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Abstract— A new model has been constructed to generalise 

the force and torque information during a manual peg-in-a-

hole (PiH) assembly process. The paper uses Hidden 

Markov Model analysis to interpret the state topology 

(transition probability) and observations (force/torque 

signal) in the manipulation task. The task can be recognised 

as several discrete states that reflect the intrinsic nature of 

the process.  Since the whole manipulation process happens 

so fast, even the operator themselves cannot articulate the 

exact states.  Those are tacit skills which are difficult to 

extract using human factors methodologies. In order to 

programme a robot to complete tasks at skill level, 

numerical representation of the sub-goals are necessary. 

Therefore, those recognised ‘hidden’ states become valuable 

when a detail explanation of the task is needed and when a 

robot controller needs to change its behaviour in different 

states. The Gaussian Mixture model (GMM) is used as the 

initial guess of observations distribution.  Then a Hidden 

Markov Model is used to encode the state (sub-goal) 

topology and observation density associated with those sub-

goals. The Viterbi algorithm is then applied for the model-

based analysis of the force and torque signal and the 

classification into sub-goals. The Baum-Welch algorithm is 

used for training and to estimate the most likely model 

parameters. In addition to generic states recognition, the 

proposed method also enhances our understanding of the 

skill based performances in manual tasks. 

I. INTRODUCTION 

   Industrial robots are delivering more and more 

manipulation services in manufacturing.  It is common to 

decompose the task for a robot into sub-goals where each 

goal is supported by an executable action module [1].  

However, when the task is complex, it is difficult to 

programme a robot to fulfill all the requirements because 

even a relatively simple sub-task such as a Peg-in-hole 

(PiH) insertion contains uncertainties, e.g. clearance, 

initial grasping position and insertion path.  Generally, 

manipulation tasks contain gross motion states and fine 

motion states.  For the design of a robotic solution, a 

gross motion such as approaching a workpiece can be 

controlled using vision feedback [2] whilst a fine motion 

needs to rely on force and torque (F/T) feedback. Some 

intermediate passive solutions such as using a compliant 
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gripper have been proposed [3], but they cannot 

sufficiently address the uncertainties in very complex 

situations.  F/T feedback, on the other hand, introduces 

noise and uncertainties from the sensor signal. Although 

humans can adapt to uncertainties easily, most of the 

time, the operators cannot easily articulate the skills they 

used to perform a task. We call these performances skill 

based performances.  The reason humans are good at 

performing the PiH insertion task is because we have 

strong haptic feedback and uncertainties are compensated 

with both active and passive compliance [4].  Even 

though the automation solution may not fully imitate 

human motion since some of them are not necessary, it 

would be useful if the skill based performance from a 

human could be firstly interpreted by model and secondly 

transferred to a robot in a numerical way.   

   This paper is focusing on achieving the first goal.  A 

general methodology is introduced and used to model the 

uncertainties in the sensor data captured from observing 

human operators perform a task. 

   Recently, robot learning from demonstration is gaining 

interest [5] as a framework to transfer skills from human 

to robot.  It introduces probability encoding approaches 

such as the Gaussian Mixture Model (GMM) and the 

Hidden Markov Model (HMM) for modelling 

observations and state transition uncertainties. The 

advantages of using these probabilistic approaches are 

firstly that the results (transition probabilities and 

observation distributions) are easy to store and secondly 

that a robot can easily understand the underlying states by 

querying the model parameters.  Gaussian Mixture 

Regression (GMR) together with GMM and HMM are 

extensively used for trajectory generalisation and force-

based skill analysis [6, 7].  In general, the above 

probabilistic approaches have two aims: i) a generalised 

trajectory that a robot can implement; ii) a sequence of 

recognised states that a robot can understand. 

   In this paper, the state recognition capability of a 

probabilistic approach is investigated for the analysis of 

manual PiH assembly tasks. State recognition is 

important because it can help to interpret the skill based 

performance which cannot be directly articulated even by 

the operator themselves into meaningful states (sub-

goals).  Also it provides useful state transition 

information to the robot controller so that the 
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corresponding control strategies can change accordingly 

[8].  

