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 Graph theory is used to assemble matrices in adaptations of Kirchhoff's 7 

equations.  8 

 Those matrices, when transposed, are used again in virtual power 9 
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 25 publications are cited that make use of these equations.  11 
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A network approach to mechanisms 1 

and machines: some lessons learned  2 

(An abbreviated title of fewer than 40 characters, including 3 

spaces: A network approach to MMT) 4 

T.H.Davies1, Wolfson School of Manufacturing and Mechanical Engineering, 5 

Loughborough University, Loughborough, Leicestershire, UK, LE11 3TU 6 

Abstract 7 

This is essentially a review paper describing progress made in treating 8 

mechanisms and machines as networks. Some of the terminology that is helpful 9 

to this approach is explained. Relevant elements of graph theory are mentioned. 10 

The original aim was to find a robust procedure for finding the instantaneous 11 

relative motion of all pairs of bodies within a kinematic chain. The manner in 12 

which this was achieved produced several other results that have found 13 

unanticipated applications. These are mentioned and publications are cited. 14 

Lessons have been learned and these are discussed in Section 11. 15 

Keywords: 16 

circuit; constraint; cutset; freedom; graph; screw 17 

1. Introduction 18 

 19 

The author is glad of this opportunity to thank Erskine Crossley for his many acts 20 

of kindness and generosity and to join with others to pay tribute to the work he 21 

has done for IFToMM and as editor of the Journal of Mechanisms, the forerunner 22 

of this journal. In particular, the author can bear witness to the many 23 

contributions Erskine Crossley made to good international relations. But this is a 24 

technical paper and so it is appropriate to explain the stimulus Erskine Crossley 25 

provided that led to research interests of the author.  26 

Erskine Crossley was the first to mention graph theory in the author’s presence. 27 

Graph theory [1] [2] is a branch of topology concerned with the interconnections 28 

within a network of objects. Graph theory has found many applications; most 29 

relevant to this paper are applications in electrical network theory, more 30 

frequently called electrical circuit theory.  31 
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Mechanism and machines can be thought of as coupling networks. Waldron [3] 32 

provides rules that apply to couplings arranged in series and in parallel. Like 33 

electrical networks, indirect couplings containing cross bracing pose special 34 

problems [4]. Baker [5] proposed a simple example that has subsequently proved 35 

well-suited as a demonstration for theories that have followed. One solution [6] 36 

required the adaptation of Kirchhoff’s voltage law. Subsequent work [7] [8]2 [9] 37 

[10] [11] [12] has led to the adaptation of Kirchhoff's current law as well, and two 38 

virtual power equations that use matrices that are identical to those needed for 39 

the adaptations of Kirchhoff's laws except for being transposed. All four 40 

equations are reproduced in this paper; the adaptations of Kirchhoff's laws 41 

equations (1,2) in section 7.2 and the virtual power equations (3,4) in section 8.2. 42 

Several applications have been found for the equations [13] [14] [15] [16] [17] 43 

[18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [31]; further details are 44 

provided in section 10. 45 

Nomenclature 46 

a the rank of the network unit action matrix  
CdkN ,

Â  47 

bij  the element in row i, column j, of circuit matrix [BM]l,F  48 
c  degree of constraint of a direct coupling 49 
cij  degree of constraint of bodies i and j of a coupling network 50 
C  gross degree of constraint of a coupling network, Σc 51 
CN  nett degree of constraint of a coupling network 52 
d  minimum order of the screw system, 1 ≤ d ≤ 6 53 
e  number of couplings in a coupling network and edges of coupling graph GC 54 
f  gross degree of freedom of a direct coupling 55 
fij  degree of freedom of bodies i and j of a coupling network 56 
F  gross degree of freedom of a coupling network, Σf 57 
FN  nett degree of freedom of a coupling network 58 
k  number of independent cutsets of a graph 59 
l  number of independent circuits (loops) of a graph 60 

m  the rank of the network unit motion matrix  
FdlN ,

M̂  61 

n  number of bodies in a coupling network and nodes of coupling graph GC 62 
qij  the element in row i, column j, of cutset matrix [QA]k,C 63 
{r, s, t; u, v, w} motion screw components in ray-coordinates 64 
{R, S, T; U, V, W} action screw components in axis-coordinates 65 
 66 
Vectors 67 
[Al]dl dl action components for all l circuits 68 
[Mk]dk dk motion components for all k cutsets 69 

 C  magnitudes of C action screws 70 

 F  magnitudes of F motion screws 71 

 72 
 73 
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Matrices 74 

 
CdD ,

Â  unit action matrix of the direct couplings of a coupling network 75 

 
CdkN ,

Â  network unit action matrix of a coupling network N 76 

[Bi]F,F diagonal matrices with diagonal elements corresponding to row i of 77 
[BM]l,F; in practice identification is by the circuit label, e. g. [Bb]F,F for 78 
circuit b. 79 

[BM]l,F  circuit matrix of motion graph GM 80 

 
FdD ,

M̂  unit motion matrix of the direct couplings of a coupling network 81 

 
FdlN ,

M̂  network unit motion matrix of a coupling network N 82 

[Qi]C,C diagonal matrices with diagonal elements corresponding to row i of 83 
[QA]k,C; in practice, identification is by the cutset label, e. g. [Qa]C,C for 84 
cutset a. 85 

[QA]k,C  cutset matrix of action graph GA 86 

2. Couplings 87 

 88 

Central to the network approach described in this paper is the coupling. This 89 

term is applied to any means by which an action can be transmitted between two 90 

bodies that are sufficiently stiff to be regarded as rigid. Furthermore, a coupling 91 

must be capable of being disassembled without resort to cutting. This means that 92 

welded and riveted joints are not regarded as couplings, nor are joints formed by 93 

adhesion. Action is a term that is sometimes used [11] [12] [32] as shorthand for 94 

a wrench on a screw of any pitch, including a pitch that is zero, namely a force, 95 

and a pitch that is infinite, namely a torque. The coupling could be either di rect, 96 

indirect or a hybrid comprising direct and indirect couplings in parallel. Except 97 

where it is necessary to make a distinction, all couplings mentioned are direct 98 

couplings. The term coupling is chosen as the name of a superset comprising 99 

passive and active couplings, the latter providing sinks or sources of power. 100 

Examples of couplings of both kinds have been listed [10]. Important subclasses 101 

of passive couplings mentioned in this paper are contact couplings, often 102 

referred to as kinematic pairs, and elastic couplings.  103 

As well as the capability of transmitting an action, many couplings also permit 104 

relative motion of the bodies they couple. Motion is a term sometimes used [11] 105 

[12] [32] as shorthand for the first time derivative of displacement, geometrically 106 

described as a twist rate on the screw of any pitch, including a pitch that is zero, 107 

namely an angular velocity, and the pitch that is infinite namely translational 108 

velocity. A coupling is characterised by two screw systems [33], a c-system of 109 

actions that can be transmitted and an f-system of motions that can be allowed, 110 

and: 111 

c + f = d, 112 



where c and f are often referred to as the degrees of constraint and freedom of 113 

the coupling. The sum d could be said to be the dimension of the problem, 114 

having normally a maximum value of six. Simplification results from disregarding 115 

some of the actions couplings are capable of transmitting and then d will be less 116 

than six. Examples are to be found in section 10. 117 

The action and motion screws systems of couplings are said to be reciprocal to 118 

one another because a screw of one system cannot expend power in conjunction 119 

with any of the screws of the other system. Note the use of the term power rather 120 

than work. The term work would be appropriate if motion is interpreted as 121 

infinitesimal displacements, as Ball [34] does. Here, and elsewhere [11] [12] [33] 122 

[35], the choice is made to divide all infinitesimal displacements by an 123 

infinitesimal time interval. Both approaches are equally valid. 124 

3. Coupling networks 125 

 126 

The following definition of the coupling network is expressed in terms that have 127 

similarities with the definition of a graph that appears later. A coupling network N 128 

consists of a non-empty finite set of bodies and a finite set of couplings linking 129 

pairs of those bodies. At least one path exists from each body of N to every other 130 

body of N, through couplings and other bodies of N. In other words, to borrow a 131 

term from graph theory, a coupling network is connected, that is to say, in one 132 

piece, rather than disconnected, in two or more parts. 133 

 134 

Figure. 1 A spatial kinematic chain  135 



A coupling network has a characteristic gross degree of freedom F = Σf and a 136 

characteristic gross degree of constraint C = Σc, where the summations are over 137 

all couplings. Coupling networks have another pair of characteristics of greater 138 

importance: these are the nett degree of freedom FN and the nett degree of 139 

constraint CN where, 0 ≤ FN ≤ F and 0 ≤ CN ≤ C. The nett degree of freedom FN 140 

has been called M, the degree of mobility, but mobility has another meaning [36]. 141 

It is also the “complex velocity response at a point in a linear system to a unit 142 

force excitation applied at the same point or another point in the system (inverse 143 

of mechanical impedance)”. Coupling networks for which FN = 0 are immobile 144 

structures that will not concern us here. Most structures are welded, riveted or 145 

made integral by adhesive so, owing to the restrictions placed on the meaning of 146 

a coupling, relatively few structures are coupling networks. 147 

In the 1960s formulae were available for finding FN, but they did not always work. 148 

One associated difficulty lead to a breakthrough. It had been identified [4] that 149 

finding the degree of freedom fij of two indirectly coupled bodies i and j is difficult 150 

if cross bracing exists. The task was to devise a general robust procedure that 151 

determines fij for any pair of bodies. Fig. 1 shows coupling network N that is a 152 

spatial kinematic chain, devised by Baker [5], and used since [6] [12] [32] as a 153 

test bed for some of the research cited in this paper.  154 

Note for the publishers. 155 

For the on-line version a supplementary video based on Figure 1 is submitted 156 

with this manuscript. The title is "Davies video". This is a suitable point in the 157 

manuscript to draw the reader's attention to it. 158 

The kinematic chain is artificially contrived so that the elements of all matrices 159 

associated with it are 0, -1 or +1. Note that, for bodies two and three, the planar 160 

(ebene) coupling labelled C provides cross coupling. This is more evident in the 161 

coupling graph Fig. 2. One solution requires an adaptation of Kirchhoff’s 162 

circulation law for mechanical problems. This approach resulted in a formula for 163 

FN. Later, the problem of finding a formula for CN was also achieved. Progress 164 

towards those two goals is explained in tandem wherever appropriate. 165 

4. Kinematic chains, mechanisms and machines 166 

 167 

The term kinematic chain is often applied to coupling networks for which FN ˃ 0. 168 

In introductory texts on Mechanisms and Machines it is frequently found that a 169 

mechanism is described as a kinematic chain for which a "fixed member" has 170 

been selected. Once a fixed member has been chosen, all other choices of fixed 171 

member are often referred to as inversions of that mechanism. 172 



This approach places an unnecessary emphasis on the identification of a "fixed 173 

member", yet says nothing about connections that must be made from the 174 

kinematic chain to active couplings in order that useful power can flow. 175 

Arguments have been given [10] in favour of a definition of mechanism in terms 176 

of content, rather than usage. The approach involving content requires the 177 

identification of bodies of the kinematic chain as terminal bodies [37], pairs of 178 

which are called ports. The terminals of a port are a pair of bodies of the 179 

kinematic chain that are intended to be made integral with terminal bodies of 180 

another coupling or network. If only one port is identified the kinematic chain is 181 

an example of a 1-port device, in other words the kinematic chain creates an 182 

indirect coupling between the two terminal bodies of the port. 183 

A mechanism is a kinematic chain with two or more ports. In this context a port 184 

could be defined as a pair of terminal bodies through which power can be 185 

transmitted to or from a port of another network. The following are two examples 186 

of definitions of a port. “A pair of terminals at which a signal may enter or leave a 187 

network is called a port." [38]; “A terminal pair to which an input is applied or 188 

from which an output is extracted is called a port.” [39]. For a mechanism, the 189 

term "signal" is inappropriate and "an input … an output" is unnecessarily vague.  190 

Many mechanisms have only one input port and only one output port; 191 

mechanisms with several input ports are likely to be classified as manipulators; 192 

mechanisms with more than one output port are rare, the crank-driven needle 193 

and awl mechanism of a shoe welt sewing machine is one example [40]. Two or 194 

more ports may have one terminal body in common. This is often so when the 195 

common body is the one that is called the fixed member or frame. 196 

A machine is a mechanism with all ports connected to active couplings or to the 197 

ports of indirect couplings that contain active couplings. Such indirect couplings 198 

may also contain passive couplings; for example an electrical motor has its own 199 

bearings. If the active coupling is a source of power these indirect couplings are 200 

often called actuators. 201 

In order to adapt Kirchhoff's laws to coupling networks it is necessary to involve 202 

graph theory, the subject of the next section. 203 

5. Directed graphs 204 

 205 

A simple description of a graph is that it is a set of nodes (points or vertices), 206 

some or all pairs of which are connected by lines called edges. We will be 207 

concerned only with directed graphs, also called digraphs, within which all edges 208 

have an arrowhead thereby making the two nodes incident with each edge an 209 

ordered pair. A formal definition now follows. 210 



A directed graph G consists of a non-empty finite set V(G) of elements called 211 

nodes (or vertices) and a finite family E(G) of ordered pairs of elements of V(G) 212 

called directed edges. The term "family" is used here, as in [2], to accommodate 213 

graphs within which multiple edges terminate in the same pair of nodes. We will 214 

not be concerned with graphs containing edges that terminate in the same node; 215 

such an edge is called a loop. The definition of coupling networks provided 216 

earlier is modelled on this definition of graphs. This is made possible by 217 

incorporating jointed structures for which FN = 0 within coupling networks.  218 

There are several useful terms used in graph theory. Within a graph, a walk is a 219 

finite sequence of edges. If all edges are distinct the walk is called a trail. If, in 220 

addition, the vertices are distinct, except possibly for the first and last, then the 221 

trail is a path. A trail is said to be closed if the first and last vertices are the 222 

same. A closed path is a cycle or circuit.  223 

A graph is connected if and only if there is a path between each pair of vertices. 224 

