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The possibility of constructing a complete, continuousWigner function for any quantum systemhas been a
subject of investigation for over 50 years. A key system that has served to illustrate the difficulties of this
problem has been an ensemble of spins. Herewe present a general and consistent framework for constructing
Wigner functions exploiting the underlying symmetries in the physical system at hand. TheWigner function
can be used to fully describe any quantum system of arbitrary dimension or ensemble size.
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Out of all available choices, one can argue that the
Wigner function [1] presents the most natural phase-space
representation of quantum mechanics [2]. The main ad-
vantage is that it simultaneously retains the intuitiveness
with respect to classical phase-space while rendering
clearly, important quantum information concepts—leading
to the now iconic Wigner function for a macroscopically
distinct superposition of states (Schrödinger cat states) [3].
In this regard the Wigner function possesses a unique
advantage over other representations (such as the P [4,5]
and Q [6,7] functions). Even though all these are quasi-
probability distribution functions, the Wigner function’s
marginals are easily linked to amplitudes of a given
representation, and its equations of motion are closely
and intuitively relatable to the classical ones for the same
system [2]. These properties are further augmented by a
transparent connection to the quantum-classical transition
where solutions to the classical Liouville equation can be
recovered as the action becomes large with respect to a
Planck cell [8]. Indeed, it is possible to reformulate much of
quantum mechanics in phase space [9].
Despite the merits of the Wigner function representation,

and its successful application in quantum optics [10,11],
it has not been more widely applied to other systems as
finding a consistent approach to generating Wigner func-
tions for arbitrary, finite dimensional systems has proved
challenging. For example, Wigner functions for finite-
dimensional systems have been developed [12–16], but
their definition is restricted to a subset of discrete state
spaces. Furthermore, only gradual progress has been
made in the development of continuous state-space
Wigner functions representing finite dimensional systems
[17–27]. These approaches also come with their own set of
restrictions: the representation space is restricted to the
symmetric subspace where the Bloch sphere can be
constructed, or the representation space is expanded to

support the entire Hilbert space at the cost of distorting the
properties of the state or states being represented. It is clear,
therefore, that the most appropriate Wigner function for an
arbitrary quantum system should be one that is a complete
representation, which preserves the quantum properties of
the system in an intuitive way, yet is consistent and
comparable with continuous variable cases from quantum
optics.
In this Letter, based on the original Wigner function

for continuous variable systems, we propose an alternative
method for computing Wigner functions that addresses all
these issues and thus provides a pathway to the formulation
of intuitively analogous, easy to calculate, completeWigner
functions for arbitrary quantum systems. As proof of
principle, we present examples of Wigner functions that
are currently of importance in both quantum information
and atomic, molecular, or optical physics.
The standard form of the Wigner function describing

how to transform a Hilbert space operator ρ̂ to a classical
phase-space function W ρ̂ðq;pÞ [28–32], is

Wρ̂ðq;pÞ ¼
�

1

2πℏ

�
n
Z þ∞

−∞
dz

�
q −

z
2

����ρ̂
����qþ z

2

�
eip·z=ℏ;

ð1Þ

where q ¼ ½q1; q2;…; qn� and p ¼ ½p1; p2;…; pn� are
n-dimensional vectors representing the classical phase-
space position and momentum values, z ¼ ½z1; z2;…; zn�,
ℏ is Planck’s constant, and with normalization

Z þ∞

−∞
dq

Z þ∞

−∞
dpWρ̂ðq;pÞ ¼ Tr½ρ̂� ¼ 1: ð2Þ

It is well known that this can be also written in terms of the
displacement (D̂) and parity (Π̂) operators according to
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W ρ̂ðΩÞ ¼
�

