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Abstract  

This paper introduces a new computational scheme addressing a problem of cold recyclability of 

sheet–metal products based on the assessment of their post-manufacture residual formability. 

Formability of sheet metals has been studied for several decades, and various techniques were 

suggested since a Forming Limit Diagram was first introduced in the 1960s. At the same time, cold 

recycling, or re-manufacturing, of sheet metals is an emerging area studied mostly empirically; in its 

current form, it lacks theoretical foundation. In order to address the challenge of residual formability 

for sheet-metal products, a reformability index is introduced in this study. The proposed method takes 

advantage of the latest developments in the area of evaluating multiple-path formability and 

introduces a quantitative reformability index for the manufactured material. This index represents 

possible levels of strains for deformation along different paths, based on Polar Effective Plastic Strain 

(PEPS). PEPS provides robustness against non-linear strain-path effects, thus making a reliable basis 

for such analysis. Based on residual formability, a predictive model was sought to assess a degrading 

effect of the flattening process. Taking advantage of extensive numerical simulation, a wide range of 

geometrical parameters in an unbending process, as a predominant mechanism in flattening, was 

studied.  

The reformability index alongside prediction of degradation in flattening allows evaluation of 
prospective re-manufacturing. The significance of this research is its advancement towards recycling 
of sheet-metal products without melting them by facilitating design for sustainability. The proposed 
scheme also provides a subroutine friendly framework for numerical simulations. 
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1 Introduction  
Environmental challenges have been considered as a serious problem across all industries, and 

reduction of energy and material consumption is a pressing matter for them. However, there is still 

much room for improvement and study. Conventional recycling of sheet-metal wastes involves 

melting process. High melting points of metals and additional processes required to get final products, 

turn it into an energy intensive process. Recycling metal waste without melting has potential for high-

level of energy saving.  

In the area of sheet metals, there are a few studies that looked into the possibility of cold recycling 

methods and processes. Takano et al. (2008) studied the feasibility of cold recycling of sheet-metal 

wastes. The authors focused on deformation behaviour in incremental forming of flattened non-

uniform sheet metals. They found that a forming limit of flattened sheet metals is similar to that of a 

sheet metal with uniform thickness. It was experimentally shown that using incremental forming; 

strain localisation can be almost inhibited in the flattened sheet; hence, it was concluded that cold 

recycling of sheet-metal wastes could be accomplished with incremental forming. 

Tekkaya et al. (2008) analysed remanufacturing of a contoured sheet metal part using a hydro-forming 

technology. They showed that using this forming process, material inhomogeneities induced by a 

primary forming process could be eliminated. They concluded that their technique is applicable to a 

re-use of sheet metal formed parts and could potentially be used e.g. to transform car bonnets for 

instance, into other useful shapes. The main challenge in the cold recycling/remanufacturing process 

is varying and inhomogeneous material behaviour as a result of the primary forming process. 

Therefore, a crucial requirement for re-manufacturing is the identification of residual formability in 

the material, and when intermediate flattening is involved, the adverse effect of flattening must be 

accounted for. As a matter of fact, the theoretical basis of remanufacturing has barely been addressed 

in the literature. The present research was an effort to bridge this gap by looking at the problem from 

the formability point of view. 

Formability describes an extent to which a material can undergo plastic deformation without failure. 

A forming limit curve (FLC) shows the material ultimate formability point based on the onset of 

localised necking under linear loading in terms of major and minor strains. The reality of industrial 

applications, however, often includes substantial non-linearity in a strain history. A significant 

limitation of characterising formability with the FLC was highlighted experimentally by Graf and 

Hosford (1993). The results showed that a strain-path change resulted in deviation of the shape and 

location of the FLC. Hence, no unified curve in a strain space could represent the forming limit of a 

material. 
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Alternatively, stress-based forming limits as a way to avoid a strain-path effect was proposed by 

Arrieux et al. (1982). They highlighted variation of the FLC in a two-stage forming process of deep 

drawing and flanging and proposed a stress-based forming-limit curve (SFLC). Other authors 

(Stoughton, 2000; Stoughton and Yoon, 2005, 2011) also constructed a forming-limit stress curve by 

plotting conditions for the onset of localised necking in a stress space and presented promising aspects 

of this approach in dealing with a non-linear strain-path effect. However, due to some shortcomings, 

this concept was not extensively employed. Unlike strain, stress is not easy to understand and directly 

measure in the experiment. Additionally, due to the decrease in the slope of a stress-strain relation, 

significant changes in strain occur at stress levels close to the necking limit. Thus it is difficult to 

visually assess or quantify the safe margin. 

Stoughton and Yoon (2012) proposed an alternative approach as a remedy to the above-mentioned 

difficulty. They modified the idea proposed by Zeng et al. (2008) and employed effective plastic 

strain as a metric to evaluate formability. Effective plastic strain lies inherently in the category of 

stress as it is linked to the stress tensor through yield function and constitutive stress-strain relation. 

Eventually, they suggested a PEPS diagram and demonstrated the insensitivity of their technique to a 

strain path using experimental data.  

