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Abstract 

Filtration is a commonly used separation process. Many researchers have looked at 

the different properties affecting the performance of filter media and many methods 

have been considered for testing their efficiency. The performance of a filtration 

process is mainly dependent on the status of the filter medium and its ability to act as 

perfect barrier within the process, and from there arose the importance of defining its 

properties and integrity. 

In this research we are looking at the bubble point test as one of the more useful, 

economical tests for examining a particular type filter medium. 0.2 µm, 5 µm and 12 

µm Nuclepore track etched membranes were used in this research as their pore 

dimensions are close to cylindrical. The main parameters investigated were the 

minimum and mean pore size in addition to the bubble point. Two types of 

porometers were used in this research, the PMI and the Coulter II, and the results 

obtained by both were in good agreement with the ranges specified by the 

manufacturers. 

The selection of Nuclepore track etched membranes is made due to the uniqueness of 

the shapes of their pores. The cylindrical shape of the pores in this type of membranes 

simplifies the approach towards modelling the bubble point test, and thus 

understanding the microhydrodynamics occurring inside the membrane. This 

knowledge is obtained from this research by simulating both velocity and pressure 

profiles as well as gas-liquid interaction inside single and multiple pores, thus 

providing comprehensive understanding on the behaviour of the gas and the liquid 



phase inside the membrane. Such knowledge will help improve the design for a better 

system to accurately measure the bubble point test. 

Different mathematical methods can be applied, but the ability of the penalty scheme 

finite element method in dealing with complex geometries and such complex 

phenomena made it the preferred method. On the other hand the use of the volume of 

fluid method to detect the interfacial surface between the gas and the wetting liquid 

inside a pore microstructure has not been fully addressed before and thus considered 

as a novel part of this research. 
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Chapter 1 Introduction 

1.1. Preliminary Remarks 

Filtration is one of the well known conventional methods of physical separations 

applied in chemical and process engineering. It has broad applications industrially 

where the main objectives of applying it can either be clarification or liquor 

purification, separation of solid for recovery or improving other plant operations. 

Filtration can be divided to many categories depending on the classification criteria. 

Membrane separation for example is one of these categories and has broad 

applications worldwide. Membrane separation processes are attractive for several 

reasons; the process is simple, there is no phase change involved which is measured in 

commercial applications as energy savings, the process is generally carried out at 

atmospheric conditions which besides being energy efficient, can be important for 

sensitive applications encountered in the pharmaceutical and food industries, and 

modules can be added and optimised in a process design flow sheet to achieve the 

desired separation 

The filter medium is the main tool playing the active role in filtration applications, 

and for a perfect filtration process the filter medium should possess the following 

characteristics (Meltzer, 1987): 

• The ability to retain a wide size distribution of solids from the 

suspension. 

• Offer minimum hydraulic resistance to the filtrate flow. 

• Allow easy discharge of cake. 
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• High resistance to chemical attack. 

• Resist swelling when in contact with filtrate and washing liquid. 

• Display good heat resistance within the temperature ranges of 

filtration. 

• Have sufficient strength to withstand filtering pressure and mechanical 

wear. 

• Capable of avoiding wedging of particles into its pores. 

Membrane processes have enormous industrial applications as well. For any of these 

applications, and before using any membrane, the obvious first test is to characterise 

the membrane and thus define its operational capabilities and suitability for obtaining 

the required results. This characterisation requires defining the limits within which the 

membrane is capable of acting as a perfect barrier, consequently achieving the 

objectives of its installation. Different parameters are to be measured during the 

characterisation tests such as the pore size, the pore size distribution, mean flow pore 

size, bubble point, and others which will be discussed in more details in this thesis. 

On the other hand, the hydrodynamics of the materials flowing through the membrane 

pores have been a fertile subject for investigations for some time. The development of 

computer modelling and simulation techniques enabled researchers to look at both the 

macro and microscale on what is happening within the filtration systems. The 

knowledge gained from this study provides us with comprehensive understanding on 

how materials behave; such knowledge helps to enhance the performance of the 

process. 
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There are many mathematical methods used for studying the microhydrodynamics 

within pores; use of the Finite Element Method (FEM) is widespread due to its 

flexibility and capability in dealing with complex geometries. The simulation of two 

phase flows increases the complexity of these engineering problems. To overcome 

such obstacles several mathematical techniques were developed, among these 

techniques the Volume of Fluid Method. The introduction of this method into the 

hydrodynamical equations enables monitoring the gas-liquid displacement occurring 

within the membranes at a microscale. The knowledge provided from how the gas and 

liquid interacts is used in this research, and compared to experimental data to provide 

a strong mathematical tool capable of relating the pore diameter for different 

membrane samples to the pressure required to detect these pores within a wet 

membrane. In other words, it provides us with the capability of simulating the bubble 

point test used in membrane characterisation and integrity monitoring. 

1.2. Research Objectives and Practical Significance 

This research covers major two aspects. The first aim IS an experimental 

investigations to characterise different membrane samples using the bubble point test. 

This test was carried out using Coulter II and PMI porometers. The objectives of the 

experimental tests were to detect the maximum pore diameter, the mean pore 

diameter, the minimum pore diameter, and the pore size distribution for different track 

etched membranes samples with manufacturers pore sizes ranging from 0.2 flm to 

121lm. The results obtained by both porometers were compared, the performance of 

each porometers was assessed. 

The second aspect is to develop a computer program capable of solving the governing 

equations for fluid hydrodynamics occurring within the membrane pores as well as 

14 



the gas-liquid displacement. The Penalty scheme finite element method was used due 

to its suitability for simulating the boundary conditions applied experimentally. The 

velocity and pressure profiles inside different pore layouts were examined. The gas­

liquid displacement occurring within the pore was simulated by the use of the volume 

of fluid method. This method provides us with the opportunity to monitor the 

interfacial boundary between the gas and the liquid, and thus monitor the gas liquid 

displacement occurring with the pore. From the simulation, a relationship involving 

the applied pressure required to detect a specific pore diameter will be established. 

