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1 Introduction

Since the discovery of superconductivity in 1911 by Kamerlingh Onnes, theories describing

the associated phenomena have been under constant modification and evolution. The

explanation of “elemental” superconducting behaviour (e.g. in metals such as lead and

aluminium), with zero resistivity at temperatures close to zero kelvin in low magnetic

fields, is well established. However, a different subset of superconductors (e.g. ceramics

such as yttrium barium copper oxide and many other cuprates) exists that has much

higher transition temperatures (> 30K, at which point superconductivity breaks down)

for which many physical mechanisms are not yet understood.

The first high temperature superconductor was discovered in 1986 by Bednorz and

Müller [1]. The thermodynamic Ginzburg-Landau theory that is reasonably successful

at describing high temperature superconductivity near the critical transition tempera-

ture Tc was originally a phenomenological theory, but was later derived microscopically

by Gor’kov [2] in 1959. Ginzburg and Landau defined superconductivity mathematically

through the introduction of a complex order parameter field — a macroscopic coherent

wave function ψ — that appears below Tc. The free energy of a superconductor was ex-

pressed in its terms. The onset of superconductivity is a second order transition, i.e. there

is no latent heat; the order parameter increases continuously from zero. Ginzburg-Landau

theory follows from the general theory of Landau for second order phase transitions. It
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remarkably predicted the existence of high-temperature superconductors, whose proper-

ties include the penetration of magnetic flux into the structure in cylindrical tubes, called

vortices [3] (this does not happen in elemental superconductors, where a magnetic field is

expelled from the bulk — the Meissner effect).

The lattice structures of superconducting cuprates or pnicides are characterised by

complex competing electronic and magnetic phases that emerge in association with fractal

structures that develop from the nano level, and propagate up to many micrometres in

size [4]. To create a high temperature superconductor one needs to dope a parent com-

pound such as La2CuO4 with, for example, oxygen interstitials or strontium. The doping

that creates the highest critical temperature is called optimal doping. At this optimal level

a single Tc value marks the transition to a superconducting phase. However, careful an-

nealing to avoid the escape of interstitial oxygen produces a mixed state that can even have

two critical temperatures [4]. This is caused by the self-organisation of the oxygen into

different patterns, such as stripes [5], or the formation of dipolar resonance plaquettes [6].

Thus, a 1 or 2D ordering of electronic density in high temperature superconductors may

dictate the properties of the phase diagram and in particular the superconducting phase.

At the optimal doping a continuous phase change — with a quantum critical state — may

be realised at the transition point [7]. In these high temperature superconductors electron

pairs form, but the mechanisms are quite different from conventional superconductors (that

generally have much lower critical temperatures). There is a strong coupling mechanism

(that is not due to phonons) involved that renders well-known theories that describe the

conventional electron-phonon mechanism via the BCS model (after Bardeen Cooper and

Schrieffer) unable to describe the physical properties. Conventional superconductivity typ-

ically involves pairs of electrons that are separated over distances larger than the lattice

spacing, leading to a relatively weak binding. Thus, new methods of analysis are required

in condensed matter physics that can lead to greater understanding of the complex issue

of strongly correlated systems.

Here, we make use of techniques borrowed from cosmology that are valid for describing

a superconductor when its temperature is equivalent to that of a corresponding black

hole [8]. The fractal structures found in the high Tc superconductors contain information

about the origin and history of the sample. It was found in the experiments by Bianconi

et al., that the development of granular fractal structures stimulated the onset of high

temperature superconductivity (see, [9] and references therein). There are also long term

discussions about the formation of the one-dimensional conducting channels, which may

be associated with oxygen defects that lead in turn to the formation of Luttinger liquid

inside these channels [10, 11]. There the electron and spin degrees of freedom are decoupled

and when channels are ordered, due to the Coulomb interaction, the charge-density wave

(CDW) state develops [12]. However, the transverse stripes fluctuations suppress the CDW,

increase the tunnelling between stripes and may create electron liquid crystal nematics

which may contain a novel state of 2D Luttinger Liquid [12–14]. The conducting filaments

of the electron nematic, in general, may form a critical state of some sort of fractal [4, 9]

or the the electron spider web, where there is 2D conformal invariance and therefore the

methods such as AdS/CFT correspondence may be applied.
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The fractal electron spider web or electron nematic might play a key role in the mech-

anism of the superconductivity in cuprates. It was also recently noticed that the su-

perconductivity is enhanced near nematic quantum critical point (QCP ) (see, the recent

discussion in the ref. [15]) that may be associated with optimal doping. Likewise, a black

hole’s information is contained in threads or “hair” at its event horizon that grow from its

time of formation, and its later development.

