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Abstract  

Most healthy humans move symmetrically at gross limb level but large kinetic and kinematic 

asymmetries have been observed at joint level during locomotion. The aim of this study was to assess 

muscle function asymmetries in healthy, active adults using an adapted force sledge apparatus which 

isolates the plantarflexors during a stretch-shortening cycle task.  Peak force, rate of force 

development and stretch-shortening cycle function of preferred and non-preferred limbs were assessed 

in 21 healthy, active individuals using the adapted sledge and three-dimensional motion analysis.  

Between-limb differences and relationships were determined using paired t-tests/Wilcoxon-Signed 

rank test, Cohen’s dz, absolute symmetry index and Pearson’s r/Spearman’s rho. Significant 

differences with moderate effect size (ES) were observed in peak force (ES: 0.66), rate of peak force 

development (ES: 0.78), rate of force development in the first 50 ms (ES: 0.76), flight time (ES: 0.64) 

and stretch-shortening cycle function (0.68), with no difference in contact time or duration of 

eccentric loading. A small ES (0.56) was observed in rate of force development in the first 30 ms. The 

upper  range of asymmetry observed (up to 44.9%) was larger than previously reported for healthy 

individuals, indicating compensations occur at proximal joints during locomotion to ensure 

symmetrical movement.  

Keywords 

Asymmetry, limb dominance, dynamical systems, running, injury  

Acknowledgements 

The authors would like to thank the Irish Research Council for funding this study under the Embark 

Initiative.  



3 
 

Introduction  

The assumption of limb symmetry in movement is reasonable as most healthy individuals walk and 

run without a limp or visible evidence of asymmetry (Flanagan & Harrison, 2007). However, there is 

a growing body of evidence to suggest the legs behave differently in several kinematic and kinetic 

measures during dynamic tasks. An understanding of these asymmetries and establishment of the 

level of asymmetry in healthy individuals is important to avoid potential injury (Knapik, Bauman, 

Jones, Harris, & Vaughan, 1991) and aid in the monitoring of rehabilitation programmes. Knowledge 

of the kinematic and kinetic characteristics of the weaker or lesser skilled limb is also important in 

guiding skill development and enhancing performance (Ball, 2011). Kinematic and kinetic 

asymmetries in healthy individuals have been observed at the ankle, knee and hip during walking and 

running tasks by several authors (Bredeweg, Buist, & Kluitenberg, 2013; Exell, Irwin, Gittoes, & 

Kerwin, 2012; Korhonen et al., 2010). How the body coordinates these asymmetric and variable 

structures to produce movement is known as the degrees of freedom problem of movement 

coordination and control (van Emmerik, Rosenstein, McDermott, & Hamill, 2004). The traditional 

view is that variability and asymmetry represent biological noise but Davids, Glazier, Araújo, and 

Bartlett (2003) suggested these measures may be better viewed as the body’s response to the 

constraints imposed during performance and instead reflect large adaptive capacities and flexibility 

(Holt, Jeng, Ratcliffe, & Hamill, 1995). 

Asymmetry in lower limb function may be due to a variety of factors including lateralisation 

(Gabbard & Hart, 1996), sport and training background (Cavanagh, Pollock, & Landa, 1977; Cromie, 

Greenwood, & McCullagh, 2007), injury (Schiltz et al., 2009; Zifchock, Davis, & Hamill, 2006), 

speed of movement (Cavagna, 2006; Schiltz et al., 2009), age (Atkins, Hesketh, & Sinclair, 2013), 

muscle activation (Valderrano et al., 2007) or contextual interference (Vagenas & Hoshizaki, 1992). 

Quantification of limb function asymmetry and its underlying mechanisms is difficult for several 

reasons. It is a highly individualised and variable measure as people respond differently to greater 

demands on the musculoskeletal system (Smak, Neptune, & Hull, 1999) and any asymmetry observed 

is highly dependent on the test used (Jones & Bampouras, 2010). As different tests of limb and muscle 
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function give different values for asymmetry, assessments of between-limb differences must be valid 

for the task of interest. Tests must demonstrate similar contraction modes and kinematics as the task 

of interest to avoid erroneous detection of asymmetry which is not present during performance of 

dynamic tasks (Menzel et al., 2013).  

