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ABSTRACT:  Electroluminescence (EL) images taken from on-field measurements often suffer from optical and 

perspective distortion affecting the interpretation and quantification of the images taken. Methods to correct these 

distortions are presented as well as a method to assess the associated uncertainties. This method uses the uncertainty of 

pixel position as intermediate step. The influence of pixel deflection, re-projection error and depth-of-field blur is evaluated. 

Three different camera systems are compared regarding tilt angle dependence. The re-projection error and the camera’s 

focal length are identified as major influence on the resulting uncertainty. It was shown that EL images with sufficient 

quality can be recovered, from images taken at high perspective misalignments with tilt angles of about 50°. 
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1 INTRODUCTION 

 

Electroluminescence (EL) imaging is a fast and 

relatively simple method for the spatial analysis of PV 

devices. It was first proposed by Fuyuki et al. [1]. The 

basic setup consists of a near-infrared-sensitive camera 

and a power supply. It is mobile and therefore allows 

measurements not only in laboratories and factories, but 

also for quality control of installed systems in the field. 

However, on-site measurements typically have limited 

angles and distances between camera and PV device which 

can result in perspective distortion, which in turns affects 

the interpretation of data. Low cost or wide angle optics 

will additionally increase lens (respective ‘barrel’) 

distortion. Little attention has been given to the removal of 

these artefacts nor has the associated uncertainty been 

investigated, despite this information being used to 

potentially verify warranty cases. This would be essential 

when moving from manual qualitative analysis to an 

automated and quantitative inspection as necessary for 

efficient early fault detection of PV devices. 

This work quantifies uncertainty, expressed as 

standard deviation of the pixel position. From this the 

intensity uncertainty can be calculated. Due to the nature 

of the data being represented as 2D images, this 

uncertainty is given in the same format. A brief 

explanation of methods used for lens and perspective 

correction will be given and the dominating uncertainties 

will be identified. The resulting uncertainty maps will be 

applied to EL images of a PV module taken by different 

setups. Eventually the influence of different camera 

systems and the modules tilt angle will be compared. 

 

 

2 CAMERA LENS DISTORTION 

 

The shape of the used camera lens and positioning 

errors during the assembly of the camera can result in 

radial and tangential distortion of the EL image. A camera 

calibration, based for example on a chessboard pattern, 

photographs the calibration patterns in different positions 

and angles (Figure 1). Usually, the position of the features 

in the calibration pattern of 20 or more images are 

evaluated to calculate the lens distortion coefficients and 

the camera’s intrinsic matrix 𝐶 (defined by focal length 

and optical centre). An overview of this established 

method is given in [2–4]. The effect of camera lens 

distortion is demonstrated in Figure 2. It is clearly visible 

that the radial distortion on the left is manly removable. 

Distorted angles and positions can be recovered. OpenCV, 

an open source C++ framework for computer vision, 

implements various routines for this calibration [2]. 

 

 
Figure 1: Image (1/20) used for camera calibration based 

on OpenCV 

  

   
Figure 2: EL image of a PV module before (left) and after 

removal of lens distortion (right). Distortion exaggerated 

for clarification 

 

 

3 PERSPECTIVE DISTORTION 

 

For on-site measurements it is often not possible to 

keep a normal angle between PV device and optical axis, 

which results in perspective distortion. Skewed angles and 

different EL signal intensities are the consequence.   

Figure 3 shows a perspective correction which can be 

realized by applying the following steps: 

1. Estimate the translation and shear matrix of the 

PV device. This can be done by either using the 

four corner points as well as the aspect ratio of 

the device or by comparing the EL image with a 

template EL image, free from perspective 

distortion (e.g. using pattern recognition). 

2. Estimate the orientation of the PV device, using 

the four corner points. 

3. With these angles and the camera’s focal length, 

calculate and divide the image by the tilt factor, 

derived from the Kang-Weiss vignetting function 

[5]. 
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4. Apply a perspective transformation on the 

intensity-corrected image using the matrix 

obtained in 1. 

Estimation of rotation and translation, pattern 

recognition and perspective transformation can be done 

using OpenCV. Further explanation is given in [3, 6, 7]. 

