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Abstract—This paper discusses the machine vision element
of a system designed to allow automated taxiing for Unmanned
Aerial System (UAS) around civil aerodromes. The purpose of
the computer vision system is to provide direct sensor data
which can be used to validate vehicle position, in addition to
detect potential collision risks. This is achieved through the use
of a singular monocular sensor. Untrained clustering is used
to segment the visual feed before descriptors of each cluster
(primarily colour and texture) are then used to estimate the
class. As the competency of each individual estimate can vary
based on multiple factors (number of pixels, lighting conditions
and even surface type) a Bayesian network is used to perform
probabilistic data fusion, in order to improve the classifica-
tion results. This result is shown to perform accurate image
segmentation in real-world conditions, providing information
viable for map matching.

Keywords—Unmanned Ground Operations; Semantic Image
Segmentation; Bayesian Network; Domain Knowledge

I. INTRODUCTION

Over the last few decades, extensive military development
has significantly improved the capabilities of unmanned
aircraft. Many roles that once required a manned aircraft are
now primarily performed by UAS. As UAS are becoming
increasingly mature, many potential applications outside of
military use are being explored, with much research activity
focused on allowing UAS to operate in civil airspace. As
military and civil aircraft operations differ significantly, there
are many barriers that must first be overcome.

UAS are extremely similar to manned aircraft and have
many of the same requirements. As it would be both imprac-
tical and expensive to construct new ground facilities solely
for unmanned aircraft, this work is based on the prediction
that future civil UAS will operate from existing aerodromes
alongside conventional manned aircraft. The inability to
operate in non-segregated aerodromes represents a large
barrier to bringing UAS into the National Airspace System
(NAS), with automated taxiing and aerodrome operations
already identified as a research gap [1].

The primary motivation of this work is to ensure that the
introduction of UAS includes safe ground operations. Some
requirements for automated taxiing, such as path planning
or communications, are already mature areas of research and
existing algorithms can be implemented [2]. However, other
elements will require dedicated research. The most critical
areas are those which directly relate to the safety of the UAS
and other aerodrome users. To ensure safe transit, there are
two main requirements; ensuring that the aircraft is in the
correct position and ensuring that it does not collide with
anything during taxiing.

This work has been undertaken in conjunction with BAE
systems who have provided the practical test data used for

testing and validation. As a result, the system proposed in
this paper is constrained by the availability of sensors on the
test-platform. Matching the current BAE UAS hardware, this
work assumes that direct sensing capabilities are limited to a
single forward facing monocular camera. As such, a machine
vision approach is the only feasible method of direct sensing.

There has been previous work in the area of semantic
image segmentation in papers such as [3], where an image
is segmented into the different classes of objects in the scene
for the purposes of image labelling, object detection or scene
classification.

The basis of this work is a continuation from the initial
research conducted in [4], this paper is an extension to the
work from another paper submitted to this conference [5].
[4] lays out an approach to perform image segmentation
in order to perform semantic classification on segmented
clusters. This is opposed to the more traditional methods
such as in [6] where segmentation and classification are
performed at the same time in what is called classifier-
led-segmentation. Precise region extraction is often difficult
when using classifier-led-segmentation. Inaccurate region
borders are partially introduced through the use of feature
descriptors. Although colour data is stored in each pixel,
more complex data, such as texture, requires data from
multiple pixels. As both colour, and texture information
is to be used, pre-segmentation enables the extraction of
the texture data easily from within the borders of the
cluster. Accurate region boundaries are required for collision
avoidance and navigation, as accurate ranging needs to be
extracted to navigation or collision features.

[5] proposes a method that uses Hue-Saturation-Value
(HSV) colour, and luminance data from each segmented
cluster in a trained Bayesian Network (BN) to classify
each cluster. Colour is used as the main classifier, while
luminance is used to detect surface line markings. These are
fused together probabilistically in a BN where the surface
line detection is shown to improve the already good colour
classification. Due to the intuitive graph structure of BN
they are easily extended, in this paper we aim to extend
the BN to include other sources of information to improve
classification performance further. We aim to add the texture
classifiers from [4] as an extra main classification source, as
well as horizon intercept to add further domain knowledge
logic to remove misclassifications. The emphasis in this
paper is the data fusion potential of the BN, where [5]
only briefly introduces this, and concentrates on the colour
classification and line detection aspects of the method.

As aerodromes are strictly controlled, they are quite sterile
environments. This means there are a low number of unique
classes to classify. This can be used to our advantage; if there
is an object that is not recognised it will be identified as a
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collision risk. This is different to the standard methodology
where identification of all objects is attempted, which is of
course much more complex. The aim of this work is to
robustly classify a smaller number of classes. Subsequently
by using the probabilistic confidence of that classification
from the BN the unknown collision risks can be identified.
This is one of the main extensions to [5]. The remainder of
this paper is organised as follows; section II discusses image
segmentation, and how untrained segmentation is performed
using methods explored in a previous work [4]. Section
III discusses how current texture based methods are used
in semantic image classification; both comparing current
techniques and assessing their suitability for the proposed
methodology. Section IV introduces the BN data fusion
method proposed in this paper, which is followed by a
brief introduction to BNs in Section V. Section VI gives
details on the final BN used for classification, including the
network’s structure, inputs and discretisation. Finally, section
VII compares the performance of the current texture-only
classification method against the proposed BN methodology.
Comparison and results are provided using a test set of
labelled aerodrome images.

