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Abstract

Autonomous contingency management systems, such as a forced landing system which reacts appropriately to an engine

failure is important for the safe operation of Unmanned Aircraft Systems (UAS). This paper details a method to ascertain the

reachability of any possible emergency landing site for a forced landing in steady uniform wind conditions. With knowledge

of the aircraft’s state, such as speed heading location and orientation of a landing site, a method to calculate a minimum height

loss path is developed based on aircraft glide performance. Wind direction and speed are taken into account using a trochoidal

approach by defining the minimum height loss turn path. To facilitate real-time implementation, simplified gliding equations are

developed without accuracy loss. The reachability of each site can be calculated, as well as how much safety margin an aircraft

would have. This method is generic and could also provide decision support for human pilots in forced landing situations. Two

types of aircraft Airbus A320-400 and the Cessna 172 have been investigated to demonstrate the usefulness of the method,

using Monte Carlo simulations in a synthetic X-Plane R© simulation environment, in order to demonstrate the performance and

effectiveness of the proposed approaches.

Index Terms

Contingency management; Autonomous safety function; Unmanned aircraft systems; Reachability Analysis; Forced landing;

Trochoids; X-Plane R©.

I. INTRODUCTION

The operation of Unmanned Aerial Systems (UASs) by the military has increased over the last couple of decades, driven

by the advantages offered over the operation of manned aircraft. UAS not only removes the operator of the aircraft from
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danger but also, with the absence of pilots they have much longer endurance and a larger payload capacity. Consequently

this makes them highly attractive for long surveillance or strike missions in dangerous areas. Many of the reasons identified

by the military are also driving interest in the use of UAS for civilian applications. This triggers significant interest in

developing safe UAS operations in civil airspace.

By removing the pilot, a number of safety issues are introduced. Among the most challenging is how a UAS would

respond to engine failure so as to minimise the threat imposed on the public. As UASs tends to primarily be single engine

powered aircraft, this makes them vulnerable to engine failures as any single engine powered General Aviation (GA) aircraft.

Engine failure was the largest cause of GA accidents and the second largest killer of pilots in 2010 in the US. Out of 999

accidents involving GA aircraft, 180 were caused by engine failure [1]. This is why the forced landing situation is a major

stumbling block to UAS integration into National Airspace System (NAS), and why a contingency management system is

important in the event of engine failure [2]. It is imperative to develop autonomous functions to mitigate the risk imposed

by UAV to the public in this scenario while reducing the loss of the aircraft and its payload. Such a system could also be

used as a tool for assisting pilots in forced landing situations. An engine failure is a high work load situation, where the

pilot may not have enough spare capacity to find a reachable and suitable emergency landing site. If a system could display

all reachable and suitable sites, this could lead to pilots making better landing choices and consequently help save lives.

Upon an engine failure, an aircraft must carry out what is known as a forced landing. The aircraft, now unpowered, is

effectively a glider and will need to make an emergency landing at an unprepared location. These landing sites are normally

fields, many of which may be unsuitable due to size or obstacles. For a piloted aircraft, a pilot has to perform the forced

landing by following a certain complex procedure which requires a great deal of practice for a human pilot to master.

Considerable information is needed and a number of very complex decisions must be made in order to perform a successful

forced landing within a very short time. Firstly, an engine failure needs to be identified. Then a list of possible landing

sites is required, which can come from a number of sources, such as Geographic Information System (GIS), map data,

pre-surveys, or live computer vision techniques. Computer vision techniques for selecting landing sites have been studied

in [3], [4] and [5]. The list needs to be narrowed down to sites that are within the range of the aircraft, which requires an

assessment of the reachability of each possible sites. Using data pertaining to this trimmed list of landing sites, a decision

needs to be made at which of these sites to aim to land. A path then needs to be planned to the chosen landing site from

the aircraft’s current position that will get the aircraft lined up with the site at the correct altitude while accounting for wind

and other uncertainties. Once the aircraft is on approach to the chosen site, a landing has to be performed.

The reachability of landing sites has been an area neglected in previous research, where a number of path planning

techniques for forced landings assume that sites are within range [6], [7]. This is of paramount importance as there is very

little point at aiming to land at the most perfect landing site if an aircraft is unable to reach it under the current aircraft

status such as altitude, velocity and heading. Therefore it is essential to be able to calculate each known landing site’s
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reachability. It is also important to show how reachable a landing site is, which is why the notion of excess glide range will

be introduced to provide a measure safety margin for the forced landing, as well as describing how easily reachable a site

is for use by a decision maker. To calculate this, the aircraft’s glide performance, the minimum height loss path to fly, and

path of the approach are all needed. References [8] and [9] lay out a number of equations for working out an aircraft’s glide

performance, as well as explaining the manoeuvres and speeds to minimise a gliding aircraft’s height loss. The work in [9]

aims to find at what point an aircraft after engine failure could not perform a turn back manoeuvre to land on the runway

it took off from, this is extended in [10] and [11].

In some of the early work reported in [12], multiple sections of a forced landing system are examined for commercial

aircraft typically cruising at high altitudes and with airports as the emergency landing sites. In what is called ‘footprint

generation’, the maximum glide range of a gliding aircraft is defined based on simple glide angles. From a national database

of runway locations, any runway that is within the footprint is considered reachable, as described in Fig. 1. While this

will give an indication of a site’s reachability, it does not include any kind of final manoeuvre to land at the site. For an

aircraft with plenty of altitude and a small turn radius, this kind of method may be adequate as the error would be a small

percentage of the maximum glide distance. However, this error would be unacceptable for a low-flying aircraft. For an

unprepared landing site, visual inspection may be necessary. A method is presented in [8] to calculate the reachability of an

unprepared landing site. It uses a human pilot forced landing approach technique called the ’high-key low-key’ technique

[13]. Combining with maximum glide range equations, it calculates the excess glide range of the aircraft for a selected

landing site. The high-key low-key technique is intended to give a human pilot good visibility to study the site, and time to

prepare the aircraft for landing. This may result in an inefficient use of the available glide range. A more generic technique

for reachability analysis for autonomous forced landing is required.