1

πℏ

�
n
Tr
h
ρ̂ D̂ðΩÞΠ̂D̂†ðΩÞ

i
; ð3Þ

where Ω is any full parametrization of the phase space
such that D̂ and Π̂ are defined in terms of coherent states
D̂ðΩÞj0i ¼ jΩi and Π̂jΩi ¼ j − Ωi [33,34]. In this situa-
tion, the displacement operator D̂ is often parametrized in
terms of position and momentum coordinates or eigenval-
ues of the annihilation operators. The question then is,
especially for composite quantum systems, can this dis-
placed parity operator approach be generalized to other,
especially spin, systems? In other words, we want an
equation of the form of Eq. (3), but for finite-dimensional,
continuous variable, composite quantum systems.
We will follow the approach of Brif and Mann [19] by

considering a distribution Wρ̂ðΩÞ over a phase space
defined by the parameters Ω to be a Wigner function of
a Hilbert space operator ρ̂ if there exists a kernel Δ̂ðΩÞ
that generates Wρ̂ðΩÞ according to the generalized Weyl
rule Wρ̂ðΩÞ ¼ Tr½ρ̂ Δ̂ðΩÞ�, and which also satisfies the
following restricted version of the Stratonovich-Weyl
correspondence:
S-W.1 The mappings Wρ̂ðΩÞ ¼ Tr½ρ̂ Δ̂ðΩÞ� and ρ̂ ¼R

Ω Wρ̂ðΩÞΔ̂ðΩÞdΩ exist and are informationally complete.
Simply put, we can fully reconstruct ρ̂ from Wρ̂ðΩÞ and
vice versa [35].
S-W.2 Wρ̂ðΩÞ is always real valued which means that

Δ̂ðΩÞ must be Hermitian.
S-W.3 W ρ̂ðΩÞ is “standardized” so that the definite

integral over all space
R
ΩWρ̂ðΩÞdΩ ¼ Trρ̂ exists andR

Ω Δ̂ðΩÞdΩ ¼ 1.
S-W.4 Unique to Wigner functions, Wρ̂ðΩÞ is self-

conjugate; the definite integral
R
ΩW ρ̂0 ðΩÞW ρ̂00 ðΩÞdΩ ¼

Tr½ρ̂0ρ̂00� exists. This is a restriction of the usual
Stratonovich-Weyl correspondence.
S-W.5 Covariance: Mathematically, any Wigner function

generated by “rotated” operators Δ̂ðΩ0Þ (by some unitary
transformation Û) must be equivalent to rotated Wigner
functions generated from the original operator (Δ̂ðΩ0Þ≡
ÛΔ̂ðΩÞÛ†)—i.e., if ρ̂ is invariant under global unitary
operations then so is W ρ̂ðΩÞ.
We note that the kernel operator Δ̂ðΩÞ and the set of

coordinates Ω are not unique under the conditions for a
phase-space function to be a Wigner function.
For continuous systems Eq. (3) shows the kernel

operator Δ̂ðΩÞ to be proportional to D̂ðΩÞΠ̂D̂†ðΩÞ with
the parameters Ω ¼ fq;pg. For other systems, it is essen-
tial for the kernel operator (and the set of coordinates) to be
chosen in order to reflect the symmetries of the physical
system of interest. As an example, we start with definiton
S-W.1 and attempt to recreate an analogous equation to
Eq. (3) for a single, two-level, quantum system. In this case,
Π̂ has analogous properties to σ̂z, acting as a π rotation on a

two-level quantum system about the z axis of the Bloch
sphere in the Pauli representation. Similarly, the SU(2)

rotation operator, Û½2�
2 ðθ;ϕ;ΦÞ ¼ eiσ̂zϕeiσ̂yθeiσ̂zΦ, is analo-

gous to the displacement operator D̂ in that Û½2�
2 ðθ;ϕ;ΦÞ

“displaces” a two-level quantum state along the surface of
the Bloch sphere. Where necessary, we use bracketed
superscripts [D] to represent the D ×D matrix size of
the operator, and numerical subscripts D to denote the
operator’s special unitary (SU) group structure.
In order to obtain a Wigner function from the above,

we are motivated to take the rotated σ̂z operator as the
displaced parity operator for the two-level system and
impose the self-conjugate Stratonovich-Weyl correspon-
dence [33]. This argument leads to the following expression
[26,36]