The plantarflexors are a vital muscle group in locomotion, acting to both produce force and stabilise 

the shank upon landing (Kuitunen, Komi, & Kyrolainen, 2002). They act on the ankle joint, which is 

one of the most commonly injured areas of the lower limb in sport (Fong, Hong, Chan, Yung, & 

Chan, 2007; Kolt, 2013). Running and sprinting consist of repeated stretch-shortening cycles (SSC) 

i.e. cyclical eccentric contraction prior to concentric contraction. Previous work using a force sledge 

found no significant between-limb differences in peak force generation and SSC function of the entire 

lower limb in a cyclical loading task (Flanagan & Harrison, 2007), but this may be due to 

compensatory motor control strategies rather than symmetrical behaviour at individual joint or muscle 

level. An upper limit of 15% asymmetry in healthy limbs has been previously suggested (Knapik et 

al., 1991), but there is no research on isolated plantarflexor function in a SSC task to inform clinical 

decision-making on this.  

Muscle function asymmetry assessment requires high levels of test validity, utilising similar 

contraction modes and range of motion as the task of interest. Furlong and Harrison  (2013) developed 

a reliable, valid method of measuring plantarflexor muscle-tendon unit (MTU) behaviour during a 

dynamic, fast SSC activity (i.e. contact time  of less than 0.25 s). The task uses similar ankle 

kinematics and contact times as observed during running studies, with similar rates of peak force 

development reported as those observed in the Achilles tendon during walking (Finni, Komi, & 

Lukkariniemi, 1998). The aim of this study was to identify between-limb differences and level of 

asymmetry in plantarflexor muscle function of healthy, active adults during a dynamic SSC task using 

this adapted force sledge. This may help to explain observed asymmetries in kinematic and kinetic 

parameters during gait, as well as indicate if compensation occurs in the lower limb during a cyclical 

task to ensure symmetrical movement.  
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Method 

Participants 

Following institutional ethical approval, 21 active individuals gave written, informed consent to 

participate in this study (10 females, 11 males; age: 23.8 ±2.27 years; mass: 72.5 ±11.9 kg; height: 

1.72 ±.083 m). None had a history of lower limb surgery and all were injury free in the lower limb for 

the preceding 3 months. Participants were advised to refrain from unaccustomed strenuous activity for 

the 24 hours preceding data collection.  

Test protocol  

An adapted force sledge was used to obtain measures of plantarflexor force, force development and 

stretch-shortening cycle function. A six camera 3D motion analysis system (500 Hz, MAC Eagle, 

Motion Analysis Corporation Inc., Santa Rosa, CA., USA) was used to track 9.5 mm retro-reflective 

markers on the sledge plate edge, the lateral 5th metatarsophalangeal joint (5MTP), malleolus (MALL) 

and estimated knee joint centre (KJC). Participants were positioned supine at the base of the sledge as 

shown in figure 1. They were instructed to strike the sledge foot plate in a marked area as 

rhythmically as possible, pushing it as high as they could while minimising contact time using only 

their ankle joint. Throughout this, the hip angle was approximately 135° and knee angle between 140° 

and 160°. Familiarisation consisted of approximately 25-30 impacts with no added mass where the 

subject initially pushed the plate away from them and struck it rhythmically and a second trial where 

the plate was released from 30 cm away from the foot. The protocol continued until the subject was 

satisfied that they were familiar with the task and the researcher deemed the subject was consistently 

striking the sledge plate as instructed. Previous work has shown that subsequent trials at a variety of 

loadings resulted in low coefficient of variation and high intra-class correlation coefficients during 

each trial for the variables of interest (Furlong & Harrison, 2013). This shows participants were 

sufficiently familiar with the task to produce reliable data even after 25-30 impacts.  