A disconnecting set in a connected graph G is a set of edges whose removal 225 

disconnects G. A cutset is a disconnecting set, no proper subset of which is a 226 

disconnecting set. The removal of the edges in a cutset always leaves a graph 227 

with exactly two components. A connected graph with no circuits is a tree each 228 

edge of which is called a branch the only member of a cutset. A spanning tree is 229 

a connected subgraph that contains all the nodes of a graph, but no circuit. The 230 

edges not included in the spanning tree are called chords and the addition of any 231 

chord creates a circuit. Associated with each chord is a fundamental circuit, 232 

associated with each branch is a fundamental cutset.  233 

6. Coupling graphs, motion graphs and action graphs 234 

 235 

A coupling graph GC is a graph within which each of the n nodes represents a 236 

body of a coupling network N and each of the e edges represents a coupling of 237 

N. These couplings are direct couplings but some indirect couplings such as 238 

rolling contact bearings and Hooke’s coupling can be regarded as direct provided 239 

that the investigation does not concern their interior actions and motions.  240 

 241 



 242 

Figure. 2  The coupling graph GC of the kinematic chain shown in Fig. 1 243 

 244 

6.1 The coupling graph: its chords, branches, circuits and cutsets  245 

 246 

A coupling graph will be said to have l chords and l fundamental circuits; it also 247 

has k branches and k fundamental cutsets. Fig. 2 shows the coupling graph GC 248 

of the kinematic chain N shown in Fig. 1, with the arbitrarily selected spanning 249 

tree drawn with thick lines. Features of Fig.2 are now described. Here, and 250 

elsewhere in this paper, the presentation is provided in tandem where 251 

appropriate to emphasise the dual nature of the subject. 252 

The edges b and e of GC drawn with 
thin lines are the chords of the 
spanning tree. Each independent 
circuit contains one chord; all other 
edges are branches. Within these 
circuits there are arcs labelled b and e 
with arrowheads that assign a positive 
sense that can be arbitrarily chosen 
but, in this example, the choice 
corresponds with the positive sense 
assigned to the associated chords.  

The edges a, c and d of GC drawn with 
thick lines are the branches of the 
spanning tree. Each independent 
cutset contains one branch; all other 
edges are chords. Dashed lines are 
drawn through each cutset of edges. 
Arrows labelled a, c and d cutting 
these dashed lines assign a positive 
sense that can be arbitrarily chosen 
but, in this example, the choice 
corresponds with the positive sense 
assigned to the associated branches.  

 253 



 254 

 (a) (b) 255 

Figure. 3  Graphs of the kinematic chain shown in Fig. 1: 256 
a) motion graph GM; b) action graph GA 257 

 258 

6.2 Motion and action graphs 259 

 260 

From the coupling graph GC it can be helpful to create a motion graph GM and an 261 

action graph GA. For the kinematic chain shown in Fig.1 these graphs are 262 

described below. 263 

The motions allowed by a coupling 
having f degrees of freedom can be 
spanned by f independent motion 
screws. Each of these f screws can be 
represented in a motion graph GM. The 
motion graph GM is created by 
replacing each edge of GC that 
represents an f degree of freedom 
coupling by f edges in series. Fig. 3a 
shows the motion graph for the 
kinematic chain of Fig. 1.  

The actions transmitted by a coupling 
having c degrees of constraint can be 
spanned by c independent action 
screws. Each of these c screws can be 
represented in an action graph GA. The 
action graph GA is created by replacing 
every edge of GC that represents a c 
degree of constraint coupling by c 
edges in parallel. Fig. 3b shows the 
action graph for the kinematic chain of 
Fig. 1.  



The minimum number of parameters 

(independent motion magnitudes) 

necessary to provide the magnitudes of 

all motions within a coupling network is 

the nett degree of freedom FN. 

Alternatively, FN can be said to be the 

degree of overfreedom or excess 

freedom. 

For a coupling network that is a tree, 

FN = F. 

For coupling networks that contain one 

or more circuits comprised of two or 

more couplings,  

0 ≤ FN ≤ F.  

Circuits can reduce freedoms. 

The minimum number of parameters 

(independent action magnitudes) 

necessary to provide the magnitudes of 

all actions within a coupling network is 

the nett degree of constraint CN. 

Alternatively, CN can be said to be the 

degree of overconstraint or excess 

constraint. 

For a coupling network that is a tree, 

CN = 0. 

For coupling networks that contain one 

or more circuits comprised of two or 

more couplings,  

C ≥ CN ≥ 0.  

Circuits can increase constraints. 

7. Adaptations of Kirchhoff’s laws 264 

 265 

In this section matrices are needed that contain components of screws. 266 

Subscripts outside the square brackets around matrices signify the number of 267 

rows and columns respectively. A cap on a matrix signifies that the screws are 268 

normalised. The task of assembling equations is explained with the aid of the 269 

kinematic chain shown in Fig.1 and, in particular, the cylindrical coupling D 270 

having an axis through (1, 0, 0) parallel with the y-axis. 271 

A notation is used that may be unfamiliar to the reader. This notation has been 272 

used before [11,12,17,32]; it is listed in the Introduction and explained in greater 273 

detail in section 11.3. The adaptations of the laws are now presented in tandem.  274 

Kirchhoff’s voltage law, when adapted 
for coupling networks, states that for 
each of the l independent circuits, the d 
components of screws spanning the 
motion screws of couplings of a circuit 
sum to zero when measured by 
reference to the same global frame. 
Thereby, dl equations can be written 
that impose conditions on the F 
unknowns. Some of these equations 
may prove to be redundant however. 
The circuit law equation can be written 

Kirchhoff’s current law, when adapted 
for coupling networks, states that for 
each of the k independent cutsets, the 
d components of screws spanning the 
action screws of couplings of a cutset 
sum to zero when measured by 
reference to the same global frame.  
Thereby, dk equations can be written 
that impose conditions on the C 
unknowns. Some of these equations 
may prove to be redundant however. 
The cutset law equation can be written 



as: 

      dlFFdlN 0M 
,

ˆ . (1) 

as:  

      dkCCdkN 0A 
,

ˆ . (2) 

 
 275 

7.1 The vectors of unknown magnitudes 276 

 277 

The vector  F  = [ra, sa, ta, rb, sb, tb, tc, 

uc, vc, sd, vd, se, ve]
T contains F unknown 

magnitudes of motions spanning the 
motion screw systems of the couplings 
listed in the same order as they appear in 

the columns of NM̂ . For example, in the 

kinematic chain shown in Fig. 1, coupling 
D allows motions that belong to a fifth 
special 2-system of motion screws [33]. 
This system is spanned by any two 
screws of unequal pitch with ISA sharing 
the cylinder axis. Most conveniently the 
screws selected are those with zero and 
infinite pitch, namely angular velocity of 
magnitude sd about the cylinder axis, 
the (local) yd-axis, and translational 
velocity of magnitude vd in the direction 
of the y-axis. 

The vector  C  = [Ua, Va, Wa, Ub, Vb, 

Wb, Rc, Sc, Wc, Rd, Td, Ud, Wd, Re, Te, 
Ue, We]

T contains C unknown 
magnitudes of actions spanning the 
action screw systems of the couplings 
listed in the same order as they appear in 

the columns of NÂ . For example, for the 

kinematic chain shown in Fig. 1, coupling 
D transmits actions that belong to a fifth 
special 4-system of action screws [33]. 
This system is spanned by any four 
screws reciprocal with the motion 
screws. A convenient set comprises 
torques (couples) parallel to the x- and z-
axes of magnitudes Rd and Td 
respectively, together with forces along 
the x- and (local) zd-axes of magnitudes 
Ud and Wd respectively.  

 278 

7.2 The network unit motion and unit action matrices 279 

 280 

The network unit motion matrix 

 

   

   

    





















FFlFdD

FFFdD

FFFdD

FdlN

,,

,2,

,1,

,

ˆ

ˆ

ˆ

ˆ

BM

BM

BM

M


, 

where  
FdD ,

M̂ , the direct coupling unit 

motion matrix, is determined by the 
geometry and [Bi]F,F , i = 1, 2, …, l by 
the topology as represented by the 
motion graph. 

The network unit action matrix 

 

   

   

    





















CCkCd

CCCd

CCCd

CdkN

,,

,2,

,1,

,

ˆ

ˆ

ˆ

ˆ

QA

QA

QA

A

D

D

D


, 

where  
CdD ,

Â , the direct coupling unit 

action matrix, is determined by the 
geometry and [Qi]F,F , i = 1, 2, …, k by 
the topology as represented by the 
action graph. 

 281 

7.3 Direct coupling unit motion and unit action matrices 282 

 283 



 284 

7.4 The circuit matrix of GM, the cutset matrix of GA, and 285 

diagonal matrices derived from them 286 

 287 

The direct coupling unit motion matrix 

 
FdD ,

M̂  contains the d components of 

each of the F unit motion screws with 
respect to the global frame of reference 
with its origin at the centre of the 
spherical coupling A.  
 
For example, for the kinematic chain 
shown in Fig.1, the 10th and 11th 

columns of  
13,6

ˆ
DM , shown as a 

submatrix below, are the motion 
components for the f = 2 cylindrical 
coupling located at D. 





























01

10

00

00

01

00

. 

When these normalised screws are 
multiplied by the 10th and 11th 
elements of  13 , sd and vd 

respectively, the two motion screws are 
obtained of body two relative to body 
one. Note that the sixth element of the 
10th column, when multiplied by sd, is a 
velocity along the z-axis of a point on 
an imaginary extension of body two 
located at the global origin. This 
velocity results from the angular 
velocity sd about the (local) yd-axis 
recorded in the second element of the 
10th column. 

The direct coupling unit action matrix 

 
CdD ,

Â  contains the d components of 

each of the C unit action screws with 
respect to the global frame of reference 
with its origin at the centre of the 
spherical coupling A.  
 
For example, for the kinematic chain 
shown in Fig.1, the 10th to the 13th 

columns of  
17,6

ˆ
DA , shown as a 

submatrix below, are the action 
components for the c = 4 cylindrical 
coupling located at D. 































1000

0000

0100

0010

1000

0001

. 

When these normalised screws are 
multiplied by the 10th to the 13th 
elements of  17 , Rd, Td, Ud and Wd 

respectively, the four action screws are 
obtained that are exerted by body one 
on body two. Note that the second 
element of the 13th column, when 
multiplied by Wd, is the (negative) 
moment about the y-axis. This moment 
results from the force Wd along the 
(local) zd-axis recorded in the sixth 
element of the 13th column. 



The matrices [Bi]F,F , i = 1, 2, …, l are 
diagonal matrices in which the diagonal 
elements of the ith matrix are those of 
the ith row of the circuit matrix [BM]l,F of 
the motion graph GM.  
Each element bij of [BM]l,F is 0, +1, or -1: 
bij is zero if circuit i does not include edge 
j; +1 if the positive sense of circuit i is in 
the same direction as the positive sense 
of the edge j that it includes; and -1 if 
those positive senses are opposed. For 
example, for the kinematic chain shown 
in Fig.1, the columns 10 and 11 of 
[BM]2,13 are: 

[
  
  

]  

 
The first row confirms that edge d is a 
member of circuit b and the positive 
direction assigned to the circuit 
corresponds with that of the edge. The 
second row confirms that edge d does 
not belong to circuit e. Subsequently, in 
the diagonal matrix [Bb]13,13, the 10th 
and 11th diagonal elements are both 
one whereas, in [Be]13,13, these 
elements are zero. 
 
 
A consequence is that, for the 

kinematic chain of Fig.1, in columns 10 

and 11 of the network unit action matrix 

 
13,12

ˆ
NM  the first six rows are identical 

to those of  
13,6

ˆ
DM  and all elements of 

the last six rows are zero. 

The matrices [Qi]C,C, i = 1, 2, …, k are 
diagonal matrices in which the diagonal 
elements of the ith matrix are those of 
the ith row of the cutset matrix [QA]k,C of 
the action graph GA. 
Each element qij of [QA]k,C is 0, +1, or -
1: qij is zero if cutset i does not include 
edge j; +1 if the positive sense of 
cutset i is in the same direction as the 
positive sense of the edge j that it 
includes; and -1 if those positive 
senses are opposed. For example, for 
the kinematic chain shown in Fig.1, the 
columns 10 - 13 of [QA]3,17 are: 

[
    
    
    

]  

The last row confirms that edge d is a 
member of cutset d and the positive 
direction assigned to the cutset 
corresponds with that of the edge. The 
other two rows confirm that edge d 
does not belong to cutsets a and c. 
Subsequently, in the diagonal matrix 
[Qd]17,17, the 10th - 13th diagonal 
elements are all one whereas, in 
[Qa]17,17 and [Qc]17,17, these elements 
are zero. 
 
A consequence is that, for the 

kinematic chain of Fig.1, in columns 10 

- 13 of the network unit action matrix 

 
17,18

ˆ
NA  the last six rows are identical 

to those of  
17,6

ˆ
DA  and all elements of 

the first 12 rows are zero. 

 288 

7.5 Results 289 

 290 

If there is overconstraint, the rank m of 

 
Fdl,

ˆ
NM  is less than dl, the number of 

rows, and so 
CN = dl – m 

rows are redundant. The remaining m 
independent equations impose m 
constraints on the F unknown 

If there is overfreedom, the rank a of 

 
Cdk,

ˆ
NA  is less than dk, the number of 

rows, and so 
FN = dk – a 

rows are redundant. The remaining a 
independent equations impose a 
constraints on the C unknown 



magnitudes. Thereby, these F 
unknowns can be expressed in terms 
of FN primary variables, where 

FN = F – m. 
For the kinematic chain shown in Fig.1, 
m is 10, CN is two and FN is three. 
 
