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Abstract 

The authors have reported elsewhere (Chem. Eng. Sci., 146, 337, 2016) a new method that derives 
models of micro-packed beds (µPBs) of near-spherical particles from X-ray microtomography 
grayscale images of limited resolution compared to the characteristics dimensions of the particles 
and porosity. The new method is distinguished by it not requiring a grayscale threshold to partition 
the images into solid and void phases, and its retention of the underlying spherical geometry, two 
issues that are particularly problematic when more traditional approaches are used to build models 
of µPBs.  Here it is shown that a reverse Monte Carlo (RMC) algorithm combined with simulated 
annealing (SA) can refine the models obtained from this new method to eliminate the vast majority 
of particle overlaps and incorporate particle size distributions. Application of the RMC-SA to an 
initial model of a µPB yielded a porosity estimate that was, within experimental uncertainty, the 
same as its directly measured counterpart. It was further shown that the porosity of µPBs is near 
unity at the bed wall and oscillates in a decaying fashion normal to the wall up to a distance of 
around three particle diameters into the bed. This leads to the porosity decreasing with increasing 
bed-to-particle diameter ratio. The opposite was observed, however, for the average number of 
particle-particle contacts (the mean coordination number). This latter behaviour has two origins: 
one in which the bulk of the bed where the coordination number is maximal and constant exerts 
increasing influence (volumetric origin), and one in which the packing density inherently decreases 
with the bed-to-particle diameter ratio (packing origin). 

Keywords: Microfluidics; micro-packed bed (µPB); porosity; mean coordination number; wall 

effect; Reverse Monte-Carlo and simulated annealing. 
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Packings of near-spherical particles of 10s of microns diameter or smaller within channels of a few 

100s of microns or less are commonly used in microfluidic applications ranging from microanalysis 

[1-5] through to process intensification [6-9]. Understanding the variation of the three-dimensional 

(3D) structure of such micro-packed beds (µPBs) as a function of the material characteristics and 

preparation conditions is critical to optimizing their performance [10]. As summarized in the first 

part of this contribution [11], hereafter referred to as Part A, there are a variety of experimental 

methods available for imaging the 3D structure of µPBs, but one of the most convenient is benchtop 

X-ray microtomography due to its modest cost and ease of use. However, its limited resolution 

relative to the porosity and particles in µPBs presents significant challenges when seeking to 

transform microtomography images of such beds into 3D models suitable for detailed quantitative 

analysis [11]. The first challenge is the identification of an appropriate threshold for turning the 

grayscale images obtained from X-ray microtomography such as that shown in Figure 1(a) into a 

binary image of solid and void only; this is clearly indicated when comparing the differences 

between the binary versions of this figure shown in Figure 1(b) and 1(c) where different legitimate 

thresholds produce markedly different results. The second challenge is the loss of the underlying 

spherical geometry as also clearly demonstrated in Figure 1. 

 

(a) (b) (c) 

Figure 1. X-ray microtomography related images of a cross-section through a µPB composed of 
38.5 µm diameter particles of high sphericity within a 200 µm square capillary: (a) raw grayscale 
image; (b) a binarized version of the greyscale image using a threshold of 60% of the grayscale 

range; and (c) a binarized version of the greyscale image using a threshold identified by the Otsu 
[12] method (80% of the grayscale range). 

In Part A, we have outlined a method for converting benchtop X-ray microtomography grayscale 

images for µPBs into 3D models of sphere packings that does not rely on the identification of a 

grayscale threshold for partitioning the pixels between the solid and void phases. It was shown that 
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this new method can yield a model of a µPB whose porosity is, within experimental error, equal to 

the directly measured counterpart. The models obtained by the method outlined in Part A are, 

however, imperfect in that they include particles that overlap each other and the channel walls and 

particles that have no contact with any supporting particles (i.e. they are suspended). This reflects 

the fact that the method for identifying the particle positions is subject to some uncertainty and the 

particle sizes are all assumed equal to the experimentally determined mean (i.e. the particle sizes are 

not distributed as would be the case in reality). Here we detail the use of a Reverse Monte Carlo 

(RMC) simulation [13] combined with Simulated Annealing (SA) [14] to refine the structure 

obtained by the method described in Part A to address these two issues. The approach is first 

described and then demonstrated by using it to determine the porosity and topology of µPBs of 

near-spherical particles as a function of the particle-to-bed diameter. 

