air resistance that is evident during outdoor 

running as speed increases (Pugh 1970). Recent performance times of participants were used 

to determine an appropriate starting speed to provide ~4 speeds prior to lactate turnpoint 

(LTP). Increments were continued until blood lactate concentration had risen exponentially, 

typically defined as an increase in blood lactate of ~2 mmol∙L
-1

 from the previous stage. HR 

(s610i, Polar, Finland) and pulmonary gas exchange (detailed below) were monitored 

throughout the test. 

Table 6.1. Physiological and anthropometrical characteristics of athletes within the cross sectional 

and longitudinal investigations. 

 Cross sectional Longitudinal sub-group 

 Females 

(n = 70) 

Males 

(n = 98) 

Females 

(n = 27) 

Males 

(n = 27) 

Age (yrs) 23 ± 4 23 ± 6 23 ± 5 21 ± 3 

Body mass (kg) 55.2 ± 4.7 67.1 ± 7.1 55.4 ± 4.3 66.6 ± 6.0 

Stature (cm) 169 ± 5 179 ± 7 168 ± 4 179 ± 6 

V̇O2max (mL∙kg
-1

∙min
-1

) 65.2 ± 5.9 73.0 ± 6.3 64.5 ± 4.9 73.6 ± 5.9 

vLTP (km∙h
-1

) 15.5 ± 1.2 17.2 ± 1.3 15.7 ± 1.2 17.6 ± 1.1 

Running economy (kcal∙kg
-1

∙km
-1

) 1.15 ± 0.09 1.14 ± 0.09 1.13 ± 0.06 1.13 ± 0.07 

V̇O2max, maximal oxygen uptake; vLTP, velocity at lactate turnpoint 

 

Maximal running assessments 

V̇O2max was determined by a continuous incremental treadmill running ramp test to volitional 

exhaustion. After a warm-up, participants initially ran at a speed 2 km∙h
-1

 below the final 

speed of the submaximal test and at a 1% gradient. Each minute, the incline was increased by 

1% until volitional exhaustion. The test duration was typically 6-8 minutes.  
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 Measurements 6.2.3

Anthropometry 

Prior to exercise on laboratory visits, body mass was measured using digital scales (Seca 700, 

Seca, Hamburg, Germany) to the nearest 0.1 kg. Stature was recorded to the nearest 1 cm 

using a stadiometer (Harpenden Stadiometer, Holtain Limited, UK).  

Pulmonary gas exchange 

Breath-by-breath gas exchange data were quantified via an automated open circuit metabolic 

cart (Oxycon Pro, Carefusion, San Diego, USA). Participants breathed through a low dead-

space mask, with air sampled at 60 mL∙min
-1

. Prior to each test, two point calibrations of both 

gas sensors were completed, using a known gas mixture (16% O2, 5% CO2) and ambient air. 

Ventilatory volume was calibrated using a 3 L (±0.4%) syringe. This system has previously 

been shown to be a valid apparatus for the determination of oxygen consumption (V̇O2) and 

carbon dioxide production (V̇CO2)  at both low and maximal exercise intensities (Rietjens et 

al. 2001). As previous data from our laboratory has demonstrated a steady state V̇O2, and 

V̇CO2 is achieved within the first 2 minutes of each stage for highly trained endurance 

runners (Shaw et al. 2013), mean values from breath-by-breath measures over the final 60 

seconds of each stage were used to quantify V̇O2, carbon dioxide production V̇CO2, and RER. 

Blood lactate 

A 20µL capillary blood sample was taken from the earlobe for analysis of blood lactate ([La]b) 

(Biosen C-line, EKF diagnostics, Germany). The LTP was identified via the modified Dmax 

method (Bishop et al. 1998). LTP was quantified as the point on the third order polynomial 

curve fitted to the speed-lactate relationship that generated the greatest perpendicular distance 

to the straight line formed between the stage proceeding an increase in [La]b greater than 0.4 

mmol.L
-1

 (lactate threshold) and the final stage. The four stages prior to LTP were identified 

for each participant, with an average of these four stages used to quantify OC and EC 

Calculation of running economy  

V̇O2 and V̇CO2 during the final minute of each submaximal stage were used to calculate EC. 

Updated nonprotein respiratory quotient equations (Péronnet and Massicotte 1991) were used 

to estimate substrate utilisation (g∙min
-1

) during the monitored period. The energy derived 
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from each substrate was then calculated by multiplying fat and carbohydrate usage by 9.75 

kcal and 4.07 kcal, respectively, reflecting the mean energy content of the metabolised 

substrates during moderate to high intensity exercise (Jeukendrup and Wallis 2005). EC was 

quantified as the sum of these values, expressed in kcal∙km
-1

. V̇O2 during the final minute of 

each submaximal stage was used to determine oxygen cost (OC) in mL∙km
-1

 to enable 

comparisons to previous investigations. 

 Statistical analyses 6.2.4

Data are presented as mean ± SD for all dependant variables. Data analysis was conducted 

using SPSS for windows (v21; IBM Corporation, Armonk, NY). When an individual visited 

the laboratory for repeated assessments, an average of the assessments was calculated and 

used for the cross sectional analysis. Pearson’s product-moment coefficients were calculated 

to assess the relationship between body mass and EC, OC and V̇O2max.  As body mass was 

strongly related to both RE measures (EC, OC) and V̇O2max, partial correlations controlling for 

body mass, and associated 95% confidence intervals (CI), were used to assess the relationship 

between absolute V̇O2max and both EC and OC. This method removes the influence of body 

mass on both RE and V̇O2max whilst avoiding spurious correlations created by correlating two 

variables with a common divisor (Pearson 1896). For graphical display of these relationships, 

values of EC and V̇O2max adjusted for body mass for each individual were calculated based on 

individual residuals. This involved summating the individual’s residual, in comparison to the 

cohort relationship with body mass (e.g. EC vs body mass), with the group mean for that 

variable (Moya-Laraño and Corcobado 2008). For the longitudinal analysis, in order to assess 

any relationships between the changes over time in absolute V̇O2max and the changes in both 

EC and OC over repeat visits, partial correlation coefficients were calculated using ANCOVA 

(Bland and Altman 2009); providing a comprehensive model that accounts variations in both 

body mass and the number of visits per athlete.  Cohen's d effect size descriptors (trivial 0.0 – 

0.1, small 0.1 – 0.3, moderate 0.3 - 0.5, large 0.5 - 0.7, very large 0.7 – 0.9, nearly perfect 0.9 

- 1, perfect 1) were used to infer correlation magnitude (Hopkins et al. 2009). Significance 

was accepted at P ≤ 0.05. 
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 Results 6.3

 Participant Characteristics 6.3.1

Participant characteristics are shown in Table 6.1. The well trained status of the participants 

was emphasised by the high V̇O2max and vLTP values for both males and females.   

 Cross-sectional analysis 6.3.2

Partial correlation analysis controlling for body mass, revealed small positive relationships 

between EC and V̇O2max (males r = 0.26, CI 0.07 – 0.44, P = 0.009; females r = 0.25, CI 0.02 

– 0.46, P = 0.036; Figure 6.1), and a moderate positive relationship between OC and V̇O2max 

(males r = 0.33, CI 0.14 – 0.50, P = 0.001; females r = 0.33, CI 0.10 – 0.52, P = 0.006). 

Longitudinal analysis 

Partial correlation analysis from ANCOVA revealed moderate positive relationships between 

the changes in EC and V̇O2max over time (r = 0.35; CI 0.19 – 0.49, P < 0.001; Figure 6.2), and 

changes in OC and V̇O2max over time (r = 0.44; CI 0.29 – 0.57, P < 0.001).  

 Discussion 6.4

The present investigation explored the cross-sectional and longitudinal relationships between 

RE and V̇O2max
 
in a large cohort of highly trained distance runners. The major contribution of 

this study to the field is that only a small to moderate association exists between RE and 

V̇O2max (R
2
 ~ 12%) when body mass is appropriately accounted for. With >85% of the 

variance in these variables unexplained by this relationship, these findings reaffirm that RE 

and V̇O2max are primarily determined by independent physiological factors. 