Δ̂½2�ðθ;ϕÞ ¼ 1

2

h
Î½2� −

ffiffiffi
3

p
ðÛ½2�

2 σ̂zðÛ½2�
2 Þ†Þ

i
; ð4Þ

where the Euler angles (θ, ϕ) parametrizing the represen-
tation space are set by the parametrization of the rotation

operator Û½2�
2 ðθ;ϕ;ΦÞ. Using the invariance of the 2 × 2

identity Î½2� under Û½2�
2 we have

Π̂½2� ¼ Î½2� −
ffiffiffi
3

p
σ̂z; ð5Þ

such that

Δ̂½2�ðθ;ϕÞ ¼ 1

2

h
Û½2�

2 Π̂½2�ðÛ½2�
2 Þ†

i
: ð6Þ

It is clear that this operator is Hermitian, and that with the
correct dΩ (for our discussions, the Haar measure given in
Ref. [37]) satisfies all the requirements of our restricted
Stratonovich-Weyl correspondence. As the spin-parity Π̂ is
an observable and the displacement-rotation Û operators
are easily realizable quantum operations then, as for optical
systems [38,39], direct reconstruction of our Wigner
function should be possible. For example, it should be
possible to set up solid-state-based experiments to directly
measure these spin-based Wigner functions.
We can use Eqs. (5) and (6) as a starting point to

generalize the construction of the kernel operator Δ̂ðΩÞ. To
do this, we focus on the symmetries in the physical systems
in question. We start with a quantum system that is a
collection of k distinct states, each being parametrized
by a SUðniÞ spin representation of dimension di, such
that the system size is D ¼ d1 × d2 × � � � × dk and
D ¼ n1 × n2 × � � � × nk. The full system can then be
parametrized by the appropriate D-dimensional represen-
tation of SUðDÞ. From this, the key to formulating an
appropriate kernel is clear. The spin parity operator Π̂ needs
to address the overall symmetry of the total system, which
means it must be an element of the algebra suðDÞ. For our
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work, such an element will be defined using the formalism
given in Eq. (5) by using the last of the generalized Gell-
Mann matrices, Λ̂i [40], which, as σ̂z is Λ̂3 in SU(2), is a
natural extension of the case considered in Eq. (4).
The previous argument leads us to propose that spin

Wigner functions can be generated using kernels of the
form

Δ̂½D�ðΩÞ ¼ 1

D
ÛðΩÞΠ̂½D�Û†ðΩÞ;

Π̂½D� ¼ Î½D� −N ðDÞΛ̂D2−1; ð7Þ

where the normalization N ðDÞ depends on the dimension-
ality of the Hilbert space and (not denoted here) the choice

ofΩ; ÛðΩÞ ¼ ⊗
k

i¼1
U½di�

ni and is closed on the parameter space

Ω (while we focus on continuous Ω our definition could
work in the discrete case too); Λ̂D2−1 is a D ×D diagonal
matrix wherein the diagonal entries are

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2=DðD − 1Þp

except for ðΛ̂D2−1ÞD;D ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðD − 1Þ=Dp

[40]. It is clear

that the explicit form of Δ̂½D�ðΩÞ is dependent on the
choice of Û; thus, the question we must address is how to
choose such operators so as to satisfy the self-conjugate
Stratonovich-Weyl correspondence.
Each choice of Û, Π̂, and the parameter space may yield

a different Wigner function as long as it satisfies the
Stratonovich-Weyl correspondence; hence, a preferred
choice of the parameter set should be made to reflect the
physical system at hand. As we focus on spin systems in
this Letter, we first consider the standard SU(2) case and
construct the corresponding Wigner function using the
above recipe. A spin-j representation of SU(2) has been
shown to be useful to represent various physical systems
such as Bose-Einstein condensates (BECs) [41–47] and
spin ensembles in materials [48]. Thus, setting k ¼ 1,
n1 ¼ 2, and D ¼ d1 ¼ 2jþ 1 in the definition of Û yields

the SU(2) rotations Û½2jþ1�
2 . As such operators can be

decomposed with three real parameters (ϕ, θ, and Φ) we

have Û½2jþ1�
2 ¼ eiĴ3ϕeiĴ2θeiĴ3Φ, where Ĵi are the generators

of the ½2jþ 1�-dimensional representation of SU(2). The
operators Δ̂ðΩÞ and Π̂ are then

Δ̂½2jþ1�ðθ;ϕÞ ¼ 1

2jþ 1
Û½2jþ1�

2 Π½2jþ1�ðÛ½2jþ1�
2 Þ†;

Π̂½2jþ1� ¼ Î½2jþ1� −N ð2jþ 1ÞΛ̂ð2jþ1Þ2−1: ð8Þ

The parameter set (ϕ, θ) as Φ makes no contribution,
specifies the parameter space for the Wigner function.
Finally, to obtain an unbiased representation on the
parameter space, we take the Haar measure on the
parameter space that generates the normalization constant
N ð2jþ 1Þ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2jþ 2Þð2jþ 1Þð2jÞ=2p

.

