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Abstract

In recent years, there has been great progress in the wider use of three-
dimensional (3D) technologies. With increasing sources of 3D content, a use-
ful tool is needed to evaluate the perceived quality of the 3D videos/images.
This paper puts forward a framework to evaluate the quality of stereoscopic
images contaminated by possible symmetric or asymmetric distortions. Hu-
man visual system (HVS)studies reveal that binocular combination models
and visual saliency are the two key factors for the stereoscopic image qual-
ity assessment (SIQA) metric. Therefore inspired by such findings in HVS,
this paper proposes a novel saliency map in SIQA metric for the cyclopean
image called “cyclopean saliency”, which avoids complex calculations and
produces good results in detecting saliency regions. Moreover, experimen-
tal results show that our metric significantly outperforms conventional 2D
quality metrics and yields higher correlations with human subjective judg-

∗Corresponding author
Email addresses: yangjiachen@tju.edu.cn (Jiachen Yang ),

WangYF0739@tju.edu.cn (Yafang Wang), b.li@lboro.ac.uk (Baihua Li),
luwen@mail.xidian.edu.cn (Wen Lu), q.meng@lboro.ac.uk (Qinggang Meng ),
Z.Lu@cs.ucl.ac.uk (Zhihan Lv ), D.Zhao2@lboro.ac.uk (Dezong Zhao),
zqgao@tju.edu.cn (Zhiqun Gao)

Preprint submitted to Information Sciences August 28, 2016



ment than the state-of-art SIQA metrics. 3D saliency performance is also
compared with “cyclopean saliency” in SIQA. It is noticed that the proposed
metric is applicable to both symmetric and asymmetric distortions. It can
thus be concluded that the proposed SIQA metric can provide an effective
evaluation tool to assess stereoscopic image quality.

Keywords:

Binocular Combination, Human Visual System, Saliency, Stereoscopic
Image Quality Assessment, Visual Attention.

1. Introduction

Visual information plays an important role in information acquisition
in our daily lives. Over the past few decades, considerable stereoscopic tech-
nologies have been invented and commercialized [36, 38, 32]. However, new
issues and challenges have also emerged with their development. During
stereoscopic content creation, transmission, processing and display, various
distortions causing visual fatigue and visual discomfort may be introduced.
Consequently, it is necessary to develop an effective tool to measure the
quality of stereoscopic images.

SIQA, like the quality assessment of monocular images (IQA), can be
categorized into subjective and objective methods. Subjective assessment of
stereo images represents the direct reflection of the HVS, and thus it is re-
garded as the most reasonable assessment method. In recent years, research
using subjective experiments has achieved steady development and various
factors that may affect stereoscopic perception have been investigated. How-
ever, subjective tests are time-consuming and require many duplicate exper-
iments with a large number of participants. Therefore, objective metrics,
which can be used to reliably predict the perceived quality of stereo images,
has attracted significant attention from scholars and experts.

There are a number of 2D-IQAmetrics with competitive performances in
IQA. They can be divided into several categories: structural similarity based
IQA metrics(e.g. structural similarity (SSIM) [50]; distortion distribution-
based structural similarity (ADD-SSIM) and distortion distribution-based
structural similarity (ADD-GSIM) [15]); deep learning based blind image
quality assessment frameworks [23, 20]; and natural scene statistics based
metrics [11, 16]. The multi-scale Geometric Analysis method [12], mimic-
s the HVS and free-energy-based brain theory in IQA, investigating which
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classical HVS-inspired features could be used to evaluate the image quali-
ty [21]. Inspired by that the human visual system (HVS) exhibits obvious
orientation selectivity mechanism for visual content extraction, Wu et al.

proposed a reduced-reference IQA [52]. These metrics can only be used to
evaluate the image quality before and after coding from one viewpoint. How-
ever, they fail to consider strong correlations with standard disparity from
two adjacent viewpoints. Hence, a new objective quality assessment metric
for stereoscopic images is needed.

However, it is not easy to design an accurate SIQA metric due to the
disparity and depth. The earliest study attempting to evaluate the quality
of stereo images simply applied 2D-IQA to their metrics. In our previous
work [53], we found that the absolute disparity map approximately reflects
the disparity and depth. Therefore we proposed an objective metric for
stereoscopic images by combining this discovery. As stereoscopic images are
different from plain images due to additional depth information, You et al.

[56] investigated the possibility of applying some common 2D quality metrics
in SIQA, while also taking depth information into consideration. A similar
approach was also adopted by Benoit et al. [3], in which 2D-IQA metrics
were augmented with disparity information.

Other metrics in the literature simulated the perceptual route of our
visual system to process input signals. Shao et al. [46] divided stereo images
into monocular regions, binocular fusion regions and binocular suppression
regions. Furthermore, the overall quality was given as the linear summation
of the three regions. By simulating monocular and binocular visual percep-
tion and analyzing the monocular-binocular feature fidelity induced index,
another SIQA algorithm was proposed in his research [44]. Realizing that the
neuronal responses are directly implicated in both the control and experience
of 3D perception, Park J et al. developed a model-based neuronal and sta-
tistical framework that automatically predicts the level of visual discomfort
[39].

Several metrics that took the theory of binocular combination into con-
sideration were investigated. In the subsequent work of Shao, the binocular
receptive field properties in line with human visual perception were intro-
duced into quality assessment [45]. Maalouf et al. [34] presented the defi-
nition of “cyclopean image”. They integrated left and right images into a
cyclopean image to simulate brain perception, after which they used contrast
sensitivity coefficients of the produced cyclopean image to derive a quality.
Moreover, Chen et al. [4] proposed a cyclopean full reference metric that is
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able to account for binocular rivalry. Lin et al. [33] adopted three quali-
ty components in their metric to evaluate the quality of stereoscopic video,
namely the cyclopean view, binocular rivalry, and the scene geometry. Wang
et al. [49] set up a new subjective SIQA database and proposed a binocu-
lar rivalry inspired model to predict the quality of stereoscopic images. In
addition, Gu et al. [18] introduced a metric based on the analysis of au-
toregressive model parameters to characterize the sharpness as an index to
evaluate image blur, after which the metric was extended to assessing the
sharpness of stereoscopic images. These metrics have been shown to out-
perform the former metrics (e.g. [53, 56, 3]) in predicting the quality of
stereoscopic images, especially in the case of asymmetric distortions.