The results obtained experimentally for different pore diameters were then compared 

with the simulation data to validate the capability of the developed program to detect 

the bubble point for different pore diameters. 

1.3. Thesis Structure 

This thesis consists of seven chapters. Chapter 1 is an introductory about the research 

conducted and gives an infrastructure to the thesis by presenting a general view about 

the motivation behind this project, the objectives investigated as well as the 

methodology applied to conduct the work carried. 

Chapter 2 presents a literature review and some of the work done in this field by other 

researchers within the last decade. It reflects on the different methods applied to 

membrane characterisation and carries a brief description behind each method, its 

principles, applicability, advantages and disadvantages. 

Chapter 3 is the experimental procedure within which a description of the 

methodology is demonstrated. In this chapter the principles of the Bubble Point Test 
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is clearly presented. The chapter also shows how the mathematics behind porometry 

and what the results obtained provide us with. 

In Chapter 4 a review of the simulation work done is presented. The method used for 

simulations is discussed and the techniques applied are demonstrated. The governing 

equations embedded in the computer program are explained and a description of how 

the model works is examined. 

Chapter 5 discusses the results obtained experimentally using different types of 

porometers and a comparison between the experimental data the membrane 

manufacturer ratings. 

Chapter 6 presents the results generated from the developed computer program on 

different domains. It also compares the experimental and numerical results as an 

approach to validating the developed computer program. 

Chapter 7 is the conclusion of the work done and presented in this thesis. It shows the 

outcome obtained from both the experimental work and the simulation results beside 

the comparison carried between them and presented in Chapters 5 and 6. 

Recommendations for further work that needs to be carried for future validations are 

presented in the second section of Chapter 7. 
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Chapter 2 Literature Review 

2.1. Microfiltration 

Microfiltration can be defined as the separation of particles of one size from particles 

of another size in the range of approximately 0.01 J.lm to 20 J.lm. The fluid may be 

either a liquid or a gas. Microfiltration media are available in a wide variety of 

materials and from a variety of methods of manufacture. They can be rated either 

"absolute" or "nominal" depending upon the percentage of capture of particles of a 

particular size. 

Membrane filters are generally rated as absolute media, (Ward et al. 1996). They can 

be manufactured of various polymeric materials, metals and ceramics. Nominal media 

include filters made of glass fibres, polymeric fibres, discrete particles, ceramics, etc. 

However, even absolute media can be considered absolute only in a finite time span 

because of the possibility of bacterial growth within their structure. 

2.2. Membrane types 

Microfiltration membranes can be divided into two broad groups based on their pore 

structure, (Cheremisinoff, 1995). These are membranes with capillary-type pores 

manufactured by a track etching of pores, and membranes with tortuous-type pores or 

depth membranes. 

2.2.1. Depth membrane filter 

Figure (I) is a scanning electron micrograph of the surface of a typical depth, or 

tortuous pore, membrane. This membrane has a relatively rough surface where there 

appears to be many openings considerably larger than the rated pore size. Depth 

membranes nevertheless can be absolute, depending upon the random tortuosity of 
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their numerous flow paths to achieve their pore-size rating (Meltzer, 1987). Depth 

membranes are commercially available in pure silver, PVC, PVDF, PTFE, various 

cellulosic compounds, nylon, polyethersulfone, polypropylene, and many other 

materials. 

Figure (2-1) Depth membrane filters. 

2.2.1.1. Depth membrane production 

Most depth membranes are manufactured of various polymeric materials using a 

casting machine. Membranes cast with cellulosic esters are the most widely used 

membranes. Referring to Figure (2-2), cellulosic membranes are manufactured by 

dissolving the cellulose esters in a mixture of organic solvents; adding various 

chemical agents for improved characteristics; and casting the solution as a film 

approximately 150 Jlm thick onto a moving belt. As solvents are evaporated under 

controlled conditions, the tortuous pore structure is formed. The resulting open area 

indicates high porosity ranges from 75% to 89%. 

Membranes of this highly porous structure, with their labyrinth of interconnecting 

isotropic pores, are recommended for general precision filtrations, electrophoresis, 

sterilization of fluids, culturing of microorganisms and for many other larger scale 

uses. 
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Envir mental Chambers 

Fin'lshed Membrane 
Endless Stainless Steal Belt 

Figure (2-2) Depth membrane production 

Another example is the PTFE (polytetrafluroethylene) depth membranes which are 

manufactured by the controlled stretching of a fluorocarbon sheet. Some 

polypropylene membranes have also been manufactured by this method. On the other 

hand, silver membranes are manufactured of pure metallic silver particles that are 

molecularly bonded to each other to form a uniform porous monolithic structure. A 

major application for silver membranes is inorganic material analyses. These are some 

of the methods used for different depth membrane manufacturing processes. 

2.2.2. Track-etched membranes 

Figure (2-3) shows a scanning electron micrograph of the surface of a track etched, or 

capillary pore, membrane. This membrane has nearly perfect cylindrical pores, more 

or less normal to the surface of the membrane, with a random pore dispersion over the 

surface. 
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Figure (2-3) Track etched membrane 

Track etched membranes are absolute and are commercially available in thin films of 

polycarbonate and polyester. They are manufactured in a two steps; nuclear track and 

etch process. They are preferred in a wide variety of applications including optical 

and electron microscopy, chemotaxis, exfoliative cytology, particulate analyses, 

aerosol analyses, gravimetric analyses and blood rheology but they are not appropriate 

for larger scale process applications. 

Track etched membranes are prepared in the laboratory by exposing commercially 

available polycarbonate sheets of about 6 mm thickness to alpha particles emitted 

from nuclear reaction followed by chemical etching (Ferain and Legras, 1997). A 

series of membranes can be produced using different bombardment and etching, 

periods and the hydraulic conductivity of the resulting porous membranes can be 

measured for applied pressures from 10 to 50 kPa. They also possesses very low 

porosity ranging from 5 to 12%. 
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2.2.2.1. Track etched membrane production 

Two steps are considered in the production of track etched membranes: 

• In the first step, thin plastic film is exposed to ionising radiation forming 

damage tracks. 