With an outlook for sustainable manufacturing, the goal of this study is to introduce an index that 

quantifies reformability of a pre-formed material on a scale of 0 to 1, that respectively denotes fully 

damaged and a healthy material. This index is strain-path-sensitive and provides an insight into the 

allowable formability for different strain paths.  

Further, assuming that intermediate flattening is a part of a cold recycling concept, an overall 

approach is sought to estimate numerically a drop in reformability caused by the flattening process. 

The approach presented in this paper focuses on assessment with respect to geometrical parameters of 

an available formed material.  It is believed that a sheet-metal product is more likely to be 

remanufactured when it was designed for it in the first place. Therefore, the presented computational 

scheme could contribute to design for sustainable manufacturing.  

2 Theoretical basis of reformability index  
2.1 Polar Effective Plastic Strain diagram  

Stoughton and Yoon (2012) proposed a new approach called PEPS. They presented a review of the 

mapping procedure from a strain space to a stress space and pointed out that, basically, two 

parameters carry nonlinear paths information on. The first parameter 𝛽𝛽 is described as the ratio of the 

principal strain rates, while the second is effective plastic strain 𝜀𝜀�̅�𝑝, which is defined by a time integral 

of a function of the principal strain rates. The authors highlighted that, since the stress tensor 

components were identified in terms of effective plastic strain and 𝛼𝛼  =   𝜎𝜎2𝐹𝐹𝐹𝐹𝐹𝐹 ⁄  𝜎𝜎1𝐹𝐹𝐹𝐹𝐹𝐹 , or indirectly in 
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terms of the effective plastic strain and 𝛽𝛽, the forming limit for linear and nonlinear deformations can 

also be characterized as a simple limit on the accumulated effective plastic strain, 𝜀𝜀�̅�𝑝, as a function of  

𝛽𝛽, or as a function of 𝛼𝛼. In PEPS it is considered to use the effective plastic strain as one of the 

metrics to assess formability.  

Stoughton and Yoon (2012) pointed out that although effective plastic strain was described as a type 

of strain, it was not directly linked to the principal or common components of the strain tensor. It is, 

however, uniquely linked to the stress tensor through the yield function and the stress-strain relation, 

and thus, falls under the category of a stress metric.  

Yoshida et al. (2007) proposed the idea of an FLC-based on variables (𝜀𝜀�̅�𝑝,   𝛼𝛼), and Zeng et al. (2008) 

presented the notion of an FLC-based on variables (𝜀𝜀�̅�𝑝,   𝛽𝛽). The PEPS technique which was 

proposed by Stoughton and Yoon (2012) is mathematically equivalent to using variables (𝜀𝜀�̅�𝑝,   𝛽𝛽), 

which may be more suitable for industrial engineering applications.  

Therefore, to summarise the applicable equations assuming that principal strains 𝜀𝜀1(𝑡𝑡),  𝜀𝜀2(𝑡𝑡) are 

parameters accounting for the strain history, the following relations are the two components of the 

PEPS diagram:  

𝛽𝛽(𝑡𝑡) = 𝜀𝜀𝜀2(𝑡𝑡)
𝜀𝜀𝜀1(𝑡𝑡)

 , (1) 

𝜀𝜀�̅�𝑝(𝑡𝑡) = 1 + 𝑟𝑟𝑚𝑚
�1 + 2𝑟𝑟𝑚𝑚

∫ �𝜀𝜀𝜀12(𝑡𝑡′) + 𝜀𝜀𝜀12(𝑡𝑡′) + 2𝑟𝑟𝑚𝑚
1+𝑟𝑟𝑚𝑚

𝜀𝜀𝜀1(𝑡𝑡′)𝜀𝜀𝜀1(𝑡𝑡′) 𝑑𝑑𝑡𝑡′.𝑡𝑡
0  (2) 

In order to plot the data in a polar diagram of the variable with the angle defined as the arctangent of 

the ratio of the principal strain rates,  

𝜃𝜃  =   𝑡𝑡𝑡𝑡𝑡𝑡−1(𝜀𝜀𝜀2
𝜀𝜀𝜀1

)  (3) 

2.2 Reformability index  

The nature of cold recycling necessitates a multi-stage approach to reformability. Therefore amongst 

available formability criteria, the least sensitive to a strain path change would be of interest. Thus, the 

strain-based forming limit curves are already ruled out, narrowing the options to the stress-based FLD 

or PEPS.  

The idea is to evaluate the part of material’s formability exploited through forming process, and 

assess the residual formability. The technique proposed in this study is to calculate the area under the 

forming-limit curve and enclosed between the lines passing through the origin at angles 𝜃𝜃 = 𝜋𝜋/4 and 

𝜃𝜃 = −𝜋𝜋/8 (with stress triaxiality 𝜂𝜂 = 2/3 and  𝜂𝜂 = 1/3, respectively), as a quantitative measure of 

formability. Every stage of deformation takes off some part of this area, so the reformability index is 

the ratio of residual area to original area. 
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Both in stress-based FLD and PEPS techniques, stages of forming correspond to a sequence of 

vectors towards the limit curve. Since the effective plastic strain acts as the magnitude of the strain 

vector, it evolves with the deformation process and; hence, changes in the area are incremental. In the 

stress-based FLD scheme, an evolution of strain from low to high, the stress status varies quite 

significantly at low strains, resulting in fast area change, while as the material get closer to the limit, 

the variations in the area under the limit curve becomes less and less significant. On this basis, the 

Polar Effective Plastic Strain technique was selected for the residual formability study.   