2. Description of the new method 

In order to eliminate particle-particle and particle-wall overlaps and suspended particles, Reverse 

Monte Carlo (RMC) was combined with Simulated Annealing (SA) to shift the particle size 

distribution (PSD) towards the experimentally-determined distribution and move the particle 

positions within the confines of their uncertainty. This involved repeatedly applying with equal 

probability the following two types of ‘moves’ to randomly selected spheres in the model derived 

from the method described in Part A: 

1. Changing the size of the particle by an amount δd within the constraints of the experimental 

PSD 

 𝛿𝛿𝛿𝛿 = 𝛿𝛿𝛿𝛿𝑚𝑚𝑚𝑚𝑚𝑚(𝜉𝜉 − 0.5) (1) 

where δdmax is the maximum possible change in the diameter allowed and ξ is a random 

number selected in a uniform way from the range [0,1). 

2. Displacing the position of the sphere in the three coordinate directions by 𝛿𝛿𝛿𝛿𝛼𝛼 within the 

degree of uncertainty associated with the estimated positions of the sphere centroid 

 𝛿𝛿𝛿𝛿𝛼𝛼 = 𝛿𝛿𝛿𝛿𝛼𝛼,𝑚𝑚𝑚𝑚𝑚𝑚(𝜉𝜉𝛼𝛼 − 0.5) (2) 

where 𝛿𝛿𝛿𝛿𝛼𝛼,𝑚𝑚𝑚𝑚𝑚𝑚 is the maximum possible displacement allowed in the α-coordinate direction, 

and ξα are corresponding random numbers independently selected in a uniform way from the 

range [0,1). 
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The maximum particle diameter change and displacement allowed were adapted so as to yield a 

move acceptance ratio (the ratio of accepted moves to total attempted moves) of between 30 and 

50%. 

Each attempt at a move was accepted provided a random number selected uniformly from the range 

[0,1) was less than the probability [15] 

 𝑃𝑃 = min(1, exp[−∆𝐹𝐹 𝑇𝑇⁄ ]) (3) 

where ∆F is the change the move would create in the functional we are seeking to minimise if 

accepted, and T is a ‘temperature’ that decreases monotonically during the course of the simulation; 

the cooling rate over two successive steps of 𝑇𝑇(𝑠𝑠) 𝑇𝑇(𝑠𝑠 − 1)⁄ = 0.9 was used in the work reported 

here; although this ‘cooling rate’ was found to be satisfactory, other values can be used and, indeed, 

may be better from the perspective of computational efficiency (i.e. achieving a steady state value 

of the functional to be minimised, F) or accuracy (i.e. achieving the smallest possible value of F). 

Equation (3) ensures the move is always accepted if it brings a decrease or no change in the 

functional (i.e. ∆F ≤ 0) whilst allowing for it to also be accepted with a probability less than unity if 

the functional will increase with the move (i.e. ∆F > 0). The use of the monotonically decreasing 

‘temperature’ means the chances of such an ‘uphill step’ in F being accepted decreases from a 

maximum at the start of a simulation, all else being equal. 

The functional that was minimized is  

 𝐹𝐹 = 𝑊𝑊𝑝𝑝𝑝𝑝𝐹𝐹𝑝𝑝𝑝𝑝 + 𝑊𝑊𝑝𝑝𝑝𝑝𝐹𝐹𝑝𝑝𝑝𝑝 + 𝑊𝑊𝑝𝑝𝐹𝐹𝑝𝑝 + 𝑊𝑊𝑠𝑠𝐹𝐹𝑠𝑠 (4) 

where the 𝐹𝐹𝑖𝑖  and 𝑊𝑊𝑖𝑖  are sub-functionals and associated weights, respectively, that relate to the 

differences that must be minimised in the simulation. The first term in this equation seeks to 

eliminate the particle-particle overlaps within the bed 

 𝐹𝐹𝑝𝑝𝑝𝑝 = ∑ �𝐷𝐷𝑖𝑖𝑖𝑖
𝑑𝑑𝑖𝑖𝑖𝑖
�
2

𝑖𝑖𝑖𝑖  (5) 

where the summation is over all particle pairs, and 𝐷𝐷𝑖𝑖𝑖𝑖 is their overlap given by 

 𝐷𝐷𝑖𝑖𝑖𝑖 = �  
�𝐱𝐱𝑖𝑖 − 𝐱𝐱𝑖𝑖� − 𝛿𝛿𝑖𝑖𝑖𝑖 if �𝐱𝐱𝑖𝑖 − 𝐱𝐱𝑖𝑖� < 𝛿𝛿𝑖𝑖𝑖𝑖

0 if �𝐱𝐱𝑖𝑖 − 𝐱𝐱𝑖𝑖� ≥ 𝛿𝛿𝑖𝑖𝑖𝑖
 (6) 
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where xi and xj are the vectors defining the centroids of the particles-i and -j relative to an origin, 

and 𝛿𝛿𝑖𝑖𝑖𝑖 is the minimum distance that may exist between them in the absence of an overlap, which is 

given by the sum of the particle radii 

 𝛿𝛿𝑖𝑖𝑖𝑖 = 𝑑𝑑𝑖𝑖+𝑑𝑑𝑖𝑖
2

 (7) 