II. IMAGE SEGMENTATION

Semantic segmentation can be achieved in different ways.
Most contemporary techniques perform segmentation and
classification together, in a single simultaneous process.
This is referred to as classifier-led-segmentation. By simply
classifying pixels at a low level (either individually or in
small groups), larger regions within an image are formed
where many neighbouring pixels share the same class. As
additional segmentation is not required, data is extracted
from each pixel only once, making such techniques highly
efficient. When the intention is to divide the image rapidly
into expected classes, classifier-led-segmentation is highly
appropriate.

However, the requirements of this work differ from most
other applications. Any unrecognisable regions within an
image most likely represent an object that could be collided
with. Therefore, accurately segmenting ‘unknown’ regions
within an image is just as important as defining known
classes. When an image is segmented using classifier data,
there is a tendency to bias results towards the known classes.
There are many reasons for this, but the simplest is the size
of the feature descriptors used. To extract complex data, such
as texture, data must be taken from multiple pixels. If sample
data is taken on the boundary between different regions in
an image, it draws data from both. If one is unknown, there
may still be enough data from the known class to get a
match. This can result in inaccurate region borders and small
regions becoming absorbed into larger neighbours, reducing
the ability to detect unknown collision risks. The methods
used in classifier led-segmentation also make implementa-
tion more difficult. Due to the complexity of fusing many
different information types, non-deterministic approaches,
such as Artificial Neural Network (ANN), are commonly
used. As non-deterministic methods are difficult to certify
for aerospace use, this work has avoided using them, and
as such has eliminated the ability to use several common
methodologies.

The alternative to classifier-led-segmentation is to perform
segmentation and classification separately. Rather than use

pixel classification to define regions, segmentation is instead
achieved using basic low-level image features. As such,
these methods are commonly known as ‘untrained seg-
mentation’. As image segmentation techniques existed long
before semantic segmentation was possible, there are many
segmentation methods available. This work continues to use
the ‘superpixel’ based approach, outlined in [4]. Superpixels
are small clusters of pixels, grouped together based on
their colour and spatial distance. Within a superpixel, all
pixels are very similar to each other, allowing the mean
data to represent all the pixels within that superpixel with
minimum data loss. As every pixel in the original image
is grouped into a superpixel, an image with millions of
pixels can be reduced to a meaningful representation of
only a few hundred superpixels, dramatically decreasing the
computational burden for many applications. As superpixels
will not group dissimilar pixels, the edges in the original
image are captured by the borders between superpixels,
producing highly accurate region borders.

Both [4] and this work use Simple Linear Iterative Cluster-
ing (SLIC) to generate the initial superpixel clustering. [7].
The algorithm is computationally efficient, with a standard
desktop computer providing sufficient computational power
for SLIC to process high resolution images in real time [8].
Fig. 1a is an example of superpixel segmentation achieved
using SLIC.

As superpixels are limited in how many pixels they
contain, the end result is a significant over-segmentation,
introducing many borders which are not present in the
original image. Rather than directly classify each superpixel,
the over-segmentation is resolved by a second application of
clustering, grouping superpixels into larger, visually similar
regions. This reduces the risk of misclassification as each
region has more information for the classifier to use. This
secondary clustering is achieved using the method outlined
in [9], where it is suggested that the Density-Based Spatial
Clustering of Applications with Noise (DBSCAN) algorithm
is a good solution for merging superpixels. DBSCAN is
a method of clustering that uses density reachability, so
that dissimilar superpixels can be merged if connected
neighbours between them are similar enough to form a path.
This is essential to overcome the effects of distance on large
regions such as taxiways, which introduce colour and texture
gradients proportional to physical distance.

The metric used to compare superpixels is colour distance
within the CIE L*a*b* (CIELAB) colourspace. As the orig-
inal superpixel boundaries formed by SLIC are preserved
during DBSCAN clustering, the final result retains the sharp
resolution required for 3D estimation. Shown in Fig. 1b is
an example of DBSCAN clustering of the super pixels form
Fig. 1a. By varying the threshold used by DBSCAN based
on empirically inspected results, each output cluster should
ideally represent a single object or material type. This makes
the scene easier to interpret, as all data within each cluster
can be used during classification.

III. TEXTURE BASED CLASSIFICATION

The intention of this work is to pass data about each
cluster to the BN for classification. For simplistic data, such
as colour, the raw data can be incorporated into the BN
directly. For other data types, such as texture, this is more
difficult. Texture is inherently hard to define. Unlike colour,



(a) Example over-segmented taxiway image, broken into superpixels
(image used throughout paper)

(b) Similarly coloured superpixels clustered together

Fig. 1: untrained segmentation performed on example run-
way image

which is simply stored within each pixel, texture is the way
colour changes over multiple pixels. The number of pixels,
their relationship to each other and the method of defining
colour variance can all vary. Therefore, texture information
is most easily stored by using a texture descriptor; a consis-
tent function which can be applied to any image (or image
region) to produce comparable results.