• In the second step, the tracks are preferentially etched out into pores by a 

strong alkaline solution as presented in Figure (2-4). 

Thin Film 

2.3. Pores 

Step 1 

High Energy Charged Particles 

• 
Carnage Tracks 

Charged Particle Source 

Step 2 

r- pores 

\) O'CJD[ 

r-
Etch Bath 

Figure (2-4) Track etched membrane production 

Pore size can have a great influence on the rate of penetration of the liquid through the 

membrane. It controls the flow pattern of a liquid flowing through a porous material 

or how a collection of particulates will be captured by a filter. It is responsible for the 

uniform or non-uniform distribution of the liquid within a porous network or between 

two or more adjacent networks. 

Pore structure of filtration media can be complex from the geometric point of view. It 

can be formed from different regular or irregular shapes. Generally there are many 

types of pores: Blind pores terminate inside the filtration medium and do not permit 
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the fluid to flow, but blind pore surface area can absorb gases, capture small particles 

and participate in reactions (Jena and Gupta, 1999). Closed pores are not accessible 

and do not play an active role in the filtration process. Our main interest in this 

research is the pores described as the Through pores, extending from one side of the 

filter medium to the other and permitting fluid flow. Figure (2-5) presents schematic 

of the different types of pores explained. 

Blind Pores 

Through 
Pores 

Figure (2-5) Types of pores 

Closed Pores 

Another important factor governing the separation capabilities of microfiltration 

membranes is the pore size distribution. Two membranes can have the same pore size 

or the same molecular cut-off value yet have quite different separation characteristics 

when there is a difference in the pore size distribution in the membrane (Ames et al. 

2003). Therefore, in order to accurately predict the separation capabilities of a given 

membrane, an understanding of a pore size distribution is necessary. 
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The size of the particles that cannot pass through filtration media is determined by the 

size of the pores at their most constricted parts. Therefore the largest, the mean and 

the range of the most constricted through pores size, the shape of the pore and the 

pores distributions are the most important characteristics determining the barrier 

capabilities of the filtration medium. 

2.4. The characterisation of porous membranes 

Characterisation data for porous membranes often gives rise to misunderstanding and 

misinterpretations. It is not unreasonable that it is mainly the size of the pores in these 

membranes that determine which solute can pass or which will be retained. 

Generally we are looking for the pore size and the pore size distribution, but in actual 

separation processes the membrane performance is governed by other factors such as 

concentration polarisation and fouling. Another important factor is the shape of the 

pore or its geometry; due to the complexity of combining the geometrical aspects to 

physical equations, to simplify the problem assumptions are made for standard 

geometries of pores. This limits most of the modelling applications governing these 

processes, nevertheless the use of track etched membranes (such as Nuclepore 

membranes as in this project) most nearly meets this assumption due to the nature of 

how the pores are manufactured. 

In general, the pores in microfiltration membranes are not monosized but exist as a 

distribution of sizes, and for that reason the pore size distribution is another important 

factor to be examined. The surface porosity is also a very important variable in 

determining the flux through the membrane in combination with the thickness of the 

membrane or the length ofthe through pores. 

Different tests can be conducted to determine these parameters; for example, the 

bubble point test determines the maximum pore size of the membrane. The capillary 
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flow test determines the mean flow pore size, bubble point, cumulative flow, and pore 

size distribution. This project will focus on the capillary flow porometers and their 

application in defining these parameters. Nevertheless, there are several independent 

techniques for determining pore statistics. These are summarised by Hemandez et al. 

(1996). 

2.4.1. Mercury porosimetry 

This method is based on the variation of the bubble pressure method when mercury is 

used to fill a dry membrane and can be used to measure blind pores as well as through 

pores. Mercury is a non-wetting liquid for most materials. For a non-wetting liquid, 

the surface tension between the solid/gas (Ysolidlgas) is usually less than that between 

the solid liquid (Ysolidlgas< Ysolidlliquid), therefore, such liquid cannot spontaneously flow 

into the material pores (Salmas and Androutsopoulos, 2001). Mercury can be forced 

into pores by applying pressure. Equating the work done due to forcing mercury into a 

pore to the increase in surface free energy and using the definition of pore diameter: 

-4rcos B 
p= 

D 

where p is the applied pressure, D is the pore diameter, e is the contact angle and y is 

the surface tension. From this equation, the measured differential pressure yields the 

pore diameter. The volume of intruded mercury gives the pore volume. In this 

technique, as mercury at a given pressure intrudes a certain part of a pore, the 

diameter of that part of a pore is obtained from the pressure. On the other hand, the 

pore volume distribution is given by the distribution function: 

dv 
j, = dlogD 
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where v is the volume and D is the pore diameter. The function is such that the area 

under the distribution in any pore diameter range yields the volume of the pores in 

that range. 

The main drawback of this technology is that membrane structure is distorted due to 

the high pressure needed to analyse small pores. Another disadvantage is that it is a 

destructive method of analysis given that some mercury remains trapped within some 

pores. 

2.4.2. Thermoporometry 

Hemandez et al. (1996) suggested thermoporometry to analyse the pore distribution 

on the basis of the fact that the solidification point of the vapour condensed in pores is 

a function of the interface curvature. A differential scanning calorimeter monitors the 

phase transition from which the pore distribution can be calculated. Mulder (1991) 

stated that thermoporometry is based on the calorimetric measurement of a solid­

liquid transition (e.g. of pure water) in a porous material. This can occur in pores in 

the skin of an asymmetric membrane, the temperature at which the water in the 

membrane freezes depends on the pore size. As the pore size decreases the freezing 

point of water decreases. Each pore size has its own freezing point. The major 

drawback of this technique is that all pores present in the membrane, in the sub-layer 

as well as in the top layer, are characterised, including dead-end pores which make no 

contribution towards transport, hence one is unable to distinguish between them. 

2.4.3. Permporometry 

Mietton-Peuchot et al. (1997) applied the permporometry characterisation technique 

to determine the pore size distribution of active pores in a membrane, as such a 
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technique outlines a method of choosing an appropriate microfiltration membrane. 