Cross-sectional analysis revealed a small positive between-participant relationships between 

V̇O2max and the metabolic cost of running, when quantified as both EC (r ~ 0.25) and OC (r ~ 

0.33). These results support the findings of Pate et al. (Pate et al. 1992), who reported a 

similar relationship (r = 0.29) between submaximal V̇O2 and V̇O2max in a similarly large 

cohort of habitual distance runners. Conversely, a stronger, moderate positive relationship has 

been reported between submaximal V̇O2 and V̇O2max in smaller cohorts of elite distance 

runners (r = 0.59; (Morgan and Daniels 1994)) and physically active individuals (r = 0.48; 

(Sawyer and Blessinger 2010)). However, all aforementioned investigations are confounded  
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Figure 6.1. Scatter plot of energy cost (Kcal∙km
-1

) adjusted for body mass (BM) vs V̇O2max (L∙min
-1

) 

adjusted for BM for both females (A; n = 70; r = 0.25; P = 0.036) and males (B; n = 98; r = 0.26; P = 0.009) 

in the cross-sectional analysis. 
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by statistical artefacts that arise when correlating two variables with common divisors 

(Pearson 1896; Atkinson et al. 2003), and thus should be regarded with caution. Within the 

current study, spurious correlations between RE and V̇O2max were avoided by removing the 

influence of body mass with partial correlations, which enabled the true relationship between 

these variables to be examined. As a lower metabolic cost is reflective of a more economical 

runner, our findings confirm the existence of a small inverse association between RE and 

V̇O2max in endurance runners. The longitudinal analysis of the relationship between the 

changes in RE and the changes in V̇O2max within participants in response to training has not 

previously been documented. Supporting the findings from our cross sectional analysis, a 

moderate positive relationship (r = 0.35) was observed between the changes in EC and V̇O2max 

over repeated assessments. Moreover, these findings support recent observations from 

competitive road cyclists that highlighted a similar moderate relationship (r = 0.44) between 

changes in gross efficiency and V̇O2max across a training season (Hopker et al. 2012).  

It has been postulated that variations in lipid oxidation rates between individuals might, in 

part, explain the relationship between OC and V̇O2max that some previous studies have 

documented; with a higher V̇O2max facilitating greater lipid oxidation and consequently a 

greater OC during sub-maximal exercise (Pate et al. 1992). Whilst OC may be sensitive to 

lipid oxidation, the calculation of EC includes the RER and thus is insensitive to differences 

in substrate metabolism. The influence of substrate metabolism could conceivably explain the 

marginally stronger relationship observed between OC and V̇O2max, than EC and V̇O2max, in 

both the cross sectional (r ~ 0.33 vs r ~ 0.25) and longitudinal observations (r = 0.44 vs r = 

0.35).  More importantly, a positive relationship was documented between EC and V̇O2max 

that is clearly independent of variations in lipid metabolism.  

The mechanisms that underpin the small relationship between EC and V̇O2max remain unclear. 

It has been argued that for athletes of a similar, high performance level, there would be an 

inevitable relationship between EC and V̇O2max in order to produce a similar velocity at 

V̇O2max (Noakes and Tucker 2004). However, we have found no evidence for this possibility, 

despite all the participants in this study being highly trained and high performing runners, 

perhaps in part because of the variable performance ability of the athletes. 
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It is also possible that the recruitment and distribution of muscle mass could provide a 

potential explanation for these findings. Less economical runners might recruit a larger 

muscle mass due to excessive braking, oscillation etc. in their running gait, which could 

conceivably contribute to a higher V̇O2max. Moreover, this could be exacerbated by a greater 

amount of muscle mass carried distally on the lower limbs, increasing the energy requirement 

during submaximal running (Myers and Steudel 1985; Martin 1985) but also increasing the 

V̇O2max during maximal running through the activation of a greater volume of mass. However, 

further investigation would be required to confirm the identity the of factors driving the 

interdependence of EC and V̇O2max.  

Though reaching statistical significance, the association between RE and V̇O2max was small. 

The current study found only ~ 7% (between-participant cross sectional data) and 12% 

(within-participant longitudinal data) of the variance in RE was explained by V̇O2max. This 

small association likely reflects the distinct nature of these variables and their physiological 
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Figure 6.2. Scatter plot of the changes over time in energy cost (Kcal∙km-1) adjusted for body mass 

(BM) vs the changes over time in V̇O2max (L∙min-1) adjusted for BM (r = 0.35; P < 0.001) in the 

longitudinal analysis. 
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determinants. V̇O2max is known to be determined by factors such as cardiac output (Blomqvist 

and Saltin 1983), total haemoglobin mass (Schmidt and Prommer 2008), and mitochondrial 

capacity (di Prampero 2003). Conversely, RE is thought to be closely associated to multiple 

biomechanical and anthropometrical factors, including effective storage and re-utilisation of 

elastic energy (Scholz et al. 2008; Hunter et al. 2011), vertical oscillation (Tartaruga et al. 

2012) and ground contact time (Di Michele and Merni 2014). As there are few common 

determinants of both RE and V̇O2max, adaptations that lead to enhancements in one of these 

variables are unlikely to directly influence in the opposing variable.    

In conclusion, the current investigation demonstrates that only a small to moderate 

relationship exists between running economy and V̇O2max in highly trained distance runners. 

With >85% of the variance in these variables unexplained by this relationship, these findings 

reaffirm that running economy and V̇O2max are primarily determined by independent 

physiological factors. 
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CHAPTER VII 

7 The efficacy of supplementary downhill running as a method to 

enhance running economy in highly trained distance runners 

 Introduction 7.1

Running economy (RE), defined as the energy cost to cover a given distance, is a primary 

physiological determinant of endurance running performance (di Prampero 2003; Ingham et 

al. 2008). In populations where the differences in athletic capabilities are small, the 

combination of running economy and maximal oxygen uptake (V̇O2max) can account for 

>90% of the variability in performance (McLaughlin et al 2010). In addition, improvements 

in V̇O2max for athletes with already high capacities are difficult to achieve (Hopker et al. 

2009; Lucia et al. 2000; Jones 2006; Iaia et al. 2009), therefore methods to enhance running 

economy are sought after to maximise an athlete’s performance. However, established 

training interventions that can improve running economy in already well trained runners are 

limited. 

Previous investigations have explored the use of strength training and plyometric training as 

methods to enhance running economy in trained distance runners. Through the addition of 

lower-limb strength and/or plyometric training into endurance running programmes for ~10 

weeks, improvements in running economy of 4-8% have been noted (Johnston et al. 1997; 

Paavolainen et al. 1999; Saunders et al. 2006; Sedano et al. 2013), commonly attributed to 

neural adaptations that facilitate greater exploitation of the stretch shortening cycle and 

improved running mechanics (Paavolainen et al 1999; Saunders et al. 2006). Downhill 

running might facilitate greater time at high velocities of running, due to the lower metabolic 

cost, and also promote adaptations in stretch shortening cycle function and running 

mechanics.  

Downhill running involves lowering the centre of mass within a stride cycle, releasing 

gravitational potential energy. When compared to flat or uphill running, downhill running is 

associated with greater impact loads and higher vertical velocity on landing (Yokozawa et al. 

2005; Gottschall and Kram 2005; Neves et al. 2014), resulting in greater eccentric 

contractions of the extensor muscles of the lower limbs. Consequently, there is greater 

potential for elastic energy storage and return (Snyder and Farley 2011). Frequent exposure to 
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these higher impact loads and exaggerated stretch-shortening cycle activity could induce a 

range of adaptations, including higher rates of force development (Cadore et al. 2014) and 

increased muscle-tendon unit stiffness (Fouré et al. 2010), that promote more effective energy 

storage and return. In addition, running downhill incurs a lower metabolic cost compared to 

flat or uphill running (Margaria et al. 1963; Minetti et al. 2002), such that higher velocities 

can be achieved for the same EC. Consequently, a greater volume of training at higher speeds 

may be possible with downhill running compared to running on the flat.  

To our knowledge, no previous investigation has examined the physiological responses to 

extended periods of downhill run training. A one off bout of running down steep gradients (-

12-15%) has been shown to cause severe exercise induced muscle damage (EIMD) that has 

been associated with a transient worsening of running economy (Chen et al. 2007; Chen et al. 