Fig. 1 represents how the residual formability in the proposed approach could be assessed. In this 

figure, three forming stages with different strain path are assumed, and the respective area changes 

after each stage are displayed.   

 
Fig. 1, The approach proposed to calculate residual formability in deformed sheet metals, uses the 
area under the curve as a measure of formability based on PEPS method. This area decreses with 

the progression of forming stages. 

In the PEPS approach, the circle passing through the end point of the effective strain vector is the 

locus of the starting point for the successive vector. This implies that after the deformation, a circular 

sector would be taken off from the initial area under the limit curve. Each incremental deformation in 

the material enlarges this sector. The original area under the PEPS limit curve (𝐴𝐴0), enclosed by 

𝜂𝜂 = 2/3 and 𝜂𝜂 = 1/3 lines, minus the circular sector equals the residual area (𝐴𝐴𝑟𝑟). The reformability 

index 𝛷𝛷 is then introduced as:  

𝛷𝛷 = �𝐴𝐴𝑟𝑟
𝐴𝐴0
�

 
, (4) 

𝐴𝐴0 = 1 + 𝑟𝑟𝑚𝑚
�1 + 2𝑟𝑟𝑚𝑚

∫ �𝜀𝜀1𝐹𝐹𝐹𝐹𝐹𝐹2 + 𝜀𝜀2𝐹𝐹𝐹𝐹𝐹𝐹2 + 2𝑟𝑟𝑚𝑚
1+𝑟𝑟𝑚𝑚

𝜀𝜀1𝐹𝐹𝐹𝐹𝐹𝐹𝜀𝜀2𝐹𝐹𝐹𝐹𝐹𝐹𝑑𝑑𝛽𝛽
1
−12

 , (5) 

𝐴𝐴𝑟𝑟 = 𝐴𝐴0 −
1 + 𝑟𝑟𝑚𝑚

�1 + 2𝑟𝑟𝑚𝑚
∫ ∫ �𝜀𝜀𝜀12(𝑡𝑡′) + 𝜀𝜀𝜀12(𝑡𝑡′) + 2𝑟𝑟𝑚𝑚

1+𝑟𝑟𝑚𝑚
𝜀𝜀𝜀1(𝑡𝑡′)𝜀𝜀𝜀1(𝑡𝑡′)𝑡𝑡

0
1
−12

 𝑑𝑑𝑡𝑡′𝑑𝑑𝛽𝛽 . (6) 

In a simplified form, 𝐴𝐴𝑟𝑟 can be expressed as: 
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𝐴𝐴𝑟𝑟 = 𝐴𝐴0 − 𝜀𝜀�̅�𝑝 �3 𝜋𝜋
8
� . (7) 

Implementing this technique using the finite element (FE) method requires either experimental data or 

a theoretical an FLD curve. In this study the theoretical relations to extract the FLD are used based on 

the local necking and diffuse necking (Hill, 1952; Swift, 1952) equations for simplicity. The 

conventional FLD should be projected according to the effective strain formulation into the polar 

domain of effective plastic strain. This is carried out according to Eq. 2 to produce the new limit 

diagram for assessment. The FE simulation results provide necessary information on the changes in 

each element of the model. Therefore, to implement the algorithm, the following calculation was 

performed for every element at the end of 𝑖𝑖𝑡𝑡ℎ time increment:   

𝜀𝜀�̅�𝑝𝑖𝑖 = 1 + 𝑟𝑟𝑚𝑚
�1 + 2𝑟𝑟𝑚𝑚

 �∆𝜀𝜀1𝑖𝑖2 + ∆𝜀𝜀2𝑖𝑖2 + 2𝑟𝑟𝑚𝑚
1+𝑟𝑟𝑚𝑚

∆𝜀𝜀1𝑖𝑖∆𝜀𝜀2𝑖𝑖 . (8) 

The sequence of vectors produces a stack up of  magnitudes as follows:  

𝜀𝜀�̅�𝑝 = ∑  𝜀𝜀�̅�𝑝𝑖𝑖
𝑛𝑛
𝑖𝑖=1   , (9) 

where n is the number of time increments. This allows tracking down the strain history across the 

material by extracting the vectors associated with the deformation of all element of the workpiece. 

The assembled sequence of vectors for different regions of a typical deep-drawing process is 

demonstrated in Fig. 2. As shown in the figure, in the polar effective-plastic-strain diagram, the limit 

curve remains static and as the forming process proceeds, and there is a unique strain path for each 

element. The forming progression entails accumulation of these incremental strain vectors, implying 

exploitation of initial formability to different extents in various parts of the component.  

 
Fig. 2, Effective strain vectors in different regions of a typical quarter square deep drawing 

simulation in PEPS diagram. 
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Two concerns need to be addressed when introducing a reformability index. First, the proposed 

framework delivers a quantity as the reformability index; however, direction of the subsequent strain 

vector is also a significant parameter in identifying the residual formability.  