As classification is taking place after segmentation, re-
gions are to be classified individually. As such, the texture
descriptors must produce spatially cohesive results, which
only sample from within each region. For this reason,
local area based descriptors are used. As descriptors have
strengths and weaknesses, two descriptors have been used; a
traditional Gabor filter approach and a Local Binary Pattern
(LBP) feature extractor.

A. Texture Extraction
The Gabor filter approach specifically makes use of the

Maximum Response Filters (MR8) filter bank [10], designed
for texture classification. To extract texture data, each of the
38 filters within the filter bank are individually applied to
the original image, producing 38 ‘filter response’ images.
Stacking these responses similar to how colour channels are
stacked in colour images, each pixel in the original image
is replaced by a 38-element vector, representing the texture
response at that point.

Assuming the response is stored in the same format as the
original image, this allows for 25538 possible responses. As
this represents an enormous amount of variability, K-means
clustering is used to simplify the results. Using 120 cluster
centres based on typical feature responses for all image

types, commonly referred to as ‘textons’ [11], the texture
data is reduced down into a single indexed response image.
The texture data for each cluster is a vector of textons,
replacing the original pixels. As the filters within the MR8
filter bank are large, they gather much data for each pixel
response, providing good results over large areas. However,
large filter descriptors can capture results from multiple
clusters when clusters are small, reducing the accuracy of
small cluster identification.

For this reason, the secondary feature descriptor used is
LBP. This compares each pixel to it’s immediate neighbours,
providing a simple numeric response based on which neigh-
bours have greater intensity levels. Despite it’s simplicity, it
is widely used and has proven especially capable at small
scale texture classification. In addition, as LBP is based on
relative intensity, a total brightness changes will shift the
intensity of all pixels together making the descriptor light
level invariant. In contrast to the MR8 filter bank results,
the very small sample size of LBP makes it highly localised,
providing poor results on texture types that consist of large
numbers of pixels.

B. Texture Comparison
As the output from both MR8 and LBP consists of discrete

responses, the texture data can be represented by the total
number of each response within that cluster. The limited
amount of possible responses allows histographic methods
to be used for direct comparison to other known examples
of each class. Several methods of comparing histograms
have been investigated, including simple distance based
estimators such as nearest neighbour, K-nearest-neighbour
and mean 10-nearest neighbour. In each case, multiple
distance functions have also been used, including Euclidean,
L1 and X2. Better results were obtained through the use
of a Support Vector Machine (SVM) based classification
approach. As SVM is a binary classifier, a Binary Decision
Tree (BDT) structure was implemented for fast classification
[12].

The final result is simply the most likely class for each
cluster, based on texture information only. This has been
found to produce a fairly accurate texture only classification,
for both MR8 and LBP feature descriptors. However, neither
result is perfect, improvement is still possible. Therefore,
this data is then passed to the BN for data fusion with other
types of information.

IV. CLASSIFICATION THROUGH DATA FUSION

After segmentation is complete, each region within an
image should represent a single object or surface type. This
allows all data within a region to be used for classification.
In order to provide the best result, a two stage classification
process is used.

The first stage is to extract individual features from each
cluster and compare them to known examples of each class.
The best match is taken as the classification estimate and the
degree of similarity provides a confidence in the result. As
images are extremely data-rich, different types of data can be
extracted from each cluster. Some of this data is extremely
simplistic, such as the mean colour data for each cluster. By
contrast, other data is extremely complex, such as texture
data which has no standardised method of simplification.



The second stage is combining the results from multiple
feature types together in a meaningful way, to form a final
estimation.

This work aims to improve the classification result by
using a Bayesian Network (BN) based approach. Rather
than discrete information, a probabilistic approach is used,
allowing for direct comparison between metrics which are
otherwise incomparable (such as colour and texture similar-
ity). Moreover, the probability of the cluster being identified
as a certain class is not only dependant on the outcomes of
the individual classifiers, but also incorporates knowledge of
how successful each classifier is at identifying each class.
For example, a BN approach should identify that colour
based classification is better at identifying surface markings
than texture classification, regardless of the confidence the
texture classifier has.

Additional advantages of BNs include the ability to work
with full, partial, or uncertain information. If the aircraft
camera became defocussed, loosing all texture information,
the probabilistic approach is flexible enough to allow a
result which is only dependant on other data sources, albeit
with a less accurate result. The BN approach also gives
each cluster a final probability in addition to an estimated
class. As this probability incorporates all class information,
a simple threshold can be applied to set a level below which
all clusters are simply considered unknowns (and therefore
potential collision risks). This allows a simplistic method of
tuning the classifier, should a higher degree of confidence
be required.

V. BAYESIAN NETWORKS

Bayesian networks are used to represent knowledge and
reasoning under uncertainty. They are built around a prob-
abilistic graphical model, that represents a set of random
variables and their conditional dependencies. For example, a
BN could be used to model the relationship between weather
patterns and crop yields. Given the crop yields for a year,
the BN could be used to estimate the probable weather, and
more usefully, vice versa.

The use of BN is not a new concept in image classi-
fication. For example [13] presents a BN framework for
combining low level features to detect the most significant
object within an image. Another example is [14], which uses
a simple BN to combine colour and texture data with camera
metadata (focal length, exposure time and flash activation) to
ascertain whether the photo was taken indoors or outdoors.