Since HVS is the ultimate assessor of image quality that takes into
account a variety of visual characteristics, it has become another importan-
t factor affecting how to choose salient features. Li et al. developed an
unsupervised feature selection algorithm to select the most useful features
by integrating cluster and sparse structural analysis into a joint framework,
while also experimentally demonstrating the effectiveness of the proposed
algorithm [31]. In [30], a Robust Structured Subspace Learning (RSSL) al-
gorithm was presented to uncover an appropriate latent subspace for data
representation. Muhammad et al. [41] proposed a feature selection algorithm
avoiding the positive region to replace the conventional dependency measure.
Image understanding and feature learning were first integrated into a join-
t learning framework. This framework was then applied to several image
understanding tasks and shown to achieve good performance.

For a large number of visual characteristics, the saliency map is par-
ticularly important. This is because HVS tends to select the most relevant
information from a visual scene. Zhang et al. has demonstrated that the
current soundness of visual saliency modelling is sufficient for IQA to yield
a statistically meaningful gain in their performance [59]. Based on this evi-
dence, we consider visual saliency to be a factor in IQA. Meanwhile, we at-
tempted to find an efficient 3D metric to detect saliency regions that would
affect the performance of SIQA. However, evaluation metrics that consider
the significance of image are based on 3D saliency maps and extraction is
both difficult and tedious. In order to overcome this shortcoming, a simple
but efficient saliency detection metric is set to be in line with HVS.

In this paper, inspired by previous work on cyclopean images, a full
reference quality assessment metric is proposed based on binocular combi-
nation and visual attention. In this proposed metric, we take advantage of
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several existing binocular combination models and propose a novel method
that synthesizes two saliency maps to a cyclopean image, thereby predicting
the saliency of binocular combination. The main innovations of our paper
are as follows: 1) A proposed saliency map for stereoscopic images based on
binocular combination models, defined as “cyclopean saliency”. The defini-
tion of “cyclopean saliency” then leads to the development of a new idea for
computing the saliency of stereoscopic images. 2) We propose a framework
for stereoscopic image quality assessment based on binocular combination
characteristics and “cyclopean saliency”. The proposed framework is easy
to implement, and the binocular combination model used in our metric is
replaceable.

The rest of this paper is organized as follows. Section 2 presents a
brief introduction of related work and our motivations. The overall 3D IQA
framework is described in Section 3, including the derivation of some prac-
tical 3D IQA models. Section 4 presents the experiments conducted on the
3D IQA databases and the analysis of our model’s performance. Finally in
Section 5, we conclude the paper with a discussion and an outlook on future
work.

(a) (b) (c)

(d) (e) (f)

Figure 1: A stereopair and corresponding saliency map, (a) left view , (b) right view, (c)
saliency map based on GBVS of the left view, (d) saliency map based on GBVS of the
right view, (e) left view added with corresponding GBVS-based saliency map, (f) left view
multiplied by corresponding GBVS-based saliency map.
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2. Related Work and Motivation

2.1. Binocular Combination Models

Research on human vision suggests that our two eyes each view the
world from a slightly different angle. The resulting small difference perceived
between the two views serves as the basis for assessment. Binocular com-
bination refers to the combination of these two retinal images form a single
“cyclopean” perceptual image [7]. If the light images on the two retinas are
similar, the HVS will combine them into a single percept, while dissimilar im-
ages will cause binocular rivalry where only one light image is perceived [26].
The perceived brightness data under binocular viewing conditions serves as
an important clue for binocular combination [47]. Some interesting behaviour
can arise in binocular brightness combination when the input brightness is
asymmetric in both eyes. Examples include binocular brightness summation
in response to Ganzfelds theory, and Fechner’s paradox where a bright light
to one eye may appear less bright when a dim light is shown to the other
eye. Many binocular models have been proposed in order to reconcile these
apparently contradictory properties, which can be divided into four types
[13]:

Eye-weighting models: The cyclopean image is computed as the lin-
ear summation of the left and right light images, monocular luminance or
quadratic of luminance, described as:

C(x, y) = [(ωL · IL(x, y))
β + (ωR · IR(x+ d, y))β]1/β (1)

where ωL and ωR are the weighting factors of the each view respectively,
(x, y) is the position of a pixel, d is a disparity index that matches pixels
from IL to those in IR. And β=1, 2 means monocular luminance or quadrat-
ic of luminance respectively. Existing eye-weighting models are simple and
the quadratic of luminance model can explain the binocular combination
behaviour that the input brightness is symmetric for both eyes. Nonethe-
less, both models failed in matching with Fechner’s paradox and explaining
cyclopean perception as a result of ignoring the interaction between two eyes.

Vector summation models: These models suggest that binocular bright-
ness perception is not the result of the simple addition of monocular signals
but the sum of two orthogonal vectors with some normalization [35]. These
models explain Fechner’s paradox and cyclopean perception very well.
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Neural network models: These models firstly compute the neural re-
sponse of each eye, before combining the binocular response as follows:

C(x, y) = NL(x, y) +NR(x+ d, y) (2)

where NL and NR are the responses of neural cells receiving strong exci-
tation from one eye and weak inhibition from the other eye, respectively. In
these models, Fechner’s paradox can be explained well while the explanation
of cyclopean perception depends on the adopted neural response model.

Gain-control theory models: Gain-control theory is dependent on com-
parison. For stimuli of ordinary contrast, when either eye is stimulated alone,
the predicted cyclopean image is the same as the situation when both eyes
are stimulated equally, coinciding with an easily observed property of natu-
ral vision [7]. Gain control models are effective in predicting the early stages
of binocular combination and they explain Fechner’s paradox and cyclopean
perception well.

In this paper, only the most commonly used model of each type will be
discussed in subsequent sections.

2.2. Saliency Map

Our eyes attempt to search for and recognize particular objects in a scene
despite being given a limited amount of information. This information needs
to be processed in order to speed up the interpretation of complex scenes
in real time. Visual saliency maps try to predict the locations that people
are likely to look at and are interested in. In recent years, many saliency
computing models have succeeded in highlighting the regions which attract
human attention; however, in comparison, these models have become weaker
in the parts that the HVS is insensitive to. Such models include: Graph-
Based visual saliency model (GBVS) which applies a random walker to de-
tect the salient signals [22], the acuity-based saliency detection model which
uses sparse features extracted from image patches for center-surround dif-
ference calculation [9], the reconstructed image signature-based model which
detects spatially sparse signals embedded in spectrally sparse backgrounds to
highlight the sparse salient regions [24], the maximum symmetric surround-
ing (MSSS) model which exploits features of color and luminance to detect
saliency regions [1], and the low-level features-based model which considers
local and global contrast based on the likelihood of corresponding features
[25]. In [48], a saliency model is presented by integrating the low-level pri-
ors, the high-level priors and the Center Bias Prior (CBP). Furthermore,
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Figure 2: Existing Quality Assessment Metric Using Saliency

Gu et al. introduced a computational Free Energy inspired Saliency detec-
tion technique (FES) [18]. Although these saliency detection models perform
well in predicting salient areas of 2D images, the development of stereoscopic
technologies requires the development of new 3D visual models.