For every pair of bodies {i, j} of a 
coupling network, equation (1) makes it 
possible to identify a set of fij 
independent motion screws that span 
the screw system of all motions of 
which bodies i and j are capable. 
Furthermore, equation (1) also 
expresses the magnitudes of each of 
these motion screws in terms of the 
magnitudes of FN of them. Subject to 
some restrictions, there is freedom to 
choose which FN motion screw 
magnitudes shall belong to this set. 

 

magnitudes. Thereby, these C 
unknowns can be expressed in terms 
of CN primary variables, where 

CN = C – a. 
For the kinematic chain shown in Fig.1, 
a is 15, FN is three and CN is two. 
 
For every pair of bodies {i, j} of a 
coupling network, equation (2) makes it 
possible to identify a set of cij 
independent action screws that span 
the screw system of all actions that can 
be transmitted between bodies i and j. 
Furthermore, equation (2) also 
expresses the magnitudes of each of 
these action screws in terms of the 
magnitudes of CN of them. Subject to 
some restrictions, there is freedom to 
choose which CN action screw 
magnitudes shall belong to this set. 

 
Because the foregoing is a brief summary of the full investigation [12], tables 1 291 

and 2 below give the results in detail. 292 

Table 1:  Results obtained from the solution of equation (1) for the kinematic 293 

chain shown in Figure 1. 294 

Pairs 
of 
bodies 

Label of 
direct 
coupling 

Motion components 

f Direct couplings with 
F unknowns 

fij After assembly, using {sa, ta, 
vc} as primary variables 

1, 2 d 2 {0, sd, 0, 0, vd, 0} 1 {0, 0, 0, 0, vc, 0} 
1, 3 e 2 {0, se, 0, 0, ve, 0} 2 {0, -sa, 0, 0, vc, 0} 
1, 4 c 3 {0, 0, tc, uc, vc, 0} 2 {0, 0, ta, 0, vc, 0} 
2, 3 Absent  N/A 1 {0, sa, 0, 0, 0, 0} 
2, 4 b 3 {rb, sb, tb, 0, 0, 0} 2 {0, 0, ta, 0, 0, 0} 
3, 4 a 3 {ra, sa, ta, 0, 0, 0} 2 {0, sa, ta, 0, 0, 0} 

 295 

  296 



 297 

Table 2:  Results obtained from the solution of equation (2) for the kinematic 298 

chain shown in Figure 1. 299 

Pairs 
of 
bodies 

Label of 
direct 
coupling 

Action components 

c Direct couplings with 
C unknowns 

cij After assembly, using  
{Ub, We} as primary variables 

1, 2 d 4 {Rd, 0, Td, Ud, 0, Wd} 1 {0, Ub, 0, Ub, 0, -Ub } 
1, 3 e 4 {Re, 0, Te, Ue, 0, We} 2 {0, 0, 0, -Ub, 0, We} 
1, 4 c 3 {Rc, Sc, 0, 0, 0, Wc } 2 {0, -Ub, 0, 0, 0, (Ub - We)} 
2, 3 Absent  N/A  N/A 
2, 4 b 3 {0, 0, 0, Ub, Vb, Wb} 2 {0, Ub, 0, Ub, 0, -Ub } 
3, 4 a 3 {0, 0, 0, Ua, Va, Wa} 2 {0, 0, 0, -Ub, 0, We } 

 300 

One further matter is included here that is not mentioned in [12]. Suppose that 301 

the kinematic chain were to be used as a 1-port coupling network with bodies two 302 

and three, the pair of original interest, as the terminals of the port. Suppose also 303 

that those bodies are now grasped by someone, one body gripped in each hand. 304 

The person who is gripping the two bodies is behaving as another 1-port 305 

coupling network but one that is a six dof serial manipulator with built-in active 306 

couplings called muscles. The appearance of sa in column six, row four, of table 307 

1 indicates that bodies two and three are capable of relative rotation about the y-308 

axis. Note that sb, sd or se could have been chosen as primary variables instead. 309 

The actions that can be transmitted from body two to body three are thereby 310 

restricted to the 5-system of action screws that are all reciprocal to that rotation. 311 

These actions are spanned by {Rf, Tf, Uf, Vf, Wf}, because sfSf, = 0. Whereas c23 312 

was previously zero, now that the human coupling has been added thereby 313 

internalising these actions, it is now five. 314 

8. Virtual power equations 315 

 316 

There is an alternative way of finding the number of primary variables FN and CN 317 

and, in addition, an alternative way of expressing the magnitudes of all motions 318 

and actions in terms of those primary variables. 319 

 320 

8.1 The cutset motion and circuit action vectors  321 

 322 

Instead of starting with F unknown 
coupling motion components, dk 
unknown cutset motion components 
can be used instead. These dk motion 

Instead of starting with C unknown 
coupling action components, dl 
unknown circuit action components can 
be used instead. These dl action 



components are subject to C 
conditions, some of which may prove to 
be redundant. The C action 
components cannot expend or 
generate power in conjunction with the 
dk motions and so the C actions must 
be regarded as virtual actions. 
 
The dk unknowns must be assembled 

in a cutset motion vector  
dkkM . Using 

Fig. 3b as an example wherein d = 6 
and k = 3, the first six elements of 

 
18kM  are the six unknown components 

for cutset a, namely: 
[ra, sa, ta; ua, va, wa]

T. 
There follows six components that are 
identical except that the subscript a is 
replaced by c, and six more 
subscripted by d. 

components are subject to F 
conditions, some of which may prove to 
be redundant. The F motion 
components cannot expend or 
generate power in conjunction with the 
dl actions and so the F motions must 
be regarded as virtual motions. 
 
The dl unknowns must be assembled in 

a circuit action vector  
dllA . Using Fig. 

3a as an example wherein d = 6 and l = 

2, the first six elements of  
12lA  are 

the six unknown components for circuit 
b namely: 

[Rb, Sb, Tb; Ub, Vb, Wb]
T. 

There follows six components that are 
identical except that the subscript b Is 
replaced by e. 

 323 

8.2 The transposed network unit action and unit motion 324 

matrices 325 

 326 

To apply the C conditions vector  
dkkM  

must be pre-multiplied by the transpose 
of the network unit action matrix 

 
Cdk ,

ˆ
NA  used in equation (2). Thus: 

      CdkkdkC

T

N 0MA 
,

ˆ . (3) 

The C rows of  
dkC

T

N ,
Â  can be reduced 

to a rows by eliminating the CN 
redundant ones. 
 
For a coupling represented by a chord 
of GC, the coupling motion components 
are those of the corresponding circuit 
of GC. For a coupling represented by a 
branch of GC, the motion components 
are the sum of the motion components 
of the circuits of GC to which the branch 
belongs. 

To apply the F conditions vector  
dllA  

must be pre-multiplied by the transpose 
of the network unit motion matrix 

 
Fdl ,

ˆ
NM  used in equation (1). Thus:  

      FdlldlF

T

N 0AM 
,

ˆ . (4) 

The F rows of  
dlF

T

N ,
M̂  can be reduced 

to m rows by eliminating the FN 
redundant ones. 
 
For a coupling represented by a branch 
of GC, the coupling action components 
are those of the corresponding cutset 
of GC. For a coupling represented by a 
chord of GC, the action components are 
the sum of the action components of 
the cutsets of GC to which the chord 
belongs. 

 327 

The kinematic chain shown in Fig. 1 has no utility except as a geometrically and 328 

topologically simple example to demonstrate principles involved. Useful 329 

examples are described in the next two sections. 330 



9. Dual coupling networks 331 

 332 

The work described so far raises the question as to whether, for a coupling 333 

network N with network matrices NM̂  and NÂ  there exists a dual coupling 334 

network N* with network matrices *ˆ
NM  and *ˆ

NA  such that *ˆ
NM  and *ˆ

NA  are 335 

identical to NÂ  and NM̂  respectively? Dual coupling networks have been created 336 

and the procedure for creating them has been explained in detail [32], the 337 

chosen example is the coupling network N shown in Fig. 1 and its dual. The 338 

procedure requires the identification of dual couplings and dual coupling graphs. 339 

The duals of some simple planar kinematic chains have also been described [8] 340 

[17]; the latter is mentioned again in the next section. 341 

Such studies are an aid to an understanding screw theory and graph theory. 342 

Furthermore, whereas actions are difficult to imagine in a coupling network N, it 343 

is relatively easy to imagine the geometrically identical screws that that describe 344 

the motions that can take place within the dual network N*. 345 

 346 

10. Applications 347 

 348 

The first two subsections involve coupling networks for which the geometry can 349 

be greatly simplified by ignoring some of the constraints. A consequence is that 350 

the dimension d can be less than six thereby making the matrices considerably 351 

smaller. 352 

 353 

10.1 Planar kinematic chains  354 

 355 

Studies [17] have been made of the duals of planar kinematic chains that are in 356 

critical configurations. By confining attention to motion screws belonging to the 357 

fifth special 3-system of screws, a dimension d of three can be used in 358 

assembling equation (1) with the consequence that matrix NM̂  is much smaller 359 

than it would otherwise be. A complete kinematic analysis of a Stephenson 360 

kinematic chain is provided using equation (1) and this is shown to be ident ical to 361 

the results of a static analysis of the dual of the kinematic chain using equation 362 

(2). 363 

 364 



10.2 Gear trains, friction and efficiency 365 

 366 

Equations (2, 4) have limited utility when applied to a kinematic chain for reasons 367 

that are discussed later in section 11. These equations do have value however 368 

for studies of the statics of machines operating at a constant speed. The two-369 

stage epicyclic gear train shown in Fig. 4 provides an example of the use of all 370 

four equations [11]. 371 

 372 

Figure. 4  A two-stage epicyclic gear train and a schematic diagram of it 373 

In order to use equations 1 and 3 for kinematic analysis no modification is 374 

needed. In order to use equations 2 and 4 for the statics problem however, the 375 

gear train must be supplemented by two 1-port coupling networks that provide a 376 

source and sink for power, an electric motor and a fan for example. Both of these 377 

1-port coupling networks contain an active coupling that transmits torque about 378 

the z-axis; they will also have bearings with the centre lines on the z-axis, but 379 

these duplicate the role played by bearings that exist within the gear train and 380 

can be ignored. 381 

A major problem remains. The two extra actions supplement the many actions 382 

that could exist attributable to overconstraint. Because equations 2 and 4 can 383 

only analyse internal actions those actions attributable to overconstraint cannot 384 

be avoided. The problem is thereby far more complex than it needs to be. The 385 

extended coupling network can be greatly simplified however without impairment 386 

to the basic statics problem by taking the following steps.  387 

 All but one planet in each stage is ignored. 388 

 All moving parts are assumed to exist in the z = 0 plane.  389 

 Both kinds of coupling, meshing gears and bearings, are assumed to be  390 

(c = f = 1) couplings by ignoring all other freedom and constraint. 391 



 392 

Both the motion screws and the remaining action screws both belong to second 393 

special 2-systems of screws. These special screw systems differ geometrically 394 

however. Angular velocities have ISA parallel with the z-axis in the x = 0 plane, 395 

whereas forces have ISA parallel with the x-axis in the z = 0 plane. As Shai and 396 

Pennock [41] have observed of a similar gear train, the system is now identical to 397 

a sequence of levers. 398 

 399 

  400 
Figure. 5  The coupling graph GC of the gear train shown in Fig. 4 when it is 401 

augmented by two active couplings represented by edges h2 and i2 402 
 403 

For equation 2 two additional active couplings are needed and so, in Fig. 5, there 404 

are two edges from node 0 to node 1, and two edges from node 0 to node 4. The 405 

two additional edges h2 and i2 representing active couplings are shown as 406 

dashed lines. Fig. 5 is also the action graph GA because c = 1 for all couplings. 407 

The five independent cutsets are identified in Fig. 5 by chain-dotted lines. 408 

Because f = 1 for all couplings, again Fig. 5 is also the motion graph except that 409 

edges h2 and i2 can be omitted. The four independent internal circuits are then 410 

obvious. 411 

Cazangi and Martins [13] employ equation (1) for the analysis of two gear trains; 412 

one has two degrees of freedom, two forward ratios and one backward; the 413 

second has three degrees of freedom, three forward ratios and one backward.  414 

Laus et al [14] employ equations 1 and 2 for studies of the efficiency of an 415 

epicyclic gear train and a Humpage gear train. For both, account is taken of 416 

friction, including gear tooth friction. 417 

Tischler et al [15] uses equation (4) for a study of friction in multi-loop linkages. 418 

This may be the only occasion that equation (4) has been used for an application 419 

except for the epicyclic gear train described above. 420 

 421 

 



10.3 Kinematic chains in critical configurations 422 

 423 

Tischler [16] uses equation (1) in a study of critical configurations of a RCCC 424 

kinematic chain; Davies and Laus [17] do likewise for a planar 6-Link 425 

Stephenson kinematic chain. 426 

 427 

10.4 The use of symbolic screw components 428 

 429 

In a study to predict the slop that results from clearances in couplings of the 430 

Melbourne dextrous finger, Tischler et al [18] use symbolic screw components so 431 

that the analysis is valid throughout the cycle of configurations instead of only at 432 

one instantaneous configuration. 433 

 434 

10.5 The use of virtual couplings (Assur groups) 435 

 436 

An Assur group does not introduce additional constraints. For example, for a 437 

planar manipulator it can comprise PPR couplings in series; for a spatial 438 

manipulator PPPRRR or PPPS couplings in series. Equation (1) proves to be 439 

very useful; the primary variables can be either those of couplings of the 440 

manipulator or, for inverse kinematics, couplings of the Assur group.  441 

Several workers have used Assur groups in combination with equation (1). Erthal 442 

et al [19] use them for a study of vehicle suspension; Campos et al [20] for the 443 

inverse kinematics of serial manipulators and [21] for the inverse kinematics of 444 

parallel manipulators. Inverse kinematics also gets attention from Simas et al 445 

