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Abstract – Cost-effective condition monitoring 
techniques are required to optimise wind 
turbine maintenance procedures. Current 
signature analysis investigates fault indications 
in the frequency spectrum of the electrical 
signal and is thereby able to detect mechanical 
faults without additional sensors. Due to the 
modern variable speed operation of wind 
turbines, fault frequencies are hidden in the 
non-stationary frequency spectra. In this work, 
artificial neural networks are applied to identify 
faults under transient conditions. The feasibility 
of the detection algorithm is demonstrated with 
a wind turbine SIMULINK model, which has 
been validated with experimental data. A 
framework is proposed for developing and 
training the algorithm for different rotational 
speeds. A simulation study demonstrates the 
ability of the algorithm not only to detect faults, 
but also to identify the strength of the faults as 
required for fault prognosis. 
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1 Introduction 
With an increasing number of wind turbines 
(WTs) being installed in offshore and remote 
locations, there is a need for cost-effective 
maintenance. Predictive maintenance aims to 
detect condition changes early and enables 
maintenance teams to schedule the required 
work considering other limiting factors as e.g. 
weather conditions. For this reason, a reliable 
condition monitoring system (CMS) is required 
to detect and diagnose WT failures in their 
early stages. 

In order to develop an effective CMS, the best 
solution for two characteristics of the system 
must be found: 

• A signal providing information to 
describe the state of the monitored 
component. 

• A technique to extract the condition 
state from the signal. 

The most simple, but sufficient accurate 
solution has to be determined to reduce 
maintenance costs by giving reliable results 
and avoiding unnecessary equipment. 
Generally, the signals used in common WT 
CMSs include vibration, acoustic emission, 
strain, torque, temperature, lubrication oil 
quality, electrical output, and supervisory 
control and data acquisition (SCADA) system 
signals [1]-[2]. Among them, vibration is the 
most well-known signal used in a WT CMS [3]-
[4]. However, analysis of electrical signals from 
the generator has been shown to have 
advantages over vibration signals for condition 
monitoring as the costs and complexity 
involved in current measurements are 
significantly lower [5-6]. Additional installation 
costs are avoided because current signals are 
already continuously measured in WTs [7]. 

Current Signature Analysis (CSA) utilises the 
knowledge that mechanical faults as rotor 
unbalance show up in increased amplitudes in 
the sidebands of harmonics of the fundamental 
frequency. However, it is a challenge to extract 
WT fault signatures from current 
measurements under variable speed 
operation. Moreover, the useful information in 
current measurements from a WT usually has 
a low signal to noise ratio, and thus it is very 
difficult to extract this information in a reliable 
way. 

Extracting the fault signature from a monitored 
signal is commonly done by the well-known 
fast Fourier transform (FFT) and the short–
time Fourier transform (STFT) [9]-[10]. 
However, in the case of variable speed WTs, 
FFT and STFT often fail to extract the required 
information which can vary in the time-domain, 
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since the operation is predominately non-
stationary due to variations in the wind speed.  

The attractive feature of Artificial Neural 
Networks (ANNs) for condition monitoring is 
their ability to represent complex, nonlinear 
relationships through learned pattern 
recognition or signal regression. ANNs have 
been successfully used to identify changes in 
the relationships between SCADA signals that 
indicate the development of a failure [10]. 

In this work, the possibility of detecting 
mechanical faults in wind turbines by CSA is 
investigated. The application of Artificial Neural 
Networks (ANN) for detecting mechanical 
faults is proposed to automate the fault 
detection in the light of the limitations of 
spectral analysis in processing signals subject 
to transient effects. The diagnosis of rotor 
unbalance in a WT is used as an illustrative 
example. The simulation results demonstrate 
that the proposed method is effective in 
detecting mechanical faults in a variable speed 
machine. 

2 Methodology 
This research aims to develop a reliable 
technique to detect mechanical faults in a WT 
via the generator current signal. An ANN 
technique is proposed to automate the fault 
detection in a variable speed machine. The 
main purpose of using an ANN is to identify 
changes in the current signal which have non-
stationary characteristics due to the variable-
speed operating conditions of WTs, and to 
provide online fault detection in advance of 
catastrophic failures.  

The data used in this work is based on a WT 
simulation model. The model is developed and 
validated with operational data of five 2.5MW 
turbines recorded by the SCADA system over 
the period of 1 year. The measured data 
recorded at 32Hz sampling frequency included 
wind speed, wind direction, pitch angle, 
rotational speed and three-phase power 
output. The model parameters used are 
detailed in Table 1.  

The required phases of the algorithm 
development and testing for an online fault 
detection tool are given in Table 2.  