Second, the ratio of residual area over the original one provides a direct way for calculation of 

reformability index. It is still necessary to consider the effects of strain and stress gradients through 

the thickness, which is important for curved areas or even in flat ones that were bent and unbent while 

sliding over tool surfaces. Performing the formability assessment based on only the membrane values 

of the element's variables, could be too conservative for reliable determination of necking limits and 

often not conservative enough with respect to fracture.  

The first concern is elaborated and dealt with in the subsection 2.3 by introducing strain path sensitive 

reformability index. Subsection 2.4 addresses the second concern regarding the influence of bending 

and unbending during the forming process is also addressed by tracking down the through thickness 

gradient of reformability. 

2.3  Strain-path-sensitive reformability index  

Since a single value of residual to the original area ratio does not address a clear understanding of 

residual formability in different strain paths, therefore the exponent 𝐵𝐵 is defined to modulate the 

reformability index to account for the strain-path effect. Therefore, 𝐵𝐵 is introduced as function of the 

strain path = 𝑑𝑑𝜀𝜀2/𝑑𝑑𝜀𝜀2 : 

𝛷𝛷 = �𝐴𝐴𝑟𝑟
𝐴𝐴0
�
𝐵𝐵

, (10) 

𝐵𝐵  =  𝐵𝐵(𝛽𝛽) . (11) 

The benefit of introducing a non-constant exponent is to provide a convenient approach taking into 

account less severe necking in balanced biaxial straining, with plane strain being a critical strain 

condition, and the uniaxial tension falling between these two cases. 

Parametric study  

The ratio of a residual area to the original one conveys the residual formability and is modulated by 

the exponent 𝐵𝐵 to account for the effect of strain path on the reformability index. To have a better 

understanding of the proposed reformability index, the influence of these parameters is investigated.  

As a result of strain build-up, the effective strain becomes larger and; hence, the residual area is 

reduced. This incrementally reduced area, when normalised with the original area, demonstrates a 

linear ramp down. However, the 𝐴𝐴𝑟𝑟/𝐴𝐴0 ratio starts to change nonlinearly when the accumulated 

effective strain vector is large enough, taking off a sector crossing the limit curve. By assuming the 
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PEPS limit curve obtained from a typical theoretical FLD, this behaviour is shown in Fig. 3 (b) as a 

solid line. 

 

 

(a)  

 

(b)  

Fig. 3, Reformability index based on Φ = 𝐴𝐴𝑟𝑟/𝐴𝐴0 does not provide information on residual formability 
for different strain path; therefore, exponent 𝐵𝐵 was introduced. (b) Reformability index Φ =

(𝐴𝐴𝑟𝑟/𝐴𝐴0)𝐵𝐵 vs. effective plastic strain for varying 𝐵𝐵 exponent 

The exponent 𝐵𝐵 accounts for the strain-path direction as presented in Fig. 3. Assuming that 

reformability should be the ratio of a residual magnitude of the strain vectors to the original 

magnitudes for every strain path angle, a cloud of points was obtained at varying levels of effective 

strain forming the shaded region in Fig. 3. The role of exponent 𝐵𝐵 is to modulate the area-based 

reformability index so as to deliver a different value depending on strain path direction. Fig. 3 shows 

how the varying exponent B allows for a reasonable coverage of the whole region.  

The exponent 𝐵𝐵, is function of the strain path angle 𝛽𝛽 and can be described as a polynomial function, 

e.g.: 
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𝐵𝐵(𝛽𝛽)  =   𝐶𝐶2𝛽𝛽2  +  𝐶𝐶1𝛽𝛽  + 𝐶𝐶0  , (12) 

where 𝐶𝐶0, 𝐶𝐶1 and 𝐶𝐶2 are the constants calculated based on the material forming limit and residual 

formability, as discussed below.  

Calculation of constants of the exponent B:  

Calculation of the exponent 𝐵𝐵 as a quadratic function of 𝛽𝛽 requires at least three data points. 

Obviously, the data points are obtained from the FLD, which is either an experimental curve or a 

theoretical curve. These data values are recommended to be obtained based on effective plastic strain 

equivalent to 70%− 80% of the PEPS limit curve at  𝛽𝛽 = 0. Similar to Fig. 3 (a), the residual 

formability was calculated based on its definition at  𝛽𝛽 = 1, 𝛽𝛽 = 0 and 𝛽𝛽 = −1/2. For each 𝛽𝛽 

assuming, Φ𝛽𝛽 is the vector-ratio reformability: 

𝛷𝛷𝛽𝛽 = �𝐴𝐴𝑟𝑟
𝐴𝐴0
�
𝐵𝐵(𝛽𝛽) 

 , (13) 

that can be linearized using log operator as:  

𝐵𝐵(𝛽𝛽) 𝑙𝑙𝑙𝑙𝑙𝑙 �
𝐴𝐴𝑟𝑟
𝐴𝐴0
� = 𝑙𝑙𝑙𝑙𝑙𝑙�𝛷𝛷𝛽𝛽� , (14) 

and, eventually:  

