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ABSTRACT 

In this study, the effectiveness of the HSO5
-/Mn+/UV process on the treatment of winery 

wastewater (WW) was investigated. The optimal operating conditions were determined: 

[HSO5
-] = 2.5 mM; [M2(SO4)n] = 1.0 mM; pH = 6.5 and reaction temperature = 323 K. 

Under the given conditions, 51%, 42% and 35% of COD removal was achieved using 

respectively Fe(II), Co(II) and Cu(II) as catalysts. Different UV sources were tested 

with the previously selected optimal conditions in order to increase the treatment 

efficiency. The highest COD removal (82%) was achieved using a UV-A LEDs system 

(70 W/m2). These conditions were also promising for the treatment of WW with COD 

concentrations of 5000 mg O2/L, reaching 79% and 64% of COD and TOC removal, 

respectively, after 180 minutes of treatment. At 323 K, the most effective treatment was 

obtained when Co(II) was used as catalyst (79% and 64% of COD and TOC removal), 

while at ambient temperature (293 K) the highest COD (65%) and TOC (52%) removals 

were obtained with Fe(II) catalyst. Moreover, it was demonstrated that the use of HSO5
-

/Mn+ in several consecutive doses was more efficient than adding the reagents as a 

single dose at the beginning of the reaction. A comparison between the performance of 

the HSO5
-/Fe(II)/UV-A LED process and the conventional photo-Fenton demonstrated 

important advantages associated with the HSO5
-/Fe(II)/UV-A LED process, including 

the absence of the costly pH adjustment and of the hydroxide ferric sludge which 

characterize the photo-Fenton treatment process. The HSO5
-/Mn+/UV-A LED process 

demonstrates a high COD and TOC removal efficiency, and it can be considered a 

promising technology for application in real scale agro-food wastewater treatment 

plants. 

Keywords: winery wastewater; SR-AOPs; peroxymonosulphate; UV LEDs; cobalt; iron.  
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1. Introduction 

The agricultural food industries produce large volumes of wastewater containing high 

concentrations of organic materials, which are occasionally discharged into municipal 

wastewater systems [1-3]. These effluents are mainly originated from various unit 

operations such as washing, crushing and pressing of food and grapes, as well as, the 

rinsing of fermentation tanks, barrels and other equipment [4, 5]. 

A winery typically produces around 1.3 – 1.5 kg of effluent per litre of wine produced. 

A high organic load of soluble sugars, organic acids, alcohols, polyphenols, tannins and 

structural polymers [6, 7] and an acidic pH characterize these effluents. In addition, 

these effluents present a seasonal variability and unpleasant odours, causing 

environmental and aesthetic problems in the wine producing countries. 

The European Directive 91/271/EEC classifies these effluents as similar to urban 

wastewater [8]. For this reason, a high number of winery industries use wastewater 

treatments methods resembling those used in Municipal Wastewater Treatment Plants 

(MWWTP). However, conventional wastewater treatments do not work satisfactorily 

due to the seasonal variability and the high organic concentration of winery effluents. 

For these reasons, Advanced Oxidation Processes (AOPs) are gaining importance in the 

treatment of these effluents, due to the capacity of generating free radicals, which can 

attack and degrade the complex molecules found in winery wastewater.  

AOPs can be classified on the basis of the radical species generated as hydroxyl based 

(HO●; HR-AOPs) or sulphate based (SO4
●; SR-AOPs). The most common HR-AOPs are 

based on the photolysis of hydrogen peroxide (UV-H2O2 process) or in the combination 

of a semiconductor photocatalyst (e.g., TiO2 or iron oxides) with an oxidant (e.g., 

oxygen or hydrogen peroxide) and UV radiation; this is the case of TiO2-photocatalysis 
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and the photo-Fenton reaction. The powerful hydroxyl radical generated are able to 

oxidize a large variety of organic compounds [9, 10] and inactivate a wide range of 

microorganisms [11, 12]. 

Fenton’s reagents oxidation (HR-AOPs) is a homogeneous catalytic oxidation process 

based on the decomposition of hydrogen peroxide by ferrous ions resulting in the 

generation of hydroxyl radicals HO● [13-16]. The production of HO● is greatly increased 

by UV-vis radiation of wavelength up to 600 nm (photo-Fenton process). Photo-Fenton 

produces hydroxyl radicals via a series of catalytic cycle reactions with iron [Fe(II) and 

Fe(III)], H2O2 and UV radiation. The highest photo-Fenton efficiency is found at pH 2.8 

[17], since iron salts precipitate far from this pH value. These reactions are summarized 

as follows: 

Fe2+ + H2O2 → Fe3+ + OH- + OH● (k = 70 M-1 s-1)     (1) 

Fe(OH)2+ + hν → Fe2+ + OH●       (2) 

Recently, sulphate radical-based AOPs (SR-AOPs) are gradually attracting attention as 

in situ chemical oxidation technologies, complementing HR-AOPs. Sulphate radicals 

processes are based in the addition of chemical oxidants as persulphate salts, such as 

Na2S2O8, K2S2O8 and KHSO5 [18]. 

Peroxymonosulphate (HSO5
-; PMS) is the active ingredient of a triple potassium salt, 

2KHSO5•KHSO4•K2SO4. This salt has some advantages when compared to hydrogen 

peroxide. For instance, the oxidation potential of HSO5
- (𝐸°!"!!!/!"!!! = 1.82  𝑉) is 

higher than hydrogen peroxide (𝐸°!!!!/!!! = 1.78  𝑉), although lower than hydroxyl 

radical (𝐸°!"● = 2.80  𝑉). Moreover, PMS is relatively stable at ambient temperature 

and easy to handle since it is in a powder form. However, PMS presents some 

disadvantages such as that it reacts slowly with organic species at ambient temperature. 
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PMS can be easily activated into highly reactive radicals by two different routes: i) 

through homolytic cleavage of the peroxide bond of HSO5
- by photolysis or thermolysis 

(Eq. 3); ii) via one electron transfer by transition metal (Eq. 4 – 6) [19-21]. 