The second term in Equation (4) is similarly aimed at eliminating the particle overlaps with the 

confining walls of the µPB 

 𝐹𝐹𝑝𝑝𝑝𝑝 = ∑ �𝐷𝐷𝑖𝑖𝑖𝑖
𝑑𝑑𝑖𝑖
�
2

𝑖𝑖𝑝𝑝  (8) 

where the summation is over all particle-wall pairs, and 𝐷𝐷𝑖𝑖𝑝𝑝 is their overlap given by 

 𝐷𝐷𝑖𝑖𝑝𝑝 = �  
(𝐧𝐧�𝑝𝑝 ⋅ 𝐱𝐱𝑖𝑖 + 𝑝𝑝𝑝𝑝) − 𝛿𝛿𝑖𝑖𝑝𝑝 if (𝐧𝐧�𝑝𝑝 ⋅ 𝐱𝐱𝑖𝑖 + 𝑝𝑝𝑝𝑝) < 𝛿𝛿𝑖𝑖𝑝𝑝

0 if (𝐧𝐧�𝑝𝑝 ⋅ 𝐱𝐱𝑖𝑖 + 𝑝𝑝𝑝𝑝) ≥ 𝛿𝛿𝑖𝑖𝑝𝑝
 (9) 

where 𝐧𝐧�𝑝𝑝  is the unit normal to the wall-w and pw its distance from the origin, and 𝛿𝛿𝑖𝑖𝑝𝑝  is the 

minimum distance that may exist between the particle and wall in the absence of an overlap, which 

is given by the particle radius 

 𝛿𝛿𝑖𝑖𝑝𝑝 = 𝑑𝑑𝑖𝑖
2

 (10) 

The penultimate term in Equation (4), which is aimed at limiting the displacement of the particle 

centroids to within a region around their initial position commensurate with its uncertainty, is of the 

form 

 𝐹𝐹𝑝𝑝 = ∑ 𝐷𝐷𝑖𝑖0𝑖𝑖  (11) 

where the summation is over all particles, and 𝐷𝐷𝑖𝑖0 is the amount the displacement of the particle 

from its initial position exceeds the uncertainty associated with the initial centroid position of the 

particle-i, which is given by 

 𝐷𝐷𝑖𝑖0 = �  
‖𝐱𝐱𝑖𝑖 − 𝐱𝐱𝑖𝑖0‖ − 𝜎𝜎𝑖𝑖 if ‖𝐱𝐱𝑖𝑖 − 𝐱𝐱𝑖𝑖0‖ > 𝜎𝜎𝑖𝑖

0 if ‖𝐱𝐱𝑖𝑖 − 𝐱𝐱𝑖𝑖0‖ ≤ 𝜎𝜎𝑖𝑖
 (12) 

where xi0 is the position of the particle in the initial 3D structure obtained from the method 

described in Part A, and σi is the standard deviation associated with this position. 

The final term in Equation (4) is aimed at minimising the difference between the experimental 

particle size distribution and that of the particle ensemble in the 3D model. It does this by 
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considering the deviation between the mean, µ, standard deviation, σ, and skewness, κ, of the two 

distributions 

 𝐹𝐹𝑠𝑠 = (𝜇𝜇𝑒𝑒−𝜇𝜇𝑚𝑚)2

𝜇𝜇𝑒𝑒2
+ (𝜎𝜎𝑒𝑒−𝜎𝜎𝑚𝑚)2

𝜎𝜎𝑒𝑒2
+ (𝜅𝜅𝑒𝑒−𝜅𝜅𝑚𝑚)2

𝜅𝜅𝑒𝑒2
 (13) 

where the subscripts e and m refer to the values from experiment and the model, respectively. 

The weights for each term in Equation (4) are necessary to ensure the four terms are all of the same 

order. As the scale of each term varies during the simulation, the weights are varied during the 

simulation [16]. This was done by multiplying each weight by 𝛼𝛼 ≥ 1 or 𝛽𝛽 ≤ 1 every N steps if their 

associated sub-functional was above or below the average of all the sub-functionals, respectively. 

Experimentation indicated that the scale of the sub-functionals could change relative to each other 

by up to 10% over 1000 MC steps and, thus, for the work reported here 𝑁𝑁 = 1000 was used with 

𝛼𝛼 = 1.1 and 𝛽𝛽 = 0.9. 

3. Application of the new method  

The new approach was applied to models of µPBs constructed using the approach outlined in Part 

A. The materials were also essentially the same as in Part A except, as specified in Table 1, a wider 

range of particle and channel sizes were used to give a total of eight different bed-to-particle 

diameter ratios. The PSD for the 30.5 µm sized particles, which was determined using a Mastersizer 

2000 (Malvern, UK) fitted with a Hydro 2000MU dispersion unit, is shown by way of example in 

Figure 1 with its standard deviation and skewness. 