𝐵𝐵(𝛽𝛽) =
𝑙𝑙𝑙𝑙𝑙𝑙�𝐴𝐴𝑟𝑟𝐴𝐴0

�

𝑙𝑙𝑙𝑙𝑙𝑙  (𝛷𝛷𝛽𝛽)
  , (15) 

where 𝐴𝐴𝑟𝑟/𝐴𝐴0 is the area-ratio reformability, independent of the strain path. This calculation gives 

three magnitudes of the exponent 𝐵𝐵, corresponding to three different values of 𝛽𝛽; this means that the 

constants of the quadratic equation could be extracted:  

�
𝐶𝐶0 = 𝐵𝐵(0) ,

𝐶𝐶1 + 𝐶𝐶2 = 𝐵𝐵(1) −𝐵𝐵(0) ,
0.24 𝐶𝐶1 − 0.5 𝐶𝐶2 = 𝐵𝐵(−0.5)− 𝐵𝐵(0) .

  (16) 

A similar procedure can also be employed to calculate four constants of the cubic equation. A sample 

relation 𝐵𝐵(𝛽𝛽) for the PEPS curve presented in Fig. 3(a) was obtained based on cubic polynomial 

using four data points; 𝛽𝛽 = 1, 1/2, 0 and −1/2; which is presented in Fig. 4.  

 
Fig. 4, Example of 𝐵𝐵(𝛽𝛽) for PEPS curve based on cubic polynomial. 
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The reformability index based on 𝐵𝐵(𝛽𝛽) is presented in Fig. 5 as “predicted” Φ index. The “actual” Φ 

was obtained from vector ratio at every strain path angle. This figure compares the predicted 

reformability with the actual index and provides the error contour plot. The graphs show a good 

agreement; the prediction could improve with 𝐵𝐵(𝛽𝛽) as a higher order polynomial and also with better 

FLD. However, the maximum error of 8% is relatively small; this demonstrates the effectiveness of 

the exponent 𝐵𝐵(𝛽𝛽) in transforming the area ratio into the strain-path-dependent reformability index.  

 
Fig. 5, Reformability index, Predicted shows the estimated reformability using Φ = (𝐴𝐴𝑟𝑟/𝐴𝐴0)𝐵𝐵(𝛽𝛽), 
Actual represent the actual residual formability based on the vector ratios in every strain path. 

 

2.4 Through thickness reformability  

As stated earlier, reformability assessment merely based on the membrane values of the element’s 

variables could lack reliability for curved areas or even in flat ones that were bent and unbent while 

sliding over tool surfaces. It is easy to imagine that for the case of pure bending, for instance, there is 

an absence of strain in the neutral plane while tension or compression is occurring on either side 

towards the surface of the sheet. Given the history dependency and accumulative nature of the 

effective plastic strain, along with the fact that an extended level of information could be extracted 

from a sheet metal forming simulation when integration points through the thickness are taken into 

account, a potential opportunity starts to emerge.  

To demonstrate this feature of the proposed idea, a simple bending of a sheet is presented with elastic-

plastic material model and shell type element in FEA. Fig. 6 shows the folded material, as well as 

strain vectors in PEPS diagram corresponding inside, neutral and outside plane of the bend. Two 

significant strain paths are observed on compression and tension side of the bend, while mid surface is 

relatively free from strain.  
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Through thickness reformability calculation could be used as a mean to capture the effect of bending-

unbending. This would enhance the reformability prediction and expand its applications.  

 

 
Fig. 6, While the neutral plane shows no strain change, the integration points inside and outside of 

the bend present a significant changes in different directions 

The reformability at top, mid and bottom integration points in thickness direction are to be smeared 

out and provide a single representative value for reformability. Eq. 17 is proposed to account for the 

through thickness gradient of formability:  

(𝐴𝐴𝑟𝑟
𝐴𝐴0

)𝑟𝑟𝑟𝑟𝑝𝑝 =
𝐴𝐴𝑟𝑟𝑡𝑡𝑡𝑡𝑡𝑡+2𝐴𝐴𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚+𝐴𝐴𝑟𝑟𝑏𝑏𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑚𝑚

4𝐴𝐴0
  (17) 

𝛷𝛷 = �(𝐴𝐴𝑟𝑟
𝐴𝐴0

)𝑟𝑟𝑟𝑟𝑝𝑝�
𝐵𝐵(𝛽𝛽)

  (18) 

This capability of the reformability index, still required further studies and exploration. It is 

recommended to be used in parallel with a fracture criteria. 

3  Degradation through flattening  
The Previous sections focused on the development of a strain-path- sensitive reformability index. 

Application of such a criterion falls within the domain of assessing material with regards to additional 

forming stages. A flattening process, however, is likely to be part of a cold recyclability scheme. 

Potential degradation of material during this stage should be characterized. This section focuses on the 

methodology used in this research to predict the effect of flattening on levels material behaviour. The 
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approach presented here is an effort towards linking the residual formability Φ of the material before 

and after flattening.  