Dubins Paths are the shortest curve that connects two points in the two-dimensional Euclidean plane [14]. This principle

in this context means that the shortest path flown between a start and an end point must contain two turns at it’s maximum

turn rate, connected by a straight glide path between them, which makes a perfectly smooth trajectory. Therefore, upon

engine failure, the aircraft turns onto a track which after a level glide intercepts the turn to final (final landing decent path

to runway) at 500ft. The final altitude of 500ft is chosen as the turn to the final should not be below 500ft for a normal

landing [15]. This method based on Dubins can be used for any aircraft or runway orientation and for any radius of turn.

This minimises the path length for an aircraft of any performance.

However, these circular flight paths do not take into consideration the effects of wind, which is very important for a

gliding aircraft. The concept of Dubins curves is extended to take into account wind; instead of the straight glide line being

tangential to two circles, it is tangential to two geometric shapes called trochoids. Trochoids are the curve described by a

fixed point on a circle as it rolls along a straight line, which are defined later. Trochoids are used for path planning in the

presence of wind in [16] and [17], where minimum flight time path planning is considered. This paper will extend these
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Fig. 1: Maximum glide range footprint and how previous work has assessed landing site reachability in a forced landing.

to define the minimum height loss flight path in wind by determining the speeds and turn radius for a given aircraft, and

analyse reachability of a site for forced landing. An example of this extension of Dubins paths to trochoidal paths is shown

in Fig. 2.

The contribution to this research area is to extend the simplistic concept of glide range footprint to include the approach

to the site and wind. Neither of these have ever been induced in previous glide range calculation algorithms. Importantly

this technique also includes a metric for comparing the reachability of landing sites. This is in order to show how much

safety margin a gliding aircraft has, as well as to provide this information to other parts of a full forced landing system,

e.g. landing site decision maker.

In Section II the equations describing the glide performance of an aircraft in both straight and level, and turning flight

are defined. Presented in Section III are a set of equations to define the minimum height loss path in the presence of

steady wind. Section IV shows how the trochoidal path can be used with the glide performance equations to ascertain if a

particular landing site is reachable and how much excess glide distance it has when it reaches it. To verify the proposed

method, two different types of aircraft are considered: Airbus 320-400 and Cessna 172. In Section V the accident of the

Hudson River is investigated, whereby where the reachability of the runway it took off from is assessed and the influence

of the wind on reachability is highlighted. The proposed method is further demonstrated and evaluated in Section VI where

simulation and analysis are carried out in a high fidelity X-Plane R© simulation environment. After determining the gliding

performance experimentally, the accuracy and real-time property have been investigated. The influence of the assumptions

and simplifications such as instantaneous rolling in and out used in developing the algorithm are assessed. Finally concluding

remarks are presented in Section VII.
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Fig. 2: Comparison between a left straight left Dubins path in nil wind to a trochoidal path in wind in a forced landing

scenario.

II. GLIDE PERFORMANCE

Before any glide paths or approach paths are defined, the glide performance of the aircraft needs to be known. The

vertical sink (Vs) for a given airspeed is needed. The aircraft’s lift/drag ratio is the glide ratio of aircraft, and a number of

factors will influence both of these, the main being the aircraft’s drag polar. The optimum speeds and roll angles for the turn

manoeuvres are needed to maximise glide range so that the minimum length path is also the minimum height loss path.

Calculations are put forward in [8] to calculate the glide ratio and vertical sink of a gliding aircraft. The calculation for

Vs presented assumes that the aircraft remains at best glide speed throughout the flight. The best glide speed is the airspeed

that the aircraft needs to fly at which maximises its glide ratio. However, in a co-ordinated turn, this speed increases due

to the higher levels of lift and therefore increases drag from the greater normal loading (n). It is assumed that the aircraft

would speed up in turns to maintain best glide for these new conditions. This is not what an aircraft would actually do

and the airspeed transition would add inaccuracies into the equations, so a modified equation is shown here that gives the

vertical sink of the aircraft for any airspeed, not simply the optimum. There may exist some airspeed profile that would

maximise the aircraft glide range further through the transition from turning to straight and level flight. However, only a

constant airspeed is considered to significantly reduce complexity, and so maintain the possibility of real time calculations.

To maintain airspeed without thrust the aircraft must remain in equilibrium by cancelling the drag force with a component

from its weight. By assuming a small angle approximation on the glide path the vertical speed can be calculated by:
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Vs =
DV

W
(1)

where D is drag, V is airspeed and W is the weight of the aircraft.

Using Eq. (1) with an aircraft’s parabolic drag polar, Vs can be calculated in straight and level flight as shown in [8] the

vertical speed can be calculated by:

Vs = AV 3 +
B

V
(2)

with

A =
0.5ρ0SCDo

W
(3)

and

B =
2W

ρ0SπAre
(4)

Ar is the aspect ratio, ρ0 is the density of air at sea level, CDo is the drag at zero lift, e is Oswald Efficiency Factor, and

S is the wing area. It is assumed aircraft instantaneously attains the desired roll angle.

The maximum glide range speed (Vio) can be found by differentiating V
Vs

which is the definition of glide ratio (γ), where

2 can be rearranged to give:

γ =
V

Vs
=

1

AV 2
+
V 2

B
(5)

to
dγ

dV
= − 2

AV 3
+

2V

B
= 0 (6)

To give the optimum airspeed from aircraft parameters below:

Vio =

(
B

A

) 1
4

(7)

For a co-ordinated turning manoeuvre, the sink increases as n increases from unity, meaning that L = nW . This can be

substituted in to Eq. (1) to give Eq. (8).

Vsφ =
DV n

L
(8)

where Vsφ is the vertical sink in a turn.

Normal loading in a turn is equivalent to sec(φ) where φ is the roll angle. Substituting CL for lift and the parabolic drag

polar CD = CDo +
C2

L

πeAr
in to Eq. (8), the full equation for sink in a turn for any airspeed or roll angle is given by

Vsφ = AV 3 +
B sec2(φ)

V
(9)
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Fig. 3: A circle moving at a fixed rate β, while tracing a trochoid at a point at a fixed radius.