Table 1. Characteristics dimensions of the µPBs considered in the study reported here 
Micro-capillary size*, D (µm) Average particle diameter†, 𝛿𝛿𝑝𝑝 (µm) 𝐷𝐷 𝛿𝛿𝑝𝑝⁄  

200 38.5 5.2 
200 34.5 5.8 
200 30.5 6.6 
200 26.5 7.6 
400 38.5 10.4 
400 34.5 11.6 
400 30.5 13.2 
400 26.5 15.2 

* The micro-capillary cross-sections are square and they were filled to a depth of 50 mm. 
† The standard deviation in the diameters of the soda-lime glass particles is 1.5 μm, and their sphericity 
95%. 
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Figure 2. Particle size distribution (PSD) of the particles with an average diameter of 34.5 μm. The 
standard deviation and skewness are σe = 1.51 μm and κe = −1.63, respectively. 

As in Part A, the images of the µPBs were acquired using A SkyScan1072 X-ray micro-CT system 

(SKYSCAN, Belgium). The reader is referred to Part A for the methodological details of the image 

acquisition. 

4. Results and Discussion 

Overview of initial interpretation of X-ray microtomography images of µPBs 

Figure 3 shows examples of cross-sectional images from the eight different µPBs considered in the 

study reported here; see Figure 1(a) for how to interpret these greyscale images. These illustrate the 

challenges faced in imaging the particles and pore space. In particular, the degree to which one can 

discern the spherical geometry diminishes rapidly as the particle size decreases much below the 

largest within the smallest micro-channel (i.e. for𝐷𝐷 𝛿𝛿𝑝𝑝⁄  > 5.8), and the boundary between the solid 

and void phases is not easily discerned. 

By way of example, the transformation between Figure 4(a) and Figure 4(b) illustrates the outcome 

of application of the approach detailed in Part A to one of the cross-sectional images in the 

𝐷𝐷 𝛿𝛿𝑝𝑝⁄ =5.2 µPB. As the circles with the red outlines highlight, some of the circular cross-sections 

extracted using the method of Part A lead to particle-particle and particle-wall overlaps. These can 

be removed by application of the methodology detailed in Section 2 above. 
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(a) (b) (c) (d) 

    
(e) (f) (g) (h) 

Figure 3. Example X-ray microtomography images of cross-sections of µPBs for bed-to-particle 
diameter ratios, 𝐷𝐷 𝛿𝛿𝑝𝑝⁄ , equal to (see Table 1 for more details): (a) 5.2; (b) 5.8; (c) 6.6; (d) 7.6; (e) 

10.4; (f) 11.6; (g) 13.2; and (h) 15.2. 

   
(a) (b) (c) 

Figure 4. Example cross sections from key stages in the model construction: (a) a close-up of an X-
ray microtomography image of a cross-section through the 𝐷𝐷 𝛿𝛿𝑝𝑝⁄ = 5.2 µPB; (b) the particle cross-
sections identified through application of the methodology in Part A to the X-ray image, with the 
particles that are overlapping either each other or the walls shown with red outlines; and (c) the 
particle cross-sections shown in part (b) after application of the RMC-SA algorithm described 

herein to eliminate overlaps and obtain a PSD that is in line with the experimental one. 

Structural change during an RMC-SA simulation 

Figure 5(a) shows a typical variation of the objective function in Equation 4; the corresponding 

changes in the four parts that make up this objective function (not shown) are similar to what is 

seen here for the overall functional. The simulation in this example continued for approximately 

1.3M steps before the objective function ceased to change. The values of the objective functions 
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typically dropped to between 1-10% of the initial value, indicating the ability of the approach to 

substantially eliminate overlaps and bring about a particle size distribution that matches the 

experimental one. These changes are illustrated in the transformation between Figure 4(b) and 

Figure 4(c), and in the shift in the character of the PSD as shown in Figure 5(b). The latter figure 

clearly shows that the PSD of the model broadens over the course of the simulation from its initial 

non-disperse character (black bar) to that seen experimentally (dotted bars vs. broken line). 