Table 1: Model parameters. 

Parameter Value 
Cut-In, Rated, Cut-Out 

Wind Speed 
3 m/s, 12 m/s, 25 

m/s 
Rated Tip Speed 80 m/s 
Rotor Diameter 90 m 
Gearbox Ratio 1:77.4 

Line-Line Voltage (RMS) 690V 
Frequency 50Hz 
Pole Pairs 3 

Rated Generator Speed 
(RPM) 1000 

 

Table 2: Phases of the project. 

Phase Task 
1 Development of simulation tool 

providing current signal 
2 Validation of simulation with 

experimental data 
3 Training and testing of automated 

fault detection with simulation 
4 Validation of fault detection with 

experimental current signal 
Final Online fault detection with current 

signal 
 

In the following, the methodology behind the 
simulation model, CSA and the ANN fault 
detection are presented. 

2.1 Wind turbine SIMULINK model 
A general model for representation of variable 
speed wind turbines was implemented in 
MATLAB/Simulink, including wind speed, rotor, 
pitch control system, drivetrain and generator 
model [11]. The model has been developed to 
facilitate the investigation of condition 
monitoring and effective algorithm 
development for fault detection. The measured 
wind speed recorded by a wind turbine 
SCADA system has been used as model input 
to validate the response of the wind turbine 
model. Figure 1 shows the response of the 
model compared with measured generator 
speed. It is visible that the model is in good 
agreement with the measured data. 

 

 



 

Figure 1: Model validation considering generator speed.

Rotor eccentricity is used as an illustrative 
example to investigate the use of the proposed 
fault detection algorithm in variable speed 
WTs. During rotor eccentricity, certain 
sideband harmonics around the fundamental 
frequency in the machine current signal occur 
with increased amplitudes proportionally to the 
fault level. It was experimentally proven [5] that 
rotor eccentricity faults give rise to a sequence 
of such sidebands given by: 

 𝑓𝑓𝐶𝐶 = �1 ±
2𝑘𝑘 − 1
𝑝𝑝

� 𝑓𝑓 (1) 

where 𝑓𝑓𝐶𝐶 and 𝑓𝑓 are the rotor fault and 
fundamental frequency, respectively, 𝑘𝑘 is an 
integer (𝑘𝑘 = 1, 2, 3, . ..) and 𝑝𝑝 is the number of 
pole pairs. The fundamental frequency in a 
variable speed WT with a permanent magnet 
synchronous generator (PMSG) is proportional 
to the rotational speed, i.e. the characteristic of 
the signal is varying with time.  

Figure 2 shows the stator current spectra for a 
faulty and healthy machine for fixed rotational 
speed. Components with frequencies at 60 Hz 
and 34Hz are intentionally induced in the 
healthy machine spectrum to represent 
machine-specific noise close to the fault 
frequencies. The fault frequencies identified by 
the equation (1) are labelled in Figure 2. 

2.2 Automated fault detection with 
Artificial Neural Networks 

A simple detection threshold for the fault 
frequencies is not feasible due to the variable 
speed operation and accordingly shifting 
frequencies.  

ANNs are useful for automated processing and 
finding non-linear relationships. With data-
driven training, ANNs learn to weight different 
inputs in a way to deliver the required output. 
Problem-specific settings have to be found in 
particular for the number of neurons and the 
amount of training required. 

 
Figure 2: Example of stator current spectra for healthy and faulty states. 



The rotational speed 𝜔𝜔 of a PMSG turbine 
varies significantly. Fault detection for all 
possible rotational speeds is not feasible with 
a single ANN. A framework is proposed, in 
which different networks are used for different 
ranges of rotational speeds, as sketched in the 
workflows in Figure 3 and Figure 4. In the 
training phase, 𝑛𝑛 sets of different rotational 
speeds (Ω) with defined limits 𝜔𝜔min and 𝜔𝜔max 
are used for simulation of the current signals. 
The sets are selected in a way that all possible 
speeds are covered. For each of the sets, an 
ANN is trained to detect a fault. In the 
detection phase, maximum (max), minimum 
(min) and-standard deviation (𝜎𝜎) are calculated 
for each two second record. If the variation in 
the rotational speed is relatively high, the 
frequency spectrum becomes indistinct. 
Accordingly, the standard deviation of the set 
has to go below a defined limit 𝜎𝜎𝐿𝐿 to allow 
further processing. The appropriate ANN for 
fault detection with the FFT of the current 
signal is selected with the information of the 
rotational speed extrema. 

In this paper, the feasibility of the framework is 
discussed by investigating the training of one 
network for a limited rotational speed variation. 