Hence, it is necessary to propose a visual saliency computing model that
accounts for both depth information and binocular combination. Based on
the above considerations, several 3D saliency models have been put forward.
For example, Wang et al. proposed a computational model of visual atten-
tion for 3D images by combining traditional 2D saliency detection methods
with depth information [10]. Fang et al. established a stereoscopic saliency
detection framework based on color, luminance, texture, and depth features
extracted from discrete cosine transform coefficients, which were then used in
a contrast calculation [40]. There are also some 3D saliency detection models
based on RGB-D, such as [42].

2.3. Existing Quality Assessment Schemes Using Saliency

Saliency maps can predict the areas and objects that the visual system
is concerned about, and close attention has accordingly been paid to this
issue. Based on the analysis and application of contrast change technology,
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Gu et al. not only provided a new subjective database, but also proposed
a reduced reference(RR) image assessment and an automatic contrast en-
hancement model to enhance images [17]. Moreover, Zhang et al. extracted
the visual saliency map and gradient magnitude as two basic features, af-
ter which they computed their structural similarity separately and combined
them to obtain the objective quality [58]. In [28], Chu et al. tried to directly
extend 2D visual saliency maps to stereoscopic quality assessment. Their
metrics are illustrated in Fig.2. In these frameworks, the images were first
merged with the corresponding saliency maps. Next, the structural similar-
ity of the merged images, comprised of a distorted and reference image for
both left view and right views, was separately computed for each view. The
overall quality is given as a linear combination of each view’s quality. In
the above methods, visual saliency was used as an additional feature. Thus
visual saliency played only a small role in their metrics, and the introduction
of visual saliency in their metrics will not lead to great influence on the final
results. In this paper, we use saliency maps as not only an additional factor
but also a weighting parameter. Using the saliency map as a weighting pa-
rameter enables us to assign higher weights to the areas that human eyes are
more concerned about. Fig.1c and Fig.1d show the comparison between using
addition and multiplication when incorporating saliency maps. As we can
see, adding a saliency map to the reference image will not produce dramatic
changes in its properties, while multiplying a saliency map clearly highlights
the areas or objects of concern.

2.4. Motivation

After better understanding binocular combination models and saliency
maps, we intend to propose a quality assessment algorithm for optimally
combined stereoscopic images. Although some stereoscopic saliency models
[10, 40, 42] for stereopairs exist, it is still difficult to detect stereoscopic
saliency. Firstly, there is no ground truth saliency, so the design of precise
stereoscopic saliency extracting algorithm remains a difficult issue. Secondly,
the introduction of a stereoscopic algorithm will significantly increase the
complexity of SIQA algorithms. To solve this problem, a novel concept of
a saliency map for cyclopean images called “cyclopean saliency” based on
existing 2D saliency computing algorithms is proposed. Furthermore, we
extend the “cyclopean saliency” to provide quality prediction for stereoscopic
images. There are five models adopted in our algorithm, namely the GBVS
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model [22], the signature-based model(SGB) [24], the MSSS model [1], the
multi-scale wavelet(MSW) transform model [25], and the FES model [18].

The five models are simple and biologically plausible, and perform well
when it comes to predicting human visual fixations on plain images. The
“cyclopean saliency” is calculated as a binocular combination of the visual
saliency of each view. Better performance may be achieved if some more com-
plicated binocular characteristics are considered. However, we try to avoid
this precisely because certain complicated characteristics still remain myste-
rious. The introduction of these characteristics will further dramatically add
complexity to the proposed metric.

3. The proposed Metric

As discussed in previous sections, visual saliency and cyclopean percep-
tion reflect certain physiological processes of the HVS. Cyclopean perception
enables us to simulate what is perceived in our brain, while visual saliency
helps us to highlight the areas we pay more attention to. Thus theories and
models of visual saliency and cyclopean perception may be valid when ap-
plied to quality assessment models. With this inspiration, a cyclopean and
saliency-based quality assessment metric for stereoscopic images is proposed.
We intend to compute the saliency map and cyclopean image of stereopairs,
followed by their combination to derive the metric. Hence, the framework of
the proposed metric can be illustrated as Fig.3.

3.1. Synthesizing cyclopean image and cyclopean saliency

Reference stereopairs and distorted stereopairs are first transformed to
LAB color space, and only luminance will be adopted for further process-
ing. Thus color is ignored, since the proposed metric focuses on cyclopean
perception and the luminance components are what attract our attention.

Saliency maps predict the positions that human eyes tend to be more
interested in. A full-reference metric is designed to mark the quality of dis-
torted images by highlighting the difference from the reference images. It
will be meaningless to derive saliency maps from distorted stereopairs, as
the objects we are interested in remain unchanged, whereas extracted salien-
cy maps may exhibit considerable variation in different saliency detection
metrics. In addition only the saliency maps of reference left and right views
are computed for further processing. The saliency computing models GB-
VS, MSSS, SGB, MSW, and FES are selected based on their simplicity and
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Figure 3: Cyclopean and saliency-based framework of the proposed metric

performance. Fig.1c and Fig.1d show the saliency map of the left and right
view separately.

We have previously discussed the concept of 2D saliency as a means
to obtain separate visual saliency maps for left and right views. A critical
issue we now face is how to realize seamless docking of visual saliency and
cyclopean images. A straightforward way to compute a saliency map (defined
as “cyclopean saliency”) is similar to computing a cyclopean image. In this
paper, binocular combination models are used to compute cyclopean saliency
maps. The cyclopean image and corresponding cyclopean saliency can be
expressed as equations (3) and (4):

C(x, y) = fc(IL(x, y), IR(x, y + d)) (3)

CS(x, y) = fcs(SL(x, y), SR(x, y + d)) (4)

where C represents the synthesized cyclopean image, CS stands for the cy-
clopean saliency, and IL and IR indicate the luminance of left view and right
view respectively. Moreover, SL and SR are the saliency maps of each view,
respectively, d means disparity, and function fc(·) and fcs(·) refers to the
methods of synthesizing the cyclopean image and cyclopean saliency, respec-
tively.