   In general, the state recognition for a PiH process can 

be roughly classified into the following major states: 

approaching, insertion, and extraction. Since it is not 

possible to see inside the hole, vision cannot be 

considered as the primary source of input (also it is not 

accurate enough for fine motion).  F/T sensors are used 

and installed near the contact area instead. 

   In the literature, state recognition is mainly achieved 

through either an analytical approach or a learning based 

approach.  Analytical approaches are based on thorough 

analysis of the geometrical and dynamical constraints and 

they are limited by its computation speed since they 

require a large number of parameters to be measured and 

calculated simultaneously [9].   Learning based 

approaches are an alternative.   

   Various learning based approaches have been proposed 

in the literature. For instance, a HMM based recognition 

has been used for force and torque information analysis 

during tele-manipulations [10]; however, the tight 

clearance situation has not been addressed in this paper 

because the states they were interested in are more 

generic. Another research on developing HMM for states 

recognition explored the use of a virtual 

environment [11].  The accuracy of this approach is 

limited by the accuracy of the virtual environment used 

for state exploration.  Jasim and Plapper [12] successfully 

implemented Expectation Maximization (EM) and 

Gaussian Mixture Model (GMM) to classify the F/T 

information into contact states.  But the possibility to use 

feature transformation to reduce the dimensionality of the 

F/T signal was not addressed. It is not always required to 

reduce data dimensions but it will provide more compact 

training data sets and reduce the required training time. A 

Support Vector Machine (SVM) was used for contact 

state (CS) recognition during a PiH assembly [13].  The 

feature used for learning was pre-defined and inspired by 

the quasi-static force insertion model by Whitney and 

Dowe [14].  It is always beneficial if a feature can be 

used to reduce the number of variables required for 

training; however, how these features can be generalised 

for more complex situations was not discussed in the 

paper.   

   HMM has also been used for state recognition in other 

applications.  For instance, in [15], they proposed a 

method to recognise the states in valve opening. They 

used a symbolic representation of the F/T signal where 

the number of data is hugely reduced to a pre-defined 

number of segments. This method converges faster than 

using the numerical representation of the training input. 

However, there is a risk that important information is lost 

when the signal is segmented into symbols.  Therefore, 

justifications of how many segments are essential for a 

specific application are needed.  HMM is also used in 

speech recognition where each word is encoded into a 

sequence of states [16].  Therefore, depending on the 

information of interest HMM can be used as a generic 

state recognition approach by considering both discrete 

symbolic and continuous numerical inputs. 

   To summarise, even though analytical and learning 

based approaches have been applied on the robot in the 

PiH application, the human skills are less understood.  In 

another word, there is a lack of focus on generating 

numerical representation of the hidden information in 

manipulation process.  Also more explorations are needed 

on interpretation of the ‘hidden’ information in a skill 

based PiH manipulation where a tight clearance is 

considered.  Therefore, this paper proposed a 

methodology to extract the human skills from PiH 

process and focused on interpretation of the underlying 

states.  How robot will use those extracted skills is not the 

main focus of this paper, but it will be explained in the 

end. In this paper, the insertion state is investigated 

because the most valuable information for the F/T-based 

control is contained during this period of the signal.  

Therefore, the information from approaching and 

extraction phase has been excluded from this study. The 

focus is on recognising the sub-states which occur during 

the insertion phase. The tight clearance situation has been 

addressed specifically as this requires the intricate skill 

from an operator. In order to verify the findings, different 

subject has been involved in the experiments.  