𝐻𝑆𝑂!!
!!/∆

  𝑆𝑂!●! +𝐻𝑂●	
   	
   	
   	
   	
   	
   	
   	
   (3)	
  

𝐻𝑆𝑂!! +  𝑀!!
   →   𝑆𝑂!●! +   𝑀  

!!! ! +𝑂𝐻!	
  	
   	
   	
   	
   	
   (4)	
  

M = Co(II), Fe(II) and Ru(III) 

𝐻𝑆𝑂!! +  𝑀!!
   →    [  𝑀  

!!! !(𝑆𝑂!●)]!! +𝑂𝐻!     (5) 

M = Ce(III), Mn(II), Ni(II) 

𝐻𝑆𝑂!! +  𝑀(!!!)!
   →   𝑆𝑂!●! +   𝑀  

!! +𝐻!      (6) 

M = Ce(IV), Fe(III), Mn(III) 

The efficient activation of HSO5
- through the use of different transition metals such as 

Fe(II), Co(II) Ni(II), and other metals, has been reported in literature [20, 22]. However, 

it is not clear which transition metal is the most effective for the activation of HSO5
-. 

For instance, the coupling of HSO5
-/Fe(II) is one of the most common combination, but 

it presents some disadvantages similar to the Fenton reaction, such as a slow 

regeneration of Fe(II) from Fe(III) and the production of a ferric hydroxide sludge [20]. 

In contrast, the coupling of HSO5
-/Co(II) presents some advantages in comparison with 

Fenton reaction, including the possibility of applying the HSO5
-/Co(II) process without 

pH adjustment [23, 24]. 

Within this background, the main objective of this study was to evaluate the 

performance of SR-AOPs (HSO5
-/Mn+/UV) as a new and emerging process for the 

treatment of winery wastewater. In this study we determined the most effective 
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operational conditions of the HSO5
-/Mn+/UV oxidation process such as pH, temperature, 

dosage of HSO5
-, the impact of transition metal salts (M2(SO4)n) and the influence of 

different artificial UV radiation sources. Finally, the HSO5
-/Mn+/UV oxidation process 

performance was compared with the photo-Fenton treatment of winery wastewater 

performed under the same operational conditions, to determine the benefits of this new 

treatment process. 

 

2. Materials and Methods 

2.1. Winery wastewater  

Four different winery wastewater effluents were sourced. The pH of these effluents was 

in the range 3.6 to 4.0 and the COD load ranged from 513 to 5391 mg O2/L. Table 1 

summarizes the physico-chemical characteristics of the winery effluents. 

 

Table 1 

 

2.2. Reagents 

The SR-AOPs were carried out with different dosages of potassium 

peroxymonosulphate (PMS; 2KHSO5·KHSO4·K2SO4; Merck) coupled with different 

concentrations of transition metals (CoSO4·7H2O; ZnSO4; NiSO4; CuSO4; 

FeSO4·7H2O; Ag2SO4; MgSO4 or MnSO4; Panreac). Sulphuric acid (H2SO4; Scharlau) 

and sodium hydroxide (NaOH; Panreac) were used for pH adjustment. H2O2 (30% w/w, 

Scharlab) was used to carry out the Fenton and photo-Fenton treatments. All the 

reagents used were analytical grade. 

 

2.3. Analytical determinations 
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Different physico-chemical parameters such as pH, conductivity, redox potential, 

turbidity, Total Suspended Solids (TSS), Chemical Oxygen Demand (COD), Total 

Organic Carbon (TOC) and Total Polyphenols (TP) were analyzed for the samples 

characterization. In addition, values of COD and TOC were analyzed during the 

treatments in order to assess the efficiency of the treatments. 

Chemical Oxygen Demand was measured according to 410.4 Method of Environmental 

Protection Agency of USA [25], using a HACH DR/2400 portable spectrophotometer. 

Total Carbon (TC) and Total Inorganic Carbon (TIC) were separately determined by 

catalytic combustion at 680°C (Standard Methods 5310B [26]) and acidification, 

respectively, both using a non-dispersive infrared detector (NDIR) in a TOC-L 

CSH/CSN analyzer equipped with an ASI-L autosampler (Shimadzu). Total organic 

carbon (TOC) was given by the difference between TC and TIC. The pH and redox 

potential were determined by a HANNA pH 209 laboratory meter following the 

Standard Method 4500-H+-B and 2580, respectively [26], while conductivity was 

measured by a Crison Basic as indicated in ISO 7888:1985 [27]. Turbidity was 

measured according ISO 7027:1999 [28] using a HACH 2100 IS Turbidimeter, while 

Total Suspended Solids (TSS) were measured by spectrophotometry according to 

Standard Method 2540D using a HACH DR/2400 portable spectrophotometer [26]. 

Finally, the concentration of Total Polyphenols (TP), (mg gallic acid/L), was 

determined by spectrophotometry using the Folin-Ciocalteu reagent (Merck) [29]. UV–

vis measurements were carried out using a Jasco V-530 UV/VIS spectrophotometer. 