2008; Chen et al. 2009; Baumann et al. 2014). However, the use of shallow gradients and a 

progressive exposure (LaStayo et al. 2000) would be expected to circumvent any EIMD. 

Therefore, the aim of the current investigation was to assess the efficacy of a supplementary 8 

week programme of progressive downhill running as a means of enhancing running economy 

in well trained distance runners. The downhill running intervention was compared to an 

equivalent supplementary 8-week programme of intensity matched flat running to isolate the 

effect of surface gradient. It was hypothesised that prescribed regular downhill running would 

improve running economy.   

 Materials and methods 7.2

 Participants 7.2.1

Twenty four healthy distance runners were initially recruited to take part in the current 

investigation, however five athletes withdrew due to either injuries unrelated to the 

intervention (n = 3), or unforeseen circumstances that resulted in an inability to attend further 

sessions (n = 2). Subsequently nineteen athletes completed the study (male, n = 17; Age: 25 ± 

6 years; stature: 179 ± 5 cm; body mass: 68.2 ± 7.2 kg; V̇O2max: 73.9 ± 5.5 mL·kg
-1·min

-1
; 

female n = 2; Age: 24 ± 5 years, stature: 168 ± 4 cm, body mass: 58.3 ± 6.6 kg, V̇O2max: 62.6 

± 1.4 mL·kg
-1·min

-1
). Participants’ best performance times over the last two seasons were 118 

± 6% of the current British record as of May 2015 in their primary event between 800m and 

marathon. All participants were treadmill habituated, and provided written informed consent 
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prior to participating in this study that had Loughborough University Ethics committee 

approval. 

 Overview 7.2.2

Participants were required to visit the laboratory on two occasions per week for 11 

consecutive weeks (Figure 7.1). Prior to the initial visits, participants were required to 

provide an overview of their ‘typical’ weekly training in the weeks leading up to the 

investigation, that was categorised based on the 3 zones approach proposed by Seiler et al. 

(2006). Briefly, marathon pace was defined as zone 1, > marathon pace but < 10 km pace as 

zone 2, and greater than 10 km pace zone 3 (Table 7.1).  

Table 7.1. Participant’s weekly run training prior to intervention, categorised by a 3 zone approach 

(Seiler et al. 2006). Zone 1 < lactate threshold; Zone 2 > lactate threshold, < lactate turnpoint; Zone 3 > 

lactate turnpoint.    

 

All athletes performed 1 ± 1 gym-based conditioning session per week as part of their 

habitual training. Participants were then pair matched based on current habitual training, 

competitive distances and sex, before being randomly allocated to either the flat (n=9) or the 

downhill (n=10) groups. During the first visit, participants completed a submaximal flat 

running assessment followed by a maximal running assessment, with ~15 minutes of rest in 

between. During the same week, participants returned for a second visit to complete a 

submaximal downhill running assessment. Participants then completed two blocks of 4 weeks 

of supplementary training where they completed a prescribed treadmill run twice each week 

(detailed below)  on either the flat (1%) or downhill (-5%), interspersed with a week to 

complete submaximal downhill and flat running assessments to reassess appropriate training 

speeds. Following the second training block, participants returned to complete post training 

assessments in an identical format to pre-training. Participants wore appropriate clothing and 

Group 
Total run volume  

(miles) 
Zone 1 

(% total volume) 
Zone 2 

(% total volume) 
Zone 3 

(% total volume) 

Flat training 54.6 ± 5.2 69 ± 9 16 ± 10 15 ± 3 

Downhill 

training 
53.6 ± 7.6 68 ± 9 18 ± 10 14 ± 3 
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racing shoes, and laboratory conditions were consistent throughout all running assessments 

(temperature, 19 ± 1°C; relative humidity, 43 ± 12%), and with similar conditions maintained 

throughout all training sessions. 

 Protocol 7.2.3

Submaximal running assessments 

Following a warm-up (~10 min at 10-12 km∙h
-1

), participants completed a discontinuous 

submaximal incremental test consisting of six to nine stages of 3 minutes continuous running, 

with increments of 1 km∙h
-1

 on a motorised treadmill of known belt speeds (HP cosmos 

Saturn, Traunstein, Germany) interspersed by 30 s rest periods for blood sampling. During 

flat assessments, gradient was maintained at 1% throughout submaximal assessments in order 

to reflect the energetic cost of outdoor running (Jones and Doust 1996). This protocol has 

been shown to provide reliable measures of energy cost (typical error ~3%; Chapter 3). 

During downhill running assessments, the same procedure was followed with the treadmill 

belt maintained at -5%. 

The heart rate (HR) response during the warm-up was used to determine a starting speed and 

provide ~4 speeds prior to lactate turnpoint (LTP). Increments were continued until blood 

lactate concentration had risen exponentially, typically defined as an increase in blood lactate 

of ~2 mmol∙L
-1

 from the previous stage to enable identification of the velocity at LTP (vLTP) 

as detailed below. HR (s610i, Polar, Finland) and pulmonary gas exchange (detailed below) 

were monitored throughout the pre and post training assessments. 

Training velocities were then based on vLTP, as this speed represents the highest speed 

where valid measures of running economy are still achievable. The vLTP from baseline flat 

and downhill assessments were used to infer appropriate training velocities for the flat and 

downhill conditions, respectively, during the first training block, with the vLTP from the 

mid-assessment used to infer training paces during the second training block.  
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Maximal running assessments 

V̇O2max was determined by a continuous incremental treadmill running ramp test to volitional 

exhaustion. Participants initially ran at a speed 2 km∙h
-1

 below the final speed of the 

submaximal test and at a 1% gradient. Each minute, the incline was increased by 1% until 

volitional exhaustion. The test duration was typically 6-8 minutes.  

Supplementary training interventions 

Two progressive ‘tempo’ training sessions were included in each athlete’s weekly habitual 

training programme during both of the 4 week training blocks (Figure 7.1). To accommodate 

the supplementary training, athletes typically replaced an existing sessions of a similar 

intensity in their habitual programme with the prescribed sessions. Participants completed the 

prescribed sessions in their weekly programme at a time of their own discretion. During the 

first training session, following a light warm up (~10 mins at ~11-12 km·h-1
), participants 

completed 7 mins of running at 90% of the gradient specific vLTP that led continuously into 

5 mins at 100% vLTP. Participants then rested for 3 minutes, followed by a final 3 minutes at 

110% vLTP. The same session was then repeated within 7 days, with volume incrementally 

increasing for each additional week. For the following 3 weeks, 2 minutes were added to each 

intensity (i.e. by week 4: 13 mins at 90%vLTP, 11mins at 100%vLTP and 9 mins at 

110%vLTP). There was a 3 min rest period between the 100%vLTP and 110%vLTP efforts. 

To ensure athletes could achieve the total duration prescribed at 110%vLTP this period was 

divided into intervals that were ≤ 3 mins with 90s rest between intervals (i.e. 7 mins spilt into 

3 x 2 min 20 second intervals, 9 mins into 3 x 3min intervals). During the second 4-week 

block the duration at each intensity was only increased by 1 min·week
-1

. As a result, the final 

two training sessions involved 17 mins at 90% vLTP, 15 mins at 100% vLTP and 13 mins (5 

x 2 min 36 s) at 110% vLTP. All supplementary training sessions were supervised by the 

principle investigator.  

 Measurements 7.2.4

Anthropometry 

Prior to exercise during visits for submaximal running assessments, body mass was measured 

using digital scales (Seca 700, Seca, Hamburg, Germany) to the nearest 0.1 kg. Stature was 
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recorded to the nearest 1 cm using a stadiometer (Harpenden Stadiometer, Holtain Limited, 

UK). Using calibrated callipers (Harpenden, Holtain Limited, UK), body composition was 

assessed at pre- and post-intervention using an 8 site skinfold method (bicep, tricep, 

subscapular, illiac crest, supra-illiac, abdonmen, thigh and calf), performed by ISAK trained 

personnel. The total of the 8 sites was then calculated and used as an index of fat mass.   

Pulmonary gas exchange 

Breath-by-breath gas exchange data were quantified via an automated open circuit metabolic 

cart (Oxycon Pro, Carefusion, San Diego, USA). Participants breathed through a low dead-

space mask, with air sampled at 60 mL∙min
-1

. Prior to each test, two point calibrations of both 

gas sensors were completed, using a known gas mixture (16% O2, 5% CO2) and ambient air. 