 
(a) 

 
(b) 

Figure 5. Variation of key structure-related metrics during a typical RMC-SA simulation: (a) 
objective function, F, (each point is an average over 100 steps); and (b) PSD (note the initial 

distribution is a single bar centred at 34.5 µm). 
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Qualitative analysis of packing structure in µPBs 

Figure 6 shows a typical 3D model obtained from the application of the RMC-SA algorithm. The 

random nature of the packing is revealed in the various close-ups of the packing, particularly that 

shown in part (c). Part (e) of this figure shows the porosity is far more open near the bed wall, as 

anticipated. Interestingly, this part of the figure also shows that the model includes some particles 

that have no contacts with surrounding particles when located near the wall. Whilst this may reflect 

the RMC-SA algorithm is not entirely effective in removing non-physical occurrences, they were 

largely observed to occur near the wall, suggesting that surface forces between the particles and the 

capillary wall may be playing a role, something that has been observed in other systems, including 

micro-channels [17], porous media [18] and micro-fluidized beds that fail to fluidize due to the 

surface forces being more significant than the prevailing hydrodynamic forces [19, 20]. Comparison 

between the starting model (i.e. that obtained from the algorithm detailed in Part A) and that 

obtained after application of RMC-SA indicated more than 94% of the particle overlaps were 

eliminated. Of the few remaining, an example of which is seen in Figure 6(g), the degree of overlap 

was generally less than 1% (i.e. 𝐷𝐷𝑖𝑖𝑖𝑖 𝛿𝛿𝑖𝑖𝑖𝑖⁄ < 1%). Inspection of these defects in the model always 

revealed a situation where particle size and position adjustment would not remove the problem 

without compromising the functional, perhaps indicating that inclusion of non-spherical character 

may be of benefit (the sphericity of the particles was high, but not perfectly so).  

Quantitative analysis of porosity in µPBs 

Figure 7 shows the variation of the µPB porosity, determined via Monte Carlo integration on the 

reconstructed structures as described in Part A, with the bed-to-particle diameter ratio, in addition to 

data drawn from the literature and the value obtained via direct measurement for the 𝐷𝐷 𝛿𝛿𝑝𝑝⁄ = 6.6 

µPB (see Part A for details of this measurement). The first thing to note is the porosity obtained 

from the reconstructed structure of the 𝐷𝐷 𝛿𝛿𝑝𝑝⁄ = 6.6 µPB, 53.6 ± 1.4%, is statistically the same as 

that determined directly, 52 ± 2%. This represents a further improvement on estimating the porosity 

compared to what was already a significant improvement gained in Part A, providing further 

reassurance that the model structures obtained using the algorithm described here are representative 

of the actual. 
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Figure 6. A model of the 𝐷𝐷 𝛿𝛿𝑝𝑝⁄ = 5.2 µPB shown from various perspectives: (a) complete bed; (b) 
a zoom on top third; (c) further zoom on top region of the bed to illustrate its random structure; (d) 
zoom on middle third; (e) further zoom on middle region of the bed to show the packing structure 

near the wall; (f) zoom on bottom third of the bed; and (g) further zoom on bottom region of the bed 
to show two particles that are still overlapping to some extent. 
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Figure 7(a) shows that the porosity of µPCs essentially decreases monotonically with bed-to-

particle diameter ratio. This behaviour reflects the decreasing influence of the confining walls on 

the packing structure on a volumetric basis as suggested by the particle density maps shown in the 

Figure 8, which were derived by averaging the grey scale images obtained along the length of the 

µPB. The particles adjacent to the capillary walls are well ordered in all the µPBs, whilst the same 

can be said for the ring of particles sitting immediately adjacent to these outermost particles, 

although the ordering tends to diminish as the bed-to-particle diameter ratio increases. The particles 

within the two outer rings are well ordered for the three smaller beds, whilst little order exists for 

the larger µPBs.  

This decreasing trend in Figure 7(a) is not dissimilar to that seen by De Klerk [21] for a macroscale 

PB of circular cross section. The overall porosities are higher here, however, due at least in part to 

the inaccessibility of the corners of the square cross-section of our µPBs as indicated by the broken 

line in Figure 7(b), which shows the porosity is near-unity for a distance of up to ~25% of the 

average particle diameter from the corner. Another potential origin of the differences seen between 

the two data sets is the sedimentation method used to create the µPBs here, which is likely to result 

in a much looser packing compared to that obtained in macroscale beds where gravity effects are 

proportionately more significant and tapping is more effective. 

Figure 7(b) shows an example of the porosity variation normal to the walls; data for all the other 

beds are shown in the SI. This indicates that the local porosity varies in a damped-oscillatory 

manner for up to around three particle diameters into the bed before stabilising to a near-constant 

value. Following De Klerk [21], this variation may be described by

 𝜙𝜙(𝛿𝛿𝑝𝑝����) = 𝑎𝑎 + 𝑏𝑏𝑏𝑏𝛿𝛿𝑝𝑝(−𝑐𝑐𝛿𝛿𝑝𝑝����) cos�𝛿𝛿𝑑𝑑(𝛿𝛿𝑝𝑝���� − 𝑏𝑏)� + 𝑓𝑓𝑏𝑏𝛿𝛿𝑝𝑝(−𝑔𝑔𝛿𝛿𝑝𝑝����) (14) 

where 𝛿𝛿𝑝𝑝���� = 𝛿𝛿𝑝𝑝 𝛿𝛿𝑝𝑝���⁄  is the distance normal to the inner surface of the channel wall normalised by 

the average particle diameter, and a to g are constants whose values are given for the different bed-

to-particle diameter ratios investigated here in Table S1 of the Supplementary Information. 
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(a) 