The presented approach employed damage as a measure of degradation; the latter was assumed to 

reduce a load-carrying capacity. From the microscopic point of view, material degradation within the 

framework of ductile damage and fracture is related to nucleation, growth and coalescence of voids in 

the material. Establishment of a proper material’s residual formability measure requires knowledge of 

the first and second mechanisms and respective process parameters. Coalescence of voids is important 

at the final stage of ductile fracture, and since the present study deals with the material well before 

failure, this process can be neglected. It is also tried to connect this aspects to the geometrical 

parameters of the deformed material.  

Nucleation of voids  

According to Gurson (1977), void nucleation is a function of equivalent plastic strain. A strain-based 

nucleation model can reasonably describe voids nucleation in presence of positive and negative mean 

stresses, which is the case in bending. Therefore assuming that  ∆ is the degradation index of the 

material:  

∆𝑛𝑛 =   ∆𝑛𝑛(𝜀𝜀) . (19) 

Growth of voids  

Mean stress is known to be responsible for growth of voids (McClintock, 1968; Li et al.,2011). High 

mean stress accelerates the growth of voids while negative mean stress suppresses this process and 

delays fracture. Therefore, void growth is a function of mean stress in thickness direction:  

∆𝑙𝑙 =   ∆𝑙𝑙(𝜎𝜎𝑚𝑚) . (20) 

Engineering strain in thickness direction is described as:  

𝑒𝑒𝑥𝑥  =  𝑧𝑧/𝑟𝑟 , (21) 
where 𝑧𝑧 is the distance from the mid-plane and 𝑟𝑟 is the radius of curvature at the mid-plane. As 

bending of sheets is widely accepted as a plane-strain process, 𝜀𝜀𝑦𝑦 is negligible and 𝜀𝜀𝑧𝑧 = −𝜀𝜀𝑥𝑥 . 

Assuming that 𝜀𝜀𝑥𝑥 ≈ 𝑒𝑒𝑥𝑥 at small strains, it could be concluded that the most influential parameters in 

equivalent plastic strain, and consequently, void nucleation are radius of curvature, and sheet 

thickness. Therefore:  

∆𝑛𝑛 =   ∆𝑛𝑛(𝑡𝑡/𝑟𝑟) . (22) 

Assuming an accumulative nature for the equivalent plastic strain, the influence of the unbending 

process depends on state of the formed product in a sense that flattening process would somehow 
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duplicate the existing equivalent plastic strain, with areas affected by positive mean stress 

experiencing negative mean stress and vice versa. As stress and stress triaxiality are linked to strain, 

the t ⁄ r ratio could describe the void growth as well:  

∆𝑙𝑙 =   ∆𝑙𝑙(𝑡𝑡/𝑟𝑟) . (23) 

One more parameter that influences reformability of the material is the angle of bending. The higher 

the bending angle, the higher the strain. Therefore, eventually, degradation in reformability was 

assumed to be governed by the following equation:  

𝛥𝛥  =  𝛥𝛥(𝑡𝑡/𝑟𝑟, 𝛾𝛾𝑎𝑎) . (24) 

In Eq. 22, 𝛾𝛾 is the bending angle and 𝑡𝑡 is the mean to modulate its influences on reformability. In 

order to find this function numerical simulations were employed.  

3.1 FE simulations  

In this section, a three-dimensional FE model was constructed using MSC.Marc to study the 

degradation of sheet material in bending-unbending process. In this investigation, both stages were 

simulated back-to-back to analyse the progression of degradation in the material from flat to bend, 

and again back to flat. The finite element model was developed based on the folding mechanism, in 

which the bent sheet was folded around a corner cylinder; a range of bending radii and angles were 

studied. In FE simulation of sheet materials, since thickness is much smaller than other dimensions, 

shell element was employed to improve a simulation time. The development of damage in the 

material was used as a measure of  degradation through this process, with the Bonora damage model  

(Bonora, 1997) incorporated in the model. A mild steel sheet with exponential hardening law was 

selected as a case study for this simulation with elastoplastic material and fracture parameters 

tabulated in Table 1. This parameters were experimentally extracted for HD S250.  

 
Table 1, Material model parameters for FE simulation 

HD S250  

Material Model  Iso Elasto Plastic 

E 200 GPa 

ʋ 0.3 

𝜎𝜎𝑦𝑦 280 MPa 

K 600 MPa 

n 0.21 

  
Bonora damage parameters 

𝜀𝜀𝑡𝑡ℎ 0.043 
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𝜀𝜀𝑓𝑓 0.8 

𝐷𝐷0 0 

𝐷𝐷𝑐𝑐𝑟𝑟  0.12 

𝛼𝛼 0.23 

 

To explore a wide range of parameters in simulations, automated parametric technique was developed 

to construct the entire model in MSC.Marc. Taking advantage of programmable pre-processing 

capabilities of a built-in py-mentat module in Marc, a large number of FE models was created 

according to a predefined list of parameters based on a reference simulation. A post-analyser python 

code using py-post module, facilitated data collection from all result files, processing and providing 

their assessment. A series of models were created each representing different combinations of bending 

angle, thickness and bending radius. These parameters covered a reasonable range of geometry and 

bending conditions. Table 2 shows the parameters and their corresponding values used in the analysis.  