[22]. 446 

There is work reported by Guenther et al [23] and Santos et al [24] [25] on the 447 

study of underwater manipulators. Simas et al [26] [27] and Rocha et al [28] 448 

report on work to avoid collisions and for carrying out tasks such as remote 449 

repair. Ribeiro et al [29] [30] describe the use of virtual chains in studies of 450 

cooperating robots. Recently, Ponce Saldias et al [31] [42] have extended the 451 

application of equation 1 and Assur groups to the modelling of the human knee 452 

to aid pre-operative planning. 453 

11. Discussion 454 

 455 

In this section some lessons learned from the foregoing are discussed. 456 



 457 

11.1 If there is a “fixed” member in a mechanism, does it 458 

matter which it is? 459 

 460 

In his lengthy notes that he includes in his English translation of Reuleaux [43], 461 

Kennedy [44] argues that a machine is defined by many in terms of what it does 462 

whereas, ideally, it should be defined in terms of what it comprises. In [10] this 463 

criticism is extended to some definitions provided by IFToMM [36]. In section 4 464 

some extracts from [10] are repeated in order to draw attention to the fact that 465 

there is not necessity to identify an element (body/link/member) that is fixed. Of 466 

course, there are mechanisms, such as some handheld tools, wherein the term 467 

"fixed" is irrelevant.  468 

For studies of kinematics and statics, the significance of a fixed member is 469 

unimportant. It is accepted of course that if acceleration, the second derivative of 470 

displacement, is a feature then it is essential to identify an inertial member, most 471 

frequently the earth.  472 

 473 

11.2 A directed graph provides a concise and easily 474 

accessible record of a user-selected sign convention. 475 

 476 

Anyone who has learned, or taught, elementary mechanics using free body 477 

diagrams may remember the tedium involved in using arrows twice, once on 478 

each of two directly coupled bodies. Likewise, for kinematics, it is necessary to 479 

distinguish the motion of body A relative to body B and body B relative to body A.  480 

A directed graph has merits. A positive sense assigned to an edge by using an 481 

arrowhead indicates which, of two possibilities, will be regarded as the positive 482 

sense in any analysis. The choice of direction is an arbitrary decision. The 483 

coupling graph GC in Fig. 5 of the gear train shown in Fig. 4 has nine edges so 484 

there are 512 possible different sets of directed edges. Fig. 3 provides evidence 485 

that it is the author’s practice to assign the positive direction away from the node 486 

labelled with the lower number. It is suggested here that the directed graph 487 

provides a concise store of a sign convention of the user’s choice that can be 488 

read at a glance. 489 

 490 

11.3 In order to write the reciprocity condition it is 491 

sufficient to remember rR  492 

 493 



In recent publications [11] [12] [17] [32] the author has chosen to represent the 494 

reciprocity condition for motion and action screws as follows:  495 

rR + sS + tT + uU + vV + wW = 0. 496 

Where {r, s, t} are the {x, y, z} components of angular velocity; {u, v, w} are 497 

components of the velocity of a point located at the origin; {R, S, T} are the 498 

components of moments measured at the origin; and {U, V, W} are the 499 

components of forces. The simple layout in the equation above is easily 500 

remembered and easily keyboarded. Others may prefer asterisks and exotic 501 

curly fonts. Note that R - W is sequential whereas L – R is not; T is the moment 502 

about the z-axis, often the moment of Torque, and u and v are easily 503 

remembered velocity components of the origin along the x- and y-axes 504 

respectively. Furthermore, p is available for the pitch of a screw. 505 

 506 

11.4  Mechanical network theory can be much more complex 507 

than electrical DC network theory. 508 

 509 

Suppose that a coupling graph GC, such as the one shown in Fig. 2, is also the 510 

graph of an electrical network. To keep matters simple suppose also that every 511 

one of the e edges corresponds either to a battery, or a resistor.  512 

A coupling graph has l independent 
circuits and chords. For the equivalent 
electrical network there are therefore le 
elements in the voltage law equation 
matrix. For the equivalent mechanical 

matrix NM̂ , the number of elements is 

Fdl. The ratio is: Fdl/le = Fd/e. 

A coupling graph has k independent 
cutsets and branches. For the 
equivalent electrical network there are 
therefore ke elements in the current 
law equation matrix. For the equivalent 

mechanical matrix NÂ , the number of 

elements is Cdk. The ratio is: Cdk/ke = 
Cd/e. 

 513 

Summary of results drawn from examples mentioned in this paper are provided 514 

in Table 3 below. 515 

Table 3: The size of matrices relative to those of a topologically identical DC 516 

electrical network  517 

 
Coupling network 

 
d 

 
e 

Circuit law Cutset law 

F Fd/e C Cd/e 

Fig. 1 6 5 13 78/5 17 102/5 

Stephenson III, a 6-link 
planar kinematic chain [17] 

6 7 6 36/7 20 180/7 

3 7 6 18/7 N/A 

Simplified epicyclic gear 
train, Fig. 4 

2 11 N/A 11 2 

2 9 9 2 N/A 



 518 

Judging by the ratio of the number of elements in matrices,  Fd/e and Cd/e, the 519 

complexity of the coupling network problems are generally much greater than 520 

those of a simple DC network having the same topology.  521 

 522 

11.5 Which equations are best? 523 

 524 

For kinematic chains it has been observed that C, CN, and matrix NÂ  are larger, 525 

sometimes much larger, than F, FN and matrix NM̂  respectively. This suggests 526 

that, for statics of machines, equation 4 is superior to equation 2 and, for 527 

kinematics, equation 1 is superior to equation 3 which may explain why Jean 528 

Bernoulli never wrote about virtual actions. 529 

 530 

11.6 Actions attributable to overconstraint cannot be 531 

measured by geometry and topology 532 

 533 

Overconstraint is potentially dangerous, so awareness of its existence is 534 

important. This topic is also discussed in section 11.8. For kinematic chains 535 

equations 2 and 4 are incapable of providing the magnitudes of actions. These 536 

equations can enable all C actions that can exist within a kinematic chain that 537 

are attributable to overconstraint to be expressed in terms of a set of CN actions 538 

that are chosen as primary variables. The magnitudes of these CN actions remain 539 

unknown however; they are dependent on tolerances, shape, manufacturing 540 

errors, temperature and material properties. 541 

 542 

11.7 The dual zeroth laws of mechanics 543 

 544 

The zeroth law of thermodynamics is fundamental, very simple, and too obvious 545 

for much notice to be taken of it. The decision to number the law as the zeroth 546 

law is attributed to Fowler and Guggenheim [48].The law can be stated in several 547 

ways, Fowler and Guggenheim write:  548 

If two thermal assemblies are each in thermal equilibrium with a third assembly, 549 

then all three are in thermal equilibrium with each other.  550 

The following dual laws for actions and motions within coupling networks can be 551 

expressed in tandem. 552 



The action law The motion law 
An action can be transmitted around a 
circuit comprising bodies and couplings 
provided that all those couplings are 
capable of transmitting that action. 

Two bodies separated by a cutset of 
couplings can have relative motion 
provided that all those couplings are 
capable of allowing that motion. 

 553 

Because the dual laws above, like the zeroth law of thermodynamics, are 554 

fundamental, very simple, and too obvious for much notice to be taken of them, 555 

maybe it is appropriate that they be called the dual zeroth laws of mechanics. 556 

In this paper, with its focus on coupling networks, it is appropriate to write the law 557 

in its dual form; the symmetry of duality is also appealing. If duality is ignored the 558 

action law can be stated in a simpler way as:  559 

An action cannot exist without a circuit capable of transmitting it.  560 

This simple law becomes apparent when actions are internalised as they must be 561 

to employ equations (2, 4). It may have been overlooked because Isaac Newton 562 

was a free body diagram man: he never internalised actions. 563 

Turning to the motion law, it is obvious that two bodies can be in relative motion 564 

without being members of a coupling network. In these circumstances it could be 565 

said that the only coupling is a null coupling that allows any motion. 566 

 567 

11.8 Does elastic design get sufficient attention?  568 

 569 

The existence of overconstraint can result in fatigue failure. Attempts to limit the 570 

dangerous consequences of overconstraint are of two kinds. One is kinematic 571 

design whereby additional freedom is introduced thereby increasing FN and, by 572 

doing so, reducing CN. This is certainly the preferred route for precision 573 

instruments. The second kind is to employ elastic design whereby, by changes in 574 

certain dimensions or a change of materials, some parts are made sufficiently 575 

compliant to allow limited elastic deformation. 576 

Most writers concentrate attention on their speciality, either the kinematic 577 

approach or the elastic approach. Professor Michael French, an academic and a 578 

writer on the subject of engineering design, is an exception. He is an unrepentant 579 

generalist exemplified by his statement: "Never ask a specialist; they always give 580 

the wrong answer." Ouch! In his book [45], there is a chapter titled Kinematic and 581 

Elastic Design. It is a very good balanced account of the two approaches with 582 

several examples from gear trains that were in production at the time of 583 

publication. 584 

 585 



11.9 Screw theory is addictive. All papers and books that 586 

mention screw theory should be required to print a 587 

warning: screw theory can damage your career. 588 

 589 

The reader will understand the author’s reluctance to provide evidence for this 590 

assertion but two addicts are mentioned if only because they are long since 591 

dead. In A History of Mathematics, Cajori [46] writes about Julius Plücker (1801-592 

1868) [47], one of the founding fathers of screw theory; the following is an 593 

extract. 594 

“In Germany J. Plücker’s researches met with no favour. His method was 595 

declared to be unproductive as compared with the synthetic method of J. Steiner 596 

and J. V. Poncelet! His relations with C. G. J. Jacobi were not altogether friendly. 597 

Steiner once declared that he would stop writing for Crelle's Journal if Plücker 598 

continued to contribute to it. The result was that many of Plücker’s researches 599 

were published in foreign journals, and that his work came to be better known in 600 

France and England than in his native country. The charge was also brought 601 

against Plücker that, although occupying the chair of physics, he was no 602 

physicist. This induced him to relinquish mathematics, and for nearly 20 years to 603 

devote his energy to physics. Important discoveries on Fresnel's wave-surface, 604 

magnetism and spectrum-analysis were made by him. But towards the close of 605 

his life he returned to his first love, mathematics, and enriched it with new 606 

discoveries. By considering space as made up of lines he created a "new 607 

geometry of space." 608 

Another major contributor to screw theory was Sir Robert Stawell Ball (1840-609 

1913) [34]. He also had a day job. In 1892 he was appointed as Lowndean 610 

Professor of Astronomy and Geometry at Cambridge University at the same time 611 

becoming director of the Cambridge Observatory. He was in great demand as a 612 

popular speaker on astronomy. His important contributions to screw theory 613 

however were ignored for around 70 years.  614 

So, perhaps the best way of defeating drug traffickers is to ignore them. 615 

 616 

11.10 Actions and motions rarely appear in the same 617 

textbook 618 

 619 

Mention of Robert Ball brings back memories of something written [11] on the 620 

occasion of symposium held in 2000 to celebrate the hundredth anniversary of 621 

the publication of his book, A Treatise on the Theory of screws [34]. It is worth 622 

mentioning again. 623 

http://en.wikipedia.org/wiki/Lowndean_Professor_of_Astronomy_and_Geometry
http://en.wikipedia.org/wiki/Lowndean_Professor_of_Astronomy_and_Geometry
http://en.wikipedia.org/wiki/University_of_Cambridge
http://en.wikipedia.org/wiki/Cambridge_Observatory


Can you imagine a University’s Department of Electrical Engineering advertising 624 

for two posts; one for a teacher of Electrical Circuit Theory (electrical currents) 625 

and another for a teacher of Electrical Circuit Theory (potential differences)? 626 

Electrical currents and potential differences are "through" and "across" variables 627 

respectively, as are actions and motions. Yet, despite being geometrically 628 

identical, actions and motions (first order time derivative of displacements) are 629 

often taught using separate textbooks and very often by different teachers. There 630 

is, of course, much more to kinematics than motion defined in this way. 631 

12. Conclusions 632 

 633 

Graph theory has an important role to play in assembling dl simultaneous 634 

equations for kinematic analysis and dk simultaneous equations for statics 635 

analysis. The matrices assembled for those equations can be used again, when 636 

transposed, in two virtual power equations that also provide kinematics and 637 

statics analysis. Graph theory also contributes concepts and terminology to these 638 

virtual power equations; notably the concepts of cutset motions and circuit 639 

actions. One further outcome is a pair of dual topological laws, called here the 640 

zeroth laws of mechanics.  641 

It was Erskine Crossley who sowed the seed.  642 
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Figure captions 802 
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Figure Caption 

1 A spatial kinematic chain 

2 The coupling graph GC of the kinematic chain shown in Fig. 1 

3 Graphs of the kinematic chain shown in Fig. 1: a) motion graph GM; b) 
action graph GA 

4 A two-stage epicyclic gear train and a schematic diagram of it 

5 The coupling graph GC of the gear train shown in Fig. 4 when it is 
augmented by two active couplings represented by edges h2 and i2 
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Abstract 7 

This is essentially a review paper describing progress made in treating 8 
mechanisms and machines as networks. Some of the terminology that is helpful 9 
to this approach is explained. Relevant elements of graph theory are mentioned. 10 
The original aim was to find a robust procedure for finding the instantaneous 11 
relative motion of all pairs of bodies within a kinematic chain. The manner in 12 
which this was achieved produced several other results that have found 13 
unanticipated applications. These are mentioned and publications are cited. 14 
Lessons have been learned and these are discussed in Section 11. 15 
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1. Introduction 18 

 19 

The author is glad of this opportunity to thank Erskine Crossley for his many acts 20 
of kindness and generosity and to join with others to pay tribute to the work he 21 
has done for IFToMM and as editor of the Journal of Mechanisms, the forerunner 22 
of this journal. In particular, the author can bear witness to the many 23 
contributions Erskine Crossley made to good international relations. But this is a 24 
technical paper and so it is appropriate to explain the stimulus Erskine Crossley 25 
provided that led to research interests of the author.  26 