 
(b) 

Figure 7. Porosity character of µPBs as derived from the models: (a) variation of porosity with the 
bed-to-particle diameter ratio (circles), and the direct measurement as described in Part A for the 
𝐷𝐷 𝛿𝛿𝑝𝑝⁄ = 6.6 µPB (open square) and data obtained by De Klerk [21] for a macroscale packed beds 

of cylindrical cross-section (diamonds); and (b) example variation of porosity with normal distance 
from the wall (solid line) and diagonal distance from the corner (broken line) for 𝐷𝐷 𝛿𝛿𝑝𝑝⁄ =7.54 

(similar data for all the other µPBs are provided in the SI). The lines are a guide for the eye only. 
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(a) (b) (c) (d) 

    
(e) (f) (g) (h) 

Figure 8. Solid density maps obtained by averaging over the X-ray microtomography images along 

the length of the µPBs for 𝐷𝐷 𝛿𝛿𝑝𝑝⁄  equal to: (a) 5.2; (b) 5.8; (c) 6.6; (d) 7.5; (e) 10.4; (f) 11.6; (g) 13.1 

and (h) 15.1. 

The contacts between particles in a packed bed can be joined to form a network [22]. These 

networks are characterised by a mean coordination number, 𝑍𝑍, which represents the average number 

of contacts experienced by the particles in the bed. Figure 9(a) shows that this coordination number 

increases with the bed-to-particle diameter ratio in an initially non-linear manner up to a diameter 

ratio of around 8 before it continues to rise in what appears to be a linear manner. The mean 

coordination number of the µPBs whose diameter ratio exceeds around 10 take on values 

commensurate with those associated with random packings of monodisperse spheres, which fall 

between 5.5 for ‘loose packings’ through to around 6.5 for ‘close packings’ [23]. It is not clear from 

the data available here if the mean coordination number will pass beyond this limit, but this may 

well occur due to the dispersity in the particle size. 

This increasing trend with bed-to-particle diameter ratio can be understood by considering Figure 

9(b), which shows the variation of the local mean coordination number with normal distance from 

the wall for the various µPBs considered here along with the fit to the following functional form,  

 �̅�𝑍(𝛿𝛿𝑝𝑝����) = 𝐴𝐴𝑏𝑏𝛿𝛿𝑝𝑝(−𝐵𝐵𝛿𝛿𝑝𝑝����) + 𝐶𝐶  (15) 

where A, B and C are constants whose values are given for the different bed-to-particle diameter 

ratios investigated here in Table S2 in the Supplementary Information. Clearly the mean 
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coordination number increases from a minimum at the wall – as expected due to the presence of the 

wall on the outside of the outermost layer of particles – until it reaches a plateau in the bulk of the 

bed. Thus, the increasing trend seen in Figure 9(a) in part has its origins in the increasing influence 

the bulk of the bed has on the mean coordination number as the bed size increases relative to the 

particle size. The change-down in the slope seen at 𝐷𝐷 𝛿𝛿𝑝𝑝⁄ ≈ 6 reflects the plateau in the local 

coordination number occurs at 𝛿𝛿𝑝𝑝 𝛿𝛿𝑝𝑝���⁄ > 3. Figure 9(b) also reveals that the mean coordination 

number at a given normalised distance from the wall also increases with bed-to-particle diameter 

ratio. This clearly suggests that there is a second origin of the increasing trend see in Figure 9(a) 

beyond the volumetric one. As the values of the local mean coordination number in the bulk of the 

bed appear to fall between the ‘loose packing’ and ‘close packing’ limits, this suggests the degree of 

packing achieved in the beds investigated here increases with the bed-to-particle diameter ratio. 

  
(a) 

3.5

4

4.5

5

5.5

6

6.5

4 6 8 10 12 14 16

M
ea

n 
co

or
di

na
tio

n 
nu

m
be

r,
̅Z̅

(-)
 

Bed-to-particle diameter ratio, D/ ̅d̅p (-)



16 

 
(b) 

Figure 9. Coordination number variation with: (a) bed-to-particle diameter ratio; and (b) 
normalized distance from the bed wall for 𝐷𝐷 𝛿𝛿𝑝𝑝⁄ =5.2 (open diamonds); 5.8 (solid triangles); 6.6 

(open squares); 7.5 (solid circles); 10.4 (solid diamonds); 11.6 (open triangles); 13.1 (solid squares) 
and 15.1 (open circles). The lines are a best fit as per the functional form in Equation (15). 