 
Table 2, Geometrical parameters in FE bendin-unbending simulations 

Thickness 𝑡𝑡 [𝑚𝑚𝑚𝑚] Bend radius 𝑟𝑟 [𝑚𝑚𝑚𝑚] Bending angle 𝛾𝛾 [°] 

0.5, 1, 1.5, 2 0.5, 1, 1.5, 2 30, 50, 70, 90, 120, 150 

 
The choice of the bending severity (𝑟𝑟/𝑡𝑡) for the thickest plate based on the tensile ductility was in 

accordance with available bending-limit diagrams (Hosford and Caddell, 2011). Simulations started 

from a flat sheet that was bent to a specified angle, followed by a release of the material to observe the 

spring back and the unbending stage to a fully flattened material and again released fro second spring 

back.  

In these simulations, a bilinear thick shell element (MRAC, 2014) has been used to model the sheet 

with nodes in the centre plane and 13 integration points in the thickness direction.  

 
Fig. 7, Configuration of surfaces and elements in bending-unbending simulations 



15 
 

  
The overall configuration of the developed model is depicted in Fig. 7. Two surfaces act as turning 

surfaces by rotating around a central axis while in contact with a folded wing of the sheet, while the 

holder surfaces keep the opposite wing stationary. A cylinder, sized to the bending radius, maintains 

the curvature of the bent zone. Mesh refinement was used in the bending zone, where a significant 

amount of plastic flow was expected. The python code created the models with consistency by placing 

ten elements along the arc length of π radian for each radius. The applied boundary condition 

suppressed displacement on the edge between the holder surfaces. To describe the contact condition 

and interaction between the tools and the sheet, the tool surfaces were defined as rigid bodies. The 

material was modelled as an elasto-plastic deformable body; no friction was considered.   

The key point in this study was quantifying the imposed damage (described using Bonora model) not 

just as a single value for an element, but for all 13 integration point as a separate quantity; this 

allowed assessing the extent of the damage. The reason behind the usage of the Bonora damage model 

was its ability to quantify the material damage in every integration point. 

3.2 Numerical analysis  

After finishing the simulations in MSC.Marc, the post processing Python code ran through the result 

file collected the nodal and elemental results of interest for the analysis. For each FE simulation, 

analysis of the nodal results was performed at two stages; first at the end of the bending followed by 

spring back, and second at the end of simulation after flattening and material release. To establish a 

basis for assessing the results, an element-wise reformability measure was calculated as:  

∆ =  ∑ (1−𝐹𝐹𝑚𝑚)
𝑛𝑛

𝑛𝑛
𝑖𝑖=1   (25) 

where 𝑡𝑡 is the integration point number and 𝐷𝐷𝑛𝑛 is the corresponding damage. This study focused on a 

specific domain; Fig. 8 demonstrates the investigated region, which was in the fold zone and occupied 

almost three-quarters of the strip width to avoid the edge effect.   

 

 
Fig. 8, Investigated region in fold zone 
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It can be seen in Fig. 8 that field quantities varied in space and should be translated to representative 

values. Two main approaches seem to be feasible, the first one dealing with the maximum value. In 

this approach, regardless of the size of investigated area, the element with the highest damage 

represented the entire zone. The second method was based on a filtered list of elements with damage 

above 70% of maximum, taking the mean value of this set of elements as a representative for the 

region. Both methods were used to analyse the obtained results. A resultant load-bearing capacity for 

different levels of thickness based on the two termed “Maximum” and “Average” techniques are 

shown in Fig. 9.  
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Fig. 9, (a-1 to 4) Changes in material load bearing capacity after bending and after un-bending, 
based on Average and Maximum, (b-1 to 4) the corresponding difference of material load bearing 

capacity. 
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An equation was sought to predict the drop in reformability index following the flattening process. 

Pursuant to the discussion on influential model parameters in Section 3, all simulations were 

categorised based on the ratio of thickness to the radius of curvature. 𝑡𝑡/𝑟𝑟 is a dimensionless parameter 

related to the sharpness of the bend with lower (higher) 𝑡𝑡/𝑟𝑟 values corresponding to less (more) 

susceptibility to damage. Fig. 10 summarises all results based on the maximum drop with respect to 

𝑡𝑡/𝑟𝑟 and the bending angle.  

 

 
Fig. 10, Reformability change after flattening based on max and average impact technique 

Apparently, the results of the "Maximum" method provided safer margins; therefore it was decided to 

focus on the data points based on this approach. It is seen in Fig. 10 that the load-bearing capacity 

decreased with the increasing bending angle. This provided an idea to combine 𝑡𝑡/𝑟𝑟 and bending angle 

𝛾𝛾 in a single form. By multiplying 𝑡𝑡/𝑟𝑟 with 𝛾𝛾𝑎𝑎 (with γ measured in radian, a dimensionless 

parameter), it is possible to introduce a single trend for all the cases; this is depicted in Fig. 11. The 

grey cloud of points is based on 𝑡𝑡/𝑟𝑟, while the coloured data points represent the data based on 𝑡𝑡/

𝑟𝑟 𝛾𝛾𝑎𝑎. The figure shows that the data points tend to form a single curve and, obviously, 𝑡𝑡 plays an 

important role.  