Liquid-gas porometry allows the measurement of membrane characteristics for pore 

sizes ranging from 0.07 to several hundred microns. Permporometry is based on 

controlled blocking of pores by condensation of vapour, present as a component of a 

gas mixture and simultaneous measurement of the gas flux through the membrane. 

Using the Kelvin equation presented by Nakao (1994) in the formula: 

RTln..E..= 2yVcosB (2-3) 

Po rk 

where P and Po are the vapour pressure in the capillary and under standard conditions, 

respectively, y is the surface tension between the capillary liquid and air, V is the 

molar volume of the liquid, B is the contact angle, rk the Kelvin radius, R the gas 

constant, and T the absolute temperature. Nakao (1994) stated that the actual pore 

radius is a little larger than the Kelvin radius calculated from equation (2-3) as an 

adsorbed layer of the condensate gas makes this different and that the vapour pressure 

of the liquid in a capillary increases as the radius of the capillary increases. 

On the other hand, capillary condensation provides the possibility of blocking certain 

pore sizes with liquid, just by setting the relative pressure. This principle is combined 

with the measurement of the free diffusive transport through open pores. Starting from 

a relatively low pressure all pores of the membrane are filled so that unhindered gas 

transport is not possible. When the pressure is reduced, pores having a size 

corresponding to the vapour pressure are emptied and become available for gas 

transport. Measuring the gas flow through the membrane upon decreasing the relative 

pressure, the distribution of the size of the active pores can be found. Although similar 

measurements can be carried on during adsorption process, Nakao (1994)) stated that 

26 



it is more difficult to reach the equilibrium and therefore quantitative analysis of the 

de sorption process is preferred. 

Mulder (1991) stated that by using this method in asymmetric membranes where 

transport is determined by the top thin layer, information can be obtained about pore 

size and pore size distribution of the active pores in the top layer. On the other hand 

using permporometry for pore size determination is not accurate because is does not 

consider the pore area available for transport when there are narrow pore openings or 

other irregularities in pore shape. 

2.4.4. NMR measuremeuts 

Hemandez et al. (1996) referred to the studies by previous researchers demonstrating 

the determination of pore size in water-saturated membranes using Nuclear Magnetic 

Resonance (NMR) spin lattice relaxation measurements. The strength of the local 

magnetic field acting on a given nuclear spin in matter is slightly different from that 

of the external field (Nakao, 1994). The electron cloud surrounding a nucleus induces 

a shield effect, shifting the observed resonance lines. This is known as the chemical 

shift, which for the NMR comes from such interactions. The highly sensitive chemical 

shift of NMR has contributed to the elucidation of complex organic molecular 

structures. The cause for the chemical shift is not necessarily in the molecule, but in 

the surroundings. In particular, molecules in a confined solid space such as a 

micropore or a mesopore are affected by the electronic states of the surroundings. 

2.4.5. Light transmission method 

This method was used by Ju Youn et al. (1998) and uses at the transmissivity of light 

from a transparent liquid filling of the pores of an opaque membrane. It was found 

that the change of light transmissivity is proportional to the volumes of the pores 
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filled with the liquid, and the distribution of the pore size can be determined by 

combining this phenomenon with the bubble pressure method. The Light 

Transmission Method (LTM) is one of the new techniques and is still under 

investigations as few researches are reported to use this method. 

2.4.6. Scanning electron microscopy (SEM) 

This is one of the techniques that can be used for membrane characterisation (Reutov 

et al. 2003, Mulder, 1991). Two basic methods can be distinguished: scanning 

electron microscopy (SEM) and transmission electron microscopy (TEM); of theses 

two methods SEM provides a very convenient method for investigating porous 

structure for microfiltration membranes. The principle of this method is to hit the 

membrane coated with conducting layer, usually gold, by a narrow beam of primary 

(high-energy) electrons. Secondary electrons (low-energy) are then liberated from 

atoms in the surface determining the image presented in a screen of the micrograph. 

High resolution scanning electron microscopy has been used in a number of studies to 

determine pore size characteristics in various micro- and ultrafiltration membranes, 

however, samples must be coated with a conducting metallic film and therefore the 

actual pore size can be larger than those observed. Also, for some materials the pore 

sizes observed under dry conditions necessary for SEM may be different from the 

pore sizes presented when the membrane is exposed to a solvent, and it is clear from 

the description of the process that it is a destructive test. 

2.4.7. Atomic force microscopy (AFM) 

This test has also been used in pore characterisation. The metallic coating which is 

applied in the SEM is not required in this case but AFM images are distorted by 

complexity between pore shape and cantilever tip shape and therefore the quantitative 
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determination of pore size from an AFM Image is not always straightforward 

(Boccaccio et al. 2002). 

In addition both the SEM and AFM can only give information about the 

characteristics of the membrane surface which may be different than the sub-surface 

characteristics and may not truly reflect the separation capabilities of the membrane. 

2.4.8. Permeability method 

If capillary pores are assumed to be present, the pore size can be obtained by 

measuring the flux of a fluid through a membrane at a constant pressure using the 

Hagen-Poiseuille equation: 

(2-4) 

where J is the water flux through the membrane at a driving pressure gradient of 

M / /),x , with M being the pressure difference and /),x the membrane thickness. The 

proportionality factor contains the pore radius r, the liquid viscosity '1, the porosity of 

the membrane G, and the tortuosity factor T. 

The use of both the bubble point method and the permeability method can then be 

applied to calculate the pore size distribution at various operating pressures. 

2.4.9. Gas adsorption-desorption 

Analysis of pore size distribution by gas adsorption! desorption is based on the Kelvin 

equation, which relates the reduced vapour pressure of a liquid from a plane surface. 

Also, application of BET adsorption isotherms is commonly used to obtain specific 

surface areas. 
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This is one of the latest methods applied for pore size measurements. The absorption 

isotherm of an inert gas is determined as a function of the relative pressure. Nitrogen 

is the most common gas applied in this method. The method is usually carried out at 

liquid nitrogen boiling temperature at a pressure of I bar. 