Ventilatory volume was calibrated using a 3 L (±0.4%) syringe. Oxygen consumption (V̇O2), 

carbon dioxide production (V̇CO2) and RER values were quantified over the final 60 s of 

each stage in both submaximal protocols. V̇O2max was defined as the highest average breath-

by-breath V̇O2 over a continuous 30s sample during the maximal running assessment, 

expressed relative to body mass (mL·kg
-1·min

-1
). Solving the regression equation describing 

V̇O2 and speed for the incremental intensities during the submaximal flat running assessment 

calculated the velocity associated with V̇O2max (vV̇O2max). The utilisation of V̇O2max at vLTP 

(%vLTP) was calculated pre and post intervention by expressing V̇O2 at LTP as a percentage 

of vV̇O2max.   

Blood lactate 

Between submaximal running stages 20µL of capillary blood was sampled from the earlobe 

for analysis of blood lactate (Biosen C-line, EKF diagnostics, Germany). LTP was identified 

by two independent practitioners, based on the Thoden model that defines LTP as the running 

speed above which blood lactate concentration increased by >1.0 mmol·L-1
 from the previous 

stage (Thoden 1991).The four stages prior to LTP were identified for each participant during 

flat (LTPF) and downhill running (LTPD), with an average of these four stages used to 

quantify energy cost. 

Calculation of running economy  

V̇O2 and V̇CO2 during the final minute of each submaximal stage were used to calculate EC. 

Updated nonprotein respiratory quotient equations (Péronnet and Massicotte 1991) were used 
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to estimate substrate utilisation (g∙min
-1

) during the monitored period. The energy derived 

from each substrate was then calculated by multiplying fat and carbohydrate usage by 9.75 

kcal and 4.07 kcal, respectively, reflecting the mean energy content of the metabolised 

substrates during moderate to high intensity exercise (Jeukendrup and Wallis 2005). Energy 

cost was quantified as the sum of these values, expressed in kcal∙km
-1

, for both flat running 

(REF) and downhill running (RED). 

Biomechanical parameters 

As all stride parameters are known to be influenced by absolute running speed, the following 

analysis was conducted at a standardised speed of 16 km·h-1
 to enable interindividual 

comparisons. This speed was selected due to being common through all submaximal 

assessments on both gradients. A photoelectric cell system (Optojump, Microgate, Bolzano, 

Italy) was used to measure ground contact time, flight time, stride length and stride frequency 

over the final 60s of each running stage during the submaximal flat and downhill running 

assessments. The system consisted of two parallel units (a transmitter and a receiver), set on 

opposing sides of a 2 m section of the treadmill belt. The photoelectric system was positioned 

0.3 cm above the plane of the treadmill belt and each transmitter contained 96 equidistant 

LEDs per meter, recording at 1 kHz. All parameters were quantified using the Optojump 

Next software (v 1.9.9.0). Data were filtered to remove erroneous values >2 standard 

deviations away from the mean. Due to equipment limitations, observations were restricted to 

12 athletes during flat assessments (downhill training group, n=7; flat training group, n=5) 

and 11 athletes during downhill assessments (downhill training group, n=7; flat training 

group, n=4).    

 Statistical analyses 7.2.5

Data analysis was conducted using SPSS for windows (v21; IBM Corporation, Armonk, NY). 

Normal distribution of the dependent variables was confirmed via Shaprio-wilk tests, and the 

variance was found to be homogenous where 3 time points were assessed. Paired sample t-

tests were used to assess any differences between groups at baseline for the training, 

anthropometrical, physiological and stride characteristics assessed. Pearson’s product-

moment correlation coefficient between measures of EC (Kcal·kg
-1

·km
-1

; averaged over the 4 

stages prior to LTP) and body mass from the first submaximal flat running assessment were 

used to assess the appropriateness of linear modelling to remove the influence of body mass 
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in accordance with chapter 3. The effect of the training interventions on the physiological 

variables and stride parameters were assessed within groups via paired samples t-tests, with 

two (Group; Downhill training and Flat training) by two (Time; Pre and Post) mixed 

measures ANOVA used to assess differences in the responses between interventions. Post 

hoc analysis with Bonferroni adjustment was used to identify where any significant 

differences occurred. To assess any relationships between the changes over time in absolute 

V̇O2max and running economy, partial correlation coefficients were calculated using 

ANCOVA (Bland and Altman 2009), with 95% confidence intervals. Data are presented as 

mean ± SD for all dependant variables, with significance differences accepted at P ≤ 0.05. 

 Results 7.3

No differences were observed in age (27 ± 6 and 23 ± 5 yrs) or stature (177 ± 5 and 179 ± 

5cm) between the flat and downhill training groups at baseline, nor were any differences 

noted in other anthropometrical, training, physiological or biomechanical characteristics 

(Table 7.1; Table 7.2; Table 7.3). Body mass remained consistent across the study period for 

both flat and downhill groups (t-test, P=0.10 and P=0.93; respectively; group x time 

interaction effect, P = 0.19). Sum of 8 skinfolds decreased post intervention in the flat 

training group (P = 0.05) with no change in the downhill group (P = 0.14). However, no time 

x group interaction effect was present (P = 0.48). Pearson’s correlations confirmed the 

appropriateness of linear modelling to remove the influence of body mass on EC (R
2
=0.10; 

P=0.20).   

 Flat running assessments 7.3.1

No differences in REF were evident between pre and post assessments in the downhill (P = 

0.41) or flat training group (P = 0.68), with no group x time interaction effect (P = 0.89; 

Figure 7.2a). LTPF increased from pre to post assessments in the flat (P = 0.05) and downhill 

training group (P = 0.02), however no group x time interaction effect was present (Table 7.3). 

An increase in %vLTP was evident when groups were combined (Main effect of time, P 

=0.05), however no interaction effect was present. Further, no significant increases from pre 

to post assessments were noted in the percentage utilisation of vV̇O2max at vLTP within the 

downhill (86.2 ± 8.0% vs 89.4, P=0.19) or flat training group (86.5 ± 4.5% vs 89.1 ± 4.5%, 

P=0.11), respectively, when analysed separately. 
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Figure 7.2. Energy cost pre- and post-8 weeks of supplementary training in the flat (Solid squares, solid line) 

and downhill (Open triangles, dashed line) training groups during submaximal A. flat and B. downhill running 

assessments. 

A 

B 
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 Flat training Downhill training 

 Pre Post Pre Post 

Body mass (kg) 68.2 ± 7.9 67.2 ± 8.1 66.2 ± 7.7 66.1 ± 7.4 

Skinfolds (mm) 55.0 ± 22.9 50 ± 17.9 48.6 ± 15.4 45.7 ± 10.9 

V̇O2max (mL·kg
-1

·min
-1

) 72.9 ± 6.7 72.6 ± 5.9 72.6 ± 6.7 70.7 ± 4.9 

vV̇O2max (km·h
-1

) 19.7 ± 1.6 19.5 ± 1.3 19.2 ± 1.3 19.1 ± 1.0 

     

 

Table 7.2. Anthropometric and physiological variables assessed at baseline and post 8 weeks of 

prescribed training. 

 

 

 

 

V̇O2max, maximal oxygen uptake; vV̇O2max, flat running velocity associated with maximal oxygen 

uptake 

No differences in V̇O2max or vV̇O2max
 
were noted between pre and post assessments in either 

condition (Table 2), nor were any group x time interaction effects present (P = 0.38 and P = 

0.55). Partial correlation analysis from ANCOVA revealed no significant relationship 

between the changes in running economy and V̇O2max over time (r = 0.34; CI -0.17 – 0.70; P 

= 0.16).  

For biomechanical variables, there were no changes between pre and post assessments 

(P>0.33), or group x time interaction effects, for flight time, stride length and stride 

frequency during running on the flat (Table 7.3). ANOVA revealed a significant group x time 

interaction effect for ground contact time, indicating the changes in ground contact over the 

intervention period were different between groups. Post hoc analysis revealed no differences 

in contact time between groups post intervention (P = 0.64) and within group t-tests revealed 

contact time displayed a non-significant increase in the flat training group (P = 0.09) and a 

non-significant decrease in the downhill training group (P = 0.18) post training.  