We introduced four binocular combination metrics in section 2. To
discuss the superiority and deficiency of each type with regard to predicting

11



the quality of stereoscopic images, one classical model of each type will be
discussed in the following section. Some parameters of these models are
modified slightly to match the experiment, with the classical computational
models of each type shown as follows:

Eye-weighting model: Engel autocorrelation model (EE) was proposed
by Engel [8], where the binocular brightness can be written as:

C(x, y) =

√

(ωL · EL(x, y))
2 + (ωR · ER(x+ d, y))2 (5)

Similarly, cyclopean saliency (CS) synthesized using this model can be
written as:

CS(x, y) =

√

(ωL · SL(x, y))
2 + (ωR · SR(x+ d, y))2 (6)

where EL and ER are the luminance and SL and SR are the saliency maps
of each view, respectively, ωL and ωR are the weighting factors of each view
which are limited to (0,1), and ωL + ωR = 1. ωL and ωR can be determined
by finding the integral of the squared autocorrelation function for the pattern
in each eye. In our experiment, ωL and ωR are all set to 0.5.

The eye-weighting model only considers the luminance characteristic,
and the weighting of each view is constant for different stereoscopic images.
Therefore, it ignores the interaction of the two eyes, and can’t explain the
Fechner’s paradox and cyclopean perception.

Vector summation model: Curtis and Rule vector summation model
(V C) [6]. This model postulated that the monocular input signals being
summed were orthogonal and the following model was proposed:

C(x, y) =
√

E2
L(x, y) +E2

R(x+ d, y) + 2 · EL(x, y) · ER(x+ d, y) (7)

The cyclopean saliency can be computed using this model and is written
as:

CS(x, y) =
√

S2
L(x, y) + S2

R(x+ d, y) + 2 · SL(x, y) · SR(x+ d, y) (8)

where EL and ER are the luminance, and SL and SR are the saliency map
of each view, respectively.

This model is not just the simple linear superposition of the two eyes.
Unlike the eye-weighting model, it exploits the interaction between visual
channels in binocular processing and can explain Fechner’s paradox well.
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Neural network model: the Cogan two-channel model (NC) was pro-
posed in [5] in which separate monocular and binocular channels are em-
ployed. This model is formally equivalent to a vector summation model:

C(x, y) = EL(x,y)
1+c·ER(x+d,y)

+ ER(x+d,y)
1+c·EL(x,y)

+ k · EL(x, y) · ER(x+ d, y) (9)

and the cyclopean saliency can be computed as:

CS(x, y) = SL(x,y)
1+c·SR(x,y)

+ SR(x,y)
1+c·SL(x,y)

+ k · SL(x, y) · SR(x, y) (10)

where EL and ER are the luminance, SL and SR are the saliency map of each
view respectively, and c and k are constants. Here, c = 1.0 and k = 0.1.

However, if the saliency value is very low and close to zero, the corre-
sponding areas will be ignored in later processes. These areas usually appear
in the background, but remain important and cannot be ignored. To handle
this situation and fit the experimental data, we made a small modification
to this equation. An additive constant is introduced to prevent these areas
being ignored, and saliency is no longer the dominating factor but a subor-
dinate factor in our metric. Thus, equation (11) and equation (12) can be
revised as:

C(x, y) = c1+EL(x,y)
1+c2·ER(x+d,y)

+ c1+ER(x+d,y)
1+c2·EL(x,y)

+ k ·EL(x, y) · ER(x+ d, y) (11)

CS(x, y) = c1+SL(x,y)
1+c2·SR(x+d,y)

+ c1+SR(x+d,y)
1+c2·SL(x,y)

+ k · SL(x, y) · SR(x+ d, y) (12)

where the additive constant c1 is set to 1.0 and c2 = 1.0 as before.
Here, the model is more general to account for binocular performance at

the differential luminance threshold and in suprathreshold contrast matching.
Moreover, by briefly taking into consideration the visual neurophysiology, it
offers an explanation for interocular transfer of adaptation.

Gain control model: In Ding and Sperling model (GS) [7], the binocular
combination is defined as:

C(x, y) = 1+RL(x,y)
1+RL(x,y)+RR(x+d,y)

· EL(x, y) +
1+RR(x+d,y)

1+RL(x,y)+RR(x+d,y)
· ER(x+ d, y) (13)

where EL and ER are the luminance of left view and right view, respectively,
RL and RR are the energy response sums of all the frequency channels for
the left eye and the right eye, respectively.
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The cyclopean saliency is defined as:

CS(x, y) = 1+RL(x,y)
1+RL(x,y)+RR(x+d,y)

· SL(x, y) +
1+RR(x+d,y)

1+RL(x,y)+RR(x+d,y)
· SR(x+ d, y) (14)

This method is employed for energy calculation with the log-Gabor
filter. Log-Gabor filter Gs,o ( o denotes the orientation index and s denotes
the scale index) can decouple the image into a set of responses on different
scales and different orientations, denoted as [rs,o, is,o] (r and i are the real
part and the imaginary part of the response, respectively). In the Fourier
frequency Domain:

Gs,o(r, θ) = exp

[

−

(log(ω/ωs))
2

2σ2
s

]

exp

[

−

(log (θ − θ0))
2

2σ2
o

]

(15)

where the parameters ω and θ are the normalized radial frequency and the
orientation angle of the filter, and ωs and θ0 are the corresponding center
frequency and orientation of the filter, respectively. The parameters σo and
σs determine the strength of the filter. In our experiment, the design of the
filter followed the work in [43]. The local energy response on all scales s and
along orientation o is given by:

Ro =

√

∑

s

rs,o+
∑

s

is,o (16)

Local energy response R are defined as the maximum value of local energy
with every orientation:

R = max[Ro] (17)

The gain control model is comparatively dependent: very low-contrast
stimuli to the left- and right-eye are added linearly to form the predicted
cyclopean image, while both binocular combination and binocular rivalry
are considered, coinciding with an easily observed property of natural vision.
Based on these principles, Fechneros paradox and cyclopean perception are
well accounted for.