In Figs. 1(a)–1(c) we present plots of the Wigner
function for three different superposition states using
Eq. (8). In comparison to the Wigner function previously
defined [27,49], the shapes of the functions are quantita-
tively different; however, these functions do visualize
quantum interference in the states in a similar manner.
The advantage of this approach is that the Wigner function
can be obtained without a multipole expansion that can be
problematic to do for such systems.
While the previous Wigner function is useful for some

physical systems, it is inadequate to represent more general
spin systems. To represent the full dynamics of such
systems, we need to employ a different symmetry to
construct a Wigner function. One particular general spin
system of interest is a multiqubit system, which is a special
case of a more general ensemble of qudits [11]. Although
it is possible to imbed the high-j SU(2) symmetry into
the appropriate SUðDÞ group representation of the entire
Hilbert space of a multiqubit system and generate Wigner
functions using Eq. (8) (see Ref. [21]), the resulting Wigner
function is fully dependent on the labeling of the basis
states. To correct for this, we employ a rotation of the form
SUð2Þ ⊗ � � � ⊗ SUð2Þ. More precisely, for k qubits, we
have ni ¼ 2 and di ¼ 2 for all k, allowing us to define

FIG. 1. (a)–(c) Polar plot of the Wigner function using
Δ̂½2jþ1�ðθ;ϕÞ, as defined in Eq. (8) for high spin spaces of
dimension 1=2 (a), 3=2 (b), and 7=2 (c). Here we have used as
examples normalized states of the form jj; m ¼ ji þ jj; m ¼ −ji
(where we have labeled states in terms of the quantum numbers
for Ĵ2 and Ĵz). Note that there are 2j interference terms and that
images are not to the same scale. (d)–(f) Mercator projection of
the Wigner function using Δ̂½2k�ðfθi;ϕigÞ, as defined in Eq. (9),
for a set of 1 (d), 2 (e), and 3 (f) spins and two-level atoms, where
we have taken the slice θi ¼ θ (as the ordinate from 0 to π=2) and
ϕi ¼ ϕ (as the abscissa for 0 to π). For all plots, blue is positive
and red negative and black is the zero contour.
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the total rotation operator as Û ¼ ⊗
k

i
Û½2�

2 ðθi;ϕi;ΦiÞi ¼

⊗
k

i
eiσ̂ziϕi eiσ̂yiθieiσ̂ziΦi . Doing this we obtain

Δ̂½2k�ðfθi;ϕigÞ ¼
1

2k

n
⊗
k

i
ðÛ½2�

2 Þi
o
Π̂½2k�

n
⊗
k

i
ðÛ½2�

2 Þ†i
o
;

Π̂½2k� ¼ Î½2
k� −N ð2kÞΛ̂22k−1; ð9Þ

where N ð2kÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2k þ 1Þð2kÞð2k − 1Þ=2

p
(assuming the

appropriate Haar measure representation) as well as noting
that, once again, the Φi’s make no contribution.
As the number of parameters fθi;ϕig of Eq. (9) scales

with the number of qubits, atoms, or spins it becomes
harder to visualize. However, we still can capture the nature
of the corresponding state by taking slices of its Wigner
function, for instance, by setting θi ¼ θj and ϕi ¼ ϕj for
all i, j. In Figs. 1(d)–1(f) we show such slicing for all i, j
for a selection of states that are usually mapped onto the
respective spin states shown in Figs. 1(a)–1(c).
It is interesting to note that if we write Â ¼ V̂Â0V̂

†,
where V̂ is some unitary operator then, in general,

WÂðΩÞ ¼ Tr½V̂Â0V̂
†Δ̂ðΩÞ� ¼ Tr½Â0

~ΔðΩÞ�; ð10Þ

where we have a new, rotated kernel ~ΔðΩÞ ¼ V̂†Δ̂ðΩÞV̂.
Then, if, for example Â ¼ ρ̂ and V̂ is the evolution operator,
or a set of quantum gate operations, this expression can
lead to an efficient way of computing the Wigner function
for a dynamical process or an algorithm as V̂†Δ̂ðΩÞV̂. An
example of the utility of this approach is shown in Fig. 2,
where we have applied this method to show squeezing in a
set of spins using Δ̂½2k�ðfθi;ϕigÞ for a toy model of one-axis
twisting.
Last, we can extend our Wigner function representation

to even more spin system symmetries. If we set k ¼ 1,
n1 ¼ N, and d1 ¼ D we generate the rotational operator