III. TROCHOIDAL TURN PATH

A turn at a constant velocity and roll angle in no wind (assuming instantaneous roll) will be a perfect circle. An initial

turn circle and a final turn circle linked by a tangent would define the minimum length path in no wind. In the presence of

wind, the aircraft is no longer in the earth frame, but in the wind frame. This means the circle becomes a shape known as

a trochoid. Tangents can be calculated to link the first and second trochoidal turn path into a single smooth trajectory.

A trochoid is a curve traced by a point on a radius of a circle, where the centre of the circle is moving at a fixed rate (β)

along a straight line. This is shown in Fig. 3. The shape can be defined parametrically by angle (α) as the input in Eq. (10).

α can be related to the heading of the aircraft, but as it is used slightly differently between the initial and final trochoids,

how it can be used to ascertain the heading will be explained later.

xt = −Rcos(α)

yt = Rsin(α) +Rβα

(10)

The aircraft flies a circular path in air but as this is in the wind axes, the transformation to Earth axes means that the

aircraft is in fact flying a trochoidal path. This is because the turn circle centre is being blown down wind at the rate β

which is the ratio of windspeed to the aircraft’s airspeed, shown in Eq. (11).

β =
Vw
Vio

(11)

where Vw is the wind velocity.

Eq. (10) is the parametric equation for a turn circle with radius R, the Rβα term represents the aircraft getting blown

downwind (Yt axis) during its turn.

The trochoidal path method described in [16] has been adapted for use here. However the aim of their paper is to seek

a time optimal path for a given set of initial and final conditions. Angles are more useful in the forced landing application,

as it can be directly related to the track angle of the aircraft. All equations are re-derived to use angle.
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A. Trochoid definitions and positions

The trochoid is defined in the trochoidal frame, which is where the y direction is aligned with the wind. However the

trajectories in the trochoidal frame will have to be rotated to put them in the earth frame.

The path for the whole flight must be defined with only the initial, and final conditions of the aircraft. These include

initial aircraft heading (ψ0), final aircraft heading, which is the runway landing direction (Γ) and the position of the turn to

final waypoint (Fx, Fy). The turn to the final waypoint is calculated in Eq. (12), where the waypoint is defined relative to

the centreline of the runway at a longitudinal distance that would enable the aircraft to glide to the runway’s centre from a

height of 500ft. It is then transformed into the global co-ordinates by rotating the runway direction.

Fx
Fy

 =

cos Γ − sin Γ

sin Γ cos Γ


 0

0.3048× 500γ

+

xr
yr

 (12)

where 0.3048× 500γ is the distance an aircraft will travel from a height of 500ft at it’s glide ratio (γ).

As (Fx, Fy) are in the Earth frame and need to be rotated into the trochodial frame, they must be rotated by the wind

direction (ψw) shown by: Ftx
Fty

 =

cosψw − sinψw

sinψw cosψw


Fx
Fy

 (13)

There will be two trochoids; one for the initial turn and one for the final turn. The equations for these need to be defined

using the initial and final conditions. From considering aircraft turn performance, the radius of the turn used in Eq. (10) is

defined as:

R = Vio

ψ̇
(14)

where ψ̇ is the yaw rate of the aircraft, and the aircraft is flying at maximum glide speed Vio.

The angle α needs to be adjusted by the phase angle η to account for the transformation between frames, and for the

initial and final headings

η1 = ψ0 − ψw, η2 = Γ− ψw − δ22π (15)

η1 is the phase angle for the initial turn and η2 for the final turn and δ is the sign of the turn direction. The term δ22π is

added to the second turn as the aircraft needs to be at Γ at the end of the trochoid, which is at 2 π.

The start of the first trochoid must be placed at the point where the aircraft starts (x0, y0). It is easier however to have

the aircraft start at (0,0) which will be used here. Similarly the end of the second trochoid must be located at (Ftx, Fty).

They are repositioned by calculating the co-ordinates of the start of the initial trochoid and the end of the final trochoid,

the positioning of these trochoids can be shown in Fig. 4.
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Fig. 4: Shows the position of both trochoids in the trochoidal and earth frame. As the initial conditions have been rotated to

the trochoidal frame, therefore once the paths are defined, they can simply be rotated about the starting point of the aircraft.

The initial and final trochoid can be calculated parametrically in the trochoidal frame by substituting Eq. (14), Eq. (15),

into Eq. (10). This gives the Cartesian co-ordinates for the initial trochoid for a given α in:

xt1 = − Vio

δ1ψ̇
cos(α+ η1) + xt0

yt1 = Vio

δ1ψ̇
sin(α+ η1) + Vio

δ1ψ̇
βα+ yt0

(16)

and for the final trochoid in:

xt2 = − Vio

δ2ψ̇
cos(α+ η2) + xtf

yt2 = Vio

δ2ψ̇
sin(α+ η2) + Vio

δ2ψ̇
βα+ ytf

(17)

Vio

δ1ψ̇
is the radius of the turn adjusted for the turn direction δ. Each of the two turns can be in either direction. These

directions are represented by δ1, δ2 which are either -1 for an anti clockwise direction, and 1 for clockwise, where there are

four possible trajectories. (xt0, yt0) is the offset of the initial trochoid to place the start of the trochoid at the initial position

of the aircraft, (xtf , ytf ) is the offset of the final trochoid to place the end of the trochoid at (Ftx, Fty). These are defined

below:

xt0 = Vio

δ1ψ̇
cos(η1) + x0

yt0 = − Vio

δ1ψ̇
sin(η1) + y0

(18)
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Fig. 5: Anti-clockwise/clockwise flight path, where both trochoids and the optimal tangent between them have been defined.