To use the cosmological models we need to mathematically create a black hole that

has hair below Tc. The emergence of the superconducting phase corresponds to a black

hole formed in Anti de Sitter (AdS) space [16–19] with hair [20]. A QCP is suspected

to lie within the superconducting phase and quantum fluctuations are thought to extend

its presence to temperatures well above absolute zero. Near Tc the quantum fluctuations

should be detectable throughout the superconducting condensate, with analogy to a black

hole with the same quantum hair (i.e. entropy, information, temperature) [21]. Recent

work in the iron pnictide superconductors [22] has found a QCP where the London pen-

etration depth increases as a consequence of quantum fluctuations. A further signature

of a QCP is superconductivity and magnetism coexisting as a consequence of doping. A

possible material for demonstration of this phenomena is the new material with anomalous

magnetoresistance, LiT i2O4 [23]. The work we develop herein may be useful in further de-

veloping the understanding of the physics of these novel materials. Theories derived from

cosmology, e.g. AdS/conformal field theory, have previously been used in the description

of cuprate superconductors in analogy to special black holes [9, 24]. Indeed the connection

of superconducting fluids and superconductors with experiments to deduce cosmological

mysteries is not new: for example, in 1985 Zurek proposed superconducting liquid helium

as a possible laboratory test for the Kibble mechanism [25], with the theoretical description

coming through Ginzburg-Landau theory.

The high Tc superconductors are layered and can be described by (2 + 1) dimen-

sional models. Using the AdS gravitational model, the properties in the vicinity of (2 + 1)

quantum critical points may be investigated by finding a (3+ 1)-dimensional gravitational

dual of the (2 + 1) dimensional system below Tc. The AdS space is becoming an increas-

ingly valuable tool in different branches of physics — including cosmology, string theo-

ries [26–32], condensed matter physics [33–36], and more recently, within the holographic

principle [26, 37–40]. AdS space has a negative curvature, conveniently offering resolution

to the problem of the thermodynamically unstable Schwarzschild black-hole, as it possesses

negative heat capacity [39, 40]. Thus, we provide a new methodology that demonstrates

that the application of an AdS space within Einstein’s theory of relativity can lead to the

emergence of a superconducting system (i.e., Ginzburg-Landau theory [3, 41]), which is

located on the AdS infinite boundary [33–36].

2 Gravity model

The line element of AdS4 is given by [36]

ds2 = gµνdx
µdxν , (2.1)
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Figure 1. The spatial geometry in Anti-de Sitter (AdS) space with coordinates (r, x, y) is shown.

Here, r represents the holographic axis, with only quantum phenomena surviving on the asymptot-

ically flat (x– y plane) at r → ∞.

with the system defined by Poincare coordinates xµ = {t, r, x, y} [42]. The metric gµν is

chosen as

gµν =











−s(r) 0 0 0

0 1/s(r) 0 0

0 0 r2 0

0 0 0 r2











with the function [34–36]

s(r) =
r2

L2
−

r30
L2r

. (2.2)

Here r0 represents the horizon radius of the AdS black-hole, and is directly related to

its mass. To be consistent with dimensionality, the characteristic AdS length scale L =
√

−3/Λ has been re-parametrized in terms of the cosmological constant Λ [34, 36]. We also

note that the function s(r) is not chosen arbitrarily, but rather as an explicit solution to the

Einstein equations [34–36]. Both the AdS length scale L and horizon radius r0 determine

the black-hole temperature T = 3r0
4πL2 , as mentioned by Hawking [17, 36].