 

 
Figure 3: Scheme of perspective transformation of a 

module with the tilt angles 𝛼𝑥 = 15°, 𝛼𝑦 = 30°                               

 

 

4 UNCERTAINTY ANALYSIS 

 

The following sections focus on uncertainty due to 

lens and perspective distortion. Other uncertainty 

contributors, like signal smearing, noise and vignetting 

issues are excluded and will be addressed in another 

publication. The uncertainty will be first described by 

multiple parameters 𝑢𝑖⃗⃗  ⃗ influencing the standard deviation 

of the position (x, y) of each image pixel. At the end of this 

section the combined position uncertainty 𝑢𝑝𝑜𝑠⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   will be 

translated to the actual pixel-intensity based 

uncertainty 𝜎𝑖𝑛𝑡.  
In this work all individual uncertainties are treated as 

independent and uncorrelated with a sensitivity of one. 

Consequently the combined position uncertainty becomes: 

 

𝜎𝑝𝑜𝑠⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  = √∑𝑢𝑖⃗⃗  ⃗
2
 (1) 

 

4.1 Lens and perspective deflection 𝜎𝑙𝑒𝑛𝑠⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ and 𝜎𝑝𝑒𝑟𝑠𝑝⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   

The correction of both lens and perspective distortion 

can cause image areas to shrink and expand. Intermediate 

pixels will be used to interpolate between diverted pixels, 

increasing the deflection uncertainty. Figure 4 gives a 

simplified example using only the x dimension.  There, the 

green area indicates an area to be expanded due to 

deflection. Its size doubles during the remap (a-b). 

Likewise the pixel indices map 𝑚𝑥,𝑦 changes. 

The increase of pixel size can be expressed from its 

inverse gradient as: 

 

𝑓𝑝𝑥⃗⃗ ⃗⃗  ⃗ =

(

 
 
|
𝑑𝑥

𝑑𝑚𝑥
|

|
𝑑𝑦

𝑑𝑚𝑦
|
)

 
 

 (2) 

This factor measures the expansion of the original 

pixel size. Its average is equal to the area ratio of new to 

old device given in equation (8).   

All position uncertainties based on the distorted image 

(here: 𝜎𝑙𝑒𝑛𝑠⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ) have to be multiplied with 𝑓𝑝𝑥⃗⃗ ⃗⃗  ⃗ to apapt to the 

pixe size of the corrected image. 

 

 
Figure 4: Scheme of deflection uncertainty of the x-axis 

due to image remapping 

 

The uncertainty due to the interpolation between 

known pixels is assumed to be uniform or rectangular 

distributed. The corresponding standard distribution for 

both lens and perspective deflection (# as placeholder) can 

be obtained as follows [8]: 

 

𝜎#⃗⃗⃗⃗ =
𝑓𝑝𝑥−#⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  − 1

2 ∙ √3
 (3) 

 

4.2 Re-projection error 𝜎𝑟𝑒𝑝 

This error originates from the root-mean-square of the 

difference between detected features within the camera 

calibration pattern and re-projected points [7]. Thus, this 

error estimates directly the uncertainty of a pixel position 

after correction from lens distortion. In this work the 

individual differences where indifferent from the image 

position. Therefore the uncertainty due to the re-projection 

error is assumed to be spatially uniform.  

Because this parameter is based on the uncorrected 

image it has to be scaled by the area ratio in (8) to adapt to 

the size of the corrected image. 

 

4.3 Depth of field blur 𝜎𝐷𝑂𝐹 

If the angle between optical axis and image plane is 

not perpendicular, certain areas of the PV device will be 

out of focus. The depth of field (DOF) sensitivity is mainly 

dependent on the camera lens’ f-number and focal length. 

Pertuz et al. [9] described this defocus 𝜎𝐷𝑂𝐹   as a function 

of the distance 𝑑 between lens and image plane as: 

 

𝜎𝐷𝑂𝐹 =
𝑘

𝐴
∙
𝑓2 ∙ |𝑑 − 𝑑𝑓|

𝑑 ∙ (𝑑𝑓 − 𝑓)
 (4) 

 

Here 𝐴 is the f-number of the camera lens, 𝑓 the focal 

length, 𝑑𝑓 the in-focus distance and 𝑘 is a camera 

dependent parameter relating the blur circle to an actual 

point spread function (PSF). In this work the PSF (blur 

function) is assumed to be Gaussian distributed and 

therefore 𝑘 is set to 2.335 as ratio of the full width at half 

maximum (FWHM) over standard distribution.  