The tangent starts at Pa and finishes as Pb. ψ0 = 0 Γ = π
6

xtf = Vio

δ2ψ̇
cos(η2) + Ftx

ytf = Vio

δ2ψ̇
sin(η2) + 2 Vio

δ2ψ̇
βπ + Fty

(19)

How the two trochoids are positioned, plotted, and then rotated is shown in Fig. 4. The initial and final trochoid are

plotted relative to the aircraft’s initial position and the final waypoint (Ftx, Fty) in the trochoidal frame. Everything is then

rotated to be in the Earth frame. The initial and final conditions in Fig. 4 are shown below:

ψ0 = 0 Γ = π Fx = 100 Fy = 115.4 x0 = 0

y0 = 0 ψw = π
2

(20)

where the wind must be converted into the direction of travel, so in this case the wind is from 3π
2 so travels at π

2 .

For an optimal path the total angle change over both turns must be less than 4π which is proven in [16]. This is why the

in Fig. 4 initial trochoid is plotted for α between 0 → 2π, and the final trochoid is plotted between −2π → 2π. For the

trajectory to be optimal the tangent will lay somewhere between these two trochoids.

B. Finding tangents between trochoids

The two trochoids now need to be connected with a straight and level glide between them, which will create a smooth

trajectory. The departure point from the initial trochoid will be referred to as Pa, which will occur at angle αa. Similarly,

at the end of the straight glide, the join point on the final trochoid is referred to as Pb at an angle of αb. It will be these

two angles which must be found to define the whole path. This can be seen in Fig. 5.
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For a tangent to exist the aircraft’s ground track (ψg) at both point Pa and Pb must be the same, as well as their velocity

vectors shown in Eq. (21) and (22). Both αa and αb need to be found so that the (x, y) co-ordinates for Pa and Pb can be

found from Eq. (18), and (19).

tan(ψg) =
y(αb)− y(αa)

x(αb)− x(αa)
(21)

tan(ψg) =
ẏ(αb)

ẋ(αb)
=
ẏ(αa)

ẋ(αa)
(22)

By substituting Eq. (16) and (17), into Eq. (21), a full equations for the heading of the tangent can be found in Eq. (23).

tan(ψg) =

V
δ2ψ̇

sin(αb + η2) + V
δ2ψ̇

βαb + yt2 − V
δ1ψ̇

sin(αa + η1) + V
δ1ψ̇

βαa + yt1

− V
δ2ψ̇

cos(αb + η2) + xt2 + V
δ1ψ̇

cos(αa + η1) + xt1
(23)

The relationship between αa and αb needs to be found in order to simplify Eq. (23) to put it in terms of only αa. The time

version of this equation is described in [16], and is converted to the angular version below

αb =
δ1
δ2
αa +

η1 − η2 + 2kπ

δ2
(24)

This is derived by knowing that the total angle travelled by the aircraft around both turns must be equal to ψ0 − Γ, as this

is the minimum angle to get the aircraft from the initial heading to the final heading.

As a trochoid is based on a periodic function, there will be an infinite number of tangents between both trochoids. Only

solutions within a certain range are needed to keep the path optimal, but there may be multiple solutions within this range,

to find them, multiples of 2kπ will be added (seen in Eq. (24)) where k ∈ [−3,−2,−1, 0, 1, 2]. The effect of k is shown in

Fig. 6. Increasing k by 1 shifts the angle of tangency to the next loop on the final trochoid.
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tan(ψg) =
(xt2 − xt1) + V δ2−δ1

δ2δ1ψ̇
cos(δ1αa + η1)

δ2−δ1
δ2δ1ψ̇

sin(δ1αa + η1) + (yt2 − yt1) + Vw

ψ̇
(αa

(
δ1
δ2
− 1
)

+ η1−η2+2kπ
δ2

)
(25)

A full equation for the angle of tangency between the two trochoids is needed. The αb terms from Eq. (23) can be

substituted for αa using Eq. (24), the result is shown in Eq. (25) (see next page).

Now by equating Eq. (25), with Eq. (23) which removes the tan(ψg) term, and by using the identity sin(ψ)2+cos(ψ)2 ≡ 1

the whole equation can be simplified to Eq. (26).

V
(
Vw

δ1−δ2
δ1δ2ψ̇

− (xt2 − xt1)
)

cos(δ1αa + η1)

+V
(

(yt2 − yt1) + Vw

ψ̇

(
αa

(
δ1
δ2
− 1
)

+ η1−η2+2kπ
δ2

))
sin((δ1αa + η1))− Vw(xt2 − xt1)− V 2(δ2−δ1)

δ2δ1ψ̇
= 0

(26)

There is no analytical solution for αa, as this equation is transcendental. However, in the next two sections, solving this

equation and finding the points of tangency between the two trochoids will be shown.

C. Solving for same side turns

As both turns can be in either directions, there are four different combinations. When the turns are on the same side, i.e.

clockwise/clockwise or anti-clockwise/anti-clockwise, this means δ1 = δ2. Consequently, Eq. (25) can be simplified to Eq.

(27). The extra term 2πm has been added. It works similarly to k but instead of shifting the point Pb to the next trochoidal

loop on the second trochoid, it shifts both Pa and Pb to the next loop on both trochoids. As there are infinite solutions, both

k and m must be changed in order to find to optimum path. As ψg = αa, αa can be found.

tan(αa) =
(xt1 − xt1)

(yt2 − yt1) + V
(
η1−η2+2kπ

δ2

) + 2πm (27)

Eq. (27) can be easily solved for αa, and by using Eq. (24), αb can be found. A range of values for k and m need to be

used to find the path that satisfies the conditions in Eq. (28). This will make the path optimal.

 0 < αa < 2π

−2π < αb < 2π

(28)

D. Solving numerically for different side turns

As δ1 6= δ2 Eq. (26) must be used to find the tangent angle αa from the first trochoid to the second. The roots αa in

the equation need to be found between the range 0 → 2π to make the trajectory optimum, as is proved in [16]. The roots

can be found when f(αa) = 0, and any root finding technique can be used. Here the bisection method is used. A good
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introduction to the bisection method is contained in [18]. The bisection method finds all the values of x where f(x) = 0

between an interval [a, b]. If f(a) and f(b) have opposite signs, this means that they are between a root, and it is on this

principle that the algorithm works.