The scale of the x-y coordinate plane increases with the square of the holographic

dimension r, namely r2(dx2 + dy2). Assuming a stationary system with negligible back-

reaction, the spatial geometry of AdS can be realized as in figure 1. Back-reaction here

refers to the curvature of space-time induced by small particles.

The required action for the gravity model is given by S =
∫

L
√

|g| d4x, where the

Lagrangian density L [35, 43–45] is given by

L =
1

2κ

(

R+
6

L2

)

+ Lm, (2.3)

and

Lm = −
1

4µ0
FµνF

µν −
~
2

2m∗

∣

∣

∣

∣

(

∇− i
q

~
A

)

ψ

∣

∣

∣

∣

2

− V (r, ψ). (2.4)

– 4 –



J
H
E
P
1
0
(
2
0
1
6
)
0
1
7

Lm is a Lagrangian density for matter fields, where µ0 is the permeability of free space, ~

is Planck’s constant, A is magnetic vector potential, q represents charge, and m∗ could be

the effective mass of a charge in quantum mechanics and simply a constant in relativity.

The action S is a functional of a (complex) scalar field ψ, and includes the Ricci scalar

curvature R, the determinant g = det(gµν), the gravitational coupling constant κ = 8πG,

electromagnetic fields Fµν and an interaction potential V (ψ).

3 Superconducting system

Our ultimate goal, is to establish a relationship between the (3+1) gravity model in the

bulk, and the (2+1) Ginzburg-Landau theory upon the AdS boundary. We incorporate a

flexible solution for the potential as follows

V (r, ψ) = α(T )
|ψ|2

r2
+ χ

|ψ|2

L2
+ β

|ψ|4

2rk
, (3.1)

where k is an integer (dependent upon the choice of solution), χ and β are constants, and

α(T ) ∝ (T − Tc) is a temperature dependent parameter. It is clear that this parameter

α(T ) changes sign at some critical temperature Tc, and corresponds to the phase transition

described by the Ginzburg-Landau theory [46–49]. For T < Tc, this corresponds to a

superconducting state; whereas for T > Tc, this implies a normal state. Therefore, the

temperature dependent α(T ) provides a significant role for the phase transition. In fact, if

T remains constant, then α(T ) = α is only a constant coefficient.

In gravity χ is a classical parameter which describes a square mass of the scalar field,

while at the boundary we have a characteristic energy quantised on the scale L. This energy

may be related to the mass of the scalar particles in the classical theory. The additional

term, as α(T ), is again related to the mass. It could be interpreted as a new quantity, as

the temperature dependent mass deficit. That could be associated with the existence of a

black hole since the black hole provides the temperature to the AdS space. The classical

quantum transformation may be understood with duality between a classical mass of the

scalar particles and the characteristic condensation energy on the quantum boundary.

Figure 2 shows the idea of the phase transition of a superconducting system, associated

with symmetry breaking [49]. We also have to mention that our proposed model is not

scale invariant due to the choice of potential V (r, ψ).

Generally speaking, superconductors can be classified as either Type I or Type II. The

Type I superconductors remain in the Meissner state [50] whilst H is smaller than a critical

value Hc and as H exceeds Hc, a normal state emerges. For Type II superconductors, there

are the two critical limits, Hc1 and Hc2. For a magnetic field less than Hc1 or greater than

Hc2, the superconductor is either in the Meissner state or normal state respectively. For

vortices nucleating in between the two critical limits, Hc1 < H < Hc2, we call this a mixed

state [3]. For a discussion of vortices in Type II superconductors and holography, see

references [51–54].

The BCS theory [47] describes microscopically well all superconductors, and so far is

the most used theory. However, in each BCS case we are limited by a specific pairing

– 5 –
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Figure 2. The free energy associated with a phase transition of superconducting density |ψ|2 is

shown. For temperature T > Tc, the minimum free energy is located at ψ = 0 — corresponding to

the normal state (|ψ|2 = 0). For T < Tc, a minimum free energy is now positioned at ψ = ψ0 —

representing the superconducting state (|ψ|2 > 0) which refers to symmetry breaking.

symmetry and the inclusion of a magnetic field leads to nonlinear equations that require

complex numerical calculations to be solved. Likewise, the Ginzburg-Landau theory can

explain Type II superconducting behaviour near the point of a phase transition in more

simple terms of the order parameter. It is due to this fact that Ginzburg-Landau theory is

capable of solving the strong coupling of two non-linear differential equations [46]. These

coupled equations can resolve the complex scalar field and magnetic potential (ψ,A), re-

spectively. In this study, we focus our attention upon the Type II superconductors for a

two-dimensional geometry [3, 55, 56] (See the appendix for the thermodynamic approach

to the derivation of the Ginzburg-Landau equations).