II. METHODOLOGY 

A. Overview 

The proposed methodology is shown in Fig.1. The 

F/T signal feeds into a pre-processing stage which 

contains filtering, normalization and Principle 

Components Analysis (PCA). Then, a state extraction 

pipeline is used for encoding and decoding the process. In 

this stage, a K-means algorithm is used for initialization 

of GMM. A GMM is then trained for the initial guess of 

observation densities for each state. A Bayesian 

Information Criterion (BIC) is used for model selection 

where the candidate number of components is 

determined.  HMM then takes the output from GMM and 

further encodes the states into transition probabilities. 

Finally the Viterbi algorithm [17] is used for state 

recognition (decoding) with a given set of model 

parameters.  After recognition, the state is interpreted and 

some of the parameters such as the transition matrix (a 

matrix that describes the probabilities a state transit to 

other states) can be refined after interpretation. 

HMM has been chosen as a general encoding 

structure in this paper to avoid too many assumptions on 

spatial- temporal nature of the data set.  Here, a fully 

connected continuous HMM, with full covariance matrix, 

describing the distributions of the output variables is 

considered.  However, this leads to a model which 

requires the estimation of a large number of parameters.  

On the other hand, for demonstration purpose, it is 

desirable that the operator should not have to demonstrate 

the task more than a few times (5~10).  This leads to 

more parameters needing to be estimated compared to the 

amount of training data. 

In order to overcome this issue, the Baum-Welch 

(BW) algorithm [18], an HMM extension of Expectation-

Maximization (EM) optimization algorithm, is used for 

parameter estimation purpose. However, the algorithm 



cannot guarantee a global maximum and may become 

trapped in a local maximum of the likelihood function.  

Thus, the initializations have great influence on the model 

performance.  Consequently, k-mean algorithm has to run 

multiple times to guarantee a good convergence.  

Figure 1. An overview of methodology. 

B. Principle Component Analysis (PCA) 

PCA [19] is a data dimensionality reduction method.  

Considering an M dimensional dataset O = 

{𝑂1, 𝑂2 … , 𝑂𝑁}, where N is the number of samples, PCA 

will project all the observations based on their Eigen 

vectors and Eigen values to full or lower dimensions.  The 

equation 𝑌 = 𝐴 × 𝑋 shows the same idea, where Y is the 

observations and X are the latent states.  A is a mixing 

matrix with dimension 𝑀 ×  𝑁 (𝑁 ≤ 𝑀) that defines the 

rules of projection.  In PCA, only the co-variance between 

the variables (6 channels of F/T data) are considered and 

re-ordered from the most important components to the 

least important component.  As a consequence, the data 

dimension is reduced and the new dataset is re-ordered 

based on their importance. Here, PCA is a pre-process and 

re-representation of the data in terms of its importance. 

C. Gaussian Mixture Model  

   A dataset of N data points of dimensionality D, 

𝑋 = {�⃗�(𝑡1), �⃗�(𝑡2), … , �⃗�(𝑡𝑁)} with �⃗�(𝑡𝑛) ∈ 𝑅𝐷 is 

modelled by a multivariate Gaussian mixture of K-

components. 

𝑝(�⃗�(𝑛)) =  ∑ 𝜋𝑘𝑁(�⃗�(𝑡𝑛); �⃗�𝑘, Σ𝑘)

𝐾

𝑘=1

                               (1) 

Where 𝜋𝑘 ∈ Π  is the prior probability on the Gaussian 

component k, and 𝑁(�⃗�(𝑡𝑛); �⃗�𝑘, Σ𝑘) is the D-dimensional 

Gaussian density of component k.  �⃗�𝑘, Σ𝑘 are the mean 

and covariance matrix of the multivariate Gaussian k.  

{𝜋𝑘, �⃗�𝑘, Σ𝑘} are estimated using the EM algorithm. 

D. Model selection 

   The optimal number of components K in a model is not 

known beforehand. A method is needed that evaluate the 

trade-off between optimising the model’s likelihood (a 

metric of how well the fitting is) and minimizing the 

number of parameters to estimate. Even though this 

number can be learned heuristically, a formalized 

approach is preferred.   