As mentioned previously, a range of k [-1,0,1,2,3] values need to be used in order to find the best tangent to make the

flight path as short as possible.

In the interval [a, b] (for a given value of k) there may be multiple roots, but some of these will create sub optimal paths,

or infeasible flight paths. Now that a range of exit angles are known for the first trochoid (αa), these will be narrowed down

to the shortest legitimate flight path. To eliminate the invalid paths, the angle of the tangent from Pa to Pb will be compared

to the track of the aircraft at point Pa. To find the aircraft’s track, the aircraft’s x and y velocities can be used with the

4-quadrant inverse tangent function (atan2). The aircraft velocities are obtained from differentiating Eq. (16) to give Eq.

(29).

Vtxa = Vio sin(αa + η1)

Vtya = Vio cos(αa + η1) + Vw

(29)

where Vtxa and Vtya are the aircraft x, and y velocities in the trochodial frame at point Pa. All these checks will be

performed in the trochoidal frame for simplicity. The aircraft is flown at the maximum glide range speed of Vio around the

whole flight path, which is why it is used here.

The track of the aircraft can be calculated by:

ψtg = arctan

(
Vxta
Vyta

)
= arctan

(
Vio sin(αa + η1)

Vio cos(αa + η1) + Vw

)
(30)

θtang = atan

(
xtPb − xtPa
ytPb − ytPa

)
(31)

where (xtPa,ytPa) is the co-ordinate of Pa at the point tangent meets the first trochcoid, and (xtPa,ytPb) the co-ordinates

at point Pb . θtang is the angle of the tangent in the trochoidal frame from Pa to Pb.

If ψg = θtang , then that particular flight path is valid. As can be seen in Fig. 7, the invalid path has a ψg = 91◦, but the

tangent is 180◦ off at θtang = 271◦. The shortest path out of the valid ones has the largest αb angle. This is because the

closer to 2π αb is, the smaller the angle the aircraft will have to subtend around the second trochoid. This can be clearly

seen in Fig. 7. The two valid paths show their αb values and the path labelled as the shortest has a much higher αb value

than the other. As the angle αa is constrained to between 0 → 2π this has been already been optimised for a given αb.
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IV. EXCESS GLIDE, AND ARC LENGTH CALCULATIONS

After the path has been defined, the distance travelled, the height lost, and excess glide range now need to be calculated.

To find the distance travelled, the arc length (L) needs to be calculated for both turns, as well as the straight glide. As the

turn is now defined by a trochoid, a new equation is needed for arc length. For parametric equations, arc length is defined

below by:

L =

∫ √
dx

dψ

2

+
dy

dψ

2

dψ (32)

Differentiating Eq. (10) with respect to ψ gives:

dx
dψ = δR cos(ψ)

dy
dψ = δR sin(ψ) + δRβ

(33)

Substituting Eq. (33) in to Eq. (32) yields Eq. (34).

√
dx

dψ

2

+
dy

dψ

2

= R
√

sin(ψ)2 + cos(ψ)2 + 2β cos(ψ) + β2 (34)

which can be simplified to give the full integral for arc length shown below:

L =

ψ∫
0

R
√

1 + 2β cos(ψ) + β2 (35)



15

Eq. (35) cannot be solved analytically but as these are a common type of integration, a set of functions exist to deal with

them. The functions are called elliptic integrals and are laid out in [19]. The particular function is an incomplete elliptic

integral of the second kind which is defined in Eq. (36).

E(ψ|m) =

ψ∫
0

√
1−m sin(ψ)2dψ (36)

Although this is not in the exact same form as Eq. (35), by rearranging the input into this function, one can show

ψ∫
0

R
√

1 + 2β cos(ψ) + β2 = 2R(1 + β)E(
ψ

2
| 4β

(1 + β)2
) (37)

Shown in Eq. (38) and (39) are the full definite integrals with the correct limits for the arc lengths for both trochoids.

La = 2R(1 + β)E(
αa
2
| 4β

(1 + β)2
)− 2R(1 + β)E(0| 4β

(1 + β)2
) (38)

where La is the arc length subtended by the aircraft around the first trochoid.

Lb = R(1 + β)E(2π| 4β

(1 + β)2
)− 2R(1 + β)E(

αb
2
| 4β

(1 + β)2
) (39)

where Lb is the arc length subtended by the aircraft around the second trochoid.

The total ground distance covered by the aircraft is shown in Eq. (40).

L = La + Lb +
√

(ytPb − ytPa)2 + (xtPb − xtPa)2 (40)

Height loss around the turn needs to be calculated so the landing site’s reachability and the excess glide range can be

ascertained. Knowing the glide ratio and glide distances, height loss across a glide can be calculated in still wind. When

factoring in wind, the aircraft’s ground speed is not constant around the turn, which means glide ratio is also not constant.

As the vertical sink of the aircraft is calculated in the wind frame the height loss in the turn can be found from time in the

turn.

As it is assumed that the aircraft can instantaneously achieve a given roll angle, This means that the time taken in the

turn phases can be calculated by using the aircraft’s yaw rate ψ̇. This calculation is shown in Eq. (41) where V
R = ψ̇. While

ground speed is not constant, the aircraft sink will be constant as a steady airspeed is being maintained.

ta =
V

R
αa (41)

where ta is the time the aircraft takes to travel around the first turn.

The time taken around the second turn (tb) is dealt with in Eq. (42), which is a modified version of Eq. (24).
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tb =
2π

ψ̇
− ta −

η1 − η2 + 2kπ

δ2ψ̇
(42)

ta and tb can be used alongside Eq. (9) for aircraft sink to calculate height lost in the turn shown below:

∆ha = Vsφta (43)

where Vsφ is the aircraft’s vertical sink in a turn, ∆ha the height lost around the first turn, and ta can simply be replaced

with tb to get the height lost around the second turn.

The height loss in the straight and level glide between both turns (∆hg) is calculated below:

∆hg = Vs

√
(xtPb − xtPa)2 + (ytPb − ytPa)2√

V 2
tya + V 2

txa

(44)

where the numerator represents the distance travelled over ground, the denominator is the aircraft’s ground speed and Vs is

the sink calculated from Eq. (2).