 Downhill running assessments 7.3.2

No differences in RED were evident between pre and post assessments in the downhill (P = 

0.23) or flat training group (P=0.87), with no interaction effect present between groups 

(P=0.61; Figure 7.2b). LTPD increased from pre to post assessments in the downhill (P = 0.02) 

and flat training group (P = 0.04), however no interaction effect was present (Table 7.3). 

The %vLTP remained consistent for both the downhill (82.5 ± 7.9% vs 85.3 ± 6.9%, P=0.21) 

and flat training groups (82.7 ± 5.2% vs 84.4 ± 3.6%, P=0.43) from pre to post assessments, 
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respectively. Flight time, stride frequency, stride length and ground contact time remained 

unchanged during downhill running assessments following training in both groups (P>0.11), 

with no group x time interactions (Table 7.3). 

 Discussion  7.4

The aim of the current investigation was to evaluate the efficacy of a supplementary downhill 

run training programme as a means to enhance the running economy of well-trained distance 

runners. We found that 8 weeks of additional downhill or flat run training at vLTP in existing 

training programmes did not change running economy. Both training groups showed 

improvements in vLTP of both flat and downhill running, and therefore these improvements 

were not specific to the training gradient. However, no changes in V̇O2max or velocity of 

V̇O2max were evident in either condition. Contrary to our hypothesis, a short programme of 

supplementary downhill run training did not enhance running economy in already well 

trained individuals.  

The influence of chronic downhill training on running economy has not previously been 

documented. It was proposed that downhill running could facilitate greater training time at 

high running velocities, in addition to exposure to high impact forces, which could lead to 

adaptations in stretch shortening cycle function and running mechanics; and thus 

improvements in running economy. Due to the reduced EC for a given exercise intensity, 

training velocities were ~2 km·h-1
 greater in the downhill group compared to the flat training 

group. However, despite the exposure to higher running velocities and greater impact forces 

in the downhill training group, no changes in running economy were observed after 16 

sessions of downhill run training in already well trained individuals. 

In contrast, traditional plyometric training has been shown to increase running economy in 

trained endurance athletes over a similar time frame (Paavolainen et al. 1999; Saunders et al. 

2006), attributed to concurrent changes in surrogate measures of neuromuscular adaptations 

(i.e. ground contact times, 5 jump plyometric test performances) that could lead to a greater 

exploitation of the stretch-shortening cycle. However, no changes in running mechanics were 

observed following downhill run training in the current investigation.   
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Table 7.3. Physiological and biomechanical variables assessed pre and post 8 weeks of prescribed training in the flat and downhill training groups. 

 * - denotes significant difference to pre-assessment (P ≤ 0.05). RED, downhill running economy; LTPF, lactate threshold for flat running; LTPD, 

lactate threshold for downhill running

 Flat training  Downhill training ANOVA (group x 

time; P=)  Pre Post Pre Post 

Flat Running      

LTPF (km·h
-1

) 16.9 ± 0.7 17.2 ± 1.0* 16.5 ± 0.7 16.9 ± 0.6* 0.53 

Ground contact (s) 0.20 ± 0.02 0.21 ± 0.01 0.21 ± 0.01 0.20 ± 0.01 0.03 

Stride length (m) 3.02 ± 0.21 3.07 ± 0.12 2.96 ± 0.12 3.01 ± 0.19 0.98 

Stride frequency 

(Strides·min
-1

) 
176 ± 14 174 ± 7  178 ± 7 179 ± 6 0.64 

Flight time (s) 0.14 ± 0.02 0.14 ± 0.02 0.13 ± 0.02 0.13 ± 0.02 0.64 

Downhill Running      

LTPD (km·h
-1

) 19.3 ± 1.0 19.7 ± 1.3* 18.5 ± 0.8 19.1 ± 0.8* 0.53 

Ground contact (s) 0.20 ± 0.02 0.21 ± 0.01 0.20 ± 0.02 0.20 ± 0.01 0.21 

Stride length (m) 3.10 ± 0.20 3.18 ± 0.15 3.00 ± 0.05 3.05 ± 0.05 0.44 

Stride frequency 

(Strides·min
-1

) 
170 ± 12 169 ± 8  176 ± 4 177 ± 5 0.27 

Flight time (s) 0.15 ± 0.02 0.15 ± 0.01 0.14 ± 0.02 0.14 ± 0.02 0.74 
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It is possible that the highly trained status of the current cohort could, in part, explain the lack 

of change in running economy in the current investigation. Despite no previous exposure to 

structured downhill running, participants all performed high intensity training and resistance 

based conditioning sessions in their habitual training; matching previous observations from 

high performance endurance runners (Esteve-Lanao et al. 2005; Enoksen et al. 2011; Ingham 

et al. 2012). In contrast, previous investigations have commonly observed athletes that had 

minimal resistance training experience (Saunders et al. 2006; Guglielmo et al. 2009; Taipale 

et al. 2010; Taipale et al. 2013), or following extended periods (> 6 weeks) of no resistance 

training (Johnston et al. 1997; Barnes et al. 2013). Consequently, the changes in running 

economy in these previous studies could reflect the rapid neural adaptations and learning 

effect that occur in response to initial bouts of resistance training in unaccustomed athletes, 

rather than the morphological and neural adaptions that occur with continued exposure 

(Folland and Williams 2007). Indeed, when additional strength and/or plyometric training has 

been incorporated into the training programmes of resistance trained endurance athletes, no 

change (Millet et al. 2002) or small improvements (~3%) in running economy have been 

reported after comparably long exposures of  12-14 weeks. Though changes did not reach 

significance in the current study, running economy improved by 1.5% at a group level 

following downhill training, which is comparable to the smallest worthwhile change in this 

variable (Chapter 3); the threshold for when a change is viewed as meaningful. It is therefore 

plausible that the short term intervention with a comparatively modest stimulus from 

downhill running could have been insufficient to promote the neuromuscular adaptations 

commonly associated with plyometric training in this population, despite its modality 

specificity.  

It has been proposed that athletes are most economical at velocities at which they habitually 

train (Jones and Carter 2000). Consequently, it could be argued that training at a prescribed 

velocity itself could provide an efficacious method to enhance running economy at that given 

velocity. However, in line with the downhill training group, no change was observed in 

running economy around vLTP for athletes performing intensity matched flat running. These 

findings support previous investigations where no improvement in running economy at vLTP 

was noted following prescribed training at vLTP in recreational (Yoshida et al. 1990) and 

highly trained runners (Sjodin et al. 1982). Whilst it is possible that a longer exposure could 

be required due to the highly trained status of the cohort, no changes in running economy at 
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speeds close to vLTP have been observed across a competitive season in highly trained 

runners, despite a notable training volume around this velocity (Galbraith et al. 2014).  Our 

findings therefore suggest that structured flat running around vLTP does not improve running 

economy in already well trained athletes. 

Similar to RE, no changes in V̇O2max were apparent following 8 weeks of training in either 

condition. These findings are in accordance with previous observations from trained runners, 

where V̇O2max has remained consistent following the introduction of additional training at 

vLTP (Sjodin et al. 1982; Yoshida et al. 1990), and interval training at and above vLTP 

(Billat et al. 2002; Denadei et al. 2006; Barnes et al. 2013) into habitual training programmes. 

As training at or around vV̇O2max has been postulated to be the most effective way to enhance 

V̇O2max in well trained athletes (Midgey et al. 2007), it is possible that the submaximal 

intensities employed created an insufficient stimulus to prompt significant alterations in the 

maximal capacities of the groups. 

In contrast, increases in both LTPF and LTPD were noted following the downhill (2.4 and 

3.2%, respectively) and flat training (1.8 and 2.0%, respectively). These findings support 

previous reports where enhancements in LTPF have been observed following the 

incorporation of additional run training around vLTP in trained runners (Sjödin et al. 1982; 

Billat et al. 2004). Our findings add greater detail to these findings, as they demonstrate that 

the improvements in vLTP are not gradient dependant. Given the absence of significant 

improvements in the primary physiological determinants assessed the improvements in LTPF 

and LTPD could instead reflect a composite of the subtle, yet non-significant, enhancements 

in %vLTP (~3% in both conditions) and RE noted. Moreover, due to the consistency of stride 

parameters on both gradients, the improvement in vLTP could be mediated by an 

enhancement in the metabolic profile of the recruited muscles, such as mitochondrial 

biogenesis and elevated oxidative enzyme concentrations/activity (Holloszy and Coyle 1984; 

Bassett and Howley 2000), thus translation of improvements in vLTP to other shallow 

gradients would be expected. 