2.4.10. Bubble pressure breakthrough 

There has been a considerable amount of effort directed towards developing methods 

of determining pore size and its distribution in porous membranes. This method is one 

of the most applied for this purpose and is based on the measurement of the pressure 

necessary to blow air through a water-filled porous membrane. 

Interpretation of results using this method requires knowledge of the contact angle 

between the liquid, vapour and membrane materials. Uncertainties in the contact angle 

between the membrane and the two fluids can introduce problems when interpreting 

the results (Baltus, 1997). 

There are different types of porometers that use this method for membrane 

characterisation, for examples the Coulter 11 porometer uses a liquid displacement 

technique where the sample is first wetted with a wetting liquid (e.g. PorofiI or 

Galwick) of a low surface tension, low vapour pressure, and low reactivity. The 

wetting liquid fills the pores since it has zero contact angle with many materials; this 

method has been used by many researchers (Calvo et al. 1995). The use of low 

surface tension liquids is a must as hydrophobic filters, by their nature, resist being 

penetrated by water. Such wetting can be induced by the imposition of a pressure 

sufficient to force water into the membrane pores (Meltzer, 1987). The wetted sample 

is subjected to increasing pressure up to 14 bar, applied by compressed, clean, and dry 

air source, at ambient temperature. 
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As the pressure of the air increases, it will displace the liquid from the pores of 

diameter given by the equation: 

2ycosB 
r=-'---

(2-5) 

!1P 

where r is the pore diameter, !'J.p is the pressure drop, B is the liquid contact angle and 

y is the surface tension. 

2.4.11. Glass bead challenge test 

Whitehouse Scientific Ltd. established a new method for direct measurement of pore 

size by the use of narrow size distribution microspheres (Rideal, 2006). This is 

achieved by accurately measuring the particle size distribution both by microscopy 

and a precision sieving method, which helps construct a calibrator graph for the 

micro spheres where the percentage of the beads passing an unknown mesh can be 

used to calculate the filter cut point. The company produces a range of 20 filter 

calibration micro spheres for calibrating meshes from 20 !tm to 700 !tm. This method 

simply depends on high frequency mechanical shaking of the membrane after 

covering it with the microspheres, the shaking ensures transport of the beads through 

the membrane and overcomes the possibility of the beads being lodged in dead end 

pores. Several meshes were tested using this method and gave precise filter cut point 

(Ri deal, 2006). This is one of the major advantages of this method as the cut point 

describes the pore sizes in a filter required to remove all the particles from the liquid 

suspension. 

The limitation of this method comes from its validity to deal with meshes and 

membranes having straight pores. The presence of blind and dead end pores imposes 

problems as they cannot be evaluated using this method. Another limitation is the 
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interaction forces between the beads, specially at diameters less than 20 ~m (Rideal, 

2006). 

Although methods of characterisation of porous media such as nitrogen adsorption­

desorption and mercury penetration are well known and widely accepted, such 

methods are unsatisfactory for some types of membranes, for example asymmetric 

ceramic membranes. Mercury penetration studies employ high pressure and carmot 

distinguish between dead-end pores and pores available for permeation. Nitrogen 

absorption-desorption detects very small pores, but carmot distinguish dead-end pores. 

Also, most methods are unable to differentiate between the thin active separation layer 

of interest and the pore support. Although the active layer determines the filtration 

performance, it typically constitutes only a very small fraction of the porous material 

in a membrane (Jakobs and Koros, 1997). Due to the large difference in pore size and 

pore volume of the active layer and the support, characterisation of the selective layer 

typically lacks detail and resolution. Finally both, the nitrogen adsorption-desorption 

and mercury intrusion methods are based on artificial and simple models of the porous 

structure e.g. straight, cylindrical, non-intersecting pores of uniform and invariable 

radii (Jakobs and Koros, 1997). 

Membrane selection is still subject to empirical data and should be made only after 

numerous pilot tests. Mietton-Peuchot et al. (1997) were able to measure pore size 

distributions for both clean and fouled membranes using liquid permporometry and 

thus were able to develop a methodology for choosing membranes appropriate to 

microfiltration. 
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2.5. Measuring the pore size distribution 

Liquid porometry allows measurement of membrane characteristics for pore sizes 

ranging from 0.07 to several hundred microns (Troger et al. 1998). The principle of 

this process is based on the notion of capillary pressure, as represented by equation (2-

5). 

To replace a fluid which is saturating the pore of the membrane with another fluid 

which is less wetting, one must apply a pressure of M, being greater than the 

capillary pressure generated by the radius of the pores. 

Determination of pore size distribution in membranes by monitoring liquid 

permeation has been used for many years (Jakobs and Koros, 1997). Like the 

previously mentioned approach these methods have their drawbacks as well. No 

uniform nomenclature exists, and various names are used for related tests, such as 

Coulter porosimetry, bubble point test, permporometry, biliquid permporometry and 

thermoporometry, just to name a few. In fact, the above mentioned methods are rather 

similar and rely on the same basic physical principle, the displacement of a wetting 

liquid (Jakobs and Koros, 1997). 

2.5.1. Porometer theory 

The porometer is based on the principles of capillary rise. When a capillary tube is 

immersed in a liquid, because of the surface tension of the liquid, the liquid is drawn 

up the capillary until equilibrium is established with the force of gravity. The 

equilibrium condition is expressed by the Washbum equation 

rP =2ycosB 

where P is the pressure, r radius of capillary or pore, B is the contact angle between 

the liquid and capillary wall and y is the surface tension of the liquid. 
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If the liquid completely wets the capillary it has zero contact angle, therefore cos () = I 

and the equation become: 

r=!... 
p 

The porometer monitors both pressure and flow and records these in a pressure versus 

flow graph for wet and dry samples. The dry data curves are determined after all the 

liquid has been expelled from the pores. This dry curve becomes the reference for 

calculating the pore distribution. A percent flow distribution is calculated from the 

difference between wet and dry curves. If the flow is proportional to the pore area, 

the flow distribution can be described in terms of the pore area percent (Jena and 

Gupta, 2002 and 2001). If we assume constant pore length, then the area distribution 

data will be equivalent to those of the volume distribution. Taking the square root of 

the area/volume values, we obtain the number distribution. Mean flow pore size 

(MFP) is calculated from the pressure at which the wet flow is half of the dry flow. 