<Insert Fig. 1 about here> 
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The two limbs were tested sequentially, with the preferred leg familiarised and tested first as 

participants were more comfortable completing testing in this order. Pilot work showed the order of 

limb testing did not introduce bias into the data. Due to the nature of the task, the preferred leg was 

defined as the preferred leg for single-leg hopping.. For all participants, this was also the preferred leg 

for kicking a ball. The sledge plate was released from 30 cm above the foot following a ‘3, 2, 1’ 

countdown. The same instructions were given as in familiarisation. The plate was secured away from 

the foot after successful completion of each trial and additional mass added to the sledge. Participants 

took a minimum of two minutes break between trials to minimise fatigue effects. If participants felt 

they needed longer to recover, this was allowed. The test was administered similar to an 11 repetition 

maximum (11RM) strength test, with the researcher attempting to reach the maximum loading in as 

short a time frame as possible. At least 90 impacts were completed per leg prior to data collection. 

Test load was approximately 70% of this 11RM (actual test load:17.4 ±3.9 kg, 24.4 ±6.2% body mass, 

71.2 ±5.28% 11RM) as this has been shown to be the most reliable for the variables of interest 

(Furlong & Harrison, 2013). The same protocol was used for the non-preferred leg with the same 

mass used for the test trial.  

Data processing and analysis 

Residual analyses were conducted to identify the optimum marker cut-off frequency and ensure an 

optimal signal: noise ratio (Winter, 2005). Markers were filtered using a fourth order, zero lag, 

low-pass Butterworth filter with cut-off frequencies of 12 Hz for the sledge and 5MTP markers, and 

14 Hz and 18 Hz for the MALL and KJC markers respectively. A visual check was used to ensure 

these cut-off frequencies did not over-smooth the impact event. Ankle angle was defined as the 

sagittal plane angle formed by the 5MTP, MALL and KJC markers, with the duration of eccentric 

loading defined as the percentage of contact time where the foot was in dorsiflexion. Angles were 

exported directly from the motion analysis software (Cortex v3.1.1.1290, Motion Analysis 

Corporation Inc., Santa Rosa, CA., USA) with all other variables calculated in Microsoft Excel 

(Microsoft Inc., Redmond, WA., USA).  
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Plate acceleration was calculated as the second derivative of plate position with respect to time, with 

force calculated using Newton’s second law. A correction for the component of weight acting down 

the sledge rails was used since the sledge was inclined at 30°. The difference between calculated 

average acceleration and predicted acceleration at 30° inclination during free-fall (4.903325 m.s-2) has 

previously been calculated as 0.00928 m.s-2 (0.189%) therefore frictional force was considered to be 

negligible in calculations. Peak force (FP) was the maximum force developed during each contact time 

with rate of peak force development (RPFD) calculated as the FP divided by the time in seconds to 

reach FP.  Rate of force development in the first 30 and 50 ms (RFD0-30, RFD0-50) was calculated as the 

force value at 30 ms and 50 ms post-contact, divided by .03 or .05 s respectively. Contact time (CT) 

was defined as the period when plate marker acceleration was greater than zero and flight time (FT) 

defined as the period between consecutive CT. Plate height (i.e. displacement from release to peak of 

flight) was calculated using the equations of motion and assumed equal periods of upwards and 

downwards flight. The reactive strength index (RSI) refers to the ability of a subject to utilise the 

SSC, with increased RSI considered indicative of an increased ability to transition quickly from an 

eccentric to concentric contraction (Young, 1995). It was defined as the ratio between plate height and 

preceding CT.  