In conclusion, our data indicate that 8 weeks of supplementary downhill run training at vLTP 

within existing training programmes does not enhance running economy of already well 

trained runners. Given the importance of running economy to endurance performance, further 

investigations are required to elucidate practical and accessible methods to enhance running 

economy in already well trained athletes. 



 Chapter VIII – General discussion  

  95 

CHAPTER VIII 

8 General discussion... 

 Summary 8.1

Running economy (RE) has long been established as a primary determinant of endurance 

running performance (Daniels 1985; Bassett and Howley 2000; Jones and Carter 2000; di 

Prampero 2003; Jones 2006; Joyner and Coyle 2008; Ingham et al. 2008), with evidence to 

suggest that RE can account for large proportions of the variance in performance of elite 

middle distance (Ingham et al. 2008) and long distance runners (Conley and Krahenbuhl 

1980). Despite appearing fundamental to elite endurance running performance, robust 

methods to enhance the RE of already high performing, highly trained runners are limited; 

potentially restricted by the absence of 1) a common consensus of how to define and quantify 

RE, and 2) methods to identify the primary limiting factors of an athlete’s RE. Therefore, this 

thesis investigated the RE of highly trained runners, exploring the reliability and validity of 

measures of RE to deduce its most appropriate quantification, in addition to the application of 

innovative methods to enhance our understanding of an athlete’s RE. Finally, this thesis 

explored a novel training method to enhance RE in this population. The main findings of the 

thesis were as follows: 

1. Energy cost (EC) and oxygen cost (OC) provided similarly high levels of reliability 

(typical error of measurement ~3%) for highly trained endurance runners when 

assessed using a short-duration incremental submaximal exercise protocol. The 

typical error of measurement was greater than the smallest worthwhile change 

(~1.5%) for both expressions, indicating that only when test-retest alterations in EC or 

OC exceed 3% can practitioners confidently interpret a meaningful change in RE 

(Chapter 3). 

2. The analysis of a large cohort of highly trained endurance runners revealed that EC 

increased in a stepwise manner with increments in running speed (P<0.001). 

However, no differences were observed for OC despite an incremental increase in 

running speed (P=0.54). The results suggested that EC could provide a more 

appropriate quantification of RE in highly trained runners. (Chapter 4). 
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3.  The inter-individual variation in the EC responses from flat running to uphill or 

downhill running was low in a cohort of highly trained runners, with strong 

associations between EC during flat running and EC when running on shallow positive 

(+5%; r=0.85) and negative (-5%; r=0.90) gradients. However, a disparity between 

the energy saving of running downhill (-17% vs EC flat) and the additional energy 

cost of running uphill (+32% vs EC flat) was evident (Chapter 5). 

4. The cross-sectional analysis of a large cohort of highly trained runners, with 

appropriate partial correlation analysis, revealed a small (r=0.25) association between 

EC and V̇O2max. Further, a longitudinal analysis of a sub-cohort revealed a moderate 

(r=0.35) association between changes in EC and V̇O2max over time. As >85% of the 

variance in EC and V̇O2max remained unexplained by this relationship, these findings 

reaffirm that EC and V̇O2max are primarily determined independently (Chapter 6). 

5. Eight weeks of downhill run training at vLTP included in existing training 

programmes did not enhance running economy of already well trained runners (1.22 

vs 1.20 kcal·kg
-1·km

-1
; P=0.41; Chapter 7). 

 The empirical and practical implications of the findings 8.2

 Measuring running economy in trained distance runners 8.2.1

Chapters 3 and 4 aimed to establish the most valid and reliable expression of RE in highly 

trained runners. From its inception, the metric of RE has uniformly been used to describe the 

translation of aerobic metabolism into linear running velocity. However, the definition and 

quantification of RE is not uniform across all empirical investigations. The differing 

protocols and quantifications employed to assess RE would appear to limit the interpretation 

of findings, not only restricting direct comparisons between empirical investigations, but also 

clouding the identification of accurate normative values for RE. The inconsistency in this 

measurement is likely to have contributed heavily to the limited progress of the scientific 

community to truly understand the RE of an athlete, despite a relatively high volume of 

empirical investigations in the last decade. Indeed, the concluding remarks of a recent review 

by Lacour & Bourdin (2015) drew attention to this, stating that “more attention should be 

paid to measurement validity”. 
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The validity of the different quantifications of RE has received a growing amount of attention 

following an investigation by Fletcher and colleagues (2009), where a disparity was shown in 

the responses of EC and OC to increments in running speed in a small cohort of runners. In 

agreement with these preliminary findings, our findings from a very large cohort of highly 

trained endurance runners demonstrated that although EC increased with increments in 

running speed, OC remained unchanged as speed increased (Chapter 4). The discrepancy in 

these responses is likely to be a product of the sensitivity of OC to the concurrent alteration in 

substrate utilisation seen in the investigation. Given EC and OC do not respond in a consistent 

manner, the question of ‘which quantification provides the most appropriate and valid 

expression?’ arises.    

In accordance with the recent reviews of the literature (Saunders et al. 2004d; Barnes et al. 

2015; Lacour and Bourdin 2015), RE reflects the aerobic energy demand of running at a 

constant submaximal speed. Therefore, the quantification of RE as OC would appear to be 

based on the assumption that steady state V̇O2 provides an index on the underlying ATP 

turnover during submaximal exercise (Fletcher et al. 2009), or at least proportional to it 

(Saunders et al. 2004b). As EC provides the actual indirect assessment of energy turnover, our 

findings in Chapter 4 suggest that OC does not represent a valid index of the underlying 

energy demand of running. However, these findings do not discount the importance of OC, as 

it must be noted that previous investigations have shown strong associations between the 

actual aerobic demand and performance, rather than energy expenditure per se (Conley and 

Krahenbuhl 1980; Ingham et al. 2008). Moreover, as OC is a product of both EC and substrate 

utilisation, both of which could have an independent influence on endurance performance, it 

is likely that OC represents a stronger predictor of endurance performance than EC alone. 

However, the distinction between OC and RE can be summarised in Figure 8.1. As both EC 

and substrate utilisation would appear to be two independent variables that could be 

manipulated by training interventions, considering EC and substrate utilisation separately 

could enhance the interpretation of findings in this field. The benefit of independent measures 

was clearly demonstrated in Chapter 6, where a further insight into RE was achieved with the 

findings of a weaker relationship between RE and V̇O2max when expressed as EC rather than 

OC, indicating a small inverse association between V̇O2max and RE that was independent of 

substrate utilisation. It is therefore proposed that EC should form the primary quantification of 
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RE in future research, with findings of Chapter 4 demonstrating an appropriate expression of 

Kcal·kg
-1·km

-1
 to facilitate inter-individual comparisons.  