The maximum and the minimum pore sizes are determined from the bubble point and 

from the point where wet and dry curves converge. 

2.6. Membrane integrity 

Low pressure membrane filtration processes, including UF and MF have been well 

established as powerful disinfection and clarification processes with a diverse 

application potential in many industries including water purification. 

Contaminant removal in UF and MF is essentially characterised by a physical sieving 

process. The pore size of MF and UF membranes is small enough to make absolute 

removal of protozoa, including Giardia and Cryptosporidium, possible (Edwards et 

al. 200 I). It was proven from previous researchers that MF and UF can provide a total 

barrier for these protozoa (Crozes et al. 2002), when the integrity of the membrane is 

34 

(2-7) 



not compromised. Thus, absolute removal of these contaminants assumes that the 

integrity remains intact. In practice, the integrity may be compromised due to 

different types of leakages that could develop in the membrane. For example these 

could include a breach, chemical degradation, or biological degradation of the 

membrane, or mechanical failure of O-rings, gaskets, potting or glued fittings. 

Membrane integrity tests performed to date have typically involved pilot-scale tests. 

However, microbial removal cannot be guaranteed based on those tests because the 

sensitivity based on the integrity monitoring method decreases with the size of a 

membrane investigated. 

There are number of reasons why a membrane integrity test is performed. These can 

be summarised in the following: 

,( Operational plant routine control and checking 

,( Monitoring performance 

,( Following integrity failure and repair 

,( Operational plant special case 

,( Commissioning new plant or new membranes 

,( Following periods of shut down 

,( Specific performance analysis 

,( Pilot plant testing 

,( Quality control. 

Monitoring membrane integrity can be considered with the intensions of monitoring 

the membrane system of a plant. Also, monitoring the membrane integrity can be 

performed for quality control purposes during its manufacture, and by this the 

membrane itself (rather than the entire membrane module) is under scrutiny. Although 
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both methods measure the same parameters, bubble point, pore size distribution etc, 

but the size and the interpretations of the results of the test are completely different. 

2.6.1. Methods of measuring membrane integrity 

Membrane integrity tests can be classified as direct or indirect. 

Direct methods include the pressure decay test and online sonic testing. Indirect 

monitoring methods include particle counting at various sensitivities, index based 

particle monitoring, count based particle monitoring, turbidity monitoring, laser 

turbidity monitoring, multi-sensor laser turbidity monitoring. 

Amongst the direct methods, the pressure decay test (POT) is the most frequently 

used method and is employed at almost all plants (Nederlof et al. 1997). The other 

direct methods, the bubble point test and manual sonic testing, are employed at some 

industrial plants as "secondary methods". That is, these methods are employed to 

locate the location of a breach, after the response from a primary method (typically 

the POT) has indicated a potential integrity failure. It is noted that while the POT 

offers high sensitivity as a direct integrity monitoring method, it results in 

contributing to plant downtime. 

Of the indirect methods, turbidity monitoring and routine microbial analysis are 

used most frequently (Edwards et al. 2001). However, it is noted that turbidity 

monitoring does not provide the desired sensitivity to detect membrane breaches at 

full scale while routine microbial analysis is not an online method and it is time 

consuming. Particle counting, though sometimes considered to be relatively costly, is 

the next most popular method and is utilised by great number of plants. 

Monitoring of membrane integrity is necessary to ensure that an adequate barrier is 

provided continuously by the membrane during the separation process. Damaged 

filters may have an impact to some extent on the treated filtrate quality; thus 
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membrane integrity control is a must to ensure high process performance. The various 

monitoring techniques surmnarised above are discussed in more detail as well as the 

different parameters affecting the performance of these tests. 

2.6.1.1. Direct integrity tests 

These tests directly measure a breach in a membrane or membrane system. Direct 

tests monitor gas passing through a breach, filtrate flow rates, pressure or sound 

changes or any other detectable variations. 

2.6.1.1.1. Air pressure decay testing (PDT) 

In this test the membrane is pressurised to approximately 70-80% of the bubble point 

pressure. This test involves applying pressurised air to the feed side to a pre­

determined level below the bubble point and then isolating the feed side. The pre­

determined pressure directly relates to the size of defects under investigation. The air 

pressure is monitored for a period of time (2 to 10 minutes depending on the size of 

the membrane sample under investigation) to observe the rate of decay (Farahbakhsh 

and Smith, 2004). A small decrease of 0.1 or 0.2 psi per minute is considered 

acceptable and is due to diffusion of the air across the microporous membrane 

structure. A faster decrease in pressure indicates a faulty membrane. As the membrane 

system is open to atmospheric pressure on the filtrate side, the airflow can be 

observed to confirm the location of any breach. Minimal loss of the hold pressure at 

the filtrate side after a period of time indicates a passed test, while a significant 

decrease of the hold pressure indicates a failed test. 

This method is capable of detecting changes in the integrity at levels up to 4.5-5 log 

reduction value (LRV). The log reduction scale stands for a 10-fold, or one decimal, 
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or 90% reduction in numbers of recoverable bacteria III a test. Table (2-1) 

demonstrates an understanding for log reduction numbering. 

Log reduction % Reduction of Bacteria 

1 90 

2 99 

3 99.9 

4 99.99 

5 99.999 

Table (2-1) Log reductIOn chart 

Hofmann (1984) stated that the gas loss through a pressurised filter assembly caused 

by diffusion or viscous flow can be determined either by measuring the gas with 

volumetric methods downstream of the membrane or by determining the pressure 

loss at the upstream side when the pressure supply valve of the system is closed. The 

upstream pressure loss caused by a corresponding gas loss and can be calculated from 

the equation: 

(2-8) 

where I'>.p is the upstream pressure loss, Palm the atmospheric pressure, Tb is the 

absolute temperature, Vd the upstream gas loss volumetrically determined downstream 

of the membrane, Vup is the volume of filter system upstream of the membrane and Tup 

is the absolute temperature of the filter assembly upstream of the membrane. 