 

 

A depth map of the image plane 𝑑(𝑥, 𝑦) could be 

measured with a depth sensitive camera but can also be 

estimated from the four corner points of the PV device. 

OpenCV provides the function cv::solvePnP which returns 

a translation vector 𝑡 and rotation vector 𝑟. Together with 

cv::Rodrigues (which transforms 𝑟 to a rotation matrix 𝑅) 

and the camera position 𝑐 = 𝑅𝑇 ∙ 𝑡  the depth map 𝑑(𝑥, 𝑦) 
can be calculated as follows: 

 

𝑑(𝑥, 𝑦) = 𝑅−1 ∙ (𝑠 ∙ (𝐶−1 ∙ [
𝑥
𝑦
1
]) − 𝑡) (5) 

With 𝑠 =
(𝑅−1∙𝑡)[2]

(𝑅−1∙𝐶−1∙[
𝑥
𝑦
1
])[2]

 and 𝐶 being the camera 

matrix [7]. 

 

4.4 Neglected uncertainty factors 

a) Object corner position 

The uncertainty of the position of the four PV device’s 

corners, needed for perspective correction, will depend on 

the method to identify them (manual or automated via 

pattern or object recognition). For this work the PV device 

corners in Figure 3 were defined by hand and the position 

error is assumed to be near zero. Therefore this factor was 

neglected. 

If included, the corner position uncertainty will result 

in an additional position uncertainty map built through 

interpolation between the given four corner uncertainties 

as described in [10] and an additional intensity uncertainty 

map due to different tilt factors. The tilt factor is calculated 

from the rotation angles of the image plane and modifies 

the vignetting effect.  

b) Interpolation error 

The non-integer values within the pixel index map 

𝑚𝑥,𝑦 result in data interpolation using the neighbouring 

pixels.  The interpolation methods can be distinguished by 

the number and weights of the neighbours. Every method 

(nearest neighbour, bi-linear, cubic etc.) will be a trade-off 

between introduced blur and precision. The uncertainty 

induced by interpolation is thought to low as it is not a 

dominating factor in the overall uncertainty. 

 

4.5 Intensity uncertainty 𝜎𝑖𝑛𝑡 
So far the uncertainty is given as standard 

deviation 𝜎𝑥 , 𝜎𝑦 of all pixels in x and y dimension, 

indicating their blurriness. To transform these values into 

uncertainty of pixel intensities the following steps are 

conducted on every image pixel: 

1. Calculate a local point spread function 𝑃𝑆𝐹𝑥,𝑦 as 

Gaussian distribution 𝑓(𝜎𝑥 , 𝜎𝑦). 

2. Multiply the difference to all neighbour pixels 

within the PSF (size=2s+1) with the respective 

PSF value. 

3. The sum of all differences gives the local 

intensity uncertainty: 

 

𝜎𝑖𝑛𝑡[𝑥, 𝑦] = ∑ ∑ |𝐼[𝑥, 𝑦]

𝑠+1

𝑗=−𝑠

𝑠+1

𝑖=−𝑠

− 𝐼[𝑥 + 𝑖, 𝑦 + 𝑗]|
∙ 𝑃𝑆𝐹𝑥,𝑦[𝑖, 𝑗] 

 

(6) 

The resulting map 𝜎𝑖𝑛𝑡 will be sensible to high 

gradient variations. This is perspicuous, because blur does 

not affect low gradient changes, as to be found in e.g. the 

image background but high gradient changes e.g. cell 

borders or busbars. 

 

 

5 PV MODULE UNCERTAINTY MAPS 

 

The uncertainty maps of the different distortions are 

shown in Table 1. It shows the combined position 

uncertainty, their individual contributors and the pixel 

intensity uncertainty for the corrected EL image in     

Figure 3 (bottom). Regarding the scale of the individual 

uncertainty contributors it is clear that 𝜎𝑝𝑜𝑠⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   is dominated 

by perspective deflection which is in turn defined by 

rotation in 𝛼𝑦. Up to one and two decades lower is the 

influence of DOF blur and lens deflection. It can be 

neglected for the used camera system. 