   In order to select the optimal number of components K, 

a Bayesian Information Criterion (BIC) [19] is used after 

GMM in benchmarking stage: 

𝑆𝐵𝐼𝐶 =  −𝐿 +
𝑛

2
log(𝑁)                                                      (2)

Where L is the log-likelihood of the model, n is the 

number of free parameters required for a mixture of K 

components with a full covariance matrix, i.e. 𝑛 =

(𝐾 − 1) + 𝐾 (𝐷 +
1

2
𝐷(𝐷 + 1)).  N is the number of D-

dimension data points.  The first term of the equation 

measures how well the model fits the data, while the 

second term has two parts: the number of parameters to 

estimate transition matrix and the observation densities. 

E. Hidden Markov Model 

   A Hidden Markov Model [20] not only uses a mixture 

of multivariate Gaussians to describe the distributions of 

the observation, the temporal variations were also 

encapsulated in the transition probabilities. 

Let {Π 𝑇 𝐸} be, the initial guess of state distribution, the 

transition probabilities between the states or components 

and the multivariate data distribution, respectively. 

 𝐸 = {�⃗�𝑘, Σ𝑘}𝑘=1
𝐾  are returned from the GMM and 

directly used for initialising the HMM.  The prior state 

distribution Π  can also be suggested by the GMM as 

well.  Therefore, the HMM only needs to estimate state 

transition probabilities T and refine parameter Π and 𝐸.  

The Baum-Welch algorithm is used to estimate those 

parameters [17]. 

III. EXPERIMENT SETUP 

   The F/T data acquisition device is 6-axis ATI force 

torque sensor and it is sampled at 200 Hz.  The 

experiment setup is shown in Fig.2 to record the data in 

tight clearance manipulation.  The human operator is 

standing in front of the test rig performing a PiH 

assembly.  The F/T sensor is fixed installed on the plate.  

The nominal diameter of the hole is 16.2 mm.  The peg 

diameter   used in the experiments is 15.90mm.  The 

operator starts with holding the peg and performs the task 

in the following phases: approaching, insertion, releasing 

and waiting.   The whole process takes less than 25 

seconds and was repeated 11 times for one experiment 

data set. Therefore, there are in total 11 demonstrations 

from the operator.   The process was repeated on another 

operator for comparison purpose 

 

 
Figure 2. Experiment setup.  An operator is holding a peg and 

demonstrating insertion process.  The Force and Torque sensor is fixed 

statically on the fixture. 

IV. RESULT ANALYSIS 

In this section, the results from implementing the 
proposed framework are discussed by firstly fixing the 
subject (one subject) and peg clearance.  The number of 
states is determined based on model selection.  PCA was 



used to reduce the dimension of the signals by retaining at 
least 98% of the information. There is no constraint on the 
state topology.  Two people were involved in the 
experiment.  The first operator was more familiar with the 
process than the second operator.  The state recognition 
results from these two subjects were shown for 
comparison purpose. 

A. Model selection result 

   The model selection results are shown in Fig 3.  Recall, 

the functionality of BIC is to calculate the logarithmic 

likelihood over the observations while penalising the 

complexity of the parameters for the model estimation.  

Assuming there are K components and M dimension 

observable variables in total.  Therefore, the total number 

of GMM parameters is (𝐾 − 1) + 𝐾(𝑀 + 𝑀(𝑀 + 1)/2). 

From the results in Fig.3, it indicated that starting from 8 

states the BIC scores did not improve that much.  On the 

other hand, too many states might over complicate the 

problem; therefore, the number of components (states) is 

fixed at 8.  

 
Figure 3. BIC selection for the number of components 

 

B. Result discussion on a fixed number of states 

   After fixing the number of states, the state recognition 

results are discussed and interpreted by a human operator.  

The results from three demonstrations are plotted in 

Fig.4.  The x axis is the discretised time line of data 

sampling points.  Y axis has multiple meanings: i) it 

assigns numbers to states, ii) it represents scaled 

observations in the range [-10, 10].  The different curves 

from top to bottom indicate the filtered Fx, Fy and Fz 

signals. Tx, Ty and Tz signals are not plotted here for the 

purpose of visualization.  The thick segments indicate the 

classified states and each of them was assigned a state 

labels from S1 to S8.   