The total loss of height over the entire trajectory (∆htot) is calculated by:

∆htot = Vsφ(ta + tb) + ∆hg (45)

The excess glide range can now be calculated, as excess height can be found from h−∆htot.

Eg = γ(h−∆htot − 152) (46)

where 152 m is the height required to fly final to land, which is 500ft.

V. REACHABILITY ANALYSIS EXAMPLE

An example forced landing situation will now be considered. To show that this method for reachability analysis is applicable

to a variety of aircraft with different sizes and velocities, an Airbus A320-400 will be utilised in this study and a Cessna

172 in Section VI. This is a fast low drag aircraft which has a very large turn radius, this would have made the previous

method fail [8]. While the A320 is not an UAS and as it is also not single engined, the incident that made an American

Airlines A320 perform a forced landing into the Hudson River shows that total engine failure can happen to any aircraft. All

the parameters needed for the glide calculations are contained in Table 1, and many of these parameters have been obtained

from [20].

The A320 had just taken off from a runway heading of 020◦, 12.2 km north of the runway climbing past 1200 m (agl),

when it experienced a double engine failure. The only available landing site was the runway that it took off from. It is
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assumed that the engine failure occurred at Vio. The calculations shown in this paper will be used to find out if the runway

is reachable for this example. All the aircraft and runway initial conditions are shown below:

ψ0 = 20◦ Γ = 125◦ Fx = −1227m

Fy = −9000 x0 = 0 y0 = 0

Vw = 30m/s φ = 45◦ hinit = 1200m (agl)

(47)

As the aircraft was travelling at a high airspeed of 112 m/s, it will be unaffected by a light wind, therefore an a

unrealistically high wind speed of 30 m/s from 330◦ is used to give a β of 0.268 to highlight the differences between wind

and nil wind conditions.

If the ψw is set to zero, the four possible trajectories in nil wind can be found, as shown in Fig. 8. In this case these

equations essentially represent Dubins paths. The height lost by the aircraft at the end of the second turn is shown in Table

2. The trajectory chosen is the one which loses least height, which in this case is the path where the initial turn is clockwise

(δ1 is +1) and the second turn is anti-clockwise (δ2 is -1). In the case of nil wind the chosen trajectory will be the path

which subtends the smallest angle across both turns as it is the shortest. However this may not be the case where wind is

present.

In the case where the wind blows at 30 m/s from 330◦, the four possible trajectories are also shown in Fig. 8. The height

TABLE 1: Parameters for the A320-400.

Parameter Value

Cdo (clean) 0.022

S 122.5 m2

Ar 9.5

k 1.2992

W 671108 N

A 2.460 ×10−6

B 389.3

Vio 112 m/s

γ 16.2

Vsio φ = 45◦ 9.81m/s

TABLE 2: Total height loss over maneuvre for nil wind condition for all four possible trajectories.

δ1 δ2 ∆h nil wind ∆h in wind Travel Distance in wind

-1 1 1712m 1526m 19.0 km

1 1 1580m 2182m 27.3 km

1 -1 1030m 1034m 14.2 km

-1 -1 1047m 964m 12.9 km
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Fig. 8: Four possible maneuvres for the gliding aircraft to the runway in nil wind and 150◦ 30 m/s wind.

lost in the glide and the total path distances are shown in Table 2. In this case the optimum trajectory is where both turns

are anti-clockwise i.e. δ1 = −1 and δ2 = −1, as it has the smallest height loss of 964 m. It also has the shortest path length

of 12.9 km. However the shortest path in nil wind is not necessarily the shortest in wind. This is due to the possibility

of higher ground speeds that could be enjoyed if a greater portion of that path has a higher tail wind component in the

aircraft’s direction of travel.

The best δ1 = −1 and δ2 = −1 trajectory is compared to the best no wind trajectory in Fig. 9. The optimal initial turn for

both are different. This is because the initial turn with wind is into wind, as the wind direction blows the aircraft towards the

landing site. This lowers the distance the aircraft has to travel in the level glide to 7071m compared to 7271m in nil wind.

The A320 has a greater tail wind component in the level glide, where the aircraft’s ground velocity is 138 m/s, whereas in

nil wind it is travelling at its best glide speed of Vio 112 m/s. As there is an ever increasing tail wind component in the

final turn, it loses significantly less height than the nil wind final turn at 138m, as opposed to 189m. The combination of

these mean that the aircraft loses less height overall compared to not taking account of wind at all.

Shown in Fig. 10 are the height profiles of the aircraft over it’s flight time. It shows the three distinct phases of the flight,

with the turns having a steeper height loss as the sink rate is higher in a turn. The site is reachable if by the time it finishes

the full manoeuvre, it is at or above 500ft (152m). It can be seen that for both wind and nil wind both landing sites are

reachable since the ends of the profiles are above 152m. As the wind is in a preferential direction, the trajectory in wind

loses less height and thus has more excess height. The excess height in wind is 83.5 m and 17.2m, and the excess glide

distance is 1380m and 284m respectively. If a forced landing was to be preformed in nil wind, the glide would be extremely

marginal.

Paths are generated for the same initial and final conditions, but the wind is now from the South, which is much less

favourable compared to the last direction. The best path is shown in Fig. 11: This is once again compared to the best nil
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wind path. In this case the best paths for wind and nil wind have the same initial turn direction. This is because the initial

direction is at 020◦ which is a turn into wind, and it minimises the distance in the first turn because the heading change is

smaller.

It can be shown from the height profile in Fig. 12 that the aircraft has a negative excess height of -47 m, meaning that

it does not have adequate height to reach this landing site due to the massively unfavourable wind conditions. This shows

how important it is to take into account the wind.