This paper aims to use a Bayesian network to perform
probabilistic data fusion for classification of a pre-segmented
image. The data sources include the aforementioned tex-
ture classifiers, in addition to colour, horizon intercept
and distance estimation. The BN should not only improve
the classification performance but also provide a solution
which is more robust to changing conditions. The domain
knowledge applied using this technique is unique to this
application, so is very dissimilar to previous works. The
network parameters are found both manually and from
machine learning techniques.

A. Components
There are three parts to a BN; a Directed Acyclic Graph

(DAG), a set of Conditional Probability Distributions (CPDs)

for each node on the DAG, and an inference engine used to
solve the network.

A DAG represents the structure of the BN, formed of
nodes and directed edges which connect one node to another.
As the name suggests, the graph must be constructed without
cycles; i.e. later nodes cannot provide feedback. Each node
can represent various things (such as individual variables,
observable data or hypotheses) while the edges represent
the conditional relationships between the nodes.

A major advantage of BN is the ability to represent the
entire structure within an intuitive graphical model. The
input criteria (also known as evidence) are variables which
can be directly observed and are used to create the starting
nodes of the network. The other variables within the network
are then inferred from the observed variables, based on the
conditional dependencies. By using inference techniques, the
network can effectively be asked questions about the prob-
ability of something happening, given evidence regarding a
number of causal factors.

If the structure of the network is known as well as it’s
CPDs, a full joint probability distribution can be calculated.
A joint probability distribution is the probability of the
occurrence of every possible combination of states, of all
the random variables. This can be calculated using the chain
rule shown below

P (X1...., Xn) =

n∏
j=1

P (Xj |parents(Xj)) (1)

where Xj represents a variable, and n is the total number
of variables.

The full joint probability distribution is quite complex,
becoming difficult to manage for larger networks. Instead,
more useful information is the total probability of each
variable. This is calculated through ’marginalisation’, which
is the process of determining a probability distribution
of a subset of variables from the larger joint probability
distribution. To remove (marginalise) unwanted variables,
the probabilities for each combination of these variables are
summed together.

P (Xj) =
∑
i

P (Xj |parents(Xj))P (parents(Xj)) (2)

Given an extremely large BN, information from the orig-
inal observed variables can be passed through many layers
to produce a final useful output. This ability to ‘infer’ data
from one node to another is the main feature of Bayesian
networks. Although other graphical models use inference to
produce estimations, this is commonly done in the form of
‘causal reasoning’ (top to bottom). For example, given an
observable disease, likely symptoms can be estimated. BN
are capable of ‘diagnostic reasoning’ (bottom to top) which
uses probability to asses the probable cause. For example,
given observable symptoms, a BN could be used to estimate
the disease. The ability to use probabilistic inference is
a result of using Bayes Rule shown in Eq. (3), where
P (X2|X1) is the likelihood which will be obtained from the
CPD of X2, P (X1) is the prior, and P (X2) is the marginal
likelihood, which is used to normalise the probability.

P (X1|X2) =
P (X2|X1)P (X1)

P (X2)
(3)



TABLE 1: Bayesian network inputs

Input type Abbreviation
Mean HSV colour data [H,S, V ]
Relative horizon position Hoz
Normalised Relative Luminance NRL
Texture classification estimates [MR8, LBP ]
Estimated 3D distance to cluster Dist

Directly using these equations for conducting inference
will only work on a small network where the joint distri-
bution is small. A full network can have many more nodes,
each with multiple states. For example, a network with 15
nodes and 4 states per node will have 415 entries in the joint
distribution, making direct application difficult.

Methods such as belief propagation [15] or junction trees
[16] are used to speed up calculating an exact solution,
therefore brute force (direct marginalisation of the joint
distribution) is not required. For an approximate solution
for extremely large Bayesian networks, various statistical
sampling techniques can be used; such as Markov chain
Monte Carlo sampling.

VI. BAYESIAN NETWORK STRUCTURE

The DAG for the proposed BN is shown in the lower
section of Fig. 2. There are four distinctive sub networks,
which include texture classification (Section VI-A), horizon
intercept (Section VI-C), colour classification and line de-
tection. The colour classification and line detection laid out
and discussed in detail in [5]. The information from these
sub networks is combined in final class estimate node, which
provides a more accurate result when compared to any of
the individual classifiers alone.

The inputs into the full network are shown in Table 1.
As a discrete BN implementation is used, discretised data
is required. For the texture classifiers, this is simply the
winning class for each cluster. However, Dist, NRL, Hoz,
H , S and V will need to undergo discretisation. How the
data is extracted and discretised is explained in the following
sections.

For each cluster in the original image, the network is
applied based on the cluster’s data. The output is a prob-
ability of the cluster belonging to each class. The highest
probability indicates the most likely class. Provided that the
probability is above a chosen threshold (which separates
unknown clusters) the cluster is designated as belonging to
that class. This is summarised in

ci = arg max
Classi

P (Classi|Hi, Si, Vi,MR8i, LBPi, Hozi,

Disti, NRLi)
(4)

where ci is the class assigned to cluster i.
In order to complete the network, the CPDs need to be

determined. Parameter estimation techniques are used to
calculate the CPDs of a few key nodes. Where parameter
estimation is found to give poor results, human expertise
is used to manually define others. In order to minimise
complexity, each CPD is trained within it’s sub-network.
This reduces the number of examples required for each
training set.