   These three plots give a typical representation of the 11 

demonstrations.  Since the main purpose of this paper 

was to extract the tacit skills from manual operation, a 

human operator was asked to evaluate the state 

recognition results. To begin with, it is hard to tell exactly 

what happened in each state especially as 8 states have 

been chosen as the model.  This is because by nature, 

tacit skills are hard to articulate.  However, looking 

closely at the data and classification results, states can be 

largely grouped into three phases which are highlighted 

in different colour in Fig.4 and concluded in Table I.  For 

instance, during the first demonstration, the first phase 

contains state 1, 2, 3, 4; the second phase contains state 5 

and 6; the third phase contains state 7 and 8.  The same 

result happened in every demonstration which meant that 

the operator was doing the task in a highly repetitive 

manner but with variations in each state. 

 
TABLE I. STATES RECOGNITION RESULTS IN 11 

DEMONSTRATIONS 

Demonstrations Phase 1 Phase 2 Phase 3 

1,2,3,4,5,6,7,8,9,10,11 1,2,3,4 5,6 7,8 

 

 

 

 

 
Figure 4. State recognition results from F/T sensor. The data samples 

are coming alone x axis in time sequence and normalised for 

visualisation purpose. 

 

C. Phase interpretation and summary of result 

   The three phases were identified from an operator. 

They can be interpreted and defined in the following:  In 

phase one, the operator was attempting to insert the peg 

from the hole chamfer.  The dominant force was the Fz 

value since the operator was trying to push firmly.  Then 

in phase two, the peg was already inside the hole, but the 

lateral angles still needed to be adjusted (wobbling 

movement) so that the peg was well aligned inside the 

hole.  This phase is due to the small wobbling movement.  

A final insertion attempt was made after this to make sure 

that the peg was fully inserted into the hole.  The absolute 

peak value of this phase is smaller than the absolute peak 

value in phase 1 which contains the first insertion 

attempt.  The overall process was very fast (within 2s); 



therefore it was really difficult for the operator to 

articulate what happened within 2s.  

  To summarise all the 11 demonstrations, the results 

indicated that each phase could be clearly defined by a 

certain fixed state.  This result could be used as initial 

indication of the skill based performance. Further 

indications cannot be articulated by the operator. 

However, the states are already encoded in the 

probabilistic.  Therefore, states such as 1,2,3,4 inside 

phase 1 are ‘hidden’ in the skill but it can be ‘articulated’ 

by the HMM model.  Also, as the states in each 

demonstration were recognised, the decoded states could 

be used to align the sequences so that the temporal 

distortions of the sequences were removed in this way.  

This is useful because the unwanted samples can be 

trimmed and all the sequences are re-represented in the 

same length.   

D. Result discussion on a different subject 

   The results above were obtained from operator 1 who 

was more experienced with the process.  State recognition 

results from operator 2 with less previous experience are 

introduced in this section. 3 out of 11 demonstration 

results are shown in Fig.5. We started from data 

normalisation and PCA reduction where 98 % percent of 

information was reserved.  The number of components 

returned by BIC was 8. The results indicate that the 

operator takes slightly longer to insert the peg and he 

adopts a different PiH manipulation pattern. But the three 

phases remained as shown in Fig.5.  However, by looking 

at the recognised states in Fig.5, the individual states do 

not look the same.  This indicates that operator 2 did PiH 

in different manner.  Also, state 1 was recognised in more 

than one phase in the all three plots.  But the same state 

accounted for initial insertion stage and release stage 

respectively.  Intrinsically, HMM tries to recognise the 

state which depends on the Multi-variant Gaussian 

distributions from the observations. The observations in 

those stages were close to each other so that they 

confused the algorithm.  That is the reason why human 

interpretation is needed to classify the states returned by 

the HMM model.  For instance, the first state 1 in the top 

Fig.5 was clearly different from the state 1 at the end.  