Equation (2-8) shows that the upstream pressure loss not only depends on the 

upstream gas loss but also on the upstream volume of the filter system. Therefore, it is 

not possible to arrive at a decision to accept or reject a filter element in terms of 

38 



pressure loss per unit time without taking into account the volume of the filter system 

and a known expected value of permeability of a filter. The positive feature of the 

pressure hold test is that it is non-invasive of the downstream side of the membrane 

under investigation and that it is employed in initial integrity testing, and that it is 

measurable using sensitive devices. Its shortcoming is its insensitivity at low pressure 

readings. 

2.6.1.1.2. Diffusive air flow test 

The diffusive air flow test uses the same concepts as the POT or air pressure hold 

test, but is performed by monitoring the displaced liquid volume due to the air leaking 

from a compromised membrane in accordance with the physical law governing the 

solubility of gases in liquids. More air is dissolved at the higher pressure present at the 

upstream portion of the thin water layer wetting the filter than in the downstream 

portions. This is due to Henry's law, which states that the amount of a gas dissolved 

in a liquid is directly related to the gas pressure over the liquid. As a result, as the 

dissolved gas (forced into solution by higher pressure) diffuses to the downstream 

lower pressure region of the water layer. The amount of air that diffuses out on the 

downstream side of the membrane can be detected as bubbles before the bubble point 

is reached. This test is more sensitive than the air pressure hold test because it is 

technically easier and more accurate to measure small variations in liquid volume 

rather than small variations in air pressure. This test is fundamentally similar to the 

pressure decay test (POT) but is capable of detecting integrity changes at levels more 

than 6 LRV. 
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2.6.1.1.3. Bubble point test 

Bubble point testing can identify the membrane or seal location that is compromised 

in a membrane module. This test is typically performed after the compromised 

module has been identified by a sonic sensor or other monitoring method. After 

identifying the compromised membrane, it can be isolated from the module for 

recovery. Although the bubble point is a common test for measuring the integrity of a 

membrane, its main drawback is its dependence on the sensitivity of the observer in 

detecting the bubble point (Johnson et al. 1981). This major fault was overcome by 

the application of high sensitive electronic sensors. 

2.6.1.2. Indirect integrity monitoring tests 

This method of monitoring membrane integrity includes those that do not evaluate the 

membrane itself, but rather use a surrogate parameter for assessing the membrane's 

condition. 

2.6.1.2.1. Turbidity monitoring or reduction monitoring 

In this method the turbidity of the feed water and the filtrate are monitored. An intact 

membrane would be expected to show a considerable reduction in turbidity from feed 

to filtrate. If the feed waters were relatively clean, the differences in measurement can 

be beyond the resolution capabilities of turbidity meters. 

2.6.1.2.2. Laser turbidity test 

Similar to the above test, but measurement of the diffraction of a laser beam from the 

permeate is used (Ju Youn et al. 1998). 

2.6.1.2.3. Particle counters 

A particle counter can count and monitor different sizes of particles in the filtrate. If 

the feed waters were relatively clean, differences in measurement would be beyond 
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the limits of current particle counters. Panglisch et al. (1998) examined the integrity 

of a capillary membrane using the particle counting method in a pilot plant and 

concluded from that particle counting is much more sensitive than turbidity 

monitoring. 

2.6.1.2.4. Conductivity tests 

This test can be applied when the membrane removes significant amounts of 

dissolved ionic species. The product and feed waters will then have different ionic 

strength/conductivities. A defective membrane system will pass more ionic species; 

the conductivity instruments can identify such occurrences on-line. This test is 

therefore only relevant for reverse osmosis and nanofiltration membrane types. 

Adham et al. (1998) examined the integrity of RO using both particle monitoring and 

conductivity tests and concluded that the on-line particle counting was not sensitive 

enough to detect a minor compromising condition at relatively low particle 

concentration, whereas the on-line conductivity succeeded. 

Generally, direct monitoring methods should be the most effective in identifying 

compromised membranes, but some of the techniques developed to date do not 

provide continuous monitoring of membrane integrity, and interruption of operation is 

necessary to conduct the test. 

The air pressure hold test is convenient and reliable because it can be built into the 

membrane system for frequent evaluation of membrane integrity. The test concept is 

an integrity check of the membrane module and is thus very sensitive. The air 

pressure hold test can be applied to a whole rack of membrane modules 

simultaneously which is an advantage compared with other direct monitoring 

methods, which are more labour intensive. The other direct methods for monitoring 
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membrane integrity are the bubble point test and sonic sensors. They are important 

because the compromised module, or hollow fibre, needs to be identified and repaired 

before module reuse. 

Indirect monitoring for membrane integrity through the use of on-line particle 

monitoring instruments has the advantage of providing continuous evaluation of 

membrane integrity. Table (2-2) summarises some integrity monitoring methods and 

compares between their advantages and disadvantages. 

Monitoring method Advantages Disadvantages 

Particle counting Continuous on-line High cost, indirect measurement 

measurements, measures of membrane integrity, may 

several size ranges require several sensors for large 

scale applications 

Particle monitoring Continuous on-line Does not count particle SIze 

measurement, low cost ranges, may require several 

sensors for large scale 

applications 

Turbidity monitoring Extensive water industry Not sensitive at low turbidity, 

applications, low cost indirect method for monitoring 

integrity 

Air-pressure testing Built into membrane Not a continuous monitoring 

system, direct measuring system 

method of integrity 

Bubble point testing Direct monitoring method Must be conducted manually, 

for integrity labour intensive for large plants 

Table (2-2) Companson of dIfferent mtegnty momtormg methods 
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2.7. Gas Capillary Flow 

Membrane filtration processes are used industrially as an alternative to conventional 

separation methods. Membrane separation methods can be divided into classes 

according to their separation characteristics to the following criteria: 

I. Separation by sieving action; 

2. Separation due to a difference in affinity and diffusivity; 

3. Separation due to difference in a charge of molecules; carrier-facilitated 

transport; 

4. Process of (time-) controlled release by diffusion. 

In all these cases diffusion processes play an important role in the transport 

mechanism of the solutes (van den Berg and Smolders, 1992). Various mechanisms 

have been distinguished to describe the transport in membranes: transport through 

bulk material (dense membranes), Knudsen diffusion in narrow pores, viscous flow in 

wide pores, or surface diffusion along pore walls. In practice, the transport can be a 

result of more than only one of these mechanisms. For all of these mechanisms 

models have been derived. The characteristics of a membrane can also have major 

consequences for the rate of diffusion in the membrane, and hence for the flux 

obtained. 