 

2.4. UV radiation sources 

Three UV radiation sources were used: i) a Heraeus TNN 15/32 low pressure mercury 

vapour lamp and ii) two UV-A LEDs systems. 
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Heraeus TNN 15/32 mercury lamp 

Batch experiments were performed in a Heraeus photoreactor (height 18 cm; diameter 8 

cm). The cylindrical reactor of 800 mL capacity was made of borosilicate glass with 

ports, in the upper section, for sampling. The photoreactor was fitted with a Heraeus 

TNN 15/32 lamp (14.5 cm in length and 2.5 cm in diameter) mounted in the axial 

position inside the reactor. The spectral output of the low-pressure mercury vapour lamp 

emits mainly (85–90%) at 253.7 nm and about 7–10% at 184.9 nm. The reaction 

temperature in the reactor was kept at the desired value within ±0.5 °C by using a 

thermostatically controlled outer water jacket. The reactor was loaded with 500 mL of 

winery wastewater and continuous mixing was maintained by means of a magnetic 

stirrer. 

 

UV-A LEDs radiation (365 and 370 nm) 

The photo-assisted PMS/metal reactions were carried out in a lab-scale batch reactor 

which was illuminated with two different UV-A LED photo-systems [30, 31]. The 

applied UV radiation in the first photo-system was generated by a matrix of 96 Indium 

Gallium Nitride (InGaN) LEDs lamps (Roithner RLS-UV370E) which illuminated an 

area of 11 x 7 cm2. These LEDs have a light peak emission at 370 nm, and the nominal 

consumption of each LED lamp was 80 mW when the applied current was 20 mA. The 

maximum average optical power was, approximately, 100 mW. The array optical 

emission was controlled with a pulse width modulation (PWM) circuit that modulated 

the electric current supplied to each LED in the array. The current supplied had a square 

waveform with two states: 0 mA (LED emission OFF) and 30 mA (LED emission ON) 

and a frequency of 350 Hz. The PWM module allowed the configuration of the ON 
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state time duration in each cycle between 0 and 100% of the cycle period and, 

consequently, the emitted average optical power was modulated between 0 and 100 mW 

depending on value of the root mean square (RMS) of the electric current intensity 

waveform supplied to the LED array by the PWM module. The system irradiance was 

measured using an UV enhanced Si-photodetector (ThorLabs PDA155) in a 

configuration that replicates the one used in the photoreactor. In this system, the output 

optical power was controlled using a pulse width modulation (PWM) circuit and the 

RMS current intensity was measured with a multimeter (UniVolt DT-64). 

The second and more powerful photo-system consisted by a matrix of 12 InGaN LEDs 

lamps (Roithner APG2C1-365E LEDS) with a maximum emission wavelength at 365 

nm. The nominal consumption of each LED lamp was 1.4 W at an applied current of 

350 mA. The output optical power was controlled by maintaining the forward current 

constant using a power MOSFET with six different allowed current settings. 

The photoirradation treatments were carried out with a RMS current intensity of 240 

mA in the first UV-A LED photo-system, corresponding to a UV irradiance of 23 W/m2 

and a photon flux of 5.53 × 10-7 Einstein/s. The second photo-system irradiance was 70 

W/m2 and the corresponding photon flux was 1.64 × 10-6 Einstein/s. 

2.5. Electrical energy determination 

The figure-of-merit electric energy per order (EEO) [32] was used to evaluate the 

efficiency of the AOP used. This parameter refers to the electric energy in kilowatt 

hours (kWh) required to reduce the concentration of a pollutant C by one order of 

magnitude in a unit volume (1000 L) of contaminated water. EEO can be calculated as 

follows (Equation 7): 
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𝐸!" =
!·!·!"""

!·!"#
!!
!!

  Batch mode      (7) 

Where P is the rated power (kW) of the system, V is the volume (L) of water treated in 

time t (h), Ci and Cf are the initial and final concentrations, and the factor of 1000 

converts g to kg. Higher EEO values correspond to lower removal efficiencies. 

 

2.6. Experimental procedure 

All the experiments were carried out in duplicate and values presented are the average 

of both results. The observed standard deviation was always less than 5% of the 

reported value. 

PMS treatments (SR-AOPs) 

Batch experiments were performed on 500 mL of winery wastewater. The pH of the 

winery wastewater was initially adjusted using H2SO4 or NaOH and measured by a 209 

pH meter from Hanna Instruments. Then, the effluent was heated to the operating 

temperature, which was in the range from 293 to 323 K. Finally, the assay started when 

the dosage of PMS (1 – 20 mM) and the metal sulphate catalyst (0.1 – 8 mM) were 

added to the effluent at the same time. In the photo-assisted experiments the assay 

started when the UV radiation system was switched on, also corresponding to the 

addition of PMS and catalyst. During the course of the reaction samples were 

withdrawn at periodic interval and analysed. 

 

Fenton and photo-Fenton treatments (HR-AOPs) 

Batch experiments were performed on 500 mL of winery wastewater. The second UV-A 

LED system was used in the photo-Fenton experiments. The pH of the winery 
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wastewater was initially adjusted to 3 or 6.5, using H2SO4 or NaOH. Then, the effluent 

was heated to the operating temperature, which was in the range from 293 to 323 K, and 

subsequently FeSO4·7H2O (1 – 8 mM) was added to the effluent. Finally, hydrogen 

peroxide (range 2.5 to 20 mM) was directly added to the photoreactor at the beginning 

of each experiment. Samples of the treated effluent were withdrawn during the course of 

the reaction, at predetermined time intervals and analysed. The concentration of H2O2 

was monitored via Merckoquant peroxide analytical test strips (Test Peroxides, Merck 

Merckoquant). Na2SO3 (Panreac®) was added to water samples to eliminate residual 

hydrogen peroxide in each sample. In addition, the temperature of the samples was 

monitored. 