Erskine Crossley was the first to mention graph theory in the author’s presence. 27 
Graph theory [1] [2] is a branch of topology concerned with the interconnections 28 
within a network of objects. Graph theory has found many applications; most 29 
relevant to this paper are applications in electrical network theory, more 30 
frequently called electrical circuit theory.  31 
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Mechanism and machines can be thought of as coupling networks. Waldron [3] 32 
provides rules that apply to couplings arranged in series and in parallel. Like 33 
electrical networks, indirect couplings containing cross bracing pose special 34 
problems [4]. Baker [5] proposed a simple example that has subsequently proved 35 
well-suited as a demonstration for theories that have followed. One solution [6] 36 
required the adaptation of Kirchhoff’s voltage law. Subsequent work [7] [8]2 [9] 37 
[10] [11] [12] has led to the adaptation of Kirchhoff's current law as well, and two 38 
virtual power equations that use matrices that are identical to those needed for 39 
the adaptations of Kirchhoff's laws except for being transposed. All four 40 
equations are reproduced in this paper; the adaptations of Kirchhoff's laws 41 
equations (1,2) in section 7.2 and the virtual power equations (3,4) in section 8.2. 42 
Several applications have been found for the equations [13] [14] [15] [16] [17] 43 
[18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [31]; further details are 44 
provided in section 10. 45 

Nomenclature 46 
a the rank of the network unit action matrix [ ] CdkN ,Â  47 

bij  the element in row i, column j, of circuit matrix [BM]l,F  48 
c  degree of constraint of a direct coupling 49 
cij  degree of constraint of bodies i and j of a coupling network 50 
C  gross degree of constraint of a coupling network, Σc 51 
CN  nett degree of constraint of a coupling network 52 
d  minimum order of the screw system, 1 ≤ d ≤ 6 53 
e  number of couplings in a coupling network and edges of coupling graph GC 54 
f  gross degree of freedom of a direct coupling 55 
fij  degree of freedom of bodies i and j of a coupling network 56 
F  gross degree of freedom of a coupling network, Σf 57 
FN  nett degree of freedom of a coupling network 58 
k  number of independent cutsets of a graph 59 
l  number of independent circuits (loops) of a graph 60 
m  the rank of the network unit motion matrix [ ] FdlN ,M̂  61 

n  number of bodies in a coupling network and nodes of coupling graph GC 62 
qij  the element in row i, column j, of cutset matrix [QA]k,C 63 
{r, s, t; u, v, w} motion screw components in ray-coordinates 64 
{R, S, T; U, V, W} action screw components in axis-coordinates 65 
 66 
Vectors 67 
[A l]dl dl action components for all l circuits 68 
[Mk]dk dk motion components for all k cutsets 69 
[ ] Cϕ  magnitudes of C action screws 70 

[ ]Fψ  magnitudes of F motion screws 71 
 72 
 73 
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Matrices 74 
[ ] CdD ,Â  unit action matrix of the direct couplings of a coupling network 75 

[ ] CdkN ,Â  network unit action matrix of a coupling network N 76 

[B i]F,F diagonal matrices with diagonal elements corresponding to row i of 77 
[BM]l,F; in practice identification is by the circuit label, e. g. [Bb]F,F for 78 
circuit b. 79 

[BM]l,F  circuit matrix of motion graph GM 80 
[ ] FdD ,M̂  unit motion matrix of the direct couplings of a coupling network 81 

[ ] FdlN ,M̂  network unit motion matrix of a coupling network N 82 

[Qi]C,C diagonal matrices with diagonal elements corresponding to row i of 83 
[QA]k,C; in practice, identification is by the cutset label, e. g. [Qa]C,C for 84 
cutset a. 85 

[QA]k,C  cutset matrix of action graph GA 86 

2. Couplings 87 

 88 

Central to the network approach described in this paper is the coupling. This 89 
term is applied to any means by which an action can be transmitted between two 90 
bodies that are sufficiently stiff to be regarded as rigid. Furthermore, a coupling 91 
must be capable of being disassembled without resort to cutting. This means that 92 
welded and riveted joints are not regarded as couplings, nor are joints formed by 93 
adhesion. Action is a term that is sometimes used [11] [12] [32] as shorthand for 94 
a wrench on a screw of any pitch, including a pitch that is zero, namely a force, 95 
and a pitch that is infinite, namely a torque. The coupling could be either direct, 96 
indirect or a hybrid comprising direct and indirect couplings in parallel. Except 97 
where it is necessary to make a distinction, all couplings mentioned are direct 98 
couplings. The term coupling is chosen as the name of a superset comprising 99 
passive and active couplings, the latter providing sinks or sources of power. 100 
Examples of couplings of both kinds have been listed [10]. Important subclasses 101 
of passive couplings mentioned in this paper are contact couplings, often 102 
referred to as kinematic pairs, and elastic couplings.  103 

As well as the capability of transmitting an action, many couplings also permit 104 
relative motion of the bodies they couple. Motion is a term sometimes used [11] 105 
[12] [32] as shorthand for the first time derivative of displacement, geometrically 106 
described as a twist rate on the screw of any pitch, including a pitch that is zero, 107 
namely an angular velocity, and the pitch that is infinite namely translational 108 
velocity. A coupling is characterised by two screw systems [33], a c-system of 109 
actions that can be transmitted and an f-system of motions that can be allowed, 110 
and: 111 

c + f = d, 112 



where c and f are often referred to as the degrees of constraint and freedom of 113 
the coupling. The sum d could be said to be the dimension of the problem, 114 
having normally a maximum value of six. Simplification results from disregarding 115 
some of the actions couplings are capable of transmitting and then d will be less 116 
than six. Examples are to be found in section 10. 117 

The action and motion screws systems of couplings are said to be reciprocal to 118 
one another because a screw of one system cannot expend power in conjunction 119 
with any of the screws of the other system. Note the use of the term power rather 120 
than work. The term work would be appropriate if motion is interpreted as 121 
infinitesimal displacements, as Ball [34] does. Here, and elsewhere [11] [12] [33] 122 
[35], the choice is made to divide all infinitesimal displacements by an 123 
infinitesimal time interval. Both approaches are equally valid. 124 

3. Coupling networks 125 

 126 

The following definition of the coupling network is expressed in terms that have 127 
similarities with the definition of a graph that appears later. A coupling network N 128 
consists of a non-empty finite set of bodies and a finite set of couplings linking 129 
pairs of those bodies. At least one path exists from each body of N to every other 130 
body of N, through couplings and other bodies of N. In other words, to borrow a 131 
term from graph theory, a coupling network is connected, that is to say, in one 132 
piece, rather than disconnected, in two or more parts. 133 

 134 

Figure. 1 A spatial kinematic chain  135 
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A coupling network has a characteristic gross degree of freedom F = Σf and a 136 
characteristic gross degree of constraint C = Σc, where the summations are over 137 
all couplings. Coupling networks have another pair of characteristics of greater 138 
importance: these are the nett degree of freedom FN and the nett degree of 139 
constraint CN where, 0 ≤ FN ≤ F and 0 ≤ CN ≤ C. The nett degree of freedom FN 140 
has been called M, the degree of mobility, but mobility has another meaning [36]. 141 
It is also the “complex velocity response at a point in a linear system to a unit 142 
force excitation applied at the same point or another point in the system (inverse 143 
of mechanical impedance)”. Coupling networks for which FN = 0 are immobile 144 
structures that will not concern us here. Most structures are welded, riveted or 145 
made integral by adhesive so, owing to the restrictions placed on the meaning of 146 
a coupling, relatively few structures are coupling networks. 147 

In the 1960s formulae were available for finding FN, but they did not always work. 148 
One associated difficulty lead to a breakthrough. It had been identified [4] that 149 
finding the degree of freedom fij of two indirectly coupled bodies i and j is difficult 150 
if cross bracing exists. The task was to devise a general robust procedure that 151 
determines fij for any pair of bodies. Fig. 1 shows coupling network N that is a 152 
spatial kinematic chain, devised by Baker [5], and used since [6] [12] [32] as a 153 
test bed for some of the research cited in this paper.  154 

Note for the publishers. 155 

For the on-line version a supplementary video based on Figure 1 is submitted 156 
with this manuscript. The title is "Davies video". This is a suitable point in the 157 
manuscript to draw the reader's attention to it. 158 

The kinematic chain is artificially contrived so that the elements of all matrices 159 
associated with it are 0, -1 or +1. Note that, for bodies two and three, the planar 160 
(ebene) coupling labelled C provides cross coupling. This is more evident in the 161 
coupling graph Fig. 2. One solution requires an adaptation of Kirchhoff’s 162 
circulation law for mechanical problems. This approach resulted in a formula for 163 
FN. Later, the problem of finding a formula for CN was also achieved. Progress 164 
towards those two goals is explained in tandem wherever appropriate. 165 

4. Kinematic chains, mechanisms and machines 166 

 167 

The term kinematic chain is often applied to coupling networks for which FN ˃ 0. 168 
In introductory texts on Mechanisms and Machines it is frequently found that a 169 
mechanism is described as a kinematic chain for which a "fixed member" has 170 
been selected. Once a fixed member has been chosen, all other choices of fixed 171 
member are often referred to as inversions of that mechanism. 172 



This approach places an unnecessary emphasis on the identification of a "fixed 173 
member", yet says nothing about connections that must be made from the 174 
kinematic chain to active couplings in order that useful power can flow. 175 
Arguments have been given [10] in favour of a definition of mechanism in terms 176 
of content, rather than usage. The approach involving content requires the 177 
identification of bodies of the kinematic chain as terminal bodies [37], pairs of 178 
which are called ports. The terminals of a port are a pair of bodies of the 179 
kinematic chain that are intended to be made integral with terminal bodies of 180 
another coupling or network. If only one port is identified the kinematic chain is 181 
an example of a 1-port device, in other words the kinematic chain creates an 182 
indirect coupling between the two terminal bodies of the port. 183 

A mechanism is a kinematic chain with two or more ports. In this context a port 184 
could be defined as a pair of terminal bodies through which power can be 185 
transmitted to or from a port of another network. The following are two examples 186 
of definitions of a port. “A pair of terminals at which a signal may enter or leave a 187 
network is called a port." [38]; “A terminal pair to which an input is applied or 188 
from which an output is extracted is called a port.” [39]. For a mechanism, the 189 
term "signal" is inappropriate and "an input … an output" is unnecessarily vague. 190 

Many mechanisms have only one input port and only one output port; 191 
mechanisms with several input ports are likely to be classified as manipulators; 192 
mechanisms with more than one output port are rare, the crank-driven needle 193 
and awl mechanism of a shoe welt sewing machine is one example [40]. Two or 194 
more ports may have one terminal body in common. This is often so when the 195 
common body is the one that is called the fixed member or frame. 196 

A machine is a mechanism with all ports connected to active couplings or to the 197 
ports of indirect couplings that contain active couplings. Such indirect couplings 198 
may also contain passive couplings; for example an electrical motor has its own 199 
bearings. If the active coupling is a source of power these indirect couplings are 200 
often called actuators. 201 

In order to adapt Kirchhoff's laws to coupling networks it is necessary to involve 202 
graph theory, the subject of the next section. 203 

5. Directed graphs 204 

 205 

A simple description of a graph is that it is a set of nodes (points or vertices), 206 
some or all pairs of which are connected by lines called edges. We will be 207 
concerned only with directed graphs, also called digraphs, within which all edges 208 
have an arrowhead thereby making the two nodes incident with each edge an 209 
ordered pair. A formal definition now follows. 210 



A directed graph G consists of a non-empty finite set V(G) of elements called 211 
nodes (or vertices) and a finite family E(G) of ordered pairs of elements of V(G) 212 
called directed edges. The term "family" is used here, as in [2], to accommodate 213 
graphs within which multiple edges terminate in the same pair of nodes. We will 214 
not be concerned with graphs containing edges that terminate in the same node; 215 
such an edge is called a loop. The definition of coupling networks provided 216 
earlier is modelled on this definition of graphs. This is made possible by 217 
incorporating jointed structures for which FN = 0 within coupling networks.  218 

There are several useful terms used in graph theory. Within a graph, a walk is a 219 
finite sequence of edges. If all edges are distinct the walk is called a trail. If, in 220 
addition, the vertices are distinct, except possibly for the first and last, then the 221 
trail is a path. A trail is said to be closed if the first and last vertices are the 222 
same. A closed path is a cycle or circuit.  223 

A graph is connected if and only if there is a path between each pair of vertices. 224 
A disconnecting set in a connected graph G is a set of edges whose removal 225 
disconnects G. A cutset is a disconnecting set, no proper subset of which is a 226 
disconnecting set. The removal of the edges in a cutset always leaves a graph 227 
with exactly two components. A connected graph with no circuits is a tree each 228 
edge of which is called a branch the only member of a cutset. A spanning tree is 229 
a connected subgraph that contains all the nodes of a graph, but no circuit. The 230 
edges not included in the spanning tree are called chords and the addition of any 231 
chord creates a circuit. Associated with each chord is a fundamental circuit, 232 
associated with each branch is a fundamental cutset.  233 

6. Coupling graphs, motion graphs and action graphs  234 

 235 

A coupling graph GC is a graph within which each of the n nodes represents a 236 
body of a coupling network N and each of the e edges represents a coupling of 237 
N. These couplings are direct couplings but some indirect couplings such as 238 
rolling contact bearings and Hooke’s coupling can be regarded as direct provided 239 
that the investigation does not concern their interior actions and motions.  240 

 241 



 242 

Figure. 2  The coupling graph GC of the kinematic chain shown in Fig. 1 243 

 244 

6.1 The coupling graph: its chords, branches, circuits and cutsets 245 
 246 

A coupling graph will be said to have l chords and l fundamental circuits; it also 247 
has k branches and k fundamental cutsets. Fig. 2 shows the coupling graph GC 248 
of the kinematic chain N shown in Fig. 1, with the arbitrarily selected spanning 249 
tree drawn with thick lines. Features of Fig.2 are now described. Here, and 250 
elsewhere in this paper, the presentation is provided in tandem where 251 
appropriate to emphasise the dual nature of the subject. 252 

The edges b and e of GC drawn with 
thin lines are the chords of the 
spanning tree. Each independent 
circuit contains one chord; all other 
edges are branches. Within these 
circuits there are arcs labelled b and e 
with arrowheads that assign a positive 
sense that can be arbitrarily chosen 
but, in this example, the choice 
corresponds with the positive sense 
assigned to the associated chords.  