This is because they represented the initial chamfer 

crossing state and the force releasing state respectively.   

The same phenomenon can be observed in the bottom 

plot where not only state 1, but also states 4, 5 and 6 are 

repeated.  This indicates that the operator 2 was not doing 

the manipulation in a way as consistent as the more 

experienced operator 1.   

   Fig.6 is the Gaussian plot where each Gaussian was 

drawn as an ellipsoid against the first 2 principle 

components.  The arrow indicated the direction of the 

state transitions. The left one is from subject 1 and the 

right one is from subject 2.  By comparing the two plots, 

the Gaussians are more distinctive from each other, thus 

the expert operator from experiment 1 have more 

consistent way of doing the PiH manipulation than 

operator 2.     

   From the above results, the skills from novice and 

expert operators are represented by probabilistic models, 

however, how to transfer the model to the robot is 

unclear.  This can be done by doing statistical inference 

from the existing HMMs.  Since each state is responsible 

of encoding a specific period of PiH process in terms of 

its variations, the robot can query the probabilistic model 

and the uncertainties that a robot might encounter in this 

specific state can be inferred.  The problem remained is 

designing specific control strategy of dealing with 

uncertainties in each state.  

 

 

 
Figure 5.  State recognition results from 3 demonstrations by operator 2. 

 

  
Figure 6.  Gaussian plots for subject 1 (left) and subject 2 (right). 

V. CONCLUSION 

In this paper, a Hidden Markov Model has been used 

to analyse the hidden states in the PiH assembly process.  

The methodology started with data pre-processing where 

a more compact representation of the data was returned 

by PCA.  Then the GMM/HMM encoding process was 

used for state recognition. Finally, human interpretations 



were introduced to classify the recognised states. The 

discussions focused on interpretations of the ‘hidden’ 

states embedded in the skill based performance (the PiH 

insertion task).  It was shown that it is possible to further 

interpret the insertion task into 3 major phases which are 

defined by their corresponding sub-states.  This gives a 

detail explanation of the intricate skills a robot should 

interpret and implement. The results from different 

operators indicated that operators might carry out the task 

following different patterns but still go through common 

phases. This indicates that the methodology can be 

implemented for encoding processes from different 

subject.  The models learned from different operators can 

be saved in a knowledge base and they can be queried 

when required.   

From the results, the definition of the phases from 

observing operator 2 was less clear due to the repeated 

states.  This might appear because the observations were 

encoded by Gaussians and two close features will be 

recognised as the same state.  This is mainly due to 

operator 2 being less experienced than operator 1.  This is 

creating a higher chance some states might be repeated 

during the demonstration.  However, if the operator is an 

expert and the repeated states were appeared in the most 

of the demonstrations, this became a necessary state 

transition of this specific operator.  It is recommended 

that the demonstrator should demonstrate the process 

with enough variations in each state, and the state 

transitions should be similar.  The skilled demonstrator 

needs to be confidant and familiar with the process. The 

trained model parameters from the skilled demonstrator 

should return fewer repeated states and can be used to 

evaluate the performance from a novice demonstrator.  

The proposed work used one peg clearance and limited 

by two subjects in the experiments.  Therefore, the future 

work needs to explore the generalisation capability when 

different peg clearance is used and more subjects are 

involved.  Also, the recognised states in the fine motion 

level need further explanation by the researchers from 

human factors.  They will evaluate whether the ‘hidden’ 

states are useful for them to interpret the manual process.  

This paper can be regarded as a methodology for detail 

skill extraction on skill based manipulation, the 

knowledge from different person can be encoded and 

saved as candidate model that help to interpret the manual 

process.  In order to use the model in the robot so that it 

can take various inputs, different control strategies need 

to be designed.  Also, the performance of these should be 

evaluated against with the existing control strategies such 

as impedance control. 
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