3.2. Saliency map weighting and overall quality

The cyclopean image for reference stereopairs is denoted as Cr , the cy-
clopean image for distorted stereopairs is denoted as Cd, and the cyclopean
saliency map of reference stereopairs is denoted as CS. Only the cyclopean
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saliency map of reference stereopairs is adopted because the saliency calcu-
lated from the reference stereopairs is more accurate. With cyclopean image
and cyclopean saliency, the next step is to combine them into an overall qual-
ity assessment metric. Unlike some papers where saliency is just used as an
additional insignificant factor, we also took the cyclopean saliency map as a
weighting parameter to highlight the areas in which our eyes are more likely
to be interested in. It was realized by multiplying the cyclopean image and
the cyclopean saliency map, and thus the overall quality can be described as
follows:

Cwr(x, y) = Cr(x, y) · CS(x, y) (18)

Cwd(x, y) = Cd(x, y) · CS(x, y) (19)

The overall quality is obtained by applying a full reference 2D-IQA
algorithm to the reference saliency weighted cyclopean image Cwr and the
test cyclopean image Cwd, which can be denoted as:

Q = f(Cwr, Cwd) (20)

where Q is the overall quality and f(·) denotes the application of a full
reference quality assessment metric.

(a) (b) (c)

(d) (e) (f)

Figure 4: One of the reference left view images and the corresponding five types of dis-
tortion. (a) Reference left view. (b) JPEG compressed. (c) JPEG 2000 compressed. (d)
White noise. (e) Blur. (f) Fast fading.
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4. Experimental Result and Analysis

4.1. Stereo database

The SIQA database used in our experiment is the LIVE 3D Image
Quality Database from The University of Texas at Austin [37]. Distorted
stereopairs cover five distortion types, including JPEG, JPEG2000 compres-
sion, additive white noise, blur and fast fading (shown in Fig.4). The main
reason for using this database is its authority, publicity and availability of
subjective evaluation scores.

4.2. Performance measure

To verify the performance of our metric, we choose five 2D metrics
and apply them to our framework. The candidates for 2D metrics are SSIM
[50], MS-SSIM [51], ADM [29], ADD-SSIM and ADD-GSIM [15]. The pre-
dictive performance of each metric is evaluated by four commonly used per-
formance measures: the Pearson linear correlation coefficient (PLCC), the
root mean squared error (RMSE), the Spearman rank-order correlation coef-
ficient (SROCC) and Kendall rank-order correlation coefficient (KROCC).
PLCC and RMSE are obtained after non-linear regression. For these two
measures, the logistic function (21) specified in [2] is used to fit the model
predictions to the subjective data. In addition, the SROCC and KROCC
are used to evaluate the prediction monotonicity. A smaller RMSE val-
ue means a better performance, with bigger values of PLCC, SROCC and
KROCC being preferred. For a perfect match of objective and subjective
scores, RMSE = 0 and PLCC = SROCC = KROCC = 1.

Q′ =
β1 − β2

1 + exp(Q−β3

|β4|
)
+ β2 (21)

where β1, β2, β3, and β4 are determined by using the subjective scores and
the objective scores.

4.2.1. Performance in predicting symmetric distortions

In this section, GBVS based CS is used to represent the results un-
der the cyclopean saliency model. In later subsection, we will continue to
discuss the performance of different saliency models. The values of PLCC,
RMSE, SROCC and KROCC of the proposed framework and 2D-IQA for
Live Phase I are given from Table 1 to Table 5. In all metrics, NC MS-SSIM
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Figure 5: Performance of MS-SSIM and proposed framework based on GBVS with Live
Phase I The performance of (a) 2D baseline MS-SSIM, (b) EE MS-SSIM, (c) VC MS-SSIM,
(d) NC MS-SSIM and (e) GS MS-SSIM.

combination performs better than any other combinations and all 2D-IQA
metrics. Generally, the proposed framework outperforms the corresponding
2D-IQA; however, some combinations do not boost performance and some
even degrade performance. As shown in the results, some specific 2D-IQA
may be applicable for predicting the quality of symmetric distorted stere-
opairs, though the performance is not always outstanding.

Since our framework using corresponding 2D metric MS-SSIM performs
best in the proposed framework, only results using MS-SSIM are adopted for
discussion and comparison. Fig. 5 shows the scatter plots of DMOS versus
the proposed framework with respect to four different binocular combination
models and 2D-IQA MS-SSIM metric on symmetric distorted stereopairs.

From the scatter plots, it can be concluded that the NC MS-SSIM
performs the best, while others generally achieve a better convergence than
2D metric MS-SSIM. The proposed framework using binocular models indeed
proves to be the better in performance in the case of averaging the 2D scores
of the left image and the right image directly.
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Table 1: Performance of the proposed framework based on ADM with Live Phase I

Saliency Model Algorithm PLCC SROCC KROCC RMSE

GBVS

AVG-ADM 0.9119 0.9083 0.7197 8.9752
EE ADM 0.9239 0.9171 0.7391 8.3640

VC ADM 0.9119 0.9105 0.7256 8.9713
NC ADM 0.8840 0.8835 0.6844 10.2222
GS ADM 0.9135 0.9049 0.7202 8.8971

Table 2: Performance of the proposed framework based on SSIM with Live Phase I

Saliency Model Algorithm PLCC SROCC KROCC RMSE

GBVS

AVG-SSIM 0.8721 0.8763 0.6784 10.6999
EE SSIM 0.8064 0.8123 0.6063 12.9297
VC SSIM 0.8362 0.8426 0.6384 11.9889
NC SSIM 0.9327 0.9312 0.7669 7.8869

GS SSIM 0.7818 0.7776 0.5698 13.6326

Table 3: Performance of the proposed framework based on ADD-SSIM with Live Phase I

Saliency Model Algorithm PLCC SROCC KROCC RMSE

GBVS

AVG-ADD-SSIM 0.8995 0.8921 0.6983 9.5519
EE ADD-SSIM 0.6959 0.6108 0.4318 15.7014
VC ADD-SSIM 0.9260 0.9177 0.7416 8.2514
NC ADD-SSIM 0.9130 0.9172 0.7356 8.9177
GS ADD-SSIM 0.9337 0.8940 0.7090 7.6281

Table 4: Performance of the proposed framework based on ADD-GSIM with Live Phase I