The edges a, c and d of GC drawn with 
thick lines are the branches of the 
spanning tree. Each independent 
cutset contains one branch; all other 
edges are chords. Dashed lines are 
drawn through each cutset of edges. 
Arrows labelled a, c and d cutting 
these dashed lines assign a positive 
sense that can be arbitrarily chosen 
but, in this example, the choice 
corresponds with the positive sense 
assigned to the associated branches.  

 253 
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 254 

 (a) (b) 255 

Figure. 3  Graphs of the kinematic chain shown in Fig. 1: 256 
a) motion graph GM; b) action graph GA 257 

 258 

6.2 Motion and action graphs 259 
 260 

From the coupling graph GC it can be helpful to create a motion graph GM and an 261 
action graph GA. For the kinematic chain shown in Fig.1 these graphs are 262 
described below. 263 

The motions allowed by a coupling 
having f degrees of freedom can be 
spanned by f independent motion 
screws. Each of these f screws can be 
represented in a motion graph GM. The 
motion graph GM is created by 
replacing each edge of GC that 
represents an f degree of freedom 
coupling by f edges in series. Fig. 3a 
shows the motion graph for the 
kinematic chain of Fig. 1.  

The actions transmitted by a coupling 
having c degrees of constraint can be 
spanned by c independent action 
screws. Each of these c screws can be 
represented in an action graph GA. The 
action graph GA is created by replacing 
every edge of GC that represents a c 
degree of constraint coupling by c 
edges in parallel. Fig. 3b shows the 
action graph for the kinematic chain of 
Fig. 1.  
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The minimum number of parameters 
(independent motion magnitudes) 
necessary to provide the magnitudes of 
all motions within a coupling network is 
the nett degree of freedom FN. 
Alternatively, FN can be said to be the 
degree of overfreedom or excess 
freedom. 

For a coupling network that is a tree, 

FN = F. 

For coupling networks that contain one 
or more circuits comprised of two or 
more couplings,  

0 ≤ FN ≤ F.  

Circuits can reduce freedoms. 

The minimum number of parameters 
(independent action magnitudes) 
necessary to provide the magnitudes of 
all actions within a coupling network is 
the nett degree of constraint CN. 
Alternatively, CN can be said to be the 
degree of overconstraint or excess 
constraint. 

For a coupling network that is a tree, 

CN = 0. 

For coupling networks that contain one 
or more circuits comprised of two or 
more couplings,  

C ≥ CN ≥ 0.  

Circuits can increase constraints. 

7. Adaptations of Kirchhoff’s laws 264 

 265 

In this section matrices are needed that contain components of screws. 266 
Subscripts outside the square brackets around matrices signify the number of 267 
rows and columns respectively. A cap on a matrix signifies that the screws are 268 
normalised. The task of assembling equations is explained with the aid of the 269 
kinematic chain shown in Fig.1 and, in particular, the cylindrical coupling D 270 
having an axis through (1, 0, 0) parallel with the y-axis. 271 

A notation is used that may be unfamiliar to the reader. This notation has been 272 
used before [11,12,17,32]; it is listed in the Introduction and explained in greater 273 
detail in section 11.3. The adaptations of the laws are now presented in tandem.  274 

Kirchhoff’s voltage law, when adapted 
for coupling networks, states that for 
each of the l independent circuits, the d 
components of screws spanning the 
motion screws of couplings of a circuit 
sum to zero when measured by 
reference to the same global frame. 
Thereby, dl equations can be written 
that impose conditions on the F 
unknowns. Some of these equations 
may prove to be redundant however. 
The circuit law equation can be written 

Kirchhoff’s current law, when adapted 
for coupling networks, states that for 
each of the k independent cutsets, the 
d components of screws spanning the 
action screws of couplings of a cutset 
sum to zero when measured by 
reference to the same global frame.  
Thereby, dk equations can be written 
that impose conditions on the C 
unknowns. Some of these equations 
may prove to be redundant however. 
The cutset law equation can be written 



as: 
 [ ] [ ] [ ]dlFFdlN 0M =ψ,

ˆ . (1) 
as:  
 [ ] [ ] [ ]dkCCdkN 0A =ϕ,

ˆ . (2) 

 
 275 

7.1 The vectors of unknown magnitudes 276 
 277 

The vector [ ]Fψ  = [ra, sa, ta, rb, sb, tb, tc, 
uc, vc, sd, vd, se, ve]

T contains F unknown 
magnitudes of motions spanning the 
motion screw systems of the couplings 
listed in the same order as they appear in 
the columns of NM̂ . For example, in the 
kinematic chain shown in Fig. 1, coupling 
D allows motions that belong to a fifth 
special 2-system of motion screws [33]. 
This system is spanned by any two 
screws of unequal pitch with ISA sharing 
the cylinder axis. Most conveniently the 
screws selected are those with zero and 
infinite pitch, namely angular velocity of 
magnitude sd about the cylinder axis, 
the (local) yd-axis, and translational 
velocity of magnitude vd in the direction 
of the y-axis. 

The vector [ ] Cϕ  = [Ua, Va, Wa, Ub, Vb, 
Wb, Rc, Sc, Wc, Rd, Td, Ud, Wd, Re, Te, 
Ue, We]

T contains C unknown 
magnitudes of actions spanning the 
action screw systems of the couplings 
listed in the same order as they appear in 
the columns of NÂ . For example, for the 
kinematic chain shown in Fig. 1, coupling 
D transmits actions that belong to a fifth 
special 4-system of action screws [33]. 
This system is spanned by any four 
screws reciprocal with the motion 
screws. A convenient set comprises 
torques (couples) parallel to the x- and z-
axes of magnitudes Rd and Td 
respectively, together with forces along 
the x- and (local) zd-axes of magnitudes 
Ud and Wd respectively.  

 278 

7.2 The network unit motion and unit action matrices 279 
 280 

The network unit motion matrix 

[ ]
[ ] [ ]
[ ] [ ]

[ ] [ ] 



















=

FFlFdD

FFFdD

FFFdD

FdlN

,,

,2,

,1,

,

ˆ

ˆ

ˆ

ˆ

BM

BM

BM

M
⋮

, 

where [ ] FdD ,M̂ , the direct coupling unit 

motion matrix, is determined by the 
geometry and [B i]F,F , i = 1, 2, …, l by 
the topology as represented by the 
motion graph. 

The network unit action matrix 

[ ]
[ ] [ ]
[ ] [ ]

[ ] [ ] 



















=

CCkCd

CCCd

CCCd

CdkN

,,

,2,

,1,

,

ˆ

ˆ

ˆ

ˆ

QA

QA

QA

A

D

D

D

⋮
, 

where [ ] CdD ,Â , the direct coupling unit 

action matrix, is determined by the 
geometry and [Qi]F,F , i = 1, 2, …, k by 
the topology as represented by the 
action graph. 

 281 

7.3 Direct coupling unit motion and unit action matrices 282 
 283 



 284 

7.4 The circuit matrix of GM, the cutset matrix of GA, and 285 

diagonal matrices derived from them 286 
 287 

The direct coupling unit motion matrix 
[ ] FdD ,M̂  contains the d components of 

each of the F unit motion screws with 
respect to the global frame of reference 
with its origin at the centre of the 
spherical coupling A.  
 
For example, for the kinematic chain 
shown in Fig.1, the 10th and 11th 
columns of [ ] 13,6

ˆ
DM , shown as a 

submatrix below, are the motion 
components for the f = 2 cylindrical 
coupling located at D. 





























01

10

00

00

01

00

. 

When these normalised screws are 
multiplied by the 10th and 11th 
elements of [ ] 1 3ψ , sd and vd 
respectively, the two motion screws are 
obtained of body two relative to body 
one. Note that the sixth element of the 
10th column, when multiplied by sd, is a 
velocity along the z-axis of a point on 
an imaginary extension of body two 
located at the global origin. This 
velocity results from the angular 
velocity sd about the (local) yd-axis 
recorded in the second element of the 
10th column. 

The direct coupling unit action matrix 
[ ] CdD ,Â  contains the d components of 

each of the C unit action screws with 
respect to the global frame of reference 
with its origin at the centre of the 
spherical coupling A.  
 
For example, for the kinematic chain 
shown in Fig.1, the 10th to the 13th 
columns of [ ] 17,6

ˆ
DA , shown as a 

submatrix below, are the action 
components for the c = 4 cylindrical 
coupling located at D. 





























−

1000

0000

0100

0010

1000

0001

. 

When these normalised screws are 
multiplied by the 10th to the 13th 
elements of [ ] 1 7ϕ , Rd, Td, Ud and Wd 
respectively, the four action screws are 
obtained that are exerted by body one 
on body two. Note that the second 
element of the 13th column, when 
multiplied by Wd, is the (negative) 
moment about the y-axis. This moment 
results from the force Wd along the 
(local) zd-axis recorded in the sixth 
element of the 13th column. 



The matrices [B i]F,F , i = 1, 2, …, l are 
diagonal matrices in which the diagonal 
elements of the ith matrix are those of 
the ith row of the circuit matrix [BM]l,F of 
the motion graph GM.  
Each element bij of [BM]l,F is 0, +1, or -1: 
bij is zero if circuit i does not include edge 
j; +1 if the positive sense of circuit i is in 
the same direction as the positive sense 
of the edge j that it includes; and -1 if 
those positive senses are opposed. For 
example, for the kinematic chain shown 
in Fig.1, the columns 10 and 11 of 
[BM]2,13 are: 

�1 10 0�. 
 
The first row confirms that edge d is a 
member of circuit b and the positive 
direction assigned to the circuit 
corresponds with that of the edge. The 
second row confirms that edge d does 
not belong to circuit e. Subsequently, in 
the diagonal matrix [Bb]13,13, the 10th 
and 11th diagonal elements are both 
one whereas, in [Be]13,13, these 
elements are zero. 
 
 
A consequence is that, for the 
kinematic chain of Fig.1, in columns 10 
and 11 of the network unit action matrix 

[ ] 13,12
ˆ

NM  the first six rows are identical 

to those of [ ] 13,6
ˆ

DM  and all elements of 

the last six rows are zero. 

The matrices [Qi]C,C, i = 1, 2, …, k are 
diagonal matrices in which the diagonal 
elements of the ith matrix are those of 
the ith row of the cutset matrix [QA]k,C of 
the action graph GA. 
Each element qij of [QA]k,C is 0, +1, or -
1: qij is zero if cutset i does not include 
edge j; +1 if the positive sense of 
cutset i is in the same direction as the 
positive sense of the edge j that it 
includes; and -1 if those positive 
senses are opposed. For example, for 
the kinematic chain shown in Fig.1, the 
columns 10 - 13 of [QA]3,17 are: 

�0 0 0 00 0 0 01 1 1 1�. 
The last row confirms that edge d is a 
member of cutset d and the positive 
direction assigned to the cutset 
corresponds with that of the edge. The 
other two rows confirm that edge d 
does not belong to cutsets a and c. 
Subsequently, in the diagonal matrix 
[Qd]17,17, the 10th - 13th diagonal 
elements are all one whereas, in 
[Qa]17,17 and [Qc]17,17, these elements 
are zero. 
 
A consequence is that, for the 
kinematic chain of Fig.1, in columns 10 
- 13 of the network unit action matrix 

[ ] 17,18
ˆ

NA  the last six rows are identical 

to those of [ ] 17,6
ˆ

DA  and all elements of 

the first 12 rows are zero. 

 288 

7.5 Results 289 
 290 

If there is overconstraint, the rank m of 
[ ] Fdl ,
ˆ

NM  is less than dl, the number of 

rows, and so 
CN = dl – m 

rows are redundant. The remaining m 
independent equations impose m 
constraints on the F unknown 

If there is overfreedom, the rank a of 
[ ] Cdk ,
ˆ

NA  is less than dk, the number of 

rows, and so 
FN = dk – a 

rows are redundant. The remaining a 
independent equations impose a 
constraints on the C unknown 



magnitudes. Thereby, these F 
unknowns can be expressed in terms 
of FN primary variables, where 

FN = F – m. 
For the kinematic chain shown in Fig.1, 
m is 10, CN is two and FN is three. 
 
For every pair of bodies {i, j} of a 
coupling network, equation (1) makes it 
possible to identify a set of fij 
independent motion screws that span 
the screw system of all motions of 
which bodies i and j are capable. 
Furthermore, equation (1) also 
expresses the magnitudes of each of 
these motion screws in terms of the 
magnitudes of FN of them. Subject to 
some restrictions, there is freedom to 
choose which FN motion screw 
magnitudes shall belong to this set. 

 

magnitudes. Thereby, these C 
unknowns can be expressed in terms 
of CN primary variables, where 

CN = C – a. 
For the kinematic chain shown in Fig.1, 
a is 15, FN is three and CN is two. 
 
For every pair of bodies {i, j} of a 
coupling network, equation (2) makes it 
possible to identify a set of cij 
independent action screws that span 
the screw system of all actions that can 
be transmitted between bodies i and j. 
Furthermore, equation (2) also 
expresses the magnitudes of each of 
these action screws in terms of the 
magnitudes of CN of them. Subject to 
some restrictions, there is freedom to 
choose which CN action screw 
magnitudes shall belong to this set. 