The 𝑡𝑡 was sought in a way to reduce the scatter in the cloud of points, leading to an optimum value of 

𝑡𝑡 = 0.39 using least square curve fitting. From Fig. 11 it is visible that there is a threshold point 

around 0.5 in the horizontal axis, beyond which material starts to degrade, and the cloud of points 
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could be represented with a declining line. Therefore, the degradation index ∆ can be presented a 

bilinear curve. Hence, the association between geometrical parameters and degradation in flattening, 

presented by Eq. 22 has the following form:  

∆(𝑥𝑥) = �   1                                      𝑥𝑥 < 0.5
   1 + (−0.32𝑥𝑥 + 0.18) 𝑥𝑥 ≥ 0.5 𝑤𝑤ℎ𝑒𝑒𝑟𝑟𝑒𝑒 𝑥𝑥 = 𝑡𝑡

 𝑟𝑟
𝛾𝛾𝑎𝑎 . (26) 

 

As ∆ described the change in reformability index after flattening for the modelled material in this 

research, the post–flattening residual formability is: 

𝛷𝛷𝑝𝑝𝑙𝑙𝑝𝑝𝑡𝑡−𝑓𝑓𝑙𝑙𝑎𝑎𝑡𝑡𝑡𝑡𝑟𝑟𝑛𝑛𝑖𝑖𝑛𝑛𝑙𝑙 = 𝛷𝛷𝑝𝑝𝑟𝑟𝑟𝑟−𝑓𝑓𝑙𝑙𝑎𝑎𝑡𝑡𝑡𝑡𝑟𝑟𝑛𝑛𝑖𝑖𝑛𝑛𝑙𝑙 .𝛥𝛥 (27) 

 

 
Fig. 11, Change in load-bearing capacity for various 𝑡𝑡/𝑟𝑟 and 𝑡𝑡

 𝑟𝑟
𝛾𝛾𝑎𝑎  

3.3 Verification  

A comparison was made to verify the developed model and experimental results presented by Falsafi 

and Demirci (2016) for the formability assessments after unbending the fold zones of a cold roll 

formed profile. Their experiment was carried out on the same material used in this study, and based 

on the reported change in formability and the geometrical parameters in their profile, three points are 

extracted for verification ( see Table 3 ). The analytical prediction of the  drop in formability after 

flattening is shown as asolid line in Fig. 12, together with the experimental points. Considering the 

number of experiments and the limited range of parameters, clearly further tests are required, 

however, it is visible that the analithical model have provided a close prediction of  available 

experimental results.  
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Table 3, Experimental results for residual formability after bending and flattening presented by 

Falsafi and Demirci (2016) 

Sample  Formability Bending angle  𝑡𝑡/𝑟𝑟 𝛾𝛾𝑎𝑎 𝛥𝛥 

Bent Flattened 

1 0.90 0.80 70 0.83 88.88 

2 0.89 0.79 90 0.91 88.76 

3 0.90 0.78 100 0.95 86.66 

 

 

 

 
Fig. 12, Experimental and predicted results for reformability change after flattening. 

4 Conclusions  
Two goals were pursued in this paper. The first was to introduce a reformability index that quantifies 

the reformability of the material in deformation process with arbitrary strain path on a scale from 0 to 

1, corresponding to a fully damaged and a healthy material. This scheme was proposed based on the 

newly introduced PEPS which is independent of strain-path changes. This important attribute helped 

to develop a reformability criterion, which provides a strain-path-sensitive index. The methodology 

was established and formulated in this paper, together with a way to obtain the relevant constants of 

the developed model.  

The second part of this study was an effort to quantify the process of material degradation due 
to the flattening process. An extensive numerical study was conducted to predict the material 
degradation in flattening of bent materials. A series of 3D simulations of folding, followed by 
unfolding of the flat sheet material were generated using Python programming for MSC.Marc. Sets of 
different thicknesses, bending radii and angles were chosen to provide enough information for the 
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subsequent data analysis. For this analysis, another Python code was developed that could run through 
all the result files and extract the intended entities at specific time steps along with sorting and storing 
the data for analysis in a predefined order.  

The analysis was then carried out by assessing the damage occurred in the material as an 
indication of its degradation. By assessing this attribute in the material at the end of bending as well as 
after unbending, a drop in load-bearing capacity for all simulations was quantitated. These data were 
analysed to understand the affecting parameters and presented in different forms.  

It was intended to obtain a model for characterization of the additional damage resulted from 
unbending based on the geometrical parameters of the process. This model was eventually extracted 
and presented in this paper. The generic form of the model is constructed with consideration of 
damage accumulation induced by nucleation and growth of voids. These processes were associated 
with the geometrical parameters; thickness, curvature and bending angle. The presented model was 
compared with the experimental results. The comparison showed good agreement, demonstrating that 
the model could reasonably present a close estimation of the effect of flattening on formability. The 
presented model is suitable to be incorporated in numerical platforms.  
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