The middle impacts (#5 to #7) were selected for analysis. Absolute symmetry index (ASI) was 

calculated as  

𝐴𝐴𝐴𝐴𝐴𝐴 =  
|(𝑋𝑋𝑃𝑃 − 𝑋𝑋𝑁𝑁𝑁𝑁)|
1
2(𝑋𝑋𝑃𝑃 + 𝑋𝑋𝑁𝑁𝑁𝑁)

×  100% 

 Karamanidis, Arampatzis, and Bruggemann (2003) 

Where X is the measure of interest and P and NP refer to the preferred and non-preferred legs 

respectively.  The strength of this method is that it quantifies absolute difference between limbs rather 

than allowing positive and negative differences cancel each other out. A score of 0% indicates perfect 

symmetry between limbs. 

Limb anthropometrics  
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As the effect of muscle size on force output is established, calf circumference to the closest millimetre 

was obtained at a number of points using a flexible tape measure (Rollfix, Hoechstmass, Germany). 

Circumference was considered a simple,  easily obtained measure which was correlated to 

plantarflexor muscle size (Bamman, Newcomer, Larson-Mayer, Weinsier, & Hunter, 2000). The same 

experienced researcher obtained all circumferences. Participants stood with the feet hip width apart 

and malleoli level on a 50 cm box so the researcher could obtain measures at eye level to avoid 

parallax error. Measures were obtained in the plane perpendicular to the long axis of the shank. Shank 

length was defined as the distance between the estimated knee joint centre and the lateral malleolus. 

Limb circumferences were recorded at a point immediately inferior to the patella, at positions 25%, 

50% and 75% from the proximal end of the segment, at the widest point of the calf and immediately 

superior to the malleolus. Five measures were recorded for each variable from each leg with the 

average used for later analysis.  

Statistical analysis  

Statistical analysis was completed in SPSS Statistics 20 (IBM, Armonk, NY, USA). The assumptions 

of normality and homogeneity of variance were assessed using Shapiro-Wilk’s test and Levene’s test. 

When a variable did not satisfy these assumptions, Wilcoxon’s signed rank test was used to determine 

if differences existed between the preferred and non-preferred leg. For all other variables, paired 

samples t-tests were used. Pearson’s r and Spearman’s rho were calculated to determine the strength 

of the linear relationship between the measures obtained from the two limbs. Correlation coefficients 

were considered large when the correlation coefficient was.5 to.7 and very large when between.7 

and.9 (Hopkins, 2006). The level of significance for all tests was set at α < 0.05. Effect size was 

calculated using Cohen’s dz using the formula  

z

z
z σ

md =  

where mz = the mean of the observed between-limb differences and σz = the standard deviation of the 

observed differences (Cohen, 1977). The scale for classification of effect size was 0.2 to 0.6 = small, 
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0.6 to 1.2 = medium, 1.2 and above = large (Hopkins, 2006). Where between-limb anthropometrics 

were significantly different, FP, RPFD, RFD0-30 and RFD0-50 were calculated normalised to the 

relevant circumference and between-limb differences and relationship recalculated.  

Results 

Ankle angle data was not obtained from three participants due to problems tracking the malleolus 

marker with the position of the sledge but for the remaining 18 participants, no significant difference 

was observed between legs in the duration of eccentric loading on the muscle. No differences were 

observed in CT or most of the anthropometric measures. Limb circumference at the widest point of 

the calf was significantly different (p = 0.022, preferred leg: 0.363 ±0.018 m, non-preferred leg: 0.361 

±0.019 m, ASI: 1.1 ±0.73%, moderate effect size). Statistically significant differences in FP, RPFD, 

RFD0-30, RFD0-50, FT and RSI were observed with large ASI from 11.4 ±10.87 to 25.3 ±19.6%. Effect 

sizes were small for RFD0-30 and moderate for the remaining measures. Significant differences with 

similar effect sizes and ASI were still present after normalisations to maximum calf width therefore 

only absolute values are presented in Table 1. Variability observed was almost the same magnitude as 

the average observed value. All correlation coefficients were statistically significant, with large to 

very large linear relationships observed between the preferred and non-preferred limbs.  