 

3. Results and discussion 

3.1. SR-AOPs 

Optimization of operational conditions 

The role of different operating parameters such as pH, temperature, PMS concentration, 

type of transition metal and concentration, as well as the UV radiation source were 

investigated to establish the optimal operational conditions for the treatment of winery 

wastewater with the SR-AOPs. In these experiments, winery wastewater with a COD 

concentration of approximately 500 mg O2/L was used. Initially, the pH was varied in 

the range 2 to 8 to determine the pH that achieved the fastest COD removal, with a PMS 

concentration of 4.0 mM, without metal catalyst, at 293 K and in the absence of UV 

radiation during the 90 minutes run. Subsequently, the same set of experiments was 

carried out by adding 1.6 mM of CoSO4·7H2O metal catalyst.  

 

Figure 1 
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Figure 1A shows the COD removal obtained as a function of the initial pH. In the 

absence of the sulphate salt, the COD removal did not exceed 10%, while in the 

presence of CoSO4·7H2O, 20% COD removal was reached. The highest removals were 

achieved at pH 5.0 and 6.5. The last one was chosen as optimal pH since it is nearer to 

neutral pH. These results are supported by those obtained by Sun et al. for the treatment 

of landfill leachate [33]. On the other hand, the optimal pH is a function of the chemical 

and physical nature of the effluent and some authors have reported acidic pH values as 

optimal for the removal of pharmaceuticals and dyes [34, 35]. Nevertheless, this study 

suggests that the PMS can also be used at neutral pH obtaining relatively high COD 

removals in water and urban wastewater treatment thus avoiding the pre- and post-

adjustment of pH of the effluents. In the case of the winery wastewater, a slight pre-

adjustment of the pH is required, because of the acidic condition of this kind of 

effluents. 

Some authors reported the need of thermal activation of PMS [21, 36]. Figure 1B shows 

the COD removal as a function of temperature after 90 minutes of treatment, using the 

optimal pH (6.5) and 4.0 mM of PMS and 1.6 mM of CoSO4·7H2O. The results show 

no differences between treatments carried out at ambient temperature (293 K) and 313 

K, however, the COD removal increased significantly at temperatures above 313 K, 

doubling COD removal at 333 K. In further experiments, the operating temperature of 

323 K was selected since higher temperatures result in an increase in the energy 

requirement to heat the water. 

After pH and temperature optimization, several dosages of PMS were applied in the 

range from 0 to 20 mM. Figure 1C shows the results after 90 minutes of treatment 

carried out at pH 6.5 and 323 K. A sharp increase in COD removal was observed up to 
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2.5 mM, followed by a plateau from 2.5 – 7.0 mM, with a COD removal around 42% 

and to a further increase in the COD removal at higher PMS dosages, such as 10 and 20 

mM reporting 50% and 68% of COD removal, respectively. Taking into account 

economic factors related to the cost of reagents, 2.5 mM was chosen as an optimal PMS 

dosage. 

Finally, the optimization of the concentration of CoSO4·7H2O in the range 0 to 5 mM 

was carried out using the optimal conditions obtained previously. The COD removal 

after 90 minutes of treatment reached a maxima (Figure 1D) at 1 mM of CoSO4·7H2O. 

Thus the optimal ratio PMS:Co(II) was 2.5:1, which obtained 43% of COD removal 

after 90 minutes of treatment. Sun et al. also observed a reduction of the COD removal 

at high Co(II) dosages [33]. They reported an optimal ratio PMS:Co(II) of 104, therefore 

being 4.5 mM and 4.5·10-4 the suitable dosages of PMS and Co(II), respectively, to 

mediate PMS decomposition in the treatment of landfill leachate (COD = 1116 mg/L). 

Wang and Chu observed that an excessive ferrous ion concentration will retard the 

process due to the SO4
●− scavenging effect by an excess of Fe(II) [21]. In the case of 

using Co(II), a similar behaviour could be considered.	
  

In further experiments, the effect of the metal species in the sulphate catalysts (ZnSO4, 

NiSO4, CuSO4, CoSO4, FeSO4, Ag2SO4, MgSO4 and MnSO4) which is responsible for 

the activation of HSO5
-, was investigated. These sulphate salts were tested in 

experiments lasting 90 min, carried out at pH 6.5, 323 K and using a PMS dosage of 2.5 

mM over winery effluents with a COD concentration of 500 mO2/L. Higher COD 

removals (Figure 2) were obtained with CuSO4, CoSO4 and FeSO4, reaching 35, 43 and 

51%, respectively. Co(II) has been reported as the most effective metal catalyst for the 

activation of HSO5
-, which further promotes a radical sulphate cascade mechanism [33, 
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37, 38]. Anipsitakis and Dionysiou [19, 22, 39] investigated different transition metals 

as catalysts for the decomposition of PMS. The reduction of Co(III) to Co(II) mediated 

by the oxidation of PMS is thermodynamically feasible (0.82 V) and fast, and the 

process proceeds cyclically many times until PMS is totally consumed [22]. However, 

in this reaction the Co(II) product formed is toxic and represents a serious risk to the 

environment if discharged with the effluent. Therefore, in this study Fe(II) sulphate was 

investigated for the treatment of winery wastewater as a replacement for Co(II), 

especially since the combination PMS/Fe(II) achieved COD removals of the same order 

as those obtained with Co(II). The main advantage of using Fe(II) as PMS activator lies 

in the synergistic effect with UV radiation, which produces sulphate and hydroxyl 

radicals, both of which enhance the degradation of organic matter in the winery 

wastewater. In this case, the catalytic cycle Fe(III)/Fe(II) is accelerated by the photo-

reduction of Fe(III)-complexes. Regarding the solution pH, Fe(III) can exist as ferric 

ions and/or Fe(III)-complexes which in some cases act as photosensitizers, such as 

Fe(OH)2+ according to Eq. 2 [21, 37-42]. Besides, significant results of COD removal 

were achieved with the combination of PMS/Cu(II). Ji et al. described the activation of 

PMS through combination with CuO, demonstrating the efficiency of this catalyst [43], 

and Madhavan et al. compared the coupled system Cu(II)/PMS and Fe(III)/PMS 

assisted by visible light [44]. 