There are other different models that were suggested by researchers (McGuire et al. 

1995; Hemandez et al. 1996) that relate the volume flow of each pore diameter in the 

distribution to the viscosity of gas under the assumption of having a straight circular 

pores. 
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2.7.1. Hagen-Poiseuille Model 

When the mean free path of the gas molecules is lower than the capillary diameter, the 

transport velocity at the capillary walls are set to zero. Using the basic equations of 

viscous flow, the volume flow for each pore diameter in the distribution is given by 

the Hagen-Poiseuille equation: 

J (d ) = 7rN(d p) d;flp 
v p 128 TJ 1jI/:o.x 

(2-9) 

where dp is the pore diameter, N(dp) is the density of pore diameter dp; IjI is the 

constriction-tortuosity factor and 1/ is the gas viscosity, p is the pressure applied, /:o.x is 

the membrane thickness and Jv is the volumetric flow rate. 

2.7.2. Knudsen Model 

When the pressure is small and the pore size is also lower than the mean free path of 

the gas molecules, the expression for the flow becomes more complex. In this 

situation the flow is referred to as free molecule diffusion or Knudsen flow. 

Considering the diffuse reflection of the gas molecules after their collision against the 

capillary wall the volume flow is expressed as: 

(2-10) 

where Mw is the molecular weight of the gas and p is the downstream pressure. 

2.7.3. Knudsen- Poiseuille Model 

The Hagen-Poiseuille model holds true for the condition dp » A while Knudsen 

model gives the flow rate when A »dp • But when A is smaller than dp but not 

negligibly small the Poiseuille equation is used with an additive corrective term 
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representing the effect of slip at the surface of the pore. The corrected flow equation 

can be written as: 

(2-11 ) 

Hernandez et af. (1996) examined the porous morphology of several track etched 

membranes using the bubble point method and concluded that equations (2-11), (2-

12) and (2-13), when analysed for the particular values of T, Mw, 'I' and 11 that the 

Hagen-Poiseuille flow was acceptable for capillary diameters over 0.96 !tm. For the 

capillary diameters below 0.96 !tm, reasonably good results were obtained by using 

Knudsen flow. 

Following the method mentioned by McGuire et al. (1995), Martinez-Diez et al. 

(2000) characterized the filter medium with a discrete pore size distribution given by 

the equation: 

(2-12) 

where /:;.rj= rrrj+! and R.j= rj- /:;.r/2 while L is the membrane thickness and /:;.p is the 

applied transmembrane pressure drop, nj is the number of pores, 11 is the viscosity, 0 

is the flow obtained through a particular diameter j and R is the centre radius of a class 

in the discrete distribution (length). 

It was found that the relative number of pores with radii between rj and rj+! can be 

found using the above equation. The absolute number of pores is not specified by the 

equation. 

Similarly, the continuous pore size distribution was represented by the function: 
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f(r)=(~-~) 81J/f/L/).p' 
d(~p) ~p 7r(2ycosO)' 

(2-13) 

The assumption made for the derivation of the above equation is that the membrane 

area is large enough so that the pore size distribution can be considered continuous. 

In general, the transport can be considered to be mainly of the Knudsen diffusion type 

when the pore radius r is smaller than 10 nm at ambient pressures and it will be 

mainly viscous (Poiseuille) flow when r is larger than 10 J.lIll. These values also 

depend on the applied pressure and temperature. In between these pore sizes the flow 

is a combination of Knudsen and Poiseuille flow and the performance of the 

membrane is determined mainly by its pore size and the nature of the membrane also 

plays an important role in the separation process (van den Berg and Smolders, 1992). 

In summary, SchofieId et al. (1990) stated that any theoretical study of gas permeation 

through microporous structures begins with a comparison of the mean path of the gas 

and the mean pore size of the structure. If the mean free path of the gas is much less 

than the pores size, then the dominant flux mechanism is viscous or Poiseuille flow. If 

the mean free path is much greater than the pores size, then Knudsen diffusion is the 

dominant mechanism. A third mechanism encountered in gas permeation is surface 

diffusion, where gas molecules adsorb on the membrane walls and diffuse under a 

pressure gradient. This mechanism is not likely to be categorised under any of the 

previous mechanism and was considered to be a transition region between Knudsen 

and Poiseuille flow and was presented by equation (2-13). 
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As a conclusion, pore structure characterisation techniques are based on different 

principles. Different techniques measure different parameters of pore structure, which 

may not be comparable. It is, therefore, important to select the appropriate 

characterisation technique. There are several important factors that must be taken into 

consideration. 

L The pore structure characteristics required to be measured: Pore structure has 

many characteristics including constricted through pore diameter, largest pore 

diameter, through pore volume, etc. The techniques suitable for measurement of 

those characteristics that are important for the application in hand need to be 

selected. 

IL Limitations of the technique: Each technique is appropriate to the measurement 

of a property within a certain range. Outside this range errors can be 

appreciable. 

IlL Constraint on test procedures: Because of the nature of application there may be 

certain constraints on the testing process. For example toxic materials, high 

pressures and certain chemical environments are sometimes applied in these 

tests making the tested sample inoperative in further application processes. The 

selected technique must satisfY these constraints. 

IV. Material stability: The sample and the materials used in the test must not react 

with each other or with various components of the instrument. 
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