Saliency Model Algorithm PLCC SROCC KROCC RMSE

GBVS

AVG-ADD-GSIM 0.8921 0.8888 0.6908 9.8773
EE ADD-GSIM 0.5873 0.6155 0.4338 20.1222
VC ADD-GSIM 0.9304 0.9256 0.7527 8.0124
NC ADD-GSIM 0.9053 0.9107 0.7320 9.2859
GS ADD-GSIM 0.9468 0.9109 0.7403 6.8561
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Table 5: Performance of the proposed framework based on MS-SSIM with Live Phase I

Saliency Model Algorithm PLCC SROCC KROCC RMSE

GBVS

AVG-MS-SSIM 0.9252 0.9231 0.7472 8.2976
EE MS-SSIM 0.9074 0.8977 0.7082 9.1876
VC MS-SSIM 0.9085 0.9030 0.7149 9.1356
NC MS-SSIM 0.9361 0.9342 0.7660 7.6931

GS MS-SSIM 0.8890 0.8741 0.6774 10.0015

Table 6: Performance of the proposed framework and 2D baseline MS-SSIM with Live
Phase I

Algorithm Distortions PLCC SROCC KROCC RMSE

NC MS-
SSIM-
GBVS

JPEG 0.7525 0.7259 0.5256 5.7421

JPEG2000 0.9504 0.9149 0.7418 5.3721

White Noise 0.9284 0.9327 0.7778 8.2412
Blur 0.9500 0.9254 0.7697 6.0284

Fast Fading 0.8421 0.7821 0.5897 8.9353

MS-
SSIM-
GBVS

JPEG 0.6859 0.6123 0.4179 6.3445
JPEG2000 0.9188 0.8917 0.7006 6.8141
White Noise 0.9320 0.9320 0.7753 8.0389

Blur 0.9434 0.9261 0.7677 6.3986
Fast Fading 0.8018 0.7231 0.5371 9.8997

Study has also been conducted to evaluate the performance of each
metric in predicting different types of distortions. Table 6 presents the per-
formance of NC MS-SSIM against the 2D baseline of MS-SSIM. From the
table we can see that the proposed framework boosts the performance of the
corresponding 2D-IQA, except with the distortion of white noise. For stere-
o images distorted by white noise, though the proposed framework cannot
improve the performance, the performance values are still close to that of
averaged 2D-IQA. Therefore it demonstrates that the proposed framework
is a useful predictor to predict the quality of stereopairs contaminated by
various distortions.

4.2.2. Performance in predicting both symmetric and asymmetric distortions

Evaluating the quality of symmetric distorted stereopairs is only one
aspect to be considered. Another is to predict the quality of asymmetric
distorted stereopairs, as the asymmetric distortions will have an even more
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Table 7: Performance of the proposed framework based on ADM with Live Phase II

Saliency Model Algorithm PLCC SROCC KROCC RMSE

GBVS

AVG-ADM 0.7511 0.7242 0.5481 7.4528

EE ADM 0.7121 0.7020 0.5340 7.9201
VC SSIM 0.6689 0.6869 0.5244 8.3908
NC ADM 0.5604 0.6336 0.4785 9.3484
GS ADM 0.7320 0.7031 0.5219 7.6904

complicated impact on our perception. In order to present an intuitive expla-
nation for the importance of binocular combination and cyclopean saliency,
the proposed metric is also applied to asymmetric distorted pairs. From Ta-
ble 7 to Table 11, we can see the performance of each criterion on the Live
Phase II database, which contains both symmetric and asymmetric distor-
tions. Fig. 6 shows the scatter plots of DMOS versus the proposed framework
with respect to four different binocular combination models and MS-SSIM
metric on both symmetric and asymmetric distorted stereopairs. As shown
in the results, predicting the quality of both symmetric and asymmetric dis-
torted stereopairs is more difficult than predicting the quality of symmetric
distorted data alone. Even though some specific 2D-IQA, i.e., MS-SSIM and
ADM are applicable to symmetric distorted stereopairs, they fail to predict
the quality of asymmetric distorted data. Furthermore, the corresponding
ADM metric performs badly in predicting the quality of asymmetric data.
ADM derives the quality by separately evaluating the additive noises and
detail losses, but the binocular combination is more complicated for asym-
metric distortions. Therefore, the detail losses and additive noises should
not be decoupled in this way. The proposed framework significantly boosted
the performance of the corresponding SSIM and MS-SSIM, especially the NC
model. Our framework also achieved performance improvements for 2D-IQA
ADD-SSIM and ADD-GSIM, with the EE model being an exception. As
we mentioned previously, the EE model ignores the interaction of the two
eyes due to its simple operation. Hence, it can’t explain binocular percep-
tion and doesn’t perform well in either case of symmetrical or asymmetrical
distortions. The facts offer an indirect proof of the importance of visual
characteristics such as binocular combination and saliency in predicting the
quality of stereoscopic images.
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Table 8: Performance of the proposed framework based on SSIM with Live Phase II

Saliency Model Algorithm PLCC SROCC KROCC RMSE

GBVS

AVG-SSIM 0.8020 0.7919 0.6014 6.7429
EE SSIM 0.8026 0.7926 0.6012 6.7332
VC SSIM 0.8298 0.8209 0.6274 6.2989
NC SSIM 0.8990 0.8796 0.7051 4.9424

GS SSIM 0.8326 0.8256 0.6388 6.2518

Table 9: Performance of the proposed framework based on ADD-SSIM with Live Phase II

Saliency Model Algorithm PLCC SROCC KROCC RMSE

GBVS

AVG-ADD-SSIM 0.6681 0.6479 0.4874 8.3983
EE ADD-SSIM 0.3182 0.3599 0.2553 11.2873
VC ADD-SSIM 0.8125 0.8068 0.6207 6.5798
NC ADD-SSIM 0.8790 0.8680 0.6872 5.3814

GS ADD-SSIM 0.8115 0.7842 0.5977 6.7790

Table 10: Performance of the proposed framework based on ADD-GSIM with Live Phase
II
Saliency Model Algorithm PLCC SROCC KROCC RMSE

GBVS

AVG-ADD-GSIM 0.6807 0.6641 0.5072 8.2689
EE ADD-GSIM 0.3358 0.3431 0.2437 11.2873
VC ADD-GSIM 0.7750 0.7746 0.5916 7.1335
NC ADD-GSIM 0.8418 0.8274 0.6336 6.0913

GS ADD-GSIM 0.7820 0.7642 0.5841 7.2317

Table 11: Performance of the proposed framework based on MS-SSIM with LIVE Phase
II
Saliency Model Algorithm PLCC SROCC KROCC RMSE

GBVS

AVG-MS-SSIM 0.7824 0.7774 0.6067 7.0293
EE MS-SSIM 0.7631 0.7635 0.5893 7.2950
VC MS-SSIM 0.8061 0.8028 0.6267 6.6799
NC MS-SSIM 0.9016 0.8885 0.7142 4.8826

GS MS-SSIM 0.7688 0.7603 0.5768 7.2187
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Figure 6: Performance of MS-SSIM and the proposed framework based on GBVS with
Live Phase II The performance of (a) 2D baseline MS-SSIM, (b) EE MS-SSIM, (c) VC
MS-SSIM, (d) NC MS-SSIM and (e) GS MS-SSIM.