The intensity uncertainty 𝜎𝑖𝑛𝑡 is related to the EL 

image itself to show the relative uncertainty. It can be seen 

that 𝜎𝑖𝑛𝑡 is highest at the left and right image border due to 

the likewise higher 𝜎𝑝𝑜𝑠⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗    values. The 𝜎𝑖𝑛𝑡 map reminds of 

a gradient image. This is indeed plausible because even a 

high uncertainty of pixel positions wouldn’t influence the 

image in homogenous areas. At cell borders or busbars 

however, even a small position uncertainty of one pixel 

would vary whether the image intensity is low 

(background) or high (EL signal). 

     

Table 1: Resulting uncertainty maps for Figure 3 (bottom)   

Lens deflection |𝜎𝑙𝑒𝑛𝑠⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗| 

 
Depth-of-field blur |𝜎𝐷𝑂𝐹⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗| 

 
Perspective deflection |𝜎𝑝𝑒𝑟𝑠𝑝⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  | 

 
Combined position uncertainty |𝜎𝑃𝑜𝑠⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  | 

 
Relative intensity uncertainty 100 ∙

𝜎𝑖𝑛𝑡

𝐼
  

 



 

 

In contrast to this, Table 2 shows the resulting 

uncertainty maps for an EL image, artificially distorted 

with a higher tilt angle. The increased tilt angle clearly 

increased all contributors to perspective distortion, 

resulting in a three times higher position uncertainty and 

an intensity uncertainty over 3% at busbars. 

 

Table 2: Resulting uncertainty maps for an artificially 

distorted EL image  

EL image at title angle 𝛼𝑥 = 𝛼𝑦 = 51°                                   

         
Lens deflection |𝜎𝑙𝑒𝑛𝑠⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗| 

 
Depth-of-field blur |𝜎𝐷𝑂𝐹⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗| 

 
Perspective deflection |𝜎𝑝𝑒𝑟𝑠𝑝⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  | 

 
Combined position uncertainty |𝜎𝑃𝑜𝑠⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  | 

 
Relative intensity uncertainty 100 ∙

𝜎𝑖𝑛𝑡

𝐼
  

 
 

 

6 INFLUENCE OF CAMERA SYSTEM AND 

PERSPECTIVE 

 

To compare the influence due to different optics, 

camera calibrations of three very different cameras where 

used:  

a) SensoCam 830HR: CCD used for EL imaging 

b) Logitech C210: consumer product webcam 

c) Nexus 5: Mobile phone camera with built-in optics  

All cameras have different resolutions, focal lengths 

and DOF ranges. This difference becomes visible when 

comparing the averaged position uncertainty values for EL 

images corrected from different tilt angles (𝛼𝑥, 𝛼𝑦) as 

shown in Table 3. Here, heat maps were created from 400 

different tilt angles between 0 and 65°. 
To establish perspective distortion, the four module 

corners in the undistorted EL image (Figure 3, bottom) 

where rotated in 3D and projected back accordingly. The 

resulting quadrilateral was scaled to use the maximum 

available image space. The position uncertainty was 

calculated as described in Section 4. This parameter 

estimates the standard deviation of the pixel position in the 

corrected image and dependents on the size of which. The 

averaged results might be therefore misleading because the 

high 𝛼𝑦 values will stretch the original image resulting in 

likewise high deflection uncertainties. A more comparable 

parameter can be obtained, if  |𝜎𝑝𝑜𝑠⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  | is scaled with the ratio 

of image pixels before and after correction as follows:      

 

|𝜎𝑝𝑜𝑠−𝑟𝑒𝑙⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  | =
|𝜎𝑝𝑜𝑠⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  |

𝑟𝐴
 

(7) 

 

𝑟𝐴 =
𝑠𝑖𝑧𝑒𝑋𝑐𝑜𝑟𝑟 ∙ 𝑠𝑖𝑧𝑒𝑌𝑐𝑜𝑟𝑟

𝐴𝑑𝑖𝑠𝑡
 (8) 

 

𝐴𝑑𝑖𝑠𝑡 = 0.5 ∙ |(𝑐3𝑥 − 𝑐1𝑥) ∙ (𝑐4𝑦 − 𝑐2𝑦)
+ (𝑐4𝑥 − 𝑐2𝑥)
∙ (𝑐1𝑦 − 𝑐3𝑦)| 

 

(9) 

𝐴𝑑𝑖𝑠𝑡 is the area of an irregular quadrilateral built by 

the four corners c1-c4. |𝜎𝑝𝑜𝑠−𝑟𝑒𝑙⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  | can be interpreted as 

average position uncertainty of a pixel within the distorted 

image.  