4 Methodology and analysis

We will now go on to establish the link of a scalar field ψ of the gravity model in the bulk, to

a quantum wave function (ψ = |ψ|eiφ) of the Ginzburg-Landau model [3] at the boundary

of AdS. We also assume the absence of back-reaction on the infinite boundary (r → ∞) of

AdS [33] (back-reacting holographic superconductors were discussed in References [57–60]).

We consider a small 2-D superconducting system with an applied static magnetic field

H⊥ — acting perpendicular to the x-y coordinates at the AdS boundary. We also assume

the superconducting state to be stationary, with no overall time dependence of the system.

Moreover, we are able to choose the gauge to be ∂xAx = 0 and ∂yAy = 0. As such, we can

set the parameters At = 0, Ar = 0, with all time and holographic components vanishing

also. Therefore, H⊥ = ∇(x,y) ×A = ∂yAx − ∂xAy. Here, ∇(x,y) is defined as acting upon

the x-y coordinate only, with gauge field A = {Ax, Ay}. The coupled parameters are all

functions of coordinates r, x and y; these are the magnetic potential Ax(r, x, y), Ay(r, x, y)

and scalar field ψ(r, x, y).

– 6 –
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4.1 Coupling differential equations

Following from the Euler-Lagrange equations [61],

∂(L
√

|g|)

∂ψ∗
−

d

dxµ
∂(L

√

|g|)

∂(∂µψ∗)
= 0

∂(L
√

|g|)

∂Aµ

−
d

dxν
∂(L

√

|g|)

∂(∂νAµ)
= 0,

we obtain the two coupled equations

~
2

2m∗
(r2s ∂rrψ + (2rs+ r2s′) ∂rψ) +

~
2

2m∗

(

∇(x,y) − i
q

~
A

)2

ψ

−

(

α(T )

r2
+

χ

L2
+ β

|ψ|2

rk

)

r2ψ = 0 (4.1)

and

J =
1

r2µ0
∇(x,y) ×∇(x,y) ×A−

1

µ0
(s′∂rA+ s∂rrA)

=
q~

2m∗i
(ψ∗∇(x,y)ψ − ψ∇(x,y)ψ

∗)−
q2

m∗
A|ψ|2. (4.2)

Equation (4.1) is a 2nd order differential equation for the scalar field, whereas eq. (4.2)

is for a current density. Both equations incorporate a coupling of two parameters — the

vector potential A and complex scalar field ψ. These equations describe the mechanics

inside the bulk, where both gravitation and quantum mechanics co-exist [62].

4.2 Approximated solutions

Now we consider the complex scalar field ψ(r, x, y), approximated by the following power

series [33–36]

ψ(r, x, y) =
∞
∑

n=1

ψn(x, y)

rn
≈

ψ1(x, y)

r
+

ψ2(x, y)

r2
+ . . . , (4.3)

provided the holographic scale ‘r’ is sufficiently large. Since the first two leading terms

are linearly independent, one can choose any one of them to be an arbitrary solution of

the gravitational system. We can assume ψ1(x, y) 6= 0 and ψ2(x, y) = 0, or otherwise

ψ1(x, y) = 0 and ψ2(x, y) 6= 0.

4.3 At the infinite boundary of AdS space: r → ∞

4.3.1 First scalar solution ψ1/r (set ψ2 = 0)

Our approach focuses upon an extreme case where r → ∞. This is where only quantum

mechanics survives at the boundary of AdS space [26, 37]. For a choice of ψ = ψ1/r, it

follows that ∂rψ = −ψ1/r
2 and ∂rrψ = 2ψ1/r

3.