4.2.3. Performance comparison Between 2D Saliency and “Cyclopean Salien-

cy”

In order to elaborate the importance of the proposed cyclopean saliency
in our framework, we compare the performance achieved using a saliency
map derived from a single image with the proposed cyclopean saliency map.
This means that the weighting cyclopean saliency maps will be replaced by
the saliency map derived from either view (left or right) only in equation
(18) and (19). Fig. 7 shows the performance comparison between the pro-
posed cyclopean saliency and 2D saliency. The performance indicates that
cyclopean saliency performs significantly better than 2D saliency. It can be
concluded from the results that we have proposed a straightforward method
to compute the saliency map for cyclopean images based on existing saliency
computing algorithms with minimum cost. The proposed cyclopean saliency
matches our framework well and performs much better compared with the
corresponding 2D saliency.
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(a)

(b)

Figure 7: Performance comparison Between 2D Saliency and “Cyclopean Saliency” in NC
MS-SSIM (a) Performance with Live Phase I (b)Performance with Live Phase II.
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4.2.4. Performance comparison with existing 3D-IQA models

In this section, we compare the performance of the proposed metric
with five existing 3D quality assessment metrics, i.e., Chen’s scheme [4], Lin’s
scheme [33], Benoit’s scheme [3], and Shao’s scheme [45] and [44]. Because
of the best performance of NC MS-SSIM among all combinations of the
proposed metric, we will adopt it for comparison in the following sections.

From Table 12 we can see that though the indices of our model are only
lower than Shao’s scheme [44], there is a very weak gap between them. Gen-
erally, SIQA metrics which consider binocular characteristics perform better
than the ones directly extended from 2D-IQA. As listed in Table 13, the
performance of the proposed metric is also better than the other metrics in
predicting the quality of asymmetric distortions. Though Lin’s scheme con-
sidered binocular integration behaviors, its performance is mediocre. While
the algorithm was specifically designed to predict the quality of 3D image
compression, it ignored the importance of visual attention, thus leads to re-
duce its performance. The NC SSIM and Chen’s model yield no significant
difference relative to the performance of left-right averaged 2D-IQA using
MS-SSIM, while the Benoit’s metric performs well in predicting the quality
of symmetric distorted stereopairs. However, the metrics of Benoit and Shao
[44] failed in predicting asymmetric distorted data. Both the proposed NC
MS-SSIM and Chen’s model perform well in predicting the quality of sym-
metric and asymmetric data. Moreover, the PLCC, KROCC and RMSE
of the proposed metric are the highest while the SROCC of Chen’s model is
the higher. The performance of Shao’s Scheme [45] is also persuasive, con-
sidering the binocular combination or binocular characteristics. Overall, the
proposed scheme shows an impressive consistency with human perception.

The proposed NC MS-SSIM yields a higher consistency with subjec-
tive scores due to the proposed cyclopean saliency. The result confirms our
previous conclusion that cyclopean saliency can effectively predict the visual
saliency of stereoscopic images. When compared to the performance where
only binocular combination is considered, the performance of the proposed
framework also considering cyclopean saliency is significantly improved.

4.2.5. Impacts of the different saliency models

In this section, we discuss the performance based on different cyclopean
saliency metrics and the stereoscopic saliency metric. As mentioned in above
sections, we select five saliency detection models: GBVS, MSSS, SGB, MSW
and FES to form different cyclopean saliency maps. We also observe the per-
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Table 12: Performance of the proposed framework NC MS-SSIM against existing 3D
quality assessment metrics with Live Phase I

Algorithm PLCC SROCC KROCC RMSE
NC-MS-SSIM 0.9361 0.9342 0.7660 7.6931
Chen’s scheme 0.9267 0.9257 0.7468 7.6931
Lin’s scheme 0.8645 0.8559 0.6559 10.9898
Bnoit’s scheme 0.8829 0.88862 0.6907 10.2681

Shao’s scheme [45] 0.9350 0.9251 - 5.8155

Shao’s scheme [44] 0.9367 0.9365 - 5.7426

Table 13: Performance of the proposed framework NC MS-SSIM against existing 3D
quality assessment metrics with Live Phase II

Algorithm PLCC SROCC KROCC RMSE
NC-MS-SSIM 0.9016 0.8885 0.7142 4.8826

Chen’s scheme 0.901 0.893 0.6814 10.58
Lin’s scheme 0.6584 0.6375 0.4701 8.4956
Bnoit’s scheme 0.745 0.728 0.5357 16.2

Shao’s scheme [45] 0.8628 0.8494 - 5.7058
Shao’s scheme [44] 0.8601 0.8387 - 5.7581

formance using stereoscopic saliency to replace the cyclopean saliency as the
additional feature and weighting parameter. For different cyclopean saliency
metrics, the NC MS-SSIM combination performs better than any other com-
binations, and all 2D-IQA metrics. Therefore, this paper only presents the
PLCC, SROCC, KROCC and RMSE in the different cyclopean salien-
cy with the NC MS-SSIM framework. Table 14 and 15 show the results
with LIVE database Phase I and II, separately. The best are emphasized in
bold. For Phase I, it can be observed that the framework based on the SGB
saliency model has the best performance. While the other algorithms under
different saliency metrics do not achieve the best results, their performances
come quite close to the best algorithm. Therefore, it can be concluded that
the proposed cyclopean saliency can achieve a good performance with the
majority of saliency detection models. That is to say, the cyclopean saliency
model demonstrates generality based on different types of 2D-saliency. For
3D saliency, the proposed framework is efficient for the symmetric distort-
ed images. However, when compared with the proposed cyclopean saliency
model, the performance under it is a little bit poorer. The reason may be

25



Table 14: Performance of the proposed framework NC MS-SSIM using different saliency
detection model with Live Phase I
Saliency Model Algorithm PLCC SROCC KROCC RMSE