The final class estimate CPD will be manually defined,
as it fuses the four main sections (colour, texture, relative
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Fig. 2: Whole system showing the processing done on raw
RBG image, and displaying the Bayesian Network structure

horizon position and line detection) using logic that can be
easily applied by an expert. In this case the CPD for class
has 1764 entries which are too many too display here, so a
number of entries are shown in Table 2 which illustrate how
the domain knowledge and data fusion logic are applied.
The main principles behind the filling out of the CPD are
as follows
• Class probability is mainly based on colour and texture

classification, when they agree probability it being
that class is 1, if they disagree it will be uniformly
distributed between them

• Colour classification performs better than texture on
white yellow and red markings

• Clusters which have a horizon intercept state of Above
has a probability of being Sky with a probability of 1
regardless of texture or colour classification.

• Clusters which are above and below the horizon
(Above/Below) have a high probability of being a
building and a low probability of being any other class.

• Clusters which have a True Line state high prob-
ability of being a White or Yellow line and a low
probability of being any other class

Parameter estimation is commonly encountered when
designing Bayesian networks. Unlike the intuitive network
structure, numerical parameters are harder to elicit from
human experts. To this end, a number of methods have been
developed to estimate the parameters for both complete and
non-complete data.

As this BN is not overly complex, it is possible to provide
manual classification for every cluster in the training set.
This allows Maximum Likelihood Estimation (MLE) to be
used. MLE selects the set of values of the model parameters
that maximizes its likelihood function. MLE parameter esti-
mation is already used for image classification, and has been
demonstrated to improve performance in skin detection [17].
The application of MLE to Bayesian networks is explained
in detail in [18].

A. Texture
The two texture classifiers that use the MR8 and LBP

descriptors will be combined into a single texture classifier
node using the simple BN structure seen in Fig. 2. In order
to simplify the network and enabling subsections of the



TABLE 2: Example entries from Class CPD P (Class|ColourClass, Tex,Hoz, Line)

Description of CPD entry Colour Class Tex Hoz Line Asphalt Grass Sky White Yellow Red Building
Ground non-line cluster Asphalt Asphalt Below F 1 0 0 0 0 0 0
classifiers in agreement/non-
agreement

Asphalt Grass Below F 0.5 0.5 0 0 0 0 0

Colour classifier preference Red Asphalt Below F 0.3 0 0 0 0 0.7 0

Above horizon
Sky Sky Above F 0 0 1 0 0 0 0

Asphalt Asphalt Above F 0.2 0 0.8 0 0 0 0
Asphalt Grass Above F 0.1 0.1 0.8 0 0 0 0

Ground Line cluster
White White Below T 0 0 0 1 0 0 0
White Yellow Below T 0 0 0 0.5 0.5 0 0
White Red Below T 0 0 0 0.8 0 0.2 0

Asphalt Grass Below T 0.1 0.1 0 0.4 0.4 0 0

Collision risk Cluster
Yellow Building Above/Below F 0 0 0 0 0 0 1
Yellow Yellow Above/Below F 0 0 0 0 0.1 0 0.9

network to be assessed and trained separately. Each node
has seven states, which represent each of the seven different
classes.

As the number of pixels used in the descriptors are
different their classification performance will differ between
classes, it has been observed that LBP is better at classifying
lines, whereas MR8 performs better on classes such as
asphalt and grass. This makes sense as LBP descriptors
are smaller, and the clusters for lines are smaller. The
larger MR8 descriptors will make classification on the larger
clusters for grass and asphalt more accurate.

This correlation could be manually included in the CPD
of the combined texture class node Tex by making the
probability of the classification for line classes greater for
LBP classifications of line classes and similar for MR8
with classifications of asphalt and grass. However these
differences in performance can be captured more accurately
by performing parameter learning by using training data
to learn the CPD P (Tex|MR8, LBP ) using MLE from a
training set of 100 training images.

The texture classifiers have a winning class for each
cluster, these discrete classes are entered into the MR8 and
LBP nodes as evidence.

Shown in Fig. 3 are the LBP and MR8 classifications
on the example image. The combined texture classification
image where the winning Tex class for each cluster is
determined by argmaxTex P (Tex|MR8i, LBPi) is shown
in Fig. 4.

B. Bayesian Colour Classification
The subsection of the BN that handles the cluster classifi-

cation based on colour is shown in Fig. 2. These six classes
are represented by individual nodes which all only have two
discrete states: true (T ) and false (F ). They are split like
this as not all these classes are conditioned on all H, S and
V.

Each of the colour channels is discretised into bands. Hue
is discretised into 24 discrete states for 0 - 360◦ in 15◦
increments, saturation and value both have 10 states from 0
- 1 in increments of 0.1. This produces a colourspace with
2161 discrete colours in total, which is the reason this CPD
is trained as this would not be easy for an expert to fill out.
This subsection is detailed in full in [5].