 
Because the foregoing is a brief summary of the full investigation [12], tables 1 291 
and 2 below give the results in detail. 292 

Table 1:  Results obtained from the solution of equation (1) for the kinematic 293 
chain shown in Figure 1. 294 

Pairs 
of 
bodies 

Label of 
direct 
coupling 

Motion components 
f Direct couplings with 

F unknowns 
fij After assembly, using {sa, ta, 

vc} as primary variables 
1, 2 d 2 {0, sd, 0, 0, vd, 0} 1 {0, 0, 0, 0, vc, 0} 
1, 3 e 2 {0, se, 0, 0, ve, 0} 2 {0, -sa, 0, 0, vc, 0} 
1, 4 c 3 {0, 0, tc, uc, vc, 0} 2 {0, 0, ta, 0, vc, 0} 
2, 3 Absent  N/A 1 {0, sa, 0, 0, 0, 0} 
2, 4 b 3 {rb, sb, tb, 0, 0, 0} 2 {0, 0, ta, 0, 0, 0} 
3, 4 a 3 {ra, sa, ta, 0, 0, 0} 2 {0, sa, ta, 0, 0, 0} 
 295 

  296 



 297 

Table 2:  Results obtained from the solution of equation (2) for the kinematic 298 
chain shown in Figure 1. 299 

Pairs 
of 
bodies 

Label of 
direct 
coupling 

Action components 
c Direct couplings with 

C unknowns 
cij After assembly, using  

{Ub, We} as primary variables 
1, 2 d 4 {Rd, 0, Td, Ud, 0, Wd} 1 {0, Ub, 0, Ub, 0, -Ub } 
1, 3 e 4 {Re, 0, Te, Ue, 0, We} 2 {0, 0, 0, -Ub, 0, We} 
1, 4 c 3 {Rc, Sc, 0, 0, 0, Wc } 2 {0, -Ub, 0, 0, 0, (Ub - We)} 
2, 3 Absent  N/A  N/A 
2, 4 b 3 {0, 0, 0, Ub, Vb, Wb} 2 {0, Ub, 0, Ub, 0, -Ub } 
3, 4 a 3 {0, 0, 0, Ua, Va, Wa} 2 {0, 0, 0, -Ub, 0, We } 
 300 

One further matter is included here that is not mentioned in [12]. Suppose that 301 
the kinematic chain were to be used as a 1-port coupling network with bodies two 302 
and three, the pair of original interest, as the terminals of the port. Suppose also 303 
that those bodies are now grasped by someone, one body gripped in each hand. 304 
The person who is gripping the two bodies is behaving as another 1-port 305 
coupling network but one that is a six dof serial manipulator with built-in active 306 
couplings called muscles. The appearance of sa in column six, row four, of table 307 
1 indicates that bodies two and three are capable of relative rotation about the y-308 
axis. Note that sb, sd or se could have been chosen as primary variables instead. 309 
The actions that can be transmitted from body two to body three are thereby 310 
restricted to the 5-system of action screws that are all reciprocal to that rotation. 311 
These actions are spanned by {Rf, Tf, Uf, Vf, Wf}, because sfSf, = 0. Whereas c23 312 
was previously zero, now that the human coupling has been added thereby 313 
internalising these actions, it is now five. 314 

8. Virtual power equations 315 

 316 

There is an alternative way of finding the number of primary variables FN and CN 317 
and, in addition, an alternative way of expressing the magnitudes of all motions 318 
and actions in terms of those primary variables. 319 

 320 

8.1 The cutset motion and circuit action vectors  321 
 322 

Instead of starting with F unknown 
coupling motion components, dk 
unknown cutset motion components 
can be used instead. These dk motion 

Instead of starting with C unknown 
coupling action components, dl 
unknown circuit action components can 
be used instead. These dl action 



components are subject to C 
conditions, some of which may prove to 
be redundant. The C action 
components cannot expend or 
generate power in conjunction with the 
dk motions and so the C actions must 
be regarded as virtual actions. 
 
The dk unknowns must be assembled 
in a cutset motion vector [ ]dkkM . Using 
Fig. 3b as an example wherein d = 6 
and k = 3, the first six elements of 
[ ]18kM  are the six unknown components 
for cutset a, namely: 

[ra, sa, ta; ua, va, wa]
T. 

There follows six components that are 
identical except that the subscript a is 
replaced by c, and six more 
subscripted by d. 

components are subject to F 
conditions, some of which may prove to 
be redundant. The F motion 
components cannot expend or 
generate power in conjunction with the 
dl actions and so the F motions must 
be regarded as virtual motions. 
 
The dl unknowns must be assembled in 
a circuit action vector [ ]dllA . Using Fig. 
3a as an example wherein d = 6 and l = 
2, the first six elements of [ ]12lA  are 
the six unknown components for circuit 
b namely: 

[Rb, Sb, Tb; Ub, Vb, Wb]
T. 

There follows six components that are 
identical except that the subscript b Is 
replaced by e. 

 323 

8.2 The transposed network unit action and unit motion 324 

matrices 325 
 326 

To apply the C conditions vector [ ]dkkM  
must be pre-multiplied by the transpose 
of the network unit action matrix 
[ ] Cd k ,
ˆ
NNNN
AAAA

 used in equation (2). Thus: 

 [ ] [ ] [ ]CdkkdkC
T
N 0MA =,

ˆ . (3) 

The C rows of [ ] dkC
T
N ,Â  can be reduced 

to a rows by eliminating the CN 
redundant ones. 
 
For a coupling represented by a chord 
of GC, the coupling motion components 
are those of the corresponding circuit 
of GC. For a coupling represented by a 
branch of GC, the motion components 
are the sum of the motion components 
of the circuits of GC to which the branch 
belongs. 

To apply the F conditions vector [ ]dllA  
must be pre-multiplied by the transpose 
of the network unit motion matrix 
[ ] Fdl ,
ˆ

NM  used in equation (1). Thus:  

 [ ] [ ] [ ]FdlldlF
T
N 0AM =,

ˆ . (4) 

The F rows of [ ] dlF
T
N ,M̂  can be reduced 

to m rows by eliminating the FN 
redundant ones. 
 
For a coupling represented by a branch 
of GC, the coupling action components 
are those of the corresponding cutset 
of GC. For a coupling represented by a 
chord of GC, the action components are 
the sum of the action components of 
the cutsets of GC to which the chord 
belongs. 

 327 

The kinematic chain shown in Fig. 1 has no utility except as a geometrically and 328 
topologically simple example to demonstrate principles involved. Useful 329 
examples are described in the next two sections. 330 



9. Dual coupling networks 331 

 332 

The work described so far raises the question as to whether, for a coupling 333 

network N with network matrices NM̂  and NÂ  there exists a dual coupling 334 

network N* with network matrices *ˆ
NM  and *ˆ

NA  such that *ˆ
NM  and *ˆ

NA  are 335 

identical to NÂ  and NM̂  respectively? Dual coupling networks have been created 336 

and the procedure for creating them has been explained in detail [32], the 337 
chosen example is the coupling network N shown in Fig. 1 and its dual. The 338 
procedure requires the identification of dual couplings and dual coupling graphs. 339 
The duals of some simple planar kinematic chains have also been described [8] 340 
[17]; the latter is mentioned again in the next section. 341 

Such studies are an aid to an understanding screw theory and graph theory. 342 
Furthermore, whereas actions are difficult to imagine in a coupling network N, it 343 
is relatively easy to imagine the geometrically identical screws that that describe 344 
the motions that can take place within the dual network N*. 345 

 346 

10. Applications 347 

 348 

The first two subsections involve coupling networks for which the geometry can 349 
be greatly simplified by ignoring some of the constraints. A consequence is that 350 
the dimension d can be less than six thereby making the matrices considerably 351 
smaller. 352 

 353 

10.1 Planar kinematic chains  354 
 355 

Studies [17] have been made of the duals of planar kinematic chains that are in 356 
critical configurations. By confining attention to motion screws belonging to the 357 
fifth special 3-system of screws, a dimension d of three can be used in 358 

assembling equation (1) with the consequence that matrix NM̂  is much smaller 359 

than it would otherwise be. A complete kinematic analysis of a Stephenson 360 
kinematic chain is provided using equation (1) and this is shown to be identical to 361 
the results of a static analysis of the dual of the kinematic chain using equation 362 
(2). 363 

 364 



10.2 Gear trains, friction and efficiency 365 
 366 

Equations (2, 4) have limited utility when applied to a kinematic chain for reasons 367 
that are discussed later in section 11. These equations do have value however 368 
for studies of the statics of machines operating at a constant speed. The two-369 
stage epicyclic gear train shown in Fig. 4 provides an example of the use of all 370 
four equations [11]. 371 

 372 

Figure. 4  A two-stage epicyclic gear train and a schematic diagram of it 373 

In order to use equations 1 and 3 for kinematic analysis no modification is 374 
needed. In order to use equations 2 and 4 for the statics problem however, the 375 
gear train must be supplemented by two 1-port coupling networks that provide a 376 
source and sink for power, an electric motor and a fan for example. Both of these 377 
1-port coupling networks contain an active coupling that transmits torque about 378 
the z-axis; they will also have bearings with the centre lines on the z-axis, but 379 
these duplicate the role played by bearings that exist within the gear train and 380 
can be ignored. 381 

A major problem remains. The two extra actions supplement the many actions 382 
that could exist attributable to overconstraint. Because equations 2 and 4 can 383 
only analyse internal actions those actions attributable to overconstraint cannot 384 
be avoided. The problem is thereby far more complex than it needs to be. The 385 
extended coupling network can be greatly simplified however without impairment 386 
to the basic statics problem by taking the following steps.  387 

� All but one planet in each stage is ignored. 388 
� All moving parts are assumed to exist in the z = 0 plane.  389 
� Both kinds of coupling, meshing gears and bearings, are assumed to be  390 

(c = f = 1) couplings by ignoring all other freedom and constraint. 391 
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 392 
Both the motion screws and the remaining action screws both belong to second 393 
special 2-systems of screws. These special screw systems differ geometrically 394 
however. Angular velocities have ISA parallel with the z-axis in the x = 0 plane, 395 
whereas forces have ISA parallel with the x-axis in the z = 0 plane. As Shai and 396 
Pennock [41] have observed of a similar gear train, the system is now identical to 397 
a sequence of levers. 398 

 399 

  400 
Figure. 5  The coupling graph GC of the gear train shown in Fig. 4 when it is 401 

augmented by two active couplings represented by edges h2 and i2 402 
 403 

For equation 2 two additional active couplings are needed and so, in Fig. 5, there 404 
are two edges from node 0 to node 1, and two edges from node 0 to node 4. The 405 
two additional edges h2 and i2 representing active couplings are shown as 406 
dashed lines. Fig. 5 is also the action graph GA because c = 1 for all couplings. 407 
The five independent cutsets are identified in Fig. 5 by chain-dotted lines. 408 
Because f = 1 for all couplings, again Fig. 5 is also the motion graph except that 409 
edges h2 and i2 can be omitted. The four independent internal circuits are then 410 
obvious. 411 

Cazangi and Martins [13] employ equation (1) for the analysis of two gear trains; 412 
one has two degrees of freedom, two forward ratios and one backward; the 413 
second has three degrees of freedom, three forward ratios and one backward.  414 

Laus et al [14] employ equations 1 and 2 for studies of the efficiency of an 415 
epicyclic gear train and a Humpage gear train. For both, account is taken of 416 
friction, including gear tooth friction. 417 

Tischler et al [15] uses equation (4) for a study of friction in multi-loop linkages. 418 
This may be the only occasion that equation (4) has been used for an application 419 
except for the epicyclic gear train described above. 420 

 421 

 



10.3 Kinematic chains in critical configurations 422 
 423 

Tischler [16] uses equation (1) in a study of critical configurations of a RCCC 424 
kinematic chain; Davies and Laus [17] do likewise for a planar 6-Link 425 
Stephenson kinematic chain. 426 

 427 

10.4 The use of symbolic screw components 428 
 429 

In a study to predict the slop that results from clearances in couplings of the 430 
Melbourne dextrous finger, Tischler et al [18] use symbolic screw components so 431 
that the analysis is valid throughout the cycle of configurations instead of only at 432 
one instantaneous configuration. 433 

 434 

10.5 The use of virtual couplings (Assur groups) 435 
 436 

An Assur group does not introduce additional constraints. For example, for a 437 
planar manipulator it can comprise PPR couplings in series; for a spatial 438 
manipulator PPPRRR or PPPS couplings in series. Equation (1) proves to be 439 
very useful; the primary variables can be either those of couplings of the 440 
manipulator or, for inverse kinematics, couplings of the Assur group.  441 

Several workers have used Assur groups in combination with equation (1). Erthal 442 
et al [19] use them for a study of vehicle suspension; Campos et al [20] for the 443 
inverse kinematics of serial manipulators and [21] for the inverse kinematics of 444 
parallel manipulators. Inverse kinematics also gets attention from Simas et al 445 
[22]. 446 

There is work reported by Guenther et al [23] and Santos et al [24] [25] on the 447 
study of underwater manipulators. Simas et al [26] [27] and Rocha et al [28] 448 
report on work to avoid collisions and for carrying out tasks such as remote 449 
repair. Ribeiro et al [29] [30] describe the use of virtual chains in studies of 450 
cooperating robots. Recently, Ponce Saldias et al [31] [42] have extended the 451 
application of equation 1 and Assur groups to the modelling of the human knee 452 
to aid pre-operative planning. 453 