 

Figure 2 

 

As observed, PMS can be activated through a high number of variables; nevertheless, 

other authors do not report the use of all of these activation agents. Besides, the 

operational conditions can vary with the chemical composition of each effluent. Sun et 

al. achieved optimal conditions to treat landfill leachate through the combination of 



15	
  
	
  

PMS/Co(II)/heating [33]. These optimal conditions present certain similarities with 

those obtained in this work. Sun et al. established as optimal pH 6.5, dosages of PMS 

and Co(II) of 4.5 mM and 4.5x10-4 mM, respectively, and temperature of 303 K [33]. 

Under these conditions, a COD removal of 57.5% was achieved after 300 minutes of 

treatment. This COD removal is significantly lower than the removals reported in this 

paper, using a lower dosage of PMS and during approximately half of the time. 

PMS/Mn+/UV radiation 

In order to increase the rate of organic matter removal, different UV radiation sources, 

including low pressure UV mercury lamp and UV-A LEDs lamps, were applied in 

combination with the optimal experimental conditions obtained in section 3.1. (2.5 mM 

PMS; 1 mM CoSO4·7H2O; pH = 6.5; T = 323 K). Figure 3 shows that most of the COD 

removal was obtained during the first 20 minutes of treatment. The highest values were 

achieved using the UV-A LEDs lamps with an irradiance of 70 W/m2 (80%), followed 

by the UV-A LEDs lamps with 23 W/m2 (62%) and the low pressure UV mercury lamp 

(55%) after a reaction time of 120 minutes, suggesting that the reaction is initially 

photon limited. As expected, the experiments performed without UV radiation reached a 

plateau at much lower COD removals (24%) due to the lack of sulphate radicals, after 

that Co(II) was totally consumed. A similar saturation kinetics was observed in the 

photo-assisted treatments, but the plateau is approached at much higher COD removals 

and much longer reaction times. Table 2 reports the values of the Electrical Energy per 

Order (EEO) for the different photo-assisted treatments. The low pressure mercury TNN 

15/32 lamp returned a very large EEO (173 kWh/m3/order) in consequence of the high 

electrical consumption of these types of UV lamp. In contrast, the UV-A LED photo-

systems (162 and 98 kWh/m3/order) more efficient than the TNN 15/32 lamp since most 

of the electrical energy applied is converted to UV radiation. 
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Table 2 

The activation of PMS by UV radiation has been reported in the literature [21, 42, 45-

48]. The photolysis of PMS with visible light (419 nm) or near-UV radiation (350 nm) 

is negligible, however, at 254 nm becomes significant, as reported for the degradation 

of 2,4,5- trichlorophenoxyacetic acid [21]. The photolysis of PMS, produces one mole 

of sulphate radical and one mole of hydroxyl radical per each mole of 

peroxymonosulphate (reaction 3). Thus, if the wavelength is higher than 260 nm, little 

or no photochemical decomposition of PMS was observed. However, the treatment of 

winery wastewater by the combination of PMS/Mn+/UV radiation, did not show 

significant differences when the radiation wavelength was varied, and significant COD 

removal was achieved with UV-A LED radiation. 

The treatment of winery wastewater by the PMS/Mn+/UV process was performed at 

different COD concentrations (500, 900, 1900 and 5000 mg O2/L) to investigate the 

treatment efficiency in more concentrated effluents which are more difficult to treat. 

Table 3 shows the COD reduction after the application of the most effective operating 

conditions (2.5 mM PMS; 1 mM CoSO4·7H2O; pH = 6.5; T = 323 K; UV-A LEDs 70 

W/m2). 

 

Table 3 

 

From Table 3, the COD removal it is almost the same independently of the initial COD 

concentration. Therefore, after 180 minutes, 3950 mg O2/L of COD were removed from 

an initial concentration of 5000 mg O2/L. However, the COD removal rate (mg COD 

removed/min) increases accordingly with the concentration of organic matter. When 
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treatments were applied over effluents with a COD load of 500 mg O2/L a removal rate 

2.22 mg/min was obtained. Meanwhile, over more concentrated effluents, e.g. 5000 mg 

O2/L, a removal rate of 19.33 mg/min was observed. Thus, a higher amount of COD 

was removed per minute when the effluent presents a higher organic load. Further 

experiments were carried out using the effluent with the highest COD load, because 

such treatment process was able to remove a higher amount of organic matter with the 

same operating conditions. However, a pre-treatment step can be applied to reduce the 

COD load and consumption of reagents and energy during the photocatalytic 

PMS/Mn+/UV process. 

 

Application of most effective operational conditions 

Different treatments were carried out in order to assess the influence of Co(II) and 

Fe(II) in combination with PMS, as well as, the influence of temperature when this was 

above ambient temperature, and the influence of an increase of PMS and transition 

metal concentration, keeping the molar ratio of PMS:Mn+ constant. Figure 4A shows the 

results of COD and TOC reduction in treatments carried out at 323 K, while Figure 4B 

shows the results obtained at ambient temperature. As it can be observed in Figure 4A, 

the experiments performed with Co(II) achieved slightly higher COD removal rate than 

those performed with Fe(II), but the plateau values achieved are approximately the 

same, suggesting the consumption of the limiting reactant [Mn+ = Fe(II) or Co(II)]. 