Cyclopean-
Saliency

GBVS 0.9361 0.9342 0.7660 7.6931
MSSS 0.9363 0.9340 0.7658 7.6786
SGB 0.9365 0.9342 0.7664 7.6692

MSW 0.9364 0.9341 0.7660 7.6754
FES 0.9365 0.9342 0.7664 7.6697

3DSaliency Fang’s scheme 0.9107 0.9075 0.7202 9.0311

Table 15: Performance of the proposed framework NC MS-SSIM using different saliency
detection model with Live Phase II
Saliency Model Algorithm PLCC SROCC KROCC RMSE

Cyclopean-
Saliency

GBVS 0.9016 0.8885 0.7142 4.8826
MSSS 0.9018 0.8886 0.7144 4.8790

SGB 0.9016 0.8884 0.7138 4.8830
MSW 0.9016 0.8885 0.7141 4.8827
FES 0.9017 0.8885 0.7142 4.8812

3DSaliency Fang’s scheme 0.8503 0.8395 0.6597 5.9405

that although 3D saliency can directly detect the saliency maps from the
stereopairs by taking the depth into account, the final assessment algorithms
are based on 2D-IQA. For Phase II, similar results are achieved with those in
Phase I, while the algorithm based on MSSS model gets the best result. Fig.8
and Fig.9 show the scatter plots of DMOS versus the proposed framework
with respect to five different cyclopean saliencies, as well as algorithm based
on 3D saliency.

4.2.6. Impacts of the Disparity Algorithms

In the last section, we study the effect of different saliency models
on the performance. In this section, investigation was conducted on how
disparity algorithms affect the result. We explored three disparity algorithms
and compared them with circumstances in which no depth information is
used. Table 16 and 17 show the result with LIVE database Phase I and II,
separately. MS-SSIM represents the MS-SSIM-based stereo algorithm that
uses MS-SSIM to choose the best matches [4], SAD represents the simple
sum-of-absolute difference (SAD) luminance matching without a smoothness,
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Figure 8: Performance of NC MS-SSIM under the different cyclopean saliency and 3D
saliency with Live Phase I The performance of (a) NC MS-SSIM based on GBVS, (b) NC
MS-SSIM based on MSSS, (c) NC MS-SSIM based on SGB, (d) NC MS-SSIM based on
MSW, (e) NC MS-SSIM based on FES, (f) NC MS-SSIM based on 3D saliency.

as introduced in [27]. For Phase I, we notice that performance with no
depth information also achieves a good result. The reason may be that the
stereopairs in Phase I are symmetrically distorted, and depth information
will not play a decisive role. Also, it is worth noting that the matching error
in Klaus’s disparity algorithm leads to an undesired result which reminds us
to search for a more precise matching algorithm to improve the result. From
the performance with Phase II, the results under disparity algorithms are
much better than the one with no depth information, while different disparity
algorithms can definitely exert quite significant effects on the metric. As
shown in the comparison between the two databases, the estimated disparities
provide useful information in terms of predicting the quality of the stereo 3D
images, especially for asymmetric distortions. On the whole, the MS-SSIM
based stereo algorithm performs much better, thus it was applied to the
design of the quality assessment metric.
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Figure 9: Performance of NC MS-SSIM under the different “cyclopean saliency” and 3D
saliency with Live Phase II The performance of (a) NC MS-SSIM based on GBVS, (b)
NC MS-SSIM based on MSSS, (c) NC MS-SSIM based on SGB, (d) NC MS-SSIM based
on MSW, (e) NC MS-SSIM based on FES, (f) NC MS-SSIM based on 3D saliency.

Table 16: Performance of the proposed framework NC MS-SSIM using different stereo
algorithm with Live Phase I

Algorithm PLCC SROCC KROCC RMSE
MS-SSIM 0.9361 0.9342 0.7660 7.6931
Klaus 0.9198 0.9152 0.7369 8.5808
SAD 0.9365 0.9354 0.7673 7.6641

No depth 0.9345 0.9305 0.7606 7.7834

4.2.7. Testing with other databases

We have enlarged our own database (Stereo Image Database of School of
Electronic and Information Engineering, Tianjin University [57]) to include
many asymmetric stereo images. In our recent work [54], we proposed an e-
valuation criteria for stereo camera shooting quality. All reference stereopairs
we shot for our database followed our criteria to make sure all of our reference
stereopairs are of a good quality. Furthermore, the enlarged database con-
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Table 17: Performance of the proposed framework NC MS-SSIM using different stereo
algorithm with Live Phase II

Algorithm PLCC SROCC KROCC RMSE
MS-SSIM 0.9016 0.8885 0.7142 4.8826

Klaus 0.8567 0.8443 0.6597 6.2089
SAD 0.8423 0.8264 0.6388 6.4886

No depth 0.8283 0.8152 0.6248 6.7454

Figure 10: Performance values test against Tianjin University 3D Image Database

tains 470 distorted stereopairs containing both symmetric and asymmetric
distortions and 30 reference stereopairs.

The performance values (PLCC, SROCC,KROCC and RMSE ) of 2D
metric MS-SSIM and SIQA models on our own stereo database are illustrated
in Fig.10. From the figure we can conclude that the proposed metric performs
best among all the metrics, which is comparable with Chen’s scheme against
our database.

5. Conclusions

In this paper, a full reference quality assessment framework is proposed
for stereoscopic images. An advantage of the proposed framework is that it
is applicable to both symmetric distortions and asymmetric distortions when
predicting the image quality. The proposed metric can precisely predict the
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quality of an image contaminated by different types of distortion. A signifi-
cant contribution of this work is that it provides a quality assessment struc-
ture in which the binocular combination characteristics with the cyclopean
saliency are all considered. The binocular combination model and cyclopean
saliency synthesis algorithm can both be replaced, while a better performance
can be achieved through free combination. Moreover, the “cyclopean salien-
cy” has generality for cooperation with different 2D-saliency maps. In our
future work, we will also focus on predicting the quality of asymmetrically
distorted stereo images and evaluating the stereo image combined with 3D
saliency. Furthermore, enhancement technologies may possibly play a more
significant role in future IQA research, since they are able to generate better-
looking images, even outperforming the natural images that are deemed to
have the optimal quality. At the same time, further research is needed in
screen content images, which are becoming particularly important due to
their applications in remote computing and cloud gaming [19, 14, 55].
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