Discussion 

The results lend strong support to the presence of asymmetry in measures of plantarflexor MTU 

function during a dynamic, controlled, SSC task. Asymmetries were observed in all measures of 

force, force development and SSC function without asymmetry in contact time or duration of 

eccentric loading, and most measures of estimated muscle size. Differences observed were hence due 

to differences in physiological and mechanical behaviour rather than altered kinematic strategies or 

muscle mass. The magnitude of difference in circumference of the two limbs was very small so it is 

not surprising that normalised data resulted in the same conclusion. Asymmetry in plantarflexor 

function has previously been observed (Valderrano et al., 2007) but the levels of asymmetry observed 

here (from zero to almost 45%) are greater than the 15% previously reported as the upper limit of 
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asymmetry for healthy limb function (Knapik et al., 1991). This has implications for our 

understanding of natural variation in function between limbs, and recommendations for rehabilitation. 

It appears there is a greater range of acceptable asymmetry in measures of MTU function than 

previously thought as none of these participants proceeded to develop any plantarflexor or Achilles 

tendon problems in the 12 months following data collection. These results support the conclusions of 

Davids et al. (2003) who stated that even though measures of function may be considered abnormal 

when compared to the ideal medical model, they may still be healthy but reflect the adaptations of the 

limb to the constraints imposed during performance of the task. This large range also highlights the 

individualised nature of asymmetry.  

The large correlations observed are of interest as the correlation coefficients for all measures of force, 

force development and RSI were greater than .59, i.e. for every 1 standard deviation change in the 

preferred limb there will be at least a .59 standard deviation change in the non-preferred limb 

(Hopkins, 2006). This suggests that despite large differences the MTU still behaved similarly, i.e. 

force production in both limbs may be high, even if there is a difference between them. In healthy 

adults, this would be expected. Lower correlation may indicate injury or previous injury as the 

relationship between the healthy and injured limb may vary considerably. While the healthy limb may 

perform well on a task, the corresponding score from an injured limb may vary significantly 

dependent on extent of damage and rehabilitation.  

The strength of this study is that it is one of the first to test plantarflexor muscle function asymmetries 

in a valid, dynamic test condition which other authors have highlighted as a major limitation of 

methods of assessing limb asymmetry (Menzel et al., 2013). Despite the high level of control afforded 

by dynamometry, it lacks similar loading patterns to SSC tasks in magnitude of forces, kinematics and 

impact. Accounting for a typical lever length of 16-18 cm from the malleolus to the ball of the foot, 

preferred force values observed here are greater than the concentric plantarflexor torque of 41.8 N.m. 

observed during isokinetic dynamometry at 180 deg.s-1 (So, Siu, Chan, Chin, & Li, 1994). This is 

most likely due to the increased involvement of the SSC during the task and increased time for force 

development. The results of this study may help explain the asymmetries observed by other authors 
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during fast SSC activities. Exell et al. (2012) reported ankle joint work asymmetries of up to 93%. 

Joint work, as the time integral of joint power, is dependent on the product of joint torque and joint 

angular velocity which is subsequently dependent on speed of muscular contraction, rate of force 

development and opposing co-contraction. Altered joint torque may be the result of altered muscle 

group force production capabilities, and angular velocity can be determined by speed of muscle 

contraction, rate of force development and opposing co-contraction. However, previous work has 

shown altered proprioceptive capacities of the lower limb depending on whether alternating or bipedal 

hopping strategies are used (Travers, Debenham, Gibson, Campbell, & Allison, 2013). This may 

affect muscle pre-activation strategies prior to impact and potentially, observed force and force 

development values. Therefore, further study is required to identify how well the observed 

asymmetries in muscle function correspond to kinematic and kinetic asymmetries during activities 

such as running. The human body can utilise a number of different degrees of freedom to produce the 

same output, and similarly utilise the same degrees of freedom coordinated differently to produce 

different output (Heiderscheit, 2000).   The results of this study clearly show a difference in output, 