VI. MONTE CARLO SIMULATION OF CESSNA 172

To demonstrate that the algorithms presented in this paper make good height loss prediction despite the assumptions made,

the method proposed is compared to actual height loss measured in the high fidelity X-Plane R© simulation environment. The

standard variable pitched propeller Cessna 172 model in X-Plane R© will be used in these simulations. The aircraft dynamics

model is based on blade element theory, meaning the aircraft has representative dynamics throughout the flight envelope.

X-Plane R© is used throughout industry for simulation and ”XPlane has received FAA certification as a training simulator
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Fig. 12: Height profile of aircraft over best trajectory for wind from 180◦ 30 m/s.

when used with certain hardware configurations because of its high fidelity simulation of flight model and visualization ”

[21]. The realism of this simulation means that X-Plane R© is suitable for the following analysis.

A plugin was developed which gives access to all aircraft data like attitude, position etc. over a network port. The

software can also receive control inputs like throttle, elevator etc. over the same network port. This has enabled the aircraft

to be controlled externally by a separate computer. In Simulink a controller is setup to command the specific manoeuvres

required, and is also used to log data. The relevant aircraft data from X-Plane R© is fed into airspeed, roll angle and sideslip

PID controllers.
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Fig. 13: Experimentally determined hodographs at a range of roll angles in X-Plane R© compared to the fitted surface calculated

from equations

A. Experimental Determination of Glide performance

The glide performance of the Cessna 172 needed to be determined experimentally as the aircraft’s drag parameters were

unknown. To show this method is applicable to a variety of aircraft with different sizes and velocities, an Airbus A320-400

and Cessna 172 will be utilized in the study. To achieve this the Cessna was be flown at a range of airspeeds to determine

it’s hodograph, which is it’s vertical sink profile over a range of airspeeds.

These tests were repeated for a range of roll angles to determine the glide performance in the initial and final turns of

the minimum height loss manoeuvre. This was also used to show the accuracy of Eq. 9, despite the assumptions made in

it formulation.

The aircraft was initialised at 1500m, the throttle set to zero and the propeller feathered. The roll controller initially

commanded a roll angle of zero, while the sideslip controller used the rudder to keep the sideslip of the aircraft at zero,

which made any turns co-ordinated. The speed controller used the elevator to control the aircraft’s airspeed to the commanded

speed. The aircraft glided from the initial height of 1500m to 1200m, giving its airspeed time to settle, and at this point the

aircraft’s vertical speed was recorded. The aircraft was reset to 1500m and the demanded speed was decreased by 0.5 m/s.

The aircraft was put into a coordinated turn for a range of roll angles and a hodograph was recorded for each roll angle.

The roll angles were 0◦, 10◦, 20◦, 30◦, 35◦, 40◦, 45◦, 50◦, 55◦ and 60◦. The turn was initialised by commanding the

relevant roll angle for that run. The sideslip controller coordinated the turn. The hodographs for each run were fitted to the

surface Vs = f(V, φ), where f(V, φ) is Eq. (9) This fitted surface is shown in Fig. 13.

The fit captured the shape of the experimentally determined hodographs well, with an R-Squared goodness of fit of 0.9936.

The maximum error was around -0.8 m/s at high airspeeds and at a roll angle of 60◦. However, these parts of the hodographs

are mostly irrelevant, as the aircraft will be flying at Vio. The error in vertical sink at Vio at 45◦ roll angle was only 0.304

m/s.

The main glide performance figures obtained experimentally for the C-172 at a mass of 950kg are shown in Table 3.
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Some of these will be used in the next section, in order to perform height loss predictions.

TABLE 3: Main glide performance figures for the C-172

Parameter Value

Vio 37 m/s

Vsio 2.825 m/s

γmax 13.09

Vmins 31 m/s

Vsmin 2.603 m/s

γms 11.9

Vsioφ at 45◦ roll 4.348 m/s

γ at 45◦ roll 7.1297

B. Minimum height loss path simulation

The minimum height loss paths were flown in the X-Plane R© flight simulator as accurately as possible, the height loss

and distance travelled across these paths measured and compared to predictions. X-Plane R© were set up to fly these paths

randomly in a simulated forced landing in order to conduct the Monte Carlo analysis.

X-Plane R© was controlled in a similar way as in the previous section, but the demanded roll angle was commanded by

a heading hold controller. The heading was set by Simulink’s state flow tool, which commands an initial heading and an

airspeed of Vio (37 m/s) at zero throttle, until it has settled on that heading and speed, following which the minimum

height loss path was flown. This was done by commanding a new heading which initiates the initial turn, and then once

on that heading, the aircraft conducted a straight-line glide for a set distance until the second turn, where the heading of

the simulated runway was given as the heading command. The roll controller is aggressive, i.e a good deal of the turn is at

maximum roll rate, in order to make it as efficient and as circular as possible. The headings and time in the glide can be

entered manually or set randomly.

The start point of the initial turn (engine failure point) will be at x0 = 0, y0 = 0. ψ0 is the initial heading command of

the aircraft, the straight line glide will be at a heading of ψa, while Γ is the demanded heading for the second turn. Fx, Fy

are defined as the final points at the end of the second turn in metres. X-Plane R© outputs the aircraft’s location in either

latitude and longitude or local cartesian coordinates in metres.

To make a comparison between X-Plane R© and predictions, an example path will be shown with wind to demonstrate this

method, and then a number of Monte Carlo simulations will be run for a range of turns, glide distances and wind conditions.

1) Simulation minimum height loss path examples: A strong wind of 20kt (10.28 m/s) from the east was chosen (β =

0.277), which, when compared to Vio, is high. The aircraft’s initial random heading is 236◦, and it then turns on to 59◦ for its

level glide and turns on to Γ at 180◦. Out of the four possible paths, the one that minimises height loss is an anti-clockwise
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Fig. 15: Comparison of the assumed and simulated roll angles of the C-172 across the glide path.

turn followed by a clockwise turn. The path flown by the Cessna 172 is compared to the predicted path in Fig. 14. The

paths are very similar. There is a blown up section of the final turn in the figure, which shows that in the steady wind of

the X-Plane R© simulation the turn shape is trochoidal – as predicted. The total path distance error is 115m, most of which

comes from the initial turn. The assumed roll angle compared to the actual roll angle of the aircraft is shown in Fig. 15

which shows that the aircraft takes about 4 seconds to roll to the demanded angle. This lower yaw rate in the initial seconds

after the engine failure explains the path distance error.