 

 

 

 

 

 

 

 

 

 

A second factor that must be considered in the measurement of RE is the reliability of 

measures, describing how stable and repeatable the assessments are. The assessment of 

reliability is critical to the interpretation of findings, providing a quantitative assessment of 

the confidence that a true change in RE has occurred following an intervention, that is, the 

ability to differentiate a signal from the inherent noise of the measurement. Previous 

investigations have explored the reliability of OC measures over 2-35 visits, with a typical 

error of measurement (TE) of ~2-3% (Williams et al. 1991; Pereira et al. 1994; Brisswalter 

and Legros 1994b; Pereira and Freedson 1997; Saunders et al. 2004a). Chapter 3 

substantiates these findings, and furthers the field by demonstrating a comparable level of 

reliability for EC (TE ~3%). These findings indicate that only when changes in RE exceed 

~3% can a change be confidently interpreted as a true change when employing similar 

protocols. 
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Figure 8.1 A revised schematic representation of the physiological factors that interact to determine 

performance velocity in endurance running events.  
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The findings of Chapter 3 also revealed that the TE for both OC and EC were almost double 

the smallest worthwhile change (SWC) in these variables (~1.5%). As the SWC represents 

the threshold for when a change becomes meaningful  (Hopkins 2004), it could be argued that 

further work is required to enhance the reliability of RE measures to be able to confidently 

detect the SWC. In attempts to maximise reliability, previous investigations have employed 

elongated stage lengths to ensure the achievement of steady-state gaseous exchange (Morgan 

et al. 1991; Williams et al. 1991; Pereira and Freedson 1997), in addition to experimental-

style controls to minimise the variations in substrate utilisation during the exercise bout 

(Williams et al. 1991; Pereira et al. 1994; Pereira and Freedson 1997). However, Chapter 3 

demonstrated an achievement of steady state conditions during the final minute of each 3 

minute running stage in >90% of cases, likely reflecting the fast phase II kinetic responses 

observed in endurance trained athletes (Koppo et al. 2004). Moreover, in addition to EC 

providing a measure of RE that was independent of substrate utilisation, the variations in 

substrate utilisation between assessments were low (TE ~4%), despite no controls for prior 

nutrition or training. It could further be argued that the use of baseline subtractions of resting 

values, as employed in Chapter 5, could potentially enhance the reliability of RE. However, 

as baselines do not remain constant as exercise intensity increases (Stainbsy et al. 1980), and 

account for a comparatively small proportion of the energy turnover during moderate to 

severe exercise, this method is unlikely to notably enhance the reliability of RE beyond the 

current method. It is therefore possible that the achievement of a sufficient level of sensitivity 

to detect the SWC in RE is unobtainable when employing indirect calorimetry with a highly 

variable system such as the human body. It is therefore proposed that short-duration (~3 min 

stages) incremental submaximal running protocols are appropriate for the assessment of RE 

in highly trained distance runners in both research and practical settings.  

 Understanding the running economy of trained distance runners 8.2.2

It is clear that RE is a complex, multifactorial construct (Saunders et al. 2004d; Barnes and 

Kilding 2015a; Lacour and Bourdin 2015) with the differences observed between individuals 

attributed to the weighted sum of the influences from many anthropometrical, biomechanical 

and physiological variables (Williams and Cavanagh 1987a; Pate et al. 1992). However, 

investigations exploring methods to identify the specific factors limiting RE in a specific 

athlete are absent, thus prescription of an effective intervention to improve RE for a given 

athlete is challenging. Diagnostic tests to identify the strengths and weaknesses underpinning 
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an athlete’s RE could be a pivotal step towards the prescription of robust and effective 

training methods.  

It is well established that surface gradient influences RE, with running uphill incurring a 

greater EC and downhill a lesser EC when compared to running on the flat (Margaria et al. 

1963; Minetti et al. 2002). When compared to the EC of flat running, EC during running uphill 

would appear to shift towards a greater dependency on metabolic factors, with EC during 

downhill running potentially inducing a shift towards a greater dependency on mechanical 

factors. Thus, high inter-athlete variability in the responses uphill and downhill running could 

be expected, and could plausibly differentiate the propensity for metabolic and mechanical 

limitations or constraints, respectively. However, despite notable differences in EC between 

gradients, the variability in EC responses to uphill and downhill running between individuals 

was limited, with strong associations between flat running and both uphill and downhill 

running (Chapter 5). These findings demonstrate that a large degree of commonality is 

evident between EC on different shallow gradients, with the small changes in gradient 

employed potentially insufficient to induce a large change in the emphasis between metabolic 

or mechanical determinants, and thus variation in EC responses, to identify the specific 

efficiencies of an athlete.     

Despite a wealth of research exploring EC on positive and negative gradients (Margaria et al. 

1963; Minetti et al. 2002; Gottschall and Kram 2005), the difference between the additional 

cost of uphill running and the reduced cost of downhill running, when compared to flat 

running, had yet to be considered. Chapter 6 found a disparity was evident between the 

change in EC from flat running to shallow uphill and downhill running, with an additional EC 

when running on a +5% gradient (+32%) that far outweighed the reduction in EC when 

running on a -5% gradient (-17%). The precise mechanisms underpinning this response are 

unclear. Intuitively, as the increase and decrease in gradient is equivalent between the 

conditions, a proportional change in EC could be expected. However, it is possible that the 

greater vertical oscillation during downhill running could result in an additional EC (Williams 

and Cavanagh 1987a; Halvorsen et al. 2012), resulting in a higher EC on this gradient above 

that expected. Similarly, the higher work rates of uphill running could lead to recruitment of 

comparatively inefficient type II muscle fibres (Hunter et al. 2001), resulting in larger than 

expected energy cost. Though further exploration of the precise mechanisms is required, our 
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findings clearly demonstrate that, for a given gradient, the additional cost of uphill running 

outweighs the savings during downhill running. 

The exploration of the factors affecting RE might have broader implications for endurance 

runners when applying training methods to enhance RE. Numerous empirical investigations 

have cited a positive relationship between RE and V̇O2max (Pate et al. 1992; Morgan and 

Daniels 1994; Fletcher et al. 2009; Sawyer and Blessinger 2010; Barnes et al. 2013), 

suggesting that those with a superior RE have a tendency for an inferior V̇O2max. This 

association might infer that common determinants exist for both RE and V̇O2max, but with 

opposing influences. Given both RE and V̇O2max are primary determinants of endurance 

running performance (Conley and Krahenbuhl 1980; Bassett and Howley 2000; Jones and 

Carter 2000; di Prampero 2003; Joyner and Coyle 2008), targeted training to enhance RE or 

V̇O2max that alters such common factors might therefore have a negative impact on the 

opposing variable, thus restricting improvements in performance. However, the previous 

investigations that explored the relationship between RE and V̇O2max had been limited by 

small sample sizes and/or inappropriate statistical techniques, thus compromising the 

interpretation of results. The cross-sectional analysis of a large cohort of trained runners 

revealed only a small positive association between RE and V̇O2max (Chapter 6). Moreover, 

the longitudinal analysis demonstrated a moderate positive relationship between changes in 

RE and changes in V̇O2max over time (r=0.35), with the magnitude of this relationship 

reaffirmed by further analysis of data in Chapter 7 (r=0.34). Collectively, the findings of this 

thesis support previous observations of a small to moderate association between RE and 

V̇O2max. 

However, the practical significance of the relationship between RE and V̇O2max has 

previously been ignored in empirical investigations. Though a statistically significant 

association is evident between RE and V̇O2max, the small to moderate correlation coefficient 

demonstrates that this association is limited. Further analysis of the explained variance in 

Chapter 6 demonstrated that >85% of the variation in RE was not explained by the variation 

in V̇O2max. Consequently, although RE and V̇O2max might share common determinants that 

have opposing influences, the large unexplained variance would suggest that RE and V̇O2max 

have distinct principle determinants, which is consistent with the current understanding of 

these variables (Bassett and Howley 2000; Saunders et al. 2004b; Spurway et al. 2012; 
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Barnes and Kilding 2015a; Lacour and Bourdin 2015). Nevertheless, the identity of the 

factors that underpin the positive association between RE and V̇O2max remains unclear, but 

could be related to the recruitment and distribution of muscle mass. It is possible that training 

methods to enhance the independent determinants of RE could lead to a greater performance 

improvement by circumventing a reduction in V̇O2max. Therefore, future research should be 

directed towards the identification of the physiological factors that underpin the association 

between RE and V̇O2max shown in this thesis.    

 Enhancing running economy in trained distance runners 8.2.3

It is evident that the margin of success for elite endurance runners is extremely small. For 

example, an analysis of the marathon performances at major competitions over the last 30 

years shows an average time gap of 0.4% between the 1
st
 and 2

nd
 placed athletes 

(www.sports-reference.com). Given the fundamental contribution of RE to endurance 

running performance (Conley and Krahenbuhl 1980; Ingham et al. 2008), developing and 

enhancing an athlete’s RE would appear to be one of the primary objectives of an athlete’s 

training programme to maximise their probability of success. However, robust training 

interventions that consistently demonstrate enhancements in RE in already well trained 

runners are limited (Saunders et al. 2004d; Barnes and Kilding 2015a; Lacour and Bourdin 

2015).  