C. Relative Horizon Position
Clusters which are wholly below the horizon line can be

considered on the ground, and further processing is required

(a) MR8 texture classification

(b) LBP texture classification

Fig. 3: Example of an aerodrome taxiway image, texture
classifications

Fig. 4: Combined texture classification on example image

to identify whether they pose a collision risk. Conversely,
any cluster entirely above the horizon is not considered on
the ground. Either this is because the object is airborne or
the object represents sky. In either case, such clusters are not
relevant for ground operations and the probability of being



a collision risk is lowered.
Most importantly, if a single cluster extends significantly

across the horizon line it can be assumed to be an object
that extends up from the ground. Therefore, horizon intercept
represents a simple method of detecting collision risks. As
only the position of the cluster within the image is used, it
requires minimum processing.

Due to the flexibility of aircraft undercarriage, the horizon
line will move in images. Therefore, active detection is
required. A dark channel method is used to differentiate sky
pixels from ground pixels as used in [19], before a regressive
least squares estimate is used to approximate the horizon
line. As ground objects can obscure the actual horizon
position, the dark channel derived horizon line cannot differ
from the attitude derived horizon line too greatly. If it does
so, the assumption is made that the UAS is facing a large
object (such as a building) and therefore a visually derived
horizon line will not be accurate.

The three states for horizon intercept are listed in Table
3. The horizon line is calculated and clusters with 100% of
their pixels below or above this line are defined appropriately
if the pixels are distributed above and below they get
assigned to this state.

TABLE 3: Horizon intersect discrete states

Normalised Relative Luminance (NRL) states
Above
Below
Above/Below

The horizon intercept logic is applied to the network in
the final class estimate Class node’s CPD.

If Hoz state is Above the probability of that cluster being
any class other than Sky is drastically reduced. This stops
false classifications of sky on the ground. If Hoz state is
Below the probability of that cluster being Sky or Building
is reduced. The probability of a cluster being Building
if Hoz state is Above/Below is increased, whereas all
non collision risk classes probability are decreased. This
will have the huge benefit when a potential collision risk’s
clusters are Above/Below and as it will be misclassified it
will have a much lower confidence in this misclassification
making much more likely to be flagged as a potential
collision risk.

Using the example image, the horizon line is calculated
and the clusters assigned horizon intercept states, which is
shown in Fig. 5. All the sky clusters have been shown to be
above the horizon, and the ground below which will easily
stop misclassifications between the two. The building in the
image is in the Above/Below state which will give it a
much higher probability of being classified as a building.

D. Normalised Relative Luminance Line Detection
NRL and distance to cluster will be combined in the BN

to give a probability that a cluster is a white or yellow line,
with the variable Line representing this probability. Line
has two states true (T ), and false (F ). This subsection is
also detailed in full in [5].

E. Unknown classes from uncertainty
Not all potential objects that could appear in an aerodrome

environment can possibly be classified reliably. The advan-

Fig. 5: Example image cluster horizon intersect states

(a) Aerodrome RGB image

(b) Example aerodrome image with vehicle obstacle

Fig. 6: Example aerodrome image with vehicle obstacle

tage of using this probabilistic method means that objects
which do not have a trained class will get misclassified
with a low certainty of being that misclassified class. If
a threshold for certainty is set that if the winning class
probability argmaxClassi P (Classi) < U for a cluster is
below this threshold it will be classified as unknown and
could be an obstacle.

{
ci = unknown for maxClassi P (Classi) < U
ci 6= unknown for otherwise

(5)

where cluster (ci) is in the state unknown which is an
unknown collision risk, and U is the probability threshold

An example image (Fig. 6a) has classification performed
on it using the full Bayesian network, where U is 0.5 and the
clusters in orange are classified as unknown. This processed
image is shown in Fig. 6b

It can be seen that a significant portion of the vehicle
is unknown and would be considered an obstacle. The
marking boards are also unknown classes so would rightly
be considered an obstacle. There are however some other



Fig. 7: final classification of test image showing segmenta-
tion, misclassifications and unknown clusters

clusters of grass around the edge of the taxi way that have
a low enough certainty to be classified as unknown. This
is due to the inconsistent colour of the grass around the
edges, also due to bad clustering. As this is not a navigable
surface this is not of any consequence, and could be solved
by a much larger training set for both the colour and texture
classifiers.

VII. RESULTS

Footage from a monocular camera was gathered from a
vehicle that was driven around an aerodrome in UK. This
data was used to assess the proposed algorithms. The chosen
scenario provides a visually challenging realistic scene, both
in terms of lighting and surface conditions. For most of the
footage the weather is overcast, limiting the colour range
available. In addition, the aerodrome asphalt surface is aged
and worn, with inconsistent surface textures where repairs
have been made.

For illustration all clusters in the example image used
previously in Section VI-B have been classified using the full
BN classification method and displayed in Fig. 7. This single
image shows the results to be good with the misclassified
clusters shown in Purple.

To demonstrate the algorithm a particular cluster is chosen
from the example image seen throughout this paper, and
its classification is discussed. Then the overall classification
results are presented from the BN on a 20 image test set of
fully manually classified aerodrome images. The output is
assessed for total classification accuracy and the accuracy of
individual classes. Then is compared to the previous texture
only methods.