Moreover, it was observed that an increase in the concentrations of PMS and transition 

metal, at constant PMS:Metal molar ratio (2.5:1), resulted in a decrease in the final 

COD removal which was also observed in the TOC results. In terms of TOC removal, 

there was no difference in the removal rates observed with both metals. In all the 

treatments at 323 K it was observed that both the rates of removal of COD and TOC 
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decreased after 90 minutes. The rate decrease might be a direct consequence of the 

decrease of concentration of reactant species in solution. 

 

Figure 4 

On the other hand, the behaviour was opposite when the treatment was carried out at 

ambient temperature. Figure 4B shows that the COD and TOC removals were 

considerably lower at ambient temperature than at 323 K. However, the most important 

difference lies in that the higher COD removals were obtained through the combination 

of PMS with Fe(II) and using the highest concentrations PMS:Fe(II) (20:8 mM). During 

the first 60 minutes of treatment, the COD removal with Fe(II) catalyst was 48% and 

with Co(II) catalyst was 34% at the same molar ratio. After 180 min of the treatment the 

COD removals were 65 and 56% with Fe(II) (0.0057 min-1) and Co(II) (0.0039 min-1) 

respectively. At lower concentration and same molar ratio (2.5:1 mM; PMS:Metal) the 

COD removal proceeded at slower rates although the final COD removals after 180 min 

were similar to those obtained with the highest dosage of reagents, 64 and 52% with 

Fe(II) (0.0051 min-1) and Co(II) (0.0038 min-1), respectively. The TOC removals 

observed, which ranged from 50 to 60% (Figure 4B), also agree with the general trend 

observed on the removal of COD. 

The removal of total polyphenols (TP) through the application of PMS/Mn+/UV-A LED 

process at ambient temperature and 323 K is shown in Table 4 (TP removal results after 

180 minutes of treatment). The highest TP removal was obtained at conditions of 

ambient temperature combining 2.5 mM of PMS and 1 mM of Co(II) reaching a value 

of 70%, which are different than the conditions that obtained the highest COD and TOC 

removal. A similar TP removal, 69%, was obtained but combining 8 mM of Fe(II) with 

20 mM of PMS. The TP removal decreased with the increase of temperature until 323 
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K, reaching maximum removals of 56 and 55% using 8 mM of Co(II) and Fe(II), 

respectively, with 20 mM of PMS. 

 

Table 4 

Finally, the effect of the dosing procedure of the reagents was investigated using one 

dose or multiple dosing steps of PMS and CoSO4·7H2O. A higher dosage of PMS and 

CoSO4·7H2O (20 and 8 mM) using the same molar ratio (2.5:1) was selected and the 

solution was irradiated with UV-A LED radiation (70 W/m2) at pH 6.5 and 323 K. In 

the first set of experiments, the total amounts of PMS and Co(II) were added as a single 

dose at the beginning of the assay. Whilst, in the other set of the experiments, these 

reagents were added in six different dosing stages, every 30 minutes, so that in the last 

addition the total concentrations of PMS and Co(II) added to the solution were 20 and 8 

mM, respectively. The results presented in Figure 5 show no significant differences 

during the first 15 minutes of treatment, however thereafter, the COD removal increased 

when the reagents were added in stages. The final COD values after 180 min of 

treatment were 86% using multiple dosing and 70% using a single dose. In the absence 

of UV-A LED radiation a similar behaviour was observed, but at a reduced rate. In this 

case, the addition of reagents as a single dose, removed COD faster during the first 60 

minutes of treatment, due to the faster generation of radical species at higher 

concentration of reagents.  

 

Figure 5  

 

The above behaviour can be understood by considering the scavenging reaction of 

hydroxyl (reactions 8-11; [49]) and sulphate radicals (reaction 12; [50]). At the 
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beginning of the reaction the production of radicals is very rapid since the concentration 

of reagents is very high and the oxidation process is dominated by the production of 

radicals.  

Fe2+ + HO● → Fe3+ + OH-    (8) 

H2O2 + HO● → H2O + HO2
●   (9) 

Fe2+ + HO2
● → Fe3+ + HO2

-   (10) 

Fe3+ + H2O2 → Fe2+ + H+ + HO2
●  (11) 

HSO5
- + SO4

●- → HSO4
- + SO5

●-  (12) 

This results in a fast oxidation of the organic matter, however, in parallel the scavenging 

reactions also proceed at fast rate and the final COD removal does not reach its 

maximum value. In contrast, the addition of reagents in multiple doses keeps their 

concentration low in the reactor suppressing the rate of the scavenging reactions, and as 

a result a more gradual supply of radical species results in a significantly higher final 

COD removal (82%). This value approaches the same COD removal obtained at higher 

temperature (323 K) with a single dose of reagents, suggesting that it could be possible 

to reduce the operating costs, performing the treatment at ambient temperature and with 

a staged addition of reagents. The influence of number of dosing steps has also been 

reported by other authors both for the Fenton and the PMS/Co(II) oxidation. Deng and 

Englehard studied the behaviour in the treatment of landfill leachate by Fenton process, 

and considered that a single-step addition of the reagents may cause self-decomposition 

of oxidants due to high concentrations at the point of injection [51]. Sun et al. also 

tested various numbers of stepwise additions in the treatment of landfill leachate using 
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Fenton and PMS/Co(II) oxidation processes [33] and reported that three and seven 

doses  resulted in a faster treatment of the leachate. 