2.3 Simulation study 
In a first simulation study the ability to 
differentiate between healthy and faulty stages 
is tested. The second study investigates fault 
degree detection with different fault strengths 
where the fault level has been simulated by 
increasing the magnitude of the sideband 
harmonics as an indication to the fault with 
higher level. 

2.3.1 Fault classification 
The WT model is run for healthy and faulty 
condition with a selected variable speed 
variation between 924 and 937 rpm as shown 
in Figure 5. Analysis of the real SCADA data 
suggested such a variation in 5 minutes. 

For each condition, the current signal is 
recorded for 300 seconds at 5 kHz sampling 
frequency. Periods of two seconds of data are 
selected for analysis using the Fast Fourier 
Transform (FFT) algorithm. This window length 
is identified as the shortest possible with a 
sufficient resolution to capture all harmonics of 
interest. The frequency spectrum of each 
window consisting of 250 amplitudes acts as a 
‘sample’ for ANN fault detection. All samples 
from healthy and faulty stages are mixed and 
randomly split in training and testing. A 
classification as ‘healthy’ or ‘faulty’ is trained 
with scaled conjugate gradient 

backpropagation. The number of neurons and 
training samples are varied in a sensitivity 
study. Network training is repeated a number 
of times to investigate the impact of the 
random selection of training samples. 

 
Figure 3: Workflow for training of fault 
detection algorithm. 

 
Figure 4: Workflow for fault detection after 
training. 
 

2.3.2 Fault degree detection 
Additional to the above described two 
simulations representing permanent healthy 
and faulty condition, two further runs are used 
to investigate fault development. The first 
simulation applies a linear increasing fault 
during 300 seconds. In the second run a fault 
occurs only at a certain point in the simulation. 

A fitting neural network with a tansig transfer 
function in the output layer is used to predict a 
fault degree between 0 and 1. All samples 



from the first simulation plus 100 randomly 
selected samples of the linear increasing fault 
simulation are used for training the ANN. 
Network training is repeated with identical data 
to illustrate differences resulting from 
suboptimal training. 

 

Figure 5: Rotational speed variation in 
simulation study. 

3 Results of simulation study 
3.1 Fault classification 
The results of the simulation study with current 
signals from healthy and faulty conditions are 
presented in Table 3 considering accuracy as 
correct classification of both ‘healthy’ and 
‘faulty’ stages. The median detection accuracy 
between 93.5 and 98 % for different ANN and 
training length configurations distinctly higher 
than random classification (50 % accuracy) 

shows that ANN fault detection using current 
signals under non-stationary conditions is 
feasible. 

Table 3: Accuracy of ANN condition detection 
from frequency spectrum given as median 
percentage from 250 training repetitions. 

Number 
of 

neurons 
used: 

Training 
with 100 
samples, 
testing 

with 200 
samples 

Training 
with 150 
samples, 
testing 

with 150 
samples 

Training 
with 200 
samples, 
testing 

with 100 
samples 

2 93.5 96.7 98.0 
5 94.5 96.7 98.0 
10 95.5 97.3 98.0 
25 95.5 97.3 98.0 
50 95.0 97.3 98.0 

3.2 Transient and variable fault 
detection 

Results of the transient and variable fault 
detection are presented in Figure 5 and 6. 
Although the significant differences between 
three ANNs trained with the same input 
indicate that further optimisation of training and 
algorithm settings might be reasonable, the 
general fault development is successfully 
detected. Unsurprisingly, the fault degree 
detection is less accurate than the simple 
healthy or faulty classification. Regardless, 
even the rough detection of the strength of a 
fault enables better monitoring of condition 
changes. 

 

Figure 5: ANN fault degree detection of a linear increasing fault. 



 

Figure 6: ANN fault detection of a transient fault. 

 

4 Conclusion 
A technique to detect mechanical faults in 
variable speed WTs via the CSA and ANN is 
proposed. A framework is discussed for 
training of fault detection with simulated 
signals from faults for later online detection in 
real WTs. For each set of limited rotational 
speed variation a separate ANN will detect the 
fault. 

In a simulation study of a rotor imbalance 
under varying rotational speed as expected in 
5 minutes operation the feasibility of the fault 
detection approach is demonstrated. Simple 
classification of healthy or faulty condition is 
achieved with a high accuracy. In a further 
step towards fault prognosis, the severity of 
the fault is successfully detected. 

Future work has to be done to validate the 
fault detection algorithm with experimental 
data. A full test of the proposed framework has 
to be conducted including different sets of 
rotational speed variation. In terms of fault 
prognosis, optimisation of the ANN settings 
might increase the fault degree detection 
accuracy. 
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