A. Example Cluster
The cluster labelled ’Cluster 288’ shown in both Fig.

4 and Fig. 7 has been misclassified as asphalt in both
MR8, LBP and the combined texture classifier. Shown
in Table 4 is the posterior marginal distributions for the
ColourClass, TextureClass, and the final Class nodes.
On this aerodrome the red surface markings are very old
and worn so have a very similar texture to asphalt which is
why it has been misclassified as this with a probability of
1. However the colour for this cluster is very distinct and it
is very obviously red, which is why the colour classifier has
estimated it to be a red surface marking with a very high
probability of 0.9592. As the CPD for Class gives a greater
weighting on the colour classifier for surface markings, when

TABLE 4: Marginal posterior distribution for Class,
ColourClass and Tex for cluster 288

Class Colour Class Tex Class
Asphalt 0.0408 1 0.3286
Grass 0 0 0
Sky 0 0 0

White Line 0 0 0
Yellow Line 0 0 0

Red Line 0.9592 0 0.6714
Building N/A 0 0

these are both combined the winning class is Red. Seen in
the marginal for Class red has a probability of 0.6714, and
asphalt is 0.3286. As this is a ground cluster i.e. a Hoz state
of Below, there is 0 probability of it being the Sky class.
It has marginal Line probability for the state F of 1 which
means that is has a very 0 probability of being a yellow or
white line.

B. Classification Accuracy
There are effectively two different types of error: mis-

classification and segmentation error. Segmentation error is
when a cluster includes pixels from two or more classes.
This can be due to low image quality, or more commonly su-
perpixels being close to the boundary between two visually
similar classes. Using the example image used previously,
the clusters which have not been segmented correctly are
shown as black cluster in Fig 7. Misclassification is obvi-
ously when the classifier in question incorrectly classifies
a cluster. These are shown in purple, in Fig. 7. Depending
on the particular error this can be dangerous, for example
an obstacle right on an aircraft’s taxiing path classified as a
navigable surface. However most are inconsequential noise,
for example around the edge of the grass taxiway transition
where some of the clusters could be misclassified as either
grass or asphalt due to the segmentation error just discussed.
There are two ways to look at misclassification percentages;
per cluster or per pixel. Per cluster is incorrectly classified
clusters out of the total clusters in the image. Per pixel is
incorrectly classified pixels out of the total pixels in the
image.

The previous texture classification methods have been
shown to have reasonable performance but don’t give ad-
equate performance to be used robustly for navigation or
obstacle detection. For the test set, the average percentage
error for the classification of each pixel and cluster for the
BN and both previous texture classifiers are shown in Table
5. This shows a significant performance increase over texture
only with about 5% better pixel classification, but more
significantly about a 35.4% improvement in percentage of
incorrect clusters.

There is a very large difference between the pixel and
cluster error for texture which shows that texture does a
much better job of classifying larger clusters than small ones.
This is clearly shown in Fig. 3.

It is also useful to compare the classification for individual
classes. The breakdown for the BN, LBP and MR8 classifiers
are shown in Tables. 8, 6 and 7 respectively. Each row rep-
resents the percentage breakdown of the original manually
classified class, in terms of the automated segmentation and
classification results. The highlighted diagonals represent
correct classifications.



TABLE 5: Percentage error for Bayesian network classifier
compared to texture only classifiers of test set

Classifier Mean% pixel misclassification Mean% cluster misclassification
BN 1.48% 19.82%
LBP 6.29% 52.81%
MR8 5.12% 57.67%

TABLE 6: Percentage breakdown of LBP Texture only
classier of test set
aaaaa

Man Auto Asphalt Grass Sky White Yellow Red Building

Asphalt 95.5 2.7 1.3 0.4 0.1 .003 0.1
Grass 3.5 94.5 0 1.8 0.3 0 0.03
Sky 0.4 0.6 98.9 0.01 0.01 0 0.1
White 4.2 1.7 0 86.5 7.6 0 0.02
Yellow 5.4 1.7 0 17.0 76.0 0 0
Red 86.5 11.2 0 2.0 0.1 0.1 0.1
Building 2.2 0.08 0 0.3 0.4 0 97.1

As mentioned before red surface marking classification is
very poor for both MR8 and LBP meaning that the texture
is nearly identical between these two classes. It can be seen
that MR8 has misclassified red paint pixels as asphalt 86.5%
and LBP 86.4% of the time. Both have poor performance
for yellow and white lines, due to the occasional very small
cluster size. As the smooth painted line texture is similar for
both classes, LBP misclassified yellow lines as white line
16% of the time, and for MR8 white line were misclassified
as yellow lines for 19% of the pixels. Looking at Table 8 it
can be seen by including colour, and line probability in the
proposed probabilistic way, this is dramatically improved.
Increasing correct classification for white, yellow and red
surface markings to 92.3%, 93.3% and 97.0%. Red lines
where still misclassified as asphalt for 2.9% of the pixels,
this is due to line probability not including red markings as
they don’t have high NRL values.

Due to line probability being included this has removed
many of the misclassifications of non-line classes as lines.
For example grass is incorrectly classified as a white line
for 1.784% and 0.971% for LBP and MR8 respectively.
However for the BN this gets lowered to a tiny 0.01%. This
will removed a large proportion of the frame to frame noise.
However as NRL can not distinguish between yellow and
white lines, yellow lines are still being miss-classified as
white lines for 2.05% of their pixels.