Û ¼ Û½D�
N representing a general D-dimensional quantum

system or qudit with SUðNÞ symmetry (for operator
formalism see Ref. [37]; for coherent state formalism see
Ref. [50]). The kernel, following our Haar measure require-
ments, is then

Δ̂½D�ðθ;ϕÞ ¼ 1

D
Û½D�

N Π̂½D�ðÛ½D�
N Þ†

Π̂½D� ¼ Î½D� −N ðDÞΛ̂D2−1; ð11Þ

where θ ¼ ½θ1; θ2;…; θN−1� and ϕ ¼ ½ϕ1;ϕ2;…;ϕN−1�
with N ðDÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðDþ 1ÞðDÞðD − 1Þ=2p

. Using Û½D�
N with

D ¼ N from Ref. [37], the above function is then identical
to the SUðNÞ coherent state-based Wigner function of
Ref. [26]. This allows us to consider the dynamics of a set
of k qudits as a mapping onto the dynamics of a coherent

state in SUðNkÞ, which is a form of holographic principle
that reminds us of conformal field theories, by setting

the rotation operator to be Û ¼ ⊗
k

i
ðÛ½N�

N Þi. For example, if

N ¼ 3, we generate the kernel for a set of qutrits whose
dynamics can be mapped onto that of a coherent state in
SUð3kÞ. Construction of the associated Wigner function
proceeds in exactly the same way as before. Obviously this
can be generalized. This leads us to propose that operators
with other Lie group symmetries, such as SOðNÞ, could be
used if we have a reason to believe such symmetries
describe the underlying physics of the system.
To conclude, we have shown a general method for

constructing Wigner functions using the symmetries con-
tained within the special unitary group. This approach
allows us to construct and explicitly derive the Wigner
functions for arbitrary spin systems. Furthermore, as
Wigner functions of composite systems can be generated
by a kernel that is the tensor product of its components [24],
combining existing methods with those presented here
provides a mechanism to define Wigner functions for
arbitrary quantum systems. As our ability to quantum
coherently control a physical system has been rapidly
improving, we can anticipate a large quantum system to
be experimentally realized in the relatively near future, and,
hence, we should note that this formalism is numerically,
computationally, and experimentally friendly (the Wigner
function is the expectation value of a displaced parity
operator [33] or, equivalently, the expectation value of a

FIG. 2. Comparison of the Wigner (left) andQ (right) functions
for states generated by one axis squeezing of a set of two-level

systems. The initial state is jþ6i ≔ ⊗
6

i¼1
ðjj ¼ 1

2
; m ¼ 1

2
ii þ jj ¼ 1

2
;

m ¼ − 1
2
iiÞ and the Hamiltonian is Ĥ ¼ ½⨁

i
ðσ̂zÞi�2. We calculate

the Wigner function using Eq. (10) using Δ̂½2k�ðfθi;ϕigÞ, Â ¼
jþ6ihþ6j and V̂ ¼ expð−iĤtÞ, where t ¼ π=125. Q is calculated
in the usual way using the natural θ, ϕ parametrization of spin
coherent states (see Ref. [50] for details). As in Figs. 1(d)–1(f),
we have taken the slice θi ¼ θ (as the ordinate) and ϕi ¼ ϕ
(as the abscissa). In both figures we clearly see squeezing, but in
the Wigner function we also see negative volume indicating
the underlying quantum nature of the states. Note, unlike in
Figs. 1(d)–1(f), here ϕ ranges from −π=2 to π=2. For all plots,
blue is positive and red negative and black is the zero contour.
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parity operator for a state rotated in the opposite direction).
Last, because of the usefulness of the SU group in
theoretical physics, this formalism should help generate
usable Wigner functions for high-spin SUðNÞ systems
that are important in theoretical studies of quantum
gravity, string theory, and other extensions to quantum
mechanics [51].
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