assessed by plate flight time. These differences are most likely related to the differences observed in 

the force and force development capabilities of the plantarflexor muscle group as no differences were 

observed in the plate contact time or duration of eccentric loading on the muscle which are indicative 

of the strategy used by the participant to project the plate. Flanagan and Harrison (2007) found no 

significant between-leg differences in measures of peak force generated or RSI of the entire lower 

limb during repetitive cyclical loading. Similarly, Buckeridge, Hislop, Bull, and McGregor (2012) 

reported no significant differences in lumbar-pelvic kinematics during rowing, despite observed 

between-leg differences in hip and knee kinematics, suggesting similar movements at the proximal 

limb do not reflect distal kinematics and kinetics at individual joint level. The results of this study 

show the plantarflexors of preferred and non-preferred limbs behave differently in their force-

production capabilities, how quickly they develop force and the outcome of force application. This 

suggests the hip, knee and ankle joints of the lower limb compensate for each other to maintain 

overall lower limb symmetry during cyclical activities such as running. Previous work has shown 

differences in individual joint contributions to overall limb performance dependent on task demands 
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(Hobara, Inoue, Omuro, Muraoka, & Kanosue, 2011), so it is probable that the mechanisms of 

compensation also vary with task.  

The idea of lower-limb compensation is in agreement with Exell et al. (2012) who reported large 

asymmetries in hip, knee and ankle kinematics and kinetics during maximal velocity sprinting. This 

supports previous findings suggesting the legs use different strategies to get off the ground (Sadeghi, 

Allard, Prince, & Labelle, 2000). Ball (2011) reported higher angular velocities at the distal joints of 

the preferred limb during kicking and lower angular velocities at the proximal joints compared to the 

non-preferred limb, which is consistent with Bernstein’s (1967) theory of motor control. This shows 

the ability of the two limbs to adapt differently to the conditions imposed and supports the idea of 

compensation in each limb to ensure successful performance. The regular preferential selection of one 

limb for performance of a dynamic task results in alterations in limb muscle function. During hopping 

or kicking, the preferred leg is used for a quicker movement with greater motor control and force 

development requirements while the non-preferred leg utilises more isometric muscular contractions. 

This provides further evidence for the flexibility of the body to adapt to the constraints imposed to 

maintain symmetrical movement.  

Conclusions 

This study has shown significant differences in plantarflexor MTU function during a dynamic, fast 

SSC task. The range of asymmetry is much greater than the 15% upper limit recommended by athletic 

trainers and healthcare professionals as the upper limit in healthy individuals. The wide range of 

asymmetry observed highlights the highly individualised nature of this particular measure, and 

indicates compensation may occur at the proximal joints to ensure symmetrical movement at gross 

limb level. These results may also help to explain the high levels of kinematic and kinetic asymmetry 

observed during running and sprinting.  
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Table 1. Differences in plantarflexor function with limb preference 

Variable (unit) Preferred leg Non-preferred leg p-value Effect size 

Absolute 

symmetry 

index 

(%) 

Between-

limb 

correlation 

Peak force  

(N) 
553 ±186 499 ±136 .016 0.66 14 ±8.6 .76 

Rate of peak force development (N.s-1) 8448 ±3615 6976 ±2577 .004 0.78 23 ±18.8 .69 

Rate of force development (0-30 ms) 

(N.s-1) 
11412 ±4663 10152 ±3239 .039 0.56 18 ±13.0 .69 

Rate of force development (0-50 ms) 

(N.s-1) 
9972 ±3824 8680 ±2847 .008 0.76 17 ±14.8 .83 

Plate flight time (s) 0.545 ±0.112 0.497 ±0.081 .008 0.64 11 ±10.9 .81 

Reactive strength index 1.15 ±0.54 0.93 ±0.36 .005 0.68 25 ±19.6 .59 
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Fig. 1 Participant test position, with thigh secured and retro-reflective markers in place 