 

Table 3: Angle dependency of absolute and relative 

position uncertainty [px] for three different camera 

systems 

Type |𝑢𝑝𝑜𝑠⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  | |𝑢𝑝𝑜𝑠−𝑟𝑒𝑙⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  | 

a 

  
b 

  
c 

  
 

 



 

 

The heat maps in Table 3 allow the following 

conclusions: 

|𝜎𝑝𝑜𝑠⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  | increases slightly from camera type (a) to (c), 

respective values  at 𝛼𝑥 = 𝛼𝑦 = 45° increase from 0.5 to 

0.7.  

High 𝛼𝑥 angles result in higher position uncertainties 

than angles in 𝛼𝑦, which is due to the fact that increasing 

𝛼𝑦 angles decrease the visible aspect ratio of the PV 

module and allow a better fit within the image. An area of 

distinctively smaller uncertainty can therefore be found for 

high 𝛼𝑦 and moderate 𝛼𝑥 especially for type (a). Here, the 

additional tilt 𝛼𝑥 not only improved the aspect ratio but 

also unskewed the distorted EL image to a certain extent. 

This allows the assumption that even high tilt angles 

don’t necessarily make corrected images unusable for 

quantitative analysis. However, in practice highly 

distorted images will also have high interpolation errors as 

discussed in Section 4.4.   

Figure 5 compares the individual influence of all 

regarded uncertainties to 𝜎𝑝𝑜𝑠⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   for increasing tilt angles. It 

can be seen that the re-projection error 𝜎𝑟𝑒𝑝 from lens 

distortion removal dominates the other uncertainty 

sources. Although 𝜎𝑟𝑒𝑝 doesn’t have an angle dependency 

it is scaled with the area ratio 𝑟𝐴 to adapt to the new pixel 

size. It can be seen that 𝜎𝑟𝑒𝑝 increases from camera type 

(a) to (c). This can be due to an insufficient camera 

calibration or optical distortions that couldn’t be fitted 

adequate by the lens distortion model, given in [2]. 

The perspective deflection uncertainty however 

doesn’t vary for the different camera types due to the fact 

that perspective correction only depends on the four given 

object corners. In contrast to this the DOF uncertainty is 

highly dependent on the used optics. As demonstrated in 

(4), the camera’s focal length has a squared influence on 

𝜎𝐷𝑂𝐹. This can dominate for high tilt angles or long focal 

lengths. Lens deflection, however, can be neglected for 

these cameras. This might change if a wide angle (fish eye) 

lens is used.  

 

 

  
Figure 5: Influence of individual uncertainties at different 

tilt angles 

 

 

7 SUMMARY AND CONCLUSION 

 

This paper presents a method to correct from 

perspective and lens distortion and to measure the pixel 

intensity uncertainty using the uncertainty of pixel 

position as intermediate step. Exemplary uncertainty maps 

derived from the correction of a PV module are shown and 

discussed as well as the influence of tilt angle and camera 

type. Re-projection error and focal length are identified as 

major influence to the combined position uncertainty 𝜎𝑝𝑜𝑠. 

The absolute position uncertainty being under 2 pixel 

for most tilt angles shows that images with perspective and 

optical distortion can still be used for quantitative analysis. 

However the inhomogeneity within the position 

uncertainty increases with increasing tilt. PV device 

corners especial at the opposed side of the camera can be 

treated as insufficient due to high distortion. 

However, measures and thresholds limiting the quality 

of EL images don’t currently exist. Defining a minimum 

object resolution, given by pixel resolution and localized 

point spread function, as well as a compulsory 

representation of EL images free from distortion and 

camera effects would be beneficial for quantitative 

analysis. With 𝜎𝑝𝑜𝑠⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   and 𝜎𝐼𝑛𝑡  as localized position and 

intensity uncertainty, this paper provides a simple measure 

to qualify the impact on EL images and clearly highlights 

the differences when using low quality optics and 

inappropriately strong perspective. This allows EL images 

taken on field to be corrected and evaluated almost equally 

to images taken in lab conditions.  

It is aimed to release the code for calculating position 

and intensity uncertainty within an interactive graphical 

environment in the near future.    
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