Similarly, the magnetic potential A can be approximated as

A(r, x, y) ≈ (1− b exp [−r/r0])A1(x, y), (4.4)

– 7 –
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which is the first order correction for the gauge field, where b is a constant, and hence

∂rA = bA1/(r0 exp[r/r0]), ∂rrA = −bA1/(r
2
0 exp[r/r0]).

For the case of ‘r’ tending to a sufficiently large value ∆ (where ∆ ≫ r0), we ob-

tain s(∆) = ∆2/L2 and s′(∆) = 2∆/L2. The scalar-field equation (4.1) then takes the

following form

~
2

2m∗

(

∇(x,y) − i
q

~
A1

)2
ψ1 =

(

α(T )

∆2
+

χ

L2
+

1

L2

~
2

m∗
+ β

|ψ1|
2

∆k+2

)

∆2ψ1 (4.5)

For the choice of χ = −~
2/m∗ and the exponent k = 0, the differential equation (4.1) can

reduce to

−
~
2

2m∗

(

∇(x,y) − i
q

~
A1

)2
ψ1 + α(T )ψ1 + β|ψ1|

2ψ1 = 0, (4.6)

which is exactly the same as the 1st non-linear differential equation of Ginzburg-Landau

theory [41], where the coherence length is ξ(T ) =
√

~2/(2m∗|α(T )|) and α(T ), in this case,

can be approximated as α(T ) = α0(T − Tc)/Tc near the phase transition.

One of our assumptions is that the influence from the gravity on the AdS (infin-

ity) boundary can be negligible. However, eq. (4.6) still contains some terms relating

to the holographic dimension (∆2) on this boundary. Fortunately, this arbitrary choice

(χ = −~
2/m∗, k = 0) will automatically eliminate the term of ∆2/L2, in which the super-

conducting system (as governed by quantum mechanics) survives in the absence of gravity.

Our choice is similar to some proposals of negative potential V = −2|ψ|2/L2 which cancels

the ∆2/L2 term [33–36]. We also preserve the phase transition property of the Ginzburg-

Landau model, by introducing α(T ) and β within the potential V (ψ).

Since the case of r = ∆ is very large and close to the infinite boundary, applying the

L’Hospital Rule, eq. (4.2) can reduce to

J =
1

µ0
∇(x,y) ×∇(x,y) ×A1

=
q~

2m∗i
(ψ∗

1∇(x,y)ψ1 − ψ1∇(x,y)ψ
∗

1)−
q2

m∗
A1|ψ1|

2. (4.7)

Again, this is exactly the same as the 2nd differential equation of Ginzburg-Landau theory,

describing the superconducting current [41]. We have now verified that the gravity model

on the infinite boundary (r → ∞) of AdS, can precisely emulate the Ginzburg-Landau

theory in Euclidean space. This means that the superconducting system can be explained

on this boundary.

4.3.2 Second scalar solution ψ2/r
2 (set ψ1 = 0)

For a choice of ψ = ψ2/r
2, it follows that ∂rψ = −2ψ2/r

3 and ∂rrψ = 6ψ2/r
4. In this case,

the possible solution, which satisfies (4.1) and (4.2), is A(r, x, y) ≈ a exp [−r/r0]A2(x, y),

where a is a constant, and A = 0 as r → ∞. Therefore, ∂rA = aA1/(r0 exp[r/r0]),

∂rrA = −aA1/(r
2
0 exp[r/r0]).

Similarly, for the choice of χ = 0 and the exponent k = −2, the differential equa-

tion (4.1) can reduce to

−
~
2

2m∗
∇2

(x,y)ψ2 + α(T )ψ2 + β|ψ2|
2ψ2 = 0, (4.8)

– 8 –
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which is the 1st differential equation of Ginzburg-Landau theory [41], in the absence of a

magnetic field (B = ∇(x,y) × A = 0). As a matter of fact, the solution of ψ2/r
2 (in the

form of a hyperbolic tangent function) can be used to describe the interface between the

superconductor and normal metal (superconducting surface). The value ψ2 depends on

spatial variation on the x-y plane, as well as the temperature. This set of solutions indeed

explains a special case of temperature dependent GL equations of a superconductor, with

a scale of coherence length ξ(T ).