5. Conclusions 

In Part A [11], we reported a new method that derives models of micro-packed beds (µPBs) of near-

spherical particles from X-ray microtomography grayscale images of limited resolution compared 

to the characteristics dimensions of the particles and porosity. The new method is distinguished by 

it not requiring a grayscale threshold to partition the images into solid and void phases, and its 

retention of the underlying spherical geometry, two issues that are particularly problematic when 

more traditional approaches are used to build models of µPBs.  Whilst the models obtained from the 

new method provide a far better basis for estimating the porosity of µPBs, they contain defects in 

the form of particles that overlap each other and the bed wall, and which do not contact any other 

sphere (‘suspended particles’). It is shown here that a reverse Monte Carlo (RMC) algorithm 

combined with simulated annealing (SA) can eliminate these defects by addressing the two major 

issues in the approach taken in Part A: (1) shifting from a single particle size (equal to the mean) to 

the experimentally identified particle size distribution; and (2) refining the particle positions within 

constraints defined by the uncertainty in their initial determination.  

A µPB model obtained via application of RMC-SA to an initial model built using the approach in 

Part A yielded a porosity that was consistent with its directly determined counterpart. This approach 
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also yielded a variation of porosity with bed-to-particle diameter ratio that was consistent with this 

experimental data and, allowing for different bed cross-sections (square vs. circular) data published 

elsewhere. The porosity was found to be near unity at the wall of the µPBs and to vary in an 

oscillatory manner normal to it for up to three particle diameters into the bed. The mean 

coordination number was also found to vary over the same distance from the bed wall where it was 

a minimum. The values of the mean coordination number in the bulk of the bed fell between that 

associated with ‘loose random packings’, which occurred for the bed of the smallest bed-to-particle 

diameter ratio, to ‘close packings’ in the largest beds relative to the particles. These observations 

suggest there are two origins for the variation in the mean coordination number with bed-to-particle 

size ratio: a volumetric one in which the bulk value exerts increasing influence as the ratio 

increases, and the degree of packing, where this too increases with the size ratio. 
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Nomenclature 

Latin letters 

a  Coefficient of correlation describing the variation of porosity of µPB with normal 
distance from the wall (Equation 14) [dimensionless] 

A  Coefficient of correlation describing the variation of local mean coordination number 
with normal distance from the wall (Equation 15) [dimensionless] 

b  Coefficient of correlation describing the variation of porosity of µPB with normal 
distance from the wall (Equation 14) [dimensionless] 

B  Coefficient of correlation describing the variation of local mean coordination number 
with normal distance from the wall (Equation 15) [dimensionless] 

c  Coefficient of correlation describing the variation of porosity of µPB with normal 
distance from the wall (Equation 14) [dimensionless] 

C  Coefficient of correlation describing the variation of local mean coordination number 
with normal distance from the wall (Equation 15) [dimensionless] 

d  Coefficient of correlation describing the variation of porosity of µPB with normal 
distance from the wall (Equation 14) [dimensionless] 

𝛿𝛿𝑖𝑖  Radius of particle i 
𝛿𝛿𝑖𝑖𝑖𝑖  Minimum distance between particles that may exist in a µPB [m] 
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𝛿𝛿𝑖𝑖𝑝𝑝  Minimum distance between the particle and wall in the absence of an overlap that may 
exist in a µPB [m] 

dp  Particle size [m] 
𝛿𝛿𝑝𝑝  Average particle diameter [m] 
D  Micro-capillary size [m] 
𝐷𝐷𝑖𝑖𝑖𝑖  Overlap between particle i and particle j [m] 
𝐷𝐷𝑖𝑖𝑝𝑝  Overlap between particle i and wall of bed [m] 

𝐷𝐷𝑖𝑖0  
Amount the displacement of the particle from its initial position exceeds the uncertainty 
associated with the initial centroid position of the particle i [m] 

𝐷𝐷 𝛿𝛿𝑝𝑝⁄   Bed-to-particle diameter ratio [dimensionless] 

e  
Coefficient of correlation describing the variation of porosity of µPB with normal 
distance from the wall (Equation 14) [dimensionless] 

f  
Coefficient of correlation describing the variation of porosity of µPB with normal 
distance from the wall (Equation 14) [dimensionless] 

F  Objective function [dimensionless] 

g  Coefficient of correlation describing the variation of porosity of µPB with normal 
distance from the wall (Equation 14) [dimensionless] 