 

3.2. HR-AOPs. Photo-Fenton treatments 

The efficiency of SR-AOPs in the treatment of winery wastewater was benchmarked 

against the photo-Fenton reaction process, which was applied using the same 

operational conditions in terms of pH, temperature, Fe(II) concentration and oxidant 

concentration, in this case H2O2. Figure 6 shows the COD and TOC removal at pH 6.5 

at 323 K (Figure 6A) and at ambient temperature (Figure 6B) comparing the treatment 

of winery wastewater with the SR-AOP and photo-Fenton processes.  

 

Figure 6 

 

The photo-Fenton assays carried out at pH 6.5 using 2.5/1 mM H2O2/Fe(II) (Figure 6A) 

achieved the highest COD removal (85%) and faster removal rate. The COD removal 

with photo-Fenton was slightly higher than that obtained with the same concentrations 

of PMS/Fe(II)/UV (79%), despite the photo-Fenton treatment was performed at neutral 

pH, which differs from the optimum conditions at acidic pH. In addition, at the higher 

reagents dose, at the same molar ratio, the COD removals decreased to 72 and 63% with 

the photo-Fenton reaction and PMS/Fe(II)/UV-A LED process. Although the rate of 

production of radical species may be considered the same at higher and lower dosages, 

since the molar ratio of the reagents remained unchanged, the scavenging effect of H2O2 

on the hydroxyl radicals generated, may contribute to the decrease in COD removal. A 

similar behaviour has been observed with sulphate radicals when PMS was in excess in 
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the reaction system [33]. Besides, an excess of Fe(II) would also contribute to the 

scavenging of SO4
●− radicals [21, 50], as can be observed in the equation 13 [52]: 

Fe2+ + SO4
●-→ Fe3+ + SO4

2-  k = 3.0·108 (M-1·s-1)  (13) 

In terms of TOC removal, the highest mineralization of organic matter was obtained 

through the treatment 20:8 mM H2O2:Fe(II) in photo-Fenton treatments with a value of 

74%, while at the same conditions the treatment PMS/Fe(II)/UV-A LED achieved 56%. 

On the other hand, the yields were similar in both treatments when the used 

concentrations were 2.5:1 mM oxidant:Fe(II), reaching 66% with PMS and 65% with 

H2O2. In conclusion, contaminant removal by the photo-Fenton process proceeded at 

faster rates than PMS/Fe(II)/UV-A LED treatments. However, it is necessary to take 

into account some aspects to distinguish both treatments, making difficult their 

comparison. Firstly, in the case of photo-Fenton assays, it was required to perform new 

additions of hydrogen peroxide when the concentration of this oxidant agent decreased 

to very low values in order to continue with the photo-Fenton process. Therefore, in 

those treatments carried out with 2.5 mM of H2O2 a total amount of 10 mM hydrogen 

peroxide was consumed, while in the treatments with 20 mM of H2O2 a final total 

amount of 100 mM was consumed, so 4 and 5 H2O2 doses were required respectively. 

These supplementary doses of oxidant reagent were not necessary in the 

PMS/Fe(II)/UV-A LED treatment process.  

Figure 6B shows the results obtained after the application of the same processes but at 

ambient temperature (293 K). The treatments with PMS were faster than photo-Fenton 

process both in COD and TOC removal. The final COD and TOC removal after 180 

minutes, were similar with values around 65% and 53%. In both cases the highest 

removal rate corresponded with the treatment 20 mM PMS and 8 mM of Fe(II). Again, 
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in the photo-Fenton reactions it was necessary to carry out further doses (2 and 3, 

respectively) of H2O2 when each one was consumed, reaching a total concentration of 5 

and 60 mM in the treatments with 2.5 and 20 mM of hydrogen peroxide, respectively. 

Finally, one of the most important disadvantages of the photo-Fenton is the generation 

of sludge. For instance, in the treatments with 20 mM of H2O2 and 8 mM of Fe(II), 

values of 600 mg/L and 717 NTU of total suspended solids and turbidity, respectively, 

were observed at the end of the treatment. This situation was less significant in the 

experiments carried out with PMS/Fe(II) process, with values lower than 50 mg/L and 

120 NTU for TSS and turbidity, respectively. 

The above experiments were all carried out at near neutral pH of 6.5. However, the 

application of the photo-Fenton processes at pH 3, at both ambient temperature and 323 

K yielded high COD removals (Figure 7) up to 89% at 323 K with the highest dosages 

of reagents (20/8 mM H2O2/FeSO4·7H2O) and 70% at ambient temperature. Moreover, 

using eight times lower reactant concentrations (2.5:1 mM H2O2:FeSO4·7H2O), the 

difference in the COD removal was only 19% and 27% lower at 323 and 293 K, 

respectively. 

 

Figure 7 

 

In summary, the application of the HSO5
-/Mn+/UV-A LED process presents some 

important advantages. First, SO4
●− possesses an oxidation potential (2.5–3.1 V) similar 

or even higher than ●OH depending on pH conditions [53]. In addition, the use of 

potassium peroxymonosulphfate, as a good source of the oxidant PMS (HSO5
-), can be 

carried out without pre- and post-adjustment of pH previous to discharge of the treated 

effluents. Second, the combination of PMS with a transition metal does not generate 
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ferric hydroxide sludge as in the case of Fenton’s reagent, however it is necessary to 

take into account the residual metal concentration left in the treated effluent, as well as 

the accumulation of sulphates in the aqueous solution. Third, the activation of PMS 

through the combination of a transition metal, heating or UV-A radiation, results in high 

rates of contaminant degradation during the first few minutes of treatment. Finally, 

PMS is much easier to store and handle in comparison to hydrogen peroxide. 

PMS/Mn+/UV-A LED treatments could be a meaningful alternative for the treatment of 

winery wastewater, as a stand-alone process or as a pre- or post-treatment process in 

combination with a biological system. In the latter case a biodegradation study should 

be recommended. 