11. Discussion 454 

 455 

In this section some lessons learned from the foregoing are discussed. 456 



 457 

11.1 If there is a “fixed” member in a mechanism, does it 458 

matter which it is? 459 
 460 

In his lengthy notes that he includes in his English translation of Reuleaux [43], 461 
Kennedy [44] argues that a machine is defined by many in terms of what it does 462 
whereas, ideally, it should be defined in terms of what it comprises. In [10] this 463 
criticism is extended to some definitions provided by IFToMM [36]. In section 4 464 
some extracts from [10] are repeated in order to draw attention to the fact that 465 
there is not necessity to identify an element (body/link/member) that is fixed. Of 466 
course, there are mechanisms, such as some handheld tools, wherein the term 467 
"fixed" is irrelevant.  468 

For studies of kinematics and statics, the significance of a fixed member is 469 
unimportant. It is accepted of course that if acceleration, the second derivative of 470 
displacement, is a feature then it is essential to identify an inertial member, most 471 
frequently the earth.  472 

 473 

11.2 A directed graph provides a concise and easily 474 

accessible record of a user-selected sign convention. 475 
 476 

Anyone who has learned, or taught, elementary mechanics using free body 477 
diagrams may remember the tedium involved in using arrows twice, once on 478 
each of two directly coupled bodies. Likewise, for kinematics, it is necessary to 479 
distinguish the motion of body A relative to body B and body B relative to body A. 480 

A directed graph has merits. A positive sense assigned to an edge by using an 481 
arrowhead indicates which, of two possibilities, will be regarded as the positive 482 
sense in any analysis. The choice of direction is an arbitrary decision. The 483 
coupling graph GC in Fig. 5 of the gear train shown in Fig. 4 has nine edges so 484 
there are 512 possible different sets of directed edges. Fig. 3 provides evidence 485 
that it is the author’s practice to assign the positive direction away from the node 486 
labelled with the lower number. It is suggested here that the directed graph 487 
provides a concise store of a sign convention of the user’s choice that can be 488 
read at a glance. 489 

 490 

11.3 In order to write the reciprocity condition it is 491 

sufficient to remember rR  492 
 493 



In recent publications [11] [12] [17] [32] the author has chosen to represent the 494 
reciprocity condition for motion and action screws as follows:  495 

rR + sS + tT + uU + vV + wW = 0. 496 

Where {r, s, t} are the {x, y, z} components of angular velocity; {u, v, w} are 497 
components of the velocity of a point located at the origin; {R, S, T} are the 498 
components of moments measured at the origin; and {U, V, W} are the 499 
components of forces. The simple layout in the equation above is easily 500 
remembered and easily keyboarded. Others may prefer asterisks and exotic 501 
curly fonts. Note that R - W is sequential whereas L – R is not; T is the moment 502 
about the z-axis, often the moment of Torque, and u and v are easily 503 
remembered velocity components of the origin along the x- and y-axes 504 
respectively. Furthermore, p is available for the pitch of a screw. 505 

 506 

11.4  Mechanical network theory can be much more complex 507 

than electrical DC network theory. 508 
 509 

Suppose that a coupling graph GC, such as the one shown in Fig. 2, is also the 510 
graph of an electrical network. To keep matters simple suppose also that every 511 
one of the e edges corresponds either to a battery, or a resistor.  512 

A coupling graph has l independent 
circuits and chords. For the equivalent 
electrical network there are therefore le 
elements in the voltage law equation 
matrix. For the equivalent mechanical 
matrix NM̂ , the number of elements is 
Fdl. The ratio is: Fdl/le = Fd/e. 

A coupling graph has k independent 
cutsets and branches. For the 
equivalent electrical network there are 
therefore ke elements in the current 
law equation matrix. For the equivalent 
mechanical matrix NÂ , the number of 
elements is Cdk. The ratio is: Cdk/ke = 
Cd/e. 

 513 

Summary of results drawn from examples mentioned in this paper are provided 514 
in Table 3 below. 515 

Table 3: The size of matrices relative to those of a topologically identical DC 516 
electrical network  517 

 
Coupling network 

 
d 

 
e 

Circuit law Cutset law 
F Fd/e C Cd/e 

Fig. 1 6 5 13 78/5 17 102/5 
Stephenson III, a 6-link 
planar kinematic chain [17] 

6 7 6 36/7 20 180/7 
3 7 6 18/7 N/A 

Simplified epicyclic gear 
train, Fig. 4 

2 11 N/A 11 2 
2 9 9 2 N/A 



 518 

Judging by the ratio of the number of elements in matrices, Fd/e and Cd/e, the 519 
complexity of the coupling network problems are generally much greater than 520 
those of a simple DC network having the same topology.  521 

 522 

11.5 Which equations are best? 523 
 524 

For kinematic chains it has been observed that C, CN, and matrix NÂ  are larger, 525 

sometimes much larger, than F, FN and matrix NM̂  respectively. This suggests 526 

that, for statics of machines, equation 4 is superior to equation 2 and, for 527 
kinematics, equation 1 is superior to equation 3 which may explain why Jean 528 
Bernoulli never wrote about virtual actions. 529 

 530 

11.6 Actions attributable to overconstraint cannot be 531 

measured by geometry and topology 532 
 533 

Overconstraint is potentially dangerous, so awareness of its existence is 534 
important. This topic is also discussed in section 11.8. For kinematic chains 535 
equations 2 and 4 are incapable of providing the magnitudes of actions. These 536 
equations can enable all C actions that can exist within a kinematic chain that 537 
are attributable to overconstraint to be expressed in terms of a set of CN actions 538 
that are chosen as primary variables. The magnitudes of these CN actions remain 539 
unknown however; they are dependent on tolerances, shape, manufacturing 540 
errors, temperature and material properties. 541 

 542 

11.7 The dual zeroth laws of mechanics 543 
 544 

The zeroth law of thermodynamics is fundamental, very simple, and too obvious 545 
for much notice to be taken of it. The decision to number the law as the zeroth 546 
law is attributed to Fowler and Guggenheim [48].The law can be stated in several 547 
ways, Fowler and Guggenheim write:  548 

If two thermal assemblies are each in thermal equilibrium with a third assembly, 549 
then all three are in thermal equilibrium with each other.  550 

The following dual laws for actions and motions within coupling networks can be 551 
expressed in tandem. 552 



The action law The motion law 
An action can be transmitted around a 
circuit comprising bodies and couplings 
provided that all those couplings are 
capable of transmitting that action. 

Two bodies separated by a cutset of 
couplings can have relative motion 
provided that all those couplings are 
capable of allowing that motion. 

 553 

Because the dual laws above, like the zeroth law of thermodynamics, are 554 
fundamental, very simple, and too obvious for much notice to be taken of them, 555 
maybe it is appropriate that they be called the dual zeroth laws of mechanics. 556 

In this paper, with its focus on coupling networks, it is appropriate to write the law 557 
in its dual form; the symmetry of duality is also appealing. If duality is ignored the 558 
action law can be stated in a simpler way as:  559 

An action cannot exist without a circuit capable of transmitting it.  560 

This simple law becomes apparent when actions are internalised as they must be 561 
to employ equations (2, 4). It may have been overlooked because Isaac Newton 562 
was a free body diagram man: he never internalised actions. 563 

Turning to the motion law, it is obvious that two bodies can be in relative motion 564 
without being members of a coupling network. In these circumstances it could be 565 
said that the only coupling is a null coupling that allows any motion. 566 

 567 

11.8 Does elastic design get sufficient attention?  568 
 569 

The existence of overconstraint can result in fatigue failure. Attempts to limit the 570 
dangerous consequences of overconstraint are of two kinds. One is kinematic 571 
design whereby additional freedom is introduced thereby increasing FN and, by 572 
doing so, reducing CN. This is certainly the preferred route for precision 573 
instruments. The second kind is to employ elastic design whereby, by changes in 574 
certain dimensions or a change of materials, some parts are made sufficiently 575 
compliant to allow limited elastic deformation. 576 

Most writers concentrate attention on their speciality, either the kinematic 577 
approach or the elastic approach. Professor Michael French, an academic and a 578 
writer on the subject of engineering design, is an exception. He is an unrepentant 579 
generalist exemplified by his statement: "Never ask a specialist; they always give 580 
the wrong answer." Ouch! In his book [45], there is a chapter titled Kinematic and 581 
Elastic Design. It is a very good balanced account of the two approaches with 582 
several examples from gear trains that were in production at the time of 583 
publication. 584 

 585 



11.9 Screw theory is addictive. All papers and books that 586 

mention screw theory should be required to print a 587 

warning: screw theory can damage your career. 588 
 589 

The reader will understand the author’s reluctance to provide evidence for this 590 
assertion but two addicts are mentioned if only because they are long since 591 
dead. In A History of Mathematics, Cajori [46] writes about Julius Plücker (1801-592 
1868) [47], one of the founding fathers of screw theory; the following is an 593 
extract. 594 

“In Germany J. Plücker’s researches met with no favour. His method was 595 
declared to be unproductive as compared with the synthetic method of J. Steiner 596 
and J. V. Poncelet! His relations with C. G. J. Jacobi were not altogether friendly. 597 
Steiner once declared that he would stop writing for Crelle's Journal if Plücker 598 
continued to contribute to it. The result was that many of Plücker’s researches 599 
were published in foreign journals, and that his work came to be better known in 600 
France and England than in his native country. The charge was also brought 601 
against Plücker that, although occupying the chair of physics, he was no 602 
physicist. This induced him to relinquish mathematics, and for nearly 20 years to 603 
devote his energy to physics. Important discoveries on Fresnel's wave-surface, 604 
magnetism and spectrum-analysis were made by him. But towards the close of 605 
his life he returned to his first love, mathematics, and enriched it with new 606 
discoveries. By considering space as made up of lines he created a "new 607 
geometry of space." 608 

Another major contributor to screw theory was Sir Robert Stawell Ball (1840-609 
1913) [34]. He also had a day job. In 1892 he was appointed as Lowndean 610 
Professor of Astronomy and Geometry at Cambridge University at the same time 611 
becoming director of the Cambridge Observatory. He was in great demand as a 612 
popular speaker on astronomy. His important contributions to screw theory 613 
however were ignored for around 70 years.  614 

So, perhaps the best way of defeating drug traffickers is to ignore them. 615 

 616 

11.10 Actions and motions rarely appear in the same 617 

textbook 618 
 619 

Mention of Robert Ball brings back memories of something written [11] on the 620 
occasion of symposium held in 2000 to celebrate the hundredth anniversary of 621 
the publication of his book, A Treatise on the Theory of screws [34]. It is worth 622 
mentioning again. 623 



Can you imagine a University’s Department of Electrical Engineering advertising 624 
for two posts; one for a teacher of Electrical Circuit Theory (electrical currents) 625 
and another for a teacher of Electrical Circuit Theory (potential differences)? 626 
Electrical currents and potential differences are "through" and "across" variables 627 
respectively, as are actions and motions. Yet, despite being geometrically 628 
identical, actions and motions (first order time derivative of displacements) are 629 
often taught using separate textbooks and very often by different teachers. There 630 
is, of course, much more to kinematics than motion defined in this way. 631 

12. Conclusions 632 

 633 

Graph theory has an important role to play in assembling dl simultaneous 634 
equations for kinematic analysis and dk simultaneous equations for statics 635 
analysis. The matrices assembled for those equations can be used again, when 636 
transposed, in two virtual power equations that also provide kinematics and 637 
statics analysis. Graph theory also contributes concepts and terminology to these 638 
virtual power equations; notably the concepts of cutset motions and circuit 639 
actions. One further outcome is a pair of dual topological laws, called here the 640 
zeroth laws of mechanics.  641 

It was Erskine Crossley who sowed the seed.  642 
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Figure Caption 
1 A spatial kinematic chain 

2 The coupling graph GC of the kinematic chain shown in Fig. 1 

3 Graphs of the kinematic chain shown in Fig. 1: a) motion graph GM; b) 
action graph GA 

4 A two-stage epicyclic gear train and a schematic diagram of it 

5 The coupling graph GC of the gear train shown in Fig. 4 when it is 
augmented by two active couplings represented by edges h2 and i2 
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Table 1:  Results obtained from the solution of equation (1) for the kinematic 

chain shown in Figure 1. 

Pairs 
of 
bodies 

Label of 
direct 
coupling 

Motion components 

f Direct couplings with 
F unknowns 

fij After assembly, using {sa, ta, 
vc} as primary variables 

1, 2 d 2 {0, sd, 0, 0, vd, 0} 1 {0, 0, 0, 0, vc, 0} 
1, 3 e 2 {0, se, 0, 0, ve, 0} 2 {0, -sa, 0, 0, vc, 0} 
1, 4 c 3 {0, 0, tc, uc, vc, 0} 2 {0, 0, ta, 0, vc, 0} 
2, 3 Absent  N/A 1 {0, sa, 0, 0, 0, 0} 
2, 4 b 3 {rb, sb, tb, 0, 0, 0} 2 {0, 0, ta, 0, 0, 0} 
3, 4 a 3 {ra, sa, ta, 0, 0, 0} 2 {0, sa, ta, 0, 0, 0} 

 

Table 2:  Results obtained from the solution of equation (2) for the kinematic 

chain shown in Figure 1. 

Pairs 
of 
bodies 

Label of 
direct 
coupling 

Action components 

c Direct couplings with 
C unknowns 

cij After assembly, using  
{Ub, We} as primary variables 

1, 2 d 4 {Rd, 0, Td, Ud, 0, Wd} 1 {0, Ub, 0, Ub, 0, -Ub } 
1, 3 e 4 {Re, 0, Te, Ue, 0, We} 2 {0, 0, 0, -Ub, 0, We} 
1, 4 c 3 {Rc, Sc, 0, 0, 0, Wc } 2 {0, -Ub, 0, 0, 0, (Ub - We)} 
2, 3 Absent  N/A  N/A 
2, 4 b 3 {0, 0, 0, Ub, Vb, Wb} 2 {0, Ub, 0, Ub, 0, -Ub } 
3, 4 a 3 {0, 0, 0, Ua, Va, Wa} 2 {0, 0, 0, -Ub, 0, We } 
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