𝐧𝐧�𝑝𝑝  Unit normal to the wall-w [dimensionless] 
P   Probability [dimensionless] 
pw  Distance from the origin [dimensionless] 
T  Temperature [K] 
W  Associated weight to the sub-functions [dimensionless] 
𝐱𝐱  Distance vector defining the centroids of a particle relative to an origin [m] 

xi0  Position of the particle in the initial 3D structure obtained from the method described in 
Part A [m] 

xw  Distance from the wall/corner of µPB [m]  
𝛿𝛿𝑝𝑝����  Normalized distance from the wall/corner of µPB [dimensionless] 

𝑍𝑍(𝛿𝛿𝑝𝑝)  Local mean coordination number [dimensionless] 
𝑍𝑍  Mean coordination number [dimensionless] 
   

Greek letters 
α   Weight parameter [dimensionless] 
β  Weight parameter [dimensionless] 

ξ  
Corresponding random parameter to the changing the size of the particle, selected in a 
uniform way from the range [0,1) [dimensionless] 

ξα  Corresponding random parameter to the displacing the position of the sphere, selected in 
a uniform way from the range [0,1) [dimensionless] 

δ  Dirac delta function [dimensionless] 
δd  Amount of change in the size of particle [m] 

δdmax  Maximum possible change allowed in the diameter of particle [m] 
𝛿𝛿𝛿𝛿𝛼𝛼  Amount of displacement in the position of the sphere in the α-coordinate directions [m] 

𝛿𝛿𝛿𝛿𝛼𝛼,𝑚𝑚𝑚𝑚𝑚𝑚  Maximum possible displacement allowed in the α-coordinate direction [m] 
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σ  Standard deviation [m] 

σi  Standard deviation associated with the position of the particle in the initial 3D structure 
obtained from the method described in Part A [m] 

𝜙𝜙  Local porosity [%] 
µ  Mean [m] 
κ  Skewness [dimensionless] 
∆𝐹𝐹  Change in objective function [dimensionless] 

   
Subscripts 

e  Refer to the values from experiment 
m  Refer to the values from model 
𝑝𝑝𝑝𝑝  Particle-particle 
𝑝𝑝𝑝𝑝  Particle-wall 
𝑝𝑝  Particle centroids 
𝑠𝑠  Size distribution of particle 

i, j  SPH particle index 
   

Abbreviations 
PSD  Particle Size Distribution 
RMC  Reverse Monte Carlo 
SA  Simulated Annealing 

SPH  Smoothed Particle Hydrodynamics 
µPB  Micro-packed bed 

µTAS  Micro Total-Analysis-System 
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(c) 
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(h) 

Figure S1. Variation of local porosity with normal distance from the wall, derived from the models 

(open circles) and functional form of Equation 14 (solid line), for bed-to-particle diameter ratio of: 

(a) 5.2; (b) 5.8; (c) 6.6; (d) 7.5; (e) 10.4; (f) 11.6; (g) 13.1 and (h) 15.1. 
 

Table S1. Coefficients of correlation in Equation (14), which describes the variation of porosity 
with normal distance from the wall of µPBs of different bed-to-particle size ratios, 𝐷𝐷 𝛿𝛿𝑝𝑝⁄  

𝐷𝐷 𝛿𝛿𝑝𝑝⁄  a b c d E f g R2 RMSE 
5.2 0.5982 -0.231 0.470 2.170 0.604 0.285 13.230 0.917 0.035 
5.8 0.560 -0.255 0.450 2.260 0.628 0.379 11.420 0.959 0.026 
6.6 0.512 -0.273 0.472 2.290 0.612 0.418 10.200 0.980 0.019 
7.5 0.492 -0.280 0.503 2.252 0.586 0.369 10.060 0.976 0.021 
10.4 0.451 -0.302 0.703 2.302 0.592 0.423 7.370 0.996 0.010 
11.6 0.425 -0.289 0.940 2.250 0.540 0.356 12.520 0.994 0.010 
13.1 0.425 -0.384 0.952 2.133 0.523 0.218 18.410 0.994 0.012 
15.1 0.386 -0.422 1.160 2.009 0.501 0.178 1.737 0.992 0.015 

 

Table S2. Constants of the correlation in Equation (15), which describes the variation of the local 
mean coordination number with normal distance from the wall of µPBs of different bed-to-particle 

size ratios, 𝐷𝐷 𝛿𝛿𝑝𝑝⁄ . 
𝐷𝐷 𝛿𝛿𝑝𝑝⁄  A B C R2 RMSE 

5.2 -1.719 1.034 4.608 1.000 - 
5.8 -1.715 0.720 5.155 1.000 - 
6.6 -1.982 0.396 5.984 0.994 0.061 
7.5 -1.892 0.475 5.959 0.997 0.048 
10.4 -1.655 0.680 5.979 0.998 0.024 
11.6 -1.611 0.852 6.134 0.997 0.029 
13.1 -1.595 0.977 6.216 0.998 0.022 
15.1 -1.707 1.100 6.372 0.994 0.038 
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