4. Conclusions 

This study has focused on the degradation of the organic matter from a winery 

wastewater through the combined use of PMS/Mn+/UV. The optimization of the 

operational conditions such as pH, temperature, PMS and transition metal 

concentrations was investigated. Initially, different transition metals were studied in 

order to determine the most effective conditions for the PMS/Mn+/UV process. From the 

results of this study, the following order of treatment efficiency was obtained for the 

PMS/Mn+/UV (λ=365 nm) technologies: PMS/Fe(II)/UV > PMS/Co(II)/UV > 

PMS/Cu(II)/UV > PMS/Mg(II)/UV > PMS/Zn(II)/UV > PMS/Ni(II)/UV > 

PMS/Ag(I)/UV > PMS/Mn(II)/UV. Moreover, different UV sources were evaluated in 

terms of EEO values, resulting in clear advantages in using UV-A LED photo-systems 

rather than systems utilizing UV low pressure mercury lamps. These results were 

achieved considering the global power consumption (kW) of each UV source. To sum 

up, the optimal conditions were: pH = 6.5; temperature = 323 K; [PMS] = 2.5 mM; 

[Mn+] = 1 mM (where Mn+ = Fe(II) or Co(II)) and UV-A LED radiation (365 nm; 70 
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W/m2) which achieved a COD and TOC removal of 75% and 56%, after 90 minutes in 

effluents with 5000 mg O2/L of COD. UV-A LED radiation sources also are 

ecofriendly, have a low operational cost, and exhibit a high energy efficiency in 

comparison to conventional mercury lamps. When PMS/Mn+/UV treatments were 

carried out at 323 K, higher COD and TOC removals were obtained through the 

catalysed decomposition of PMS with Co(II) (79 and 64% respectively) compared to 

PMS with Fe(II) (74 and 66% respectively) after 180 minutes using 2.5/1 mM 

PMS/Mn+. However, the behaviour was the opposite at ambient temperature, reaching a 

64 and 57% of COD and TOC removal with Fe(II) and 52% of COD and TOC removal 

with Co(II). This behaviour can be explained by the higher activation energy of the 

Co(II)/PMS system (34.3 kJ/M) comparatively to the Fe/PMS and also due to the higher 

photosensitivity of the Fe species in water as compared to those of Co. 

Photo-Fenton treatments at pH 6.5 achieved higher COD removal than PMS/Mn+/UV 

treatments at 323 K due to the high influence of heating and UV-A radiation absorption. 

Nevertheless, the behaviour was the opposite at ambient temperature both at pH 6.5 and 

pH 3.  

The combined treatment PMS/Mn+/UV-A LED presents some advantages over the 

photo-Fenton treatment, such as the application at neutral pH avoiding the pre- and 

post-adjustment of pH and no generation of ferric hydroxide sludge. 
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Table captions 

Table 1. Winery wastewater physicochemical characteristics. 

Table 2. Electrical energy per order (EEO) values of PMS/Co(II) treatments assisted by 

different UV radiation sources. 

Table 3. COD removal values in the PMS/Co(II)/UV-A LED treatment process with 

different initial COD concentration. Experimental conditions: 2.5 mM PMS; 1 mM 

Co(II); UV-A LEDs 70 W/m2; pH 6.5; T = 323 K; 180 minutes. 

Table 4. Total polyphenols removal through PMS/Mn+/UV-A LEDs treatments after 

180 minutes at pH 6.5. 
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Figure captions 

Figure 1. COD removal in the optimization of a) pH, b) temperature, c) PMS 

concentration and d) Co(II) concentration (reaction time 90 minutes). 

Figure 2. Influence of different sulphate salts in the removal of COD. Experimental 

conditions: 2.5 mM PMS; 1 mM Mn+; pH 6.5; T = 323 K; 90 minutes. 

Figure 3. Influence of UV source in the PMS/Co(II)/UV treatment process. (▲) UV-A 

LEDs 70 W/m2; (■) UV-A LEDs 23 W/m2; (●) UV mercury lamp; (◊) No radiation. 

Experimental conditions: 2.5 mM PMS; 1 mM Co(II); pH 6.5; T = 323 K; 120 minutes. 

Note: each UV source has different radiation flux. 

Figure 4. Influence of transition metals [Co(II) or Fe(II)] in COD and TOC removal: (a) 

323 K; (b) ambient temperature (293 K). Experimental conditions: COD = 5000 mg 

O2/L; 2.5 mM PMS; 1 mM Mn+; UV-A LEDs 70 W/m2; pH 6.5; 180 minutes. 

Figure 5. The effect of different dosing steps on COD removal: one addition of 20/8 

mM PMS/Co(II) or six additions of 3.33/1.33 mM PMS/Co(II). Experimental 

conditions: COD = 5000 mg O2/L; UV-A LEDs 70 W/m2; pH 6.5; T = 323 K; 180 

minutes. 

Figure 6. Comparison of SR-AOPs and HR-AOPs on COD and TOC removal at: (a) 

323 K; (b) ambient temperature (293 K). Experimental conditions: COD = 5000 mg 

O2/L; 2.5 and 20 mM oxidant agent (PMS or H2O2); 1 and 8 mM Fe(II); UV-A LEDs 

70 W/m2; pH 6.5; 180 minutes. 

Figure 7. The effect of temperature on COD and TOC removal by photo-Fenton 

treatments. Experimental conditions: COD = 5000 mg O2/L; 2.5 and 20 mM H2O2; 1 

and 8 mM Fe(II); UV-A LEDs 70 W/m2; pH 3; 180 minutes. 
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