The Texture only classifiers distinguishes between asphalt
and other classes well, with MR8 performing better at 98.9%
compared to 95.5% for LBP. This due to asphalt’s consistent
and mostly uniform texture. As the colour classifiers only
use saturation and value to classify asphalt, and texture

TABLE 7: Percentage breakdown of MR8 Texture only
classier of test set
aaaaa

Man
Auto Asphalt Grass Sky White Yellow Red Building

Asphalt 99.0 0.5 0 0.2 0.3 .01 .03
Grass 10.1 87.9 0 1.0 0.9 0 0.2
Sky 0 0 98.9 1.1 0 0 0
White 3.5 .03 0 77.3 19.2 0 0
Yellow 2.5 0 0 2.1 95.3 0 0
Red 86.5 0 0 0.8 0.9 9.4 2.4
Building 2.2 0 0 0 0.2 0 97.6

only is quite good anyway, combining them together in the
BN has yielded a minor decrease in performance of 0.02%
compared to the MR8. This is because it is combined with
LBP which performs more poorly for asphalt. However this
combination has shown to make the classifier more robust,
which makes a decrease of 0.02% totally insignificant.

Looking at grass, its texture tends to be more incon-
sistent, especially around the edges. Grass clusters will
have differing densities throughout due to patchiness and
possibly different grass breeds. Therefore the texture only
performance is not as favourable at 94.4% for LBP and
87.9% for MR8. This is improved by using the BN classifier
to 96.15%. Grass has a distinct colour (which is why hue is
included for its classification) so data fusion with the colour
classifier has given improved results.

For a huge variety of buildings texture would give much
worse results and the BN would increase this performance
by using the horizon information. In the training and test set
of aerodrome images, there are very few building, and the
ones present are very similar, this has led to over training.
This can be seen by the very high classification performance
results of the texture only classifiers. The BN classifier has
lost about 1% performance compared to these due to this
over training. There where a few segmentation errors which
caused the Hoz state of a few small clusters which are a part
of a building to not be Above/Below which has lead to the
drop in performance. An example of this can be seen in Fig.
5, which lead to the misclassification of that cluster shown
in Fig. 7. However if a number of different building types
where present, the texture performance would drop and the
robustness added by including horizon information would
have the BN performing much better. Sky is a large cluster
so has the best correct classification at around 98.9% for
both MR8 and LBP. However some sky clusters have still
been misclassified as asphalt, grass, white, and yellow lines
for LBP and just white line for MR8. From Table 8, these
incorrect sky classifications have been completely removed
by applying horizon logic, apart from the inconsequential
0.03% of sky pixels being classified as asphalt, which are
due to a few automatic segmentation errors.

Automating segmentation has been shown to be quite
effective; however as discussed can fail and cover two or
more classes. As can be seen from Fig. 8 asphalt and grass
are the most common classes to be manually classified as
unknown at 53.5% grass and 37%. this is because they are
the two most common classes to be on boundaries adjacent
with one other. These segmentation errors account for an
average of 2.5% of the pixels across the whole test set. While
this sounds high, as shown it mostly only affects grass and
asphalt this will not cause a dangerous misclassification just
slight noise around major class boundaries.

VIII. CONCLUSIONS

In this paper we have presented a method for segmenting
images and semantically classifying the resulting regions
using domain knowledge of aerodrome environments. This
is to enable autonomous taxiing of UAS at non-segregated
aerodromes. The accurately segmented and classified images
will enable both navigation and collision avoidance.

A probabilistic BN framework was used for fusing mul-
tiple sources of information with domain knowledge. This



TABLE 8: Percentage breakdown of Bayesian network
classier of test set
aaaaa

Man Auto Asphalt Grass Sky White Yellow Red Building Unknown

Asphalt 98.9 0.97 0.00 0.04 0.07 0.00 0.00 0.03
Grass 3.83 96.2 0.00 0.01 0.00 0.00 0.00 0.01
Sky 0.30 0.53 99.2 0.00 0.00 0.00 0.00 0.01
White 1.40 0.00 0.01 92.3 1.32 0.23 0.00 4.78
Yellow 0.36 1.22 0.00 2.05 93.3 0.00 0.00 3.04
Red 2.93 0.04 0.00 0.04 0.00 97.0 0.00 0.01
Building 3.61 0.00 0.00 0.00 0.00 0.00 96.4 0.00
Unknown 62.60 30.34 3.21 0.97 0.51 0.57 0.00 1.80

method has shown to give improved classification perfor-
mance compared to the individual classifiers by 5% per pixel
and by a large 35% per cluster.

The use of a BN also has the advantage of giving
an intuitive graph structure for extending the network to
include other sources of information such as adjacency. It
is deterministic and as any node can be marginalised, it can
easily be monitored and verified, making this much more
appropriate for safety critical aircraft systems. Whereas other
deterministic classification methods such as neural networks,
would not be appropriate.

By using a BN it has been shown that unknown collision
risks can be determined. This is achieved by the BN giving
a certainty on each of its cluster classifications. This is
important as classification of every type of collision risk
is not possible.

A fully processed and classified video can be found on
our YouTube channel 1

There a number of extensions that could be performed
on this work. The texture classifier could provide certainty
in its classification from pseudo probabilities derived from
the distance metrics. This could be used by entering this as
soft evidence, as less information would be lost this would
increase performance.
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