The height loss error is 20.9m, which is an error of 5% of the total height lost. The altitude profile of this glide can be

seen in Fig. 16, they match closely in shape however, as shown in Table 4 as the first and final turn are slightly longer than

predicted, and more height is lost over those phases, causing the majority of the error.

2) Monte Carlo simulations: So far, only a single example has been shown, and so in order to demonstrate how the

height loss prediction calculation copes with a random range of headings and glide distances, with or without wind, a Monte

Carlo simulation was run.
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The paths to fly were randomised for parameters ψ0, Γ randomised uniformly between 0◦ - 360◦ and Lg randomised

uniformly between 2000m to 20000m.

First of all, the simulation was run 95 times for nil wind conditions, which is to isolate the errors were not caused by the

introduction of wind. A histogram of the height loss error between the predicted minimum height loss path and the actual

height lost in the X-Plane R© simulation is shown in Fig. 17a. The mean height loss error was 11.9m with a standard deviation

of 5.2m. This is a very small error which is negligible compared to the accuracy of barometric altitude, GPS altitude, and

Digital Elevation Maps (DEM). Where barometric altimeters are certified to 15m [22], GPS altitude is only accurate to 8.5m

[?], and the inaccuracies in DEM can vary greatly dependant on the source, however if Shuttle Radar Topography Mission

DEM data was used for determining the landing site altitude, an accuracy of 15.27 RMSE was calculated in [23]. The error

is constantly a positive error, meaning that the prediction consistently under-predicts height loss.

The distribution of the error in total path distance is shown in Fig. 17b. It has a mean of 100.5m and a standard deviation

of 51.8m, which means that the prediction is consistently under-predicting the path length.

TABLE 4: Comparison between predicted X-Plane R© height loss and path distance for the 90◦ 20kt wind example

Parameter Predicted Actual

∆htot 390m 411m

∆hg 305 m 312m

∆ha 50.6m 55.7m

∆hb 34.6m 43.5m

∆herr 20.9m

L 3752m 3866m

Lg 3016m 3085m

La 401m 442m

Lb 335m 340m

Lerr 115m
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Fig. 17: Nil wind Monte Carlo simulation distributions.

As glide performance is accurately known, most of the errors in height loss come from disparities in the path length.

To show that this correlation holds over a much larger sample size, the total path length error is plotted against the height

loss error for each simulation run, as shown in Fig. 18a with a very strong positive correlation. If glide performance was

not known accurately there would be a positive correlation between height loss error and Lg . However, no correlation is

shown in Fig. 18b, meaning that in this case glide performance is known very accurately. This illustrates the importance of

accurate glide performance information.

It is evident that the distance error was mostly caused by the instantaneous roll angle assumption. This can be further

shown by a larger total heading change of the aircraft over the whole path, ∆ψ will lead to a greater total path length error.

To show this correlation, total heading change over both turns is plotted against the total path distance error, as highlighted

in Fig. 18c. Once again, this shows a positive correlation.

In the previous Monte Carlo simulation, the wind was steady and uniform. In order to see how the predictions would

handle wind gusts, a Monte Carlo simulation with 103 runs was performed at a wind speed of 10kt from the north with 1

m/s random wind gusts. X-Plane R© makes this quite easy, as it has a weather option. The gusts are modelled as normally

distributed, with 0 m/s mean and standard deviation of 1m/s.

From the height loss distribution in Fig. 19a, it seems that there is no significant impact on the accuracy of the prediction.

The height loss error mean is 11.47m with a standard deviation of 8.65m. This is comparable to stronger uniform steady

wind Monte Carlo simulation presented earlier in this section.

The total path length error distribution is shown in Fig. 19b with a mean of 106.5m and a standard deviation of 66.74m.

This also does not seem to have been unduly affected by the wind gust. This would make sense as the gusts have a mean

of zero, therefore over time the error associated with integration of any vertical speeds error will be zero.
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(a) Total path length error plotted against the height loss error for

each simulation run in nil wind.
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(b) Height loss error plotted against Lg for each simulation run in

nil wind.
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(c) Predicted compared to the simulated minimum height loss path

nil wind.

Fig. 18: Graphs showing correlations between path length error and height error, and turn angle and path length error.

VII. CONCLUSION

From a small number of initial conditions and aircraft parameters, reachability analysis for UAS has been developed as

part of a contingency management system in a forced landing situation in the presence of a steady uniform wind. This is

achieved by calculating the minimum height loss path of the gliding aircraft under wind conditions. The reachability analysis

gives a measure of how reachable a landing site is by taking into account all the factors that affect an aircraft gliding and

manoeuvring in performing a forced landing. This reachability measure is then used as a tool to aid landing site decision

making.

By using a Cessna C-172 in an X-Plane R© simulation environment, it has been shown that the experimentally determined

hodographs match the predictions from the equations for both a straight-line glide and turning flight. This confirms that

these simplified equations are adequate enough to model the glide performance for use in the height loss predictions. It has
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Fig. 19: Wind with gusts Monte Carlo simulation distributions between the Monte Carlo simulation in X-Plane R© and as

predicted, in 00◦ 10kt wind with 1 m/s random gusts.

also been shown that the proposed algorithm is fast enough to be run online.

The minimum height loss paths were investigated by comparing the predicted paths and height loss with simulated values

from X-Plane R© for the same C-172. Two examples showed the prediction methods perform well in both strong steady and

gusty wind conditions. Monte Carlo simulations showed that the average height loss errors were quite small compared to the

total height loss across the glide. Most of the total path length errors were the result of turns. This is because it is assumed

that the aircraft instantaneously attains its desired roll angle. As this is not the case, the turns tended to be wider in the

simulation, thereby increasing path length.

Finally, the proposed reachability analysis could also form part of the decision making tool for human pilots when a

forced landing has to be performed.
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