Evaluation of the current literature would suggest that the most consistent method to enhance 

RE in already trained athletes is the inclusion of 6-14 weeks of explosive strength/plyometric 

training (Paavolainen et al. 1999; Spurrs et al. 2003; Saunders et al. 2006). However, the 

reports of equivocal findings (Barnes et al 2014) suggest such interventions are far from 

robust. Moreover, the inclusion of these training practices is often through the partial 

replacement of endurance training sessions, which could be counterproductive in the athletic 

development of truly elite endurance athletes. Training methods that could promote similar 

adaptations to that of explosive strength/plyometric training studies through modality specific 

endurance training would appear to address these limitations. As downhill running could 

increase the time spent at higher training velocities, this form of endurance run training could 

be used to accentuate stretch-shortening cycle activity and facilitate a greater exposure to 

modality-specific high impact forces, resulting in a range of positive physiological 

adaptations to enhance RE. However, no significant improvements in RE, or alterations in 

http://www.sports-reference.com/
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running mechanics, were observed following 8 weeks of supplementary run training in well-

trained distance runners (Chapter 7). Though improvements in vLTP were noted on flat and 

downhill gradients following downhill training, these improvements were comparable to the 

intensity matched flat training group; potentially mediated, in part, by subtle enhancements in 

the percentage utilisation of V̇O2max at vLTP.  

Chapter 7 likely highlights the complexities of applying interventions to enhance the RE of 

already well trained individuals. Though previous investigations have noted improvements in 

RE following structured run (Billat et al. 1999; Barnes et al. 2013) or strength training 

(Johnston et al. 1997; Saunders et al. 2006; Guglielmo et al. 2009; Taipale et al. 2010; 

Taipale et al. 2013) in trained athletes, the populations employed were unaccustomed to the 

training stimulus of the intervention. However, due to extensive habitual training 

programmes (Esteve-Lanao et al. 2005; Enoksen et al. 2011; Ingham et al. 2012) and thus a 

rapid accumulation of a substantial training history, high performance runners are likely to 

exhibit diminished physiological responses to further training interventions. Indeed, in one of 

the few empirical observations of an elite distance runners spanning >1 year, only subtle 

improvements in RE were seen from year to year (Jones 2006). But, the case study revealed 

an ~15% improvement in RE that accumulated over the full 11 year observation (Jones 

2006). Leading experts have speculated that RE might only increase at a rate of 1-3% per 

year with continued training in elite endurance athletes (Joyner and Coyle 2008). However, 

there is still little consensus regarding what training drives these changes in RE in an elite 

athletes training programme, and what physiological changes occur in an athlete that 

mediates this improvement in RE. Though novel training methods to enhance RE are 

desirable, future investigations should look to comprehensively monitor the physiological 

changes that are associated with alterations in RE following explosive strength/plyometric 

training, such as accurate changes in tendon properties and muscle recruitment patterns, 

which could in turn provide a greater insight into the primary physiological determinants of 

this variable.  

 Limitations  8.3

The limitations of the current thesis are acknowledged. The research presented highlights the 

dichotomy of investigations with highly trained/elite athletes. Attempts were made 

throughout the thesis to recruit only high performance athletes, to ensure the findings were as 
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applicable as possible to elite endurance runners. However, as expected, the population of 

high performance athletes in the local region was small. In addition, many athletes are 

unwilling to deviate from their ‘typical’ training practices on the premise that performance 

improvements might be compromised. As the participation in the experimental studies 

required athletes to manipulate their training schedule to accommodate visits, this limited the 

population pool further. Therefore, sample sizes in the experimental studies were restricted, 

and consequently could limit the ecological validity of the investigations.  

It should also be noted that although training sessions were tightly regulated in Chapter 7, the 

prescribed training intervention was supplementary to their habitual training. As the observed 

cohort was not homogenous with regards to primary race distances, a large inter-athlete 

variation in training practices could be expected. Consequently, though athletes were pair 

matched between the training groups, large variability in weekly training was evident in 

groups, potentially clouding the effect of the prescribed intervention. However, a tighter 

regulation and prescription of training would not have been feasible with the calibre of 

competitive athletes recruited. 

Both Chapters 4 and 6 were based on the retrospective analysis of physiological data that was 

collected over a 6-year period. It should be noted that assessments were conducted across 2 

laboratories by several different trained practitioners, which could have had a small impact on 

the consistency of measures. Moreover, though extremely large samples were achieved, the 

data were not collected for the sole purpose of these investigations. The use of absolute 

increments in running speed could have resulted in inter-athlete variability in the relative 

exercise intensity for RE assessments. For example, using the 4 stages below LTP, athlete A 

with a vLTP of 15 km∙hr
-1

 would be assessed across exercise intensities of 73-93% vLTP, 

whereas athlete B with a vLTP of 19 km∙h
-1

 would be assessed across exercise intensities of 

79-95%. However, the within sex variability in vLTP was small (<7% for 95% of the 

population across all monitored stages), thus the impact on the assessments of RE would 

likely be negligible. In addition, as multiple stages below lactate threshold are often surplus 

to diagnostic physiological assessments, the analysis of validity in Chapter 4 was confined to 

only 4 stages below LTP. A wider range of running speeds would have likely strengthened 

the comparisons between EC and OC, and thus provide a more comprehensive assessment of 

the validity of these measures.  
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Finally, the differences in methodology between the Chapters should be acknowledged. The 

method defined by Thoden et al. (1991) provided the primary calculation of LTP within this 

thesis. However, due to the retrospective nature of Chapter 4 and 6, the modified Dmax 

method was employed to calculate LTP as it provided a more robust and consistent method to 

calculate this variable across a large group where the number of stages completed, and the 

competitive distances of athletes, were highly variable. In addition, as Chapter 3 was 

completed prior to Chapter 4, a different scaling exponent is used to account for body mass 

when quantifying running economy. Although Chapter 4 revealed BM
-1

 to be more 

appropriate than the BM
-0.75

 proposed by previous investigations in this area, it should be 

noted that inter-individual comparisons in Chapter 3 were limited, thus this differing method 

to account for body mass would have had a negligible impact on the results presented.  

 Future directions 8.4

It is clear that a greater exploration of the primary physiological determinants of an athlete’s 

RE is required. Though previous cross sectional investigations have reported many 

physiological factors to be associated with RE (Williams and Cavanagh 1987a; Pate et al. 

1992; Hunter et al. 2005), the relative contribution of these variables to the overall variance is 

often omitted. Without knowledge of the major determining factors of RE, the ability to 

diagnose specific inefficiencies within an athlete’s characteristics and implement appropriate 

training interventions is severely limited. A comprehensive cross sectional investigation 

exploring commonly cited key variables, including tendon stiffness (Spurrs et al. 2003; 

Saunders et al. 2006; Arampatzis et al. 2006; Fletcher et al. 2010; Fletcher et al. 2013), mass 

distribution of the lower limbs (Larsen 2003; Lucia et al. 2006; Foster and Lucia 2007; Kong 

and Heer 2008; Lucia et al. 2008) and muscle fibre type composition (Costill et al. 1976; 

Bosco et al. 1987; Kaneko 1990; Hunter et al. 2001), in a large cohort of runners with 

multiple regression analysis could begin to elucidate the primary determinants of RE. 

Following this, investigations should confirm the findings by manipulating these variables 

with appropriate long-term interventions, and assessing the impact on RE and, crucially, 

performance.  

 Conclusion 8.5

The work contained in this thesis demonstrates that energy cost, appropriately scaled to body 

mass, provides a reliable and valid measurement of running economy for use in both 
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empirical and applied settings. This work has also furthered the understanding of RE in 

highly trained runners, comprehensively demonstrating a limited association between running 

economy and maximal oxygen uptake in highly trained distance runners, and also a disparity 

in the magnitude of energy cost responses in the transition to uphill or downhill running from 

flat running. Finally, this thesis has provided the first insight into the physiological responses 

to structured downhill training, showing no improvements in running economy following an 

8-week intervention in highly trained runners. It is proposed that future investigations should 

be directed towards the identification of the primary determinants of running economy, which 

would in turn develop our understanding of the trainability and performance impact of RE.  
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