4.4 The physical meaning of ψ

Finally, it is important to discuss about the physical meaning of ψ both in the gravity and

superconducting models. As is mentioned above, the scalar field ψ in the bulk (described

by the gravity model) now transits to the wave function ψ = |ψ| exp(iθ) in the Ginzburg-

Landau model at the AdS boundary. The bulk scalar field ψ is analogue to the order

parameter (which also describes the condensation) in the superconducting system. From

the literature [33–36, 62, 63], an arbitrary choice of ψ in quantum theory could be either

ψ1/r or ψ2/r
2. In this study, the approximated solution is further focused on ψ1/r with the

proposed potential V (r, ψ), in a certain case (χ = −~
2/m∗ and k = 0). This special choice

of solution directly leads to the special coincidence of the gravity model in the AdS, to the

superconducting theory at the AdS boundary. This result provides us with confidence to

apply the mathematical techniques in quantum gravity to the superconductors (condensed

matter physics). We also investigated the solution ψ2/r
2 — which describes the super-

conducting density |ψ2|
2 near the surface. It provides a special case of the temperature

dependence of GL equations without an applied magnetic field.

5 Conclusion and remarks

In brief, we have mathematically established the relationship between the (N+1) dimen-

sional gravity model in the bulk AdS, to the N-dimensional Ginzburg-Landau system at

the infinity Ads boundary (r → ∞). It is found that the two coupled differential Ginzburg-

Landau equations at the Ads boundary can be derived from the equations of motion residing

inside the bulk of AdS space. We restrict our efforts to the two-dimensional, asymptoti-

cally flat spatial domain of AdS space (as r → ∞), and also propose the potential V (r, ψ)

for a special solution. The quantum gravity model is thought to expose many features

that appear in the quantum critical electrons in the cuprate superconductors. As such,

simplified models to analyse the nature of the condensed state using the AdS to Ginzburg-

Landau formulation could lead to valuable new insights both in superconductivity, and

black-hole physics. It is also worth noting that Landau theory provides a unifying lan-

guage for describing continuous phase transitions and critical phenomena in a plethora of

physical systems [23, 64, 65]. For example, ferro- and antiferromagnets, fluid mixtures,

oscillators and superfluids are other systems that exhibit transitions from symmetric high

temperature phases to low temperature ordered ones at a critical temperature. Thus, for

analogous Landau systems an expansion of the free energy in terms of the order parameter

– 9 –
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and adoption of the current methodology may provide valuable information to understand

complex behaviour.

A Ginzburg-Landau equations from thermodynamic approach

The thermodynamic derivations of the two Ginzburg-Landau (GL) equations are shown in

this section [46, 47, 49]. We restrict our case to 2-D (on the x-y plane), and assume the

magnetic field B = ∇(x,y) × A lies along with z=axis, where A is a magnetic potential.

The total free energy of a system in the superconducting state Fs is

Fs = Fn +

∫

(

~
2

2m∗

∣

∣

∣

∣

(

∇(x,y) − i
q

~
A

)

Ψ

∣

∣

∣

∣

2

+∆(T )|Ψ|2 +
η

2
|Ψ|4

)

d2x, (A.1)

where Fn is the free energy in a normal state, m∗ is the effective mass of a Cooper pair, Ψ

is a superconducting wave function, ∆(T ) ∼ (Tc− T )/Tc is a function depending on tem-

perature, Tc is a critical temperature of the system, and η is a parameter dependent upon

the material. By small variation of Fs (δFs) with respect to δΨ and δA correspondingly,

one can obtain the 1st GL equation (see [46, 47, 49])

−
~
2

2m∗

(

∇(x,y) − i
q

~
A
)2

Ψ+∆(T )Ψ + η|Ψ|2Ψ = 0, (A.2)

and the 2nd GL equation

J =
q~

2m∗i
(Ψ∗∇(x,y)Ψ−Ψ∇(x,y)Ψ

∗)−
q2

m∗
A|Ψ|2. (A.3)
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